/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "r_submix" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern "C" { namespace android { #define MAX_PIPE_DEPTH_IN_FRAMES (1024*8) // The duration of MAX_READ_ATTEMPTS * READ_ATTEMPT_SLEEP_MS must be stricly inferior to // the duration of a record buffer at the current record sample rate (of the device, not of // the recording itself). Here we have: // 3 * 5ms = 15ms < 1024 frames * 1000 / 48000 = 21.333ms #define MAX_READ_ATTEMPTS 3 #define READ_ATTEMPT_SLEEP_MS 5 // 5ms between two read attempts when pipe is empty #define DEFAULT_RATE_HZ 48000 // default sample rate struct submix_config { audio_format_t format; audio_channel_mask_t channel_mask; unsigned int rate; // sample rate for the device unsigned int period_size; // size of the audio pipe is period_size * period_count in frames unsigned int period_count; }; struct submix_audio_device { struct audio_hw_device device; bool output_standby; bool input_standby; submix_config config; // Pipe variables: they handle the ring buffer that "pipes" audio: // - from the submix virtual audio output == what needs to be played // remotely, seen as an output for AudioFlinger // - to the virtual audio source == what is captured by the component // which "records" the submix / virtual audio source, and handles it as needed. // A usecase example is one where the component capturing the audio is then sending it over // Wifi for presentation on a remote Wifi Display device (e.g. a dongle attached to a TV, or a // TV with Wifi Display capabilities), or to a wireless audio player. sp rsxSink; sp rsxSource; // device lock, also used to protect access to the audio pipe pthread_mutex_t lock; }; struct submix_stream_out { struct audio_stream_out stream; struct submix_audio_device *dev; }; struct submix_stream_in { struct audio_stream_in stream; struct submix_audio_device *dev; bool output_standby; // output standby state as seen from record thread // wall clock when recording starts struct timespec record_start_time; // how many frames have been requested to be read int64_t read_counter_frames; }; /* audio HAL functions */ static uint32_t out_get_sample_rate(const struct audio_stream *stream) { const struct submix_stream_out *out = reinterpret_cast(stream); uint32_t out_rate = out->dev->config.rate; //ALOGV("out_get_sample_rate() returns %u", out_rate); return out_rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { if ((rate != 44100) && (rate != 48000)) { ALOGE("out_set_sample_rate(rate=%u) rate unsupported", rate); return -ENOSYS; } struct submix_stream_out *out = reinterpret_cast(stream); //ALOGV("out_set_sample_rate(rate=%u)", rate); out->dev->config.rate = rate; return 0; } static size_t out_get_buffer_size(const struct audio_stream *stream) { const struct submix_stream_out *out = reinterpret_cast(stream); const struct submix_config& config_out = out->dev->config; size_t buffer_size = config_out.period_size * popcount(config_out.channel_mask) * sizeof(int16_t); // only PCM 16bit //ALOGV("out_get_buffer_size() returns %u, period size=%u", // buffer_size, config_out.period_size); return buffer_size; } static audio_channel_mask_t out_get_channels(const struct audio_stream *stream) { const struct submix_stream_out *out = reinterpret_cast(stream); uint32_t channels = out->dev->config.channel_mask; //ALOGV("out_get_channels() returns %08x", channels); return channels; } static audio_format_t out_get_format(const struct audio_stream *stream) { return AUDIO_FORMAT_PCM_16_BIT; } static int out_set_format(struct audio_stream *stream, audio_format_t format) { if (format != AUDIO_FORMAT_PCM_16_BIT) { return -ENOSYS; } else { return 0; } } static int out_standby(struct audio_stream *stream) { ALOGI("out_standby()"); const struct submix_stream_out *out = reinterpret_cast(stream); pthread_mutex_lock(&out->dev->lock); out->dev->output_standby = true; pthread_mutex_unlock(&out->dev->lock); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { return 0; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { int exiting = -1; AudioParameter parms = AudioParameter(String8(kvpairs)); // FIXME this is using hard-coded strings but in the future, this functionality will be // converted to use audio HAL extensions required to support tunneling if ((parms.getInt(String8("exiting"), exiting) == NO_ERROR) && (exiting > 0)) { const struct submix_stream_out *out = reinterpret_cast(stream); pthread_mutex_lock(&out->dev->lock); { // using the sink sp sink = out->dev->rsxSink.get(); if (sink == 0) { pthread_mutex_unlock(&out->dev->lock); return 0; } ALOGI("shutdown"); sink->shutdown(true); } // done using the sink pthread_mutex_unlock(&out->dev->lock); } return 0; } static char * out_get_parameters(const struct audio_stream *stream, const char *keys) { return strdup(""); } static uint32_t out_get_latency(const struct audio_stream_out *stream) { const struct submix_stream_out *out = reinterpret_cast(stream); const struct submix_config * config_out = &(out->dev->config); uint32_t latency = (MAX_PIPE_DEPTH_IN_FRAMES * 1000) / config_out->rate; ALOGV("out_get_latency() returns %u", latency); return latency; } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { return -ENOSYS; } static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes) { //ALOGV("out_write(bytes=%d)", bytes); ssize_t written_frames = 0; struct submix_stream_out *out = reinterpret_cast(stream); const size_t frame_size = audio_stream_frame_size(&stream->common); const size_t frames = bytes / frame_size; pthread_mutex_lock(&out->dev->lock); out->dev->output_standby = false; sp sink = out->dev->rsxSink.get(); if (sink != 0) { if (sink->isShutdown()) { sink.clear(); pthread_mutex_unlock(&out->dev->lock); // the pipe has already been shutdown, this buffer will be lost but we must // simulate timing so we don't drain the output faster than realtime usleep(frames * 1000000 / out_get_sample_rate(&stream->common)); return bytes; } } else { pthread_mutex_unlock(&out->dev->lock); ALOGE("out_write without a pipe!"); ALOG_ASSERT("out_write without a pipe!"); return 0; } pthread_mutex_unlock(&out->dev->lock); written_frames = sink->write(buffer, frames); if (written_frames < 0) { if (written_frames == (ssize_t)NEGOTIATE) { ALOGE("out_write() write to pipe returned NEGOTIATE"); pthread_mutex_lock(&out->dev->lock); sink.clear(); pthread_mutex_unlock(&out->dev->lock); written_frames = 0; return 0; } else { // write() returned UNDERRUN or WOULD_BLOCK, retry ALOGE("out_write() write to pipe returned unexpected %d", written_frames); written_frames = sink->write(buffer, frames); } } pthread_mutex_lock(&out->dev->lock); sink.clear(); pthread_mutex_unlock(&out->dev->lock); if (written_frames < 0) { ALOGE("out_write() failed writing to pipe with %d", written_frames); return 0; } else { ALOGV("out_write() wrote %lu bytes)", written_frames * frame_size); return written_frames * frame_size; } } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { return -EINVAL; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { return -EINVAL; } /** audio_stream_in implementation **/ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { const struct submix_stream_in *in = reinterpret_cast(stream); //ALOGV("in_get_sample_rate() returns %u", in->dev->config.rate); return in->dev->config.rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { const struct submix_stream_in *in = reinterpret_cast(stream); ALOGV("in_get_buffer_size() returns %u", in->dev->config.period_size * audio_stream_frame_size(stream)); return in->dev->config.period_size * audio_stream_frame_size(stream); } static audio_channel_mask_t in_get_channels(const struct audio_stream *stream) { return AUDIO_CHANNEL_IN_STEREO; } static audio_format_t in_get_format(const struct audio_stream *stream) { return AUDIO_FORMAT_PCM_16_BIT; } static int in_set_format(struct audio_stream *stream, audio_format_t format) { if (format != AUDIO_FORMAT_PCM_16_BIT) { return -ENOSYS; } else { return 0; } } static int in_standby(struct audio_stream *stream) { ALOGI("in_standby()"); const struct submix_stream_in *in = reinterpret_cast(stream); pthread_mutex_lock(&in->dev->lock); in->dev->input_standby = true; pthread_mutex_unlock(&in->dev->lock); return 0; } static int in_dump(const struct audio_stream *stream, int fd) { return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { return 0; } static char * in_get_parameters(const struct audio_stream *stream, const char *keys) { return strdup(""); } static int in_set_gain(struct audio_stream_in *stream, float gain) { return 0; } static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes) { //ALOGV("in_read bytes=%u", bytes); ssize_t frames_read = -1977; struct submix_stream_in *in = reinterpret_cast(stream); const size_t frame_size = audio_stream_frame_size(&stream->common); const size_t frames_to_read = bytes / frame_size; pthread_mutex_lock(&in->dev->lock); const bool output_standby_transition = (in->output_standby != in->dev->output_standby); in->output_standby = in->dev->output_standby; if (in->dev->input_standby || output_standby_transition) { in->dev->input_standby = false; // keep track of when we exit input standby (== first read == start "real recording") // or when we start recording silence, and reset projected time int rc = clock_gettime(CLOCK_MONOTONIC, &in->record_start_time); if (rc == 0) { in->read_counter_frames = 0; } } in->read_counter_frames += frames_to_read; size_t remaining_frames = frames_to_read; { // about to read from audio source sp source = in->dev->rsxSource.get(); if (source == 0) { ALOGE("no audio pipe yet we're trying to read!"); pthread_mutex_unlock(&in->dev->lock); usleep((bytes / frame_size) * 1000000 / in_get_sample_rate(&stream->common)); memset(buffer, 0, bytes); return bytes; } pthread_mutex_unlock(&in->dev->lock); // read the data from the pipe (it's non blocking) int attempts = 0; char* buff = (char*)buffer; while ((remaining_frames > 0) && (attempts < MAX_READ_ATTEMPTS)) { attempts++; frames_read = source->read(buff, remaining_frames, AudioBufferProvider::kInvalidPTS); if (frames_read > 0) { remaining_frames -= frames_read; buff += frames_read * frame_size; //ALOGV(" in_read (att=%d) got %ld frames, remaining=%u", // attempts, frames_read, remaining_frames); } else { //ALOGE(" in_read read returned %ld", frames_read); usleep(READ_ATTEMPT_SLEEP_MS * 1000); } } // done using the source pthread_mutex_lock(&in->dev->lock); source.clear(); pthread_mutex_unlock(&in->dev->lock); } if (remaining_frames > 0) { ALOGV(" remaining_frames = %d", remaining_frames); memset(((char*)buffer)+ bytes - (remaining_frames * frame_size), 0, remaining_frames * frame_size); } // compute how much we need to sleep after reading the data by comparing the wall clock with // the projected time at which we should return. struct timespec time_after_read;// wall clock after reading from the pipe struct timespec record_duration;// observed record duration int rc = clock_gettime(CLOCK_MONOTONIC, &time_after_read); const uint32_t sample_rate = in_get_sample_rate(&stream->common); if (rc == 0) { // for how long have we been recording? record_duration.tv_sec = time_after_read.tv_sec - in->record_start_time.tv_sec; record_duration.tv_nsec = time_after_read.tv_nsec - in->record_start_time.tv_nsec; if (record_duration.tv_nsec < 0) { record_duration.tv_sec--; record_duration.tv_nsec += 1000000000; } // read_counter_frames contains the number of frames that have been read since the beginning // of recording (including this call): it's converted to usec and compared to how long we've // been recording for, which gives us how long we must wait to sync the projected recording // time, and the observed recording time long projected_vs_observed_offset_us = ((int64_t)(in->read_counter_frames - (record_duration.tv_sec*sample_rate))) * 1000000 / sample_rate - (record_duration.tv_nsec / 1000); ALOGV(" record duration %5lds %3ldms, will wait: %7ldus", record_duration.tv_sec, record_duration.tv_nsec/1000000, projected_vs_observed_offset_us); if (projected_vs_observed_offset_us > 0) { usleep(projected_vs_observed_offset_us); } } ALOGV("in_read returns %d", bytes); return bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { return 0; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int adev_open_output_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out) { ALOGV("adev_open_output_stream()"); struct submix_audio_device *rsxadev = (struct submix_audio_device *)dev; struct submix_stream_out *out; int ret; out = (struct submix_stream_out *)calloc(1, sizeof(struct submix_stream_out)); if (!out) { ret = -ENOMEM; goto err_open; } pthread_mutex_lock(&rsxadev->lock); out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; config->channel_mask = AUDIO_CHANNEL_OUT_STEREO; rsxadev->config.channel_mask = config->channel_mask; if ((config->sample_rate != 48000) && (config->sample_rate != 44100)) { config->sample_rate = DEFAULT_RATE_HZ; } rsxadev->config.rate = config->sample_rate; config->format = AUDIO_FORMAT_PCM_16_BIT; rsxadev->config.format = config->format; rsxadev->config.period_size = 1024; rsxadev->config.period_count = 4; out->dev = rsxadev; *stream_out = &out->stream; // initialize pipe { ALOGV(" initializing pipe"); const NBAIO_Format format = Format_from_SR_C(config->sample_rate, 2); const NBAIO_Format offers[1] = {format}; size_t numCounterOffers = 0; // creating a MonoPipe with optional blocking set to true. MonoPipe* sink = new MonoPipe(MAX_PIPE_DEPTH_IN_FRAMES, format, true/*writeCanBlock*/); ssize_t index = sink->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); MonoPipeReader* source = new MonoPipeReader(sink); numCounterOffers = 0; index = source->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); rsxadev->rsxSink = sink; rsxadev->rsxSource = source; } pthread_mutex_unlock(&rsxadev->lock); return 0; err_open: *stream_out = NULL; return ret; } static void adev_close_output_stream(struct audio_hw_device *dev, struct audio_stream_out *stream) { ALOGV("adev_close_output_stream()"); struct submix_audio_device *rsxadev = (struct submix_audio_device *)dev; pthread_mutex_lock(&rsxadev->lock); rsxadev->rsxSink.clear(); rsxadev->rsxSource.clear(); free(stream); pthread_mutex_unlock(&rsxadev->lock); } static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs) { return -ENOSYS; } static char * adev_get_parameters(const struct audio_hw_device *dev, const char *keys) { return strdup("");; } static int adev_init_check(const struct audio_hw_device *dev) { ALOGI("adev_init_check()"); return 0; } static int adev_set_voice_volume(struct audio_hw_device *dev, float volume) { return -ENOSYS; } static int adev_set_master_volume(struct audio_hw_device *dev, float volume) { return -ENOSYS; } static int adev_get_master_volume(struct audio_hw_device *dev, float *volume) { return -ENOSYS; } static int adev_set_master_mute(struct audio_hw_device *dev, bool muted) { return -ENOSYS; } static int adev_get_master_mute(struct audio_hw_device *dev, bool *muted) { return -ENOSYS; } static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode) { return 0; } static int adev_set_mic_mute(struct audio_hw_device *dev, bool state) { return -ENOSYS; } static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state) { return -ENOSYS; } static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev, const struct audio_config *config) { //### TODO correlate this with pipe parameters return 4096; } static int adev_open_input_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, struct audio_config *config, struct audio_stream_in **stream_in) { ALOGI("adev_open_input_stream()"); struct submix_audio_device *rsxadev = (struct submix_audio_device *)dev; struct submix_stream_in *in; int ret; in = (struct submix_stream_in *)calloc(1, sizeof(struct submix_stream_in)); if (!in) { ret = -ENOMEM; goto err_open; } pthread_mutex_lock(&rsxadev->lock); in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; config->channel_mask = AUDIO_CHANNEL_IN_STEREO; rsxadev->config.channel_mask = config->channel_mask; if ((config->sample_rate != 48000) && (config->sample_rate != 44100)) { config->sample_rate = DEFAULT_RATE_HZ; } rsxadev->config.rate = config->sample_rate; config->format = AUDIO_FORMAT_PCM_16_BIT; rsxadev->config.format = config->format; rsxadev->config.period_size = 1024; rsxadev->config.period_count = 4; *stream_in = &in->stream; in->dev = rsxadev; in->read_counter_frames = 0; in->output_standby = rsxadev->output_standby; pthread_mutex_unlock(&rsxadev->lock); return 0; err_open: *stream_in = NULL; return ret; } static void adev_close_input_stream(struct audio_hw_device *dev, struct audio_stream_in *stream) { ALOGV("adev_close_input_stream()"); struct submix_audio_device *rsxadev = (struct submix_audio_device *)dev; pthread_mutex_lock(&rsxadev->lock); MonoPipe* sink = rsxadev->rsxSink.get(); if (sink != NULL) { ALOGI("shutdown"); sink->shutdown(true); } free(stream); pthread_mutex_unlock(&rsxadev->lock); } static int adev_dump(const audio_hw_device_t *device, int fd) { return 0; } static int adev_close(hw_device_t *device) { ALOGI("adev_close()"); free(device); return 0; } static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device) { ALOGI("adev_open(name=%s)", name); struct submix_audio_device *rsxadev; if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; rsxadev = (submix_audio_device*) calloc(1, sizeof(struct submix_audio_device)); if (!rsxadev) return -ENOMEM; rsxadev->device.common.tag = HARDWARE_DEVICE_TAG; rsxadev->device.common.version = AUDIO_DEVICE_API_VERSION_2_0; rsxadev->device.common.module = (struct hw_module_t *) module; rsxadev->device.common.close = adev_close; rsxadev->device.init_check = adev_init_check; rsxadev->device.set_voice_volume = adev_set_voice_volume; rsxadev->device.set_master_volume = adev_set_master_volume; rsxadev->device.get_master_volume = adev_get_master_volume; rsxadev->device.set_master_mute = adev_set_master_mute; rsxadev->device.get_master_mute = adev_get_master_mute; rsxadev->device.set_mode = adev_set_mode; rsxadev->device.set_mic_mute = adev_set_mic_mute; rsxadev->device.get_mic_mute = adev_get_mic_mute; rsxadev->device.set_parameters = adev_set_parameters; rsxadev->device.get_parameters = adev_get_parameters; rsxadev->device.get_input_buffer_size = adev_get_input_buffer_size; rsxadev->device.open_output_stream = adev_open_output_stream; rsxadev->device.close_output_stream = adev_close_output_stream; rsxadev->device.open_input_stream = adev_open_input_stream; rsxadev->device.close_input_stream = adev_close_input_stream; rsxadev->device.dump = adev_dump; rsxadev->input_standby = true; rsxadev->output_standby = true; *device = &rsxadev->device.common; return 0; } static struct hw_module_methods_t hal_module_methods = { /* open */ adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { /* common */ { /* tag */ HARDWARE_MODULE_TAG, /* module_api_version */ AUDIO_MODULE_API_VERSION_0_1, /* hal_api_version */ HARDWARE_HAL_API_VERSION, /* id */ AUDIO_HARDWARE_MODULE_ID, /* name */ "Wifi Display audio HAL", /* author */ "The Android Open Source Project", /* methods */ &hal_module_methods, /* dso */ NULL, /* reserved */ { 0 }, }, }; } //namespace android } //extern "C"