• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11 
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/ParsedTemplate.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "clang/Sema/Template.h"
29 #include "clang/Sema/TemplateDeduction.h"
30 #include "llvm/ADT/SmallBitVector.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 using namespace clang;
34 using namespace sema;
35 
36 // Exported for use by Parser.
37 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)38 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39                               unsigned N) {
40   if (!N) return SourceRange();
41   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42 }
43 
44 /// \brief Determine whether the declaration found is acceptable as the name
45 /// of a template and, if so, return that template declaration. Otherwise,
46 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)47 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48                                            NamedDecl *Orig,
49                                            bool AllowFunctionTemplates) {
50   NamedDecl *D = Orig->getUnderlyingDecl();
51 
52   if (isa<TemplateDecl>(D)) {
53     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54       return 0;
55 
56     return Orig;
57   }
58 
59   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60     // C++ [temp.local]p1:
61     //   Like normal (non-template) classes, class templates have an
62     //   injected-class-name (Clause 9). The injected-class-name
63     //   can be used with or without a template-argument-list. When
64     //   it is used without a template-argument-list, it is
65     //   equivalent to the injected-class-name followed by the
66     //   template-parameters of the class template enclosed in
67     //   <>. When it is used with a template-argument-list, it
68     //   refers to the specified class template specialization,
69     //   which could be the current specialization or another
70     //   specialization.
71     if (Record->isInjectedClassName()) {
72       Record = cast<CXXRecordDecl>(Record->getDeclContext());
73       if (Record->getDescribedClassTemplate())
74         return Record->getDescribedClassTemplate();
75 
76       if (ClassTemplateSpecializationDecl *Spec
77             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78         return Spec->getSpecializedTemplate();
79     }
80 
81     return 0;
82   }
83 
84   return 0;
85 }
86 
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)87 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
88                                          bool AllowFunctionTemplates) {
89   // The set of class templates we've already seen.
90   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91   LookupResult::Filter filter = R.makeFilter();
92   while (filter.hasNext()) {
93     NamedDecl *Orig = filter.next();
94     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95                                                AllowFunctionTemplates);
96     if (!Repl)
97       filter.erase();
98     else if (Repl != Orig) {
99 
100       // C++ [temp.local]p3:
101       //   A lookup that finds an injected-class-name (10.2) can result in an
102       //   ambiguity in certain cases (for example, if it is found in more than
103       //   one base class). If all of the injected-class-names that are found
104       //   refer to specializations of the same class template, and if the name
105       //   is used as a template-name, the reference refers to the class
106       //   template itself and not a specialization thereof, and is not
107       //   ambiguous.
108       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109         if (!ClassTemplates.insert(ClassTmpl)) {
110           filter.erase();
111           continue;
112         }
113 
114       // FIXME: we promote access to public here as a workaround to
115       // the fact that LookupResult doesn't let us remember that we
116       // found this template through a particular injected class name,
117       // which means we end up doing nasty things to the invariants.
118       // Pretending that access is public is *much* safer.
119       filter.replace(Repl, AS_public);
120     }
121   }
122   filter.done();
123 }
124 
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)125 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126                                          bool AllowFunctionTemplates) {
127   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129       return true;
130 
131   return false;
132 }
133 
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)134 TemplateNameKind Sema::isTemplateName(Scope *S,
135                                       CXXScopeSpec &SS,
136                                       bool hasTemplateKeyword,
137                                       UnqualifiedId &Name,
138                                       ParsedType ObjectTypePtr,
139                                       bool EnteringContext,
140                                       TemplateTy &TemplateResult,
141                                       bool &MemberOfUnknownSpecialization) {
142   assert(getLangOpts().CPlusPlus && "No template names in C!");
143 
144   DeclarationName TName;
145   MemberOfUnknownSpecialization = false;
146 
147   switch (Name.getKind()) {
148   case UnqualifiedId::IK_Identifier:
149     TName = DeclarationName(Name.Identifier);
150     break;
151 
152   case UnqualifiedId::IK_OperatorFunctionId:
153     TName = Context.DeclarationNames.getCXXOperatorName(
154                                               Name.OperatorFunctionId.Operator);
155     break;
156 
157   case UnqualifiedId::IK_LiteralOperatorId:
158     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159     break;
160 
161   default:
162     return TNK_Non_template;
163   }
164 
165   QualType ObjectType = ObjectTypePtr.get();
166 
167   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169                      MemberOfUnknownSpecialization);
170   if (R.empty()) return TNK_Non_template;
171   if (R.isAmbiguous()) {
172     // Suppress diagnostics;  we'll redo this lookup later.
173     R.suppressDiagnostics();
174 
175     // FIXME: we might have ambiguous templates, in which case we
176     // should at least parse them properly!
177     return TNK_Non_template;
178   }
179 
180   TemplateName Template;
181   TemplateNameKind TemplateKind;
182 
183   unsigned ResultCount = R.end() - R.begin();
184   if (ResultCount > 1) {
185     // We assume that we'll preserve the qualifier from a function
186     // template name in other ways.
187     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188     TemplateKind = TNK_Function_template;
189 
190     // We'll do this lookup again later.
191     R.suppressDiagnostics();
192   } else {
193     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194 
195     if (SS.isSet() && !SS.isInvalid()) {
196       NestedNameSpecifier *Qualifier
197         = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198       Template = Context.getQualifiedTemplateName(Qualifier,
199                                                   hasTemplateKeyword, TD);
200     } else {
201       Template = TemplateName(TD);
202     }
203 
204     if (isa<FunctionTemplateDecl>(TD)) {
205       TemplateKind = TNK_Function_template;
206 
207       // We'll do this lookup again later.
208       R.suppressDiagnostics();
209     } else {
210       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212       TemplateKind =
213           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214     }
215   }
216 
217   TemplateResult = TemplateTy::make(Template);
218   return TemplateKind;
219 }
220 
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                        SourceLocation IILoc,
223                                        Scope *S,
224                                        const CXXScopeSpec *SS,
225                                        TemplateTy &SuggestedTemplate,
226                                        TemplateNameKind &SuggestedKind) {
227   // We can't recover unless there's a dependent scope specifier preceding the
228   // template name.
229   // FIXME: Typo correction?
230   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231       computeDeclContext(*SS))
232     return false;
233 
234   // The code is missing a 'template' keyword prior to the dependent template
235   // name.
236   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237   Diag(IILoc, diag::err_template_kw_missing)
238     << Qualifier << II.getName()
239     << FixItHint::CreateInsertion(IILoc, "template ");
240   SuggestedTemplate
241     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242   SuggestedKind = TNK_Dependent_template_name;
243   return true;
244 }
245 
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)246 void Sema::LookupTemplateName(LookupResult &Found,
247                               Scope *S, CXXScopeSpec &SS,
248                               QualType ObjectType,
249                               bool EnteringContext,
250                               bool &MemberOfUnknownSpecialization) {
251   // Determine where to perform name lookup
252   MemberOfUnknownSpecialization = false;
253   DeclContext *LookupCtx = 0;
254   bool isDependent = false;
255   if (!ObjectType.isNull()) {
256     // This nested-name-specifier occurs in a member access expression, e.g.,
257     // x->B::f, and we are looking into the type of the object.
258     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259     LookupCtx = computeDeclContext(ObjectType);
260     isDependent = ObjectType->isDependentType();
261     assert((isDependent || !ObjectType->isIncompleteType() ||
262             ObjectType->castAs<TagType>()->isBeingDefined()) &&
263            "Caller should have completed object type");
264 
265     // Template names cannot appear inside an Objective-C class or object type.
266     if (ObjectType->isObjCObjectOrInterfaceType()) {
267       Found.clear();
268       return;
269     }
270   } else if (SS.isSet()) {
271     // This nested-name-specifier occurs after another nested-name-specifier,
272     // so long into the context associated with the prior nested-name-specifier.
273     LookupCtx = computeDeclContext(SS, EnteringContext);
274     isDependent = isDependentScopeSpecifier(SS);
275 
276     // The declaration context must be complete.
277     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278       return;
279   }
280 
281   bool ObjectTypeSearchedInScope = false;
282   bool AllowFunctionTemplatesInLookup = true;
283   if (LookupCtx) {
284     // Perform "qualified" name lookup into the declaration context we
285     // computed, which is either the type of the base of a member access
286     // expression or the declaration context associated with a prior
287     // nested-name-specifier.
288     LookupQualifiedName(Found, LookupCtx);
289     if (!ObjectType.isNull() && Found.empty()) {
290       // C++ [basic.lookup.classref]p1:
291       //   In a class member access expression (5.2.5), if the . or -> token is
292       //   immediately followed by an identifier followed by a <, the
293       //   identifier must be looked up to determine whether the < is the
294       //   beginning of a template argument list (14.2) or a less-than operator.
295       //   The identifier is first looked up in the class of the object
296       //   expression. If the identifier is not found, it is then looked up in
297       //   the context of the entire postfix-expression and shall name a class
298       //   or function template.
299       if (S) LookupName(Found, S);
300       ObjectTypeSearchedInScope = true;
301       AllowFunctionTemplatesInLookup = false;
302     }
303   } else if (isDependent && (!S || ObjectType.isNull())) {
304     // We cannot look into a dependent object type or nested nme
305     // specifier.
306     MemberOfUnknownSpecialization = true;
307     return;
308   } else {
309     // Perform unqualified name lookup in the current scope.
310     LookupName(Found, S);
311 
312     if (!ObjectType.isNull())
313       AllowFunctionTemplatesInLookup = false;
314   }
315 
316   if (Found.empty() && !isDependent) {
317     // If we did not find any names, attempt to correct any typos.
318     DeclarationName Name = Found.getLookupName();
319     Found.clear();
320     // Simple filter callback that, for keywords, only accepts the C++ *_cast
321     CorrectionCandidateCallback FilterCCC;
322     FilterCCC.WantTypeSpecifiers = false;
323     FilterCCC.WantExpressionKeywords = false;
324     FilterCCC.WantRemainingKeywords = false;
325     FilterCCC.WantCXXNamedCasts = true;
326     if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                                Found.getLookupKind(), S, &SS,
328                                                FilterCCC, LookupCtx)) {
329       Found.setLookupName(Corrected.getCorrection());
330       if (Corrected.getCorrectionDecl())
331         Found.addDecl(Corrected.getCorrectionDecl());
332       FilterAcceptableTemplateNames(Found);
333       if (!Found.empty()) {
334         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
335         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
336         if (LookupCtx) {
337           bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
338                                   Name.getAsString() == CorrectedStr;
339           Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
340             << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr
341             << SS.getRange()
342             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
343                                             CorrectedStr);
344         } else {
345           Diag(Found.getNameLoc(), diag::err_no_template_suggest)
346             << Name << CorrectedQuotedStr
347             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
348         }
349         if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
350           Diag(Template->getLocation(), diag::note_previous_decl)
351             << CorrectedQuotedStr;
352       }
353     } else {
354       Found.setLookupName(Name);
355     }
356   }
357 
358   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
359   if (Found.empty()) {
360     if (isDependent)
361       MemberOfUnknownSpecialization = true;
362     return;
363   }
364 
365   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
366       !(getLangOpts().CPlusPlus11 && !Found.empty())) {
367     // C++03 [basic.lookup.classref]p1:
368     //   [...] If the lookup in the class of the object expression finds a
369     //   template, the name is also looked up in the context of the entire
370     //   postfix-expression and [...]
371     //
372     // Note: C++11 does not perform this second lookup.
373     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
374                             LookupOrdinaryName);
375     LookupName(FoundOuter, S);
376     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
377 
378     if (FoundOuter.empty()) {
379       //   - if the name is not found, the name found in the class of the
380       //     object expression is used, otherwise
381     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
382                FoundOuter.isAmbiguous()) {
383       //   - if the name is found in the context of the entire
384       //     postfix-expression and does not name a class template, the name
385       //     found in the class of the object expression is used, otherwise
386       FoundOuter.clear();
387     } else if (!Found.isSuppressingDiagnostics()) {
388       //   - if the name found is a class template, it must refer to the same
389       //     entity as the one found in the class of the object expression,
390       //     otherwise the program is ill-formed.
391       if (!Found.isSingleResult() ||
392           Found.getFoundDecl()->getCanonicalDecl()
393             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
394         Diag(Found.getNameLoc(),
395              diag::ext_nested_name_member_ref_lookup_ambiguous)
396           << Found.getLookupName()
397           << ObjectType;
398         Diag(Found.getRepresentativeDecl()->getLocation(),
399              diag::note_ambig_member_ref_object_type)
400           << ObjectType;
401         Diag(FoundOuter.getFoundDecl()->getLocation(),
402              diag::note_ambig_member_ref_scope);
403 
404         // Recover by taking the template that we found in the object
405         // expression's type.
406       }
407     }
408   }
409 }
410 
411 /// ActOnDependentIdExpression - Handle a dependent id-expression that
412 /// was just parsed.  This is only possible with an explicit scope
413 /// specifier naming a dependent type.
414 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)415 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
416                                  SourceLocation TemplateKWLoc,
417                                  const DeclarationNameInfo &NameInfo,
418                                  bool isAddressOfOperand,
419                            const TemplateArgumentListInfo *TemplateArgs) {
420   DeclContext *DC = getFunctionLevelDeclContext();
421 
422   if (!isAddressOfOperand &&
423       isa<CXXMethodDecl>(DC) &&
424       cast<CXXMethodDecl>(DC)->isInstance()) {
425     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
426 
427     // Since the 'this' expression is synthesized, we don't need to
428     // perform the double-lookup check.
429     NamedDecl *FirstQualifierInScope = 0;
430 
431     return Owned(CXXDependentScopeMemberExpr::Create(Context,
432                                                      /*This*/ 0, ThisType,
433                                                      /*IsArrow*/ true,
434                                                      /*Op*/ SourceLocation(),
435                                                SS.getWithLocInContext(Context),
436                                                      TemplateKWLoc,
437                                                      FirstQualifierInScope,
438                                                      NameInfo,
439                                                      TemplateArgs));
440   }
441 
442   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
443 }
444 
445 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)446 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
447                                 SourceLocation TemplateKWLoc,
448                                 const DeclarationNameInfo &NameInfo,
449                                 const TemplateArgumentListInfo *TemplateArgs) {
450   return Owned(DependentScopeDeclRefExpr::Create(Context,
451                                                SS.getWithLocInContext(Context),
452                                                  TemplateKWLoc,
453                                                  NameInfo,
454                                                  TemplateArgs));
455 }
456 
457 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
458 /// that the template parameter 'PrevDecl' is being shadowed by a new
459 /// declaration at location Loc. Returns true to indicate that this is
460 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)461 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
462   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
463 
464   // Microsoft Visual C++ permits template parameters to be shadowed.
465   if (getLangOpts().MicrosoftExt)
466     return;
467 
468   // C++ [temp.local]p4:
469   //   A template-parameter shall not be redeclared within its
470   //   scope (including nested scopes).
471   Diag(Loc, diag::err_template_param_shadow)
472     << cast<NamedDecl>(PrevDecl)->getDeclName();
473   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
474   return;
475 }
476 
477 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
478 /// the parameter D to reference the templated declaration and return a pointer
479 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)480 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
481   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
482     D = Temp->getTemplatedDecl();
483     return Temp;
484   }
485   return 0;
486 }
487 
getTemplatePackExpansion(SourceLocation EllipsisLoc) const488 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
489                                              SourceLocation EllipsisLoc) const {
490   assert(Kind == Template &&
491          "Only template template arguments can be pack expansions here");
492   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
493          "Template template argument pack expansion without packs");
494   ParsedTemplateArgument Result(*this);
495   Result.EllipsisLoc = EllipsisLoc;
496   return Result;
497 }
498 
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)499 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
500                                             const ParsedTemplateArgument &Arg) {
501 
502   switch (Arg.getKind()) {
503   case ParsedTemplateArgument::Type: {
504     TypeSourceInfo *DI;
505     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
506     if (!DI)
507       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
508     return TemplateArgumentLoc(TemplateArgument(T), DI);
509   }
510 
511   case ParsedTemplateArgument::NonType: {
512     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
513     return TemplateArgumentLoc(TemplateArgument(E), E);
514   }
515 
516   case ParsedTemplateArgument::Template: {
517     TemplateName Template = Arg.getAsTemplate().get();
518     TemplateArgument TArg;
519     if (Arg.getEllipsisLoc().isValid())
520       TArg = TemplateArgument(Template, Optional<unsigned int>());
521     else
522       TArg = Template;
523     return TemplateArgumentLoc(TArg,
524                                Arg.getScopeSpec().getWithLocInContext(
525                                                               SemaRef.Context),
526                                Arg.getLocation(),
527                                Arg.getEllipsisLoc());
528   }
529   }
530 
531   llvm_unreachable("Unhandled parsed template argument");
532 }
533 
534 /// \brief Translates template arguments as provided by the parser
535 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)536 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
537                                       TemplateArgumentListInfo &TemplateArgs) {
538  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
539    TemplateArgs.addArgument(translateTemplateArgument(*this,
540                                                       TemplateArgsIn[I]));
541 }
542 
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)543 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
544                                                  SourceLocation Loc,
545                                                  IdentifierInfo *Name) {
546   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
547       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
548   if (PrevDecl && PrevDecl->isTemplateParameter())
549     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
550 }
551 
552 /// ActOnTypeParameter - Called when a C++ template type parameter
553 /// (e.g., "typename T") has been parsed. Typename specifies whether
554 /// the keyword "typename" was used to declare the type parameter
555 /// (otherwise, "class" was used), and KeyLoc is the location of the
556 /// "class" or "typename" keyword. ParamName is the name of the
557 /// parameter (NULL indicates an unnamed template parameter) and
558 /// ParamNameLoc is the location of the parameter name (if any).
559 /// If the type parameter has a default argument, it will be added
560 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,bool Ellipsis,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)561 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
562                                SourceLocation EllipsisLoc,
563                                SourceLocation KeyLoc,
564                                IdentifierInfo *ParamName,
565                                SourceLocation ParamNameLoc,
566                                unsigned Depth, unsigned Position,
567                                SourceLocation EqualLoc,
568                                ParsedType DefaultArg) {
569   assert(S->isTemplateParamScope() &&
570          "Template type parameter not in template parameter scope!");
571   bool Invalid = false;
572 
573   SourceLocation Loc = ParamNameLoc;
574   if (!ParamName)
575     Loc = KeyLoc;
576 
577   TemplateTypeParmDecl *Param
578     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
579                                    KeyLoc, Loc, Depth, Position, ParamName,
580                                    Typename, Ellipsis);
581   Param->setAccess(AS_public);
582   if (Invalid)
583     Param->setInvalidDecl();
584 
585   if (ParamName) {
586     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
587 
588     // Add the template parameter into the current scope.
589     S->AddDecl(Param);
590     IdResolver.AddDecl(Param);
591   }
592 
593   // C++0x [temp.param]p9:
594   //   A default template-argument may be specified for any kind of
595   //   template-parameter that is not a template parameter pack.
596   if (DefaultArg && Ellipsis) {
597     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
598     DefaultArg = ParsedType();
599   }
600 
601   // Handle the default argument, if provided.
602   if (DefaultArg) {
603     TypeSourceInfo *DefaultTInfo;
604     GetTypeFromParser(DefaultArg, &DefaultTInfo);
605 
606     assert(DefaultTInfo && "expected source information for type");
607 
608     // Check for unexpanded parameter packs.
609     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
610                                         UPPC_DefaultArgument))
611       return Param;
612 
613     // Check the template argument itself.
614     if (CheckTemplateArgument(Param, DefaultTInfo)) {
615       Param->setInvalidDecl();
616       return Param;
617     }
618 
619     Param->setDefaultArgument(DefaultTInfo, false);
620   }
621 
622   return Param;
623 }
624 
625 /// \brief Check that the type of a non-type template parameter is
626 /// well-formed.
627 ///
628 /// \returns the (possibly-promoted) parameter type if valid;
629 /// otherwise, produces a diagnostic and returns a NULL type.
630 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)631 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
632   // We don't allow variably-modified types as the type of non-type template
633   // parameters.
634   if (T->isVariablyModifiedType()) {
635     Diag(Loc, diag::err_variably_modified_nontype_template_param)
636       << T;
637     return QualType();
638   }
639 
640   // C++ [temp.param]p4:
641   //
642   // A non-type template-parameter shall have one of the following
643   // (optionally cv-qualified) types:
644   //
645   //       -- integral or enumeration type,
646   if (T->isIntegralOrEnumerationType() ||
647       //   -- pointer to object or pointer to function,
648       T->isPointerType() ||
649       //   -- reference to object or reference to function,
650       T->isReferenceType() ||
651       //   -- pointer to member,
652       T->isMemberPointerType() ||
653       //   -- std::nullptr_t.
654       T->isNullPtrType() ||
655       // If T is a dependent type, we can't do the check now, so we
656       // assume that it is well-formed.
657       T->isDependentType()) {
658     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
659     // are ignored when determining its type.
660     return T.getUnqualifiedType();
661   }
662 
663   // C++ [temp.param]p8:
664   //
665   //   A non-type template-parameter of type "array of T" or
666   //   "function returning T" is adjusted to be of type "pointer to
667   //   T" or "pointer to function returning T", respectively.
668   else if (T->isArrayType())
669     // FIXME: Keep the type prior to promotion?
670     return Context.getArrayDecayedType(T);
671   else if (T->isFunctionType())
672     // FIXME: Keep the type prior to promotion?
673     return Context.getPointerType(T);
674 
675   Diag(Loc, diag::err_template_nontype_parm_bad_type)
676     << T;
677 
678   return QualType();
679 }
680 
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)681 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
682                                           unsigned Depth,
683                                           unsigned Position,
684                                           SourceLocation EqualLoc,
685                                           Expr *Default) {
686   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
687   QualType T = TInfo->getType();
688 
689   assert(S->isTemplateParamScope() &&
690          "Non-type template parameter not in template parameter scope!");
691   bool Invalid = false;
692 
693   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694   if (T.isNull()) {
695     T = Context.IntTy; // Recover with an 'int' type.
696     Invalid = true;
697   }
698 
699   IdentifierInfo *ParamName = D.getIdentifier();
700   bool IsParameterPack = D.hasEllipsis();
701   NonTypeTemplateParmDecl *Param
702     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
703                                       D.getLocStart(),
704                                       D.getIdentifierLoc(),
705                                       Depth, Position, ParamName, T,
706                                       IsParameterPack, TInfo);
707   Param->setAccess(AS_public);
708 
709   if (Invalid)
710     Param->setInvalidDecl();
711 
712   if (ParamName) {
713     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
714                                          ParamName);
715 
716     // Add the template parameter into the current scope.
717     S->AddDecl(Param);
718     IdResolver.AddDecl(Param);
719   }
720 
721   // C++0x [temp.param]p9:
722   //   A default template-argument may be specified for any kind of
723   //   template-parameter that is not a template parameter pack.
724   if (Default && IsParameterPack) {
725     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
726     Default = 0;
727   }
728 
729   // Check the well-formedness of the default template argument, if provided.
730   if (Default) {
731     // Check for unexpanded parameter packs.
732     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
733       return Param;
734 
735     TemplateArgument Converted;
736     ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
737     if (DefaultRes.isInvalid()) {
738       Param->setInvalidDecl();
739       return Param;
740     }
741     Default = DefaultRes.take();
742 
743     Param->setDefaultArgument(Default, false);
744   }
745 
746   return Param;
747 }
748 
749 /// ActOnTemplateTemplateParameter - Called when a C++ template template
750 /// parameter (e.g. T in template <template \<typename> class T> class array)
751 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)752 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
753                                            SourceLocation TmpLoc,
754                                            TemplateParameterList *Params,
755                                            SourceLocation EllipsisLoc,
756                                            IdentifierInfo *Name,
757                                            SourceLocation NameLoc,
758                                            unsigned Depth,
759                                            unsigned Position,
760                                            SourceLocation EqualLoc,
761                                            ParsedTemplateArgument Default) {
762   assert(S->isTemplateParamScope() &&
763          "Template template parameter not in template parameter scope!");
764 
765   // Construct the parameter object.
766   bool IsParameterPack = EllipsisLoc.isValid();
767   TemplateTemplateParmDecl *Param =
768     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
769                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
770                                      Depth, Position, IsParameterPack,
771                                      Name, Params);
772   Param->setAccess(AS_public);
773 
774   // If the template template parameter has a name, then link the identifier
775   // into the scope and lookup mechanisms.
776   if (Name) {
777     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
778 
779     S->AddDecl(Param);
780     IdResolver.AddDecl(Param);
781   }
782 
783   if (Params->size() == 0) {
784     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
785     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
786     Param->setInvalidDecl();
787   }
788 
789   // C++0x [temp.param]p9:
790   //   A default template-argument may be specified for any kind of
791   //   template-parameter that is not a template parameter pack.
792   if (IsParameterPack && !Default.isInvalid()) {
793     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
794     Default = ParsedTemplateArgument();
795   }
796 
797   if (!Default.isInvalid()) {
798     // Check only that we have a template template argument. We don't want to
799     // try to check well-formedness now, because our template template parameter
800     // might have dependent types in its template parameters, which we wouldn't
801     // be able to match now.
802     //
803     // If none of the template template parameter's template arguments mention
804     // other template parameters, we could actually perform more checking here.
805     // However, it isn't worth doing.
806     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
807     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
808       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
809         << DefaultArg.getSourceRange();
810       return Param;
811     }
812 
813     // Check for unexpanded parameter packs.
814     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
815                                         DefaultArg.getArgument().getAsTemplate(),
816                                         UPPC_DefaultArgument))
817       return Param;
818 
819     Param->setDefaultArgument(DefaultArg, false);
820   }
821 
822   return Param;
823 }
824 
825 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
826 /// contains the template parameters in Params/NumParams.
827 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)828 Sema::ActOnTemplateParameterList(unsigned Depth,
829                                  SourceLocation ExportLoc,
830                                  SourceLocation TemplateLoc,
831                                  SourceLocation LAngleLoc,
832                                  Decl **Params, unsigned NumParams,
833                                  SourceLocation RAngleLoc) {
834   if (ExportLoc.isValid())
835     Diag(ExportLoc, diag::warn_template_export_unsupported);
836 
837   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
838                                        (NamedDecl**)Params, NumParams,
839                                        RAngleLoc);
840 }
841 
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)842 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
843   if (SS.isSet())
844     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
845 }
846 
847 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)848 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
849                          SourceLocation KWLoc, CXXScopeSpec &SS,
850                          IdentifierInfo *Name, SourceLocation NameLoc,
851                          AttributeList *Attr,
852                          TemplateParameterList *TemplateParams,
853                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
854                          unsigned NumOuterTemplateParamLists,
855                          TemplateParameterList** OuterTemplateParamLists) {
856   assert(TemplateParams && TemplateParams->size() > 0 &&
857          "No template parameters");
858   assert(TUK != TUK_Reference && "Can only declare or define class templates");
859   bool Invalid = false;
860 
861   // Check that we can declare a template here.
862   if (CheckTemplateDeclScope(S, TemplateParams))
863     return true;
864 
865   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
866   assert(Kind != TTK_Enum && "can't build template of enumerated type");
867 
868   // There is no such thing as an unnamed class template.
869   if (!Name) {
870     Diag(KWLoc, diag::err_template_unnamed_class);
871     return true;
872   }
873 
874   // Find any previous declaration with this name. For a friend with no
875   // scope explicitly specified, we only look for tag declarations (per
876   // C++11 [basic.lookup.elab]p2).
877   DeclContext *SemanticContext;
878   LookupResult Previous(*this, Name, NameLoc,
879                         (SS.isEmpty() && TUK == TUK_Friend)
880                           ? LookupTagName : LookupOrdinaryName,
881                         ForRedeclaration);
882   if (SS.isNotEmpty() && !SS.isInvalid()) {
883     SemanticContext = computeDeclContext(SS, true);
884     if (!SemanticContext) {
885       // FIXME: Horrible, horrible hack! We can't currently represent this
886       // in the AST, and historically we have just ignored such friend
887       // class templates, so don't complain here.
888       if (TUK != TUK_Friend)
889         Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
890           << SS.getScopeRep() << SS.getRange();
891       return true;
892     }
893 
894     if (RequireCompleteDeclContext(SS, SemanticContext))
895       return true;
896 
897     // If we're adding a template to a dependent context, we may need to
898     // rebuilding some of the types used within the template parameter list,
899     // now that we know what the current instantiation is.
900     if (SemanticContext->isDependentContext()) {
901       ContextRAII SavedContext(*this, SemanticContext);
902       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
903         Invalid = true;
904     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
905       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
906 
907     LookupQualifiedName(Previous, SemanticContext);
908   } else {
909     SemanticContext = CurContext;
910     LookupName(Previous, S);
911   }
912 
913   if (Previous.isAmbiguous())
914     return true;
915 
916   NamedDecl *PrevDecl = 0;
917   if (Previous.begin() != Previous.end())
918     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
919 
920   // If there is a previous declaration with the same name, check
921   // whether this is a valid redeclaration.
922   ClassTemplateDecl *PrevClassTemplate
923     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
924 
925   // We may have found the injected-class-name of a class template,
926   // class template partial specialization, or class template specialization.
927   // In these cases, grab the template that is being defined or specialized.
928   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
929       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
930     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
931     PrevClassTemplate
932       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
933     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
934       PrevClassTemplate
935         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
936             ->getSpecializedTemplate();
937     }
938   }
939 
940   if (TUK == TUK_Friend) {
941     // C++ [namespace.memdef]p3:
942     //   [...] When looking for a prior declaration of a class or a function
943     //   declared as a friend, and when the name of the friend class or
944     //   function is neither a qualified name nor a template-id, scopes outside
945     //   the innermost enclosing namespace scope are not considered.
946     if (!SS.isSet()) {
947       DeclContext *OutermostContext = CurContext;
948       while (!OutermostContext->isFileContext())
949         OutermostContext = OutermostContext->getLookupParent();
950 
951       if (PrevDecl &&
952           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
953            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
954         SemanticContext = PrevDecl->getDeclContext();
955       } else {
956         // Declarations in outer scopes don't matter. However, the outermost
957         // context we computed is the semantic context for our new
958         // declaration.
959         PrevDecl = PrevClassTemplate = 0;
960         SemanticContext = OutermostContext;
961 
962         // Check that the chosen semantic context doesn't already contain a
963         // declaration of this name as a non-tag type.
964         LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
965                               ForRedeclaration);
966         DeclContext *LookupContext = SemanticContext;
967         while (LookupContext->isTransparentContext())
968           LookupContext = LookupContext->getLookupParent();
969         LookupQualifiedName(Previous, LookupContext);
970 
971         if (Previous.isAmbiguous())
972           return true;
973 
974         if (Previous.begin() != Previous.end())
975           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
976       }
977     }
978   } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
979     PrevDecl = PrevClassTemplate = 0;
980 
981   if (PrevClassTemplate) {
982     // Ensure that the template parameter lists are compatible. Skip this check
983     // for a friend in a dependent context: the template parameter list itself
984     // could be dependent.
985     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
986         !TemplateParameterListsAreEqual(TemplateParams,
987                                    PrevClassTemplate->getTemplateParameters(),
988                                         /*Complain=*/true,
989                                         TPL_TemplateMatch))
990       return true;
991 
992     // C++ [temp.class]p4:
993     //   In a redeclaration, partial specialization, explicit
994     //   specialization or explicit instantiation of a class template,
995     //   the class-key shall agree in kind with the original class
996     //   template declaration (7.1.5.3).
997     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
998     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
999                                       TUK == TUK_Definition,  KWLoc, *Name)) {
1000       Diag(KWLoc, diag::err_use_with_wrong_tag)
1001         << Name
1002         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1003       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1004       Kind = PrevRecordDecl->getTagKind();
1005     }
1006 
1007     // Check for redefinition of this class template.
1008     if (TUK == TUK_Definition) {
1009       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1010         Diag(NameLoc, diag::err_redefinition) << Name;
1011         Diag(Def->getLocation(), diag::note_previous_definition);
1012         // FIXME: Would it make sense to try to "forget" the previous
1013         // definition, as part of error recovery?
1014         return true;
1015       }
1016     }
1017   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1018     // Maybe we will complain about the shadowed template parameter.
1019     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1020     // Just pretend that we didn't see the previous declaration.
1021     PrevDecl = 0;
1022   } else if (PrevDecl) {
1023     // C++ [temp]p5:
1024     //   A class template shall not have the same name as any other
1025     //   template, class, function, object, enumeration, enumerator,
1026     //   namespace, or type in the same scope (3.3), except as specified
1027     //   in (14.5.4).
1028     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1029     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1030     return true;
1031   }
1032 
1033   // Check the template parameter list of this declaration, possibly
1034   // merging in the template parameter list from the previous class
1035   // template declaration. Skip this check for a friend in a dependent
1036   // context, because the template parameter list might be dependent.
1037   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1038       CheckTemplateParameterList(
1039           TemplateParams,
1040           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1041           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1042            SemanticContext->isDependentContext())
1043               ? TPC_ClassTemplateMember
1044               : TUK == TUK_Friend ? TPC_FriendClassTemplate
1045                                   : TPC_ClassTemplate))
1046     Invalid = true;
1047 
1048   if (SS.isSet()) {
1049     // If the name of the template was qualified, we must be defining the
1050     // template out-of-line.
1051     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1052       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1053                                       : diag::err_member_def_does_not_match)
1054         << Name << SemanticContext << SS.getRange();
1055       Invalid = true;
1056     }
1057   }
1058 
1059   CXXRecordDecl *NewClass =
1060     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1061                           PrevClassTemplate?
1062                             PrevClassTemplate->getTemplatedDecl() : 0,
1063                           /*DelayTypeCreation=*/true);
1064   SetNestedNameSpecifier(NewClass, SS);
1065   if (NumOuterTemplateParamLists > 0)
1066     NewClass->setTemplateParameterListsInfo(Context,
1067                                             NumOuterTemplateParamLists,
1068                                             OuterTemplateParamLists);
1069 
1070   // Add alignment attributes if necessary; these attributes are checked when
1071   // the ASTContext lays out the structure.
1072   if (TUK == TUK_Definition) {
1073     AddAlignmentAttributesForRecord(NewClass);
1074     AddMsStructLayoutForRecord(NewClass);
1075   }
1076 
1077   ClassTemplateDecl *NewTemplate
1078     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1079                                 DeclarationName(Name), TemplateParams,
1080                                 NewClass, PrevClassTemplate);
1081   NewClass->setDescribedClassTemplate(NewTemplate);
1082 
1083   if (ModulePrivateLoc.isValid())
1084     NewTemplate->setModulePrivate();
1085 
1086   // Build the type for the class template declaration now.
1087   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1088   T = Context.getInjectedClassNameType(NewClass, T);
1089   assert(T->isDependentType() && "Class template type is not dependent?");
1090   (void)T;
1091 
1092   // If we are providing an explicit specialization of a member that is a
1093   // class template, make a note of that.
1094   if (PrevClassTemplate &&
1095       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1096     PrevClassTemplate->setMemberSpecialization();
1097 
1098   // Set the access specifier.
1099   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1100     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1101 
1102   // Set the lexical context of these templates
1103   NewClass->setLexicalDeclContext(CurContext);
1104   NewTemplate->setLexicalDeclContext(CurContext);
1105 
1106   if (TUK == TUK_Definition)
1107     NewClass->startDefinition();
1108 
1109   if (Attr)
1110     ProcessDeclAttributeList(S, NewClass, Attr);
1111 
1112   if (PrevClassTemplate)
1113     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1114 
1115   AddPushedVisibilityAttribute(NewClass);
1116 
1117   if (TUK != TUK_Friend)
1118     PushOnScopeChains(NewTemplate, S);
1119   else {
1120     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1121       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1122       NewClass->setAccess(PrevClassTemplate->getAccess());
1123     }
1124 
1125     NewTemplate->setObjectOfFriendDecl();
1126 
1127     // Friend templates are visible in fairly strange ways.
1128     if (!CurContext->isDependentContext()) {
1129       DeclContext *DC = SemanticContext->getRedeclContext();
1130       DC->makeDeclVisibleInContext(NewTemplate);
1131       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1132         PushOnScopeChains(NewTemplate, EnclosingScope,
1133                           /* AddToContext = */ false);
1134     }
1135 
1136     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1137                                             NewClass->getLocation(),
1138                                             NewTemplate,
1139                                     /*FIXME:*/NewClass->getLocation());
1140     Friend->setAccess(AS_public);
1141     CurContext->addDecl(Friend);
1142   }
1143 
1144   if (Invalid) {
1145     NewTemplate->setInvalidDecl();
1146     NewClass->setInvalidDecl();
1147   }
1148 
1149   ActOnDocumentableDecl(NewTemplate);
1150 
1151   return NewTemplate;
1152 }
1153 
1154 /// \brief Diagnose the presence of a default template argument on a
1155 /// template parameter, which is ill-formed in certain contexts.
1156 ///
1157 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1158 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1159                                             Sema::TemplateParamListContext TPC,
1160                                             SourceLocation ParamLoc,
1161                                             SourceRange DefArgRange) {
1162   switch (TPC) {
1163   case Sema::TPC_ClassTemplate:
1164   case Sema::TPC_VarTemplate:
1165   case Sema::TPC_TypeAliasTemplate:
1166     return false;
1167 
1168   case Sema::TPC_FunctionTemplate:
1169   case Sema::TPC_FriendFunctionTemplateDefinition:
1170     // C++ [temp.param]p9:
1171     //   A default template-argument shall not be specified in a
1172     //   function template declaration or a function template
1173     //   definition [...]
1174     //   If a friend function template declaration specifies a default
1175     //   template-argument, that declaration shall be a definition and shall be
1176     //   the only declaration of the function template in the translation unit.
1177     // (C++98/03 doesn't have this wording; see DR226).
1178     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1179          diag::warn_cxx98_compat_template_parameter_default_in_function_template
1180            : diag::ext_template_parameter_default_in_function_template)
1181       << DefArgRange;
1182     return false;
1183 
1184   case Sema::TPC_ClassTemplateMember:
1185     // C++0x [temp.param]p9:
1186     //   A default template-argument shall not be specified in the
1187     //   template-parameter-lists of the definition of a member of a
1188     //   class template that appears outside of the member's class.
1189     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1190       << DefArgRange;
1191     return true;
1192 
1193   case Sema::TPC_FriendClassTemplate:
1194   case Sema::TPC_FriendFunctionTemplate:
1195     // C++ [temp.param]p9:
1196     //   A default template-argument shall not be specified in a
1197     //   friend template declaration.
1198     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1199       << DefArgRange;
1200     return true;
1201 
1202     // FIXME: C++0x [temp.param]p9 allows default template-arguments
1203     // for friend function templates if there is only a single
1204     // declaration (and it is a definition). Strange!
1205   }
1206 
1207   llvm_unreachable("Invalid TemplateParamListContext!");
1208 }
1209 
1210 /// \brief Check for unexpanded parameter packs within the template parameters
1211 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1212 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1213                                              TemplateTemplateParmDecl *TTP) {
1214   // A template template parameter which is a parameter pack is also a pack
1215   // expansion.
1216   if (TTP->isParameterPack())
1217     return false;
1218 
1219   TemplateParameterList *Params = TTP->getTemplateParameters();
1220   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1221     NamedDecl *P = Params->getParam(I);
1222     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1223       if (!NTTP->isParameterPack() &&
1224           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1225                                             NTTP->getTypeSourceInfo(),
1226                                       Sema::UPPC_NonTypeTemplateParameterType))
1227         return true;
1228 
1229       continue;
1230     }
1231 
1232     if (TemplateTemplateParmDecl *InnerTTP
1233                                         = dyn_cast<TemplateTemplateParmDecl>(P))
1234       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1235         return true;
1236   }
1237 
1238   return false;
1239 }
1240 
1241 /// \brief Checks the validity of a template parameter list, possibly
1242 /// considering the template parameter list from a previous
1243 /// declaration.
1244 ///
1245 /// If an "old" template parameter list is provided, it must be
1246 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1247 /// template parameter list.
1248 ///
1249 /// \param NewParams Template parameter list for a new template
1250 /// declaration. This template parameter list will be updated with any
1251 /// default arguments that are carried through from the previous
1252 /// template parameter list.
1253 ///
1254 /// \param OldParams If provided, template parameter list from a
1255 /// previous declaration of the same template. Default template
1256 /// arguments will be merged from the old template parameter list to
1257 /// the new template parameter list.
1258 ///
1259 /// \param TPC Describes the context in which we are checking the given
1260 /// template parameter list.
1261 ///
1262 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1263 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1264                                       TemplateParameterList *OldParams,
1265                                       TemplateParamListContext TPC) {
1266   bool Invalid = false;
1267 
1268   // C++ [temp.param]p10:
1269   //   The set of default template-arguments available for use with a
1270   //   template declaration or definition is obtained by merging the
1271   //   default arguments from the definition (if in scope) and all
1272   //   declarations in scope in the same way default function
1273   //   arguments are (8.3.6).
1274   bool SawDefaultArgument = false;
1275   SourceLocation PreviousDefaultArgLoc;
1276 
1277   // Dummy initialization to avoid warnings.
1278   TemplateParameterList::iterator OldParam = NewParams->end();
1279   if (OldParams)
1280     OldParam = OldParams->begin();
1281 
1282   bool RemoveDefaultArguments = false;
1283   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1284                                     NewParamEnd = NewParams->end();
1285        NewParam != NewParamEnd; ++NewParam) {
1286     // Variables used to diagnose redundant default arguments
1287     bool RedundantDefaultArg = false;
1288     SourceLocation OldDefaultLoc;
1289     SourceLocation NewDefaultLoc;
1290 
1291     // Variable used to diagnose missing default arguments
1292     bool MissingDefaultArg = false;
1293 
1294     // Variable used to diagnose non-final parameter packs
1295     bool SawParameterPack = false;
1296 
1297     if (TemplateTypeParmDecl *NewTypeParm
1298           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1299       // Check the presence of a default argument here.
1300       if (NewTypeParm->hasDefaultArgument() &&
1301           DiagnoseDefaultTemplateArgument(*this, TPC,
1302                                           NewTypeParm->getLocation(),
1303                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1304                                                        .getSourceRange()))
1305         NewTypeParm->removeDefaultArgument();
1306 
1307       // Merge default arguments for template type parameters.
1308       TemplateTypeParmDecl *OldTypeParm
1309           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1310 
1311       if (NewTypeParm->isParameterPack()) {
1312         assert(!NewTypeParm->hasDefaultArgument() &&
1313                "Parameter packs can't have a default argument!");
1314         SawParameterPack = true;
1315       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1316                  NewTypeParm->hasDefaultArgument()) {
1317         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1318         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1319         SawDefaultArgument = true;
1320         RedundantDefaultArg = true;
1321         PreviousDefaultArgLoc = NewDefaultLoc;
1322       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1323         // Merge the default argument from the old declaration to the
1324         // new declaration.
1325         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1326                                         true);
1327         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1328       } else if (NewTypeParm->hasDefaultArgument()) {
1329         SawDefaultArgument = true;
1330         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1331       } else if (SawDefaultArgument)
1332         MissingDefaultArg = true;
1333     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1334                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1335       // Check for unexpanded parameter packs.
1336       if (!NewNonTypeParm->isParameterPack() &&
1337           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1338                                           NewNonTypeParm->getTypeSourceInfo(),
1339                                           UPPC_NonTypeTemplateParameterType)) {
1340         Invalid = true;
1341         continue;
1342       }
1343 
1344       // Check the presence of a default argument here.
1345       if (NewNonTypeParm->hasDefaultArgument() &&
1346           DiagnoseDefaultTemplateArgument(*this, TPC,
1347                                           NewNonTypeParm->getLocation(),
1348                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1349         NewNonTypeParm->removeDefaultArgument();
1350       }
1351 
1352       // Merge default arguments for non-type template parameters
1353       NonTypeTemplateParmDecl *OldNonTypeParm
1354         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1355       if (NewNonTypeParm->isParameterPack()) {
1356         assert(!NewNonTypeParm->hasDefaultArgument() &&
1357                "Parameter packs can't have a default argument!");
1358         if (!NewNonTypeParm->isPackExpansion())
1359           SawParameterPack = true;
1360       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1361                  NewNonTypeParm->hasDefaultArgument()) {
1362         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1363         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1364         SawDefaultArgument = true;
1365         RedundantDefaultArg = true;
1366         PreviousDefaultArgLoc = NewDefaultLoc;
1367       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1368         // Merge the default argument from the old declaration to the
1369         // new declaration.
1370         // FIXME: We need to create a new kind of "default argument"
1371         // expression that points to a previous non-type template
1372         // parameter.
1373         NewNonTypeParm->setDefaultArgument(
1374                                          OldNonTypeParm->getDefaultArgument(),
1375                                          /*Inherited=*/ true);
1376         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1377       } else if (NewNonTypeParm->hasDefaultArgument()) {
1378         SawDefaultArgument = true;
1379         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1380       } else if (SawDefaultArgument)
1381         MissingDefaultArg = true;
1382     } else {
1383       TemplateTemplateParmDecl *NewTemplateParm
1384         = cast<TemplateTemplateParmDecl>(*NewParam);
1385 
1386       // Check for unexpanded parameter packs, recursively.
1387       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1388         Invalid = true;
1389         continue;
1390       }
1391 
1392       // Check the presence of a default argument here.
1393       if (NewTemplateParm->hasDefaultArgument() &&
1394           DiagnoseDefaultTemplateArgument(*this, TPC,
1395                                           NewTemplateParm->getLocation(),
1396                      NewTemplateParm->getDefaultArgument().getSourceRange()))
1397         NewTemplateParm->removeDefaultArgument();
1398 
1399       // Merge default arguments for template template parameters
1400       TemplateTemplateParmDecl *OldTemplateParm
1401         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1402       if (NewTemplateParm->isParameterPack()) {
1403         assert(!NewTemplateParm->hasDefaultArgument() &&
1404                "Parameter packs can't have a default argument!");
1405         if (!NewTemplateParm->isPackExpansion())
1406           SawParameterPack = true;
1407       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1408           NewTemplateParm->hasDefaultArgument()) {
1409         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1410         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1411         SawDefaultArgument = true;
1412         RedundantDefaultArg = true;
1413         PreviousDefaultArgLoc = NewDefaultLoc;
1414       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1415         // Merge the default argument from the old declaration to the
1416         // new declaration.
1417         // FIXME: We need to create a new kind of "default argument" expression
1418         // that points to a previous template template parameter.
1419         NewTemplateParm->setDefaultArgument(
1420                                           OldTemplateParm->getDefaultArgument(),
1421                                           /*Inherited=*/ true);
1422         PreviousDefaultArgLoc
1423           = OldTemplateParm->getDefaultArgument().getLocation();
1424       } else if (NewTemplateParm->hasDefaultArgument()) {
1425         SawDefaultArgument = true;
1426         PreviousDefaultArgLoc
1427           = NewTemplateParm->getDefaultArgument().getLocation();
1428       } else if (SawDefaultArgument)
1429         MissingDefaultArg = true;
1430     }
1431 
1432     // C++11 [temp.param]p11:
1433     //   If a template parameter of a primary class template or alias template
1434     //   is a template parameter pack, it shall be the last template parameter.
1435     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1436         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1437          TPC == TPC_TypeAliasTemplate)) {
1438       Diag((*NewParam)->getLocation(),
1439            diag::err_template_param_pack_must_be_last_template_parameter);
1440       Invalid = true;
1441     }
1442 
1443     if (RedundantDefaultArg) {
1444       // C++ [temp.param]p12:
1445       //   A template-parameter shall not be given default arguments
1446       //   by two different declarations in the same scope.
1447       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1448       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1449       Invalid = true;
1450     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1451       // C++ [temp.param]p11:
1452       //   If a template-parameter of a class template has a default
1453       //   template-argument, each subsequent template-parameter shall either
1454       //   have a default template-argument supplied or be a template parameter
1455       //   pack.
1456       Diag((*NewParam)->getLocation(),
1457            diag::err_template_param_default_arg_missing);
1458       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1459       Invalid = true;
1460       RemoveDefaultArguments = true;
1461     }
1462 
1463     // If we have an old template parameter list that we're merging
1464     // in, move on to the next parameter.
1465     if (OldParams)
1466       ++OldParam;
1467   }
1468 
1469   // We were missing some default arguments at the end of the list, so remove
1470   // all of the default arguments.
1471   if (RemoveDefaultArguments) {
1472     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1473                                       NewParamEnd = NewParams->end();
1474          NewParam != NewParamEnd; ++NewParam) {
1475       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1476         TTP->removeDefaultArgument();
1477       else if (NonTypeTemplateParmDecl *NTTP
1478                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1479         NTTP->removeDefaultArgument();
1480       else
1481         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1482     }
1483   }
1484 
1485   return Invalid;
1486 }
1487 
1488 namespace {
1489 
1490 /// A class which looks for a use of a certain level of template
1491 /// parameter.
1492 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1493   typedef RecursiveASTVisitor<DependencyChecker> super;
1494 
1495   unsigned Depth;
1496   bool Match;
1497 
DependencyChecker__anon4de125bd0111::DependencyChecker1498   DependencyChecker(TemplateParameterList *Params) : Match(false) {
1499     NamedDecl *ND = Params->getParam(0);
1500     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1501       Depth = PD->getDepth();
1502     } else if (NonTypeTemplateParmDecl *PD =
1503                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1504       Depth = PD->getDepth();
1505     } else {
1506       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1507     }
1508   }
1509 
Matches__anon4de125bd0111::DependencyChecker1510   bool Matches(unsigned ParmDepth) {
1511     if (ParmDepth >= Depth) {
1512       Match = true;
1513       return true;
1514     }
1515     return false;
1516   }
1517 
VisitTemplateTypeParmType__anon4de125bd0111::DependencyChecker1518   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1519     return !Matches(T->getDepth());
1520   }
1521 
TraverseTemplateName__anon4de125bd0111::DependencyChecker1522   bool TraverseTemplateName(TemplateName N) {
1523     if (TemplateTemplateParmDecl *PD =
1524           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1525       if (Matches(PD->getDepth())) return false;
1526     return super::TraverseTemplateName(N);
1527   }
1528 
VisitDeclRefExpr__anon4de125bd0111::DependencyChecker1529   bool VisitDeclRefExpr(DeclRefExpr *E) {
1530     if (NonTypeTemplateParmDecl *PD =
1531           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1532       if (PD->getDepth() == Depth) {
1533         Match = true;
1534         return false;
1535       }
1536     }
1537     return super::VisitDeclRefExpr(E);
1538   }
1539 
TraverseInjectedClassNameType__anon4de125bd0111::DependencyChecker1540   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1541     return TraverseType(T->getInjectedSpecializationType());
1542   }
1543 };
1544 }
1545 
1546 /// Determines whether a given type depends on the given parameter
1547 /// list.
1548 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1549 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1550   DependencyChecker Checker(Params);
1551   Checker.TraverseType(T);
1552   return Checker.Match;
1553 }
1554 
1555 // Find the source range corresponding to the named type in the given
1556 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1557 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1558                                                        QualType T,
1559                                                        const CXXScopeSpec &SS) {
1560   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1561   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1562     if (const Type *CurType = NNS->getAsType()) {
1563       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1564         return NNSLoc.getTypeLoc().getSourceRange();
1565     } else
1566       break;
1567 
1568     NNSLoc = NNSLoc.getPrefix();
1569   }
1570 
1571   return SourceRange();
1572 }
1573 
1574 /// \brief Match the given template parameter lists to the given scope
1575 /// specifier, returning the template parameter list that applies to the
1576 /// name.
1577 ///
1578 /// \param DeclStartLoc the start of the declaration that has a scope
1579 /// specifier or a template parameter list.
1580 ///
1581 /// \param DeclLoc The location of the declaration itself.
1582 ///
1583 /// \param SS the scope specifier that will be matched to the given template
1584 /// parameter lists. This scope specifier precedes a qualified name that is
1585 /// being declared.
1586 ///
1587 /// \param ParamLists the template parameter lists, from the outermost to the
1588 /// innermost template parameter lists.
1589 ///
1590 /// \param IsFriend Whether to apply the slightly different rules for
1591 /// matching template parameters to scope specifiers in friend
1592 /// declarations.
1593 ///
1594 /// \param IsExplicitSpecialization will be set true if the entity being
1595 /// declared is an explicit specialization, false otherwise.
1596 ///
1597 /// \returns the template parameter list, if any, that corresponds to the
1598 /// name that is preceded by the scope specifier @p SS. This template
1599 /// parameter list may have template parameters (if we're declaring a
1600 /// template) or may have no template parameters (if we're declaring a
1601 /// template specialization), or may be NULL (if what we're declaring isn't
1602 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1603 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1604     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1605     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1606     bool &IsExplicitSpecialization, bool &Invalid) {
1607   IsExplicitSpecialization = false;
1608   Invalid = false;
1609 
1610   // The sequence of nested types to which we will match up the template
1611   // parameter lists. We first build this list by starting with the type named
1612   // by the nested-name-specifier and walking out until we run out of types.
1613   SmallVector<QualType, 4> NestedTypes;
1614   QualType T;
1615   if (SS.getScopeRep()) {
1616     if (CXXRecordDecl *Record
1617               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1618       T = Context.getTypeDeclType(Record);
1619     else
1620       T = QualType(SS.getScopeRep()->getAsType(), 0);
1621   }
1622 
1623   // If we found an explicit specialization that prevents us from needing
1624   // 'template<>' headers, this will be set to the location of that
1625   // explicit specialization.
1626   SourceLocation ExplicitSpecLoc;
1627 
1628   while (!T.isNull()) {
1629     NestedTypes.push_back(T);
1630 
1631     // Retrieve the parent of a record type.
1632     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1633       // If this type is an explicit specialization, we're done.
1634       if (ClassTemplateSpecializationDecl *Spec
1635           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1636         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1637             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1638           ExplicitSpecLoc = Spec->getLocation();
1639           break;
1640         }
1641       } else if (Record->getTemplateSpecializationKind()
1642                                                 == TSK_ExplicitSpecialization) {
1643         ExplicitSpecLoc = Record->getLocation();
1644         break;
1645       }
1646 
1647       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1648         T = Context.getTypeDeclType(Parent);
1649       else
1650         T = QualType();
1651       continue;
1652     }
1653 
1654     if (const TemplateSpecializationType *TST
1655                                      = T->getAs<TemplateSpecializationType>()) {
1656       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1657         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1658           T = Context.getTypeDeclType(Parent);
1659         else
1660           T = QualType();
1661         continue;
1662       }
1663     }
1664 
1665     // Look one step prior in a dependent template specialization type.
1666     if (const DependentTemplateSpecializationType *DependentTST
1667                           = T->getAs<DependentTemplateSpecializationType>()) {
1668       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1669         T = QualType(NNS->getAsType(), 0);
1670       else
1671         T = QualType();
1672       continue;
1673     }
1674 
1675     // Look one step prior in a dependent name type.
1676     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1677       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1678         T = QualType(NNS->getAsType(), 0);
1679       else
1680         T = QualType();
1681       continue;
1682     }
1683 
1684     // Retrieve the parent of an enumeration type.
1685     if (const EnumType *EnumT = T->getAs<EnumType>()) {
1686       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1687       // check here.
1688       EnumDecl *Enum = EnumT->getDecl();
1689 
1690       // Get to the parent type.
1691       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1692         T = Context.getTypeDeclType(Parent);
1693       else
1694         T = QualType();
1695       continue;
1696     }
1697 
1698     T = QualType();
1699   }
1700   // Reverse the nested types list, since we want to traverse from the outermost
1701   // to the innermost while checking template-parameter-lists.
1702   std::reverse(NestedTypes.begin(), NestedTypes.end());
1703 
1704   // C++0x [temp.expl.spec]p17:
1705   //   A member or a member template may be nested within many
1706   //   enclosing class templates. In an explicit specialization for
1707   //   such a member, the member declaration shall be preceded by a
1708   //   template<> for each enclosing class template that is
1709   //   explicitly specialized.
1710   bool SawNonEmptyTemplateParameterList = false;
1711   unsigned ParamIdx = 0;
1712   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1713        ++TypeIdx) {
1714     T = NestedTypes[TypeIdx];
1715 
1716     // Whether we expect a 'template<>' header.
1717     bool NeedEmptyTemplateHeader = false;
1718 
1719     // Whether we expect a template header with parameters.
1720     bool NeedNonemptyTemplateHeader = false;
1721 
1722     // For a dependent type, the set of template parameters that we
1723     // expect to see.
1724     TemplateParameterList *ExpectedTemplateParams = 0;
1725 
1726     // C++0x [temp.expl.spec]p15:
1727     //   A member or a member template may be nested within many enclosing
1728     //   class templates. In an explicit specialization for such a member, the
1729     //   member declaration shall be preceded by a template<> for each
1730     //   enclosing class template that is explicitly specialized.
1731     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1732       if (ClassTemplatePartialSpecializationDecl *Partial
1733             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1734         ExpectedTemplateParams = Partial->getTemplateParameters();
1735         NeedNonemptyTemplateHeader = true;
1736       } else if (Record->isDependentType()) {
1737         if (Record->getDescribedClassTemplate()) {
1738           ExpectedTemplateParams = Record->getDescribedClassTemplate()
1739                                                       ->getTemplateParameters();
1740           NeedNonemptyTemplateHeader = true;
1741         }
1742       } else if (ClassTemplateSpecializationDecl *Spec
1743                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1744         // C++0x [temp.expl.spec]p4:
1745         //   Members of an explicitly specialized class template are defined
1746         //   in the same manner as members of normal classes, and not using
1747         //   the template<> syntax.
1748         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1749           NeedEmptyTemplateHeader = true;
1750         else
1751           continue;
1752       } else if (Record->getTemplateSpecializationKind()) {
1753         if (Record->getTemplateSpecializationKind()
1754                                                 != TSK_ExplicitSpecialization &&
1755             TypeIdx == NumTypes - 1)
1756           IsExplicitSpecialization = true;
1757 
1758         continue;
1759       }
1760     } else if (const TemplateSpecializationType *TST
1761                                      = T->getAs<TemplateSpecializationType>()) {
1762       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1763         ExpectedTemplateParams = Template->getTemplateParameters();
1764         NeedNonemptyTemplateHeader = true;
1765       }
1766     } else if (T->getAs<DependentTemplateSpecializationType>()) {
1767       // FIXME:  We actually could/should check the template arguments here
1768       // against the corresponding template parameter list.
1769       NeedNonemptyTemplateHeader = false;
1770     }
1771 
1772     // C++ [temp.expl.spec]p16:
1773     //   In an explicit specialization declaration for a member of a class
1774     //   template or a member template that ap- pears in namespace scope, the
1775     //   member template and some of its enclosing class templates may remain
1776     //   unspecialized, except that the declaration shall not explicitly
1777     //   specialize a class member template if its en- closing class templates
1778     //   are not explicitly specialized as well.
1779     if (ParamIdx < ParamLists.size()) {
1780       if (ParamLists[ParamIdx]->size() == 0) {
1781         if (SawNonEmptyTemplateParameterList) {
1782           Diag(DeclLoc, diag::err_specialize_member_of_template)
1783             << ParamLists[ParamIdx]->getSourceRange();
1784           Invalid = true;
1785           IsExplicitSpecialization = false;
1786           return 0;
1787         }
1788       } else
1789         SawNonEmptyTemplateParameterList = true;
1790     }
1791 
1792     if (NeedEmptyTemplateHeader) {
1793       // If we're on the last of the types, and we need a 'template<>' header
1794       // here, then it's an explicit specialization.
1795       if (TypeIdx == NumTypes - 1)
1796         IsExplicitSpecialization = true;
1797 
1798       if (ParamIdx < ParamLists.size()) {
1799         if (ParamLists[ParamIdx]->size() > 0) {
1800           // The header has template parameters when it shouldn't. Complain.
1801           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1802                diag::err_template_param_list_matches_nontemplate)
1803             << T
1804             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1805                            ParamLists[ParamIdx]->getRAngleLoc())
1806             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1807           Invalid = true;
1808           return 0;
1809         }
1810 
1811         // Consume this template header.
1812         ++ParamIdx;
1813         continue;
1814       }
1815 
1816       if (!IsFriend) {
1817         // We don't have a template header, but we should.
1818         SourceLocation ExpectedTemplateLoc;
1819         if (!ParamLists.empty())
1820           ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1821         else
1822           ExpectedTemplateLoc = DeclStartLoc;
1823 
1824         Diag(DeclLoc, diag::err_template_spec_needs_header)
1825           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1826           << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1827       }
1828 
1829       continue;
1830     }
1831 
1832     if (NeedNonemptyTemplateHeader) {
1833       // In friend declarations we can have template-ids which don't
1834       // depend on the corresponding template parameter lists.  But
1835       // assume that empty parameter lists are supposed to match this
1836       // template-id.
1837       if (IsFriend && T->isDependentType()) {
1838         if (ParamIdx < ParamLists.size() &&
1839             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1840           ExpectedTemplateParams = 0;
1841         else
1842           continue;
1843       }
1844 
1845       if (ParamIdx < ParamLists.size()) {
1846         // Check the template parameter list, if we can.
1847         if (ExpectedTemplateParams &&
1848             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1849                                             ExpectedTemplateParams,
1850                                             true, TPL_TemplateMatch))
1851           Invalid = true;
1852 
1853         if (!Invalid &&
1854             CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1855                                        TPC_ClassTemplateMember))
1856           Invalid = true;
1857 
1858         ++ParamIdx;
1859         continue;
1860       }
1861 
1862       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1863         << T
1864         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1865       Invalid = true;
1866       continue;
1867     }
1868   }
1869 
1870   // If there were at least as many template-ids as there were template
1871   // parameter lists, then there are no template parameter lists remaining for
1872   // the declaration itself.
1873   if (ParamIdx >= ParamLists.size())
1874     return 0;
1875 
1876   // If there were too many template parameter lists, complain about that now.
1877   if (ParamIdx < ParamLists.size() - 1) {
1878     bool HasAnyExplicitSpecHeader = false;
1879     bool AllExplicitSpecHeaders = true;
1880     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1881       if (ParamLists[I]->size() == 0)
1882         HasAnyExplicitSpecHeader = true;
1883       else
1884         AllExplicitSpecHeaders = false;
1885     }
1886 
1887     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1888          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1889                                 : diag::err_template_spec_extra_headers)
1890         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1891                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1892 
1893     // If there was a specialization somewhere, such that 'template<>' is
1894     // not required, and there were any 'template<>' headers, note where the
1895     // specialization occurred.
1896     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1897       Diag(ExplicitSpecLoc,
1898            diag::note_explicit_template_spec_does_not_need_header)
1899         << NestedTypes.back();
1900 
1901     // We have a template parameter list with no corresponding scope, which
1902     // means that the resulting template declaration can't be instantiated
1903     // properly (we'll end up with dependent nodes when we shouldn't).
1904     if (!AllExplicitSpecHeaders)
1905       Invalid = true;
1906   }
1907 
1908   // C++ [temp.expl.spec]p16:
1909   //   In an explicit specialization declaration for a member of a class
1910   //   template or a member template that ap- pears in namespace scope, the
1911   //   member template and some of its enclosing class templates may remain
1912   //   unspecialized, except that the declaration shall not explicitly
1913   //   specialize a class member template if its en- closing class templates
1914   //   are not explicitly specialized as well.
1915   if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1916     Diag(DeclLoc, diag::err_specialize_member_of_template)
1917       << ParamLists[ParamIdx]->getSourceRange();
1918     Invalid = true;
1919     IsExplicitSpecialization = false;
1920     return 0;
1921   }
1922 
1923   // Return the last template parameter list, which corresponds to the
1924   // entity being declared.
1925   return ParamLists.back();
1926 }
1927 
NoteAllFoundTemplates(TemplateName Name)1928 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1929   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1930     Diag(Template->getLocation(), diag::note_template_declared_here)
1931         << (isa<FunctionTemplateDecl>(Template)
1932                 ? 0
1933                 : isa<ClassTemplateDecl>(Template)
1934                       ? 1
1935                       : isa<VarTemplateDecl>(Template)
1936                             ? 2
1937                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1938         << Template->getDeclName();
1939     return;
1940   }
1941 
1942   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1943     for (OverloadedTemplateStorage::iterator I = OST->begin(),
1944                                           IEnd = OST->end();
1945          I != IEnd; ++I)
1946       Diag((*I)->getLocation(), diag::note_template_declared_here)
1947         << 0 << (*I)->getDeclName();
1948 
1949     return;
1950   }
1951 }
1952 
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1953 QualType Sema::CheckTemplateIdType(TemplateName Name,
1954                                    SourceLocation TemplateLoc,
1955                                    TemplateArgumentListInfo &TemplateArgs) {
1956   DependentTemplateName *DTN
1957     = Name.getUnderlying().getAsDependentTemplateName();
1958   if (DTN && DTN->isIdentifier())
1959     // When building a template-id where the template-name is dependent,
1960     // assume the template is a type template. Either our assumption is
1961     // correct, or the code is ill-formed and will be diagnosed when the
1962     // dependent name is substituted.
1963     return Context.getDependentTemplateSpecializationType(ETK_None,
1964                                                           DTN->getQualifier(),
1965                                                           DTN->getIdentifier(),
1966                                                           TemplateArgs);
1967 
1968   TemplateDecl *Template = Name.getAsTemplateDecl();
1969   if (!Template || isa<FunctionTemplateDecl>(Template)) {
1970     // We might have a substituted template template parameter pack. If so,
1971     // build a template specialization type for it.
1972     if (Name.getAsSubstTemplateTemplateParmPack())
1973       return Context.getTemplateSpecializationType(Name, TemplateArgs);
1974 
1975     Diag(TemplateLoc, diag::err_template_id_not_a_type)
1976       << Name;
1977     NoteAllFoundTemplates(Name);
1978     return QualType();
1979   }
1980 
1981   // Check that the template argument list is well-formed for this
1982   // template.
1983   SmallVector<TemplateArgument, 4> Converted;
1984   bool ExpansionIntoFixedList = false;
1985   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1986                                 false, Converted, &ExpansionIntoFixedList))
1987     return QualType();
1988 
1989   QualType CanonType;
1990 
1991   bool InstantiationDependent = false;
1992   TypeAliasTemplateDecl *AliasTemplate = 0;
1993   if (!ExpansionIntoFixedList &&
1994       (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1995     // Find the canonical type for this type alias template specialization.
1996     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1997     if (Pattern->isInvalidDecl())
1998       return QualType();
1999 
2000     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2001                                       Converted.data(), Converted.size());
2002 
2003     // Only substitute for the innermost template argument list.
2004     MultiLevelTemplateArgumentList TemplateArgLists;
2005     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2006     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2007     for (unsigned I = 0; I < Depth; ++I)
2008       TemplateArgLists.addOuterTemplateArguments(None);
2009 
2010     LocalInstantiationScope Scope(*this);
2011     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2012     if (Inst)
2013       return QualType();
2014 
2015     CanonType = SubstType(Pattern->getUnderlyingType(),
2016                           TemplateArgLists, AliasTemplate->getLocation(),
2017                           AliasTemplate->getDeclName());
2018     if (CanonType.isNull())
2019       return QualType();
2020   } else if (Name.isDependent() ||
2021              TemplateSpecializationType::anyDependentTemplateArguments(
2022                TemplateArgs, InstantiationDependent)) {
2023     // This class template specialization is a dependent
2024     // type. Therefore, its canonical type is another class template
2025     // specialization type that contains all of the converted
2026     // arguments in canonical form. This ensures that, e.g., A<T> and
2027     // A<T, T> have identical types when A is declared as:
2028     //
2029     //   template<typename T, typename U = T> struct A;
2030     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2031     CanonType = Context.getTemplateSpecializationType(CanonName,
2032                                                       Converted.data(),
2033                                                       Converted.size());
2034 
2035     // FIXME: CanonType is not actually the canonical type, and unfortunately
2036     // it is a TemplateSpecializationType that we will never use again.
2037     // In the future, we need to teach getTemplateSpecializationType to only
2038     // build the canonical type and return that to us.
2039     CanonType = Context.getCanonicalType(CanonType);
2040 
2041     // This might work out to be a current instantiation, in which
2042     // case the canonical type needs to be the InjectedClassNameType.
2043     //
2044     // TODO: in theory this could be a simple hashtable lookup; most
2045     // changes to CurContext don't change the set of current
2046     // instantiations.
2047     if (isa<ClassTemplateDecl>(Template)) {
2048       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2049         // If we get out to a namespace, we're done.
2050         if (Ctx->isFileContext()) break;
2051 
2052         // If this isn't a record, keep looking.
2053         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2054         if (!Record) continue;
2055 
2056         // Look for one of the two cases with InjectedClassNameTypes
2057         // and check whether it's the same template.
2058         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2059             !Record->getDescribedClassTemplate())
2060           continue;
2061 
2062         // Fetch the injected class name type and check whether its
2063         // injected type is equal to the type we just built.
2064         QualType ICNT = Context.getTypeDeclType(Record);
2065         QualType Injected = cast<InjectedClassNameType>(ICNT)
2066           ->getInjectedSpecializationType();
2067 
2068         if (CanonType != Injected->getCanonicalTypeInternal())
2069           continue;
2070 
2071         // If so, the canonical type of this TST is the injected
2072         // class name type of the record we just found.
2073         assert(ICNT.isCanonical());
2074         CanonType = ICNT;
2075         break;
2076       }
2077     }
2078   } else if (ClassTemplateDecl *ClassTemplate
2079                = dyn_cast<ClassTemplateDecl>(Template)) {
2080     // Find the class template specialization declaration that
2081     // corresponds to these arguments.
2082     void *InsertPos = 0;
2083     ClassTemplateSpecializationDecl *Decl
2084       = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2085                                           InsertPos);
2086     if (!Decl) {
2087       // This is the first time we have referenced this class template
2088       // specialization. Create the canonical declaration and add it to
2089       // the set of specializations.
2090       Decl = ClassTemplateSpecializationDecl::Create(Context,
2091                             ClassTemplate->getTemplatedDecl()->getTagKind(),
2092                                                 ClassTemplate->getDeclContext(),
2093                             ClassTemplate->getTemplatedDecl()->getLocStart(),
2094                                                 ClassTemplate->getLocation(),
2095                                                      ClassTemplate,
2096                                                      Converted.data(),
2097                                                      Converted.size(), 0);
2098       ClassTemplate->AddSpecialization(Decl, InsertPos);
2099       if (ClassTemplate->isOutOfLine())
2100         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2101     }
2102 
2103     CanonType = Context.getTypeDeclType(Decl);
2104     assert(isa<RecordType>(CanonType) &&
2105            "type of non-dependent specialization is not a RecordType");
2106   }
2107 
2108   // Build the fully-sugared type for this class template
2109   // specialization, which refers back to the class template
2110   // specialization we created or found.
2111   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2112 }
2113 
2114 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2115 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2116                           TemplateTy TemplateD, SourceLocation TemplateLoc,
2117                           SourceLocation LAngleLoc,
2118                           ASTTemplateArgsPtr TemplateArgsIn,
2119                           SourceLocation RAngleLoc,
2120                           bool IsCtorOrDtorName) {
2121   if (SS.isInvalid())
2122     return true;
2123 
2124   TemplateName Template = TemplateD.getAsVal<TemplateName>();
2125 
2126   // Translate the parser's template argument list in our AST format.
2127   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2128   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2129 
2130   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2131     QualType T
2132       = Context.getDependentTemplateSpecializationType(ETK_None,
2133                                                        DTN->getQualifier(),
2134                                                        DTN->getIdentifier(),
2135                                                        TemplateArgs);
2136     // Build type-source information.
2137     TypeLocBuilder TLB;
2138     DependentTemplateSpecializationTypeLoc SpecTL
2139       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2140     SpecTL.setElaboratedKeywordLoc(SourceLocation());
2141     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2142     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2143     SpecTL.setTemplateNameLoc(TemplateLoc);
2144     SpecTL.setLAngleLoc(LAngleLoc);
2145     SpecTL.setRAngleLoc(RAngleLoc);
2146     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2147       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2148     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2149   }
2150 
2151   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2152 
2153   if (Result.isNull())
2154     return true;
2155 
2156   // Build type-source information.
2157   TypeLocBuilder TLB;
2158   TemplateSpecializationTypeLoc SpecTL
2159     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2160   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2161   SpecTL.setTemplateNameLoc(TemplateLoc);
2162   SpecTL.setLAngleLoc(LAngleLoc);
2163   SpecTL.setRAngleLoc(RAngleLoc);
2164   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2165     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2166 
2167   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2168   // constructor or destructor name (in such a case, the scope specifier
2169   // will be attached to the enclosing Decl or Expr node).
2170   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2171     // Create an elaborated-type-specifier containing the nested-name-specifier.
2172     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2173     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2174     ElabTL.setElaboratedKeywordLoc(SourceLocation());
2175     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2176   }
2177 
2178   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2179 }
2180 
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2181 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2182                                         TypeSpecifierType TagSpec,
2183                                         SourceLocation TagLoc,
2184                                         CXXScopeSpec &SS,
2185                                         SourceLocation TemplateKWLoc,
2186                                         TemplateTy TemplateD,
2187                                         SourceLocation TemplateLoc,
2188                                         SourceLocation LAngleLoc,
2189                                         ASTTemplateArgsPtr TemplateArgsIn,
2190                                         SourceLocation RAngleLoc) {
2191   TemplateName Template = TemplateD.getAsVal<TemplateName>();
2192 
2193   // Translate the parser's template argument list in our AST format.
2194   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2195   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2196 
2197   // Determine the tag kind
2198   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2199   ElaboratedTypeKeyword Keyword
2200     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2201 
2202   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2203     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2204                                                           DTN->getQualifier(),
2205                                                           DTN->getIdentifier(),
2206                                                                 TemplateArgs);
2207 
2208     // Build type-source information.
2209     TypeLocBuilder TLB;
2210     DependentTemplateSpecializationTypeLoc SpecTL
2211       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2212     SpecTL.setElaboratedKeywordLoc(TagLoc);
2213     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2214     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2215     SpecTL.setTemplateNameLoc(TemplateLoc);
2216     SpecTL.setLAngleLoc(LAngleLoc);
2217     SpecTL.setRAngleLoc(RAngleLoc);
2218     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2219       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2220     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2221   }
2222 
2223   if (TypeAliasTemplateDecl *TAT =
2224         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2225     // C++0x [dcl.type.elab]p2:
2226     //   If the identifier resolves to a typedef-name or the simple-template-id
2227     //   resolves to an alias template specialization, the
2228     //   elaborated-type-specifier is ill-formed.
2229     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2230     Diag(TAT->getLocation(), diag::note_declared_at);
2231   }
2232 
2233   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2234   if (Result.isNull())
2235     return TypeResult(true);
2236 
2237   // Check the tag kind
2238   if (const RecordType *RT = Result->getAs<RecordType>()) {
2239     RecordDecl *D = RT->getDecl();
2240 
2241     IdentifierInfo *Id = D->getIdentifier();
2242     assert(Id && "templated class must have an identifier");
2243 
2244     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2245                                       TagLoc, *Id)) {
2246       Diag(TagLoc, diag::err_use_with_wrong_tag)
2247         << Result
2248         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2249       Diag(D->getLocation(), diag::note_previous_use);
2250     }
2251   }
2252 
2253   // Provide source-location information for the template specialization.
2254   TypeLocBuilder TLB;
2255   TemplateSpecializationTypeLoc SpecTL
2256     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2257   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2258   SpecTL.setTemplateNameLoc(TemplateLoc);
2259   SpecTL.setLAngleLoc(LAngleLoc);
2260   SpecTL.setRAngleLoc(RAngleLoc);
2261   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2262     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2263 
2264   // Construct an elaborated type containing the nested-name-specifier (if any)
2265   // and tag keyword.
2266   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2267   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2268   ElabTL.setElaboratedKeywordLoc(TagLoc);
2269   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2270   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2271 }
2272 
2273 static bool CheckTemplatePartialSpecializationArgs(
2274     Sema &S, TemplateParameterList *TemplateParams,
2275     SmallVectorImpl<TemplateArgument> &TemplateArgs);
2276 
2277 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2278                                              NamedDecl *PrevDecl,
2279                                              SourceLocation Loc,
2280                                              bool IsPartialSpecialization);
2281 
2282 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2283 /*
2284 // Check the new variable specialization against the parsed input.
2285 //
2286 // FIXME: Model this against function specializations where
2287 // a new function declaration is checked against the specialization
2288 // as candidate for redefinition... (?)
2289 static bool CheckVariableTemplateSpecializationType() {
2290 
2291   if (ExpectedType is undeduced &&  ParsedType is not undeduced)
2292     ExpectedType = dedudeType();
2293 
2294   if (both types are undeduced)
2295     ???;
2296 
2297   bool CheckType = !ExpectedType()->
2298 
2299   if (!Context.hasSameType(DI->getType(), ExpectedDI->getType())) {
2300     unsigned ErrStr = IsPartialSpecialization ? 2 : 1;
2301     Diag(D.getIdentifierLoc(), diag::err_invalid_var_template_spec_type)
2302         << ErrStr << VarTemplate << DI->getType() << ExpectedDI->getType();
2303     Diag(VarTemplate->getLocation(), diag::note_template_declared_here)
2304         << 2 << VarTemplate->getDeclName();
2305     return true;
2306   }
2307 }
2308 */
2309 
ActOnVarTemplateSpecialization(Scope * S,VarTemplateDecl * VarTemplate,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,VarDecl::StorageClass SC,bool IsPartialSpecialization)2310 DeclResult Sema::ActOnVarTemplateSpecialization(
2311     Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2312     SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2313     VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2314   assert(VarTemplate && "A variable template id without template?");
2315 
2316   // D must be variable template id.
2317   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2318          "Variable template specialization is declared with a template it.");
2319 
2320   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2321   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2322   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2323   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2324   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2325                                      TemplateId->NumArgs);
2326   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2327   translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2328   TemplateName Name(VarTemplate);
2329 
2330   // Check for unexpanded parameter packs in any of the template arguments.
2331   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2332     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2333                                         UPPC_PartialSpecialization))
2334       return true;
2335 
2336   // Check that the template argument list is well-formed for this
2337   // template.
2338   SmallVector<TemplateArgument, 4> Converted;
2339   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2340                                 false, Converted))
2341     return true;
2342 
2343   // Check that the type of this variable template specialization
2344   // matches the expected type.
2345   TypeSourceInfo *ExpectedDI;
2346   {
2347     // Do substitution on the type of the declaration
2348     TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2349                                          Converted.data(), Converted.size());
2350     InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2351     if (Inst)
2352       return true;
2353     VarDecl *Templated = VarTemplate->getTemplatedDecl();
2354     ExpectedDI =
2355         SubstType(Templated->getTypeSourceInfo(),
2356                   MultiLevelTemplateArgumentList(TemplateArgList),
2357                   Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2358   }
2359   if (!ExpectedDI)
2360     return true;
2361 
2362   /*
2363   // Check the new variable specialization against the parsed input.
2364   // (Attributes are merged later below.)
2365   if (CheckVariableTemplateSpecializationType())
2366     return true;
2367   */
2368 
2369   // Find the variable template (partial) specialization declaration that
2370   // corresponds to these arguments.
2371   if (IsPartialSpecialization) {
2372     if (CheckTemplatePartialSpecializationArgs(
2373             *this, VarTemplate->getTemplateParameters(), Converted))
2374       return true;
2375 
2376     bool InstantiationDependent;
2377     if (!Name.isDependent() &&
2378         !TemplateSpecializationType::anyDependentTemplateArguments(
2379             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2380             InstantiationDependent)) {
2381       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2382           << VarTemplate->getDeclName();
2383       IsPartialSpecialization = false;
2384     }
2385   }
2386 
2387   void *InsertPos = 0;
2388   VarTemplateSpecializationDecl *PrevDecl = 0;
2389 
2390   if (IsPartialSpecialization)
2391     // FIXME: Template parameter list matters too
2392     PrevDecl = VarTemplate->findPartialSpecialization(
2393         Converted.data(), Converted.size(), InsertPos);
2394   else
2395     PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2396                                                Converted.size(), InsertPos);
2397 
2398   VarTemplateSpecializationDecl *Specialization = 0;
2399 
2400   // Check whether we can declare a variable template specialization in
2401   // the current scope.
2402   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2403                                        TemplateNameLoc,
2404                                        IsPartialSpecialization))
2405     return true;
2406 
2407   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2408     // Since the only prior variable template specialization with these
2409     // arguments was referenced but not declared,  reuse that
2410     // declaration node as our own, updating its source location and
2411     // the list of outer template parameters to reflect our new declaration.
2412     Specialization = PrevDecl;
2413     Specialization->setLocation(TemplateNameLoc);
2414     PrevDecl = 0;
2415   } else if (IsPartialSpecialization) {
2416     // Create a new class template partial specialization declaration node.
2417     VarTemplatePartialSpecializationDecl *PrevPartial =
2418         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2419     unsigned SequenceNumber =
2420         PrevPartial ? PrevPartial->getSequenceNumber()
2421                     : VarTemplate->getNextPartialSpecSequenceNumber();
2422     VarTemplatePartialSpecializationDecl *Partial =
2423         VarTemplatePartialSpecializationDecl::Create(
2424             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2425             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2426             Converted.data(), Converted.size(), TemplateArgs, SequenceNumber);
2427 
2428     if (!PrevPartial)
2429       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2430     Specialization = Partial;
2431 
2432     // If we are providing an explicit specialization of a member variable
2433     // template specialization, make a note of that.
2434     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2435       Partial->setMemberSpecialization();
2436 
2437     // Check that all of the template parameters of the variable template
2438     // partial specialization are deducible from the template
2439     // arguments. If not, this variable template partial specialization
2440     // will never be used.
2441     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2442     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2443                                TemplateParams->getDepth(), DeducibleParams);
2444 
2445     if (!DeducibleParams.all()) {
2446       unsigned NumNonDeducible =
2447           DeducibleParams.size() - DeducibleParams.count();
2448       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2449           << (NumNonDeducible > 1) << SourceRange(TemplateNameLoc, RAngleLoc);
2450       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2451         if (!DeducibleParams[I]) {
2452           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2453           if (Param->getDeclName())
2454             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2455                 << Param->getDeclName();
2456           else
2457             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2458                 << "<anonymous>";
2459         }
2460       }
2461     }
2462   } else {
2463     // Create a new class template specialization declaration node for
2464     // this explicit specialization or friend declaration.
2465     Specialization = VarTemplateSpecializationDecl::Create(
2466         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2467         VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2468     Specialization->setTemplateArgsInfo(TemplateArgs);
2469 
2470     if (!PrevDecl)
2471       VarTemplate->AddSpecialization(Specialization, InsertPos);
2472   }
2473 
2474   // C++ [temp.expl.spec]p6:
2475   //   If a template, a member template or the member of a class template is
2476   //   explicitly specialized then that specialization shall be declared
2477   //   before the first use of that specialization that would cause an implicit
2478   //   instantiation to take place, in every translation unit in which such a
2479   //   use occurs; no diagnostic is required.
2480   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2481     bool Okay = false;
2482     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2483       // Is there any previous explicit specialization declaration?
2484       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2485         Okay = true;
2486         break;
2487       }
2488     }
2489 
2490     if (!Okay) {
2491       SourceRange Range(TemplateNameLoc, RAngleLoc);
2492       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2493           << Name << Range;
2494 
2495       Diag(PrevDecl->getPointOfInstantiation(),
2496            diag::note_instantiation_required_here)
2497           << (PrevDecl->getTemplateSpecializationKind() !=
2498               TSK_ImplicitInstantiation);
2499       return true;
2500     }
2501   }
2502 
2503   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2504   Specialization->setLexicalDeclContext(CurContext);
2505 
2506   // Add the specialization into its lexical context, so that it can
2507   // be seen when iterating through the list of declarations in that
2508   // context. However, specializations are not found by name lookup.
2509   CurContext->addDecl(Specialization);
2510 
2511   // Note that this is an explicit specialization.
2512   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2513 
2514   if (PrevDecl) {
2515     // Check that this isn't a redefinition of this specialization,
2516     // merging with previous declarations.
2517     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2518                           ForRedeclaration);
2519     PrevSpec.addDecl(PrevDecl);
2520     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2521   }
2522 
2523   // Link instantiations of static data members back to the template from
2524   // which they were instantiated.
2525   if (Specialization->isStaticDataMember())
2526     Specialization->setInstantiationOfStaticDataMember(
2527         VarTemplate->getTemplatedDecl(),
2528         Specialization->getSpecializationKind());
2529 
2530   return Specialization;
2531 }
2532 
2533 namespace {
2534 /// \brief A partial specialization whose template arguments have matched
2535 /// a given template-id.
2536 struct PartialSpecMatchResult {
2537   VarTemplatePartialSpecializationDecl *Partial;
2538   TemplateArgumentList *Args;
2539 };
2540 }
2541 
2542 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2543 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2544                          SourceLocation TemplateNameLoc,
2545                          const TemplateArgumentListInfo &TemplateArgs) {
2546   assert(Template && "A variable template id without template?");
2547 
2548   // Check that the template argument list is well-formed for this template.
2549   SmallVector<TemplateArgument, 4> Converted;
2550   bool ExpansionIntoFixedList = false;
2551   if (CheckTemplateArgumentList(
2552           Template, TemplateNameLoc,
2553           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2554           Converted, &ExpansionIntoFixedList))
2555     return true;
2556 
2557   // Find the variable template specialization declaration that
2558   // corresponds to these arguments.
2559   void *InsertPos = 0;
2560   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2561           Converted.data(), Converted.size(), InsertPos))
2562     // If we already have a variable template specialization, return it.
2563     return Spec;
2564 
2565   // This is the first time we have referenced this variable template
2566   // specialization. Create the canonical declaration and add it to
2567   // the set of specializations, based on the closest partial specialization
2568   // that it represents. That is,
2569   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2570   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2571                                        Converted.data(), Converted.size());
2572   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2573   bool AmbiguousPartialSpec = false;
2574   typedef PartialSpecMatchResult MatchResult;
2575   SmallVector<MatchResult, 4> Matched;
2576   SourceLocation PointOfInstantiation = TemplateNameLoc;
2577   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2578 
2579   // 1. Attempt to find the closest partial specialization that this
2580   // specializes, if any.
2581   // If any of the template arguments is dependent, then this is probably
2582   // a placeholder for an incomplete declarative context; which must be
2583   // complete by instantiation time. Thus, do not search through the partial
2584   // specializations yet.
2585   // FIXME: Unify with InstantiateClassTemplateSpecialization()?
2586   bool InstantiationDependent = false;
2587   if (!TemplateSpecializationType::anyDependentTemplateArguments(
2588           TemplateArgs, InstantiationDependent)) {
2589 
2590     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2591     Template->getPartialSpecializations(PartialSpecs);
2592 
2593     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2594       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2595       TemplateDeductionInfo Info(FailedCandidates.getLocation());
2596 
2597       if (TemplateDeductionResult Result =
2598               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2599         // Store the failed-deduction information for use in diagnostics, later.
2600         FailedCandidates.addCandidate()
2601             .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2602         (void)Result;
2603       } else {
2604         Matched.push_back(PartialSpecMatchResult());
2605         Matched.back().Partial = Partial;
2606         Matched.back().Args = Info.take();
2607       }
2608     }
2609 
2610     // If we're dealing with a member template where the template parameters
2611     // have been instantiated, this provides the original template parameters
2612     // from which the member template's parameters were instantiated.
2613     SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2614 
2615     if (Matched.size() >= 1) {
2616       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2617       if (Matched.size() == 1) {
2618         //   -- If exactly one matching specialization is found, the
2619         //      instantiation is generated from that specialization.
2620         // We don't need to do anything for this.
2621       } else {
2622         //   -- If more than one matching specialization is found, the
2623         //      partial order rules (14.5.4.2) are used to determine
2624         //      whether one of the specializations is more specialized
2625         //      than the others. If none of the specializations is more
2626         //      specialized than all of the other matching
2627         //      specializations, then the use of the variable template is
2628         //      ambiguous and the program is ill-formed.
2629         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2630                                                    PEnd = Matched.end();
2631              P != PEnd; ++P) {
2632           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2633                                                       PointOfInstantiation) ==
2634               P->Partial)
2635             Best = P;
2636         }
2637 
2638         // Determine if the best partial specialization is more specialized than
2639         // the others.
2640         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2641                                                    PEnd = Matched.end();
2642              P != PEnd; ++P) {
2643           if (P != Best && getMoreSpecializedPartialSpecialization(
2644                                P->Partial, Best->Partial,
2645                                PointOfInstantiation) != Best->Partial) {
2646             AmbiguousPartialSpec = true;
2647             break;
2648           }
2649         }
2650       }
2651 
2652       // Instantiate using the best variable template partial specialization.
2653       InstantiationPattern = Best->Partial;
2654       InstantiationArgs = Best->Args;
2655     } else {
2656       //   -- If no match is found, the instantiation is generated
2657       //      from the primary template.
2658       // InstantiationPattern = Template->getTemplatedDecl();
2659     }
2660   }
2661 
2662   // FIXME: Actually use FailedCandidates.
2663 
2664   // 2. Create the canonical declaration.
2665   // Note that we do not instantiate the variable just yet, since
2666   // instantiation is handled in DoMarkVarDeclReferenced().
2667   // FIXME: LateAttrs et al.?
2668   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2669       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2670       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2671   if (!Decl)
2672     return true;
2673 
2674   if (AmbiguousPartialSpec) {
2675     // Partial ordering did not produce a clear winner. Complain.
2676     Decl->setInvalidDecl();
2677     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2678         << Decl;
2679 
2680     // Print the matching partial specializations.
2681     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2682                                                PEnd = Matched.end();
2683          P != PEnd; ++P)
2684       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2685           << getTemplateArgumentBindingsText(
2686                  P->Partial->getTemplateParameters(), *P->Args);
2687     return true;
2688   }
2689 
2690   if (VarTemplatePartialSpecializationDecl *D =
2691           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2692     Decl->setInstantiationOf(D, InstantiationArgs);
2693 
2694   assert(Decl && "No variable template specialization?");
2695   return Decl;
2696 }
2697 
2698 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2699 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2700                          const DeclarationNameInfo &NameInfo,
2701                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
2702                          const TemplateArgumentListInfo *TemplateArgs) {
2703 
2704   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2705                                        *TemplateArgs);
2706   if (Decl.isInvalid())
2707     return ExprError();
2708 
2709   VarDecl *Var = cast<VarDecl>(Decl.get());
2710   if (!Var->getTemplateSpecializationKind())
2711     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2712                                        NameInfo.getLoc());
2713 
2714   // Build an ordinary singleton decl ref.
2715   return BuildDeclarationNameExpr(SS, NameInfo, Var,
2716                                   /*FoundD=*/0, TemplateArgs);
2717 }
2718 
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2719 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2720                                      SourceLocation TemplateKWLoc,
2721                                      LookupResult &R,
2722                                      bool RequiresADL,
2723                                  const TemplateArgumentListInfo *TemplateArgs) {
2724   // FIXME: Can we do any checking at this point? I guess we could check the
2725   // template arguments that we have against the template name, if the template
2726   // name refers to a single template. That's not a terribly common case,
2727   // though.
2728   // foo<int> could identify a single function unambiguously
2729   // This approach does NOT work, since f<int>(1);
2730   // gets resolved prior to resorting to overload resolution
2731   // i.e., template<class T> void f(double);
2732   //       vs template<class T, class U> void f(U);
2733 
2734   // These should be filtered out by our callers.
2735   assert(!R.empty() && "empty lookup results when building templateid");
2736   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2737 
2738   // In C++1y, check variable template ids.
2739   if (R.getAsSingle<VarTemplateDecl>()) {
2740     return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2741                                     R.getAsSingle<VarTemplateDecl>(),
2742                                     TemplateKWLoc, TemplateArgs));
2743   }
2744 
2745   // We don't want lookup warnings at this point.
2746   R.suppressDiagnostics();
2747 
2748   UnresolvedLookupExpr *ULE
2749     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2750                                    SS.getWithLocInContext(Context),
2751                                    TemplateKWLoc,
2752                                    R.getLookupNameInfo(),
2753                                    RequiresADL, TemplateArgs,
2754                                    R.begin(), R.end());
2755 
2756   return Owned(ULE);
2757 }
2758 
2759 // We actually only call this from template instantiation.
2760 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2761 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2762                                    SourceLocation TemplateKWLoc,
2763                                    const DeclarationNameInfo &NameInfo,
2764                              const TemplateArgumentListInfo *TemplateArgs) {
2765 
2766   assert(TemplateArgs || TemplateKWLoc.isValid());
2767   DeclContext *DC;
2768   if (!(DC = computeDeclContext(SS, false)) ||
2769       DC->isDependentContext() ||
2770       RequireCompleteDeclContext(SS, DC))
2771     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2772 
2773   bool MemberOfUnknownSpecialization;
2774   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2775   LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2776                      MemberOfUnknownSpecialization);
2777 
2778   if (R.isAmbiguous())
2779     return ExprError();
2780 
2781   if (R.empty()) {
2782     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2783       << NameInfo.getName() << SS.getRange();
2784     return ExprError();
2785   }
2786 
2787   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2788     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2789       << (NestedNameSpecifier*) SS.getScopeRep()
2790       << NameInfo.getName() << SS.getRange();
2791     Diag(Temp->getLocation(), diag::note_referenced_class_template);
2792     return ExprError();
2793   }
2794 
2795   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2796 }
2797 
2798 /// \brief Form a dependent template name.
2799 ///
2800 /// This action forms a dependent template name given the template
2801 /// name and its (presumably dependent) scope specifier. For
2802 /// example, given "MetaFun::template apply", the scope specifier \p
2803 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2804 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2805 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2806                                                   CXXScopeSpec &SS,
2807                                                   SourceLocation TemplateKWLoc,
2808                                                   UnqualifiedId &Name,
2809                                                   ParsedType ObjectType,
2810                                                   bool EnteringContext,
2811                                                   TemplateTy &Result) {
2812   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2813     Diag(TemplateKWLoc,
2814          getLangOpts().CPlusPlus11 ?
2815            diag::warn_cxx98_compat_template_outside_of_template :
2816            diag::ext_template_outside_of_template)
2817       << FixItHint::CreateRemoval(TemplateKWLoc);
2818 
2819   DeclContext *LookupCtx = 0;
2820   if (SS.isSet())
2821     LookupCtx = computeDeclContext(SS, EnteringContext);
2822   if (!LookupCtx && ObjectType)
2823     LookupCtx = computeDeclContext(ObjectType.get());
2824   if (LookupCtx) {
2825     // C++0x [temp.names]p5:
2826     //   If a name prefixed by the keyword template is not the name of
2827     //   a template, the program is ill-formed. [Note: the keyword
2828     //   template may not be applied to non-template members of class
2829     //   templates. -end note ] [ Note: as is the case with the
2830     //   typename prefix, the template prefix is allowed in cases
2831     //   where it is not strictly necessary; i.e., when the
2832     //   nested-name-specifier or the expression on the left of the ->
2833     //   or . is not dependent on a template-parameter, or the use
2834     //   does not appear in the scope of a template. -end note]
2835     //
2836     // Note: C++03 was more strict here, because it banned the use of
2837     // the "template" keyword prior to a template-name that was not a
2838     // dependent name. C++ DR468 relaxed this requirement (the
2839     // "template" keyword is now permitted). We follow the C++0x
2840     // rules, even in C++03 mode with a warning, retroactively applying the DR.
2841     bool MemberOfUnknownSpecialization;
2842     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2843                                           ObjectType, EnteringContext, Result,
2844                                           MemberOfUnknownSpecialization);
2845     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2846         isa<CXXRecordDecl>(LookupCtx) &&
2847         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2848          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2849       // This is a dependent template. Handle it below.
2850     } else if (TNK == TNK_Non_template) {
2851       Diag(Name.getLocStart(),
2852            diag::err_template_kw_refers_to_non_template)
2853         << GetNameFromUnqualifiedId(Name).getName()
2854         << Name.getSourceRange()
2855         << TemplateKWLoc;
2856       return TNK_Non_template;
2857     } else {
2858       // We found something; return it.
2859       return TNK;
2860     }
2861   }
2862 
2863   NestedNameSpecifier *Qualifier
2864     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2865 
2866   switch (Name.getKind()) {
2867   case UnqualifiedId::IK_Identifier:
2868     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2869                                                               Name.Identifier));
2870     return TNK_Dependent_template_name;
2871 
2872   case UnqualifiedId::IK_OperatorFunctionId:
2873     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2874                                              Name.OperatorFunctionId.Operator));
2875     return TNK_Dependent_template_name;
2876 
2877   case UnqualifiedId::IK_LiteralOperatorId:
2878     llvm_unreachable(
2879             "We don't support these; Parse shouldn't have allowed propagation");
2880 
2881   default:
2882     break;
2883   }
2884 
2885   Diag(Name.getLocStart(),
2886        diag::err_template_kw_refers_to_non_template)
2887     << GetNameFromUnqualifiedId(Name).getName()
2888     << Name.getSourceRange()
2889     << TemplateKWLoc;
2890   return TNK_Non_template;
2891 }
2892 
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,const TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2893 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2894                                      const TemplateArgumentLoc &AL,
2895                           SmallVectorImpl<TemplateArgument> &Converted) {
2896   const TemplateArgument &Arg = AL.getArgument();
2897 
2898   // Check template type parameter.
2899   switch(Arg.getKind()) {
2900   case TemplateArgument::Type:
2901     // C++ [temp.arg.type]p1:
2902     //   A template-argument for a template-parameter which is a
2903     //   type shall be a type-id.
2904     break;
2905   case TemplateArgument::Template: {
2906     // We have a template type parameter but the template argument
2907     // is a template without any arguments.
2908     SourceRange SR = AL.getSourceRange();
2909     TemplateName Name = Arg.getAsTemplate();
2910     Diag(SR.getBegin(), diag::err_template_missing_args)
2911       << Name << SR;
2912     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2913       Diag(Decl->getLocation(), diag::note_template_decl_here);
2914 
2915     return true;
2916   }
2917   case TemplateArgument::Expression: {
2918     // We have a template type parameter but the template argument is an
2919     // expression; see if maybe it is missing the "typename" keyword.
2920     CXXScopeSpec SS;
2921     DeclarationNameInfo NameInfo;
2922 
2923     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2924       SS.Adopt(ArgExpr->getQualifierLoc());
2925       NameInfo = ArgExpr->getNameInfo();
2926     } else if (DependentScopeDeclRefExpr *ArgExpr =
2927                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2928       SS.Adopt(ArgExpr->getQualifierLoc());
2929       NameInfo = ArgExpr->getNameInfo();
2930     } else if (CXXDependentScopeMemberExpr *ArgExpr =
2931                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2932       if (ArgExpr->isImplicitAccess()) {
2933         SS.Adopt(ArgExpr->getQualifierLoc());
2934         NameInfo = ArgExpr->getMemberNameInfo();
2935       }
2936     }
2937 
2938     if (NameInfo.getName().isIdentifier()) {
2939       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2940       LookupParsedName(Result, CurScope, &SS);
2941 
2942       if (Result.getAsSingle<TypeDecl>() ||
2943           Result.getResultKind() ==
2944             LookupResult::NotFoundInCurrentInstantiation) {
2945         // FIXME: Add a FixIt and fix up the template argument for recovery.
2946         SourceLocation Loc = AL.getSourceRange().getBegin();
2947         Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2948         Diag(Param->getLocation(), diag::note_template_param_here);
2949         return true;
2950       }
2951     }
2952     // fallthrough
2953   }
2954   default: {
2955     // We have a template type parameter but the template argument
2956     // is not a type.
2957     SourceRange SR = AL.getSourceRange();
2958     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2959     Diag(Param->getLocation(), diag::note_template_param_here);
2960 
2961     return true;
2962   }
2963   }
2964 
2965   if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2966     return true;
2967 
2968   // Add the converted template type argument.
2969   QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2970 
2971   // Objective-C ARC:
2972   //   If an explicitly-specified template argument type is a lifetime type
2973   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2974   if (getLangOpts().ObjCAutoRefCount &&
2975       ArgType->isObjCLifetimeType() &&
2976       !ArgType.getObjCLifetime()) {
2977     Qualifiers Qs;
2978     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2979     ArgType = Context.getQualifiedType(ArgType, Qs);
2980   }
2981 
2982   Converted.push_back(TemplateArgument(ArgType));
2983   return false;
2984 }
2985 
2986 /// \brief Substitute template arguments into the default template argument for
2987 /// the given template type parameter.
2988 ///
2989 /// \param SemaRef the semantic analysis object for which we are performing
2990 /// the substitution.
2991 ///
2992 /// \param Template the template that we are synthesizing template arguments
2993 /// for.
2994 ///
2995 /// \param TemplateLoc the location of the template name that started the
2996 /// template-id we are checking.
2997 ///
2998 /// \param RAngleLoc the location of the right angle bracket ('>') that
2999 /// terminates the template-id.
3000 ///
3001 /// \param Param the template template parameter whose default we are
3002 /// substituting into.
3003 ///
3004 /// \param Converted the list of template arguments provided for template
3005 /// parameters that precede \p Param in the template parameter list.
3006 /// \returns the substituted template argument, or NULL if an error occurred.
3007 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3008 SubstDefaultTemplateArgument(Sema &SemaRef,
3009                              TemplateDecl *Template,
3010                              SourceLocation TemplateLoc,
3011                              SourceLocation RAngleLoc,
3012                              TemplateTypeParmDecl *Param,
3013                          SmallVectorImpl<TemplateArgument> &Converted) {
3014   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3015 
3016   // If the argument type is dependent, instantiate it now based
3017   // on the previously-computed template arguments.
3018   if (ArgType->getType()->isDependentType()) {
3019     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3020                                       Converted.data(), Converted.size());
3021 
3022     MultiLevelTemplateArgumentList AllTemplateArgs
3023       = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3024 
3025     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3026                                      Template, Converted,
3027                                      SourceRange(TemplateLoc, RAngleLoc));
3028     if (Inst)
3029       return 0;
3030 
3031     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3032     ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
3033                                 Param->getDefaultArgumentLoc(),
3034                                 Param->getDeclName());
3035   }
3036 
3037   return ArgType;
3038 }
3039 
3040 /// \brief Substitute template arguments into the default template argument for
3041 /// the given non-type template parameter.
3042 ///
3043 /// \param SemaRef the semantic analysis object for which we are performing
3044 /// the substitution.
3045 ///
3046 /// \param Template the template that we are synthesizing template arguments
3047 /// for.
3048 ///
3049 /// \param TemplateLoc the location of the template name that started the
3050 /// template-id we are checking.
3051 ///
3052 /// \param RAngleLoc the location of the right angle bracket ('>') that
3053 /// terminates the template-id.
3054 ///
3055 /// \param Param the non-type template parameter whose default we are
3056 /// substituting into.
3057 ///
3058 /// \param Converted the list of template arguments provided for template
3059 /// parameters that precede \p Param in the template parameter list.
3060 ///
3061 /// \returns the substituted template argument, or NULL if an error occurred.
3062 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3063 SubstDefaultTemplateArgument(Sema &SemaRef,
3064                              TemplateDecl *Template,
3065                              SourceLocation TemplateLoc,
3066                              SourceLocation RAngleLoc,
3067                              NonTypeTemplateParmDecl *Param,
3068                         SmallVectorImpl<TemplateArgument> &Converted) {
3069   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3070                                     Converted.data(), Converted.size());
3071 
3072   MultiLevelTemplateArgumentList AllTemplateArgs
3073     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3074 
3075   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3076                                    Template, Converted,
3077                                    SourceRange(TemplateLoc, RAngleLoc));
3078   if (Inst)
3079     return ExprError();
3080 
3081   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3082   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3083   return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
3084 }
3085 
3086 /// \brief Substitute template arguments into the default template argument for
3087 /// the given template template parameter.
3088 ///
3089 /// \param SemaRef the semantic analysis object for which we are performing
3090 /// the substitution.
3091 ///
3092 /// \param Template the template that we are synthesizing template arguments
3093 /// for.
3094 ///
3095 /// \param TemplateLoc the location of the template name that started the
3096 /// template-id we are checking.
3097 ///
3098 /// \param RAngleLoc the location of the right angle bracket ('>') that
3099 /// terminates the template-id.
3100 ///
3101 /// \param Param the template template parameter whose default we are
3102 /// substituting into.
3103 ///
3104 /// \param Converted the list of template arguments provided for template
3105 /// parameters that precede \p Param in the template parameter list.
3106 ///
3107 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3108 /// source-location information) that precedes the template name.
3109 ///
3110 /// \returns the substituted template argument, or NULL if an error occurred.
3111 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3112 SubstDefaultTemplateArgument(Sema &SemaRef,
3113                              TemplateDecl *Template,
3114                              SourceLocation TemplateLoc,
3115                              SourceLocation RAngleLoc,
3116                              TemplateTemplateParmDecl *Param,
3117                        SmallVectorImpl<TemplateArgument> &Converted,
3118                              NestedNameSpecifierLoc &QualifierLoc) {
3119   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3120                                     Converted.data(), Converted.size());
3121 
3122   MultiLevelTemplateArgumentList AllTemplateArgs
3123     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3124 
3125   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3126                                    Template, Converted,
3127                                    SourceRange(TemplateLoc, RAngleLoc));
3128   if (Inst)
3129     return TemplateName();
3130 
3131   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3132   // Substitute into the nested-name-specifier first,
3133   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3134   if (QualifierLoc) {
3135     QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
3136                                                        AllTemplateArgs);
3137     if (!QualifierLoc)
3138       return TemplateName();
3139   }
3140 
3141   return SemaRef.SubstTemplateName(QualifierLoc,
3142                       Param->getDefaultArgument().getArgument().getAsTemplate(),
3143                               Param->getDefaultArgument().getTemplateNameLoc(),
3144                                    AllTemplateArgs);
3145 }
3146 
3147 /// \brief If the given template parameter has a default template
3148 /// argument, substitute into that default template argument and
3149 /// return the corresponding template argument.
3150 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3151 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3152                                               SourceLocation TemplateLoc,
3153                                               SourceLocation RAngleLoc,
3154                                               Decl *Param,
3155                                               SmallVectorImpl<TemplateArgument>
3156                                                 &Converted,
3157                                               bool &HasDefaultArg) {
3158   HasDefaultArg = false;
3159 
3160   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3161     if (!TypeParm->hasDefaultArgument())
3162       return TemplateArgumentLoc();
3163 
3164     HasDefaultArg = true;
3165     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3166                                                       TemplateLoc,
3167                                                       RAngleLoc,
3168                                                       TypeParm,
3169                                                       Converted);
3170     if (DI)
3171       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3172 
3173     return TemplateArgumentLoc();
3174   }
3175 
3176   if (NonTypeTemplateParmDecl *NonTypeParm
3177         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3178     if (!NonTypeParm->hasDefaultArgument())
3179       return TemplateArgumentLoc();
3180 
3181     HasDefaultArg = true;
3182     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3183                                                   TemplateLoc,
3184                                                   RAngleLoc,
3185                                                   NonTypeParm,
3186                                                   Converted);
3187     if (Arg.isInvalid())
3188       return TemplateArgumentLoc();
3189 
3190     Expr *ArgE = Arg.takeAs<Expr>();
3191     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3192   }
3193 
3194   TemplateTemplateParmDecl *TempTempParm
3195     = cast<TemplateTemplateParmDecl>(Param);
3196   if (!TempTempParm->hasDefaultArgument())
3197     return TemplateArgumentLoc();
3198 
3199   HasDefaultArg = true;
3200   NestedNameSpecifierLoc QualifierLoc;
3201   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3202                                                     TemplateLoc,
3203                                                     RAngleLoc,
3204                                                     TempTempParm,
3205                                                     Converted,
3206                                                     QualifierLoc);
3207   if (TName.isNull())
3208     return TemplateArgumentLoc();
3209 
3210   return TemplateArgumentLoc(TemplateArgument(TName),
3211                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3212                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3213 }
3214 
3215 /// \brief Check that the given template argument corresponds to the given
3216 /// template parameter.
3217 ///
3218 /// \param Param The template parameter against which the argument will be
3219 /// checked.
3220 ///
3221 /// \param Arg The template argument.
3222 ///
3223 /// \param Template The template in which the template argument resides.
3224 ///
3225 /// \param TemplateLoc The location of the template name for the template
3226 /// whose argument list we're matching.
3227 ///
3228 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3229 /// the template argument list.
3230 ///
3231 /// \param ArgumentPackIndex The index into the argument pack where this
3232 /// argument will be placed. Only valid if the parameter is a parameter pack.
3233 ///
3234 /// \param Converted The checked, converted argument will be added to the
3235 /// end of this small vector.
3236 ///
3237 /// \param CTAK Describes how we arrived at this particular template argument:
3238 /// explicitly written, deduced, etc.
3239 ///
3240 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,const TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3241 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3242                                  const TemplateArgumentLoc &Arg,
3243                                  NamedDecl *Template,
3244                                  SourceLocation TemplateLoc,
3245                                  SourceLocation RAngleLoc,
3246                                  unsigned ArgumentPackIndex,
3247                             SmallVectorImpl<TemplateArgument> &Converted,
3248                                  CheckTemplateArgumentKind CTAK) {
3249   // Check template type parameters.
3250   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3251     return CheckTemplateTypeArgument(TTP, Arg, Converted);
3252 
3253   // Check non-type template parameters.
3254   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3255     // Do substitution on the type of the non-type template parameter
3256     // with the template arguments we've seen thus far.  But if the
3257     // template has a dependent context then we cannot substitute yet.
3258     QualType NTTPType = NTTP->getType();
3259     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3260       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3261 
3262     if (NTTPType->isDependentType() &&
3263         !isa<TemplateTemplateParmDecl>(Template) &&
3264         !Template->getDeclContext()->isDependentContext()) {
3265       // Do substitution on the type of the non-type template parameter.
3266       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3267                                  NTTP, Converted,
3268                                  SourceRange(TemplateLoc, RAngleLoc));
3269       if (Inst)
3270         return true;
3271 
3272       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3273                                         Converted.data(), Converted.size());
3274       NTTPType = SubstType(NTTPType,
3275                            MultiLevelTemplateArgumentList(TemplateArgs),
3276                            NTTP->getLocation(),
3277                            NTTP->getDeclName());
3278       // If that worked, check the non-type template parameter type
3279       // for validity.
3280       if (!NTTPType.isNull())
3281         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3282                                                      NTTP->getLocation());
3283       if (NTTPType.isNull())
3284         return true;
3285     }
3286 
3287     switch (Arg.getArgument().getKind()) {
3288     case TemplateArgument::Null:
3289       llvm_unreachable("Should never see a NULL template argument here");
3290 
3291     case TemplateArgument::Expression: {
3292       TemplateArgument Result;
3293       ExprResult Res =
3294         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3295                               Result, CTAK);
3296       if (Res.isInvalid())
3297         return true;
3298 
3299       Converted.push_back(Result);
3300       break;
3301     }
3302 
3303     case TemplateArgument::Declaration:
3304     case TemplateArgument::Integral:
3305     case TemplateArgument::NullPtr:
3306       // We've already checked this template argument, so just copy
3307       // it to the list of converted arguments.
3308       Converted.push_back(Arg.getArgument());
3309       break;
3310 
3311     case TemplateArgument::Template:
3312     case TemplateArgument::TemplateExpansion:
3313       // We were given a template template argument. It may not be ill-formed;
3314       // see below.
3315       if (DependentTemplateName *DTN
3316             = Arg.getArgument().getAsTemplateOrTemplatePattern()
3317                                               .getAsDependentTemplateName()) {
3318         // We have a template argument such as \c T::template X, which we
3319         // parsed as a template template argument. However, since we now
3320         // know that we need a non-type template argument, convert this
3321         // template name into an expression.
3322 
3323         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3324                                      Arg.getTemplateNameLoc());
3325 
3326         CXXScopeSpec SS;
3327         SS.Adopt(Arg.getTemplateQualifierLoc());
3328         // FIXME: the template-template arg was a DependentTemplateName,
3329         // so it was provided with a template keyword. However, its source
3330         // location is not stored in the template argument structure.
3331         SourceLocation TemplateKWLoc;
3332         ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3333                                                 SS.getWithLocInContext(Context),
3334                                                                TemplateKWLoc,
3335                                                                NameInfo, 0));
3336 
3337         // If we parsed the template argument as a pack expansion, create a
3338         // pack expansion expression.
3339         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3340           E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3341           if (E.isInvalid())
3342             return true;
3343         }
3344 
3345         TemplateArgument Result;
3346         E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3347         if (E.isInvalid())
3348           return true;
3349 
3350         Converted.push_back(Result);
3351         break;
3352       }
3353 
3354       // We have a template argument that actually does refer to a class
3355       // template, alias template, or template template parameter, and
3356       // therefore cannot be a non-type template argument.
3357       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3358         << Arg.getSourceRange();
3359 
3360       Diag(Param->getLocation(), diag::note_template_param_here);
3361       return true;
3362 
3363     case TemplateArgument::Type: {
3364       // We have a non-type template parameter but the template
3365       // argument is a type.
3366 
3367       // C++ [temp.arg]p2:
3368       //   In a template-argument, an ambiguity between a type-id and
3369       //   an expression is resolved to a type-id, regardless of the
3370       //   form of the corresponding template-parameter.
3371       //
3372       // We warn specifically about this case, since it can be rather
3373       // confusing for users.
3374       QualType T = Arg.getArgument().getAsType();
3375       SourceRange SR = Arg.getSourceRange();
3376       if (T->isFunctionType())
3377         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3378       else
3379         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3380       Diag(Param->getLocation(), diag::note_template_param_here);
3381       return true;
3382     }
3383 
3384     case TemplateArgument::Pack:
3385       llvm_unreachable("Caller must expand template argument packs");
3386     }
3387 
3388     return false;
3389   }
3390 
3391 
3392   // Check template template parameters.
3393   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3394 
3395   // Substitute into the template parameter list of the template
3396   // template parameter, since previously-supplied template arguments
3397   // may appear within the template template parameter.
3398   {
3399     // Set up a template instantiation context.
3400     LocalInstantiationScope Scope(*this);
3401     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3402                                TempParm, Converted,
3403                                SourceRange(TemplateLoc, RAngleLoc));
3404     if (Inst)
3405       return true;
3406 
3407     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3408                                       Converted.data(), Converted.size());
3409     TempParm = cast_or_null<TemplateTemplateParmDecl>(
3410                       SubstDecl(TempParm, CurContext,
3411                                 MultiLevelTemplateArgumentList(TemplateArgs)));
3412     if (!TempParm)
3413       return true;
3414   }
3415 
3416   switch (Arg.getArgument().getKind()) {
3417   case TemplateArgument::Null:
3418     llvm_unreachable("Should never see a NULL template argument here");
3419 
3420   case TemplateArgument::Template:
3421   case TemplateArgument::TemplateExpansion:
3422     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3423       return true;
3424 
3425     Converted.push_back(Arg.getArgument());
3426     break;
3427 
3428   case TemplateArgument::Expression:
3429   case TemplateArgument::Type:
3430     // We have a template template parameter but the template
3431     // argument does not refer to a template.
3432     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3433       << getLangOpts().CPlusPlus11;
3434     return true;
3435 
3436   case TemplateArgument::Declaration:
3437     llvm_unreachable("Declaration argument with template template parameter");
3438   case TemplateArgument::Integral:
3439     llvm_unreachable("Integral argument with template template parameter");
3440   case TemplateArgument::NullPtr:
3441     llvm_unreachable("Null pointer argument with template template parameter");
3442 
3443   case TemplateArgument::Pack:
3444     llvm_unreachable("Caller must expand template argument packs");
3445   }
3446 
3447   return false;
3448 }
3449 
3450 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3451 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3452                                   SourceLocation TemplateLoc,
3453                                   TemplateArgumentListInfo &TemplateArgs) {
3454   TemplateParameterList *Params = Template->getTemplateParameters();
3455   unsigned NumParams = Params->size();
3456   unsigned NumArgs = TemplateArgs.size();
3457 
3458   SourceRange Range;
3459   if (NumArgs > NumParams)
3460     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3461                         TemplateArgs.getRAngleLoc());
3462   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3463     << (NumArgs > NumParams)
3464     << (isa<ClassTemplateDecl>(Template)? 0 :
3465         isa<FunctionTemplateDecl>(Template)? 1 :
3466         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3467     << Template << Range;
3468   S.Diag(Template->getLocation(), diag::note_template_decl_here)
3469     << Params->getSourceRange();
3470   return true;
3471 }
3472 
3473 /// \brief Check whether the template parameter is a pack expansion, and if so,
3474 /// determine the number of parameters produced by that expansion. For instance:
3475 ///
3476 /// \code
3477 /// template<typename ...Ts> struct A {
3478 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3479 /// };
3480 /// \endcode
3481 ///
3482 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3483 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3484 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3485   if (NonTypeTemplateParmDecl *NTTP
3486         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3487     if (NTTP->isExpandedParameterPack())
3488       return NTTP->getNumExpansionTypes();
3489   }
3490 
3491   if (TemplateTemplateParmDecl *TTP
3492         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3493     if (TTP->isExpandedParameterPack())
3494       return TTP->getNumExpansionTemplateParameters();
3495   }
3496 
3497   return None;
3498 }
3499 
3500 /// \brief Check that the given template argument list is well-formed
3501 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool * ExpansionIntoFixedList)3502 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3503                                      SourceLocation TemplateLoc,
3504                                      TemplateArgumentListInfo &TemplateArgs,
3505                                      bool PartialTemplateArgs,
3506                           SmallVectorImpl<TemplateArgument> &Converted,
3507                                      bool *ExpansionIntoFixedList) {
3508   if (ExpansionIntoFixedList)
3509     *ExpansionIntoFixedList = false;
3510 
3511   TemplateParameterList *Params = Template->getTemplateParameters();
3512 
3513   SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3514 
3515   // C++ [temp.arg]p1:
3516   //   [...] The type and form of each template-argument specified in
3517   //   a template-id shall match the type and form specified for the
3518   //   corresponding parameter declared by the template in its
3519   //   template-parameter-list.
3520   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3521   SmallVector<TemplateArgument, 2> ArgumentPack;
3522   unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3523   LocalInstantiationScope InstScope(*this, true);
3524   for (TemplateParameterList::iterator Param = Params->begin(),
3525                                        ParamEnd = Params->end();
3526        Param != ParamEnd; /* increment in loop */) {
3527     // If we have an expanded parameter pack, make sure we don't have too
3528     // many arguments.
3529     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3530       if (*Expansions == ArgumentPack.size()) {
3531         // We're done with this parameter pack. Pack up its arguments and add
3532         // them to the list.
3533         Converted.push_back(
3534           TemplateArgument::CreatePackCopy(Context,
3535                                            ArgumentPack.data(),
3536                                            ArgumentPack.size()));
3537         ArgumentPack.clear();
3538 
3539         // This argument is assigned to the next parameter.
3540         ++Param;
3541         continue;
3542       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3543         // Not enough arguments for this parameter pack.
3544         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3545           << false
3546           << (isa<ClassTemplateDecl>(Template)? 0 :
3547               isa<FunctionTemplateDecl>(Template)? 1 :
3548               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3549           << Template;
3550         Diag(Template->getLocation(), diag::note_template_decl_here)
3551           << Params->getSourceRange();
3552         return true;
3553       }
3554     }
3555 
3556     if (ArgIdx < NumArgs) {
3557       // Check the template argument we were given.
3558       if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3559                                 TemplateLoc, RAngleLoc,
3560                                 ArgumentPack.size(), Converted))
3561         return true;
3562 
3563       // We're now done with this argument.
3564       ++ArgIdx;
3565 
3566       if ((*Param)->isTemplateParameterPack()) {
3567         // The template parameter was a template parameter pack, so take the
3568         // deduced argument and place it on the argument pack. Note that we
3569         // stay on the same template parameter so that we can deduce more
3570         // arguments.
3571         ArgumentPack.push_back(Converted.back());
3572         Converted.pop_back();
3573       } else {
3574         // Move to the next template parameter.
3575         ++Param;
3576       }
3577 
3578       // If we just saw a pack expansion, then directly convert the remaining
3579       // arguments, because we don't know what parameters they'll match up
3580       // with.
3581       if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3582         bool InFinalParameterPack = Param != ParamEnd &&
3583                                     Param + 1 == ParamEnd &&
3584                                     (*Param)->isTemplateParameterPack() &&
3585                                     !getExpandedPackSize(*Param);
3586 
3587         if (!InFinalParameterPack && !ArgumentPack.empty()) {
3588           // If we were part way through filling in an expanded parameter pack,
3589           // fall back to just producing individual arguments.
3590           Converted.insert(Converted.end(),
3591                            ArgumentPack.begin(), ArgumentPack.end());
3592           ArgumentPack.clear();
3593         }
3594 
3595         while (ArgIdx < NumArgs) {
3596           if (InFinalParameterPack)
3597             ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3598           else
3599             Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3600           ++ArgIdx;
3601         }
3602 
3603         // Push the argument pack onto the list of converted arguments.
3604         if (InFinalParameterPack) {
3605           Converted.push_back(
3606             TemplateArgument::CreatePackCopy(Context,
3607                                              ArgumentPack.data(),
3608                                              ArgumentPack.size()));
3609           ArgumentPack.clear();
3610         } else if (ExpansionIntoFixedList) {
3611           // We have expanded a pack into a fixed list.
3612           *ExpansionIntoFixedList = true;
3613         }
3614 
3615         return false;
3616       }
3617 
3618       continue;
3619     }
3620 
3621     // If we're checking a partial template argument list, we're done.
3622     if (PartialTemplateArgs) {
3623       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3624         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3625                                                          ArgumentPack.data(),
3626                                                          ArgumentPack.size()));
3627 
3628       return false;
3629     }
3630 
3631     // If we have a template parameter pack with no more corresponding
3632     // arguments, just break out now and we'll fill in the argument pack below.
3633     if ((*Param)->isTemplateParameterPack()) {
3634       assert(!getExpandedPackSize(*Param) &&
3635              "Should have dealt with this already");
3636 
3637       // A non-expanded parameter pack before the end of the parameter list
3638       // only occurs for an ill-formed template parameter list, unless we've
3639       // got a partial argument list for a function template, so just bail out.
3640       if (Param + 1 != ParamEnd)
3641         return true;
3642 
3643       Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3644                                                        ArgumentPack.data(),
3645                                                        ArgumentPack.size()));
3646       ArgumentPack.clear();
3647 
3648       ++Param;
3649       continue;
3650     }
3651 
3652     // Check whether we have a default argument.
3653     TemplateArgumentLoc Arg;
3654 
3655     // Retrieve the default template argument from the template
3656     // parameter. For each kind of template parameter, we substitute the
3657     // template arguments provided thus far and any "outer" template arguments
3658     // (when the template parameter was part of a nested template) into
3659     // the default argument.
3660     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3661       if (!TTP->hasDefaultArgument())
3662         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3663                                      TemplateArgs);
3664 
3665       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3666                                                              Template,
3667                                                              TemplateLoc,
3668                                                              RAngleLoc,
3669                                                              TTP,
3670                                                              Converted);
3671       if (!ArgType)
3672         return true;
3673 
3674       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3675                                 ArgType);
3676     } else if (NonTypeTemplateParmDecl *NTTP
3677                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3678       if (!NTTP->hasDefaultArgument())
3679         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3680                                      TemplateArgs);
3681 
3682       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3683                                                               TemplateLoc,
3684                                                               RAngleLoc,
3685                                                               NTTP,
3686                                                               Converted);
3687       if (E.isInvalid())
3688         return true;
3689 
3690       Expr *Ex = E.takeAs<Expr>();
3691       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3692     } else {
3693       TemplateTemplateParmDecl *TempParm
3694         = cast<TemplateTemplateParmDecl>(*Param);
3695 
3696       if (!TempParm->hasDefaultArgument())
3697         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3698                                      TemplateArgs);
3699 
3700       NestedNameSpecifierLoc QualifierLoc;
3701       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3702                                                        TemplateLoc,
3703                                                        RAngleLoc,
3704                                                        TempParm,
3705                                                        Converted,
3706                                                        QualifierLoc);
3707       if (Name.isNull())
3708         return true;
3709 
3710       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3711                            TempParm->getDefaultArgument().getTemplateNameLoc());
3712     }
3713 
3714     // Introduce an instantiation record that describes where we are using
3715     // the default template argument.
3716     InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3717                                         *Param, Converted,
3718                                         SourceRange(TemplateLoc, RAngleLoc));
3719     if (Instantiating)
3720       return true;
3721 
3722     // Check the default template argument.
3723     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3724                               RAngleLoc, 0, Converted))
3725       return true;
3726 
3727     // Core issue 150 (assumed resolution): if this is a template template
3728     // parameter, keep track of the default template arguments from the
3729     // template definition.
3730     if (isTemplateTemplateParameter)
3731       TemplateArgs.addArgument(Arg);
3732 
3733     // Move to the next template parameter and argument.
3734     ++Param;
3735     ++ArgIdx;
3736   }
3737 
3738   // If we have any leftover arguments, then there were too many arguments.
3739   // Complain and fail.
3740   if (ArgIdx < NumArgs)
3741     return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3742 
3743   return false;
3744 }
3745 
3746 namespace {
3747   class UnnamedLocalNoLinkageFinder
3748     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3749   {
3750     Sema &S;
3751     SourceRange SR;
3752 
3753     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3754 
3755   public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3756     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3757 
Visit(QualType T)3758     bool Visit(QualType T) {
3759       return inherited::Visit(T.getTypePtr());
3760     }
3761 
3762 #define TYPE(Class, Parent) \
3763     bool Visit##Class##Type(const Class##Type *);
3764 #define ABSTRACT_TYPE(Class, Parent) \
3765     bool Visit##Class##Type(const Class##Type *) { return false; }
3766 #define NON_CANONICAL_TYPE(Class, Parent) \
3767     bool Visit##Class##Type(const Class##Type *) { return false; }
3768 #include "clang/AST/TypeNodes.def"
3769 
3770     bool VisitTagDecl(const TagDecl *Tag);
3771     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3772   };
3773 }
3774 
VisitBuiltinType(const BuiltinType *)3775 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3776   return false;
3777 }
3778 
VisitComplexType(const ComplexType * T)3779 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3780   return Visit(T->getElementType());
3781 }
3782 
VisitPointerType(const PointerType * T)3783 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3784   return Visit(T->getPointeeType());
3785 }
3786 
VisitBlockPointerType(const BlockPointerType * T)3787 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3788                                                     const BlockPointerType* T) {
3789   return Visit(T->getPointeeType());
3790 }
3791 
VisitLValueReferenceType(const LValueReferenceType * T)3792 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3793                                                 const LValueReferenceType* T) {
3794   return Visit(T->getPointeeType());
3795 }
3796 
VisitRValueReferenceType(const RValueReferenceType * T)3797 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3798                                                 const RValueReferenceType* T) {
3799   return Visit(T->getPointeeType());
3800 }
3801 
VisitMemberPointerType(const MemberPointerType * T)3802 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3803                                                   const MemberPointerType* T) {
3804   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3805 }
3806 
VisitConstantArrayType(const ConstantArrayType * T)3807 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3808                                                   const ConstantArrayType* T) {
3809   return Visit(T->getElementType());
3810 }
3811 
VisitIncompleteArrayType(const IncompleteArrayType * T)3812 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3813                                                  const IncompleteArrayType* T) {
3814   return Visit(T->getElementType());
3815 }
3816 
VisitVariableArrayType(const VariableArrayType * T)3817 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3818                                                    const VariableArrayType* T) {
3819   return Visit(T->getElementType());
3820 }
3821 
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3822 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3823                                             const DependentSizedArrayType* T) {
3824   return Visit(T->getElementType());
3825 }
3826 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3827 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3828                                          const DependentSizedExtVectorType* T) {
3829   return Visit(T->getElementType());
3830 }
3831 
VisitVectorType(const VectorType * T)3832 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3833   return Visit(T->getElementType());
3834 }
3835 
VisitExtVectorType(const ExtVectorType * T)3836 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3837   return Visit(T->getElementType());
3838 }
3839 
VisitFunctionProtoType(const FunctionProtoType * T)3840 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3841                                                   const FunctionProtoType* T) {
3842   for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3843                                          AEnd = T->arg_type_end();
3844        A != AEnd; ++A) {
3845     if (Visit(*A))
3846       return true;
3847   }
3848 
3849   return Visit(T->getResultType());
3850 }
3851 
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3852 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3853                                                const FunctionNoProtoType* T) {
3854   return Visit(T->getResultType());
3855 }
3856 
VisitUnresolvedUsingType(const UnresolvedUsingType *)3857 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3858                                                   const UnresolvedUsingType*) {
3859   return false;
3860 }
3861 
VisitTypeOfExprType(const TypeOfExprType *)3862 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3863   return false;
3864 }
3865 
VisitTypeOfType(const TypeOfType * T)3866 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3867   return Visit(T->getUnderlyingType());
3868 }
3869 
VisitDecltypeType(const DecltypeType *)3870 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3871   return false;
3872 }
3873 
VisitUnaryTransformType(const UnaryTransformType *)3874 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3875                                                     const UnaryTransformType*) {
3876   return false;
3877 }
3878 
VisitAutoType(const AutoType * T)3879 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3880   return Visit(T->getDeducedType());
3881 }
3882 
VisitRecordType(const RecordType * T)3883 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3884   return VisitTagDecl(T->getDecl());
3885 }
3886 
VisitEnumType(const EnumType * T)3887 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3888   return VisitTagDecl(T->getDecl());
3889 }
3890 
VisitTemplateTypeParmType(const TemplateTypeParmType *)3891 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3892                                                  const TemplateTypeParmType*) {
3893   return false;
3894 }
3895 
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)3896 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3897                                         const SubstTemplateTypeParmPackType *) {
3898   return false;
3899 }
3900 
VisitTemplateSpecializationType(const TemplateSpecializationType *)3901 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3902                                             const TemplateSpecializationType*) {
3903   return false;
3904 }
3905 
VisitInjectedClassNameType(const InjectedClassNameType * T)3906 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3907                                               const InjectedClassNameType* T) {
3908   return VisitTagDecl(T->getDecl());
3909 }
3910 
VisitDependentNameType(const DependentNameType * T)3911 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3912                                                    const DependentNameType* T) {
3913   return VisitNestedNameSpecifier(T->getQualifier());
3914 }
3915 
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)3916 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3917                                  const DependentTemplateSpecializationType* T) {
3918   return VisitNestedNameSpecifier(T->getQualifier());
3919 }
3920 
VisitPackExpansionType(const PackExpansionType * T)3921 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3922                                                    const PackExpansionType* T) {
3923   return Visit(T->getPattern());
3924 }
3925 
VisitObjCObjectType(const ObjCObjectType *)3926 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3927   return false;
3928 }
3929 
VisitObjCInterfaceType(const ObjCInterfaceType *)3930 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3931                                                    const ObjCInterfaceType *) {
3932   return false;
3933 }
3934 
VisitObjCObjectPointerType(const ObjCObjectPointerType *)3935 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3936                                                 const ObjCObjectPointerType *) {
3937   return false;
3938 }
3939 
VisitAtomicType(const AtomicType * T)3940 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3941   return Visit(T->getValueType());
3942 }
3943 
VisitTagDecl(const TagDecl * Tag)3944 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3945   if (Tag->getDeclContext()->isFunctionOrMethod()) {
3946     S.Diag(SR.getBegin(),
3947            S.getLangOpts().CPlusPlus11 ?
3948              diag::warn_cxx98_compat_template_arg_local_type :
3949              diag::ext_template_arg_local_type)
3950       << S.Context.getTypeDeclType(Tag) << SR;
3951     return true;
3952   }
3953 
3954   if (!Tag->hasNameForLinkage()) {
3955     S.Diag(SR.getBegin(),
3956            S.getLangOpts().CPlusPlus11 ?
3957              diag::warn_cxx98_compat_template_arg_unnamed_type :
3958              diag::ext_template_arg_unnamed_type) << SR;
3959     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3960     return true;
3961   }
3962 
3963   return false;
3964 }
3965 
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)3966 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3967                                                     NestedNameSpecifier *NNS) {
3968   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3969     return true;
3970 
3971   switch (NNS->getKind()) {
3972   case NestedNameSpecifier::Identifier:
3973   case NestedNameSpecifier::Namespace:
3974   case NestedNameSpecifier::NamespaceAlias:
3975   case NestedNameSpecifier::Global:
3976     return false;
3977 
3978   case NestedNameSpecifier::TypeSpec:
3979   case NestedNameSpecifier::TypeSpecWithTemplate:
3980     return Visit(QualType(NNS->getAsType(), 0));
3981   }
3982   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3983 }
3984 
3985 
3986 /// \brief Check a template argument against its corresponding
3987 /// template type parameter.
3988 ///
3989 /// This routine implements the semantics of C++ [temp.arg.type]. It
3990 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)3991 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3992                                  TypeSourceInfo *ArgInfo) {
3993   assert(ArgInfo && "invalid TypeSourceInfo");
3994   QualType Arg = ArgInfo->getType();
3995   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3996 
3997   if (Arg->isVariablyModifiedType()) {
3998     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3999   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4000     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4001   }
4002 
4003   // C++03 [temp.arg.type]p2:
4004   //   A local type, a type with no linkage, an unnamed type or a type
4005   //   compounded from any of these types shall not be used as a
4006   //   template-argument for a template type-parameter.
4007   //
4008   // C++11 allows these, and even in C++03 we allow them as an extension with
4009   // a warning.
4010   if (LangOpts.CPlusPlus11 ?
4011      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
4012                               SR.getBegin()) != DiagnosticsEngine::Ignored ||
4013       Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
4014                                SR.getBegin()) != DiagnosticsEngine::Ignored :
4015       Arg->hasUnnamedOrLocalType()) {
4016     UnnamedLocalNoLinkageFinder Finder(*this, SR);
4017     (void)Finder.Visit(Context.getCanonicalType(Arg));
4018   }
4019 
4020   return false;
4021 }
4022 
4023 enum NullPointerValueKind {
4024   NPV_NotNullPointer,
4025   NPV_NullPointer,
4026   NPV_Error
4027 };
4028 
4029 /// \brief Determine whether the given template argument is a null pointer
4030 /// value of the appropriate type.
4031 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4032 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4033                                    QualType ParamType, Expr *Arg) {
4034   if (Arg->isValueDependent() || Arg->isTypeDependent())
4035     return NPV_NotNullPointer;
4036 
4037   if (!S.getLangOpts().CPlusPlus11)
4038     return NPV_NotNullPointer;
4039 
4040   // Determine whether we have a constant expression.
4041   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4042   if (ArgRV.isInvalid())
4043     return NPV_Error;
4044   Arg = ArgRV.take();
4045 
4046   Expr::EvalResult EvalResult;
4047   SmallVector<PartialDiagnosticAt, 8> Notes;
4048   EvalResult.Diag = &Notes;
4049   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4050       EvalResult.HasSideEffects) {
4051     SourceLocation DiagLoc = Arg->getExprLoc();
4052 
4053     // If our only note is the usual "invalid subexpression" note, just point
4054     // the caret at its location rather than producing an essentially
4055     // redundant note.
4056     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4057         diag::note_invalid_subexpr_in_const_expr) {
4058       DiagLoc = Notes[0].first;
4059       Notes.clear();
4060     }
4061 
4062     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4063       << Arg->getType() << Arg->getSourceRange();
4064     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4065       S.Diag(Notes[I].first, Notes[I].second);
4066 
4067     S.Diag(Param->getLocation(), diag::note_template_param_here);
4068     return NPV_Error;
4069   }
4070 
4071   // C++11 [temp.arg.nontype]p1:
4072   //   - an address constant expression of type std::nullptr_t
4073   if (Arg->getType()->isNullPtrType())
4074     return NPV_NullPointer;
4075 
4076   //   - a constant expression that evaluates to a null pointer value (4.10); or
4077   //   - a constant expression that evaluates to a null member pointer value
4078   //     (4.11); or
4079   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4080       (EvalResult.Val.isMemberPointer() &&
4081        !EvalResult.Val.getMemberPointerDecl())) {
4082     // If our expression has an appropriate type, we've succeeded.
4083     bool ObjCLifetimeConversion;
4084     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4085         S.IsQualificationConversion(Arg->getType(), ParamType, false,
4086                                      ObjCLifetimeConversion))
4087       return NPV_NullPointer;
4088 
4089     // The types didn't match, but we know we got a null pointer; complain,
4090     // then recover as if the types were correct.
4091     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4092       << Arg->getType() << ParamType << Arg->getSourceRange();
4093     S.Diag(Param->getLocation(), diag::note_template_param_here);
4094     return NPV_NullPointer;
4095   }
4096 
4097   // If we don't have a null pointer value, but we do have a NULL pointer
4098   // constant, suggest a cast to the appropriate type.
4099   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4100     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4101     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4102       << ParamType
4103       << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4104       << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4105                                     ")");
4106     S.Diag(Param->getLocation(), diag::note_template_param_here);
4107     return NPV_NullPointer;
4108   }
4109 
4110   // FIXME: If we ever want to support general, address-constant expressions
4111   // as non-type template arguments, we should return the ExprResult here to
4112   // be interpreted by the caller.
4113   return NPV_NotNullPointer;
4114 }
4115 
4116 /// \brief Checks whether the given template argument is the address
4117 /// of an object or function according to C++ [temp.arg.nontype]p1.
4118 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4119 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4120                                                NonTypeTemplateParmDecl *Param,
4121                                                QualType ParamType,
4122                                                Expr *ArgIn,
4123                                                TemplateArgument &Converted) {
4124   bool Invalid = false;
4125   Expr *Arg = ArgIn;
4126   QualType ArgType = Arg->getType();
4127 
4128   // If our parameter has pointer type, check for a null template value.
4129   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4130     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4131     case NPV_NullPointer:
4132       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4133       Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4134       return false;
4135 
4136     case NPV_Error:
4137       return true;
4138 
4139     case NPV_NotNullPointer:
4140       break;
4141     }
4142   }
4143 
4144   // See through any implicit casts we added to fix the type.
4145   Arg = Arg->IgnoreImpCasts();
4146 
4147   // C++ [temp.arg.nontype]p1:
4148   //
4149   //   A template-argument for a non-type, non-template
4150   //   template-parameter shall be one of: [...]
4151   //
4152   //     -- the address of an object or function with external
4153   //        linkage, including function templates and function
4154   //        template-ids but excluding non-static class members,
4155   //        expressed as & id-expression where the & is optional if
4156   //        the name refers to a function or array, or if the
4157   //        corresponding template-parameter is a reference; or
4158 
4159   // In C++98/03 mode, give an extension warning on any extra parentheses.
4160   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4161   bool ExtraParens = false;
4162   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4163     if (!Invalid && !ExtraParens) {
4164       S.Diag(Arg->getLocStart(),
4165              S.getLangOpts().CPlusPlus11 ?
4166                diag::warn_cxx98_compat_template_arg_extra_parens :
4167                diag::ext_template_arg_extra_parens)
4168         << Arg->getSourceRange();
4169       ExtraParens = true;
4170     }
4171 
4172     Arg = Parens->getSubExpr();
4173   }
4174 
4175   while (SubstNonTypeTemplateParmExpr *subst =
4176            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4177     Arg = subst->getReplacement()->IgnoreImpCasts();
4178 
4179   bool AddressTaken = false;
4180   SourceLocation AddrOpLoc;
4181   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4182     if (UnOp->getOpcode() == UO_AddrOf) {
4183       Arg = UnOp->getSubExpr();
4184       AddressTaken = true;
4185       AddrOpLoc = UnOp->getOperatorLoc();
4186     }
4187   }
4188 
4189   if (isa<CXXUuidofExpr>(Arg)) {
4190     Converted = TemplateArgument(ArgIn);
4191     return false;
4192   }
4193 
4194   while (SubstNonTypeTemplateParmExpr *subst =
4195            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4196     Arg = subst->getReplacement()->IgnoreImpCasts();
4197 
4198   // Stop checking the precise nature of the argument if it is value dependent,
4199   // it should be checked when instantiated.
4200   if (Arg->isValueDependent()) {
4201     Converted = TemplateArgument(ArgIn);
4202     return false;
4203   }
4204 
4205   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4206   if (!DRE) {
4207     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4208     << Arg->getSourceRange();
4209     S.Diag(Param->getLocation(), diag::note_template_param_here);
4210     return true;
4211   }
4212 
4213   if (!isa<ValueDecl>(DRE->getDecl())) {
4214     S.Diag(Arg->getLocStart(),
4215            diag::err_template_arg_not_object_or_func_form)
4216       << Arg->getSourceRange();
4217     S.Diag(Param->getLocation(), diag::note_template_param_here);
4218     return true;
4219   }
4220 
4221   ValueDecl *Entity = DRE->getDecl();
4222 
4223   // Cannot refer to non-static data members
4224   if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
4225     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4226       << Field << Arg->getSourceRange();
4227     S.Diag(Param->getLocation(), diag::note_template_param_here);
4228     return true;
4229   }
4230 
4231   // Cannot refer to non-static member functions
4232   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4233     if (!Method->isStatic()) {
4234       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4235         << Method << Arg->getSourceRange();
4236       S.Diag(Param->getLocation(), diag::note_template_param_here);
4237       return true;
4238     }
4239   }
4240 
4241   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4242   VarDecl *Var = dyn_cast<VarDecl>(Entity);
4243 
4244   // A non-type template argument must refer to an object or function.
4245   if (!Func && !Var) {
4246     // We found something, but we don't know specifically what it is.
4247     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4248       << Arg->getSourceRange();
4249     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4250     return true;
4251   }
4252 
4253   // Address / reference template args must have external linkage in C++98.
4254   if (Entity->getFormalLinkage() == InternalLinkage) {
4255     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4256              diag::warn_cxx98_compat_template_arg_object_internal :
4257              diag::ext_template_arg_object_internal)
4258       << !Func << Entity << Arg->getSourceRange();
4259     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4260       << !Func;
4261   } else if (!Entity->hasLinkage()) {
4262     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4263       << !Func << Entity << Arg->getSourceRange();
4264     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4265       << !Func;
4266     return true;
4267   }
4268 
4269   if (Func) {
4270     // If the template parameter has pointer type, the function decays.
4271     if (ParamType->isPointerType() && !AddressTaken)
4272       ArgType = S.Context.getPointerType(Func->getType());
4273     else if (AddressTaken && ParamType->isReferenceType()) {
4274       // If we originally had an address-of operator, but the
4275       // parameter has reference type, complain and (if things look
4276       // like they will work) drop the address-of operator.
4277       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4278                                             ParamType.getNonReferenceType())) {
4279         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4280           << ParamType;
4281         S.Diag(Param->getLocation(), diag::note_template_param_here);
4282         return true;
4283       }
4284 
4285       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4286         << ParamType
4287         << FixItHint::CreateRemoval(AddrOpLoc);
4288       S.Diag(Param->getLocation(), diag::note_template_param_here);
4289 
4290       ArgType = Func->getType();
4291     }
4292   } else {
4293     // A value of reference type is not an object.
4294     if (Var->getType()->isReferenceType()) {
4295       S.Diag(Arg->getLocStart(),
4296              diag::err_template_arg_reference_var)
4297         << Var->getType() << Arg->getSourceRange();
4298       S.Diag(Param->getLocation(), diag::note_template_param_here);
4299       return true;
4300     }
4301 
4302     // A template argument must have static storage duration.
4303     if (Var->getTLSKind()) {
4304       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4305         << Arg->getSourceRange();
4306       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4307       return true;
4308     }
4309 
4310     // If the template parameter has pointer type, we must have taken
4311     // the address of this object.
4312     if (ParamType->isReferenceType()) {
4313       if (AddressTaken) {
4314         // If we originally had an address-of operator, but the
4315         // parameter has reference type, complain and (if things look
4316         // like they will work) drop the address-of operator.
4317         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4318                                             ParamType.getNonReferenceType())) {
4319           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4320             << ParamType;
4321           S.Diag(Param->getLocation(), diag::note_template_param_here);
4322           return true;
4323         }
4324 
4325         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4326           << ParamType
4327           << FixItHint::CreateRemoval(AddrOpLoc);
4328         S.Diag(Param->getLocation(), diag::note_template_param_here);
4329 
4330         ArgType = Var->getType();
4331       }
4332     } else if (!AddressTaken && ParamType->isPointerType()) {
4333       if (Var->getType()->isArrayType()) {
4334         // Array-to-pointer decay.
4335         ArgType = S.Context.getArrayDecayedType(Var->getType());
4336       } else {
4337         // If the template parameter has pointer type but the address of
4338         // this object was not taken, complain and (possibly) recover by
4339         // taking the address of the entity.
4340         ArgType = S.Context.getPointerType(Var->getType());
4341         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4342           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4343             << ParamType;
4344           S.Diag(Param->getLocation(), diag::note_template_param_here);
4345           return true;
4346         }
4347 
4348         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4349           << ParamType
4350           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4351 
4352         S.Diag(Param->getLocation(), diag::note_template_param_here);
4353       }
4354     }
4355   }
4356 
4357   bool ObjCLifetimeConversion;
4358   if (ParamType->isPointerType() &&
4359       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4360       S.IsQualificationConversion(ArgType, ParamType, false,
4361                                   ObjCLifetimeConversion)) {
4362     // For pointer-to-object types, qualification conversions are
4363     // permitted.
4364   } else {
4365     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4366       if (!ParamRef->getPointeeType()->isFunctionType()) {
4367         // C++ [temp.arg.nontype]p5b3:
4368         //   For a non-type template-parameter of type reference to
4369         //   object, no conversions apply. The type referred to by the
4370         //   reference may be more cv-qualified than the (otherwise
4371         //   identical) type of the template- argument. The
4372         //   template-parameter is bound directly to the
4373         //   template-argument, which shall be an lvalue.
4374 
4375         // FIXME: Other qualifiers?
4376         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4377         unsigned ArgQuals = ArgType.getCVRQualifiers();
4378 
4379         if ((ParamQuals | ArgQuals) != ParamQuals) {
4380           S.Diag(Arg->getLocStart(),
4381                  diag::err_template_arg_ref_bind_ignores_quals)
4382             << ParamType << Arg->getType()
4383             << Arg->getSourceRange();
4384           S.Diag(Param->getLocation(), diag::note_template_param_here);
4385           return true;
4386         }
4387       }
4388     }
4389 
4390     // At this point, the template argument refers to an object or
4391     // function with external linkage. We now need to check whether the
4392     // argument and parameter types are compatible.
4393     if (!S.Context.hasSameUnqualifiedType(ArgType,
4394                                           ParamType.getNonReferenceType())) {
4395       // We can't perform this conversion or binding.
4396       if (ParamType->isReferenceType())
4397         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4398           << ParamType << ArgIn->getType() << Arg->getSourceRange();
4399       else
4400         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4401           << ArgIn->getType() << ParamType << Arg->getSourceRange();
4402       S.Diag(Param->getLocation(), diag::note_template_param_here);
4403       return true;
4404     }
4405   }
4406 
4407   // Create the template argument.
4408   Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4409                                ParamType->isReferenceType());
4410   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4411   return false;
4412 }
4413 
4414 /// \brief Checks whether the given template argument is a pointer to
4415 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4416 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4417                                                  NonTypeTemplateParmDecl *Param,
4418                                                  QualType ParamType,
4419                                                  Expr *&ResultArg,
4420                                                  TemplateArgument &Converted) {
4421   bool Invalid = false;
4422 
4423   // Check for a null pointer value.
4424   Expr *Arg = ResultArg;
4425   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4426   case NPV_Error:
4427     return true;
4428   case NPV_NullPointer:
4429     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4430     Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4431     return false;
4432   case NPV_NotNullPointer:
4433     break;
4434   }
4435 
4436   bool ObjCLifetimeConversion;
4437   if (S.IsQualificationConversion(Arg->getType(),
4438                                   ParamType.getNonReferenceType(),
4439                                   false, ObjCLifetimeConversion)) {
4440     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4441                               Arg->getValueKind()).take();
4442     ResultArg = Arg;
4443   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4444                 ParamType.getNonReferenceType())) {
4445     // We can't perform this conversion.
4446     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4447       << Arg->getType() << ParamType << Arg->getSourceRange();
4448     S.Diag(Param->getLocation(), diag::note_template_param_here);
4449     return true;
4450   }
4451 
4452   // See through any implicit casts we added to fix the type.
4453   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4454     Arg = Cast->getSubExpr();
4455 
4456   // C++ [temp.arg.nontype]p1:
4457   //
4458   //   A template-argument for a non-type, non-template
4459   //   template-parameter shall be one of: [...]
4460   //
4461   //     -- a pointer to member expressed as described in 5.3.1.
4462   DeclRefExpr *DRE = 0;
4463 
4464   // In C++98/03 mode, give an extension warning on any extra parentheses.
4465   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4466   bool ExtraParens = false;
4467   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4468     if (!Invalid && !ExtraParens) {
4469       S.Diag(Arg->getLocStart(),
4470              S.getLangOpts().CPlusPlus11 ?
4471                diag::warn_cxx98_compat_template_arg_extra_parens :
4472                diag::ext_template_arg_extra_parens)
4473         << Arg->getSourceRange();
4474       ExtraParens = true;
4475     }
4476 
4477     Arg = Parens->getSubExpr();
4478   }
4479 
4480   while (SubstNonTypeTemplateParmExpr *subst =
4481            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4482     Arg = subst->getReplacement()->IgnoreImpCasts();
4483 
4484   // A pointer-to-member constant written &Class::member.
4485   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4486     if (UnOp->getOpcode() == UO_AddrOf) {
4487       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4488       if (DRE && !DRE->getQualifier())
4489         DRE = 0;
4490     }
4491   }
4492   // A constant of pointer-to-member type.
4493   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4494     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4495       if (VD->getType()->isMemberPointerType()) {
4496         if (isa<NonTypeTemplateParmDecl>(VD) ||
4497             (isa<VarDecl>(VD) &&
4498              S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4499           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4500             Converted = TemplateArgument(Arg);
4501           } else {
4502             VD = cast<ValueDecl>(VD->getCanonicalDecl());
4503             Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4504           }
4505           return Invalid;
4506         }
4507       }
4508     }
4509 
4510     DRE = 0;
4511   }
4512 
4513   if (!DRE)
4514     return S.Diag(Arg->getLocStart(),
4515                   diag::err_template_arg_not_pointer_to_member_form)
4516       << Arg->getSourceRange();
4517 
4518   if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4519     assert((isa<FieldDecl>(DRE->getDecl()) ||
4520             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4521            "Only non-static member pointers can make it here");
4522 
4523     // Okay: this is the address of a non-static member, and therefore
4524     // a member pointer constant.
4525     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4526       Converted = TemplateArgument(Arg);
4527     } else {
4528       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4529       Converted = TemplateArgument(D, /*isReferenceParam*/false);
4530     }
4531     return Invalid;
4532   }
4533 
4534   // We found something else, but we don't know specifically what it is.
4535   S.Diag(Arg->getLocStart(),
4536          diag::err_template_arg_not_pointer_to_member_form)
4537     << Arg->getSourceRange();
4538   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4539   return true;
4540 }
4541 
4542 /// \brief Check a template argument against its corresponding
4543 /// non-type template parameter.
4544 ///
4545 /// This routine implements the semantics of C++ [temp.arg.nontype].
4546 /// If an error occurred, it returns ExprError(); otherwise, it
4547 /// returns the converted template argument. \p
4548 /// InstantiatedParamType is the type of the non-type template
4549 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4550 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4551                                        QualType InstantiatedParamType, Expr *Arg,
4552                                        TemplateArgument &Converted,
4553                                        CheckTemplateArgumentKind CTAK) {
4554   SourceLocation StartLoc = Arg->getLocStart();
4555 
4556   // If either the parameter has a dependent type or the argument is
4557   // type-dependent, there's nothing we can check now.
4558   if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4559     // FIXME: Produce a cloned, canonical expression?
4560     Converted = TemplateArgument(Arg);
4561     return Owned(Arg);
4562   }
4563 
4564   // C++ [temp.arg.nontype]p5:
4565   //   The following conversions are performed on each expression used
4566   //   as a non-type template-argument. If a non-type
4567   //   template-argument cannot be converted to the type of the
4568   //   corresponding template-parameter then the program is
4569   //   ill-formed.
4570   QualType ParamType = InstantiatedParamType;
4571   if (ParamType->isIntegralOrEnumerationType()) {
4572     // C++11:
4573     //   -- for a non-type template-parameter of integral or
4574     //      enumeration type, conversions permitted in a converted
4575     //      constant expression are applied.
4576     //
4577     // C++98:
4578     //   -- for a non-type template-parameter of integral or
4579     //      enumeration type, integral promotions (4.5) and integral
4580     //      conversions (4.7) are applied.
4581 
4582     if (CTAK == CTAK_Deduced &&
4583         !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4584       // C++ [temp.deduct.type]p17:
4585       //   If, in the declaration of a function template with a non-type
4586       //   template-parameter, the non-type template-parameter is used
4587       //   in an expression in the function parameter-list and, if the
4588       //   corresponding template-argument is deduced, the
4589       //   template-argument type shall match the type of the
4590       //   template-parameter exactly, except that a template-argument
4591       //   deduced from an array bound may be of any integral type.
4592       Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4593         << Arg->getType().getUnqualifiedType()
4594         << ParamType.getUnqualifiedType();
4595       Diag(Param->getLocation(), diag::note_template_param_here);
4596       return ExprError();
4597     }
4598 
4599     if (getLangOpts().CPlusPlus11) {
4600       // We can't check arbitrary value-dependent arguments.
4601       // FIXME: If there's no viable conversion to the template parameter type,
4602       // we should be able to diagnose that prior to instantiation.
4603       if (Arg->isValueDependent()) {
4604         Converted = TemplateArgument(Arg);
4605         return Owned(Arg);
4606       }
4607 
4608       // C++ [temp.arg.nontype]p1:
4609       //   A template-argument for a non-type, non-template template-parameter
4610       //   shall be one of:
4611       //
4612       //     -- for a non-type template-parameter of integral or enumeration
4613       //        type, a converted constant expression of the type of the
4614       //        template-parameter; or
4615       llvm::APSInt Value;
4616       ExprResult ArgResult =
4617         CheckConvertedConstantExpression(Arg, ParamType, Value,
4618                                          CCEK_TemplateArg);
4619       if (ArgResult.isInvalid())
4620         return ExprError();
4621 
4622       // Widen the argument value to sizeof(parameter type). This is almost
4623       // always a no-op, except when the parameter type is bool. In
4624       // that case, this may extend the argument from 1 bit to 8 bits.
4625       QualType IntegerType = ParamType;
4626       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4627         IntegerType = Enum->getDecl()->getIntegerType();
4628       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4629 
4630       Converted = TemplateArgument(Context, Value,
4631                                    Context.getCanonicalType(ParamType));
4632       return ArgResult;
4633     }
4634 
4635     ExprResult ArgResult = DefaultLvalueConversion(Arg);
4636     if (ArgResult.isInvalid())
4637       return ExprError();
4638     Arg = ArgResult.take();
4639 
4640     QualType ArgType = Arg->getType();
4641 
4642     // C++ [temp.arg.nontype]p1:
4643     //   A template-argument for a non-type, non-template
4644     //   template-parameter shall be one of:
4645     //
4646     //     -- an integral constant-expression of integral or enumeration
4647     //        type; or
4648     //     -- the name of a non-type template-parameter; or
4649     SourceLocation NonConstantLoc;
4650     llvm::APSInt Value;
4651     if (!ArgType->isIntegralOrEnumerationType()) {
4652       Diag(Arg->getLocStart(),
4653            diag::err_template_arg_not_integral_or_enumeral)
4654         << ArgType << Arg->getSourceRange();
4655       Diag(Param->getLocation(), diag::note_template_param_here);
4656       return ExprError();
4657     } else if (!Arg->isValueDependent()) {
4658       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4659         QualType T;
4660 
4661       public:
4662         TmplArgICEDiagnoser(QualType T) : T(T) { }
4663 
4664         virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4665                                     SourceRange SR) {
4666           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4667         }
4668       } Diagnoser(ArgType);
4669 
4670       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4671                                             false).take();
4672       if (!Arg)
4673         return ExprError();
4674     }
4675 
4676     // From here on out, all we care about are the unqualified forms
4677     // of the parameter and argument types.
4678     ParamType = ParamType.getUnqualifiedType();
4679     ArgType = ArgType.getUnqualifiedType();
4680 
4681     // Try to convert the argument to the parameter's type.
4682     if (Context.hasSameType(ParamType, ArgType)) {
4683       // Okay: no conversion necessary
4684     } else if (ParamType->isBooleanType()) {
4685       // This is an integral-to-boolean conversion.
4686       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4687     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4688                !ParamType->isEnumeralType()) {
4689       // This is an integral promotion or conversion.
4690       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4691     } else {
4692       // We can't perform this conversion.
4693       Diag(Arg->getLocStart(),
4694            diag::err_template_arg_not_convertible)
4695         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4696       Diag(Param->getLocation(), diag::note_template_param_here);
4697       return ExprError();
4698     }
4699 
4700     // Add the value of this argument to the list of converted
4701     // arguments. We use the bitwidth and signedness of the template
4702     // parameter.
4703     if (Arg->isValueDependent()) {
4704       // The argument is value-dependent. Create a new
4705       // TemplateArgument with the converted expression.
4706       Converted = TemplateArgument(Arg);
4707       return Owned(Arg);
4708     }
4709 
4710     QualType IntegerType = Context.getCanonicalType(ParamType);
4711     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4712       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4713 
4714     if (ParamType->isBooleanType()) {
4715       // Value must be zero or one.
4716       Value = Value != 0;
4717       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4718       if (Value.getBitWidth() != AllowedBits)
4719         Value = Value.extOrTrunc(AllowedBits);
4720       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4721     } else {
4722       llvm::APSInt OldValue = Value;
4723 
4724       // Coerce the template argument's value to the value it will have
4725       // based on the template parameter's type.
4726       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4727       if (Value.getBitWidth() != AllowedBits)
4728         Value = Value.extOrTrunc(AllowedBits);
4729       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4730 
4731       // Complain if an unsigned parameter received a negative value.
4732       if (IntegerType->isUnsignedIntegerOrEnumerationType()
4733                && (OldValue.isSigned() && OldValue.isNegative())) {
4734         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4735           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4736           << Arg->getSourceRange();
4737         Diag(Param->getLocation(), diag::note_template_param_here);
4738       }
4739 
4740       // Complain if we overflowed the template parameter's type.
4741       unsigned RequiredBits;
4742       if (IntegerType->isUnsignedIntegerOrEnumerationType())
4743         RequiredBits = OldValue.getActiveBits();
4744       else if (OldValue.isUnsigned())
4745         RequiredBits = OldValue.getActiveBits() + 1;
4746       else
4747         RequiredBits = OldValue.getMinSignedBits();
4748       if (RequiredBits > AllowedBits) {
4749         Diag(Arg->getLocStart(),
4750              diag::warn_template_arg_too_large)
4751           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4752           << Arg->getSourceRange();
4753         Diag(Param->getLocation(), diag::note_template_param_here);
4754       }
4755     }
4756 
4757     Converted = TemplateArgument(Context, Value,
4758                                  ParamType->isEnumeralType()
4759                                    ? Context.getCanonicalType(ParamType)
4760                                    : IntegerType);
4761     return Owned(Arg);
4762   }
4763 
4764   QualType ArgType = Arg->getType();
4765   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4766 
4767   // Handle pointer-to-function, reference-to-function, and
4768   // pointer-to-member-function all in (roughly) the same way.
4769   if (// -- For a non-type template-parameter of type pointer to
4770       //    function, only the function-to-pointer conversion (4.3) is
4771       //    applied. If the template-argument represents a set of
4772       //    overloaded functions (or a pointer to such), the matching
4773       //    function is selected from the set (13.4).
4774       (ParamType->isPointerType() &&
4775        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4776       // -- For a non-type template-parameter of type reference to
4777       //    function, no conversions apply. If the template-argument
4778       //    represents a set of overloaded functions, the matching
4779       //    function is selected from the set (13.4).
4780       (ParamType->isReferenceType() &&
4781        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4782       // -- For a non-type template-parameter of type pointer to
4783       //    member function, no conversions apply. If the
4784       //    template-argument represents a set of overloaded member
4785       //    functions, the matching member function is selected from
4786       //    the set (13.4).
4787       (ParamType->isMemberPointerType() &&
4788        ParamType->getAs<MemberPointerType>()->getPointeeType()
4789          ->isFunctionType())) {
4790 
4791     if (Arg->getType() == Context.OverloadTy) {
4792       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4793                                                                 true,
4794                                                                 FoundResult)) {
4795         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4796           return ExprError();
4797 
4798         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4799         ArgType = Arg->getType();
4800       } else
4801         return ExprError();
4802     }
4803 
4804     if (!ParamType->isMemberPointerType()) {
4805       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4806                                                          ParamType,
4807                                                          Arg, Converted))
4808         return ExprError();
4809       return Owned(Arg);
4810     }
4811 
4812     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4813                                              Converted))
4814       return ExprError();
4815     return Owned(Arg);
4816   }
4817 
4818   if (ParamType->isPointerType()) {
4819     //   -- for a non-type template-parameter of type pointer to
4820     //      object, qualification conversions (4.4) and the
4821     //      array-to-pointer conversion (4.2) are applied.
4822     // C++0x also allows a value of std::nullptr_t.
4823     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4824            "Only object pointers allowed here");
4825 
4826     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4827                                                        ParamType,
4828                                                        Arg, Converted))
4829       return ExprError();
4830     return Owned(Arg);
4831   }
4832 
4833   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4834     //   -- For a non-type template-parameter of type reference to
4835     //      object, no conversions apply. The type referred to by the
4836     //      reference may be more cv-qualified than the (otherwise
4837     //      identical) type of the template-argument. The
4838     //      template-parameter is bound directly to the
4839     //      template-argument, which must be an lvalue.
4840     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4841            "Only object references allowed here");
4842 
4843     if (Arg->getType() == Context.OverloadTy) {
4844       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4845                                                  ParamRefType->getPointeeType(),
4846                                                                 true,
4847                                                                 FoundResult)) {
4848         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4849           return ExprError();
4850 
4851         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4852         ArgType = Arg->getType();
4853       } else
4854         return ExprError();
4855     }
4856 
4857     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4858                                                        ParamType,
4859                                                        Arg, Converted))
4860       return ExprError();
4861     return Owned(Arg);
4862   }
4863 
4864   // Deal with parameters of type std::nullptr_t.
4865   if (ParamType->isNullPtrType()) {
4866     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4867       Converted = TemplateArgument(Arg);
4868       return Owned(Arg);
4869     }
4870 
4871     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4872     case NPV_NotNullPointer:
4873       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4874         << Arg->getType() << ParamType;
4875       Diag(Param->getLocation(), diag::note_template_param_here);
4876       return ExprError();
4877 
4878     case NPV_Error:
4879       return ExprError();
4880 
4881     case NPV_NullPointer:
4882       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4883       Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4884       return Owned(Arg);
4885     }
4886   }
4887 
4888   //     -- For a non-type template-parameter of type pointer to data
4889   //        member, qualification conversions (4.4) are applied.
4890   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4891 
4892   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4893                                            Converted))
4894     return ExprError();
4895   return Owned(Arg);
4896 }
4897 
4898 /// \brief Check a template argument against its corresponding
4899 /// template template parameter.
4900 ///
4901 /// This routine implements the semantics of C++ [temp.arg.template].
4902 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,const TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)4903 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4904                                  const TemplateArgumentLoc &Arg,
4905                                  unsigned ArgumentPackIndex) {
4906   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
4907   TemplateDecl *Template = Name.getAsTemplateDecl();
4908   if (!Template) {
4909     // Any dependent template name is fine.
4910     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4911     return false;
4912   }
4913 
4914   // C++0x [temp.arg.template]p1:
4915   //   A template-argument for a template template-parameter shall be
4916   //   the name of a class template or an alias template, expressed as an
4917   //   id-expression. When the template-argument names a class template, only
4918   //   primary class templates are considered when matching the
4919   //   template template argument with the corresponding parameter;
4920   //   partial specializations are not considered even if their
4921   //   parameter lists match that of the template template parameter.
4922   //
4923   // Note that we also allow template template parameters here, which
4924   // will happen when we are dealing with, e.g., class template
4925   // partial specializations.
4926   if (!isa<ClassTemplateDecl>(Template) &&
4927       !isa<TemplateTemplateParmDecl>(Template) &&
4928       !isa<TypeAliasTemplateDecl>(Template)) {
4929     assert(isa<FunctionTemplateDecl>(Template) &&
4930            "Only function templates are possible here");
4931     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4932     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4933       << Template;
4934   }
4935 
4936   TemplateParameterList *Params = Param->getTemplateParameters();
4937   if (Param->isExpandedParameterPack())
4938     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4939 
4940   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4941                                          Params,
4942                                          true,
4943                                          TPL_TemplateTemplateArgumentMatch,
4944                                          Arg.getLocation());
4945 }
4946 
4947 /// \brief Given a non-type template argument that refers to a
4948 /// declaration and the type of its corresponding non-type template
4949 /// parameter, produce an expression that properly refers to that
4950 /// declaration.
4951 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)4952 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4953                                               QualType ParamType,
4954                                               SourceLocation Loc) {
4955   // C++ [temp.param]p8:
4956   //
4957   //   A non-type template-parameter of type "array of T" or
4958   //   "function returning T" is adjusted to be of type "pointer to
4959   //   T" or "pointer to function returning T", respectively.
4960   if (ParamType->isArrayType())
4961     ParamType = Context.getArrayDecayedType(ParamType);
4962   else if (ParamType->isFunctionType())
4963     ParamType = Context.getPointerType(ParamType);
4964 
4965   // For a NULL non-type template argument, return nullptr casted to the
4966   // parameter's type.
4967   if (Arg.getKind() == TemplateArgument::NullPtr) {
4968     return ImpCastExprToType(
4969              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4970                              ParamType,
4971                              ParamType->getAs<MemberPointerType>()
4972                                ? CK_NullToMemberPointer
4973                                : CK_NullToPointer);
4974   }
4975   assert(Arg.getKind() == TemplateArgument::Declaration &&
4976          "Only declaration template arguments permitted here");
4977 
4978   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4979 
4980   if (VD->getDeclContext()->isRecord() &&
4981       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4982     // If the value is a class member, we might have a pointer-to-member.
4983     // Determine whether the non-type template template parameter is of
4984     // pointer-to-member type. If so, we need to build an appropriate
4985     // expression for a pointer-to-member, since a "normal" DeclRefExpr
4986     // would refer to the member itself.
4987     if (ParamType->isMemberPointerType()) {
4988       QualType ClassType
4989         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4990       NestedNameSpecifier *Qualifier
4991         = NestedNameSpecifier::Create(Context, 0, false,
4992                                       ClassType.getTypePtr());
4993       CXXScopeSpec SS;
4994       SS.MakeTrivial(Context, Qualifier, Loc);
4995 
4996       // The actual value-ness of this is unimportant, but for
4997       // internal consistency's sake, references to instance methods
4998       // are r-values.
4999       ExprValueKind VK = VK_LValue;
5000       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5001         VK = VK_RValue;
5002 
5003       ExprResult RefExpr = BuildDeclRefExpr(VD,
5004                                             VD->getType().getNonReferenceType(),
5005                                             VK,
5006                                             Loc,
5007                                             &SS);
5008       if (RefExpr.isInvalid())
5009         return ExprError();
5010 
5011       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5012 
5013       // We might need to perform a trailing qualification conversion, since
5014       // the element type on the parameter could be more qualified than the
5015       // element type in the expression we constructed.
5016       bool ObjCLifetimeConversion;
5017       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5018                                     ParamType.getUnqualifiedType(), false,
5019                                     ObjCLifetimeConversion))
5020         RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5021 
5022       assert(!RefExpr.isInvalid() &&
5023              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5024                                  ParamType.getUnqualifiedType()));
5025       return RefExpr;
5026     }
5027   }
5028 
5029   QualType T = VD->getType().getNonReferenceType();
5030 
5031   if (ParamType->isPointerType()) {
5032     // When the non-type template parameter is a pointer, take the
5033     // address of the declaration.
5034     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5035     if (RefExpr.isInvalid())
5036       return ExprError();
5037 
5038     if (T->isFunctionType() || T->isArrayType()) {
5039       // Decay functions and arrays.
5040       RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5041       if (RefExpr.isInvalid())
5042         return ExprError();
5043 
5044       return RefExpr;
5045     }
5046 
5047     // Take the address of everything else
5048     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5049   }
5050 
5051   ExprValueKind VK = VK_RValue;
5052 
5053   // If the non-type template parameter has reference type, qualify the
5054   // resulting declaration reference with the extra qualifiers on the
5055   // type that the reference refers to.
5056   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5057     VK = VK_LValue;
5058     T = Context.getQualifiedType(T,
5059                               TargetRef->getPointeeType().getQualifiers());
5060   } else if (isa<FunctionDecl>(VD)) {
5061     // References to functions are always lvalues.
5062     VK = VK_LValue;
5063   }
5064 
5065   return BuildDeclRefExpr(VD, T, VK, Loc);
5066 }
5067 
5068 /// \brief Construct a new expression that refers to the given
5069 /// integral template argument with the given source-location
5070 /// information.
5071 ///
5072 /// This routine takes care of the mapping from an integral template
5073 /// argument (which may have any integral type) to the appropriate
5074 /// literal value.
5075 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5076 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5077                                                   SourceLocation Loc) {
5078   assert(Arg.getKind() == TemplateArgument::Integral &&
5079          "Operation is only valid for integral template arguments");
5080   QualType OrigT = Arg.getIntegralType();
5081 
5082   // If this is an enum type that we're instantiating, we need to use an integer
5083   // type the same size as the enumerator.  We don't want to build an
5084   // IntegerLiteral with enum type.  The integer type of an enum type can be of
5085   // any integral type with C++11 enum classes, make sure we create the right
5086   // type of literal for it.
5087   QualType T = OrigT;
5088   if (const EnumType *ET = OrigT->getAs<EnumType>())
5089     T = ET->getDecl()->getIntegerType();
5090 
5091   Expr *E;
5092   if (T->isAnyCharacterType()) {
5093     CharacterLiteral::CharacterKind Kind;
5094     if (T->isWideCharType())
5095       Kind = CharacterLiteral::Wide;
5096     else if (T->isChar16Type())
5097       Kind = CharacterLiteral::UTF16;
5098     else if (T->isChar32Type())
5099       Kind = CharacterLiteral::UTF32;
5100     else
5101       Kind = CharacterLiteral::Ascii;
5102 
5103     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5104                                        Kind, T, Loc);
5105   } else if (T->isBooleanType()) {
5106     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5107                                          T, Loc);
5108   } else if (T->isNullPtrType()) {
5109     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5110   } else {
5111     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5112   }
5113 
5114   if (OrigT->isEnumeralType()) {
5115     // FIXME: This is a hack. We need a better way to handle substituted
5116     // non-type template parameters.
5117     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5118                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
5119                                Loc, Loc);
5120   }
5121 
5122   return Owned(E);
5123 }
5124 
5125 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5126 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5127                                        bool Complain,
5128                                      Sema::TemplateParameterListEqualKind Kind,
5129                                        SourceLocation TemplateArgLoc) {
5130   // Check the actual kind (type, non-type, template).
5131   if (Old->getKind() != New->getKind()) {
5132     if (Complain) {
5133       unsigned NextDiag = diag::err_template_param_different_kind;
5134       if (TemplateArgLoc.isValid()) {
5135         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5136         NextDiag = diag::note_template_param_different_kind;
5137       }
5138       S.Diag(New->getLocation(), NextDiag)
5139         << (Kind != Sema::TPL_TemplateMatch);
5140       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5141         << (Kind != Sema::TPL_TemplateMatch);
5142     }
5143 
5144     return false;
5145   }
5146 
5147   // Check that both are parameter packs are neither are parameter packs.
5148   // However, if we are matching a template template argument to a
5149   // template template parameter, the template template parameter can have
5150   // a parameter pack where the template template argument does not.
5151   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5152       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5153         Old->isTemplateParameterPack())) {
5154     if (Complain) {
5155       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5156       if (TemplateArgLoc.isValid()) {
5157         S.Diag(TemplateArgLoc,
5158              diag::err_template_arg_template_params_mismatch);
5159         NextDiag = diag::note_template_parameter_pack_non_pack;
5160       }
5161 
5162       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5163                       : isa<NonTypeTemplateParmDecl>(New)? 1
5164                       : 2;
5165       S.Diag(New->getLocation(), NextDiag)
5166         << ParamKind << New->isParameterPack();
5167       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5168         << ParamKind << Old->isParameterPack();
5169     }
5170 
5171     return false;
5172   }
5173 
5174   // For non-type template parameters, check the type of the parameter.
5175   if (NonTypeTemplateParmDecl *OldNTTP
5176                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5177     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5178 
5179     // If we are matching a template template argument to a template
5180     // template parameter and one of the non-type template parameter types
5181     // is dependent, then we must wait until template instantiation time
5182     // to actually compare the arguments.
5183     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5184         (OldNTTP->getType()->isDependentType() ||
5185          NewNTTP->getType()->isDependentType()))
5186       return true;
5187 
5188     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5189       if (Complain) {
5190         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5191         if (TemplateArgLoc.isValid()) {
5192           S.Diag(TemplateArgLoc,
5193                  diag::err_template_arg_template_params_mismatch);
5194           NextDiag = diag::note_template_nontype_parm_different_type;
5195         }
5196         S.Diag(NewNTTP->getLocation(), NextDiag)
5197           << NewNTTP->getType()
5198           << (Kind != Sema::TPL_TemplateMatch);
5199         S.Diag(OldNTTP->getLocation(),
5200                diag::note_template_nontype_parm_prev_declaration)
5201           << OldNTTP->getType();
5202       }
5203 
5204       return false;
5205     }
5206 
5207     return true;
5208   }
5209 
5210   // For template template parameters, check the template parameter types.
5211   // The template parameter lists of template template
5212   // parameters must agree.
5213   if (TemplateTemplateParmDecl *OldTTP
5214                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5215     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5216     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5217                                             OldTTP->getTemplateParameters(),
5218                                             Complain,
5219                                         (Kind == Sema::TPL_TemplateMatch
5220                                            ? Sema::TPL_TemplateTemplateParmMatch
5221                                            : Kind),
5222                                             TemplateArgLoc);
5223   }
5224 
5225   return true;
5226 }
5227 
5228 /// \brief Diagnose a known arity mismatch when comparing template argument
5229 /// lists.
5230 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5231 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5232                                                 TemplateParameterList *New,
5233                                                 TemplateParameterList *Old,
5234                                       Sema::TemplateParameterListEqualKind Kind,
5235                                                 SourceLocation TemplateArgLoc) {
5236   unsigned NextDiag = diag::err_template_param_list_different_arity;
5237   if (TemplateArgLoc.isValid()) {
5238     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5239     NextDiag = diag::note_template_param_list_different_arity;
5240   }
5241   S.Diag(New->getTemplateLoc(), NextDiag)
5242     << (New->size() > Old->size())
5243     << (Kind != Sema::TPL_TemplateMatch)
5244     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5245   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5246     << (Kind != Sema::TPL_TemplateMatch)
5247     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5248 }
5249 
5250 /// \brief Determine whether the given template parameter lists are
5251 /// equivalent.
5252 ///
5253 /// \param New  The new template parameter list, typically written in the
5254 /// source code as part of a new template declaration.
5255 ///
5256 /// \param Old  The old template parameter list, typically found via
5257 /// name lookup of the template declared with this template parameter
5258 /// list.
5259 ///
5260 /// \param Complain  If true, this routine will produce a diagnostic if
5261 /// the template parameter lists are not equivalent.
5262 ///
5263 /// \param Kind describes how we are to match the template parameter lists.
5264 ///
5265 /// \param TemplateArgLoc If this source location is valid, then we
5266 /// are actually checking the template parameter list of a template
5267 /// argument (New) against the template parameter list of its
5268 /// corresponding template template parameter (Old). We produce
5269 /// slightly different diagnostics in this scenario.
5270 ///
5271 /// \returns True if the template parameter lists are equal, false
5272 /// otherwise.
5273 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5274 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5275                                      TemplateParameterList *Old,
5276                                      bool Complain,
5277                                      TemplateParameterListEqualKind Kind,
5278                                      SourceLocation TemplateArgLoc) {
5279   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5280     if (Complain)
5281       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5282                                                  TemplateArgLoc);
5283 
5284     return false;
5285   }
5286 
5287   // C++0x [temp.arg.template]p3:
5288   //   A template-argument matches a template template-parameter (call it P)
5289   //   when each of the template parameters in the template-parameter-list of
5290   //   the template-argument's corresponding class template or alias template
5291   //   (call it A) matches the corresponding template parameter in the
5292   //   template-parameter-list of P. [...]
5293   TemplateParameterList::iterator NewParm = New->begin();
5294   TemplateParameterList::iterator NewParmEnd = New->end();
5295   for (TemplateParameterList::iterator OldParm = Old->begin(),
5296                                     OldParmEnd = Old->end();
5297        OldParm != OldParmEnd; ++OldParm) {
5298     if (Kind != TPL_TemplateTemplateArgumentMatch ||
5299         !(*OldParm)->isTemplateParameterPack()) {
5300       if (NewParm == NewParmEnd) {
5301         if (Complain)
5302           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5303                                                      TemplateArgLoc);
5304 
5305         return false;
5306       }
5307 
5308       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5309                                       Kind, TemplateArgLoc))
5310         return false;
5311 
5312       ++NewParm;
5313       continue;
5314     }
5315 
5316     // C++0x [temp.arg.template]p3:
5317     //   [...] When P's template- parameter-list contains a template parameter
5318     //   pack (14.5.3), the template parameter pack will match zero or more
5319     //   template parameters or template parameter packs in the
5320     //   template-parameter-list of A with the same type and form as the
5321     //   template parameter pack in P (ignoring whether those template
5322     //   parameters are template parameter packs).
5323     for (; NewParm != NewParmEnd; ++NewParm) {
5324       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5325                                       Kind, TemplateArgLoc))
5326         return false;
5327     }
5328   }
5329 
5330   // Make sure we exhausted all of the arguments.
5331   if (NewParm != NewParmEnd) {
5332     if (Complain)
5333       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5334                                                  TemplateArgLoc);
5335 
5336     return false;
5337   }
5338 
5339   return true;
5340 }
5341 
5342 /// \brief Check whether a template can be declared within this scope.
5343 ///
5344 /// If the template declaration is valid in this scope, returns
5345 /// false. Otherwise, issues a diagnostic and returns true.
5346 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5347 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5348   if (!S)
5349     return false;
5350 
5351   // Find the nearest enclosing declaration scope.
5352   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5353          (S->getFlags() & Scope::TemplateParamScope) != 0)
5354     S = S->getParent();
5355 
5356   // C++ [temp]p2:
5357   //   A template-declaration can appear only as a namespace scope or
5358   //   class scope declaration.
5359   DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
5360   if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5361       cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5362     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5363              << TemplateParams->getSourceRange();
5364 
5365   while (Ctx && isa<LinkageSpecDecl>(Ctx))
5366     Ctx = Ctx->getParent();
5367 
5368   if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
5369     return false;
5370 
5371   return Diag(TemplateParams->getTemplateLoc(),
5372               diag::err_template_outside_namespace_or_class_scope)
5373     << TemplateParams->getSourceRange();
5374 }
5375 
5376 /// \brief Determine what kind of template specialization the given declaration
5377 /// is.
getTemplateSpecializationKind(Decl * D)5378 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5379   if (!D)
5380     return TSK_Undeclared;
5381 
5382   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5383     return Record->getTemplateSpecializationKind();
5384   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5385     return Function->getTemplateSpecializationKind();
5386   if (VarDecl *Var = dyn_cast<VarDecl>(D))
5387     return Var->getTemplateSpecializationKind();
5388 
5389   return TSK_Undeclared;
5390 }
5391 
5392 /// \brief Check whether a specialization is well-formed in the current
5393 /// context.
5394 ///
5395 /// This routine determines whether a template specialization can be declared
5396 /// in the current context (C++ [temp.expl.spec]p2).
5397 ///
5398 /// \param S the semantic analysis object for which this check is being
5399 /// performed.
5400 ///
5401 /// \param Specialized the entity being specialized or instantiated, which
5402 /// may be a kind of template (class template, function template, etc.) or
5403 /// a member of a class template (member function, static data member,
5404 /// member class).
5405 ///
5406 /// \param PrevDecl the previous declaration of this entity, if any.
5407 ///
5408 /// \param Loc the location of the explicit specialization or instantiation of
5409 /// this entity.
5410 ///
5411 /// \param IsPartialSpecialization whether this is a partial specialization of
5412 /// a class template.
5413 ///
5414 /// \returns true if there was an error that we cannot recover from, false
5415 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5416 static bool CheckTemplateSpecializationScope(Sema &S,
5417                                              NamedDecl *Specialized,
5418                                              NamedDecl *PrevDecl,
5419                                              SourceLocation Loc,
5420                                              bool IsPartialSpecialization) {
5421   // Keep these "kind" numbers in sync with the %select statements in the
5422   // various diagnostics emitted by this routine.
5423   int EntityKind = 0;
5424   if (isa<ClassTemplateDecl>(Specialized))
5425     EntityKind = IsPartialSpecialization? 1 : 0;
5426   else if (isa<VarTemplateDecl>(Specialized))
5427     EntityKind = IsPartialSpecialization ? 3 : 2;
5428   else if (isa<FunctionTemplateDecl>(Specialized))
5429     EntityKind = 4;
5430   else if (isa<CXXMethodDecl>(Specialized))
5431     EntityKind = 5;
5432   else if (isa<VarDecl>(Specialized))
5433     EntityKind = 6;
5434   else if (isa<RecordDecl>(Specialized))
5435     EntityKind = 7;
5436   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5437     EntityKind = 8;
5438   else {
5439     S.Diag(Loc, diag::err_template_spec_unknown_kind)
5440       << S.getLangOpts().CPlusPlus11;
5441     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5442     return true;
5443   }
5444 
5445   // C++ [temp.expl.spec]p2:
5446   //   An explicit specialization shall be declared in the namespace
5447   //   of which the template is a member, or, for member templates, in
5448   //   the namespace of which the enclosing class or enclosing class
5449   //   template is a member. An explicit specialization of a member
5450   //   function, member class or static data member of a class
5451   //   template shall be declared in the namespace of which the class
5452   //   template is a member. Such a declaration may also be a
5453   //   definition. If the declaration is not a definition, the
5454   //   specialization may be defined later in the name- space in which
5455   //   the explicit specialization was declared, or in a namespace
5456   //   that encloses the one in which the explicit specialization was
5457   //   declared.
5458   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5459     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5460       << Specialized;
5461     return true;
5462   }
5463 
5464   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5465     if (S.getLangOpts().MicrosoftExt) {
5466       // Do not warn for class scope explicit specialization during
5467       // instantiation, warning was already emitted during pattern
5468       // semantic analysis.
5469       if (!S.ActiveTemplateInstantiations.size())
5470         S.Diag(Loc, diag::ext_function_specialization_in_class)
5471           << Specialized;
5472     } else {
5473       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5474         << Specialized;
5475       return true;
5476     }
5477   }
5478 
5479   if (S.CurContext->isRecord() &&
5480       !S.CurContext->Equals(Specialized->getDeclContext())) {
5481     // Make sure that we're specializing in the right record context.
5482     // Otherwise, things can go horribly wrong.
5483     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5484       << Specialized;
5485     return true;
5486   }
5487 
5488   // C++ [temp.class.spec]p6:
5489   //   A class template partial specialization may be declared or redeclared
5490   //   in any namespace scope in which its definition may be defined (14.5.1
5491   //   and 14.5.2).
5492   bool ComplainedAboutScope = false;
5493   DeclContext *SpecializedContext
5494     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5495   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5496   if ((!PrevDecl ||
5497        getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5498        getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5499     // C++ [temp.exp.spec]p2:
5500     //   An explicit specialization shall be declared in the namespace of which
5501     //   the template is a member, or, for member templates, in the namespace
5502     //   of which the enclosing class or enclosing class template is a member.
5503     //   An explicit specialization of a member function, member class or
5504     //   static data member of a class template shall be declared in the
5505     //   namespace of which the class template is a member.
5506     //
5507     // C++0x [temp.expl.spec]p2:
5508     //   An explicit specialization shall be declared in a namespace enclosing
5509     //   the specialized template.
5510     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5511       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5512       if (isa<TranslationUnitDecl>(SpecializedContext)) {
5513         assert(!IsCPlusPlus11Extension &&
5514                "DC encloses TU but isn't in enclosing namespace set");
5515         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5516           << EntityKind << Specialized;
5517       } else if (isa<NamespaceDecl>(SpecializedContext)) {
5518         int Diag;
5519         if (!IsCPlusPlus11Extension)
5520           Diag = diag::err_template_spec_decl_out_of_scope;
5521         else if (!S.getLangOpts().CPlusPlus11)
5522           Diag = diag::ext_template_spec_decl_out_of_scope;
5523         else
5524           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5525         S.Diag(Loc, Diag)
5526           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5527       }
5528 
5529       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5530       ComplainedAboutScope =
5531         !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5532     }
5533   }
5534 
5535   // Make sure that this redeclaration (or definition) occurs in an enclosing
5536   // namespace.
5537   // Note that HandleDeclarator() performs this check for explicit
5538   // specializations of function templates, static data members, and member
5539   // functions, so we skip the check here for those kinds of entities.
5540   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5541   // Should we refactor that check, so that it occurs later?
5542   if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5543       !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5544         isa<FunctionDecl>(Specialized))) {
5545     if (isa<TranslationUnitDecl>(SpecializedContext))
5546       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5547         << EntityKind << Specialized;
5548     else if (isa<NamespaceDecl>(SpecializedContext))
5549       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5550         << EntityKind << Specialized
5551         << cast<NamedDecl>(SpecializedContext);
5552 
5553     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5554   }
5555 
5556   // FIXME: check for specialization-after-instantiation errors and such.
5557 
5558   return false;
5559 }
5560 
5561 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5562 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs)5563 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5564     Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5565     unsigned NumArgs) {
5566   for (unsigned I = 0; I != NumArgs; ++I) {
5567     if (Args[I].getKind() == TemplateArgument::Pack) {
5568       if (CheckNonTypeTemplatePartialSpecializationArgs(
5569               S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5570         return true;
5571 
5572       continue;
5573     }
5574 
5575     if (Args[I].getKind() != TemplateArgument::Expression)
5576       continue;
5577 
5578     Expr *ArgExpr = Args[I].getAsExpr();
5579 
5580     // We can have a pack expansion of any of the bullets below.
5581     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5582       ArgExpr = Expansion->getPattern();
5583 
5584     // Strip off any implicit casts we added as part of type checking.
5585     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5586       ArgExpr = ICE->getSubExpr();
5587 
5588     // C++ [temp.class.spec]p8:
5589     //   A non-type argument is non-specialized if it is the name of a
5590     //   non-type parameter. All other non-type arguments are
5591     //   specialized.
5592     //
5593     // Below, we check the two conditions that only apply to
5594     // specialized non-type arguments, so skip any non-specialized
5595     // arguments.
5596     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5597       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5598         continue;
5599 
5600     // C++ [temp.class.spec]p9:
5601     //   Within the argument list of a class template partial
5602     //   specialization, the following restrictions apply:
5603     //     -- A partially specialized non-type argument expression
5604     //        shall not involve a template parameter of the partial
5605     //        specialization except when the argument expression is a
5606     //        simple identifier.
5607     if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5608       S.Diag(ArgExpr->getLocStart(),
5609            diag::err_dependent_non_type_arg_in_partial_spec)
5610         << ArgExpr->getSourceRange();
5611       return true;
5612     }
5613 
5614     //     -- The type of a template parameter corresponding to a
5615     //        specialized non-type argument shall not be dependent on a
5616     //        parameter of the specialization.
5617     if (Param->getType()->isDependentType()) {
5618       S.Diag(ArgExpr->getLocStart(),
5619            diag::err_dependent_typed_non_type_arg_in_partial_spec)
5620         << Param->getType()
5621         << ArgExpr->getSourceRange();
5622       S.Diag(Param->getLocation(), diag::note_template_param_here);
5623       return true;
5624     }
5625   }
5626 
5627   return false;
5628 }
5629 
5630 /// \brief Check the non-type template arguments of a class template
5631 /// partial specialization according to C++ [temp.class.spec]p9.
5632 ///
5633 /// \param TemplateParams the template parameters of the primary class
5634 /// template.
5635 ///
5636 /// \param TemplateArgs the template arguments of the class template
5637 /// partial specialization.
5638 ///
5639 /// \returns true if there was an error, false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<TemplateArgument> & TemplateArgs)5640 static bool CheckTemplatePartialSpecializationArgs(
5641     Sema &S, TemplateParameterList *TemplateParams,
5642     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5643   const TemplateArgument *ArgList = TemplateArgs.data();
5644 
5645   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5646     NonTypeTemplateParmDecl *Param
5647       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5648     if (!Param)
5649       continue;
5650 
5651     if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5652       return true;
5653   }
5654 
5655   return false;
5656 }
5657 
5658 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5659 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5660                                        TagUseKind TUK,
5661                                        SourceLocation KWLoc,
5662                                        SourceLocation ModulePrivateLoc,
5663                                        CXXScopeSpec &SS,
5664                                        TemplateTy TemplateD,
5665                                        SourceLocation TemplateNameLoc,
5666                                        SourceLocation LAngleLoc,
5667                                        ASTTemplateArgsPtr TemplateArgsIn,
5668                                        SourceLocation RAngleLoc,
5669                                        AttributeList *Attr,
5670                                MultiTemplateParamsArg TemplateParameterLists) {
5671   assert(TUK != TUK_Reference && "References are not specializations");
5672 
5673   // NOTE: KWLoc is the location of the tag keyword. This will instead
5674   // store the location of the outermost template keyword in the declaration.
5675   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5676     ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5677 
5678   // Find the class template we're specializing
5679   TemplateName Name = TemplateD.getAsVal<TemplateName>();
5680   ClassTemplateDecl *ClassTemplate
5681     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5682 
5683   if (!ClassTemplate) {
5684     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5685       << (Name.getAsTemplateDecl() &&
5686           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5687     return true;
5688   }
5689 
5690   bool isExplicitSpecialization = false;
5691   bool isPartialSpecialization = false;
5692 
5693   // Check the validity of the template headers that introduce this
5694   // template.
5695   // FIXME: We probably shouldn't complain about these headers for
5696   // friend declarations.
5697   bool Invalid = false;
5698   TemplateParameterList *TemplateParams =
5699       MatchTemplateParametersToScopeSpecifier(
5700           TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5701           TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5702   if (Invalid)
5703     return true;
5704 
5705   if (TemplateParams && TemplateParams->size() > 0) {
5706     isPartialSpecialization = true;
5707 
5708     if (TUK == TUK_Friend) {
5709       Diag(KWLoc, diag::err_partial_specialization_friend)
5710         << SourceRange(LAngleLoc, RAngleLoc);
5711       return true;
5712     }
5713 
5714     // C++ [temp.class.spec]p10:
5715     //   The template parameter list of a specialization shall not
5716     //   contain default template argument values.
5717     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5718       Decl *Param = TemplateParams->getParam(I);
5719       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5720         if (TTP->hasDefaultArgument()) {
5721           Diag(TTP->getDefaultArgumentLoc(),
5722                diag::err_default_arg_in_partial_spec);
5723           TTP->removeDefaultArgument();
5724         }
5725       } else if (NonTypeTemplateParmDecl *NTTP
5726                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5727         if (Expr *DefArg = NTTP->getDefaultArgument()) {
5728           Diag(NTTP->getDefaultArgumentLoc(),
5729                diag::err_default_arg_in_partial_spec)
5730             << DefArg->getSourceRange();
5731           NTTP->removeDefaultArgument();
5732         }
5733       } else {
5734         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5735         if (TTP->hasDefaultArgument()) {
5736           Diag(TTP->getDefaultArgument().getLocation(),
5737                diag::err_default_arg_in_partial_spec)
5738             << TTP->getDefaultArgument().getSourceRange();
5739           TTP->removeDefaultArgument();
5740         }
5741       }
5742     }
5743   } else if (TemplateParams) {
5744     if (TUK == TUK_Friend)
5745       Diag(KWLoc, diag::err_template_spec_friend)
5746         << FixItHint::CreateRemoval(
5747                                 SourceRange(TemplateParams->getTemplateLoc(),
5748                                             TemplateParams->getRAngleLoc()))
5749         << SourceRange(LAngleLoc, RAngleLoc);
5750     else
5751       isExplicitSpecialization = true;
5752   } else if (TUK != TUK_Friend) {
5753     Diag(KWLoc, diag::err_template_spec_needs_header)
5754       << FixItHint::CreateInsertion(KWLoc, "template<> ");
5755     TemplateKWLoc = KWLoc;
5756     isExplicitSpecialization = true;
5757   }
5758 
5759   // Check that the specialization uses the same tag kind as the
5760   // original template.
5761   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5762   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5763   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5764                                     Kind, TUK == TUK_Definition, KWLoc,
5765                                     *ClassTemplate->getIdentifier())) {
5766     Diag(KWLoc, diag::err_use_with_wrong_tag)
5767       << ClassTemplate
5768       << FixItHint::CreateReplacement(KWLoc,
5769                             ClassTemplate->getTemplatedDecl()->getKindName());
5770     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5771          diag::note_previous_use);
5772     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5773   }
5774 
5775   // Translate the parser's template argument list in our AST format.
5776   TemplateArgumentListInfo TemplateArgs;
5777   TemplateArgs.setLAngleLoc(LAngleLoc);
5778   TemplateArgs.setRAngleLoc(RAngleLoc);
5779   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5780 
5781   // Check for unexpanded parameter packs in any of the template arguments.
5782   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5783     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5784                                         UPPC_PartialSpecialization))
5785       return true;
5786 
5787   // Check that the template argument list is well-formed for this
5788   // template.
5789   SmallVector<TemplateArgument, 4> Converted;
5790   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5791                                 TemplateArgs, false, Converted))
5792     return true;
5793 
5794   // Find the class template (partial) specialization declaration that
5795   // corresponds to these arguments.
5796   if (isPartialSpecialization) {
5797     if (CheckTemplatePartialSpecializationArgs(
5798             *this, ClassTemplate->getTemplateParameters(), Converted))
5799       return true;
5800 
5801     bool InstantiationDependent;
5802     if (!Name.isDependent() &&
5803         !TemplateSpecializationType::anyDependentTemplateArguments(
5804                                              TemplateArgs.getArgumentArray(),
5805                                                          TemplateArgs.size(),
5806                                                      InstantiationDependent)) {
5807       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5808         << ClassTemplate->getDeclName();
5809       isPartialSpecialization = false;
5810     }
5811   }
5812 
5813   void *InsertPos = 0;
5814   ClassTemplateSpecializationDecl *PrevDecl = 0;
5815 
5816   if (isPartialSpecialization)
5817     // FIXME: Template parameter list matters, too
5818     PrevDecl
5819       = ClassTemplate->findPartialSpecialization(Converted.data(),
5820                                                  Converted.size(),
5821                                                  InsertPos);
5822   else
5823     PrevDecl
5824       = ClassTemplate->findSpecialization(Converted.data(),
5825                                           Converted.size(), InsertPos);
5826 
5827   ClassTemplateSpecializationDecl *Specialization = 0;
5828 
5829   // Check whether we can declare a class template specialization in
5830   // the current scope.
5831   if (TUK != TUK_Friend &&
5832       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5833                                        TemplateNameLoc,
5834                                        isPartialSpecialization))
5835     return true;
5836 
5837   // The canonical type
5838   QualType CanonType;
5839   if (PrevDecl &&
5840       (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5841                TUK == TUK_Friend)) {
5842     // Since the only prior class template specialization with these
5843     // arguments was referenced but not declared, or we're only
5844     // referencing this specialization as a friend, reuse that
5845     // declaration node as our own, updating its source location and
5846     // the list of outer template parameters to reflect our new declaration.
5847     Specialization = PrevDecl;
5848     Specialization->setLocation(TemplateNameLoc);
5849     if (TemplateParameterLists.size() > 0) {
5850       Specialization->setTemplateParameterListsInfo(Context,
5851                                               TemplateParameterLists.size(),
5852                                               TemplateParameterLists.data());
5853     }
5854     PrevDecl = 0;
5855     CanonType = Context.getTypeDeclType(Specialization);
5856   } else if (isPartialSpecialization) {
5857     // Build the canonical type that describes the converted template
5858     // arguments of the class template partial specialization.
5859     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5860     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5861                                                       Converted.data(),
5862                                                       Converted.size());
5863 
5864     if (Context.hasSameType(CanonType,
5865                         ClassTemplate->getInjectedClassNameSpecialization())) {
5866       // C++ [temp.class.spec]p9b3:
5867       //
5868       //   -- The argument list of the specialization shall not be identical
5869       //      to the implicit argument list of the primary template.
5870       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5871         << (TUK == TUK_Definition)
5872         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5873       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5874                                 ClassTemplate->getIdentifier(),
5875                                 TemplateNameLoc,
5876                                 Attr,
5877                                 TemplateParams,
5878                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5879                                 TemplateParameterLists.size() - 1,
5880                                 TemplateParameterLists.data());
5881     }
5882 
5883     // Create a new class template partial specialization declaration node.
5884     ClassTemplatePartialSpecializationDecl *PrevPartial
5885       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5886     unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5887                             : ClassTemplate->getNextPartialSpecSequenceNumber();
5888     ClassTemplatePartialSpecializationDecl *Partial
5889       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5890                                              ClassTemplate->getDeclContext(),
5891                                                        KWLoc, TemplateNameLoc,
5892                                                        TemplateParams,
5893                                                        ClassTemplate,
5894                                                        Converted.data(),
5895                                                        Converted.size(),
5896                                                        TemplateArgs,
5897                                                        CanonType,
5898                                                        PrevPartial,
5899                                                        SequenceNumber);
5900     SetNestedNameSpecifier(Partial, SS);
5901     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5902       Partial->setTemplateParameterListsInfo(Context,
5903                                              TemplateParameterLists.size() - 1,
5904                                              TemplateParameterLists.data());
5905     }
5906 
5907     if (!PrevPartial)
5908       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5909     Specialization = Partial;
5910 
5911     // If we are providing an explicit specialization of a member class
5912     // template specialization, make a note of that.
5913     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5914       PrevPartial->setMemberSpecialization();
5915 
5916     // Check that all of the template parameters of the class template
5917     // partial specialization are deducible from the template
5918     // arguments. If not, this class template partial specialization
5919     // will never be used.
5920     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5921     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5922                                TemplateParams->getDepth(),
5923                                DeducibleParams);
5924 
5925     if (!DeducibleParams.all()) {
5926       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5927       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5928         << (NumNonDeducible > 1)
5929         << SourceRange(TemplateNameLoc, RAngleLoc);
5930       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5931         if (!DeducibleParams[I]) {
5932           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5933           if (Param->getDeclName())
5934             Diag(Param->getLocation(),
5935                  diag::note_partial_spec_unused_parameter)
5936               << Param->getDeclName();
5937           else
5938             Diag(Param->getLocation(),
5939                  diag::note_partial_spec_unused_parameter)
5940               << "<anonymous>";
5941         }
5942       }
5943     }
5944   } else {
5945     // Create a new class template specialization declaration node for
5946     // this explicit specialization or friend declaration.
5947     Specialization
5948       = ClassTemplateSpecializationDecl::Create(Context, Kind,
5949                                              ClassTemplate->getDeclContext(),
5950                                                 KWLoc, TemplateNameLoc,
5951                                                 ClassTemplate,
5952                                                 Converted.data(),
5953                                                 Converted.size(),
5954                                                 PrevDecl);
5955     SetNestedNameSpecifier(Specialization, SS);
5956     if (TemplateParameterLists.size() > 0) {
5957       Specialization->setTemplateParameterListsInfo(Context,
5958                                               TemplateParameterLists.size(),
5959                                               TemplateParameterLists.data());
5960     }
5961 
5962     if (!PrevDecl)
5963       ClassTemplate->AddSpecialization(Specialization, InsertPos);
5964 
5965     CanonType = Context.getTypeDeclType(Specialization);
5966   }
5967 
5968   // C++ [temp.expl.spec]p6:
5969   //   If a template, a member template or the member of a class template is
5970   //   explicitly specialized then that specialization shall be declared
5971   //   before the first use of that specialization that would cause an implicit
5972   //   instantiation to take place, in every translation unit in which such a
5973   //   use occurs; no diagnostic is required.
5974   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5975     bool Okay = false;
5976     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5977       // Is there any previous explicit specialization declaration?
5978       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5979         Okay = true;
5980         break;
5981       }
5982     }
5983 
5984     if (!Okay) {
5985       SourceRange Range(TemplateNameLoc, RAngleLoc);
5986       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5987         << Context.getTypeDeclType(Specialization) << Range;
5988 
5989       Diag(PrevDecl->getPointOfInstantiation(),
5990            diag::note_instantiation_required_here)
5991         << (PrevDecl->getTemplateSpecializationKind()
5992                                                 != TSK_ImplicitInstantiation);
5993       return true;
5994     }
5995   }
5996 
5997   // If this is not a friend, note that this is an explicit specialization.
5998   if (TUK != TUK_Friend)
5999     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6000 
6001   // Check that this isn't a redefinition of this specialization.
6002   if (TUK == TUK_Definition) {
6003     if (RecordDecl *Def = Specialization->getDefinition()) {
6004       SourceRange Range(TemplateNameLoc, RAngleLoc);
6005       Diag(TemplateNameLoc, diag::err_redefinition)
6006         << Context.getTypeDeclType(Specialization) << Range;
6007       Diag(Def->getLocation(), diag::note_previous_definition);
6008       Specialization->setInvalidDecl();
6009       return true;
6010     }
6011   }
6012 
6013   if (Attr)
6014     ProcessDeclAttributeList(S, Specialization, Attr);
6015 
6016   // Add alignment attributes if necessary; these attributes are checked when
6017   // the ASTContext lays out the structure.
6018   if (TUK == TUK_Definition) {
6019     AddAlignmentAttributesForRecord(Specialization);
6020     AddMsStructLayoutForRecord(Specialization);
6021   }
6022 
6023   if (ModulePrivateLoc.isValid())
6024     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6025       << (isPartialSpecialization? 1 : 0)
6026       << FixItHint::CreateRemoval(ModulePrivateLoc);
6027 
6028   // Build the fully-sugared type for this class template
6029   // specialization as the user wrote in the specialization
6030   // itself. This means that we'll pretty-print the type retrieved
6031   // from the specialization's declaration the way that the user
6032   // actually wrote the specialization, rather than formatting the
6033   // name based on the "canonical" representation used to store the
6034   // template arguments in the specialization.
6035   TypeSourceInfo *WrittenTy
6036     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6037                                                 TemplateArgs, CanonType);
6038   if (TUK != TUK_Friend) {
6039     Specialization->setTypeAsWritten(WrittenTy);
6040     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6041   }
6042 
6043   // C++ [temp.expl.spec]p9:
6044   //   A template explicit specialization is in the scope of the
6045   //   namespace in which the template was defined.
6046   //
6047   // We actually implement this paragraph where we set the semantic
6048   // context (in the creation of the ClassTemplateSpecializationDecl),
6049   // but we also maintain the lexical context where the actual
6050   // definition occurs.
6051   Specialization->setLexicalDeclContext(CurContext);
6052 
6053   // We may be starting the definition of this specialization.
6054   if (TUK == TUK_Definition)
6055     Specialization->startDefinition();
6056 
6057   if (TUK == TUK_Friend) {
6058     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6059                                             TemplateNameLoc,
6060                                             WrittenTy,
6061                                             /*FIXME:*/KWLoc);
6062     Friend->setAccess(AS_public);
6063     CurContext->addDecl(Friend);
6064   } else {
6065     // Add the specialization into its lexical context, so that it can
6066     // be seen when iterating through the list of declarations in that
6067     // context. However, specializations are not found by name lookup.
6068     CurContext->addDecl(Specialization);
6069   }
6070   return Specialization;
6071 }
6072 
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6073 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6074                               MultiTemplateParamsArg TemplateParameterLists,
6075                                     Declarator &D) {
6076   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6077   ActOnDocumentableDecl(NewDecl);
6078   return NewDecl;
6079 }
6080 
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6081 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6082                                MultiTemplateParamsArg TemplateParameterLists,
6083                                             Declarator &D) {
6084   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6085   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6086 
6087   if (FTI.hasPrototype) {
6088     // FIXME: Diagnose arguments without names in C.
6089   }
6090 
6091   Scope *ParentScope = FnBodyScope->getParent();
6092 
6093   D.setFunctionDefinitionKind(FDK_Definition);
6094   Decl *DP = HandleDeclarator(ParentScope, D,
6095                               TemplateParameterLists);
6096   return ActOnStartOfFunctionDef(FnBodyScope, DP);
6097 }
6098 
6099 /// \brief Strips various properties off an implicit instantiation
6100 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6101 static void StripImplicitInstantiation(NamedDecl *D) {
6102   D->dropAttrs();
6103 
6104   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6105     FD->setInlineSpecified(false);
6106 
6107     for (FunctionDecl::param_iterator I = FD->param_begin(),
6108                                       E = FD->param_end();
6109          I != E; ++I)
6110       (*I)->dropAttrs();
6111   }
6112 }
6113 
6114 /// \brief Compute the diagnostic location for an explicit instantiation
6115 //  declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6116 static SourceLocation DiagLocForExplicitInstantiation(
6117     NamedDecl* D, SourceLocation PointOfInstantiation) {
6118   // Explicit instantiations following a specialization have no effect and
6119   // hence no PointOfInstantiation. In that case, walk decl backwards
6120   // until a valid name loc is found.
6121   SourceLocation PrevDiagLoc = PointOfInstantiation;
6122   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6123        Prev = Prev->getPreviousDecl()) {
6124     PrevDiagLoc = Prev->getLocation();
6125   }
6126   assert(PrevDiagLoc.isValid() &&
6127          "Explicit instantiation without point of instantiation?");
6128   return PrevDiagLoc;
6129 }
6130 
6131 /// \brief Diagnose cases where we have an explicit template specialization
6132 /// before/after an explicit template instantiation, producing diagnostics
6133 /// for those cases where they are required and determining whether the
6134 /// new specialization/instantiation will have any effect.
6135 ///
6136 /// \param NewLoc the location of the new explicit specialization or
6137 /// instantiation.
6138 ///
6139 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6140 ///
6141 /// \param PrevDecl the previous declaration of the entity.
6142 ///
6143 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6144 ///
6145 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6146 /// declaration was instantiated (either implicitly or explicitly).
6147 ///
6148 /// \param HasNoEffect will be set to true to indicate that the new
6149 /// specialization or instantiation has no effect and should be ignored.
6150 ///
6151 /// \returns true if there was an error that should prevent the introduction of
6152 /// the new declaration into the AST, false otherwise.
6153 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6154 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6155                                              TemplateSpecializationKind NewTSK,
6156                                              NamedDecl *PrevDecl,
6157                                              TemplateSpecializationKind PrevTSK,
6158                                         SourceLocation PrevPointOfInstantiation,
6159                                              bool &HasNoEffect) {
6160   HasNoEffect = false;
6161 
6162   switch (NewTSK) {
6163   case TSK_Undeclared:
6164   case TSK_ImplicitInstantiation:
6165     llvm_unreachable("Don't check implicit instantiations here");
6166 
6167   case TSK_ExplicitSpecialization:
6168     switch (PrevTSK) {
6169     case TSK_Undeclared:
6170     case TSK_ExplicitSpecialization:
6171       // Okay, we're just specializing something that is either already
6172       // explicitly specialized or has merely been mentioned without any
6173       // instantiation.
6174       return false;
6175 
6176     case TSK_ImplicitInstantiation:
6177       if (PrevPointOfInstantiation.isInvalid()) {
6178         // The declaration itself has not actually been instantiated, so it is
6179         // still okay to specialize it.
6180         StripImplicitInstantiation(PrevDecl);
6181         return false;
6182       }
6183       // Fall through
6184 
6185     case TSK_ExplicitInstantiationDeclaration:
6186     case TSK_ExplicitInstantiationDefinition:
6187       assert((PrevTSK == TSK_ImplicitInstantiation ||
6188               PrevPointOfInstantiation.isValid()) &&
6189              "Explicit instantiation without point of instantiation?");
6190 
6191       // C++ [temp.expl.spec]p6:
6192       //   If a template, a member template or the member of a class template
6193       //   is explicitly specialized then that specialization shall be declared
6194       //   before the first use of that specialization that would cause an
6195       //   implicit instantiation to take place, in every translation unit in
6196       //   which such a use occurs; no diagnostic is required.
6197       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6198         // Is there any previous explicit specialization declaration?
6199         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6200           return false;
6201       }
6202 
6203       Diag(NewLoc, diag::err_specialization_after_instantiation)
6204         << PrevDecl;
6205       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6206         << (PrevTSK != TSK_ImplicitInstantiation);
6207 
6208       return true;
6209     }
6210 
6211   case TSK_ExplicitInstantiationDeclaration:
6212     switch (PrevTSK) {
6213     case TSK_ExplicitInstantiationDeclaration:
6214       // This explicit instantiation declaration is redundant (that's okay).
6215       HasNoEffect = true;
6216       return false;
6217 
6218     case TSK_Undeclared:
6219     case TSK_ImplicitInstantiation:
6220       // We're explicitly instantiating something that may have already been
6221       // implicitly instantiated; that's fine.
6222       return false;
6223 
6224     case TSK_ExplicitSpecialization:
6225       // C++0x [temp.explicit]p4:
6226       //   For a given set of template parameters, if an explicit instantiation
6227       //   of a template appears after a declaration of an explicit
6228       //   specialization for that template, the explicit instantiation has no
6229       //   effect.
6230       HasNoEffect = true;
6231       return false;
6232 
6233     case TSK_ExplicitInstantiationDefinition:
6234       // C++0x [temp.explicit]p10:
6235       //   If an entity is the subject of both an explicit instantiation
6236       //   declaration and an explicit instantiation definition in the same
6237       //   translation unit, the definition shall follow the declaration.
6238       Diag(NewLoc,
6239            diag::err_explicit_instantiation_declaration_after_definition);
6240 
6241       // Explicit instantiations following a specialization have no effect and
6242       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6243       // until a valid name loc is found.
6244       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6245            diag::note_explicit_instantiation_definition_here);
6246       HasNoEffect = true;
6247       return false;
6248     }
6249 
6250   case TSK_ExplicitInstantiationDefinition:
6251     switch (PrevTSK) {
6252     case TSK_Undeclared:
6253     case TSK_ImplicitInstantiation:
6254       // We're explicitly instantiating something that may have already been
6255       // implicitly instantiated; that's fine.
6256       return false;
6257 
6258     case TSK_ExplicitSpecialization:
6259       // C++ DR 259, C++0x [temp.explicit]p4:
6260       //   For a given set of template parameters, if an explicit
6261       //   instantiation of a template appears after a declaration of
6262       //   an explicit specialization for that template, the explicit
6263       //   instantiation has no effect.
6264       //
6265       // In C++98/03 mode, we only give an extension warning here, because it
6266       // is not harmful to try to explicitly instantiate something that
6267       // has been explicitly specialized.
6268       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6269            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6270            diag::ext_explicit_instantiation_after_specialization)
6271         << PrevDecl;
6272       Diag(PrevDecl->getLocation(),
6273            diag::note_previous_template_specialization);
6274       HasNoEffect = true;
6275       return false;
6276 
6277     case TSK_ExplicitInstantiationDeclaration:
6278       // We're explicity instantiating a definition for something for which we
6279       // were previously asked to suppress instantiations. That's fine.
6280 
6281       // C++0x [temp.explicit]p4:
6282       //   For a given set of template parameters, if an explicit instantiation
6283       //   of a template appears after a declaration of an explicit
6284       //   specialization for that template, the explicit instantiation has no
6285       //   effect.
6286       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6287         // Is there any previous explicit specialization declaration?
6288         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6289           HasNoEffect = true;
6290           break;
6291         }
6292       }
6293 
6294       return false;
6295 
6296     case TSK_ExplicitInstantiationDefinition:
6297       // C++0x [temp.spec]p5:
6298       //   For a given template and a given set of template-arguments,
6299       //     - an explicit instantiation definition shall appear at most once
6300       //       in a program,
6301       Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6302         << PrevDecl;
6303       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6304            diag::note_previous_explicit_instantiation);
6305       HasNoEffect = true;
6306       return false;
6307     }
6308   }
6309 
6310   llvm_unreachable("Missing specialization/instantiation case?");
6311 }
6312 
6313 /// \brief Perform semantic analysis for the given dependent function
6314 /// template specialization.
6315 ///
6316 /// The only possible way to get a dependent function template specialization
6317 /// is with a friend declaration, like so:
6318 ///
6319 /// \code
6320 ///   template \<class T> void foo(T);
6321 ///   template \<class T> class A {
6322 ///     friend void foo<>(T);
6323 ///   };
6324 /// \endcode
6325 ///
6326 /// There really isn't any useful analysis we can do here, so we
6327 /// just store the information.
6328 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6329 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6330                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
6331                                                    LookupResult &Previous) {
6332   // Remove anything from Previous that isn't a function template in
6333   // the correct context.
6334   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6335   LookupResult::Filter F = Previous.makeFilter();
6336   while (F.hasNext()) {
6337     NamedDecl *D = F.next()->getUnderlyingDecl();
6338     if (!isa<FunctionTemplateDecl>(D) ||
6339         !FDLookupContext->InEnclosingNamespaceSetOf(
6340                               D->getDeclContext()->getRedeclContext()))
6341       F.erase();
6342   }
6343   F.done();
6344 
6345   // Should this be diagnosed here?
6346   if (Previous.empty()) return true;
6347 
6348   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6349                                          ExplicitTemplateArgs);
6350   return false;
6351 }
6352 
6353 /// \brief Perform semantic analysis for the given function template
6354 /// specialization.
6355 ///
6356 /// This routine performs all of the semantic analysis required for an
6357 /// explicit function template specialization. On successful completion,
6358 /// the function declaration \p FD will become a function template
6359 /// specialization.
6360 ///
6361 /// \param FD the function declaration, which will be updated to become a
6362 /// function template specialization.
6363 ///
6364 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6365 /// if any. Note that this may be valid info even when 0 arguments are
6366 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6367 /// as it anyway contains info on the angle brackets locations.
6368 ///
6369 /// \param Previous the set of declarations that may be specialized by
6370 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6371 bool Sema::CheckFunctionTemplateSpecialization(
6372     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6373     LookupResult &Previous) {
6374   // The set of function template specializations that could match this
6375   // explicit function template specialization.
6376   UnresolvedSet<8> Candidates;
6377   TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6378 
6379   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6380   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6381          I != E; ++I) {
6382     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6383     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6384       // Only consider templates found within the same semantic lookup scope as
6385       // FD.
6386       if (!FDLookupContext->InEnclosingNamespaceSetOf(
6387                                 Ovl->getDeclContext()->getRedeclContext()))
6388         continue;
6389 
6390       // When matching a constexpr member function template specialization
6391       // against the primary template, we don't yet know whether the
6392       // specialization has an implicit 'const' (because we don't know whether
6393       // it will be a static member function until we know which template it
6394       // specializes), so adjust it now assuming it specializes this template.
6395       QualType FT = FD->getType();
6396       if (FD->isConstexpr()) {
6397         CXXMethodDecl *OldMD =
6398           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6399         if (OldMD && OldMD->isConst()) {
6400           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6401           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6402           EPI.TypeQuals |= Qualifiers::Const;
6403           FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6404                                        EPI);
6405         }
6406       }
6407 
6408       // C++ [temp.expl.spec]p11:
6409       //   A trailing template-argument can be left unspecified in the
6410       //   template-id naming an explicit function template specialization
6411       //   provided it can be deduced from the function argument type.
6412       // Perform template argument deduction to determine whether we may be
6413       // specializing this template.
6414       // FIXME: It is somewhat wasteful to build
6415       TemplateDeductionInfo Info(FailedCandidates.getLocation());
6416       FunctionDecl *Specialization = 0;
6417       if (TemplateDeductionResult TDK
6418             = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6419                                       Specialization, Info)) {
6420         // Template argument deduction failed; record why it failed, so
6421         // that we can provide nifty diagnostics.
6422         FailedCandidates.addCandidate()
6423             .set(FunTmpl->getTemplatedDecl(),
6424                  MakeDeductionFailureInfo(Context, TDK, Info));
6425         (void)TDK;
6426         continue;
6427       }
6428 
6429       // Record this candidate.
6430       Candidates.addDecl(Specialization, I.getAccess());
6431     }
6432   }
6433 
6434   // Find the most specialized function template.
6435   UnresolvedSetIterator Result = getMostSpecialized(
6436       Candidates.begin(), Candidates.end(), FailedCandidates, TPOC_Other, 0,
6437       FD->getLocation(),
6438       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6439       PDiag(diag::err_function_template_spec_ambiguous)
6440           << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6441       PDiag(diag::note_function_template_spec_matched));
6442 
6443   if (Result == Candidates.end())
6444     return true;
6445 
6446   // Ignore access information;  it doesn't figure into redeclaration checking.
6447   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6448 
6449   FunctionTemplateSpecializationInfo *SpecInfo
6450     = Specialization->getTemplateSpecializationInfo();
6451   assert(SpecInfo && "Function template specialization info missing?");
6452 
6453   // Note: do not overwrite location info if previous template
6454   // specialization kind was explicit.
6455   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6456   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6457     Specialization->setLocation(FD->getLocation());
6458     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6459     // function can differ from the template declaration with respect to
6460     // the constexpr specifier.
6461     Specialization->setConstexpr(FD->isConstexpr());
6462   }
6463 
6464   // FIXME: Check if the prior specialization has a point of instantiation.
6465   // If so, we have run afoul of .
6466 
6467   // If this is a friend declaration, then we're not really declaring
6468   // an explicit specialization.
6469   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6470 
6471   // Check the scope of this explicit specialization.
6472   if (!isFriend &&
6473       CheckTemplateSpecializationScope(*this,
6474                                        Specialization->getPrimaryTemplate(),
6475                                        Specialization, FD->getLocation(),
6476                                        false))
6477     return true;
6478 
6479   // C++ [temp.expl.spec]p6:
6480   //   If a template, a member template or the member of a class template is
6481   //   explicitly specialized then that specialization shall be declared
6482   //   before the first use of that specialization that would cause an implicit
6483   //   instantiation to take place, in every translation unit in which such a
6484   //   use occurs; no diagnostic is required.
6485   bool HasNoEffect = false;
6486   if (!isFriend &&
6487       CheckSpecializationInstantiationRedecl(FD->getLocation(),
6488                                              TSK_ExplicitSpecialization,
6489                                              Specialization,
6490                                    SpecInfo->getTemplateSpecializationKind(),
6491                                          SpecInfo->getPointOfInstantiation(),
6492                                              HasNoEffect))
6493     return true;
6494 
6495   // Mark the prior declaration as an explicit specialization, so that later
6496   // clients know that this is an explicit specialization.
6497   if (!isFriend) {
6498     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6499     MarkUnusedFileScopedDecl(Specialization);
6500   }
6501 
6502   // Turn the given function declaration into a function template
6503   // specialization, with the template arguments from the previous
6504   // specialization.
6505   // Take copies of (semantic and syntactic) template argument lists.
6506   const TemplateArgumentList* TemplArgs = new (Context)
6507     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6508   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6509                                         TemplArgs, /*InsertPos=*/0,
6510                                     SpecInfo->getTemplateSpecializationKind(),
6511                                         ExplicitTemplateArgs);
6512 
6513   // The "previous declaration" for this function template specialization is
6514   // the prior function template specialization.
6515   Previous.clear();
6516   Previous.addDecl(Specialization);
6517   return false;
6518 }
6519 
6520 /// \brief Perform semantic analysis for the given non-template member
6521 /// specialization.
6522 ///
6523 /// This routine performs all of the semantic analysis required for an
6524 /// explicit member function specialization. On successful completion,
6525 /// the function declaration \p FD will become a member function
6526 /// specialization.
6527 ///
6528 /// \param Member the member declaration, which will be updated to become a
6529 /// specialization.
6530 ///
6531 /// \param Previous the set of declarations, one of which may be specialized
6532 /// by this function specialization;  the set will be modified to contain the
6533 /// redeclared member.
6534 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6535 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6536   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6537 
6538   // Try to find the member we are instantiating.
6539   NamedDecl *Instantiation = 0;
6540   NamedDecl *InstantiatedFrom = 0;
6541   MemberSpecializationInfo *MSInfo = 0;
6542 
6543   if (Previous.empty()) {
6544     // Nowhere to look anyway.
6545   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6546     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6547            I != E; ++I) {
6548       NamedDecl *D = (*I)->getUnderlyingDecl();
6549       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6550         if (Context.hasSameType(Function->getType(), Method->getType())) {
6551           Instantiation = Method;
6552           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6553           MSInfo = Method->getMemberSpecializationInfo();
6554           break;
6555         }
6556       }
6557     }
6558   } else if (isa<VarDecl>(Member)) {
6559     VarDecl *PrevVar;
6560     if (Previous.isSingleResult() &&
6561         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6562       if (PrevVar->isStaticDataMember()) {
6563         Instantiation = PrevVar;
6564         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6565         MSInfo = PrevVar->getMemberSpecializationInfo();
6566       }
6567   } else if (isa<RecordDecl>(Member)) {
6568     CXXRecordDecl *PrevRecord;
6569     if (Previous.isSingleResult() &&
6570         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6571       Instantiation = PrevRecord;
6572       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6573       MSInfo = PrevRecord->getMemberSpecializationInfo();
6574     }
6575   } else if (isa<EnumDecl>(Member)) {
6576     EnumDecl *PrevEnum;
6577     if (Previous.isSingleResult() &&
6578         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6579       Instantiation = PrevEnum;
6580       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6581       MSInfo = PrevEnum->getMemberSpecializationInfo();
6582     }
6583   }
6584 
6585   if (!Instantiation) {
6586     // There is no previous declaration that matches. Since member
6587     // specializations are always out-of-line, the caller will complain about
6588     // this mismatch later.
6589     return false;
6590   }
6591 
6592   // If this is a friend, just bail out here before we start turning
6593   // things into explicit specializations.
6594   if (Member->getFriendObjectKind() != Decl::FOK_None) {
6595     // Preserve instantiation information.
6596     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6597       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6598                                       cast<CXXMethodDecl>(InstantiatedFrom),
6599         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6600     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6601       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6602                                       cast<CXXRecordDecl>(InstantiatedFrom),
6603         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6604     }
6605 
6606     Previous.clear();
6607     Previous.addDecl(Instantiation);
6608     return false;
6609   }
6610 
6611   // Make sure that this is a specialization of a member.
6612   if (!InstantiatedFrom) {
6613     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6614       << Member;
6615     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6616     return true;
6617   }
6618 
6619   // C++ [temp.expl.spec]p6:
6620   //   If a template, a member template or the member of a class template is
6621   //   explicitly specialized then that specialization shall be declared
6622   //   before the first use of that specialization that would cause an implicit
6623   //   instantiation to take place, in every translation unit in which such a
6624   //   use occurs; no diagnostic is required.
6625   assert(MSInfo && "Member specialization info missing?");
6626 
6627   bool HasNoEffect = false;
6628   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6629                                              TSK_ExplicitSpecialization,
6630                                              Instantiation,
6631                                      MSInfo->getTemplateSpecializationKind(),
6632                                            MSInfo->getPointOfInstantiation(),
6633                                              HasNoEffect))
6634     return true;
6635 
6636   // Check the scope of this explicit specialization.
6637   if (CheckTemplateSpecializationScope(*this,
6638                                        InstantiatedFrom,
6639                                        Instantiation, Member->getLocation(),
6640                                        false))
6641     return true;
6642 
6643   // Note that this is an explicit instantiation of a member.
6644   // the original declaration to note that it is an explicit specialization
6645   // (if it was previously an implicit instantiation). This latter step
6646   // makes bookkeeping easier.
6647   if (isa<FunctionDecl>(Member)) {
6648     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6649     if (InstantiationFunction->getTemplateSpecializationKind() ==
6650           TSK_ImplicitInstantiation) {
6651       InstantiationFunction->setTemplateSpecializationKind(
6652                                                   TSK_ExplicitSpecialization);
6653       InstantiationFunction->setLocation(Member->getLocation());
6654     }
6655 
6656     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6657                                         cast<CXXMethodDecl>(InstantiatedFrom),
6658                                                   TSK_ExplicitSpecialization);
6659     MarkUnusedFileScopedDecl(InstantiationFunction);
6660   } else if (isa<VarDecl>(Member)) {
6661     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6662     if (InstantiationVar->getTemplateSpecializationKind() ==
6663           TSK_ImplicitInstantiation) {
6664       InstantiationVar->setTemplateSpecializationKind(
6665                                                   TSK_ExplicitSpecialization);
6666       InstantiationVar->setLocation(Member->getLocation());
6667     }
6668 
6669     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6670         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6671     MarkUnusedFileScopedDecl(InstantiationVar);
6672   } else if (isa<CXXRecordDecl>(Member)) {
6673     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6674     if (InstantiationClass->getTemplateSpecializationKind() ==
6675           TSK_ImplicitInstantiation) {
6676       InstantiationClass->setTemplateSpecializationKind(
6677                                                    TSK_ExplicitSpecialization);
6678       InstantiationClass->setLocation(Member->getLocation());
6679     }
6680 
6681     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6682                                         cast<CXXRecordDecl>(InstantiatedFrom),
6683                                                    TSK_ExplicitSpecialization);
6684   } else {
6685     assert(isa<EnumDecl>(Member) && "Only member enums remain");
6686     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6687     if (InstantiationEnum->getTemplateSpecializationKind() ==
6688           TSK_ImplicitInstantiation) {
6689       InstantiationEnum->setTemplateSpecializationKind(
6690                                                    TSK_ExplicitSpecialization);
6691       InstantiationEnum->setLocation(Member->getLocation());
6692     }
6693 
6694     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6695         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6696   }
6697 
6698   // Save the caller the trouble of having to figure out which declaration
6699   // this specialization matches.
6700   Previous.clear();
6701   Previous.addDecl(Instantiation);
6702   return false;
6703 }
6704 
6705 /// \brief Check the scope of an explicit instantiation.
6706 ///
6707 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6708 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6709                                             SourceLocation InstLoc,
6710                                             bool WasQualifiedName) {
6711   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6712   DeclContext *CurContext = S.CurContext->getRedeclContext();
6713 
6714   if (CurContext->isRecord()) {
6715     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6716       << D;
6717     return true;
6718   }
6719 
6720   // C++11 [temp.explicit]p3:
6721   //   An explicit instantiation shall appear in an enclosing namespace of its
6722   //   template. If the name declared in the explicit instantiation is an
6723   //   unqualified name, the explicit instantiation shall appear in the
6724   //   namespace where its template is declared or, if that namespace is inline
6725   //   (7.3.1), any namespace from its enclosing namespace set.
6726   //
6727   // This is DR275, which we do not retroactively apply to C++98/03.
6728   if (WasQualifiedName) {
6729     if (CurContext->Encloses(OrigContext))
6730       return false;
6731   } else {
6732     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6733       return false;
6734   }
6735 
6736   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6737     if (WasQualifiedName)
6738       S.Diag(InstLoc,
6739              S.getLangOpts().CPlusPlus11?
6740                diag::err_explicit_instantiation_out_of_scope :
6741                diag::warn_explicit_instantiation_out_of_scope_0x)
6742         << D << NS;
6743     else
6744       S.Diag(InstLoc,
6745              S.getLangOpts().CPlusPlus11?
6746                diag::err_explicit_instantiation_unqualified_wrong_namespace :
6747                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6748         << D << NS;
6749   } else
6750     S.Diag(InstLoc,
6751            S.getLangOpts().CPlusPlus11?
6752              diag::err_explicit_instantiation_must_be_global :
6753              diag::warn_explicit_instantiation_must_be_global_0x)
6754       << D;
6755   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6756   return false;
6757 }
6758 
6759 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)6760 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6761   if (!SS.isSet())
6762     return false;
6763 
6764   // C++11 [temp.explicit]p3:
6765   //   If the explicit instantiation is for a member function, a member class
6766   //   or a static data member of a class template specialization, the name of
6767   //   the class template specialization in the qualified-id for the member
6768   //   name shall be a simple-template-id.
6769   //
6770   // C++98 has the same restriction, just worded differently.
6771   for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6772        NNS; NNS = NNS->getPrefix())
6773     if (const Type *T = NNS->getAsType())
6774       if (isa<TemplateSpecializationType>(T))
6775         return true;
6776 
6777   return false;
6778 }
6779 
6780 // Explicit instantiation of a class template specialization
6781 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)6782 Sema::ActOnExplicitInstantiation(Scope *S,
6783                                  SourceLocation ExternLoc,
6784                                  SourceLocation TemplateLoc,
6785                                  unsigned TagSpec,
6786                                  SourceLocation KWLoc,
6787                                  const CXXScopeSpec &SS,
6788                                  TemplateTy TemplateD,
6789                                  SourceLocation TemplateNameLoc,
6790                                  SourceLocation LAngleLoc,
6791                                  ASTTemplateArgsPtr TemplateArgsIn,
6792                                  SourceLocation RAngleLoc,
6793                                  AttributeList *Attr) {
6794   // Find the class template we're specializing
6795   TemplateName Name = TemplateD.getAsVal<TemplateName>();
6796   TemplateDecl *TD = Name.getAsTemplateDecl();
6797   // Check that the specialization uses the same tag kind as the
6798   // original template.
6799   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6800   assert(Kind != TTK_Enum &&
6801          "Invalid enum tag in class template explicit instantiation!");
6802 
6803   if (isa<TypeAliasTemplateDecl>(TD)) {
6804       Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6805       Diag(TD->getTemplatedDecl()->getLocation(),
6806            diag::note_previous_use);
6807     return true;
6808   }
6809 
6810   ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6811 
6812   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6813                                     Kind, /*isDefinition*/false, KWLoc,
6814                                     *ClassTemplate->getIdentifier())) {
6815     Diag(KWLoc, diag::err_use_with_wrong_tag)
6816       << ClassTemplate
6817       << FixItHint::CreateReplacement(KWLoc,
6818                             ClassTemplate->getTemplatedDecl()->getKindName());
6819     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6820          diag::note_previous_use);
6821     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6822   }
6823 
6824   // C++0x [temp.explicit]p2:
6825   //   There are two forms of explicit instantiation: an explicit instantiation
6826   //   definition and an explicit instantiation declaration. An explicit
6827   //   instantiation declaration begins with the extern keyword. [...]
6828   TemplateSpecializationKind TSK
6829     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6830                            : TSK_ExplicitInstantiationDeclaration;
6831 
6832   // Translate the parser's template argument list in our AST format.
6833   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6834   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6835 
6836   // Check that the template argument list is well-formed for this
6837   // template.
6838   SmallVector<TemplateArgument, 4> Converted;
6839   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6840                                 TemplateArgs, false, Converted))
6841     return true;
6842 
6843   // Find the class template specialization declaration that
6844   // corresponds to these arguments.
6845   void *InsertPos = 0;
6846   ClassTemplateSpecializationDecl *PrevDecl
6847     = ClassTemplate->findSpecialization(Converted.data(),
6848                                         Converted.size(), InsertPos);
6849 
6850   TemplateSpecializationKind PrevDecl_TSK
6851     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6852 
6853   // C++0x [temp.explicit]p2:
6854   //   [...] An explicit instantiation shall appear in an enclosing
6855   //   namespace of its template. [...]
6856   //
6857   // This is C++ DR 275.
6858   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6859                                       SS.isSet()))
6860     return true;
6861 
6862   ClassTemplateSpecializationDecl *Specialization = 0;
6863 
6864   bool HasNoEffect = false;
6865   if (PrevDecl) {
6866     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6867                                                PrevDecl, PrevDecl_TSK,
6868                                             PrevDecl->getPointOfInstantiation(),
6869                                                HasNoEffect))
6870       return PrevDecl;
6871 
6872     // Even though HasNoEffect == true means that this explicit instantiation
6873     // has no effect on semantics, we go on to put its syntax in the AST.
6874 
6875     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6876         PrevDecl_TSK == TSK_Undeclared) {
6877       // Since the only prior class template specialization with these
6878       // arguments was referenced but not declared, reuse that
6879       // declaration node as our own, updating the source location
6880       // for the template name to reflect our new declaration.
6881       // (Other source locations will be updated later.)
6882       Specialization = PrevDecl;
6883       Specialization->setLocation(TemplateNameLoc);
6884       PrevDecl = 0;
6885     }
6886   }
6887 
6888   if (!Specialization) {
6889     // Create a new class template specialization declaration node for
6890     // this explicit specialization.
6891     Specialization
6892       = ClassTemplateSpecializationDecl::Create(Context, Kind,
6893                                              ClassTemplate->getDeclContext(),
6894                                                 KWLoc, TemplateNameLoc,
6895                                                 ClassTemplate,
6896                                                 Converted.data(),
6897                                                 Converted.size(),
6898                                                 PrevDecl);
6899     SetNestedNameSpecifier(Specialization, SS);
6900 
6901     if (!HasNoEffect && !PrevDecl) {
6902       // Insert the new specialization.
6903       ClassTemplate->AddSpecialization(Specialization, InsertPos);
6904     }
6905   }
6906 
6907   // Build the fully-sugared type for this explicit instantiation as
6908   // the user wrote in the explicit instantiation itself. This means
6909   // that we'll pretty-print the type retrieved from the
6910   // specialization's declaration the way that the user actually wrote
6911   // the explicit instantiation, rather than formatting the name based
6912   // on the "canonical" representation used to store the template
6913   // arguments in the specialization.
6914   TypeSourceInfo *WrittenTy
6915     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6916                                                 TemplateArgs,
6917                                   Context.getTypeDeclType(Specialization));
6918   Specialization->setTypeAsWritten(WrittenTy);
6919 
6920   // Set source locations for keywords.
6921   Specialization->setExternLoc(ExternLoc);
6922   Specialization->setTemplateKeywordLoc(TemplateLoc);
6923   Specialization->setRBraceLoc(SourceLocation());
6924 
6925   if (Attr)
6926     ProcessDeclAttributeList(S, Specialization, Attr);
6927 
6928   // Add the explicit instantiation into its lexical context. However,
6929   // since explicit instantiations are never found by name lookup, we
6930   // just put it into the declaration context directly.
6931   Specialization->setLexicalDeclContext(CurContext);
6932   CurContext->addDecl(Specialization);
6933 
6934   // Syntax is now OK, so return if it has no other effect on semantics.
6935   if (HasNoEffect) {
6936     // Set the template specialization kind.
6937     Specialization->setTemplateSpecializationKind(TSK);
6938     return Specialization;
6939   }
6940 
6941   // C++ [temp.explicit]p3:
6942   //   A definition of a class template or class member template
6943   //   shall be in scope at the point of the explicit instantiation of
6944   //   the class template or class member template.
6945   //
6946   // This check comes when we actually try to perform the
6947   // instantiation.
6948   ClassTemplateSpecializationDecl *Def
6949     = cast_or_null<ClassTemplateSpecializationDecl>(
6950                                               Specialization->getDefinition());
6951   if (!Def)
6952     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6953   else if (TSK == TSK_ExplicitInstantiationDefinition) {
6954     MarkVTableUsed(TemplateNameLoc, Specialization, true);
6955     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6956   }
6957 
6958   // Instantiate the members of this class template specialization.
6959   Def = cast_or_null<ClassTemplateSpecializationDecl>(
6960                                        Specialization->getDefinition());
6961   if (Def) {
6962     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6963 
6964     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6965     // TSK_ExplicitInstantiationDefinition
6966     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6967         TSK == TSK_ExplicitInstantiationDefinition)
6968       Def->setTemplateSpecializationKind(TSK);
6969 
6970     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6971   }
6972 
6973   // Set the template specialization kind.
6974   Specialization->setTemplateSpecializationKind(TSK);
6975   return Specialization;
6976 }
6977 
6978 // Explicit instantiation of a member class of a class template.
6979 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)6980 Sema::ActOnExplicitInstantiation(Scope *S,
6981                                  SourceLocation ExternLoc,
6982                                  SourceLocation TemplateLoc,
6983                                  unsigned TagSpec,
6984                                  SourceLocation KWLoc,
6985                                  CXXScopeSpec &SS,
6986                                  IdentifierInfo *Name,
6987                                  SourceLocation NameLoc,
6988                                  AttributeList *Attr) {
6989 
6990   bool Owned = false;
6991   bool IsDependent = false;
6992   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6993                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
6994                         /*ModulePrivateLoc=*/SourceLocation(),
6995                         MultiTemplateParamsArg(), Owned, IsDependent,
6996                         SourceLocation(), false, TypeResult());
6997   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6998 
6999   if (!TagD)
7000     return true;
7001 
7002   TagDecl *Tag = cast<TagDecl>(TagD);
7003   assert(!Tag->isEnum() && "shouldn't see enumerations here");
7004 
7005   if (Tag->isInvalidDecl())
7006     return true;
7007 
7008   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7009   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7010   if (!Pattern) {
7011     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7012       << Context.getTypeDeclType(Record);
7013     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7014     return true;
7015   }
7016 
7017   // C++0x [temp.explicit]p2:
7018   //   If the explicit instantiation is for a class or member class, the
7019   //   elaborated-type-specifier in the declaration shall include a
7020   //   simple-template-id.
7021   //
7022   // C++98 has the same restriction, just worded differently.
7023   if (!ScopeSpecifierHasTemplateId(SS))
7024     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7025       << Record << SS.getRange();
7026 
7027   // C++0x [temp.explicit]p2:
7028   //   There are two forms of explicit instantiation: an explicit instantiation
7029   //   definition and an explicit instantiation declaration. An explicit
7030   //   instantiation declaration begins with the extern keyword. [...]
7031   TemplateSpecializationKind TSK
7032     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7033                            : TSK_ExplicitInstantiationDeclaration;
7034 
7035   // C++0x [temp.explicit]p2:
7036   //   [...] An explicit instantiation shall appear in an enclosing
7037   //   namespace of its template. [...]
7038   //
7039   // This is C++ DR 275.
7040   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7041 
7042   // Verify that it is okay to explicitly instantiate here.
7043   CXXRecordDecl *PrevDecl
7044     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7045   if (!PrevDecl && Record->getDefinition())
7046     PrevDecl = Record;
7047   if (PrevDecl) {
7048     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7049     bool HasNoEffect = false;
7050     assert(MSInfo && "No member specialization information?");
7051     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7052                                                PrevDecl,
7053                                         MSInfo->getTemplateSpecializationKind(),
7054                                              MSInfo->getPointOfInstantiation(),
7055                                                HasNoEffect))
7056       return true;
7057     if (HasNoEffect)
7058       return TagD;
7059   }
7060 
7061   CXXRecordDecl *RecordDef
7062     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7063   if (!RecordDef) {
7064     // C++ [temp.explicit]p3:
7065     //   A definition of a member class of a class template shall be in scope
7066     //   at the point of an explicit instantiation of the member class.
7067     CXXRecordDecl *Def
7068       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7069     if (!Def) {
7070       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7071         << 0 << Record->getDeclName() << Record->getDeclContext();
7072       Diag(Pattern->getLocation(), diag::note_forward_declaration)
7073         << Pattern;
7074       return true;
7075     } else {
7076       if (InstantiateClass(NameLoc, Record, Def,
7077                            getTemplateInstantiationArgs(Record),
7078                            TSK))
7079         return true;
7080 
7081       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7082       if (!RecordDef)
7083         return true;
7084     }
7085   }
7086 
7087   // Instantiate all of the members of the class.
7088   InstantiateClassMembers(NameLoc, RecordDef,
7089                           getTemplateInstantiationArgs(Record), TSK);
7090 
7091   if (TSK == TSK_ExplicitInstantiationDefinition)
7092     MarkVTableUsed(NameLoc, RecordDef, true);
7093 
7094   // FIXME: We don't have any representation for explicit instantiations of
7095   // member classes. Such a representation is not needed for compilation, but it
7096   // should be available for clients that want to see all of the declarations in
7097   // the source code.
7098   return TagD;
7099 }
7100 
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7101 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7102                                             SourceLocation ExternLoc,
7103                                             SourceLocation TemplateLoc,
7104                                             Declarator &D) {
7105   // Explicit instantiations always require a name.
7106   // TODO: check if/when DNInfo should replace Name.
7107   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7108   DeclarationName Name = NameInfo.getName();
7109   if (!Name) {
7110     if (!D.isInvalidType())
7111       Diag(D.getDeclSpec().getLocStart(),
7112            diag::err_explicit_instantiation_requires_name)
7113         << D.getDeclSpec().getSourceRange()
7114         << D.getSourceRange();
7115 
7116     return true;
7117   }
7118 
7119   // The scope passed in may not be a decl scope.  Zip up the scope tree until
7120   // we find one that is.
7121   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7122          (S->getFlags() & Scope::TemplateParamScope) != 0)
7123     S = S->getParent();
7124 
7125   // Determine the type of the declaration.
7126   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7127   QualType R = T->getType();
7128   if (R.isNull())
7129     return true;
7130 
7131   // C++ [dcl.stc]p1:
7132   //   A storage-class-specifier shall not be specified in [...] an explicit
7133   //   instantiation (14.7.2) directive.
7134   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7135     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7136       << Name;
7137     return true;
7138   } else if (D.getDeclSpec().getStorageClassSpec()
7139                                                 != DeclSpec::SCS_unspecified) {
7140     // Complain about then remove the storage class specifier.
7141     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7142       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7143 
7144     D.getMutableDeclSpec().ClearStorageClassSpecs();
7145   }
7146 
7147   // C++0x [temp.explicit]p1:
7148   //   [...] An explicit instantiation of a function template shall not use the
7149   //   inline or constexpr specifiers.
7150   // Presumably, this also applies to member functions of class templates as
7151   // well.
7152   if (D.getDeclSpec().isInlineSpecified())
7153     Diag(D.getDeclSpec().getInlineSpecLoc(),
7154          getLangOpts().CPlusPlus11 ?
7155            diag::err_explicit_instantiation_inline :
7156            diag::warn_explicit_instantiation_inline_0x)
7157       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7158   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7159     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7160     // not already specified.
7161     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7162          diag::err_explicit_instantiation_constexpr);
7163 
7164   // C++0x [temp.explicit]p2:
7165   //   There are two forms of explicit instantiation: an explicit instantiation
7166   //   definition and an explicit instantiation declaration. An explicit
7167   //   instantiation declaration begins with the extern keyword. [...]
7168   TemplateSpecializationKind TSK
7169     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7170                            : TSK_ExplicitInstantiationDeclaration;
7171 
7172   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7173   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7174 
7175   if (!R->isFunctionType()) {
7176     // C++ [temp.explicit]p1:
7177     //   A [...] static data member of a class template can be explicitly
7178     //   instantiated from the member definition associated with its class
7179     //   template.
7180     // C++1y [temp.explicit]p1:
7181     //   A [...] variable [...] template specialization can be explicitly
7182     //   instantiated from its template.
7183     if (Previous.isAmbiguous())
7184       return true;
7185 
7186     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7187     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7188 
7189     if (!PrevTemplate) {
7190       if (!Prev || !Prev->isStaticDataMember()) {
7191         // We expect to see a data data member here.
7192         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7193             << Name;
7194         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7195              P != PEnd; ++P)
7196           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7197         return true;
7198       }
7199 
7200       if (!Prev->getInstantiatedFromStaticDataMember()) {
7201         // FIXME: Check for explicit specialization?
7202         Diag(D.getIdentifierLoc(),
7203              diag::err_explicit_instantiation_data_member_not_instantiated)
7204             << Prev;
7205         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7206         // FIXME: Can we provide a note showing where this was declared?
7207         return true;
7208       }
7209     } else {
7210       // Explicitly instantiate a variable template.
7211 
7212       // C++1y [dcl.spec.auto]p6:
7213       //   ... A program that uses auto or decltype(auto) in a context not
7214       //   explicitly allowed in this section is ill-formed.
7215       //
7216       // This includes auto-typed variable template instantiations.
7217       if (R->isUndeducedType()) {
7218         Diag(T->getTypeLoc().getLocStart(),
7219              diag::err_auto_not_allowed_var_inst);
7220         return true;
7221       }
7222 
7223       TemplateArgumentListInfo TemplateArgs;
7224       if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7225         // Translate the parser's template argument list into our AST format.
7226         TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7227         TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7228         TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7229         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7230                                            TemplateId->NumArgs);
7231         translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7232       }
7233 
7234       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7235                                           D.getIdentifierLoc(), TemplateArgs);
7236       if (Res.isInvalid())
7237         return true;
7238 
7239       // Ignore access control bits, we don't need them for redeclaration
7240       // checking.
7241       Prev = cast<VarDecl>(Res.get());
7242     }
7243 
7244     // C++0x [temp.explicit]p2:
7245     //   If the explicit instantiation is for a member function, a member class
7246     //   or a static data member of a class template specialization, the name of
7247     //   the class template specialization in the qualified-id for the member
7248     //   name shall be a simple-template-id.
7249     //
7250     // C++98 has the same restriction, just worded differently.
7251     //
7252     // C++1y If the explicit instantiation is for a variable, the
7253     // unqualified-id in the declaration shall be a template-id.
7254     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) &&
7255         (!PrevTemplate ||
7256          (D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
7257           D.getCXXScopeSpec().isSet())))
7258       Diag(D.getIdentifierLoc(),
7259            diag::ext_explicit_instantiation_without_qualified_id)
7260         << Prev << D.getCXXScopeSpec().getRange();
7261 
7262     // Check the scope of this explicit instantiation.
7263     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7264 
7265     // Verify that it is okay to explicitly instantiate here.
7266     MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
7267     TemplateSpecializationKind PrevTSK =
7268         MSInfo ? MSInfo->getTemplateSpecializationKind()
7269                : Prev->getTemplateSpecializationKind();
7270     SourceLocation POI = MSInfo ? MSInfo->getPointOfInstantiation()
7271                                 : cast<VarTemplateSpecializationDecl>(Prev)
7272                                       ->getPointOfInstantiation();
7273     bool HasNoEffect = false;
7274     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7275                                                PrevTSK, POI, HasNoEffect))
7276       return true;
7277 
7278     if (!HasNoEffect) {
7279       // Instantiate static data member or variable template.
7280 
7281       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7282       if (PrevTemplate) {
7283         // Merge attributes.
7284         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7285           ProcessDeclAttributeList(S, Prev, Attr);
7286       }
7287       if (TSK == TSK_ExplicitInstantiationDefinition)
7288         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7289     }
7290 
7291     // Check the new variable specialization against the parsed input.
7292     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7293       Diag(T->getTypeLoc().getLocStart(),
7294            diag::err_invalid_var_template_spec_type)
7295           << 0 << PrevTemplate << R << Prev->getType();
7296       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7297           << 2 << PrevTemplate->getDeclName();
7298       return true;
7299     }
7300 
7301     // FIXME: Create an ExplicitInstantiation node?
7302     return (Decl*) 0;
7303   }
7304 
7305   // If the declarator is a template-id, translate the parser's template
7306   // argument list into our AST format.
7307   bool HasExplicitTemplateArgs = false;
7308   TemplateArgumentListInfo TemplateArgs;
7309   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7310     TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7311     TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7312     TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7313     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7314                                        TemplateId->NumArgs);
7315     translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7316     HasExplicitTemplateArgs = true;
7317   }
7318 
7319   // C++ [temp.explicit]p1:
7320   //   A [...] function [...] can be explicitly instantiated from its template.
7321   //   A member function [...] of a class template can be explicitly
7322   //  instantiated from the member definition associated with its class
7323   //  template.
7324   UnresolvedSet<8> Matches;
7325   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7326   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7327        P != PEnd; ++P) {
7328     NamedDecl *Prev = *P;
7329     if (!HasExplicitTemplateArgs) {
7330       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7331         if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7332           Matches.clear();
7333 
7334           Matches.addDecl(Method, P.getAccess());
7335           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7336             break;
7337         }
7338       }
7339     }
7340 
7341     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7342     if (!FunTmpl)
7343       continue;
7344 
7345     TemplateDeductionInfo Info(FailedCandidates.getLocation());
7346     FunctionDecl *Specialization = 0;
7347     if (TemplateDeductionResult TDK
7348           = DeduceTemplateArguments(FunTmpl,
7349                                (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7350                                     R, Specialization, Info)) {
7351       // Keep track of almost-matches.
7352       FailedCandidates.addCandidate()
7353           .set(FunTmpl->getTemplatedDecl(),
7354                MakeDeductionFailureInfo(Context, TDK, Info));
7355       (void)TDK;
7356       continue;
7357     }
7358 
7359     Matches.addDecl(Specialization, P.getAccess());
7360   }
7361 
7362   // Find the most specialized function template specialization.
7363   UnresolvedSetIterator Result = getMostSpecialized(
7364       Matches.begin(), Matches.end(), FailedCandidates, TPOC_Other, 0,
7365       D.getIdentifierLoc(),
7366       PDiag(diag::err_explicit_instantiation_not_known) << Name,
7367       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7368       PDiag(diag::note_explicit_instantiation_candidate));
7369 
7370   if (Result == Matches.end())
7371     return true;
7372 
7373   // Ignore access control bits, we don't need them for redeclaration checking.
7374   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7375 
7376   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7377     Diag(D.getIdentifierLoc(),
7378          diag::err_explicit_instantiation_member_function_not_instantiated)
7379       << Specialization
7380       << (Specialization->getTemplateSpecializationKind() ==
7381           TSK_ExplicitSpecialization);
7382     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7383     return true;
7384   }
7385 
7386   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7387   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7388     PrevDecl = Specialization;
7389 
7390   if (PrevDecl) {
7391     bool HasNoEffect = false;
7392     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7393                                                PrevDecl,
7394                                      PrevDecl->getTemplateSpecializationKind(),
7395                                           PrevDecl->getPointOfInstantiation(),
7396                                                HasNoEffect))
7397       return true;
7398 
7399     // FIXME: We may still want to build some representation of this
7400     // explicit specialization.
7401     if (HasNoEffect)
7402       return (Decl*) 0;
7403   }
7404 
7405   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7406   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7407   if (Attr)
7408     ProcessDeclAttributeList(S, Specialization, Attr);
7409 
7410   if (TSK == TSK_ExplicitInstantiationDefinition)
7411     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7412 
7413   // C++0x [temp.explicit]p2:
7414   //   If the explicit instantiation is for a member function, a member class
7415   //   or a static data member of a class template specialization, the name of
7416   //   the class template specialization in the qualified-id for the member
7417   //   name shall be a simple-template-id.
7418   //
7419   // C++98 has the same restriction, just worded differently.
7420   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7421   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7422       D.getCXXScopeSpec().isSet() &&
7423       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7424     Diag(D.getIdentifierLoc(),
7425          diag::ext_explicit_instantiation_without_qualified_id)
7426     << Specialization << D.getCXXScopeSpec().getRange();
7427 
7428   CheckExplicitInstantiationScope(*this,
7429                    FunTmpl? (NamedDecl *)FunTmpl
7430                           : Specialization->getInstantiatedFromMemberFunction(),
7431                                   D.getIdentifierLoc(),
7432                                   D.getCXXScopeSpec().isSet());
7433 
7434   // FIXME: Create some kind of ExplicitInstantiationDecl here.
7435   return (Decl*) 0;
7436 }
7437 
7438 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7439 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7440                         const CXXScopeSpec &SS, IdentifierInfo *Name,
7441                         SourceLocation TagLoc, SourceLocation NameLoc) {
7442   // This has to hold, because SS is expected to be defined.
7443   assert(Name && "Expected a name in a dependent tag");
7444 
7445   NestedNameSpecifier *NNS
7446     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7447   if (!NNS)
7448     return true;
7449 
7450   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7451 
7452   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7453     Diag(NameLoc, diag::err_dependent_tag_decl)
7454       << (TUK == TUK_Definition) << Kind << SS.getRange();
7455     return true;
7456   }
7457 
7458   // Create the resulting type.
7459   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7460   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7461 
7462   // Create type-source location information for this type.
7463   TypeLocBuilder TLB;
7464   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7465   TL.setElaboratedKeywordLoc(TagLoc);
7466   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7467   TL.setNameLoc(NameLoc);
7468   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7469 }
7470 
7471 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7472 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7473                         const CXXScopeSpec &SS, const IdentifierInfo &II,
7474                         SourceLocation IdLoc) {
7475   if (SS.isInvalid())
7476     return true;
7477 
7478   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7479     Diag(TypenameLoc,
7480          getLangOpts().CPlusPlus11 ?
7481            diag::warn_cxx98_compat_typename_outside_of_template :
7482            diag::ext_typename_outside_of_template)
7483       << FixItHint::CreateRemoval(TypenameLoc);
7484 
7485   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7486   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7487                                  TypenameLoc, QualifierLoc, II, IdLoc);
7488   if (T.isNull())
7489     return true;
7490 
7491   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7492   if (isa<DependentNameType>(T)) {
7493     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7494     TL.setElaboratedKeywordLoc(TypenameLoc);
7495     TL.setQualifierLoc(QualifierLoc);
7496     TL.setNameLoc(IdLoc);
7497   } else {
7498     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7499     TL.setElaboratedKeywordLoc(TypenameLoc);
7500     TL.setQualifierLoc(QualifierLoc);
7501     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7502   }
7503 
7504   return CreateParsedType(T, TSI);
7505 }
7506 
7507 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)7508 Sema::ActOnTypenameType(Scope *S,
7509                         SourceLocation TypenameLoc,
7510                         const CXXScopeSpec &SS,
7511                         SourceLocation TemplateKWLoc,
7512                         TemplateTy TemplateIn,
7513                         SourceLocation TemplateNameLoc,
7514                         SourceLocation LAngleLoc,
7515                         ASTTemplateArgsPtr TemplateArgsIn,
7516                         SourceLocation RAngleLoc) {
7517   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7518     Diag(TypenameLoc,
7519          getLangOpts().CPlusPlus11 ?
7520            diag::warn_cxx98_compat_typename_outside_of_template :
7521            diag::ext_typename_outside_of_template)
7522       << FixItHint::CreateRemoval(TypenameLoc);
7523 
7524   // Translate the parser's template argument list in our AST format.
7525   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7526   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7527 
7528   TemplateName Template = TemplateIn.get();
7529   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7530     // Construct a dependent template specialization type.
7531     assert(DTN && "dependent template has non-dependent name?");
7532     assert(DTN->getQualifier()
7533            == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7534     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7535                                                           DTN->getQualifier(),
7536                                                           DTN->getIdentifier(),
7537                                                                 TemplateArgs);
7538 
7539     // Create source-location information for this type.
7540     TypeLocBuilder Builder;
7541     DependentTemplateSpecializationTypeLoc SpecTL
7542     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7543     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7544     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7545     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7546     SpecTL.setTemplateNameLoc(TemplateNameLoc);
7547     SpecTL.setLAngleLoc(LAngleLoc);
7548     SpecTL.setRAngleLoc(RAngleLoc);
7549     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7550       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7551     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7552   }
7553 
7554   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7555   if (T.isNull())
7556     return true;
7557 
7558   // Provide source-location information for the template specialization type.
7559   TypeLocBuilder Builder;
7560   TemplateSpecializationTypeLoc SpecTL
7561     = Builder.push<TemplateSpecializationTypeLoc>(T);
7562   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7563   SpecTL.setTemplateNameLoc(TemplateNameLoc);
7564   SpecTL.setLAngleLoc(LAngleLoc);
7565   SpecTL.setRAngleLoc(RAngleLoc);
7566   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7567     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7568 
7569   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7570   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7571   TL.setElaboratedKeywordLoc(TypenameLoc);
7572   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7573 
7574   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7575   return CreateParsedType(T, TSI);
7576 }
7577 
7578 
7579 /// Determine whether this failed name lookup should be treated as being
7580 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7581 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7582                        SourceRange &CondRange) {
7583   // We must be looking for a ::type...
7584   if (!II.isStr("type"))
7585     return false;
7586 
7587   // ... within an explicitly-written template specialization...
7588   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7589     return false;
7590   TypeLoc EnableIfTy = NNS.getTypeLoc();
7591   TemplateSpecializationTypeLoc EnableIfTSTLoc =
7592       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7593   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7594     return false;
7595   const TemplateSpecializationType *EnableIfTST =
7596     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7597 
7598   // ... which names a complete class template declaration...
7599   const TemplateDecl *EnableIfDecl =
7600     EnableIfTST->getTemplateName().getAsTemplateDecl();
7601   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7602     return false;
7603 
7604   // ... called "enable_if".
7605   const IdentifierInfo *EnableIfII =
7606     EnableIfDecl->getDeclName().getAsIdentifierInfo();
7607   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7608     return false;
7609 
7610   // Assume the first template argument is the condition.
7611   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7612   return true;
7613 }
7614 
7615 /// \brief Build the type that describes a C++ typename specifier,
7616 /// e.g., "typename T::type".
7617 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7618 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7619                         SourceLocation KeywordLoc,
7620                         NestedNameSpecifierLoc QualifierLoc,
7621                         const IdentifierInfo &II,
7622                         SourceLocation IILoc) {
7623   CXXScopeSpec SS;
7624   SS.Adopt(QualifierLoc);
7625 
7626   DeclContext *Ctx = computeDeclContext(SS);
7627   if (!Ctx) {
7628     // If the nested-name-specifier is dependent and couldn't be
7629     // resolved to a type, build a typename type.
7630     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7631     return Context.getDependentNameType(Keyword,
7632                                         QualifierLoc.getNestedNameSpecifier(),
7633                                         &II);
7634   }
7635 
7636   // If the nested-name-specifier refers to the current instantiation,
7637   // the "typename" keyword itself is superfluous. In C++03, the
7638   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7639   // allows such extraneous "typename" keywords, and we retroactively
7640   // apply this DR to C++03 code with only a warning. In any case we continue.
7641 
7642   if (RequireCompleteDeclContext(SS, Ctx))
7643     return QualType();
7644 
7645   DeclarationName Name(&II);
7646   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7647   LookupQualifiedName(Result, Ctx);
7648   unsigned DiagID = 0;
7649   Decl *Referenced = 0;
7650   switch (Result.getResultKind()) {
7651   case LookupResult::NotFound: {
7652     // If we're looking up 'type' within a template named 'enable_if', produce
7653     // a more specific diagnostic.
7654     SourceRange CondRange;
7655     if (isEnableIf(QualifierLoc, II, CondRange)) {
7656       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7657         << Ctx << CondRange;
7658       return QualType();
7659     }
7660 
7661     DiagID = diag::err_typename_nested_not_found;
7662     break;
7663   }
7664 
7665   case LookupResult::FoundUnresolvedValue: {
7666     // We found a using declaration that is a value. Most likely, the using
7667     // declaration itself is meant to have the 'typename' keyword.
7668     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7669                           IILoc);
7670     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7671       << Name << Ctx << FullRange;
7672     if (UnresolvedUsingValueDecl *Using
7673           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7674       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7675       Diag(Loc, diag::note_using_value_decl_missing_typename)
7676         << FixItHint::CreateInsertion(Loc, "typename ");
7677     }
7678   }
7679   // Fall through to create a dependent typename type, from which we can recover
7680   // better.
7681 
7682   case LookupResult::NotFoundInCurrentInstantiation:
7683     // Okay, it's a member of an unknown instantiation.
7684     return Context.getDependentNameType(Keyword,
7685                                         QualifierLoc.getNestedNameSpecifier(),
7686                                         &II);
7687 
7688   case LookupResult::Found:
7689     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7690       // We found a type. Build an ElaboratedType, since the
7691       // typename-specifier was just sugar.
7692       return Context.getElaboratedType(ETK_Typename,
7693                                        QualifierLoc.getNestedNameSpecifier(),
7694                                        Context.getTypeDeclType(Type));
7695     }
7696 
7697     DiagID = diag::err_typename_nested_not_type;
7698     Referenced = Result.getFoundDecl();
7699     break;
7700 
7701   case LookupResult::FoundOverloaded:
7702     DiagID = diag::err_typename_nested_not_type;
7703     Referenced = *Result.begin();
7704     break;
7705 
7706   case LookupResult::Ambiguous:
7707     return QualType();
7708   }
7709 
7710   // If we get here, it's because name lookup did not find a
7711   // type. Emit an appropriate diagnostic and return an error.
7712   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7713                         IILoc);
7714   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7715   if (Referenced)
7716     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7717       << Name;
7718   return QualType();
7719 }
7720 
7721 namespace {
7722   // See Sema::RebuildTypeInCurrentInstantiation
7723   class CurrentInstantiationRebuilder
7724     : public TreeTransform<CurrentInstantiationRebuilder> {
7725     SourceLocation Loc;
7726     DeclarationName Entity;
7727 
7728   public:
7729     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7730 
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)7731     CurrentInstantiationRebuilder(Sema &SemaRef,
7732                                   SourceLocation Loc,
7733                                   DeclarationName Entity)
7734     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7735       Loc(Loc), Entity(Entity) { }
7736 
7737     /// \brief Determine whether the given type \p T has already been
7738     /// transformed.
7739     ///
7740     /// For the purposes of type reconstruction, a type has already been
7741     /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7742     bool AlreadyTransformed(QualType T) {
7743       return T.isNull() || !T->isDependentType();
7744     }
7745 
7746     /// \brief Returns the location of the entity whose type is being
7747     /// rebuilt.
getBaseLocation()7748     SourceLocation getBaseLocation() { return Loc; }
7749 
7750     /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()7751     DeclarationName getBaseEntity() { return Entity; }
7752 
7753     /// \brief Sets the "base" location and entity when that
7754     /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)7755     void setBase(SourceLocation Loc, DeclarationName Entity) {
7756       this->Loc = Loc;
7757       this->Entity = Entity;
7758     }
7759 
TransformLambdaExpr(LambdaExpr * E)7760     ExprResult TransformLambdaExpr(LambdaExpr *E) {
7761       // Lambdas never need to be transformed.
7762       return E;
7763     }
7764   };
7765 }
7766 
7767 /// \brief Rebuilds a type within the context of the current instantiation.
7768 ///
7769 /// The type \p T is part of the type of an out-of-line member definition of
7770 /// a class template (or class template partial specialization) that was parsed
7771 /// and constructed before we entered the scope of the class template (or
7772 /// partial specialization thereof). This routine will rebuild that type now
7773 /// that we have entered the declarator's scope, which may produce different
7774 /// canonical types, e.g.,
7775 ///
7776 /// \code
7777 /// template<typename T>
7778 /// struct X {
7779 ///   typedef T* pointer;
7780 ///   pointer data();
7781 /// };
7782 ///
7783 /// template<typename T>
7784 /// typename X<T>::pointer X<T>::data() { ... }
7785 /// \endcode
7786 ///
7787 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7788 /// since we do not know that we can look into X<T> when we parsed the type.
7789 /// This function will rebuild the type, performing the lookup of "pointer"
7790 /// in X<T> and returning an ElaboratedType whose canonical type is the same
7791 /// as the canonical type of T*, allowing the return types of the out-of-line
7792 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)7793 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7794                                                         SourceLocation Loc,
7795                                                         DeclarationName Name) {
7796   if (!T || !T->getType()->isDependentType())
7797     return T;
7798 
7799   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7800   return Rebuilder.TransformType(T);
7801 }
7802 
RebuildExprInCurrentInstantiation(Expr * E)7803 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7804   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7805                                           DeclarationName());
7806   return Rebuilder.TransformExpr(E);
7807 }
7808 
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)7809 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7810   if (SS.isInvalid())
7811     return true;
7812 
7813   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7814   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7815                                           DeclarationName());
7816   NestedNameSpecifierLoc Rebuilt
7817     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7818   if (!Rebuilt)
7819     return true;
7820 
7821   SS.Adopt(Rebuilt);
7822   return false;
7823 }
7824 
7825 /// \brief Rebuild the template parameters now that we know we're in a current
7826 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)7827 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7828                                                TemplateParameterList *Params) {
7829   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7830     Decl *Param = Params->getParam(I);
7831 
7832     // There is nothing to rebuild in a type parameter.
7833     if (isa<TemplateTypeParmDecl>(Param))
7834       continue;
7835 
7836     // Rebuild the template parameter list of a template template parameter.
7837     if (TemplateTemplateParmDecl *TTP
7838         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7839       if (RebuildTemplateParamsInCurrentInstantiation(
7840             TTP->getTemplateParameters()))
7841         return true;
7842 
7843       continue;
7844     }
7845 
7846     // Rebuild the type of a non-type template parameter.
7847     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7848     TypeSourceInfo *NewTSI
7849       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7850                                           NTTP->getLocation(),
7851                                           NTTP->getDeclName());
7852     if (!NewTSI)
7853       return true;
7854 
7855     if (NewTSI != NTTP->getTypeSourceInfo()) {
7856       NTTP->setTypeSourceInfo(NewTSI);
7857       NTTP->setType(NewTSI->getType());
7858     }
7859   }
7860 
7861   return false;
7862 }
7863 
7864 /// \brief Produces a formatted string that describes the binding of
7865 /// template parameters to template arguments.
7866 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)7867 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7868                                       const TemplateArgumentList &Args) {
7869   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7870 }
7871 
7872 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)7873 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7874                                       const TemplateArgument *Args,
7875                                       unsigned NumArgs) {
7876   SmallString<128> Str;
7877   llvm::raw_svector_ostream Out(Str);
7878 
7879   if (!Params || Params->size() == 0 || NumArgs == 0)
7880     return std::string();
7881 
7882   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7883     if (I >= NumArgs)
7884       break;
7885 
7886     if (I == 0)
7887       Out << "[with ";
7888     else
7889       Out << ", ";
7890 
7891     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7892       Out << Id->getName();
7893     } else {
7894       Out << '$' << I;
7895     }
7896 
7897     Out << " = ";
7898     Args[I].print(getPrintingPolicy(), Out);
7899   }
7900 
7901   Out << ']';
7902   return Out.str();
7903 }
7904 
MarkAsLateParsedTemplate(FunctionDecl * FD,bool Flag)7905 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7906   if (!FD)
7907     return;
7908   FD->setLateTemplateParsed(Flag);
7909 }
7910 
IsInsideALocalClassWithinATemplateFunction()7911 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7912   DeclContext *DC = CurContext;
7913 
7914   while (DC) {
7915     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7916       const FunctionDecl *FD = RD->isLocalClass();
7917       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7918     } else if (DC->isTranslationUnit() || DC->isNamespace())
7919       return false;
7920 
7921     DC = DC->getParent();
7922   }
7923   return false;
7924 }
7925