// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_ARM) #include "ic-inl.h" #include "codegen.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(Isolate* isolate, MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register receiver, Register name, // Number of the cache entry, not scaled. Register offset, Register scratch, Register scratch2, Register offset_scratch) { ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); ExternalReference map_offset(isolate->stub_cache()->map_reference(table)); uint32_t key_off_addr = reinterpret_cast(key_offset.address()); uint32_t value_off_addr = reinterpret_cast(value_offset.address()); uint32_t map_off_addr = reinterpret_cast(map_offset.address()); // Check the relative positions of the address fields. ASSERT(value_off_addr > key_off_addr); ASSERT((value_off_addr - key_off_addr) % 4 == 0); ASSERT((value_off_addr - key_off_addr) < (256 * 4)); ASSERT(map_off_addr > key_off_addr); ASSERT((map_off_addr - key_off_addr) % 4 == 0); ASSERT((map_off_addr - key_off_addr) < (256 * 4)); Label miss; Register base_addr = scratch; scratch = no_reg; // Multiply by 3 because there are 3 fields per entry (name, code, map). __ add(offset_scratch, offset, Operand(offset, LSL, 1)); // Calculate the base address of the entry. __ mov(base_addr, Operand(key_offset)); __ add(base_addr, base_addr, Operand(offset_scratch, LSL, kPointerSizeLog2)); // Check that the key in the entry matches the name. __ ldr(ip, MemOperand(base_addr, 0)); __ cmp(name, ip); __ b(ne, &miss); // Check the map matches. __ ldr(ip, MemOperand(base_addr, map_off_addr - key_off_addr)); __ ldr(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ cmp(ip, scratch2); __ b(ne, &miss); // Get the code entry from the cache. Register code = scratch2; scratch2 = no_reg; __ ldr(code, MemOperand(base_addr, value_off_addr - key_off_addr)); // Check that the flags match what we're looking for. Register flags_reg = base_addr; base_addr = no_reg; __ ldr(flags_reg, FieldMemOperand(code, Code::kFlagsOffset)); // It's a nice optimization if this constant is encodable in the bic insn. uint32_t mask = Code::kFlagsNotUsedInLookup; ASSERT(__ ImmediateFitsAddrMode1Instruction(mask)); __ bic(flags_reg, flags_reg, Operand(mask)); // Using cmn and the negative instead of cmp means we can use movw. if (flags < 0) { __ cmn(flags_reg, Operand(-flags)); } else { __ cmp(flags_reg, Operand(flags)); } __ b(ne, &miss); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { __ jmp(&miss); } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { __ jmp(&miss); } #endif // Jump to the first instruction in the code stub. __ add(pc, code, Operand(Code::kHeaderSize - kHeapObjectTag)); // Miss: fall through. __ bind(&miss); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a symbol and receiver must be a heap object. static void GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, Handle name, Register scratch0, Register scratch1) { ASSERT(name->IsSymbol()); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1); __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); Label done; const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. Register map = scratch1; __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); __ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask)); __ b(ne, miss_label); // Check that receiver is a JSObject. __ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmp(scratch0, Operand(FIRST_SPEC_OBJECT_TYPE)); __ b(lt, miss_label); // Load properties array. Register properties = scratch0; __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset)); Register tmp = properties; __ LoadRoot(tmp, Heap::kHashTableMapRootIndex); __ cmp(map, tmp); __ b(ne, miss_label); // Restore the temporarily used register. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); StringDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, receiver, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra, Register extra2, Register extra3) { Isolate* isolate = masm->isolate(); Label miss; // Make sure that code is valid. The multiplying code relies on the // entry size being 12. ASSERT(sizeof(Entry) == 12); // Make sure the flags does not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Make sure that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); ASSERT(!extra.is(receiver)); ASSERT(!extra.is(name)); ASSERT(!extra.is(scratch)); ASSERT(!extra2.is(receiver)); ASSERT(!extra2.is(name)); ASSERT(!extra2.is(scratch)); ASSERT(!extra2.is(extra)); // Check scratch, extra and extra2 registers are valid. ASSERT(!scratch.is(no_reg)); ASSERT(!extra.is(no_reg)); ASSERT(!extra2.is(no_reg)); ASSERT(!extra3.is(no_reg)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1, extra2, extra3); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Get the map of the receiver and compute the hash. __ ldr(scratch, FieldMemOperand(name, String::kHashFieldOffset)); __ ldr(ip, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ add(scratch, scratch, Operand(ip)); uint32_t mask = kPrimaryTableSize - 1; // We shift out the last two bits because they are not part of the hash and // they are always 01 for maps. __ mov(scratch, Operand(scratch, LSR, kHeapObjectTagSize)); // Mask down the eor argument to the minimum to keep the immediate // ARM-encodable. __ eor(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask)); // Prefer and_ to ubfx here because ubfx takes 2 cycles. __ and_(scratch, scratch, Operand(mask)); // Probe the primary table. ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch, extra, extra2, extra3); // Primary miss: Compute hash for secondary probe. __ sub(scratch, scratch, Operand(name, LSR, kHeapObjectTagSize)); uint32_t mask2 = kSecondaryTableSize - 1; __ add(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask2)); __ and_(scratch, scratch, Operand(mask2)); // Probe the secondary table. ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch, extra, extra2, extra3); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1, extra2, extra3); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { // Load the global or builtins object from the current context. __ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. __ ldr(prototype, FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. __ ldr(prototype, MemOperand(prototype, Context::SlotOffset(index))); // Load the initial map. The global functions all have initial maps. __ ldr(prototype, FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { Isolate* isolate = masm->isolate(); // Check we're still in the same context. __ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ Move(ip, isolate->global()); __ cmp(prototype, ip); __ b(ne, miss); // Get the global function with the given index. Handle function( JSFunction::cast(isolate->global_context()->get(index))); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Handle(function->initial_map())); // Load the prototype from the initial map. __ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } // Load a fast property out of a holder object (src). In-object properties // are loaded directly otherwise the property is loaded from the properties // fixed array. void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, Handle holder, int index) { // Adjust for the number of properties stored in the holder. index -= holder->map()->inobject_properties(); if (index < 0) { // Get the property straight out of the holder. int offset = holder->map()->instance_size() + (index * kPointerSize); __ ldr(dst, FieldMemOperand(src, offset)); } else { // Calculate the offset into the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; __ ldr(dst, FieldMemOperand(src, JSObject::kPropertiesOffset)); __ ldr(dst, FieldMemOperand(dst, offset)); } } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss_label); // Check that the object is a JS array. __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); __ b(ne, miss_label); // Load length directly from the JS array. __ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Ret(); } // Generate code to check if an object is a string. If the object is a // heap object, its map's instance type is left in the scratch1 register. // If this is not needed, scratch1 and scratch2 may be the same register. static void GenerateStringCheck(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* smi, Label* non_string_object) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, smi); // Check that the object is a string. __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ and_(scratch2, scratch1, Operand(kIsNotStringMask)); // The cast is to resolve the overload for the argument of 0x0. __ cmp(scratch2, Operand(static_cast(kStringTag))); __ b(ne, non_string_object); } // Generate code to load the length from a string object and return the length. // If the receiver object is not a string or a wrapped string object the // execution continues at the miss label. The register containing the // receiver is potentially clobbered. void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss, bool support_wrappers) { Label check_wrapper; // Check if the object is a string leaving the instance type in the // scratch1 register. GenerateStringCheck(masm, receiver, scratch1, scratch2, miss, support_wrappers ? &check_wrapper : miss); // Load length directly from the string. __ ldr(r0, FieldMemOperand(receiver, String::kLengthOffset)); __ Ret(); if (support_wrappers) { // Check if the object is a JSValue wrapper. __ bind(&check_wrapper); __ cmp(scratch1, Operand(JS_VALUE_TYPE)); __ b(ne, miss); // Unwrap the value and check if the wrapped value is a string. __ ldr(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset)); GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss); __ ldr(r0, FieldMemOperand(scratch1, String::kLengthOffset)); __ Ret(); } } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mov(r0, scratch1); __ Ret(); } // Generate StoreField code, value is passed in r0 register. // When leaving generated code after success, the receiver_reg and name_reg // may be clobbered. Upon branch to miss_label, the receiver and name // registers have their original values. void StubCompiler::GenerateStoreField(MacroAssembler* masm, Handle object, int index, Handle transition, Register receiver_reg, Register name_reg, Register scratch, Label* miss_label) { // r0 : value Label exit; // Check that the map of the object hasn't changed. CompareMapMode mode = transition.is_null() ? ALLOW_ELEMENT_TRANSITION_MAPS : REQUIRE_EXACT_MAP; __ CheckMap(receiver_reg, scratch, Handle(object->map()), miss_label, DO_SMI_CHECK, mode); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ push(receiver_reg); __ mov(r2, Operand(transition)); __ Push(r2, r0); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), masm->isolate()), 3, 1); return; } if (!transition.is_null()) { // Update the map of the object; no write barrier updating is // needed because the map is never in new space. __ mov(ip, Operand(transition)); __ str(ip, FieldMemOperand(receiver_reg, HeapObject::kMapOffset)); } // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); __ str(r0, FieldMemOperand(receiver_reg, offset)); // Skip updating write barrier if storing a smi. __ JumpIfSmi(r0, &exit); // Update the write barrier for the array address. // Pass the now unused name_reg as a scratch register. __ mov(name_reg, r0); __ RecordWriteField(receiver_reg, offset, name_reg, scratch, kLRHasNotBeenSaved, kDontSaveFPRegs); } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array __ ldr(scratch, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset)); __ str(r0, FieldMemOperand(scratch, offset)); // Skip updating write barrier if storing a smi. __ JumpIfSmi(r0, &exit); // Update the write barrier for the array address. // Ok to clobber receiver_reg and name_reg, since we return. __ mov(name_reg, r0); __ RecordWriteField(scratch, offset, name_reg, receiver_reg, kLRHasNotBeenSaved, kDontSaveFPRegs); } // Return the value (register r0). __ bind(&exit); __ Ret(); } void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) { ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC); Handle code = (kind == Code::LOAD_IC) ? masm->isolate()->builtins()->LoadIC_Miss() : masm->isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(code, RelocInfo::CODE_TARGET); } static void GenerateCallFunction(MacroAssembler* masm, Handle object, const ParameterCount& arguments, Label* miss, Code::ExtraICState extra_ic_state) { // ----------- S t a t e ------------- // -- r0: receiver // -- r1: function to call // ----------------------------------- // Check that the function really is a function. __ JumpIfSmi(r1, miss); __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE); __ b(ne, miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, arguments.immediate() * kPointerSize)); } // Invoke the function. CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(r1, arguments, JUMP_FUNCTION, NullCallWrapper(), call_kind); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { __ push(name); Handle interceptor(holder_obj->GetNamedInterceptor()); ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor)); Register scratch = name; __ mov(scratch, Operand(interceptor)); __ push(scratch); __ push(receiver); __ push(holder); __ ldr(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset)); __ push(scratch); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly), masm->isolate()); __ mov(r0, Operand(5)); __ mov(r1, Operand(ref)); CEntryStub stub(1); __ CallStub(&stub); } static const int kFastApiCallArguments = 3; // Reserves space for the extra arguments to FastHandleApiCall in the // caller's frame. // // These arguments are set by CheckPrototypes and GenerateFastApiDirectCall. static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { __ mov(scratch, Operand(Smi::FromInt(0))); for (int i = 0; i < kFastApiCallArguments; i++) { __ push(scratch); } } // Undoes the effects of ReserveSpaceForFastApiCall. static void FreeSpaceForFastApiCall(MacroAssembler* masm) { __ Drop(kFastApiCallArguments); } static void GenerateFastApiDirectCall(MacroAssembler* masm, const CallOptimization& optimization, int argc) { // ----------- S t a t e ------------- // -- sp[0] : holder (set by CheckPrototypes) // -- sp[4] : callee JS function // -- sp[8] : call data // -- sp[12] : last JS argument // -- ... // -- sp[(argc + 3) * 4] : first JS argument // -- sp[(argc + 4) * 4] : receiver // ----------------------------------- // Get the function and setup the context. Handle function = optimization.constant_function(); __ LoadHeapObject(r5, function); __ ldr(cp, FieldMemOperand(r5, JSFunction::kContextOffset)); // Pass the additional arguments FastHandleApiCall expects. Handle api_call_info = optimization.api_call_info(); Handle call_data(api_call_info->data()); if (masm->isolate()->heap()->InNewSpace(*call_data)) { __ Move(r0, api_call_info); __ ldr(r6, FieldMemOperand(r0, CallHandlerInfo::kDataOffset)); } else { __ Move(r6, call_data); } // Store JS function and call data. __ stm(ib, sp, r5.bit() | r6.bit()); // r2 points to call data as expected by Arguments // (refer to layout above). __ add(r2, sp, Operand(2 * kPointerSize)); const int kApiStackSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // r0 = v8::Arguments& // Arguments is after the return address. __ add(r0, sp, Operand(1 * kPointerSize)); // v8::Arguments::implicit_args = data __ str(r2, MemOperand(r0, 0 * kPointerSize)); // v8::Arguments::values = last argument __ add(ip, r2, Operand(argc * kPointerSize)); __ str(ip, MemOperand(r0, 1 * kPointerSize)); // v8::Arguments::length_ = argc __ mov(ip, Operand(argc)); __ str(ip, MemOperand(r0, 2 * kPointerSize)); // v8::Arguments::is_construct_call = 0 __ mov(ip, Operand(0)); __ str(ip, MemOperand(r0, 3 * kPointerSize)); const int kStackUnwindSpace = argc + kFastApiCallArguments + 1; Address function_address = v8::ToCData
(api_call_info->callback()); ApiFunction fun(function_address); ExternalReference ref = ExternalReference(&fun, ExternalReference::DIRECT_API_CALL, masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); __ CallApiFunctionAndReturn(ref, kStackUnwindSpace); } class CallInterceptorCompiler BASE_EMBEDDED { public: CallInterceptorCompiler(StubCompiler* stub_compiler, const ParameterCount& arguments, Register name, Code::ExtraICState extra_ic_state) : stub_compiler_(stub_compiler), arguments_(arguments), name_(name), extra_ic_state_(extra_ic_state) {} void Compile(MacroAssembler* masm, Handle object, Handle holder, Handle name, LookupResult* lookup, Register receiver, Register scratch1, Register scratch2, Register scratch3, Label* miss) { ASSERT(holder->HasNamedInterceptor()); ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); CallOptimization optimization(lookup); if (optimization.is_constant_call()) { CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3, holder, lookup, name, optimization, miss); } else { CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3, name, holder, miss); } } private: void CompileCacheable(MacroAssembler* masm, Handle object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle interceptor_holder, LookupResult* lookup, Handle name, const CallOptimization& optimization, Label* miss_label) { ASSERT(optimization.is_constant_call()); ASSERT(!lookup->holder()->IsGlobalObject()); Counters* counters = masm->isolate()->counters(); int depth1 = kInvalidProtoDepth; int depth2 = kInvalidProtoDepth; bool can_do_fast_api_call = false; if (optimization.is_simple_api_call() && !lookup->holder()->IsGlobalObject()) { depth1 = optimization.GetPrototypeDepthOfExpectedType( object, interceptor_holder); if (depth1 == kInvalidProtoDepth) { depth2 = optimization.GetPrototypeDepthOfExpectedType( interceptor_holder, Handle(lookup->holder())); } can_do_fast_api_call = depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth; } __ IncrementCounter(counters->call_const_interceptor(), 1, scratch1, scratch2); if (can_do_fast_api_call) { __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1, scratch1, scratch2); ReserveSpaceForFastApiCall(masm, scratch1); } // Check that the maps from receiver to interceptor's holder // haven't changed and thus we can invoke interceptor. Label miss_cleanup; Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, depth1, miss); // Invoke an interceptor and if it provides a value, // branch to |regular_invoke|. Label regular_invoke; LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2, ®ular_invoke); // Interceptor returned nothing for this property. Try to use cached // constant function. // Check that the maps from interceptor's holder to constant function's // holder haven't changed and thus we can use cached constant function. if (*interceptor_holder != lookup->holder()) { stub_compiler_->CheckPrototypes(interceptor_holder, receiver, Handle(lookup->holder()), scratch1, scratch2, scratch3, name, depth2, miss); } else { // CheckPrototypes has a side effect of fetching a 'holder' // for API (object which is instanceof for the signature). It's // safe to omit it here, as if present, it should be fetched // by the previous CheckPrototypes. ASSERT(depth2 == kInvalidProtoDepth); } // Invoke function. if (can_do_fast_api_call) { GenerateFastApiDirectCall(masm, optimization, arguments_.immediate()); } else { CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(optimization.constant_function(), arguments_, JUMP_FUNCTION, NullCallWrapper(), call_kind); } // Deferred code for fast API call case---clean preallocated space. if (can_do_fast_api_call) { __ bind(&miss_cleanup); FreeSpaceForFastApiCall(masm); __ b(miss_label); } // Invoke a regular function. __ bind(®ular_invoke); if (can_do_fast_api_call) { FreeSpaceForFastApiCall(masm); } } void CompileRegular(MacroAssembler* masm, Handle object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle name, Handle interceptor_holder, Label* miss_label) { Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss_label); // Call a runtime function to load the interceptor property. FrameScope scope(masm, StackFrame::INTERNAL); // Save the name_ register across the call. __ push(name_); PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder); __ CallExternalReference( ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall), masm->isolate()), 5); // Restore the name_ register. __ pop(name_); // Leave the internal frame. } void LoadWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, Handle holder_obj, Register scratch, Label* interceptor_succeeded) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(holder, name_); CompileCallLoadPropertyWithInterceptor(masm, receiver, holder, name_, holder_obj); __ pop(name_); // Restore the name. __ pop(receiver); // Restore the holder. } // If interceptor returns no-result sentinel, call the constant function. __ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r0, scratch); __ b(ne, interceptor_succeeded); } StubCompiler* stub_compiler_; const ParameterCount& arguments_; Register name_; Code::ExtraICState extra_ic_state_; }; // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. static void GenerateCheckPropertyCell(MacroAssembler* masm, Handle global, Handle name, Register scratch, Label* miss) { Handle cell = GlobalObject::EnsurePropertyCell(global, name); ASSERT(cell->value()->IsTheHole()); __ mov(scratch, Operand(cell)); __ ldr(scratch, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch, ip); __ b(ne, miss); } // Calls GenerateCheckPropertyCell for each global object in the prototype chain // from object to (but not including) holder. static void GenerateCheckPropertyCells(MacroAssembler* masm, Handle object, Handle holder, Handle name, Register scratch, Label* miss) { Handle current = object; while (!current.is_identical_to(holder)) { if (current->IsGlobalObject()) { GenerateCheckPropertyCell(masm, Handle::cast(current), name, scratch, miss); } current = Handle(JSObject::cast(current->GetPrototype())); } } // Convert and store int passed in register ival to IEEE 754 single precision // floating point value at memory location (dst + 4 * wordoffset) // If VFP3 is available use it for conversion. static void StoreIntAsFloat(MacroAssembler* masm, Register dst, Register wordoffset, Register ival, Register fval, Register scratch1, Register scratch2) { if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ vmov(s0, ival); __ add(scratch1, dst, Operand(wordoffset, LSL, 2)); __ vcvt_f32_s32(s0, s0); __ vstr(s0, scratch1, 0); } else { Label not_special, done; // Move sign bit from source to destination. This works because the sign // bit in the exponent word of the double has the same position and polarity // as the 2's complement sign bit in a Smi. ASSERT(kBinary32SignMask == 0x80000000u); __ and_(fval, ival, Operand(kBinary32SignMask), SetCC); // Negate value if it is negative. __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne); // We have -1, 0 or 1, which we treat specially. Register ival contains // absolute value: it is either equal to 1 (special case of -1 and 1), // greater than 1 (not a special case) or less than 1 (special case of 0). __ cmp(ival, Operand(1)); __ b(gt, ¬_special); // For 1 or -1 we need to or in the 0 exponent (biased). static const uint32_t exponent_word_for_1 = kBinary32ExponentBias << kBinary32ExponentShift; __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq); __ b(&done); __ bind(¬_special); // Count leading zeros. // Gets the wrong answer for 0, but we already checked for that case above. Register zeros = scratch2; __ CountLeadingZeros(zeros, ival, scratch1); // Compute exponent and or it into the exponent register. __ rsb(scratch1, zeros, Operand((kBitsPerInt - 1) + kBinary32ExponentBias)); __ orr(fval, fval, Operand(scratch1, LSL, kBinary32ExponentShift)); // Shift up the source chopping the top bit off. __ add(zeros, zeros, Operand(1)); // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. __ mov(ival, Operand(ival, LSL, zeros)); // And the top (top 20 bits). __ orr(fval, fval, Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits)); __ bind(&done); __ str(fval, MemOperand(dst, wordoffset, LSL, 2)); } } // Convert unsigned integer with specified number of leading zeroes in binary // representation to IEEE 754 double. // Integer to convert is passed in register hiword. // Resulting double is returned in registers hiword:loword. // This functions does not work correctly for 0. static void GenerateUInt2Double(MacroAssembler* masm, Register hiword, Register loword, Register scratch, int leading_zeroes) { const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; const int mantissa_shift_for_hi_word = meaningful_bits - HeapNumber::kMantissaBitsInTopWord; const int mantissa_shift_for_lo_word = kBitsPerInt - mantissa_shift_for_hi_word; __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); if (mantissa_shift_for_hi_word > 0) { __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); } else { __ mov(loword, Operand(0, RelocInfo::NONE)); __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); } // If least significant bit of biased exponent was not 1 it was corrupted // by most significant bit of mantissa so we should fix that. if (!(biased_exponent & 1)) { __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); } } #undef __ #define __ ACCESS_MASM(masm()) Register StubCompiler::CheckPrototypes(Handle object, Register object_reg, Handle holder, Register holder_reg, Register scratch1, Register scratch2, Handle name, int save_at_depth, Label* miss) { // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; if (save_at_depth == depth) { __ str(reg, MemOperand(sp)); } // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. Handle current = object; while (!current.is_identical_to(holder)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); Handle prototype(JSObject::cast(current->GetPrototype())); if (!current->HasFastProperties() && !current->IsJSGlobalObject() && !current->IsJSGlobalProxy()) { if (!name->IsSymbol()) { name = factory()->LookupSymbol(name); } ASSERT(current->property_dictionary()->FindEntry(*name) == StringDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { Handle current_map(current->map()); __ CheckMap(reg, scratch1, current_map, miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch2, miss); } reg = holder_reg; // From now on the object will be in holder_reg. if (heap()->InNewSpace(*prototype)) { // The prototype is in new space; we cannot store a reference to it // in the code. Load it from the map. __ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. __ mov(reg, Operand(prototype)); } } if (save_at_depth == depth) { __ str(reg, MemOperand(sp)); } // Go to the next object in the prototype chain. current = prototype; } // Log the check depth. LOG(masm()->isolate(), IntEvent("check-maps-depth", depth + 1)); // Check the holder map. __ CheckMap(reg, scratch1, Handle(current->map()), miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform security check for access to the global object. ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded()); if (holder->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // If we've skipped any global objects, it's not enough to verify that // their maps haven't changed. We also need to check that the property // cell for the property is still empty. GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss); // Return the register containing the holder. return reg; } void StubCompiler::GenerateLoadField(Handle object, Handle holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, int index, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes( object, receiver, holder, scratch1, scratch2, scratch3, name, miss); GenerateFastPropertyLoad(masm(), r0, reg, holder, index); __ Ret(); } void StubCompiler::GenerateLoadConstant(Handle object, Handle holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle value, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. CheckPrototypes( object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Return the constant value. __ LoadHeapObject(r0, value); __ Ret(); } void StubCompiler::GenerateLoadCallback(Handle object, Handle holder, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Handle callback, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Build AccessorInfo::args_ list on the stack and push property name below // the exit frame to make GC aware of them and store pointers to them. __ push(receiver); __ mov(scratch2, sp); // scratch2 = AccessorInfo::args_ if (heap()->InNewSpace(callback->data())) { __ Move(scratch3, callback); __ ldr(scratch3, FieldMemOperand(scratch3, AccessorInfo::kDataOffset)); } else { __ Move(scratch3, Handle(callback->data())); } __ Push(reg, scratch3, name_reg); __ mov(r0, sp); // r0 = Handle const int kApiStackSpace = 1; FrameScope frame_scope(masm(), StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // Create AccessorInfo instance on the stack above the exit frame with // scratch2 (internal::Object** args_) as the data. __ str(scratch2, MemOperand(sp, 1 * kPointerSize)); __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo& const int kStackUnwindSpace = 4; Address getter_address = v8::ToCData
(callback->getter()); ApiFunction fun(getter_address); ExternalReference ref = ExternalReference(&fun, ExternalReference::DIRECT_GETTER_CALL, masm()->isolate()); __ CallApiFunctionAndReturn(ref, kStackUnwindSpace); } void StubCompiler::GenerateLoadInterceptor(Handle object, Handle interceptor_holder, LookupResult* lookup, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Handle name, Label* miss) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsFound() && lookup->IsCacheable()) { if (lookup->type() == FIELD) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsAccessorInfo()) { compile_followup_inline = AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL; } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1)); // Preserve the receiver register explicitly whenever it is different from // the holder and it is needed should the interceptor return without any // result. The CALLBACKS case needs the receiver to be passed into C++ code, // the FIELD case might cause a miss during the prototype check. bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder(); bool must_preserve_receiver_reg = !receiver.is(holder_reg) && (lookup->type() == CALLBACKS || must_perfrom_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver, holder_reg, name_reg); } else { __ Push(holder_reg, name_reg); } // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor(masm(), receiver, holder_reg, name_reg, interceptor_holder); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r0, scratch1); __ b(eq, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ Ret(); __ bind(&interceptor_failed); __ pop(name_reg); __ pop(holder_reg); if (must_preserve_receiver_reg) { __ pop(receiver); } // Leave the internal frame. } // Check that the maps from interceptor's holder to lookup's holder // haven't changed. And load lookup's holder into |holder| register. if (must_perfrom_prototype_check) { holder_reg = CheckPrototypes(interceptor_holder, holder_reg, Handle(lookup->holder()), scratch1, scratch2, scratch3, name, miss); } if (lookup->type() == FIELD) { // We found FIELD property in prototype chain of interceptor's holder. // Retrieve a field from field's holder. GenerateFastPropertyLoad(masm(), r0, holder_reg, Handle(lookup->holder()), lookup->GetFieldIndex()); __ Ret(); } else { // We found CALLBACKS property in prototype chain of interceptor's // holder. ASSERT(lookup->type() == CALLBACKS); Handle callback( AccessorInfo::cast(lookup->GetCallbackObject())); ASSERT(callback->getter() != NULL); // Tail call to runtime. // Important invariant in CALLBACKS case: the code above must be // structured to never clobber |receiver| register. __ Move(scratch2, callback); // holder_reg is either receiver or scratch1. if (!receiver.is(holder_reg)) { ASSERT(scratch1.is(holder_reg)); __ Push(receiver, holder_reg); __ ldr(scratch3, FieldMemOperand(scratch2, AccessorInfo::kDataOffset)); __ Push(scratch3, scratch2, name_reg); } else { __ push(receiver); __ ldr(scratch3, FieldMemOperand(scratch2, AccessorInfo::kDataOffset)); __ Push(holder_reg, scratch3, scratch2, name_reg); } ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadCallbackProperty), masm()->isolate()); __ TailCallExternalReference(ref, 5, 1); } } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); PushInterceptorArguments(masm(), receiver, holder_reg, name_reg, interceptor_holder); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), masm()->isolate()); __ TailCallExternalReference(ref, 5, 1); } } void CallStubCompiler::GenerateNameCheck(Handle name, Label* miss) { if (kind_ == Code::KEYED_CALL_IC) { __ cmp(r2, Operand(name)); __ b(ne, miss); } } void CallStubCompiler::GenerateGlobalReceiverCheck(Handle object, Handle holder, Handle name, Label* miss) { ASSERT(holder->IsGlobalObject()); // Get the number of arguments. const int argc = arguments().immediate(); // Get the receiver from the stack. __ ldr(r0, MemOperand(sp, argc * kPointerSize)); // Check that the maps haven't changed. __ JumpIfSmi(r0, miss); CheckPrototypes(object, r0, holder, r3, r1, r4, name, miss); } void CallStubCompiler::GenerateLoadFunctionFromCell( Handle cell, Handle function, Label* miss) { // Get the value from the cell. __ mov(r3, Operand(cell)); __ ldr(r1, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset)); // Check that the cell contains the same function. if (heap()->InNewSpace(*function)) { // We can't embed a pointer to a function in new space so we have // to verify that the shared function info is unchanged. This has // the nice side effect that multiple closures based on the same // function can all use this call IC. Before we load through the // function, we have to verify that it still is a function. __ JumpIfSmi(r1, miss); __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE); __ b(ne, miss); // Check the shared function info. Make sure it hasn't changed. __ Move(r3, Handle(function->shared())); __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ cmp(r4, r3); } else { __ cmp(r1, Operand(function)); } __ b(ne, miss); } void CallStubCompiler::GenerateMissBranch() { Handle code = isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(), kind_, extra_state_); __ Jump(code, RelocInfo::CODE_TARGET); } Handle CallStubCompiler::CompileCallField(Handle object, Handle holder, int index, Handle name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); const int argc = arguments().immediate(); // Get the receiver of the function from the stack into r0. __ ldr(r0, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(r0, &miss); // Do the right check and compute the holder register. Register reg = CheckPrototypes(object, r0, holder, r1, r3, r4, name, &miss); GenerateFastPropertyLoad(masm(), r1, reg, holder, index); GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(FIELD, name); } Handle CallStubCompiler::CompileArrayPushCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || !cell.is_null()) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); Register receiver = r1; // Get the receiver from the stack const int argc = arguments().immediate(); __ ldr(receiver, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), receiver, holder, r3, r0, r4, name, &miss); if (argc == 0) { // Nothing to do, just return the length. __ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Drop(argc + 1); __ Ret(); } else { Label call_builtin; if (argc == 1) { // Otherwise fall through to call the builtin. Label attempt_to_grow_elements; Register elements = r6; Register end_elements = r5; // Get the elements array of the object. __ ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ CheckMap(elements, r0, Heap::kFixedArrayMapRootIndex, &call_builtin, DONT_DO_SMI_CHECK); // Get the array's length into r0 and calculate new length. __ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ add(r0, r0, Operand(Smi::FromInt(argc))); // Get the elements' length. __ ldr(r4, FieldMemOperand(elements, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmp(r0, r4); __ b(gt, &attempt_to_grow_elements); // Check if value is a smi. Label with_write_barrier; __ ldr(r4, MemOperand(sp, (argc - 1) * kPointerSize)); __ JumpIfNotSmi(r4, &with_write_barrier); // Save new length. __ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); // Store the value. // We may need a register containing the address end_elements below, // so write back the value in end_elements. __ add(end_elements, elements, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); const int kEndElementsOffset = FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; __ str(r4, MemOperand(end_elements, kEndElementsOffset, PreIndex)); // Check for a smi. __ Drop(argc + 1); __ Ret(); __ bind(&with_write_barrier); __ ldr(r3, FieldMemOperand(receiver, HeapObject::kMapOffset)); if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) { Label fast_object, not_fast_object; __ CheckFastObjectElements(r3, r7, ¬_fast_object); __ jmp(&fast_object); // In case of fast smi-only, convert to fast object, otherwise bail out. __ bind(¬_fast_object); __ CheckFastSmiOnlyElements(r3, r7, &call_builtin); // edx: receiver // r3: map __ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, FAST_ELEMENTS, r3, r7, &call_builtin); __ mov(r2, receiver); ElementsTransitionGenerator::GenerateSmiOnlyToObject(masm()); __ bind(&fast_object); } else { __ CheckFastObjectElements(r3, r3, &call_builtin); } // Save new length. __ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); // Store the value. // We may need a register containing the address end_elements below, // so write back the value in end_elements. __ add(end_elements, elements, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); __ str(r4, MemOperand(end_elements, kEndElementsOffset, PreIndex)); __ RecordWrite(elements, end_elements, r4, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Drop(argc + 1); __ Ret(); __ bind(&attempt_to_grow_elements); // r0: array's length + 1. // r4: elements' length. if (!FLAG_inline_new) { __ b(&call_builtin); } __ ldr(r2, MemOperand(sp, (argc - 1) * kPointerSize)); // Growing elements that are SMI-only requires special handling in case // the new element is non-Smi. For now, delegate to the builtin. Label no_fast_elements_check; __ JumpIfSmi(r2, &no_fast_elements_check); __ ldr(r7, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ CheckFastObjectElements(r7, r7, &call_builtin); __ bind(&no_fast_elements_check); Isolate* isolate = masm()->isolate(); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate); const int kAllocationDelta = 4; // Load top and check if it is the end of elements. __ add(end_elements, elements, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(end_elements, end_elements, Operand(kEndElementsOffset)); __ mov(r7, Operand(new_space_allocation_top)); __ ldr(r3, MemOperand(r7)); __ cmp(end_elements, r3); __ b(ne, &call_builtin); __ mov(r9, Operand(new_space_allocation_limit)); __ ldr(r9, MemOperand(r9)); __ add(r3, r3, Operand(kAllocationDelta * kPointerSize)); __ cmp(r3, r9); __ b(hi, &call_builtin); // We fit and could grow elements. // Update new_space_allocation_top. __ str(r3, MemOperand(r7)); // Push the argument. __ str(r2, MemOperand(end_elements)); // Fill the rest with holes. __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); for (int i = 1; i < kAllocationDelta; i++) { __ str(r3, MemOperand(end_elements, i * kPointerSize)); } // Update elements' and array's sizes. __ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ add(r4, r4, Operand(Smi::FromInt(kAllocationDelta))); __ str(r4, FieldMemOperand(elements, FixedArray::kLengthOffset)); // Elements are in new space, so write barrier is not required. __ Drop(argc + 1); __ Ret(); } __ bind(&call_builtin); __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush, masm()->isolate()), argc + 1, 1); } // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileArrayPopCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || !cell.is_null()) return Handle::null(); Label miss, return_undefined, call_builtin; Register receiver = r1; Register elements = r3; GenerateNameCheck(name, &miss); // Get the receiver from the stack const int argc = arguments().immediate(); __ ldr(receiver, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), receiver, holder, elements, r4, r0, name, &miss); // Get the elements array of the object. __ ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ CheckMap(elements, r0, Heap::kFixedArrayMapRootIndex, &call_builtin, DONT_DO_SMI_CHECK); // Get the array's length into r4 and calculate new length. __ ldr(r4, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ sub(r4, r4, Operand(Smi::FromInt(1)), SetCC); __ b(lt, &return_undefined); // Get the last element. __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // We can't address the last element in one operation. Compute the more // expensive shift first, and use an offset later on. __ add(elements, elements, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize)); __ ldr(r0, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag)); __ cmp(r0, r6); __ b(eq, &call_builtin); // Set the array's length. __ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset)); // Fill with the hole. __ str(r6, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag)); __ Drop(argc + 1); __ Ret(); __ bind(&return_undefined); __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ Drop(argc + 1); __ Ret(); __ bind(&call_builtin); __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop, masm()->isolate()), argc + 1, 1); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringCharCodeAtCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) return Handle::null(); const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state_) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, r0, &miss); ASSERT(!object.is_identical_to(holder)); CheckPrototypes(Handle(JSObject::cast(object->GetPrototype())), r0, holder, r1, r3, r4, name, &miss); Register receiver = r1; Register index = r4; Register result = r0; __ ldr(receiver, MemOperand(sp, argc * kPointerSize)); if (argc > 0) { __ ldr(index, MemOperand(sp, (argc - 1) * kPointerSize)); } else { __ LoadRoot(index, Heap::kUndefinedValueRootIndex); } StringCharCodeAtGenerator generator(receiver, index, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ Drop(argc + 1); __ Ret(); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ LoadRoot(r0, Heap::kNanValueRootIndex); __ Drop(argc + 1); __ Ret(); } __ bind(&miss); // Restore function name in r2. __ Move(r2, name); __ bind(&name_miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringCharAtCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) return Handle::null(); const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state_) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, r0, &miss); ASSERT(!object.is_identical_to(holder)); CheckPrototypes(Handle(JSObject::cast(object->GetPrototype())), r0, holder, r1, r3, r4, name, &miss); Register receiver = r0; Register index = r4; Register scratch = r3; Register result = r0; __ ldr(receiver, MemOperand(sp, argc * kPointerSize)); if (argc > 0) { __ ldr(index, MemOperand(sp, (argc - 1) * kPointerSize)); } else { __ LoadRoot(index, Heap::kUndefinedValueRootIndex); } StringCharAtGenerator generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ Drop(argc + 1); __ Ret(); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ LoadRoot(r0, Heap::kEmptyStringRootIndex); __ Drop(argc + 1); __ Ret(); } __ bind(&miss); // Restore function name in r2. __ Move(r2, name); __ bind(&name_miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringFromCharCodeCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r1, &miss); CheckPrototypes(Handle::cast(object), r1, holder, r0, r3, r4, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the char code argument. Register code = r1; __ ldr(code, MemOperand(sp, 0 * kPointerSize)); // Check the code is a smi. Label slow; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(code, &slow); // Convert the smi code to uint16. __ and_(code, code, Operand(Smi::FromInt(0xffff))); StringCharFromCodeGenerator generator(code, r0); generator.GenerateFast(masm()); __ Drop(argc + 1); __ Ret(); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&miss); // r2: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name); } Handle CallStubCompiler::CompileMathFloorCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- if (!CpuFeatures::IsSupported(VFP3)) { return Handle::null(); } CpuFeatures::Scope scope_vfp3(VFP3); const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss, slow; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r1, &miss); CheckPrototypes(Handle::cast(object), r1, holder, r0, r3, r4, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into r0. __ ldr(r0, MemOperand(sp, 0 * kPointerSize)); // If the argument is a smi, just return. STATIC_ASSERT(kSmiTag == 0); __ tst(r0, Operand(kSmiTagMask)); __ Drop(argc + 1, eq); __ Ret(eq); __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK); Label wont_fit_smi, no_vfp_exception, restore_fpscr_and_return; // If vfp3 is enabled, we use the fpu rounding with the RM (round towards // minus infinity) mode. // Load the HeapNumber value. // We will need access to the value in the core registers, so we load it // with ldrd and move it to the fpu. It also spares a sub instruction for // updating the HeapNumber value address, as vldr expects a multiple // of 4 offset. __ Ldrd(r4, r5, FieldMemOperand(r0, HeapNumber::kValueOffset)); __ vmov(d1, r4, r5); // Backup FPSCR. __ vmrs(r3); // Set custom FPCSR: // - Set rounding mode to "Round towards Minus Infinity" // (i.e. bits [23:22] = 0b10). // - Clear vfp cumulative exception flags (bits [3:0]). // - Make sure Flush-to-zero mode control bit is unset (bit 22). __ bic(r9, r3, Operand(kVFPExceptionMask | kVFPRoundingModeMask | kVFPFlushToZeroMask)); __ orr(r9, r9, Operand(kRoundToMinusInf)); __ vmsr(r9); // Convert the argument to an integer. __ vcvt_s32_f64(s0, d1, kFPSCRRounding); // Use vcvt latency to start checking for special cases. // Get the argument exponent and clear the sign bit. __ bic(r6, r5, Operand(HeapNumber::kSignMask)); __ mov(r6, Operand(r6, LSR, HeapNumber::kMantissaBitsInTopWord)); // Retrieve FPSCR and check for vfp exceptions. __ vmrs(r9); __ tst(r9, Operand(kVFPExceptionMask)); __ b(&no_vfp_exception, eq); // Check for NaN, Infinity, and -Infinity. // They are invariant through a Math.Floor call, so just // return the original argument. __ sub(r7, r6, Operand(HeapNumber::kExponentMask >> HeapNumber::kMantissaBitsInTopWord), SetCC); __ b(&restore_fpscr_and_return, eq); // We had an overflow or underflow in the conversion. Check if we // have a big exponent. __ cmp(r7, Operand(HeapNumber::kMantissaBits)); // If greater or equal, the argument is already round and in r0. __ b(&restore_fpscr_and_return, ge); __ b(&wont_fit_smi); __ bind(&no_vfp_exception); // Move the result back to general purpose register r0. __ vmov(r0, s0); // Check if the result fits into a smi. __ add(r1, r0, Operand(0x40000000), SetCC); __ b(&wont_fit_smi, mi); // Tag the result. STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(r0, LSL, kSmiTagSize)); // Check for -0. __ cmp(r0, Operand(0, RelocInfo::NONE)); __ b(&restore_fpscr_and_return, ne); // r5 already holds the HeapNumber exponent. __ tst(r5, Operand(HeapNumber::kSignMask)); // If our HeapNumber is negative it was -0, so load its address and return. // Else r0 is loaded with 0, so we can also just return. __ ldr(r0, MemOperand(sp, 0 * kPointerSize), ne); __ bind(&restore_fpscr_and_return); // Restore FPSCR and return. __ vmsr(r3); __ Drop(argc + 1); __ Ret(); __ bind(&wont_fit_smi); // Restore FPCSR and fall to slow case. __ vmsr(r3); __ bind(&slow); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&miss); // r2: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name); } Handle CallStubCompiler::CompileMathAbsCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r1, &miss); CheckPrototypes(Handle::cast(object), r1, holder, r0, r3, r4, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into r0. __ ldr(r0, MemOperand(sp, 0 * kPointerSize)); // Check if the argument is a smi. Label not_smi; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(r0, ¬_smi); // Do bitwise not or do nothing depending on the sign of the // argument. __ eor(r1, r0, Operand(r0, ASR, kBitsPerInt - 1)); // Add 1 or do nothing depending on the sign of the argument. __ sub(r0, r1, Operand(r0, ASR, kBitsPerInt - 1), SetCC); // If the result is still negative, go to the slow case. // This only happens for the most negative smi. Label slow; __ b(mi, &slow); // Smi case done. __ Drop(argc + 1); __ Ret(); // Check if the argument is a heap number and load its exponent and // sign. __ bind(¬_smi); __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK); __ ldr(r1, FieldMemOperand(r0, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, // just return it. Label negative_sign; __ tst(r1, Operand(HeapNumber::kSignMask)); __ b(ne, &negative_sign); __ Drop(argc + 1); __ Ret(); // If the argument is negative, clear the sign, and return a new // number. __ bind(&negative_sign); __ eor(r1, r1, Operand(HeapNumber::kSignMask)); __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r0, r4, r5, r6, &slow); __ str(r1, FieldMemOperand(r0, HeapNumber::kExponentOffset)); __ str(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ Drop(argc + 1); __ Ret(); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&miss); // r2: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name); } Handle CallStubCompiler::CompileFastApiCall( const CallOptimization& optimization, Handle object, Handle holder, Handle cell, Handle function, Handle name) { Counters* counters = isolate()->counters(); ASSERT(optimization.is_simple_api_call()); // Bail out if object is a global object as we don't want to // repatch it to global receiver. if (object->IsGlobalObject()) return Handle::null(); if (!cell.is_null()) return Handle::null(); if (!object->IsJSObject()) return Handle::null(); int depth = optimization.GetPrototypeDepthOfExpectedType( Handle::cast(object), holder); if (depth == kInvalidProtoDepth) return Handle::null(); Label miss, miss_before_stack_reserved; GenerateNameCheck(name, &miss_before_stack_reserved); // Get the receiver from the stack. const int argc = arguments().immediate(); __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ JumpIfSmi(r1, &miss_before_stack_reserved); __ IncrementCounter(counters->call_const(), 1, r0, r3); __ IncrementCounter(counters->call_const_fast_api(), 1, r0, r3); ReserveSpaceForFastApiCall(masm(), r0); // Check that the maps haven't changed and find a Holder as a side effect. CheckPrototypes(Handle::cast(object), r1, holder, r0, r3, r4, name, depth, &miss); GenerateFastApiDirectCall(masm(), optimization, argc); __ bind(&miss); FreeSpaceForFastApiCall(masm()); __ bind(&miss_before_stack_reserved); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileCallConstant(Handle object, Handle holder, Handle function, Handle name, CheckType check) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- if (HasCustomCallGenerator(function)) { Handle code = CompileCustomCall(object, holder, Handle::null(), function, name); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack const int argc = arguments().immediate(); __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. if (check != NUMBER_CHECK) { __ JumpIfSmi(r1, &miss); } // Make sure that it's okay not to patch the on stack receiver // unless we're doing a receiver map check. ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); switch (check) { case RECEIVER_MAP_CHECK: __ IncrementCounter(masm()->isolate()->counters()->call_const(), 1, r0, r3); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), r1, holder, r0, r3, r4, name, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc * kPointerSize)); } break; case STRING_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { // Check that the object is a two-byte string or a symbol. __ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE); __ b(ge, &miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::STRING_FUNCTION_INDEX, r0, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), r0, holder, r3, r1, r4, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } break; case NUMBER_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { Label fast; // Check that the object is a smi or a heap number. __ JumpIfSmi(r1, &fast); __ CompareObjectType(r1, r0, r0, HEAP_NUMBER_TYPE); __ b(ne, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::NUMBER_FUNCTION_INDEX, r0, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), r0, holder, r3, r1, r4, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } break; case BOOLEAN_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { Label fast; // Check that the object is a boolean. __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r1, ip); __ b(eq, &fast); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ cmp(r1, ip); __ b(ne, &miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::BOOLEAN_FUNCTION_INDEX, r0, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), r0, holder, r3, r1, r4, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ jmp(&miss); } break; } CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileCallInterceptor(Handle object, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); // Get the receiver from the stack. __ ldr(r1, MemOperand(sp, argc * kPointerSize)); CallInterceptorCompiler compiler(this, arguments(), r2, extra_state_); compiler.Compile(masm(), object, holder, name, &lookup, r1, r3, r4, r0, &miss); // Move returned value, the function to call, to r1. __ mov(r1, r0); // Restore receiver. __ ldr(r0, MemOperand(sp, argc * kPointerSize)); GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle CallStubCompiler::CompileCallGlobal( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- if (HasCustomCallGenerator(function)) { Handle code = CompileCustomCall(object, holder, cell, function, name); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); GenerateGlobalReceiverCheck(object, holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset)); __ str(r3, MemOperand(sp, argc * kPointerSize)); } // Set up the context (function already in r1). __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Jump to the cached code (tail call). Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->call_global_inline(), 1, r3, r4); ParameterCount expected(function->shared()->formal_parameter_count()); CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); __ InvokeCode(r3, expected, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); __ IncrementCounter(counters->call_global_inline_miss(), 1, r1, r3); GenerateMissBranch(); // Return the generated code. return GetCode(NORMAL, name); } Handle StoreStubCompiler::CompileStoreField(Handle object, int index, Handle transition, Handle name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateStoreField(masm(), object, index, transition, r1, r2, r3, &miss); __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name); } Handle StoreStubCompiler::CompileStoreCallback( Handle object, Handle callback, Handle name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the object hasn't changed. __ CheckMap(r1, r3, Handle(object->map()), &miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(r1, r3, &miss); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); __ push(r1); // receiver __ mov(ip, Operand(callback)); // callback info __ Push(ip, r2, r0); // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), masm()->isolate()); __ TailCallExternalReference(store_callback_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(CALLBACKS, name); } Handle StoreStubCompiler::CompileStoreInterceptor( Handle receiver, Handle name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the object hasn't changed. __ CheckMap(r1, r3, Handle(receiver->map()), &miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform global security token check if needed. if (receiver->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(r1, r3, &miss); } // Stub is never generated for non-global objects that require access // checks. ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded()); __ Push(r1, r2, r0); // Receiver, name, value. __ mov(r0, Operand(Smi::FromInt(strict_mode_))); __ push(r0); // strict mode // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), masm()->isolate()); __ TailCallExternalReference(store_ic_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle StoreStubCompiler::CompileStoreGlobal( Handle object, Handle cell, Handle name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r3, Operand(Handle(object->map()))); __ b(ne, &miss); // Check that the value in the cell is not the hole. If it is, this // cell could have been deleted and reintroducing the global needs // to update the property details in the property dictionary of the // global object. We bail out to the runtime system to do that. __ mov(r4, Operand(cell)); __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); __ ldr(r6, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset)); __ cmp(r5, r6); __ b(eq, &miss); // Store the value in the cell. __ str(r0, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset)); // Cells are always rescanned, so no write barrier here. Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->named_store_global_inline(), 1, r4, r3); __ Ret(); // Handle store cache miss. __ bind(&miss); __ IncrementCounter(counters->named_store_global_inline_miss(), 1, r4, r3); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, name); } Handle LoadStubCompiler::CompileLoadNonexistent(Handle name, Handle object, Handle last) { // ----------- S t a t e ------------- // -- r0 : receiver // -- lr : return address // ----------------------------------- Label miss; // Check that receiver is not a smi. __ JumpIfSmi(r0, &miss); // Check the maps of the full prototype chain. CheckPrototypes(object, r0, last, r3, r1, r4, name, &miss); // If the last object in the prototype chain is a global object, // check that the global property cell is empty. if (last->IsGlobalObject()) { GenerateCheckPropertyCell( masm(), Handle::cast(last), name, r1, &miss); } // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ Ret(); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NONEXISTENT, factory()->empty_string()); } Handle LoadStubCompiler::CompileLoadField(Handle object, Handle holder, int index, Handle name) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadField(object, holder, r0, r3, r1, r4, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(FIELD, name); } Handle LoadStubCompiler::CompileLoadCallback( Handle name, Handle object, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadCallback(object, holder, r0, r2, r3, r1, r4, callback, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CALLBACKS, name); } Handle LoadStubCompiler::CompileLoadConstant(Handle object, Handle holder, Handle value, Handle name) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadConstant(object, holder, r0, r3, r1, r4, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } Handle LoadStubCompiler::CompileLoadInterceptor(Handle object, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(object, holder, &lookup, r0, r2, r3, r1, r4, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(INTERCEPTOR, name); } Handle LoadStubCompiler::CompileLoadGlobal( Handle object, Handle holder, Handle cell, Handle name, bool is_dont_delete) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ JumpIfSmi(r0, &miss); CheckPrototypes(object, r0, holder, r3, r4, r1, name, &miss); // Get the value from the cell. __ mov(r3, Operand(cell)); __ ldr(r4, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r4, ip); __ b(eq, &miss); } __ mov(r0, r4); Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1, r1, r3); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->named_load_global_stub_miss(), 1, r1, r3); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(NORMAL, name); } Handle KeyedLoadStubCompiler::CompileLoadField(Handle name, Handle receiver, Handle holder, int index) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(name)); __ b(ne, &miss); GenerateLoadField(receiver, holder, r1, r2, r3, r4, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(FIELD, name); } Handle KeyedLoadStubCompiler::CompileLoadCallback( Handle name, Handle receiver, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(name)); __ b(ne, &miss); GenerateLoadCallback(receiver, holder, r1, r0, r2, r3, r4, callback, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadConstant( Handle name, Handle receiver, Handle holder, Handle value) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(name)); __ b(ne, &miss); GenerateLoadConstant(receiver, holder, r1, r2, r3, r4, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(CONSTANT_FUNCTION, name); } Handle KeyedLoadStubCompiler::CompileLoadInterceptor( Handle receiver, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(name)); __ b(ne, &miss); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(receiver, holder, &lookup, r1, r0, r2, r3, r4, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(INTERCEPTOR, name); } Handle KeyedLoadStubCompiler::CompileLoadArrayLength( Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ cmp(r0, Operand(name)); __ b(ne, &miss); GenerateLoadArrayLength(masm(), r1, r2, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadStringLength( Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->keyed_load_string_length(), 1, r2, r3); // Check the key is the cached one. __ cmp(r0, Operand(name)); __ b(ne, &miss); GenerateLoadStringLength(masm(), r1, r2, r3, &miss, true); __ bind(&miss); __ DecrementCounter(counters->keyed_load_string_length(), 1, r2, r3); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadFunctionPrototype( Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->keyed_load_function_prototype(), 1, r2, r3); // Check the name hasn't changed. __ cmp(r0, Operand(name)); __ b(ne, &miss); GenerateLoadFunctionPrototype(masm(), r1, r2, r3, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_function_prototype(), 1, r2, r3); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadElement( Handle receiver_map) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- ElementsKind elements_kind = receiver_map->elements_kind(); Handle stub = KeyedLoadElementStub(elements_kind).GetCode(); __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); Handle ic = isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, factory()->empty_string()); } Handle KeyedLoadStubCompiler::CompileLoadPolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_ics) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss; __ JumpIfSmi(r1, &miss); int receiver_count = receiver_maps->length(); __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); for (int current = 0; current < receiver_count; ++current) { __ mov(ip, Operand(receiver_maps->at(current))); __ cmp(r2, ip); __ Jump(handler_ics->at(current), RelocInfo::CODE_TARGET, eq); } __ bind(&miss); Handle miss_ic = isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(miss_ic, RelocInfo::CODE_TARGET, al); // Return the generated code. return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC); } Handle KeyedStoreStubCompiler::CompileStoreField(Handle object, int index, Handle transition, Handle name) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : name // -- r2 : receiver // -- lr : return address // ----------------------------------- Label miss; Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->keyed_store_field(), 1, r3, r4); // Check that the name has not changed. __ cmp(r1, Operand(name)); __ b(ne, &miss); // r3 is used as scratch register. r1 and r2 keep their values if a jump to // the miss label is generated. GenerateStoreField(masm(), object, index, transition, r2, r1, r3, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_store_field(), 1, r3, r4); Handle ic = masm()->isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name); } Handle KeyedStoreStubCompiler::CompileStoreElement( Handle receiver_map) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : scratch // ----------------------------------- ElementsKind elements_kind = receiver_map->elements_kind(); bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; Handle stub = KeyedStoreElementStub(is_js_array, elements_kind, grow_mode_).GetCode(); __ DispatchMap(r2, r3, receiver_map, stub, DO_SMI_CHECK); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(NORMAL, factory()->empty_string()); } Handle KeyedStoreStubCompiler::CompileStorePolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_stubs, MapHandleList* transitioned_maps) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : scratch // ----------------------------------- Label miss; __ JumpIfSmi(r2, &miss); int receiver_count = receiver_maps->length(); __ ldr(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); for (int i = 0; i < receiver_count; ++i) { __ mov(ip, Operand(receiver_maps->at(i))); __ cmp(r3, ip); if (transitioned_maps->at(i).is_null()) { __ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET, eq); } else { Label next_map; __ b(ne, &next_map); __ mov(r3, Operand(transitioned_maps->at(i))); __ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET, al); __ bind(&next_map); } } __ bind(&miss); Handle miss_ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(miss_ic, RelocInfo::CODE_TARGET, al); // Return the generated code. return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC); } Handle ConstructStubCompiler::CompileConstructStub( Handle function) { // ----------- S t a t e ------------- // -- r0 : argc // -- r1 : constructor // -- lr : return address // -- [sp] : last argument // ----------------------------------- Label generic_stub_call; // Use r7 for holding undefined which is used in several places below. __ LoadRoot(r7, Heap::kUndefinedValueRootIndex); #ifdef ENABLE_DEBUGGER_SUPPORT // Check to see whether there are any break points in the function code. If // there are jump to the generic constructor stub which calls the actual // code for the function thereby hitting the break points. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kDebugInfoOffset)); __ cmp(r2, r7); __ b(ne, &generic_stub_call); #endif // Load the initial map and verify that it is in fact a map. // r1: constructor function // r7: undefined __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r2, &generic_stub_call); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ b(ne, &generic_stub_call); #ifdef DEBUG // Cannot construct functions this way. // r0: argc // r1: constructor function // r2: initial map // r7: undefined __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE); __ Check(ne, "Function constructed by construct stub."); #endif // Now allocate the JSObject in new space. // r0: argc // r1: constructor function // r2: initial map // r7: undefined __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset)); __ AllocateInNewSpace(r3, r4, r5, r6, &generic_stub_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to initial // map and properties and elements are set to empty fixed array. // r0: argc // r1: constructor function // r2: initial map // r3: object size (in words) // r4: JSObject (not tagged) // r7: undefined __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ mov(r5, r4); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); // Calculate the location of the first argument. The stack contains only the // argc arguments. __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); // Fill all the in-object properties with undefined. // r0: argc // r1: first argument // r3: object size (in words) // r4: JSObject (not tagged) // r5: First in-object property of JSObject (not tagged) // r7: undefined // Fill the initialized properties with a constant value or a passed argument // depending on the this.x = ...; assignment in the function. Handle shared(function->shared()); for (int i = 0; i < shared->this_property_assignments_count(); i++) { if (shared->IsThisPropertyAssignmentArgument(i)) { Label not_passed, next; // Check if the argument assigned to the property is actually passed. int arg_number = shared->GetThisPropertyAssignmentArgument(i); __ cmp(r0, Operand(arg_number)); __ b(le, ¬_passed); // Argument passed - find it on the stack. __ ldr(r2, MemOperand(r1, (arg_number + 1) * -kPointerSize)); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); __ b(&next); __ bind(¬_passed); // Set the property to undefined. __ str(r7, MemOperand(r5, kPointerSize, PostIndex)); __ bind(&next); } else { // Set the property to the constant value. Handle constant(shared->GetThisPropertyAssignmentConstant(i)); __ mov(r2, Operand(constant)); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); } } // Fill the unused in-object property fields with undefined. ASSERT(function->has_initial_map()); for (int i = shared->this_property_assignments_count(); i < function->initial_map()->inobject_properties(); i++) { __ str(r7, MemOperand(r5, kPointerSize, PostIndex)); } // r0: argc // r4: JSObject (not tagged) // Move argc to r1 and the JSObject to return to r0 and tag it. __ mov(r1, r0); __ mov(r0, r4); __ orr(r0, r0, Operand(kHeapObjectTag)); // r0: JSObject // r1: argc // Remove caller arguments and receiver from the stack and return. __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2)); __ add(sp, sp, Operand(kPointerSize)); Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1, r1, r2); __ IncrementCounter(counters->constructed_objects_stub(), 1, r1, r2); __ Jump(lr); // Jump to the generic stub in case the specialized code cannot handle the // construction. __ bind(&generic_stub_call); Handle code = masm()->isolate()->builtins()->JSConstructStubGeneric(); __ Jump(code, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(); } #undef __ #define __ ACCESS_MASM(masm) void KeyedLoadStubCompiler::GenerateLoadDictionaryElement( MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label slow, miss_force_generic; Register key = r0; Register receiver = r1; __ JumpIfNotSmi(key, &miss_force_generic); __ mov(r2, Operand(key, ASR, kSmiTagSize)); __ ldr(r4, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ LoadFromNumberDictionary(&slow, r4, key, r0, r2, r3, r5); __ Ret(); __ bind(&slow); __ IncrementCounter( masm->isolate()->counters()->keyed_load_external_array_slow(), 1, r2, r3); // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Handle slow_ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ Jump(slow_ic, RelocInfo::CODE_TARGET); // Miss case, call the runtime. __ bind(&miss_force_generic); // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(miss_ic, RelocInfo::CODE_TARGET); } static bool IsElementTypeSigned(ElementsKind elements_kind) { switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: return true; case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_PIXEL_ELEMENTS: return false; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); return false; } return false; } void KeyedLoadStubCompiler::GenerateLoadExternalArray( MacroAssembler* masm, ElementsKind elements_kind) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss_force_generic, slow, failed_allocation; Register key = r0; Register receiver = r1; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(key, &miss_force_generic); __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); // r3: elements array // Check that the index is in range. __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); __ cmp(key, ip); // Unsigned comparison catches both negative and too-large values. __ b(hs, &miss_force_generic); __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); // r3: base pointer of external storage // We are not untagging smi key and instead work with it // as if it was premultiplied by 2. STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); Register value = r2; switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ ldrsb(value, MemOperand(r3, key, LSR, 1)); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ ldrb(value, MemOperand(r3, key, LSR, 1)); break; case EXTERNAL_SHORT_ELEMENTS: __ ldrsh(value, MemOperand(r3, key, LSL, 0)); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ ldrh(value, MemOperand(r3, key, LSL, 0)); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ ldr(value, MemOperand(r3, key, LSL, 1)); break; case EXTERNAL_FLOAT_ELEMENTS: if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ add(r2, r3, Operand(key, LSL, 1)); __ vldr(s0, r2, 0); } else { __ ldr(value, MemOperand(r3, key, LSL, 1)); } break; case EXTERNAL_DOUBLE_ELEMENTS: if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ add(r2, r3, Operand(key, LSL, 2)); __ vldr(d0, r2, 0); } else { __ add(r4, r3, Operand(key, LSL, 2)); // r4: pointer to the beginning of the double we want to load. __ ldr(r2, MemOperand(r4, 0)); __ ldr(r3, MemOperand(r4, Register::kSizeInBytes)); } break; case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } // For integer array types: // r2: value // For float array type: // s0: value (if VFP3 is supported) // r2: value (if VFP3 is not supported) // For double array type: // d0: value (if VFP3 is supported) // r2/r3: value (if VFP3 is not supported) if (elements_kind == EXTERNAL_INT_ELEMENTS) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; __ cmp(value, Operand(0xC0000000)); __ b(mi, &box_int); // Tag integer as smi and return it. __ mov(r0, Operand(value, LSL, kSmiTagSize)); __ Ret(); __ bind(&box_int); // Allocate a HeapNumber for the result and perform int-to-double // conversion. Don't touch r0 or r1 as they are needed if allocation // fails. __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r5, r3, r4, r6, &slow); // Now we can use r0 for the result as key is not needed any more. __ mov(r0, r5); if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ vmov(s0, value); __ vcvt_f64_s32(d0, s0); __ sub(r3, r0, Operand(kHeapObjectTag)); __ vstr(d0, r3, HeapNumber::kValueOffset); __ Ret(); } else { Register dst1 = r1; Register dst2 = r3; FloatingPointHelper::Destination dest = FloatingPointHelper::kCoreRegisters; FloatingPointHelper::ConvertIntToDouble(masm, value, dest, d0, dst1, dst2, r9, s0); __ str(dst1, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ str(dst2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); __ Ret(); } } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { // The test is different for unsigned int values. Since we need // the value to be in the range of a positive smi, we can't // handle either of the top two bits being set in the value. if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); Label box_int, done; __ tst(value, Operand(0xC0000000)); __ b(ne, &box_int); // Tag integer as smi and return it. __ mov(r0, Operand(value, LSL, kSmiTagSize)); __ Ret(); __ bind(&box_int); __ vmov(s0, value); // Allocate a HeapNumber for the result and perform int-to-double // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all // registers - also when jumping due to exhausted young space. __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r2, r3, r4, r6, &slow); __ vcvt_f64_u32(d0, s0); __ sub(r1, r2, Operand(kHeapObjectTag)); __ vstr(d0, r1, HeapNumber::kValueOffset); __ mov(r0, r2); __ Ret(); } else { // Check whether unsigned integer fits into smi. Label box_int_0, box_int_1, done; __ tst(value, Operand(0x80000000)); __ b(ne, &box_int_0); __ tst(value, Operand(0x40000000)); __ b(ne, &box_int_1); // Tag integer as smi and return it. __ mov(r0, Operand(value, LSL, kSmiTagSize)); __ Ret(); Register hiword = value; // r2. Register loword = r3; __ bind(&box_int_0); // Integer does not have leading zeros. GenerateUInt2Double(masm, hiword, loword, r4, 0); __ b(&done); __ bind(&box_int_1); // Integer has one leading zero. GenerateUInt2Double(masm, hiword, loword, r4, 1); __ bind(&done); // Integer was converted to double in registers hiword:loword. // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber // clobbers all registers - also when jumping due to exhausted young // space. __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r4, r5, r7, r6, &slow); __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset)); __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); __ mov(r0, r4); __ Ret(); } } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { // For the floating-point array type, we need to always allocate a // HeapNumber. if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); // Allocate a HeapNumber for the result. Don't use r0 and r1 as // AllocateHeapNumber clobbers all registers - also when jumping due to // exhausted young space. __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r2, r3, r4, r6, &slow); __ vcvt_f64_f32(d0, s0); __ sub(r1, r2, Operand(kHeapObjectTag)); __ vstr(d0, r1, HeapNumber::kValueOffset); __ mov(r0, r2); __ Ret(); } else { // Allocate a HeapNumber for the result. Don't use r0 and r1 as // AllocateHeapNumber clobbers all registers - also when jumping due to // exhausted young space. __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r3, r4, r5, r6, &slow); // VFP is not available, do manual single to double conversion. // r2: floating point value (binary32) // r3: heap number for result // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to // the slow case from here. __ and_(r0, value, Operand(kBinary32MantissaMask)); // Extract exponent to r1. OK to clobber r1 now as there are no jumps to // the slow case from here. __ mov(r1, Operand(value, LSR, kBinary32MantissaBits)); __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); Label exponent_rebiased; __ teq(r1, Operand(0x00)); __ b(eq, &exponent_rebiased); __ teq(r1, Operand(0xff)); __ mov(r1, Operand(0x7ff), LeaveCC, eq); __ b(eq, &exponent_rebiased); // Rebias exponent. __ add(r1, r1, Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); __ bind(&exponent_rebiased); __ and_(r2, value, Operand(kBinary32SignMask)); value = no_reg; __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord)); // Shift mantissa. static const int kMantissaShiftForHiWord = kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; static const int kMantissaShiftForLoWord = kBitsPerInt - kMantissaShiftForHiWord; __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord)); __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord)); __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset)); __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); __ mov(r0, r3); __ Ret(); } } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); // Allocate a HeapNumber for the result. Don't use r0 and r1 as // AllocateHeapNumber clobbers all registers - also when jumping due to // exhausted young space. __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r2, r3, r4, r6, &slow); __ sub(r1, r2, Operand(kHeapObjectTag)); __ vstr(d0, r1, HeapNumber::kValueOffset); __ mov(r0, r2); __ Ret(); } else { // Allocate a HeapNumber for the result. Don't use r0 and r1 as // AllocateHeapNumber clobbers all registers - also when jumping due to // exhausted young space. __ LoadRoot(r7, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r4, r5, r6, r7, &slow); __ str(r2, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); __ str(r3, FieldMemOperand(r4, HeapNumber::kExponentOffset)); __ mov(r0, r4); __ Ret(); } } else { // Tag integer as smi and return it. __ mov(r0, Operand(value, LSL, kSmiTagSize)); __ Ret(); } // Slow case, key and receiver still in r0 and r1. __ bind(&slow); __ IncrementCounter( masm->isolate()->counters()->keyed_load_external_array_slow(), 1, r2, r3); // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- __ Push(r1, r0); __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); __ bind(&miss_force_generic); Handle stub = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(stub, RelocInfo::CODE_TARGET); } void KeyedStoreStubCompiler::GenerateStoreExternalArray( MacroAssembler* masm, ElementsKind elements_kind) { // ---------- S t a t e -------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // ----------------------------------- Label slow, check_heap_number, miss_force_generic; // Register usage. Register value = r0; Register key = r1; Register receiver = r2; // r3 mostly holds the elements array or the destination external array. // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(key, &miss_force_generic); __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check that the index is in range __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); __ cmp(key, ip); // Unsigned comparison catches both negative and too-large values. __ b(hs, &miss_force_generic); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // r3: external array. if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) { // Double to pixel conversion is only implemented in the runtime for now. __ JumpIfNotSmi(value, &slow); } else { __ JumpIfNotSmi(value, &check_heap_number); } __ SmiUntag(r5, value); __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); // r3: base pointer of external storage. // r5: value (integer). switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: // Clamp the value to [0..255]. __ Usat(r5, 8, Operand(r5)); __ strb(r5, MemOperand(r3, key, LSR, 1)); break; case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ strb(r5, MemOperand(r3, key, LSR, 1)); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ strh(r5, MemOperand(r3, key, LSL, 0)); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ str(r5, MemOperand(r3, key, LSL, 1)); break; case EXTERNAL_FLOAT_ELEMENTS: // Perform int-to-float conversion and store to memory. __ SmiUntag(r4, key); StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9); break; case EXTERNAL_DOUBLE_ELEMENTS: __ add(r3, r3, Operand(key, LSL, 2)); // r3: effective address of the double element FloatingPointHelper::Destination destination; if (CpuFeatures::IsSupported(VFP3)) { destination = FloatingPointHelper::kVFPRegisters; } else { destination = FloatingPointHelper::kCoreRegisters; } FloatingPointHelper::ConvertIntToDouble( masm, r5, destination, d0, r6, r7, // These are: double_dst, dst1, dst2. r4, s2); // These are: scratch2, single_scratch. if (destination == FloatingPointHelper::kVFPRegisters) { CpuFeatures::Scope scope(VFP3); __ vstr(d0, r3, 0); } else { __ str(r6, MemOperand(r3, 0)); __ str(r7, MemOperand(r3, Register::kSizeInBytes)); } break; case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } // Entry registers are intact, r0 holds the value which is the return value. __ Ret(); if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) { // r3: external array. __ bind(&check_heap_number); __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE); __ b(ne, &slow); __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); // r3: base pointer of external storage. // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { // vldr requires offset to be a multiple of 4 so we can not // include -kHeapObjectTag into it. __ sub(r5, r0, Operand(kHeapObjectTag)); __ vldr(d0, r5, HeapNumber::kValueOffset); __ add(r5, r3, Operand(key, LSL, 1)); __ vcvt_f32_f64(s0, d0); __ vstr(s0, r5, 0); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ sub(r5, r0, Operand(kHeapObjectTag)); __ vldr(d0, r5, HeapNumber::kValueOffset); __ add(r5, r3, Operand(key, LSL, 2)); __ vstr(d0, r5, 0); } else { // Hoisted load. vldr requires offset to be a multiple of 4 so we can // not include -kHeapObjectTag into it. __ sub(r5, value, Operand(kHeapObjectTag)); __ vldr(d0, r5, HeapNumber::kValueOffset); __ EmitECMATruncate(r5, d0, s2, r6, r7, r9); switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ strb(r5, MemOperand(r3, key, LSR, 1)); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ strh(r5, MemOperand(r3, key, LSL, 0)); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ str(r5, MemOperand(r3, key, LSL, 1)); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } // Entry registers are intact, r0 holds the value which is the return // value. __ Ret(); } else { // VFP3 is not available do manual conversions. __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset)); __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset)); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { Label done, nan_or_infinity_or_zero; static const int kMantissaInHiWordShift = kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; static const int kMantissaInLoWordShift = kBitsPerInt - kMantissaInHiWordShift; // Test for all special exponent values: zeros, subnormal numbers, NaNs // and infinities. All these should be converted to 0. __ mov(r7, Operand(HeapNumber::kExponentMask)); __ and_(r9, r5, Operand(r7), SetCC); __ b(eq, &nan_or_infinity_or_zero); __ teq(r9, Operand(r7)); __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq); __ b(eq, &nan_or_infinity_or_zero); // Rebias exponent. __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); __ add(r9, r9, Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); __ cmp(r9, Operand(kBinary32MaxExponent)); __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt); __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt); __ b(gt, &done); __ cmp(r9, Operand(kBinary32MinExponent)); __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt); __ b(lt, &done); __ and_(r7, r5, Operand(HeapNumber::kSignMask)); __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift)); __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift)); __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift)); __ bind(&done); __ str(r5, MemOperand(r3, key, LSL, 1)); // Entry registers are intact, r0 holds the value which is the return // value. __ Ret(); __ bind(&nan_or_infinity_or_zero); __ and_(r7, r5, Operand(HeapNumber::kSignMask)); __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); __ orr(r9, r9, r7); __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift)); __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift)); __ b(&done); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ add(r7, r3, Operand(key, LSL, 2)); // r7: effective address of destination element. __ str(r6, MemOperand(r7, 0)); __ str(r5, MemOperand(r7, Register::kSizeInBytes)); __ Ret(); } else { bool is_signed_type = IsElementTypeSigned(elements_kind); int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; Label done, sign; // Test for all special exponent values: zeros, subnormal numbers, NaNs // and infinities. All these should be converted to 0. __ mov(r7, Operand(HeapNumber::kExponentMask)); __ and_(r9, r5, Operand(r7), SetCC); __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq); __ b(eq, &done); __ teq(r9, Operand(r7)); __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq); __ b(eq, &done); // Unbias exponent. __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC); // If exponent is negative then result is 0. __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi); __ b(mi, &done); // If exponent is too big then result is minimal value. __ cmp(r9, Operand(meaningfull_bits - 1)); __ mov(r5, Operand(min_value), LeaveCC, ge); __ b(ge, &done); __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC); __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl); __ b(pl, &sign); __ rsb(r9, r9, Operand(0, RelocInfo::NONE)); __ mov(r5, Operand(r5, LSL, r9)); __ rsb(r9, r9, Operand(meaningfull_bits)); __ orr(r5, r5, Operand(r6, LSR, r9)); __ bind(&sign); __ teq(r7, Operand(0, RelocInfo::NONE)); __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne); __ bind(&done); switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ strb(r5, MemOperand(r3, key, LSR, 1)); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ strh(r5, MemOperand(r3, key, LSL, 0)); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ str(r5, MemOperand(r3, key, LSL, 1)); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } } // Slow case, key and receiver still in r0 and r1. __ bind(&slow); __ IncrementCounter( masm->isolate()->counters()->keyed_load_external_array_slow(), 1, r2, r3); // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Handle slow_ic = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ Jump(slow_ic, RelocInfo::CODE_TARGET); // Miss case, call the runtime. __ bind(&miss_force_generic); // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ Jump(miss_ic, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss_force_generic; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(r0, &miss_force_generic); // Get the elements array. __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); __ AssertFastElements(r2); // Check that the key is within bounds. __ ldr(r3, FieldMemOperand(r2, FixedArray::kLengthOffset)); __ cmp(r0, Operand(r3)); __ b(hs, &miss_force_generic); // Load the result and make sure it's not the hole. __ add(r3, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ ldr(r4, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r4, ip); __ b(eq, &miss_force_generic); __ mov(r0, r4); __ Ret(); __ bind(&miss_force_generic); Handle stub = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(stub, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- lr : return address // -- r0 : key // -- r1 : receiver // ----------------------------------- Label miss_force_generic, slow_allocate_heapnumber; Register key_reg = r0; Register receiver_reg = r1; Register elements_reg = r2; Register heap_number_reg = r2; Register indexed_double_offset = r3; Register scratch = r4; Register scratch2 = r5; Register scratch3 = r6; Register heap_number_map = r7; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(key_reg, &miss_force_generic); // Get the elements array. __ ldr(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); // Check that the key is within bounds. __ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); __ cmp(key_reg, Operand(scratch)); __ b(hs, &miss_force_generic); // Load the upper word of the double in the fixed array and test for NaN. __ add(indexed_double_offset, elements_reg, Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize)); uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32); __ ldr(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset)); __ cmp(scratch, Operand(kHoleNanUpper32)); __ b(&miss_force_generic, eq); // Non-NaN. Allocate a new heap number and copy the double value into it. __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3, heap_number_map, &slow_allocate_heapnumber); // Don't need to reload the upper 32 bits of the double, it's already in // scratch. __ str(scratch, FieldMemOperand(heap_number_reg, HeapNumber::kExponentOffset)); __ ldr(scratch, FieldMemOperand(indexed_double_offset, FixedArray::kHeaderSize)); __ str(scratch, FieldMemOperand(heap_number_reg, HeapNumber::kMantissaOffset)); __ mov(r0, heap_number_reg); __ Ret(); __ bind(&slow_allocate_heapnumber); Handle slow_ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ Jump(slow_ic, RelocInfo::CODE_TARGET); __ bind(&miss_force_generic); Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(miss_ic, RelocInfo::CODE_TARGET); } void KeyedStoreStubCompiler::GenerateStoreFastElement( MacroAssembler* masm, bool is_js_array, ElementsKind elements_kind, KeyedAccessGrowMode grow_mode) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : scratch // -- r4 : scratch (elements) // ----------------------------------- Label miss_force_generic, transition_elements_kind, grow, slow; Label finish_store, check_capacity; Register value_reg = r0; Register key_reg = r1; Register receiver_reg = r2; Register scratch = r4; Register elements_reg = r3; Register length_reg = r5; Register scratch2 = r6; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi. __ JumpIfNotSmi(key_reg, &miss_force_generic); if (elements_kind == FAST_SMI_ONLY_ELEMENTS) { __ JumpIfNotSmi(value_reg, &transition_elements_kind); } // Check that the key is within bounds. __ ldr(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); if (is_js_array) { __ ldr(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); } else { __ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); } // Compare smis. __ cmp(key_reg, scratch); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { __ b(hs, &grow); } else { __ b(hs, &miss_force_generic); } // Make sure elements is a fast element array, not 'cow'. __ CheckMap(elements_reg, scratch, Heap::kFixedArrayMapRootIndex, &miss_force_generic, DONT_DO_SMI_CHECK); __ bind(&finish_store); if (elements_kind == FAST_SMI_ONLY_ELEMENTS) { __ add(scratch, elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ add(scratch, scratch, Operand(key_reg, LSL, kPointerSizeLog2 - kSmiTagSize)); __ str(value_reg, MemOperand(scratch)); } else { ASSERT(elements_kind == FAST_ELEMENTS); __ add(scratch, elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ add(scratch, scratch, Operand(key_reg, LSL, kPointerSizeLog2 - kSmiTagSize)); __ str(value_reg, MemOperand(scratch)); __ mov(receiver_reg, value_reg); __ RecordWrite(elements_reg, // Object. scratch, // Address. receiver_reg, // Value. kLRHasNotBeenSaved, kDontSaveFPRegs); } // value_reg (r0) is preserved. // Done. __ Ret(); __ bind(&miss_force_generic); Handle ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ Jump(ic, RelocInfo::CODE_TARGET); __ bind(&transition_elements_kind); Handle ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic_miss, RelocInfo::CODE_TARGET); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { // Grow the array by a single element if possible. __ bind(&grow); // Make sure the array is only growing by a single element, anything else // must be handled by the runtime. Flags already set by previous compare. __ b(ne, &miss_force_generic); // Check for the empty array, and preallocate a small backing store if // possible. __ ldr(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ ldr(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ CompareRoot(elements_reg, Heap::kEmptyFixedArrayRootIndex); __ b(ne, &check_capacity); int size = FixedArray::SizeFor(JSArray::kPreallocatedArrayElements); __ AllocateInNewSpace(size, elements_reg, scratch, scratch2, &slow, TAG_OBJECT); __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); __ str(scratch, FieldMemOperand(elements_reg, JSObject::kMapOffset)); __ mov(scratch, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements))); __ str(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); for (int i = 1; i < JSArray::kPreallocatedArrayElements; ++i) { __ str(scratch, FieldMemOperand(elements_reg, FixedArray::SizeFor(i))); } // Store the element at index zero. __ str(value_reg, FieldMemOperand(elements_reg, FixedArray::SizeFor(0))); // Install the new backing store in the JSArray. __ str(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg, scratch, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Increment the length of the array. __ mov(length_reg, Operand(Smi::FromInt(1))); __ str(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ Ret(); __ bind(&check_capacity); // Check for cow elements, in general they are not handled by this stub __ CheckMap(elements_reg, scratch, Heap::kFixedCOWArrayMapRootIndex, &miss_force_generic, DONT_DO_SMI_CHECK); __ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); __ cmp(length_reg, scratch); __ b(hs, &slow); // Grow the array and finish the store. __ add(length_reg, length_reg, Operand(Smi::FromInt(1))); __ str(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ jmp(&finish_store); __ bind(&slow); Handle ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ Jump(ic_slow, RelocInfo::CODE_TARGET); } } void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement( MacroAssembler* masm, bool is_js_array, KeyedAccessGrowMode grow_mode) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : scratch // -- r4 : scratch // -- r5 : scratch // ----------------------------------- Label miss_force_generic, transition_elements_kind, grow, slow; Label finish_store, check_capacity; Register value_reg = r0; Register key_reg = r1; Register receiver_reg = r2; Register elements_reg = r3; Register scratch1 = r4; Register scratch2 = r5; Register scratch3 = r6; Register scratch4 = r7; Register length_reg = r7; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. __ JumpIfNotSmi(key_reg, &miss_force_generic); __ ldr(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); // Check that the key is within bounds. if (is_js_array) { __ ldr(scratch1, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); } else { __ ldr(scratch1, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); } // Compare smis, unsigned compare catches both negative and out-of-bound // indexes. __ cmp(key_reg, scratch1); if (grow_mode == ALLOW_JSARRAY_GROWTH) { __ b(hs, &grow); } else { __ b(hs, &miss_force_generic); } __ bind(&finish_store); __ StoreNumberToDoubleElements(value_reg, key_reg, receiver_reg, elements_reg, scratch1, scratch2, scratch3, scratch4, &transition_elements_kind); __ Ret(); // Handle store cache miss, replacing the ic with the generic stub. __ bind(&miss_force_generic); Handle ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ Jump(ic, RelocInfo::CODE_TARGET); __ bind(&transition_elements_kind); Handle ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic_miss, RelocInfo::CODE_TARGET); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { // Grow the array by a single element if possible. __ bind(&grow); // Make sure the array is only growing by a single element, anything else // must be handled by the runtime. Flags already set by previous compare. __ b(ne, &miss_force_generic); // Transition on values that can't be stored in a FixedDoubleArray. Label value_is_smi; __ JumpIfSmi(value_reg, &value_is_smi); __ ldr(scratch1, FieldMemOperand(value_reg, HeapObject::kMapOffset)); __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex); __ b(ne, &transition_elements_kind); __ bind(&value_is_smi); // Check for the empty array, and preallocate a small backing store if // possible. __ ldr(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ ldr(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ CompareRoot(elements_reg, Heap::kEmptyFixedArrayRootIndex); __ b(ne, &check_capacity); int size = FixedDoubleArray::SizeFor(JSArray::kPreallocatedArrayElements); __ AllocateInNewSpace(size, elements_reg, scratch1, scratch2, &slow, TAG_OBJECT); // Initialize the new FixedDoubleArray. Leave elements unitialized for // efficiency, they are guaranteed to be initialized before use. __ LoadRoot(scratch1, Heap::kFixedDoubleArrayMapRootIndex); __ str(scratch1, FieldMemOperand(elements_reg, JSObject::kMapOffset)); __ mov(scratch1, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements))); __ str(scratch1, FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset)); // Install the new backing store in the JSArray. __ str(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Increment the length of the array. __ mov(length_reg, Operand(Smi::FromInt(1))); __ str(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ ldr(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ jmp(&finish_store); __ bind(&check_capacity); // Make sure that the backing store can hold additional elements. __ ldr(scratch1, FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset)); __ cmp(length_reg, scratch1); __ b(hs, &slow); // Grow the array and finish the store. __ add(length_reg, length_reg, Operand(Smi::FromInt(1))); __ str(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ jmp(&finish_store); __ bind(&slow); Handle ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ Jump(ic_slow, RelocInfo::CODE_TARGET); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM