1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/ParsedTemplate.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "clang/Sema/Template.h"
29 #include "clang/Sema/TemplateDeduction.h"
30 #include "llvm/ADT/SmallBitVector.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 using namespace clang;
34 using namespace sema;
35
36 // Exported for use by Parser.
37 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)38 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39 unsigned N) {
40 if (!N) return SourceRange();
41 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42 }
43
44 /// \brief Determine whether the declaration found is acceptable as the name
45 /// of a template and, if so, return that template declaration. Otherwise,
46 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)47 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48 NamedDecl *Orig,
49 bool AllowFunctionTemplates) {
50 NamedDecl *D = Orig->getUnderlyingDecl();
51
52 if (isa<TemplateDecl>(D)) {
53 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54 return 0;
55
56 return Orig;
57 }
58
59 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60 // C++ [temp.local]p1:
61 // Like normal (non-template) classes, class templates have an
62 // injected-class-name (Clause 9). The injected-class-name
63 // can be used with or without a template-argument-list. When
64 // it is used without a template-argument-list, it is
65 // equivalent to the injected-class-name followed by the
66 // template-parameters of the class template enclosed in
67 // <>. When it is used with a template-argument-list, it
68 // refers to the specified class template specialization,
69 // which could be the current specialization or another
70 // specialization.
71 if (Record->isInjectedClassName()) {
72 Record = cast<CXXRecordDecl>(Record->getDeclContext());
73 if (Record->getDescribedClassTemplate())
74 return Record->getDescribedClassTemplate();
75
76 if (ClassTemplateSpecializationDecl *Spec
77 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78 return Spec->getSpecializedTemplate();
79 }
80
81 return 0;
82 }
83
84 return 0;
85 }
86
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)87 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
88 bool AllowFunctionTemplates) {
89 // The set of class templates we've already seen.
90 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91 LookupResult::Filter filter = R.makeFilter();
92 while (filter.hasNext()) {
93 NamedDecl *Orig = filter.next();
94 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95 AllowFunctionTemplates);
96 if (!Repl)
97 filter.erase();
98 else if (Repl != Orig) {
99
100 // C++ [temp.local]p3:
101 // A lookup that finds an injected-class-name (10.2) can result in an
102 // ambiguity in certain cases (for example, if it is found in more than
103 // one base class). If all of the injected-class-names that are found
104 // refer to specializations of the same class template, and if the name
105 // is used as a template-name, the reference refers to the class
106 // template itself and not a specialization thereof, and is not
107 // ambiguous.
108 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109 if (!ClassTemplates.insert(ClassTmpl)) {
110 filter.erase();
111 continue;
112 }
113
114 // FIXME: we promote access to public here as a workaround to
115 // the fact that LookupResult doesn't let us remember that we
116 // found this template through a particular injected class name,
117 // which means we end up doing nasty things to the invariants.
118 // Pretending that access is public is *much* safer.
119 filter.replace(Repl, AS_public);
120 }
121 }
122 filter.done();
123 }
124
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)125 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126 bool AllowFunctionTemplates) {
127 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129 return true;
130
131 return false;
132 }
133
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)134 TemplateNameKind Sema::isTemplateName(Scope *S,
135 CXXScopeSpec &SS,
136 bool hasTemplateKeyword,
137 UnqualifiedId &Name,
138 ParsedType ObjectTypePtr,
139 bool EnteringContext,
140 TemplateTy &TemplateResult,
141 bool &MemberOfUnknownSpecialization) {
142 assert(getLangOpts().CPlusPlus && "No template names in C!");
143
144 DeclarationName TName;
145 MemberOfUnknownSpecialization = false;
146
147 switch (Name.getKind()) {
148 case UnqualifiedId::IK_Identifier:
149 TName = DeclarationName(Name.Identifier);
150 break;
151
152 case UnqualifiedId::IK_OperatorFunctionId:
153 TName = Context.DeclarationNames.getCXXOperatorName(
154 Name.OperatorFunctionId.Operator);
155 break;
156
157 case UnqualifiedId::IK_LiteralOperatorId:
158 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159 break;
160
161 default:
162 return TNK_Non_template;
163 }
164
165 QualType ObjectType = ObjectTypePtr.get();
166
167 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169 MemberOfUnknownSpecialization);
170 if (R.empty()) return TNK_Non_template;
171 if (R.isAmbiguous()) {
172 // Suppress diagnostics; we'll redo this lookup later.
173 R.suppressDiagnostics();
174
175 // FIXME: we might have ambiguous templates, in which case we
176 // should at least parse them properly!
177 return TNK_Non_template;
178 }
179
180 TemplateName Template;
181 TemplateNameKind TemplateKind;
182
183 unsigned ResultCount = R.end() - R.begin();
184 if (ResultCount > 1) {
185 // We assume that we'll preserve the qualifier from a function
186 // template name in other ways.
187 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188 TemplateKind = TNK_Function_template;
189
190 // We'll do this lookup again later.
191 R.suppressDiagnostics();
192 } else {
193 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194
195 if (SS.isSet() && !SS.isInvalid()) {
196 NestedNameSpecifier *Qualifier
197 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198 Template = Context.getQualifiedTemplateName(Qualifier,
199 hasTemplateKeyword, TD);
200 } else {
201 Template = TemplateName(TD);
202 }
203
204 if (isa<FunctionTemplateDecl>(TD)) {
205 TemplateKind = TNK_Function_template;
206
207 // We'll do this lookup again later.
208 R.suppressDiagnostics();
209 } else {
210 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212 TemplateKind =
213 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214 }
215 }
216
217 TemplateResult = TemplateTy::make(Template);
218 return TemplateKind;
219 }
220
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222 SourceLocation IILoc,
223 Scope *S,
224 const CXXScopeSpec *SS,
225 TemplateTy &SuggestedTemplate,
226 TemplateNameKind &SuggestedKind) {
227 // We can't recover unless there's a dependent scope specifier preceding the
228 // template name.
229 // FIXME: Typo correction?
230 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231 computeDeclContext(*SS))
232 return false;
233
234 // The code is missing a 'template' keyword prior to the dependent template
235 // name.
236 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237 Diag(IILoc, diag::err_template_kw_missing)
238 << Qualifier << II.getName()
239 << FixItHint::CreateInsertion(IILoc, "template ");
240 SuggestedTemplate
241 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242 SuggestedKind = TNK_Dependent_template_name;
243 return true;
244 }
245
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)246 void Sema::LookupTemplateName(LookupResult &Found,
247 Scope *S, CXXScopeSpec &SS,
248 QualType ObjectType,
249 bool EnteringContext,
250 bool &MemberOfUnknownSpecialization) {
251 // Determine where to perform name lookup
252 MemberOfUnknownSpecialization = false;
253 DeclContext *LookupCtx = 0;
254 bool isDependent = false;
255 if (!ObjectType.isNull()) {
256 // This nested-name-specifier occurs in a member access expression, e.g.,
257 // x->B::f, and we are looking into the type of the object.
258 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259 LookupCtx = computeDeclContext(ObjectType);
260 isDependent = ObjectType->isDependentType();
261 assert((isDependent || !ObjectType->isIncompleteType() ||
262 ObjectType->castAs<TagType>()->isBeingDefined()) &&
263 "Caller should have completed object type");
264
265 // Template names cannot appear inside an Objective-C class or object type.
266 if (ObjectType->isObjCObjectOrInterfaceType()) {
267 Found.clear();
268 return;
269 }
270 } else if (SS.isSet()) {
271 // This nested-name-specifier occurs after another nested-name-specifier,
272 // so long into the context associated with the prior nested-name-specifier.
273 LookupCtx = computeDeclContext(SS, EnteringContext);
274 isDependent = isDependentScopeSpecifier(SS);
275
276 // The declaration context must be complete.
277 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278 return;
279 }
280
281 bool ObjectTypeSearchedInScope = false;
282 bool AllowFunctionTemplatesInLookup = true;
283 if (LookupCtx) {
284 // Perform "qualified" name lookup into the declaration context we
285 // computed, which is either the type of the base of a member access
286 // expression or the declaration context associated with a prior
287 // nested-name-specifier.
288 LookupQualifiedName(Found, LookupCtx);
289 if (!ObjectType.isNull() && Found.empty()) {
290 // C++ [basic.lookup.classref]p1:
291 // In a class member access expression (5.2.5), if the . or -> token is
292 // immediately followed by an identifier followed by a <, the
293 // identifier must be looked up to determine whether the < is the
294 // beginning of a template argument list (14.2) or a less-than operator.
295 // The identifier is first looked up in the class of the object
296 // expression. If the identifier is not found, it is then looked up in
297 // the context of the entire postfix-expression and shall name a class
298 // or function template.
299 if (S) LookupName(Found, S);
300 ObjectTypeSearchedInScope = true;
301 AllowFunctionTemplatesInLookup = false;
302 }
303 } else if (isDependent && (!S || ObjectType.isNull())) {
304 // We cannot look into a dependent object type or nested nme
305 // specifier.
306 MemberOfUnknownSpecialization = true;
307 return;
308 } else {
309 // Perform unqualified name lookup in the current scope.
310 LookupName(Found, S);
311
312 if (!ObjectType.isNull())
313 AllowFunctionTemplatesInLookup = false;
314 }
315
316 if (Found.empty() && !isDependent) {
317 // If we did not find any names, attempt to correct any typos.
318 DeclarationName Name = Found.getLookupName();
319 Found.clear();
320 // Simple filter callback that, for keywords, only accepts the C++ *_cast
321 CorrectionCandidateCallback FilterCCC;
322 FilterCCC.WantTypeSpecifiers = false;
323 FilterCCC.WantExpressionKeywords = false;
324 FilterCCC.WantRemainingKeywords = false;
325 FilterCCC.WantCXXNamedCasts = true;
326 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327 Found.getLookupKind(), S, &SS,
328 FilterCCC, LookupCtx)) {
329 Found.setLookupName(Corrected.getCorrection());
330 if (Corrected.getCorrectionDecl())
331 Found.addDecl(Corrected.getCorrectionDecl());
332 FilterAcceptableTemplateNames(Found);
333 if (!Found.empty()) {
334 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
335 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
336 if (LookupCtx) {
337 bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
338 Name.getAsString() == CorrectedStr;
339 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
340 << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr
341 << SS.getRange()
342 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
343 CorrectedStr);
344 } else {
345 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
346 << Name << CorrectedQuotedStr
347 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
348 }
349 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
350 Diag(Template->getLocation(), diag::note_previous_decl)
351 << CorrectedQuotedStr;
352 }
353 } else {
354 Found.setLookupName(Name);
355 }
356 }
357
358 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
359 if (Found.empty()) {
360 if (isDependent)
361 MemberOfUnknownSpecialization = true;
362 return;
363 }
364
365 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
366 !(getLangOpts().CPlusPlus11 && !Found.empty())) {
367 // C++03 [basic.lookup.classref]p1:
368 // [...] If the lookup in the class of the object expression finds a
369 // template, the name is also looked up in the context of the entire
370 // postfix-expression and [...]
371 //
372 // Note: C++11 does not perform this second lookup.
373 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
374 LookupOrdinaryName);
375 LookupName(FoundOuter, S);
376 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
377
378 if (FoundOuter.empty()) {
379 // - if the name is not found, the name found in the class of the
380 // object expression is used, otherwise
381 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
382 FoundOuter.isAmbiguous()) {
383 // - if the name is found in the context of the entire
384 // postfix-expression and does not name a class template, the name
385 // found in the class of the object expression is used, otherwise
386 FoundOuter.clear();
387 } else if (!Found.isSuppressingDiagnostics()) {
388 // - if the name found is a class template, it must refer to the same
389 // entity as the one found in the class of the object expression,
390 // otherwise the program is ill-formed.
391 if (!Found.isSingleResult() ||
392 Found.getFoundDecl()->getCanonicalDecl()
393 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
394 Diag(Found.getNameLoc(),
395 diag::ext_nested_name_member_ref_lookup_ambiguous)
396 << Found.getLookupName()
397 << ObjectType;
398 Diag(Found.getRepresentativeDecl()->getLocation(),
399 diag::note_ambig_member_ref_object_type)
400 << ObjectType;
401 Diag(FoundOuter.getFoundDecl()->getLocation(),
402 diag::note_ambig_member_ref_scope);
403
404 // Recover by taking the template that we found in the object
405 // expression's type.
406 }
407 }
408 }
409 }
410
411 /// ActOnDependentIdExpression - Handle a dependent id-expression that
412 /// was just parsed. This is only possible with an explicit scope
413 /// specifier naming a dependent type.
414 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)415 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
416 SourceLocation TemplateKWLoc,
417 const DeclarationNameInfo &NameInfo,
418 bool isAddressOfOperand,
419 const TemplateArgumentListInfo *TemplateArgs) {
420 DeclContext *DC = getFunctionLevelDeclContext();
421
422 if (!isAddressOfOperand &&
423 isa<CXXMethodDecl>(DC) &&
424 cast<CXXMethodDecl>(DC)->isInstance()) {
425 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
426
427 // Since the 'this' expression is synthesized, we don't need to
428 // perform the double-lookup check.
429 NamedDecl *FirstQualifierInScope = 0;
430
431 return Owned(CXXDependentScopeMemberExpr::Create(Context,
432 /*This*/ 0, ThisType,
433 /*IsArrow*/ true,
434 /*Op*/ SourceLocation(),
435 SS.getWithLocInContext(Context),
436 TemplateKWLoc,
437 FirstQualifierInScope,
438 NameInfo,
439 TemplateArgs));
440 }
441
442 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
443 }
444
445 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)446 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
447 SourceLocation TemplateKWLoc,
448 const DeclarationNameInfo &NameInfo,
449 const TemplateArgumentListInfo *TemplateArgs) {
450 return Owned(DependentScopeDeclRefExpr::Create(Context,
451 SS.getWithLocInContext(Context),
452 TemplateKWLoc,
453 NameInfo,
454 TemplateArgs));
455 }
456
457 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
458 /// that the template parameter 'PrevDecl' is being shadowed by a new
459 /// declaration at location Loc. Returns true to indicate that this is
460 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)461 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
462 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
463
464 // Microsoft Visual C++ permits template parameters to be shadowed.
465 if (getLangOpts().MicrosoftExt)
466 return;
467
468 // C++ [temp.local]p4:
469 // A template-parameter shall not be redeclared within its
470 // scope (including nested scopes).
471 Diag(Loc, diag::err_template_param_shadow)
472 << cast<NamedDecl>(PrevDecl)->getDeclName();
473 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
474 return;
475 }
476
477 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
478 /// the parameter D to reference the templated declaration and return a pointer
479 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)480 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
481 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
482 D = Temp->getTemplatedDecl();
483 return Temp;
484 }
485 return 0;
486 }
487
getTemplatePackExpansion(SourceLocation EllipsisLoc) const488 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
489 SourceLocation EllipsisLoc) const {
490 assert(Kind == Template &&
491 "Only template template arguments can be pack expansions here");
492 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
493 "Template template argument pack expansion without packs");
494 ParsedTemplateArgument Result(*this);
495 Result.EllipsisLoc = EllipsisLoc;
496 return Result;
497 }
498
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)499 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
500 const ParsedTemplateArgument &Arg) {
501
502 switch (Arg.getKind()) {
503 case ParsedTemplateArgument::Type: {
504 TypeSourceInfo *DI;
505 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
506 if (!DI)
507 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
508 return TemplateArgumentLoc(TemplateArgument(T), DI);
509 }
510
511 case ParsedTemplateArgument::NonType: {
512 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
513 return TemplateArgumentLoc(TemplateArgument(E), E);
514 }
515
516 case ParsedTemplateArgument::Template: {
517 TemplateName Template = Arg.getAsTemplate().get();
518 TemplateArgument TArg;
519 if (Arg.getEllipsisLoc().isValid())
520 TArg = TemplateArgument(Template, Optional<unsigned int>());
521 else
522 TArg = Template;
523 return TemplateArgumentLoc(TArg,
524 Arg.getScopeSpec().getWithLocInContext(
525 SemaRef.Context),
526 Arg.getLocation(),
527 Arg.getEllipsisLoc());
528 }
529 }
530
531 llvm_unreachable("Unhandled parsed template argument");
532 }
533
534 /// \brief Translates template arguments as provided by the parser
535 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)536 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
537 TemplateArgumentListInfo &TemplateArgs) {
538 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
539 TemplateArgs.addArgument(translateTemplateArgument(*this,
540 TemplateArgsIn[I]));
541 }
542
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)543 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
544 SourceLocation Loc,
545 IdentifierInfo *Name) {
546 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
547 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
548 if (PrevDecl && PrevDecl->isTemplateParameter())
549 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
550 }
551
552 /// ActOnTypeParameter - Called when a C++ template type parameter
553 /// (e.g., "typename T") has been parsed. Typename specifies whether
554 /// the keyword "typename" was used to declare the type parameter
555 /// (otherwise, "class" was used), and KeyLoc is the location of the
556 /// "class" or "typename" keyword. ParamName is the name of the
557 /// parameter (NULL indicates an unnamed template parameter) and
558 /// ParamNameLoc is the location of the parameter name (if any).
559 /// If the type parameter has a default argument, it will be added
560 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,bool Ellipsis,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)561 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
562 SourceLocation EllipsisLoc,
563 SourceLocation KeyLoc,
564 IdentifierInfo *ParamName,
565 SourceLocation ParamNameLoc,
566 unsigned Depth, unsigned Position,
567 SourceLocation EqualLoc,
568 ParsedType DefaultArg) {
569 assert(S->isTemplateParamScope() &&
570 "Template type parameter not in template parameter scope!");
571 bool Invalid = false;
572
573 SourceLocation Loc = ParamNameLoc;
574 if (!ParamName)
575 Loc = KeyLoc;
576
577 TemplateTypeParmDecl *Param
578 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
579 KeyLoc, Loc, Depth, Position, ParamName,
580 Typename, Ellipsis);
581 Param->setAccess(AS_public);
582 if (Invalid)
583 Param->setInvalidDecl();
584
585 if (ParamName) {
586 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
587
588 // Add the template parameter into the current scope.
589 S->AddDecl(Param);
590 IdResolver.AddDecl(Param);
591 }
592
593 // C++0x [temp.param]p9:
594 // A default template-argument may be specified for any kind of
595 // template-parameter that is not a template parameter pack.
596 if (DefaultArg && Ellipsis) {
597 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
598 DefaultArg = ParsedType();
599 }
600
601 // Handle the default argument, if provided.
602 if (DefaultArg) {
603 TypeSourceInfo *DefaultTInfo;
604 GetTypeFromParser(DefaultArg, &DefaultTInfo);
605
606 assert(DefaultTInfo && "expected source information for type");
607
608 // Check for unexpanded parameter packs.
609 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
610 UPPC_DefaultArgument))
611 return Param;
612
613 // Check the template argument itself.
614 if (CheckTemplateArgument(Param, DefaultTInfo)) {
615 Param->setInvalidDecl();
616 return Param;
617 }
618
619 Param->setDefaultArgument(DefaultTInfo, false);
620 }
621
622 return Param;
623 }
624
625 /// \brief Check that the type of a non-type template parameter is
626 /// well-formed.
627 ///
628 /// \returns the (possibly-promoted) parameter type if valid;
629 /// otherwise, produces a diagnostic and returns a NULL type.
630 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)631 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
632 // We don't allow variably-modified types as the type of non-type template
633 // parameters.
634 if (T->isVariablyModifiedType()) {
635 Diag(Loc, diag::err_variably_modified_nontype_template_param)
636 << T;
637 return QualType();
638 }
639
640 // C++ [temp.param]p4:
641 //
642 // A non-type template-parameter shall have one of the following
643 // (optionally cv-qualified) types:
644 //
645 // -- integral or enumeration type,
646 if (T->isIntegralOrEnumerationType() ||
647 // -- pointer to object or pointer to function,
648 T->isPointerType() ||
649 // -- reference to object or reference to function,
650 T->isReferenceType() ||
651 // -- pointer to member,
652 T->isMemberPointerType() ||
653 // -- std::nullptr_t.
654 T->isNullPtrType() ||
655 // If T is a dependent type, we can't do the check now, so we
656 // assume that it is well-formed.
657 T->isDependentType()) {
658 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
659 // are ignored when determining its type.
660 return T.getUnqualifiedType();
661 }
662
663 // C++ [temp.param]p8:
664 //
665 // A non-type template-parameter of type "array of T" or
666 // "function returning T" is adjusted to be of type "pointer to
667 // T" or "pointer to function returning T", respectively.
668 else if (T->isArrayType())
669 // FIXME: Keep the type prior to promotion?
670 return Context.getArrayDecayedType(T);
671 else if (T->isFunctionType())
672 // FIXME: Keep the type prior to promotion?
673 return Context.getPointerType(T);
674
675 Diag(Loc, diag::err_template_nontype_parm_bad_type)
676 << T;
677
678 return QualType();
679 }
680
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)681 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
682 unsigned Depth,
683 unsigned Position,
684 SourceLocation EqualLoc,
685 Expr *Default) {
686 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
687 QualType T = TInfo->getType();
688
689 assert(S->isTemplateParamScope() &&
690 "Non-type template parameter not in template parameter scope!");
691 bool Invalid = false;
692
693 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694 if (T.isNull()) {
695 T = Context.IntTy; // Recover with an 'int' type.
696 Invalid = true;
697 }
698
699 IdentifierInfo *ParamName = D.getIdentifier();
700 bool IsParameterPack = D.hasEllipsis();
701 NonTypeTemplateParmDecl *Param
702 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
703 D.getLocStart(),
704 D.getIdentifierLoc(),
705 Depth, Position, ParamName, T,
706 IsParameterPack, TInfo);
707 Param->setAccess(AS_public);
708
709 if (Invalid)
710 Param->setInvalidDecl();
711
712 if (ParamName) {
713 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
714 ParamName);
715
716 // Add the template parameter into the current scope.
717 S->AddDecl(Param);
718 IdResolver.AddDecl(Param);
719 }
720
721 // C++0x [temp.param]p9:
722 // A default template-argument may be specified for any kind of
723 // template-parameter that is not a template parameter pack.
724 if (Default && IsParameterPack) {
725 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
726 Default = 0;
727 }
728
729 // Check the well-formedness of the default template argument, if provided.
730 if (Default) {
731 // Check for unexpanded parameter packs.
732 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
733 return Param;
734
735 TemplateArgument Converted;
736 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
737 if (DefaultRes.isInvalid()) {
738 Param->setInvalidDecl();
739 return Param;
740 }
741 Default = DefaultRes.take();
742
743 Param->setDefaultArgument(Default, false);
744 }
745
746 return Param;
747 }
748
749 /// ActOnTemplateTemplateParameter - Called when a C++ template template
750 /// parameter (e.g. T in template <template \<typename> class T> class array)
751 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)752 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
753 SourceLocation TmpLoc,
754 TemplateParameterList *Params,
755 SourceLocation EllipsisLoc,
756 IdentifierInfo *Name,
757 SourceLocation NameLoc,
758 unsigned Depth,
759 unsigned Position,
760 SourceLocation EqualLoc,
761 ParsedTemplateArgument Default) {
762 assert(S->isTemplateParamScope() &&
763 "Template template parameter not in template parameter scope!");
764
765 // Construct the parameter object.
766 bool IsParameterPack = EllipsisLoc.isValid();
767 TemplateTemplateParmDecl *Param =
768 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
769 NameLoc.isInvalid()? TmpLoc : NameLoc,
770 Depth, Position, IsParameterPack,
771 Name, Params);
772 Param->setAccess(AS_public);
773
774 // If the template template parameter has a name, then link the identifier
775 // into the scope and lookup mechanisms.
776 if (Name) {
777 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
778
779 S->AddDecl(Param);
780 IdResolver.AddDecl(Param);
781 }
782
783 if (Params->size() == 0) {
784 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
785 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
786 Param->setInvalidDecl();
787 }
788
789 // C++0x [temp.param]p9:
790 // A default template-argument may be specified for any kind of
791 // template-parameter that is not a template parameter pack.
792 if (IsParameterPack && !Default.isInvalid()) {
793 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
794 Default = ParsedTemplateArgument();
795 }
796
797 if (!Default.isInvalid()) {
798 // Check only that we have a template template argument. We don't want to
799 // try to check well-formedness now, because our template template parameter
800 // might have dependent types in its template parameters, which we wouldn't
801 // be able to match now.
802 //
803 // If none of the template template parameter's template arguments mention
804 // other template parameters, we could actually perform more checking here.
805 // However, it isn't worth doing.
806 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
807 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
808 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
809 << DefaultArg.getSourceRange();
810 return Param;
811 }
812
813 // Check for unexpanded parameter packs.
814 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
815 DefaultArg.getArgument().getAsTemplate(),
816 UPPC_DefaultArgument))
817 return Param;
818
819 Param->setDefaultArgument(DefaultArg, false);
820 }
821
822 return Param;
823 }
824
825 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
826 /// contains the template parameters in Params/NumParams.
827 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)828 Sema::ActOnTemplateParameterList(unsigned Depth,
829 SourceLocation ExportLoc,
830 SourceLocation TemplateLoc,
831 SourceLocation LAngleLoc,
832 Decl **Params, unsigned NumParams,
833 SourceLocation RAngleLoc) {
834 if (ExportLoc.isValid())
835 Diag(ExportLoc, diag::warn_template_export_unsupported);
836
837 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
838 (NamedDecl**)Params, NumParams,
839 RAngleLoc);
840 }
841
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)842 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
843 if (SS.isSet())
844 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
845 }
846
847 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)848 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
849 SourceLocation KWLoc, CXXScopeSpec &SS,
850 IdentifierInfo *Name, SourceLocation NameLoc,
851 AttributeList *Attr,
852 TemplateParameterList *TemplateParams,
853 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
854 unsigned NumOuterTemplateParamLists,
855 TemplateParameterList** OuterTemplateParamLists) {
856 assert(TemplateParams && TemplateParams->size() > 0 &&
857 "No template parameters");
858 assert(TUK != TUK_Reference && "Can only declare or define class templates");
859 bool Invalid = false;
860
861 // Check that we can declare a template here.
862 if (CheckTemplateDeclScope(S, TemplateParams))
863 return true;
864
865 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
866 assert(Kind != TTK_Enum && "can't build template of enumerated type");
867
868 // There is no such thing as an unnamed class template.
869 if (!Name) {
870 Diag(KWLoc, diag::err_template_unnamed_class);
871 return true;
872 }
873
874 // Find any previous declaration with this name. For a friend with no
875 // scope explicitly specified, we only look for tag declarations (per
876 // C++11 [basic.lookup.elab]p2).
877 DeclContext *SemanticContext;
878 LookupResult Previous(*this, Name, NameLoc,
879 (SS.isEmpty() && TUK == TUK_Friend)
880 ? LookupTagName : LookupOrdinaryName,
881 ForRedeclaration);
882 if (SS.isNotEmpty() && !SS.isInvalid()) {
883 SemanticContext = computeDeclContext(SS, true);
884 if (!SemanticContext) {
885 // FIXME: Horrible, horrible hack! We can't currently represent this
886 // in the AST, and historically we have just ignored such friend
887 // class templates, so don't complain here.
888 if (TUK != TUK_Friend)
889 Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
890 << SS.getScopeRep() << SS.getRange();
891 return true;
892 }
893
894 if (RequireCompleteDeclContext(SS, SemanticContext))
895 return true;
896
897 // If we're adding a template to a dependent context, we may need to
898 // rebuilding some of the types used within the template parameter list,
899 // now that we know what the current instantiation is.
900 if (SemanticContext->isDependentContext()) {
901 ContextRAII SavedContext(*this, SemanticContext);
902 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
903 Invalid = true;
904 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
905 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
906
907 LookupQualifiedName(Previous, SemanticContext);
908 } else {
909 SemanticContext = CurContext;
910 LookupName(Previous, S);
911 }
912
913 if (Previous.isAmbiguous())
914 return true;
915
916 NamedDecl *PrevDecl = 0;
917 if (Previous.begin() != Previous.end())
918 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
919
920 // If there is a previous declaration with the same name, check
921 // whether this is a valid redeclaration.
922 ClassTemplateDecl *PrevClassTemplate
923 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
924
925 // We may have found the injected-class-name of a class template,
926 // class template partial specialization, or class template specialization.
927 // In these cases, grab the template that is being defined or specialized.
928 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
929 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
930 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
931 PrevClassTemplate
932 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
933 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
934 PrevClassTemplate
935 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
936 ->getSpecializedTemplate();
937 }
938 }
939
940 if (TUK == TUK_Friend) {
941 // C++ [namespace.memdef]p3:
942 // [...] When looking for a prior declaration of a class or a function
943 // declared as a friend, and when the name of the friend class or
944 // function is neither a qualified name nor a template-id, scopes outside
945 // the innermost enclosing namespace scope are not considered.
946 if (!SS.isSet()) {
947 DeclContext *OutermostContext = CurContext;
948 while (!OutermostContext->isFileContext())
949 OutermostContext = OutermostContext->getLookupParent();
950
951 if (PrevDecl &&
952 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
953 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
954 SemanticContext = PrevDecl->getDeclContext();
955 } else {
956 // Declarations in outer scopes don't matter. However, the outermost
957 // context we computed is the semantic context for our new
958 // declaration.
959 PrevDecl = PrevClassTemplate = 0;
960 SemanticContext = OutermostContext;
961
962 // Check that the chosen semantic context doesn't already contain a
963 // declaration of this name as a non-tag type.
964 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
965 ForRedeclaration);
966 DeclContext *LookupContext = SemanticContext;
967 while (LookupContext->isTransparentContext())
968 LookupContext = LookupContext->getLookupParent();
969 LookupQualifiedName(Previous, LookupContext);
970
971 if (Previous.isAmbiguous())
972 return true;
973
974 if (Previous.begin() != Previous.end())
975 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
976 }
977 }
978 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
979 PrevDecl = PrevClassTemplate = 0;
980
981 if (PrevClassTemplate) {
982 // Ensure that the template parameter lists are compatible. Skip this check
983 // for a friend in a dependent context: the template parameter list itself
984 // could be dependent.
985 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
986 !TemplateParameterListsAreEqual(TemplateParams,
987 PrevClassTemplate->getTemplateParameters(),
988 /*Complain=*/true,
989 TPL_TemplateMatch))
990 return true;
991
992 // C++ [temp.class]p4:
993 // In a redeclaration, partial specialization, explicit
994 // specialization or explicit instantiation of a class template,
995 // the class-key shall agree in kind with the original class
996 // template declaration (7.1.5.3).
997 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
998 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
999 TUK == TUK_Definition, KWLoc, *Name)) {
1000 Diag(KWLoc, diag::err_use_with_wrong_tag)
1001 << Name
1002 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1003 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1004 Kind = PrevRecordDecl->getTagKind();
1005 }
1006
1007 // Check for redefinition of this class template.
1008 if (TUK == TUK_Definition) {
1009 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1010 Diag(NameLoc, diag::err_redefinition) << Name;
1011 Diag(Def->getLocation(), diag::note_previous_definition);
1012 // FIXME: Would it make sense to try to "forget" the previous
1013 // definition, as part of error recovery?
1014 return true;
1015 }
1016 }
1017 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1018 // Maybe we will complain about the shadowed template parameter.
1019 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1020 // Just pretend that we didn't see the previous declaration.
1021 PrevDecl = 0;
1022 } else if (PrevDecl) {
1023 // C++ [temp]p5:
1024 // A class template shall not have the same name as any other
1025 // template, class, function, object, enumeration, enumerator,
1026 // namespace, or type in the same scope (3.3), except as specified
1027 // in (14.5.4).
1028 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1029 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1030 return true;
1031 }
1032
1033 // Check the template parameter list of this declaration, possibly
1034 // merging in the template parameter list from the previous class
1035 // template declaration. Skip this check for a friend in a dependent
1036 // context, because the template parameter list might be dependent.
1037 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1038 CheckTemplateParameterList(
1039 TemplateParams,
1040 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1041 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1042 SemanticContext->isDependentContext())
1043 ? TPC_ClassTemplateMember
1044 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1045 : TPC_ClassTemplate))
1046 Invalid = true;
1047
1048 if (SS.isSet()) {
1049 // If the name of the template was qualified, we must be defining the
1050 // template out-of-line.
1051 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1052 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1053 : diag::err_member_def_does_not_match)
1054 << Name << SemanticContext << SS.getRange();
1055 Invalid = true;
1056 }
1057 }
1058
1059 CXXRecordDecl *NewClass =
1060 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1061 PrevClassTemplate?
1062 PrevClassTemplate->getTemplatedDecl() : 0,
1063 /*DelayTypeCreation=*/true);
1064 SetNestedNameSpecifier(NewClass, SS);
1065 if (NumOuterTemplateParamLists > 0)
1066 NewClass->setTemplateParameterListsInfo(Context,
1067 NumOuterTemplateParamLists,
1068 OuterTemplateParamLists);
1069
1070 // Add alignment attributes if necessary; these attributes are checked when
1071 // the ASTContext lays out the structure.
1072 if (TUK == TUK_Definition) {
1073 AddAlignmentAttributesForRecord(NewClass);
1074 AddMsStructLayoutForRecord(NewClass);
1075 }
1076
1077 ClassTemplateDecl *NewTemplate
1078 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1079 DeclarationName(Name), TemplateParams,
1080 NewClass, PrevClassTemplate);
1081 NewClass->setDescribedClassTemplate(NewTemplate);
1082
1083 if (ModulePrivateLoc.isValid())
1084 NewTemplate->setModulePrivate();
1085
1086 // Build the type for the class template declaration now.
1087 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1088 T = Context.getInjectedClassNameType(NewClass, T);
1089 assert(T->isDependentType() && "Class template type is not dependent?");
1090 (void)T;
1091
1092 // If we are providing an explicit specialization of a member that is a
1093 // class template, make a note of that.
1094 if (PrevClassTemplate &&
1095 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1096 PrevClassTemplate->setMemberSpecialization();
1097
1098 // Set the access specifier.
1099 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1100 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1101
1102 // Set the lexical context of these templates
1103 NewClass->setLexicalDeclContext(CurContext);
1104 NewTemplate->setLexicalDeclContext(CurContext);
1105
1106 if (TUK == TUK_Definition)
1107 NewClass->startDefinition();
1108
1109 if (Attr)
1110 ProcessDeclAttributeList(S, NewClass, Attr);
1111
1112 if (PrevClassTemplate)
1113 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1114
1115 AddPushedVisibilityAttribute(NewClass);
1116
1117 if (TUK != TUK_Friend)
1118 PushOnScopeChains(NewTemplate, S);
1119 else {
1120 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1121 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1122 NewClass->setAccess(PrevClassTemplate->getAccess());
1123 }
1124
1125 NewTemplate->setObjectOfFriendDecl();
1126
1127 // Friend templates are visible in fairly strange ways.
1128 if (!CurContext->isDependentContext()) {
1129 DeclContext *DC = SemanticContext->getRedeclContext();
1130 DC->makeDeclVisibleInContext(NewTemplate);
1131 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1132 PushOnScopeChains(NewTemplate, EnclosingScope,
1133 /* AddToContext = */ false);
1134 }
1135
1136 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1137 NewClass->getLocation(),
1138 NewTemplate,
1139 /*FIXME:*/NewClass->getLocation());
1140 Friend->setAccess(AS_public);
1141 CurContext->addDecl(Friend);
1142 }
1143
1144 if (Invalid) {
1145 NewTemplate->setInvalidDecl();
1146 NewClass->setInvalidDecl();
1147 }
1148
1149 ActOnDocumentableDecl(NewTemplate);
1150
1151 return NewTemplate;
1152 }
1153
1154 /// \brief Diagnose the presence of a default template argument on a
1155 /// template parameter, which is ill-formed in certain contexts.
1156 ///
1157 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1158 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1159 Sema::TemplateParamListContext TPC,
1160 SourceLocation ParamLoc,
1161 SourceRange DefArgRange) {
1162 switch (TPC) {
1163 case Sema::TPC_ClassTemplate:
1164 case Sema::TPC_VarTemplate:
1165 case Sema::TPC_TypeAliasTemplate:
1166 return false;
1167
1168 case Sema::TPC_FunctionTemplate:
1169 case Sema::TPC_FriendFunctionTemplateDefinition:
1170 // C++ [temp.param]p9:
1171 // A default template-argument shall not be specified in a
1172 // function template declaration or a function template
1173 // definition [...]
1174 // If a friend function template declaration specifies a default
1175 // template-argument, that declaration shall be a definition and shall be
1176 // the only declaration of the function template in the translation unit.
1177 // (C++98/03 doesn't have this wording; see DR226).
1178 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1179 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1180 : diag::ext_template_parameter_default_in_function_template)
1181 << DefArgRange;
1182 return false;
1183
1184 case Sema::TPC_ClassTemplateMember:
1185 // C++0x [temp.param]p9:
1186 // A default template-argument shall not be specified in the
1187 // template-parameter-lists of the definition of a member of a
1188 // class template that appears outside of the member's class.
1189 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1190 << DefArgRange;
1191 return true;
1192
1193 case Sema::TPC_FriendClassTemplate:
1194 case Sema::TPC_FriendFunctionTemplate:
1195 // C++ [temp.param]p9:
1196 // A default template-argument shall not be specified in a
1197 // friend template declaration.
1198 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1199 << DefArgRange;
1200 return true;
1201
1202 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1203 // for friend function templates if there is only a single
1204 // declaration (and it is a definition). Strange!
1205 }
1206
1207 llvm_unreachable("Invalid TemplateParamListContext!");
1208 }
1209
1210 /// \brief Check for unexpanded parameter packs within the template parameters
1211 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1212 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1213 TemplateTemplateParmDecl *TTP) {
1214 // A template template parameter which is a parameter pack is also a pack
1215 // expansion.
1216 if (TTP->isParameterPack())
1217 return false;
1218
1219 TemplateParameterList *Params = TTP->getTemplateParameters();
1220 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1221 NamedDecl *P = Params->getParam(I);
1222 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1223 if (!NTTP->isParameterPack() &&
1224 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1225 NTTP->getTypeSourceInfo(),
1226 Sema::UPPC_NonTypeTemplateParameterType))
1227 return true;
1228
1229 continue;
1230 }
1231
1232 if (TemplateTemplateParmDecl *InnerTTP
1233 = dyn_cast<TemplateTemplateParmDecl>(P))
1234 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1235 return true;
1236 }
1237
1238 return false;
1239 }
1240
1241 /// \brief Checks the validity of a template parameter list, possibly
1242 /// considering the template parameter list from a previous
1243 /// declaration.
1244 ///
1245 /// If an "old" template parameter list is provided, it must be
1246 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1247 /// template parameter list.
1248 ///
1249 /// \param NewParams Template parameter list for a new template
1250 /// declaration. This template parameter list will be updated with any
1251 /// default arguments that are carried through from the previous
1252 /// template parameter list.
1253 ///
1254 /// \param OldParams If provided, template parameter list from a
1255 /// previous declaration of the same template. Default template
1256 /// arguments will be merged from the old template parameter list to
1257 /// the new template parameter list.
1258 ///
1259 /// \param TPC Describes the context in which we are checking the given
1260 /// template parameter list.
1261 ///
1262 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1263 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1264 TemplateParameterList *OldParams,
1265 TemplateParamListContext TPC) {
1266 bool Invalid = false;
1267
1268 // C++ [temp.param]p10:
1269 // The set of default template-arguments available for use with a
1270 // template declaration or definition is obtained by merging the
1271 // default arguments from the definition (if in scope) and all
1272 // declarations in scope in the same way default function
1273 // arguments are (8.3.6).
1274 bool SawDefaultArgument = false;
1275 SourceLocation PreviousDefaultArgLoc;
1276
1277 // Dummy initialization to avoid warnings.
1278 TemplateParameterList::iterator OldParam = NewParams->end();
1279 if (OldParams)
1280 OldParam = OldParams->begin();
1281
1282 bool RemoveDefaultArguments = false;
1283 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1284 NewParamEnd = NewParams->end();
1285 NewParam != NewParamEnd; ++NewParam) {
1286 // Variables used to diagnose redundant default arguments
1287 bool RedundantDefaultArg = false;
1288 SourceLocation OldDefaultLoc;
1289 SourceLocation NewDefaultLoc;
1290
1291 // Variable used to diagnose missing default arguments
1292 bool MissingDefaultArg = false;
1293
1294 // Variable used to diagnose non-final parameter packs
1295 bool SawParameterPack = false;
1296
1297 if (TemplateTypeParmDecl *NewTypeParm
1298 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1299 // Check the presence of a default argument here.
1300 if (NewTypeParm->hasDefaultArgument() &&
1301 DiagnoseDefaultTemplateArgument(*this, TPC,
1302 NewTypeParm->getLocation(),
1303 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1304 .getSourceRange()))
1305 NewTypeParm->removeDefaultArgument();
1306
1307 // Merge default arguments for template type parameters.
1308 TemplateTypeParmDecl *OldTypeParm
1309 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1310
1311 if (NewTypeParm->isParameterPack()) {
1312 assert(!NewTypeParm->hasDefaultArgument() &&
1313 "Parameter packs can't have a default argument!");
1314 SawParameterPack = true;
1315 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1316 NewTypeParm->hasDefaultArgument()) {
1317 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1318 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1319 SawDefaultArgument = true;
1320 RedundantDefaultArg = true;
1321 PreviousDefaultArgLoc = NewDefaultLoc;
1322 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1323 // Merge the default argument from the old declaration to the
1324 // new declaration.
1325 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1326 true);
1327 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1328 } else if (NewTypeParm->hasDefaultArgument()) {
1329 SawDefaultArgument = true;
1330 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1331 } else if (SawDefaultArgument)
1332 MissingDefaultArg = true;
1333 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1334 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1335 // Check for unexpanded parameter packs.
1336 if (!NewNonTypeParm->isParameterPack() &&
1337 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1338 NewNonTypeParm->getTypeSourceInfo(),
1339 UPPC_NonTypeTemplateParameterType)) {
1340 Invalid = true;
1341 continue;
1342 }
1343
1344 // Check the presence of a default argument here.
1345 if (NewNonTypeParm->hasDefaultArgument() &&
1346 DiagnoseDefaultTemplateArgument(*this, TPC,
1347 NewNonTypeParm->getLocation(),
1348 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1349 NewNonTypeParm->removeDefaultArgument();
1350 }
1351
1352 // Merge default arguments for non-type template parameters
1353 NonTypeTemplateParmDecl *OldNonTypeParm
1354 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1355 if (NewNonTypeParm->isParameterPack()) {
1356 assert(!NewNonTypeParm->hasDefaultArgument() &&
1357 "Parameter packs can't have a default argument!");
1358 if (!NewNonTypeParm->isPackExpansion())
1359 SawParameterPack = true;
1360 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1361 NewNonTypeParm->hasDefaultArgument()) {
1362 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1363 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1364 SawDefaultArgument = true;
1365 RedundantDefaultArg = true;
1366 PreviousDefaultArgLoc = NewDefaultLoc;
1367 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1368 // Merge the default argument from the old declaration to the
1369 // new declaration.
1370 // FIXME: We need to create a new kind of "default argument"
1371 // expression that points to a previous non-type template
1372 // parameter.
1373 NewNonTypeParm->setDefaultArgument(
1374 OldNonTypeParm->getDefaultArgument(),
1375 /*Inherited=*/ true);
1376 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1377 } else if (NewNonTypeParm->hasDefaultArgument()) {
1378 SawDefaultArgument = true;
1379 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1380 } else if (SawDefaultArgument)
1381 MissingDefaultArg = true;
1382 } else {
1383 TemplateTemplateParmDecl *NewTemplateParm
1384 = cast<TemplateTemplateParmDecl>(*NewParam);
1385
1386 // Check for unexpanded parameter packs, recursively.
1387 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1388 Invalid = true;
1389 continue;
1390 }
1391
1392 // Check the presence of a default argument here.
1393 if (NewTemplateParm->hasDefaultArgument() &&
1394 DiagnoseDefaultTemplateArgument(*this, TPC,
1395 NewTemplateParm->getLocation(),
1396 NewTemplateParm->getDefaultArgument().getSourceRange()))
1397 NewTemplateParm->removeDefaultArgument();
1398
1399 // Merge default arguments for template template parameters
1400 TemplateTemplateParmDecl *OldTemplateParm
1401 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1402 if (NewTemplateParm->isParameterPack()) {
1403 assert(!NewTemplateParm->hasDefaultArgument() &&
1404 "Parameter packs can't have a default argument!");
1405 if (!NewTemplateParm->isPackExpansion())
1406 SawParameterPack = true;
1407 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1408 NewTemplateParm->hasDefaultArgument()) {
1409 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1410 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1411 SawDefaultArgument = true;
1412 RedundantDefaultArg = true;
1413 PreviousDefaultArgLoc = NewDefaultLoc;
1414 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1415 // Merge the default argument from the old declaration to the
1416 // new declaration.
1417 // FIXME: We need to create a new kind of "default argument" expression
1418 // that points to a previous template template parameter.
1419 NewTemplateParm->setDefaultArgument(
1420 OldTemplateParm->getDefaultArgument(),
1421 /*Inherited=*/ true);
1422 PreviousDefaultArgLoc
1423 = OldTemplateParm->getDefaultArgument().getLocation();
1424 } else if (NewTemplateParm->hasDefaultArgument()) {
1425 SawDefaultArgument = true;
1426 PreviousDefaultArgLoc
1427 = NewTemplateParm->getDefaultArgument().getLocation();
1428 } else if (SawDefaultArgument)
1429 MissingDefaultArg = true;
1430 }
1431
1432 // C++11 [temp.param]p11:
1433 // If a template parameter of a primary class template or alias template
1434 // is a template parameter pack, it shall be the last template parameter.
1435 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1436 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1437 TPC == TPC_TypeAliasTemplate)) {
1438 Diag((*NewParam)->getLocation(),
1439 diag::err_template_param_pack_must_be_last_template_parameter);
1440 Invalid = true;
1441 }
1442
1443 if (RedundantDefaultArg) {
1444 // C++ [temp.param]p12:
1445 // A template-parameter shall not be given default arguments
1446 // by two different declarations in the same scope.
1447 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1448 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1449 Invalid = true;
1450 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1451 // C++ [temp.param]p11:
1452 // If a template-parameter of a class template has a default
1453 // template-argument, each subsequent template-parameter shall either
1454 // have a default template-argument supplied or be a template parameter
1455 // pack.
1456 Diag((*NewParam)->getLocation(),
1457 diag::err_template_param_default_arg_missing);
1458 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1459 Invalid = true;
1460 RemoveDefaultArguments = true;
1461 }
1462
1463 // If we have an old template parameter list that we're merging
1464 // in, move on to the next parameter.
1465 if (OldParams)
1466 ++OldParam;
1467 }
1468
1469 // We were missing some default arguments at the end of the list, so remove
1470 // all of the default arguments.
1471 if (RemoveDefaultArguments) {
1472 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1473 NewParamEnd = NewParams->end();
1474 NewParam != NewParamEnd; ++NewParam) {
1475 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1476 TTP->removeDefaultArgument();
1477 else if (NonTypeTemplateParmDecl *NTTP
1478 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1479 NTTP->removeDefaultArgument();
1480 else
1481 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1482 }
1483 }
1484
1485 return Invalid;
1486 }
1487
1488 namespace {
1489
1490 /// A class which looks for a use of a certain level of template
1491 /// parameter.
1492 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1493 typedef RecursiveASTVisitor<DependencyChecker> super;
1494
1495 unsigned Depth;
1496 bool Match;
1497
DependencyChecker__anon4de125bd0111::DependencyChecker1498 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1499 NamedDecl *ND = Params->getParam(0);
1500 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1501 Depth = PD->getDepth();
1502 } else if (NonTypeTemplateParmDecl *PD =
1503 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1504 Depth = PD->getDepth();
1505 } else {
1506 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1507 }
1508 }
1509
Matches__anon4de125bd0111::DependencyChecker1510 bool Matches(unsigned ParmDepth) {
1511 if (ParmDepth >= Depth) {
1512 Match = true;
1513 return true;
1514 }
1515 return false;
1516 }
1517
VisitTemplateTypeParmType__anon4de125bd0111::DependencyChecker1518 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1519 return !Matches(T->getDepth());
1520 }
1521
TraverseTemplateName__anon4de125bd0111::DependencyChecker1522 bool TraverseTemplateName(TemplateName N) {
1523 if (TemplateTemplateParmDecl *PD =
1524 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1525 if (Matches(PD->getDepth())) return false;
1526 return super::TraverseTemplateName(N);
1527 }
1528
VisitDeclRefExpr__anon4de125bd0111::DependencyChecker1529 bool VisitDeclRefExpr(DeclRefExpr *E) {
1530 if (NonTypeTemplateParmDecl *PD =
1531 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1532 if (PD->getDepth() == Depth) {
1533 Match = true;
1534 return false;
1535 }
1536 }
1537 return super::VisitDeclRefExpr(E);
1538 }
1539
TraverseInjectedClassNameType__anon4de125bd0111::DependencyChecker1540 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1541 return TraverseType(T->getInjectedSpecializationType());
1542 }
1543 };
1544 }
1545
1546 /// Determines whether a given type depends on the given parameter
1547 /// list.
1548 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1549 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1550 DependencyChecker Checker(Params);
1551 Checker.TraverseType(T);
1552 return Checker.Match;
1553 }
1554
1555 // Find the source range corresponding to the named type in the given
1556 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1557 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1558 QualType T,
1559 const CXXScopeSpec &SS) {
1560 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1561 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1562 if (const Type *CurType = NNS->getAsType()) {
1563 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1564 return NNSLoc.getTypeLoc().getSourceRange();
1565 } else
1566 break;
1567
1568 NNSLoc = NNSLoc.getPrefix();
1569 }
1570
1571 return SourceRange();
1572 }
1573
1574 /// \brief Match the given template parameter lists to the given scope
1575 /// specifier, returning the template parameter list that applies to the
1576 /// name.
1577 ///
1578 /// \param DeclStartLoc the start of the declaration that has a scope
1579 /// specifier or a template parameter list.
1580 ///
1581 /// \param DeclLoc The location of the declaration itself.
1582 ///
1583 /// \param SS the scope specifier that will be matched to the given template
1584 /// parameter lists. This scope specifier precedes a qualified name that is
1585 /// being declared.
1586 ///
1587 /// \param ParamLists the template parameter lists, from the outermost to the
1588 /// innermost template parameter lists.
1589 ///
1590 /// \param IsFriend Whether to apply the slightly different rules for
1591 /// matching template parameters to scope specifiers in friend
1592 /// declarations.
1593 ///
1594 /// \param IsExplicitSpecialization will be set true if the entity being
1595 /// declared is an explicit specialization, false otherwise.
1596 ///
1597 /// \returns the template parameter list, if any, that corresponds to the
1598 /// name that is preceded by the scope specifier @p SS. This template
1599 /// parameter list may have template parameters (if we're declaring a
1600 /// template) or may have no template parameters (if we're declaring a
1601 /// template specialization), or may be NULL (if what we're declaring isn't
1602 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1603 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1604 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1605 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1606 bool &IsExplicitSpecialization, bool &Invalid) {
1607 IsExplicitSpecialization = false;
1608 Invalid = false;
1609
1610 // The sequence of nested types to which we will match up the template
1611 // parameter lists. We first build this list by starting with the type named
1612 // by the nested-name-specifier and walking out until we run out of types.
1613 SmallVector<QualType, 4> NestedTypes;
1614 QualType T;
1615 if (SS.getScopeRep()) {
1616 if (CXXRecordDecl *Record
1617 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1618 T = Context.getTypeDeclType(Record);
1619 else
1620 T = QualType(SS.getScopeRep()->getAsType(), 0);
1621 }
1622
1623 // If we found an explicit specialization that prevents us from needing
1624 // 'template<>' headers, this will be set to the location of that
1625 // explicit specialization.
1626 SourceLocation ExplicitSpecLoc;
1627
1628 while (!T.isNull()) {
1629 NestedTypes.push_back(T);
1630
1631 // Retrieve the parent of a record type.
1632 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1633 // If this type is an explicit specialization, we're done.
1634 if (ClassTemplateSpecializationDecl *Spec
1635 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1636 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1637 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1638 ExplicitSpecLoc = Spec->getLocation();
1639 break;
1640 }
1641 } else if (Record->getTemplateSpecializationKind()
1642 == TSK_ExplicitSpecialization) {
1643 ExplicitSpecLoc = Record->getLocation();
1644 break;
1645 }
1646
1647 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1648 T = Context.getTypeDeclType(Parent);
1649 else
1650 T = QualType();
1651 continue;
1652 }
1653
1654 if (const TemplateSpecializationType *TST
1655 = T->getAs<TemplateSpecializationType>()) {
1656 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1657 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1658 T = Context.getTypeDeclType(Parent);
1659 else
1660 T = QualType();
1661 continue;
1662 }
1663 }
1664
1665 // Look one step prior in a dependent template specialization type.
1666 if (const DependentTemplateSpecializationType *DependentTST
1667 = T->getAs<DependentTemplateSpecializationType>()) {
1668 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1669 T = QualType(NNS->getAsType(), 0);
1670 else
1671 T = QualType();
1672 continue;
1673 }
1674
1675 // Look one step prior in a dependent name type.
1676 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1677 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1678 T = QualType(NNS->getAsType(), 0);
1679 else
1680 T = QualType();
1681 continue;
1682 }
1683
1684 // Retrieve the parent of an enumeration type.
1685 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1686 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1687 // check here.
1688 EnumDecl *Enum = EnumT->getDecl();
1689
1690 // Get to the parent type.
1691 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1692 T = Context.getTypeDeclType(Parent);
1693 else
1694 T = QualType();
1695 continue;
1696 }
1697
1698 T = QualType();
1699 }
1700 // Reverse the nested types list, since we want to traverse from the outermost
1701 // to the innermost while checking template-parameter-lists.
1702 std::reverse(NestedTypes.begin(), NestedTypes.end());
1703
1704 // C++0x [temp.expl.spec]p17:
1705 // A member or a member template may be nested within many
1706 // enclosing class templates. In an explicit specialization for
1707 // such a member, the member declaration shall be preceded by a
1708 // template<> for each enclosing class template that is
1709 // explicitly specialized.
1710 bool SawNonEmptyTemplateParameterList = false;
1711 unsigned ParamIdx = 0;
1712 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1713 ++TypeIdx) {
1714 T = NestedTypes[TypeIdx];
1715
1716 // Whether we expect a 'template<>' header.
1717 bool NeedEmptyTemplateHeader = false;
1718
1719 // Whether we expect a template header with parameters.
1720 bool NeedNonemptyTemplateHeader = false;
1721
1722 // For a dependent type, the set of template parameters that we
1723 // expect to see.
1724 TemplateParameterList *ExpectedTemplateParams = 0;
1725
1726 // C++0x [temp.expl.spec]p15:
1727 // A member or a member template may be nested within many enclosing
1728 // class templates. In an explicit specialization for such a member, the
1729 // member declaration shall be preceded by a template<> for each
1730 // enclosing class template that is explicitly specialized.
1731 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1732 if (ClassTemplatePartialSpecializationDecl *Partial
1733 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1734 ExpectedTemplateParams = Partial->getTemplateParameters();
1735 NeedNonemptyTemplateHeader = true;
1736 } else if (Record->isDependentType()) {
1737 if (Record->getDescribedClassTemplate()) {
1738 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1739 ->getTemplateParameters();
1740 NeedNonemptyTemplateHeader = true;
1741 }
1742 } else if (ClassTemplateSpecializationDecl *Spec
1743 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1744 // C++0x [temp.expl.spec]p4:
1745 // Members of an explicitly specialized class template are defined
1746 // in the same manner as members of normal classes, and not using
1747 // the template<> syntax.
1748 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1749 NeedEmptyTemplateHeader = true;
1750 else
1751 continue;
1752 } else if (Record->getTemplateSpecializationKind()) {
1753 if (Record->getTemplateSpecializationKind()
1754 != TSK_ExplicitSpecialization &&
1755 TypeIdx == NumTypes - 1)
1756 IsExplicitSpecialization = true;
1757
1758 continue;
1759 }
1760 } else if (const TemplateSpecializationType *TST
1761 = T->getAs<TemplateSpecializationType>()) {
1762 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1763 ExpectedTemplateParams = Template->getTemplateParameters();
1764 NeedNonemptyTemplateHeader = true;
1765 }
1766 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1767 // FIXME: We actually could/should check the template arguments here
1768 // against the corresponding template parameter list.
1769 NeedNonemptyTemplateHeader = false;
1770 }
1771
1772 // C++ [temp.expl.spec]p16:
1773 // In an explicit specialization declaration for a member of a class
1774 // template or a member template that ap- pears in namespace scope, the
1775 // member template and some of its enclosing class templates may remain
1776 // unspecialized, except that the declaration shall not explicitly
1777 // specialize a class member template if its en- closing class templates
1778 // are not explicitly specialized as well.
1779 if (ParamIdx < ParamLists.size()) {
1780 if (ParamLists[ParamIdx]->size() == 0) {
1781 if (SawNonEmptyTemplateParameterList) {
1782 Diag(DeclLoc, diag::err_specialize_member_of_template)
1783 << ParamLists[ParamIdx]->getSourceRange();
1784 Invalid = true;
1785 IsExplicitSpecialization = false;
1786 return 0;
1787 }
1788 } else
1789 SawNonEmptyTemplateParameterList = true;
1790 }
1791
1792 if (NeedEmptyTemplateHeader) {
1793 // If we're on the last of the types, and we need a 'template<>' header
1794 // here, then it's an explicit specialization.
1795 if (TypeIdx == NumTypes - 1)
1796 IsExplicitSpecialization = true;
1797
1798 if (ParamIdx < ParamLists.size()) {
1799 if (ParamLists[ParamIdx]->size() > 0) {
1800 // The header has template parameters when it shouldn't. Complain.
1801 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1802 diag::err_template_param_list_matches_nontemplate)
1803 << T
1804 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1805 ParamLists[ParamIdx]->getRAngleLoc())
1806 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1807 Invalid = true;
1808 return 0;
1809 }
1810
1811 // Consume this template header.
1812 ++ParamIdx;
1813 continue;
1814 }
1815
1816 if (!IsFriend) {
1817 // We don't have a template header, but we should.
1818 SourceLocation ExpectedTemplateLoc;
1819 if (!ParamLists.empty())
1820 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1821 else
1822 ExpectedTemplateLoc = DeclStartLoc;
1823
1824 Diag(DeclLoc, diag::err_template_spec_needs_header)
1825 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1826 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1827 }
1828
1829 continue;
1830 }
1831
1832 if (NeedNonemptyTemplateHeader) {
1833 // In friend declarations we can have template-ids which don't
1834 // depend on the corresponding template parameter lists. But
1835 // assume that empty parameter lists are supposed to match this
1836 // template-id.
1837 if (IsFriend && T->isDependentType()) {
1838 if (ParamIdx < ParamLists.size() &&
1839 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1840 ExpectedTemplateParams = 0;
1841 else
1842 continue;
1843 }
1844
1845 if (ParamIdx < ParamLists.size()) {
1846 // Check the template parameter list, if we can.
1847 if (ExpectedTemplateParams &&
1848 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1849 ExpectedTemplateParams,
1850 true, TPL_TemplateMatch))
1851 Invalid = true;
1852
1853 if (!Invalid &&
1854 CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1855 TPC_ClassTemplateMember))
1856 Invalid = true;
1857
1858 ++ParamIdx;
1859 continue;
1860 }
1861
1862 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1863 << T
1864 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1865 Invalid = true;
1866 continue;
1867 }
1868 }
1869
1870 // If there were at least as many template-ids as there were template
1871 // parameter lists, then there are no template parameter lists remaining for
1872 // the declaration itself.
1873 if (ParamIdx >= ParamLists.size())
1874 return 0;
1875
1876 // If there were too many template parameter lists, complain about that now.
1877 if (ParamIdx < ParamLists.size() - 1) {
1878 bool HasAnyExplicitSpecHeader = false;
1879 bool AllExplicitSpecHeaders = true;
1880 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1881 if (ParamLists[I]->size() == 0)
1882 HasAnyExplicitSpecHeader = true;
1883 else
1884 AllExplicitSpecHeaders = false;
1885 }
1886
1887 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1888 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1889 : diag::err_template_spec_extra_headers)
1890 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1891 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1892
1893 // If there was a specialization somewhere, such that 'template<>' is
1894 // not required, and there were any 'template<>' headers, note where the
1895 // specialization occurred.
1896 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1897 Diag(ExplicitSpecLoc,
1898 diag::note_explicit_template_spec_does_not_need_header)
1899 << NestedTypes.back();
1900
1901 // We have a template parameter list with no corresponding scope, which
1902 // means that the resulting template declaration can't be instantiated
1903 // properly (we'll end up with dependent nodes when we shouldn't).
1904 if (!AllExplicitSpecHeaders)
1905 Invalid = true;
1906 }
1907
1908 // C++ [temp.expl.spec]p16:
1909 // In an explicit specialization declaration for a member of a class
1910 // template or a member template that ap- pears in namespace scope, the
1911 // member template and some of its enclosing class templates may remain
1912 // unspecialized, except that the declaration shall not explicitly
1913 // specialize a class member template if its en- closing class templates
1914 // are not explicitly specialized as well.
1915 if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1916 Diag(DeclLoc, diag::err_specialize_member_of_template)
1917 << ParamLists[ParamIdx]->getSourceRange();
1918 Invalid = true;
1919 IsExplicitSpecialization = false;
1920 return 0;
1921 }
1922
1923 // Return the last template parameter list, which corresponds to the
1924 // entity being declared.
1925 return ParamLists.back();
1926 }
1927
NoteAllFoundTemplates(TemplateName Name)1928 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1929 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1930 Diag(Template->getLocation(), diag::note_template_declared_here)
1931 << (isa<FunctionTemplateDecl>(Template)
1932 ? 0
1933 : isa<ClassTemplateDecl>(Template)
1934 ? 1
1935 : isa<VarTemplateDecl>(Template)
1936 ? 2
1937 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1938 << Template->getDeclName();
1939 return;
1940 }
1941
1942 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1943 for (OverloadedTemplateStorage::iterator I = OST->begin(),
1944 IEnd = OST->end();
1945 I != IEnd; ++I)
1946 Diag((*I)->getLocation(), diag::note_template_declared_here)
1947 << 0 << (*I)->getDeclName();
1948
1949 return;
1950 }
1951 }
1952
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1953 QualType Sema::CheckTemplateIdType(TemplateName Name,
1954 SourceLocation TemplateLoc,
1955 TemplateArgumentListInfo &TemplateArgs) {
1956 DependentTemplateName *DTN
1957 = Name.getUnderlying().getAsDependentTemplateName();
1958 if (DTN && DTN->isIdentifier())
1959 // When building a template-id where the template-name is dependent,
1960 // assume the template is a type template. Either our assumption is
1961 // correct, or the code is ill-formed and will be diagnosed when the
1962 // dependent name is substituted.
1963 return Context.getDependentTemplateSpecializationType(ETK_None,
1964 DTN->getQualifier(),
1965 DTN->getIdentifier(),
1966 TemplateArgs);
1967
1968 TemplateDecl *Template = Name.getAsTemplateDecl();
1969 if (!Template || isa<FunctionTemplateDecl>(Template)) {
1970 // We might have a substituted template template parameter pack. If so,
1971 // build a template specialization type for it.
1972 if (Name.getAsSubstTemplateTemplateParmPack())
1973 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1974
1975 Diag(TemplateLoc, diag::err_template_id_not_a_type)
1976 << Name;
1977 NoteAllFoundTemplates(Name);
1978 return QualType();
1979 }
1980
1981 // Check that the template argument list is well-formed for this
1982 // template.
1983 SmallVector<TemplateArgument, 4> Converted;
1984 bool ExpansionIntoFixedList = false;
1985 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1986 false, Converted, &ExpansionIntoFixedList))
1987 return QualType();
1988
1989 QualType CanonType;
1990
1991 bool InstantiationDependent = false;
1992 TypeAliasTemplateDecl *AliasTemplate = 0;
1993 if (!ExpansionIntoFixedList &&
1994 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1995 // Find the canonical type for this type alias template specialization.
1996 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1997 if (Pattern->isInvalidDecl())
1998 return QualType();
1999
2000 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2001 Converted.data(), Converted.size());
2002
2003 // Only substitute for the innermost template argument list.
2004 MultiLevelTemplateArgumentList TemplateArgLists;
2005 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2006 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2007 for (unsigned I = 0; I < Depth; ++I)
2008 TemplateArgLists.addOuterTemplateArguments(None);
2009
2010 LocalInstantiationScope Scope(*this);
2011 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2012 if (Inst)
2013 return QualType();
2014
2015 CanonType = SubstType(Pattern->getUnderlyingType(),
2016 TemplateArgLists, AliasTemplate->getLocation(),
2017 AliasTemplate->getDeclName());
2018 if (CanonType.isNull())
2019 return QualType();
2020 } else if (Name.isDependent() ||
2021 TemplateSpecializationType::anyDependentTemplateArguments(
2022 TemplateArgs, InstantiationDependent)) {
2023 // This class template specialization is a dependent
2024 // type. Therefore, its canonical type is another class template
2025 // specialization type that contains all of the converted
2026 // arguments in canonical form. This ensures that, e.g., A<T> and
2027 // A<T, T> have identical types when A is declared as:
2028 //
2029 // template<typename T, typename U = T> struct A;
2030 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2031 CanonType = Context.getTemplateSpecializationType(CanonName,
2032 Converted.data(),
2033 Converted.size());
2034
2035 // FIXME: CanonType is not actually the canonical type, and unfortunately
2036 // it is a TemplateSpecializationType that we will never use again.
2037 // In the future, we need to teach getTemplateSpecializationType to only
2038 // build the canonical type and return that to us.
2039 CanonType = Context.getCanonicalType(CanonType);
2040
2041 // This might work out to be a current instantiation, in which
2042 // case the canonical type needs to be the InjectedClassNameType.
2043 //
2044 // TODO: in theory this could be a simple hashtable lookup; most
2045 // changes to CurContext don't change the set of current
2046 // instantiations.
2047 if (isa<ClassTemplateDecl>(Template)) {
2048 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2049 // If we get out to a namespace, we're done.
2050 if (Ctx->isFileContext()) break;
2051
2052 // If this isn't a record, keep looking.
2053 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2054 if (!Record) continue;
2055
2056 // Look for one of the two cases with InjectedClassNameTypes
2057 // and check whether it's the same template.
2058 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2059 !Record->getDescribedClassTemplate())
2060 continue;
2061
2062 // Fetch the injected class name type and check whether its
2063 // injected type is equal to the type we just built.
2064 QualType ICNT = Context.getTypeDeclType(Record);
2065 QualType Injected = cast<InjectedClassNameType>(ICNT)
2066 ->getInjectedSpecializationType();
2067
2068 if (CanonType != Injected->getCanonicalTypeInternal())
2069 continue;
2070
2071 // If so, the canonical type of this TST is the injected
2072 // class name type of the record we just found.
2073 assert(ICNT.isCanonical());
2074 CanonType = ICNT;
2075 break;
2076 }
2077 }
2078 } else if (ClassTemplateDecl *ClassTemplate
2079 = dyn_cast<ClassTemplateDecl>(Template)) {
2080 // Find the class template specialization declaration that
2081 // corresponds to these arguments.
2082 void *InsertPos = 0;
2083 ClassTemplateSpecializationDecl *Decl
2084 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2085 InsertPos);
2086 if (!Decl) {
2087 // This is the first time we have referenced this class template
2088 // specialization. Create the canonical declaration and add it to
2089 // the set of specializations.
2090 Decl = ClassTemplateSpecializationDecl::Create(Context,
2091 ClassTemplate->getTemplatedDecl()->getTagKind(),
2092 ClassTemplate->getDeclContext(),
2093 ClassTemplate->getTemplatedDecl()->getLocStart(),
2094 ClassTemplate->getLocation(),
2095 ClassTemplate,
2096 Converted.data(),
2097 Converted.size(), 0);
2098 ClassTemplate->AddSpecialization(Decl, InsertPos);
2099 if (ClassTemplate->isOutOfLine())
2100 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2101 }
2102
2103 CanonType = Context.getTypeDeclType(Decl);
2104 assert(isa<RecordType>(CanonType) &&
2105 "type of non-dependent specialization is not a RecordType");
2106 }
2107
2108 // Build the fully-sugared type for this class template
2109 // specialization, which refers back to the class template
2110 // specialization we created or found.
2111 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2112 }
2113
2114 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2115 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2116 TemplateTy TemplateD, SourceLocation TemplateLoc,
2117 SourceLocation LAngleLoc,
2118 ASTTemplateArgsPtr TemplateArgsIn,
2119 SourceLocation RAngleLoc,
2120 bool IsCtorOrDtorName) {
2121 if (SS.isInvalid())
2122 return true;
2123
2124 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2125
2126 // Translate the parser's template argument list in our AST format.
2127 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2128 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2129
2130 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2131 QualType T
2132 = Context.getDependentTemplateSpecializationType(ETK_None,
2133 DTN->getQualifier(),
2134 DTN->getIdentifier(),
2135 TemplateArgs);
2136 // Build type-source information.
2137 TypeLocBuilder TLB;
2138 DependentTemplateSpecializationTypeLoc SpecTL
2139 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2140 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2141 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2142 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2143 SpecTL.setTemplateNameLoc(TemplateLoc);
2144 SpecTL.setLAngleLoc(LAngleLoc);
2145 SpecTL.setRAngleLoc(RAngleLoc);
2146 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2147 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2148 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2149 }
2150
2151 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2152
2153 if (Result.isNull())
2154 return true;
2155
2156 // Build type-source information.
2157 TypeLocBuilder TLB;
2158 TemplateSpecializationTypeLoc SpecTL
2159 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2160 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2161 SpecTL.setTemplateNameLoc(TemplateLoc);
2162 SpecTL.setLAngleLoc(LAngleLoc);
2163 SpecTL.setRAngleLoc(RAngleLoc);
2164 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2165 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2166
2167 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2168 // constructor or destructor name (in such a case, the scope specifier
2169 // will be attached to the enclosing Decl or Expr node).
2170 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2171 // Create an elaborated-type-specifier containing the nested-name-specifier.
2172 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2173 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2174 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2175 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2176 }
2177
2178 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2179 }
2180
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2181 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2182 TypeSpecifierType TagSpec,
2183 SourceLocation TagLoc,
2184 CXXScopeSpec &SS,
2185 SourceLocation TemplateKWLoc,
2186 TemplateTy TemplateD,
2187 SourceLocation TemplateLoc,
2188 SourceLocation LAngleLoc,
2189 ASTTemplateArgsPtr TemplateArgsIn,
2190 SourceLocation RAngleLoc) {
2191 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2192
2193 // Translate the parser's template argument list in our AST format.
2194 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2195 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2196
2197 // Determine the tag kind
2198 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2199 ElaboratedTypeKeyword Keyword
2200 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2201
2202 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2203 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2204 DTN->getQualifier(),
2205 DTN->getIdentifier(),
2206 TemplateArgs);
2207
2208 // Build type-source information.
2209 TypeLocBuilder TLB;
2210 DependentTemplateSpecializationTypeLoc SpecTL
2211 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2212 SpecTL.setElaboratedKeywordLoc(TagLoc);
2213 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2214 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2215 SpecTL.setTemplateNameLoc(TemplateLoc);
2216 SpecTL.setLAngleLoc(LAngleLoc);
2217 SpecTL.setRAngleLoc(RAngleLoc);
2218 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2219 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2220 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2221 }
2222
2223 if (TypeAliasTemplateDecl *TAT =
2224 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2225 // C++0x [dcl.type.elab]p2:
2226 // If the identifier resolves to a typedef-name or the simple-template-id
2227 // resolves to an alias template specialization, the
2228 // elaborated-type-specifier is ill-formed.
2229 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2230 Diag(TAT->getLocation(), diag::note_declared_at);
2231 }
2232
2233 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2234 if (Result.isNull())
2235 return TypeResult(true);
2236
2237 // Check the tag kind
2238 if (const RecordType *RT = Result->getAs<RecordType>()) {
2239 RecordDecl *D = RT->getDecl();
2240
2241 IdentifierInfo *Id = D->getIdentifier();
2242 assert(Id && "templated class must have an identifier");
2243
2244 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2245 TagLoc, *Id)) {
2246 Diag(TagLoc, diag::err_use_with_wrong_tag)
2247 << Result
2248 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2249 Diag(D->getLocation(), diag::note_previous_use);
2250 }
2251 }
2252
2253 // Provide source-location information for the template specialization.
2254 TypeLocBuilder TLB;
2255 TemplateSpecializationTypeLoc SpecTL
2256 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2257 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2258 SpecTL.setTemplateNameLoc(TemplateLoc);
2259 SpecTL.setLAngleLoc(LAngleLoc);
2260 SpecTL.setRAngleLoc(RAngleLoc);
2261 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2262 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2263
2264 // Construct an elaborated type containing the nested-name-specifier (if any)
2265 // and tag keyword.
2266 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2267 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2268 ElabTL.setElaboratedKeywordLoc(TagLoc);
2269 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2270 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2271 }
2272
2273 static bool CheckTemplatePartialSpecializationArgs(
2274 Sema &S, TemplateParameterList *TemplateParams,
2275 SmallVectorImpl<TemplateArgument> &TemplateArgs);
2276
2277 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2278 NamedDecl *PrevDecl,
2279 SourceLocation Loc,
2280 bool IsPartialSpecialization);
2281
2282 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2283 /*
2284 // Check the new variable specialization against the parsed input.
2285 //
2286 // FIXME: Model this against function specializations where
2287 // a new function declaration is checked against the specialization
2288 // as candidate for redefinition... (?)
2289 static bool CheckVariableTemplateSpecializationType() {
2290
2291 if (ExpectedType is undeduced && ParsedType is not undeduced)
2292 ExpectedType = dedudeType();
2293
2294 if (both types are undeduced)
2295 ???;
2296
2297 bool CheckType = !ExpectedType()->
2298
2299 if (!Context.hasSameType(DI->getType(), ExpectedDI->getType())) {
2300 unsigned ErrStr = IsPartialSpecialization ? 2 : 1;
2301 Diag(D.getIdentifierLoc(), diag::err_invalid_var_template_spec_type)
2302 << ErrStr << VarTemplate << DI->getType() << ExpectedDI->getType();
2303 Diag(VarTemplate->getLocation(), diag::note_template_declared_here)
2304 << 2 << VarTemplate->getDeclName();
2305 return true;
2306 }
2307 }
2308 */
2309
ActOnVarTemplateSpecialization(Scope * S,VarTemplateDecl * VarTemplate,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,VarDecl::StorageClass SC,bool IsPartialSpecialization)2310 DeclResult Sema::ActOnVarTemplateSpecialization(
2311 Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2312 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2313 VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2314 assert(VarTemplate && "A variable template id without template?");
2315
2316 // D must be variable template id.
2317 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2318 "Variable template specialization is declared with a template it.");
2319
2320 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2321 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2322 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2323 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2324 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2325 TemplateId->NumArgs);
2326 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2327 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2328 TemplateName Name(VarTemplate);
2329
2330 // Check for unexpanded parameter packs in any of the template arguments.
2331 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2332 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2333 UPPC_PartialSpecialization))
2334 return true;
2335
2336 // Check that the template argument list is well-formed for this
2337 // template.
2338 SmallVector<TemplateArgument, 4> Converted;
2339 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2340 false, Converted))
2341 return true;
2342
2343 // Check that the type of this variable template specialization
2344 // matches the expected type.
2345 TypeSourceInfo *ExpectedDI;
2346 {
2347 // Do substitution on the type of the declaration
2348 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2349 Converted.data(), Converted.size());
2350 InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2351 if (Inst)
2352 return true;
2353 VarDecl *Templated = VarTemplate->getTemplatedDecl();
2354 ExpectedDI =
2355 SubstType(Templated->getTypeSourceInfo(),
2356 MultiLevelTemplateArgumentList(TemplateArgList),
2357 Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2358 }
2359 if (!ExpectedDI)
2360 return true;
2361
2362 /*
2363 // Check the new variable specialization against the parsed input.
2364 // (Attributes are merged later below.)
2365 if (CheckVariableTemplateSpecializationType())
2366 return true;
2367 */
2368
2369 // Find the variable template (partial) specialization declaration that
2370 // corresponds to these arguments.
2371 if (IsPartialSpecialization) {
2372 if (CheckTemplatePartialSpecializationArgs(
2373 *this, VarTemplate->getTemplateParameters(), Converted))
2374 return true;
2375
2376 bool InstantiationDependent;
2377 if (!Name.isDependent() &&
2378 !TemplateSpecializationType::anyDependentTemplateArguments(
2379 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2380 InstantiationDependent)) {
2381 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2382 << VarTemplate->getDeclName();
2383 IsPartialSpecialization = false;
2384 }
2385 }
2386
2387 void *InsertPos = 0;
2388 VarTemplateSpecializationDecl *PrevDecl = 0;
2389
2390 if (IsPartialSpecialization)
2391 // FIXME: Template parameter list matters too
2392 PrevDecl = VarTemplate->findPartialSpecialization(
2393 Converted.data(), Converted.size(), InsertPos);
2394 else
2395 PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2396 Converted.size(), InsertPos);
2397
2398 VarTemplateSpecializationDecl *Specialization = 0;
2399
2400 // Check whether we can declare a variable template specialization in
2401 // the current scope.
2402 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2403 TemplateNameLoc,
2404 IsPartialSpecialization))
2405 return true;
2406
2407 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2408 // Since the only prior variable template specialization with these
2409 // arguments was referenced but not declared, reuse that
2410 // declaration node as our own, updating its source location and
2411 // the list of outer template parameters to reflect our new declaration.
2412 Specialization = PrevDecl;
2413 Specialization->setLocation(TemplateNameLoc);
2414 PrevDecl = 0;
2415 } else if (IsPartialSpecialization) {
2416 // Create a new class template partial specialization declaration node.
2417 VarTemplatePartialSpecializationDecl *PrevPartial =
2418 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2419 unsigned SequenceNumber =
2420 PrevPartial ? PrevPartial->getSequenceNumber()
2421 : VarTemplate->getNextPartialSpecSequenceNumber();
2422 VarTemplatePartialSpecializationDecl *Partial =
2423 VarTemplatePartialSpecializationDecl::Create(
2424 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2425 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2426 Converted.data(), Converted.size(), TemplateArgs, SequenceNumber);
2427
2428 if (!PrevPartial)
2429 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2430 Specialization = Partial;
2431
2432 // If we are providing an explicit specialization of a member variable
2433 // template specialization, make a note of that.
2434 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2435 Partial->setMemberSpecialization();
2436
2437 // Check that all of the template parameters of the variable template
2438 // partial specialization are deducible from the template
2439 // arguments. If not, this variable template partial specialization
2440 // will never be used.
2441 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2442 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2443 TemplateParams->getDepth(), DeducibleParams);
2444
2445 if (!DeducibleParams.all()) {
2446 unsigned NumNonDeducible =
2447 DeducibleParams.size() - DeducibleParams.count();
2448 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2449 << (NumNonDeducible > 1) << SourceRange(TemplateNameLoc, RAngleLoc);
2450 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2451 if (!DeducibleParams[I]) {
2452 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2453 if (Param->getDeclName())
2454 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2455 << Param->getDeclName();
2456 else
2457 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2458 << "<anonymous>";
2459 }
2460 }
2461 }
2462 } else {
2463 // Create a new class template specialization declaration node for
2464 // this explicit specialization or friend declaration.
2465 Specialization = VarTemplateSpecializationDecl::Create(
2466 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2467 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2468 Specialization->setTemplateArgsInfo(TemplateArgs);
2469
2470 if (!PrevDecl)
2471 VarTemplate->AddSpecialization(Specialization, InsertPos);
2472 }
2473
2474 // C++ [temp.expl.spec]p6:
2475 // If a template, a member template or the member of a class template is
2476 // explicitly specialized then that specialization shall be declared
2477 // before the first use of that specialization that would cause an implicit
2478 // instantiation to take place, in every translation unit in which such a
2479 // use occurs; no diagnostic is required.
2480 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2481 bool Okay = false;
2482 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2483 // Is there any previous explicit specialization declaration?
2484 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2485 Okay = true;
2486 break;
2487 }
2488 }
2489
2490 if (!Okay) {
2491 SourceRange Range(TemplateNameLoc, RAngleLoc);
2492 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2493 << Name << Range;
2494
2495 Diag(PrevDecl->getPointOfInstantiation(),
2496 diag::note_instantiation_required_here)
2497 << (PrevDecl->getTemplateSpecializationKind() !=
2498 TSK_ImplicitInstantiation);
2499 return true;
2500 }
2501 }
2502
2503 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2504 Specialization->setLexicalDeclContext(CurContext);
2505
2506 // Add the specialization into its lexical context, so that it can
2507 // be seen when iterating through the list of declarations in that
2508 // context. However, specializations are not found by name lookup.
2509 CurContext->addDecl(Specialization);
2510
2511 // Note that this is an explicit specialization.
2512 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2513
2514 if (PrevDecl) {
2515 // Check that this isn't a redefinition of this specialization,
2516 // merging with previous declarations.
2517 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2518 ForRedeclaration);
2519 PrevSpec.addDecl(PrevDecl);
2520 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2521 }
2522
2523 // Link instantiations of static data members back to the template from
2524 // which they were instantiated.
2525 if (Specialization->isStaticDataMember())
2526 Specialization->setInstantiationOfStaticDataMember(
2527 VarTemplate->getTemplatedDecl(),
2528 Specialization->getSpecializationKind());
2529
2530 return Specialization;
2531 }
2532
2533 namespace {
2534 /// \brief A partial specialization whose template arguments have matched
2535 /// a given template-id.
2536 struct PartialSpecMatchResult {
2537 VarTemplatePartialSpecializationDecl *Partial;
2538 TemplateArgumentList *Args;
2539 };
2540 }
2541
2542 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2543 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2544 SourceLocation TemplateNameLoc,
2545 const TemplateArgumentListInfo &TemplateArgs) {
2546 assert(Template && "A variable template id without template?");
2547
2548 // Check that the template argument list is well-formed for this template.
2549 SmallVector<TemplateArgument, 4> Converted;
2550 bool ExpansionIntoFixedList = false;
2551 if (CheckTemplateArgumentList(
2552 Template, TemplateNameLoc,
2553 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2554 Converted, &ExpansionIntoFixedList))
2555 return true;
2556
2557 // Find the variable template specialization declaration that
2558 // corresponds to these arguments.
2559 void *InsertPos = 0;
2560 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2561 Converted.data(), Converted.size(), InsertPos))
2562 // If we already have a variable template specialization, return it.
2563 return Spec;
2564
2565 // This is the first time we have referenced this variable template
2566 // specialization. Create the canonical declaration and add it to
2567 // the set of specializations, based on the closest partial specialization
2568 // that it represents. That is,
2569 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2570 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2571 Converted.data(), Converted.size());
2572 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2573 bool AmbiguousPartialSpec = false;
2574 typedef PartialSpecMatchResult MatchResult;
2575 SmallVector<MatchResult, 4> Matched;
2576 SourceLocation PointOfInstantiation = TemplateNameLoc;
2577 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2578
2579 // 1. Attempt to find the closest partial specialization that this
2580 // specializes, if any.
2581 // If any of the template arguments is dependent, then this is probably
2582 // a placeholder for an incomplete declarative context; which must be
2583 // complete by instantiation time. Thus, do not search through the partial
2584 // specializations yet.
2585 // FIXME: Unify with InstantiateClassTemplateSpecialization()?
2586 bool InstantiationDependent = false;
2587 if (!TemplateSpecializationType::anyDependentTemplateArguments(
2588 TemplateArgs, InstantiationDependent)) {
2589
2590 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2591 Template->getPartialSpecializations(PartialSpecs);
2592
2593 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2594 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2595 TemplateDeductionInfo Info(FailedCandidates.getLocation());
2596
2597 if (TemplateDeductionResult Result =
2598 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2599 // Store the failed-deduction information for use in diagnostics, later.
2600 FailedCandidates.addCandidate()
2601 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2602 (void)Result;
2603 } else {
2604 Matched.push_back(PartialSpecMatchResult());
2605 Matched.back().Partial = Partial;
2606 Matched.back().Args = Info.take();
2607 }
2608 }
2609
2610 // If we're dealing with a member template where the template parameters
2611 // have been instantiated, this provides the original template parameters
2612 // from which the member template's parameters were instantiated.
2613 SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2614
2615 if (Matched.size() >= 1) {
2616 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2617 if (Matched.size() == 1) {
2618 // -- If exactly one matching specialization is found, the
2619 // instantiation is generated from that specialization.
2620 // We don't need to do anything for this.
2621 } else {
2622 // -- If more than one matching specialization is found, the
2623 // partial order rules (14.5.4.2) are used to determine
2624 // whether one of the specializations is more specialized
2625 // than the others. If none of the specializations is more
2626 // specialized than all of the other matching
2627 // specializations, then the use of the variable template is
2628 // ambiguous and the program is ill-formed.
2629 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2630 PEnd = Matched.end();
2631 P != PEnd; ++P) {
2632 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2633 PointOfInstantiation) ==
2634 P->Partial)
2635 Best = P;
2636 }
2637
2638 // Determine if the best partial specialization is more specialized than
2639 // the others.
2640 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2641 PEnd = Matched.end();
2642 P != PEnd; ++P) {
2643 if (P != Best && getMoreSpecializedPartialSpecialization(
2644 P->Partial, Best->Partial,
2645 PointOfInstantiation) != Best->Partial) {
2646 AmbiguousPartialSpec = true;
2647 break;
2648 }
2649 }
2650 }
2651
2652 // Instantiate using the best variable template partial specialization.
2653 InstantiationPattern = Best->Partial;
2654 InstantiationArgs = Best->Args;
2655 } else {
2656 // -- If no match is found, the instantiation is generated
2657 // from the primary template.
2658 // InstantiationPattern = Template->getTemplatedDecl();
2659 }
2660 }
2661
2662 // FIXME: Actually use FailedCandidates.
2663
2664 // 2. Create the canonical declaration.
2665 // Note that we do not instantiate the variable just yet, since
2666 // instantiation is handled in DoMarkVarDeclReferenced().
2667 // FIXME: LateAttrs et al.?
2668 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2669 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2670 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2671 if (!Decl)
2672 return true;
2673
2674 if (AmbiguousPartialSpec) {
2675 // Partial ordering did not produce a clear winner. Complain.
2676 Decl->setInvalidDecl();
2677 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2678 << Decl;
2679
2680 // Print the matching partial specializations.
2681 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2682 PEnd = Matched.end();
2683 P != PEnd; ++P)
2684 Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2685 << getTemplateArgumentBindingsText(
2686 P->Partial->getTemplateParameters(), *P->Args);
2687 return true;
2688 }
2689
2690 if (VarTemplatePartialSpecializationDecl *D =
2691 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2692 Decl->setInstantiationOf(D, InstantiationArgs);
2693
2694 assert(Decl && "No variable template specialization?");
2695 return Decl;
2696 }
2697
2698 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2699 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2700 const DeclarationNameInfo &NameInfo,
2701 VarTemplateDecl *Template, SourceLocation TemplateLoc,
2702 const TemplateArgumentListInfo *TemplateArgs) {
2703
2704 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2705 *TemplateArgs);
2706 if (Decl.isInvalid())
2707 return ExprError();
2708
2709 VarDecl *Var = cast<VarDecl>(Decl.get());
2710 if (!Var->getTemplateSpecializationKind())
2711 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2712 NameInfo.getLoc());
2713
2714 // Build an ordinary singleton decl ref.
2715 return BuildDeclarationNameExpr(SS, NameInfo, Var,
2716 /*FoundD=*/0, TemplateArgs);
2717 }
2718
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2719 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2720 SourceLocation TemplateKWLoc,
2721 LookupResult &R,
2722 bool RequiresADL,
2723 const TemplateArgumentListInfo *TemplateArgs) {
2724 // FIXME: Can we do any checking at this point? I guess we could check the
2725 // template arguments that we have against the template name, if the template
2726 // name refers to a single template. That's not a terribly common case,
2727 // though.
2728 // foo<int> could identify a single function unambiguously
2729 // This approach does NOT work, since f<int>(1);
2730 // gets resolved prior to resorting to overload resolution
2731 // i.e., template<class T> void f(double);
2732 // vs template<class T, class U> void f(U);
2733
2734 // These should be filtered out by our callers.
2735 assert(!R.empty() && "empty lookup results when building templateid");
2736 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2737
2738 // In C++1y, check variable template ids.
2739 if (R.getAsSingle<VarTemplateDecl>()) {
2740 return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2741 R.getAsSingle<VarTemplateDecl>(),
2742 TemplateKWLoc, TemplateArgs));
2743 }
2744
2745 // We don't want lookup warnings at this point.
2746 R.suppressDiagnostics();
2747
2748 UnresolvedLookupExpr *ULE
2749 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2750 SS.getWithLocInContext(Context),
2751 TemplateKWLoc,
2752 R.getLookupNameInfo(),
2753 RequiresADL, TemplateArgs,
2754 R.begin(), R.end());
2755
2756 return Owned(ULE);
2757 }
2758
2759 // We actually only call this from template instantiation.
2760 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2761 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2762 SourceLocation TemplateKWLoc,
2763 const DeclarationNameInfo &NameInfo,
2764 const TemplateArgumentListInfo *TemplateArgs) {
2765
2766 assert(TemplateArgs || TemplateKWLoc.isValid());
2767 DeclContext *DC;
2768 if (!(DC = computeDeclContext(SS, false)) ||
2769 DC->isDependentContext() ||
2770 RequireCompleteDeclContext(SS, DC))
2771 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2772
2773 bool MemberOfUnknownSpecialization;
2774 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2775 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2776 MemberOfUnknownSpecialization);
2777
2778 if (R.isAmbiguous())
2779 return ExprError();
2780
2781 if (R.empty()) {
2782 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2783 << NameInfo.getName() << SS.getRange();
2784 return ExprError();
2785 }
2786
2787 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2788 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2789 << (NestedNameSpecifier*) SS.getScopeRep()
2790 << NameInfo.getName() << SS.getRange();
2791 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2792 return ExprError();
2793 }
2794
2795 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2796 }
2797
2798 /// \brief Form a dependent template name.
2799 ///
2800 /// This action forms a dependent template name given the template
2801 /// name and its (presumably dependent) scope specifier. For
2802 /// example, given "MetaFun::template apply", the scope specifier \p
2803 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2804 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2805 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2806 CXXScopeSpec &SS,
2807 SourceLocation TemplateKWLoc,
2808 UnqualifiedId &Name,
2809 ParsedType ObjectType,
2810 bool EnteringContext,
2811 TemplateTy &Result) {
2812 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2813 Diag(TemplateKWLoc,
2814 getLangOpts().CPlusPlus11 ?
2815 diag::warn_cxx98_compat_template_outside_of_template :
2816 diag::ext_template_outside_of_template)
2817 << FixItHint::CreateRemoval(TemplateKWLoc);
2818
2819 DeclContext *LookupCtx = 0;
2820 if (SS.isSet())
2821 LookupCtx = computeDeclContext(SS, EnteringContext);
2822 if (!LookupCtx && ObjectType)
2823 LookupCtx = computeDeclContext(ObjectType.get());
2824 if (LookupCtx) {
2825 // C++0x [temp.names]p5:
2826 // If a name prefixed by the keyword template is not the name of
2827 // a template, the program is ill-formed. [Note: the keyword
2828 // template may not be applied to non-template members of class
2829 // templates. -end note ] [ Note: as is the case with the
2830 // typename prefix, the template prefix is allowed in cases
2831 // where it is not strictly necessary; i.e., when the
2832 // nested-name-specifier or the expression on the left of the ->
2833 // or . is not dependent on a template-parameter, or the use
2834 // does not appear in the scope of a template. -end note]
2835 //
2836 // Note: C++03 was more strict here, because it banned the use of
2837 // the "template" keyword prior to a template-name that was not a
2838 // dependent name. C++ DR468 relaxed this requirement (the
2839 // "template" keyword is now permitted). We follow the C++0x
2840 // rules, even in C++03 mode with a warning, retroactively applying the DR.
2841 bool MemberOfUnknownSpecialization;
2842 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2843 ObjectType, EnteringContext, Result,
2844 MemberOfUnknownSpecialization);
2845 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2846 isa<CXXRecordDecl>(LookupCtx) &&
2847 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2848 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2849 // This is a dependent template. Handle it below.
2850 } else if (TNK == TNK_Non_template) {
2851 Diag(Name.getLocStart(),
2852 diag::err_template_kw_refers_to_non_template)
2853 << GetNameFromUnqualifiedId(Name).getName()
2854 << Name.getSourceRange()
2855 << TemplateKWLoc;
2856 return TNK_Non_template;
2857 } else {
2858 // We found something; return it.
2859 return TNK;
2860 }
2861 }
2862
2863 NestedNameSpecifier *Qualifier
2864 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2865
2866 switch (Name.getKind()) {
2867 case UnqualifiedId::IK_Identifier:
2868 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2869 Name.Identifier));
2870 return TNK_Dependent_template_name;
2871
2872 case UnqualifiedId::IK_OperatorFunctionId:
2873 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2874 Name.OperatorFunctionId.Operator));
2875 return TNK_Dependent_template_name;
2876
2877 case UnqualifiedId::IK_LiteralOperatorId:
2878 llvm_unreachable(
2879 "We don't support these; Parse shouldn't have allowed propagation");
2880
2881 default:
2882 break;
2883 }
2884
2885 Diag(Name.getLocStart(),
2886 diag::err_template_kw_refers_to_non_template)
2887 << GetNameFromUnqualifiedId(Name).getName()
2888 << Name.getSourceRange()
2889 << TemplateKWLoc;
2890 return TNK_Non_template;
2891 }
2892
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,const TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2893 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2894 const TemplateArgumentLoc &AL,
2895 SmallVectorImpl<TemplateArgument> &Converted) {
2896 const TemplateArgument &Arg = AL.getArgument();
2897
2898 // Check template type parameter.
2899 switch(Arg.getKind()) {
2900 case TemplateArgument::Type:
2901 // C++ [temp.arg.type]p1:
2902 // A template-argument for a template-parameter which is a
2903 // type shall be a type-id.
2904 break;
2905 case TemplateArgument::Template: {
2906 // We have a template type parameter but the template argument
2907 // is a template without any arguments.
2908 SourceRange SR = AL.getSourceRange();
2909 TemplateName Name = Arg.getAsTemplate();
2910 Diag(SR.getBegin(), diag::err_template_missing_args)
2911 << Name << SR;
2912 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2913 Diag(Decl->getLocation(), diag::note_template_decl_here);
2914
2915 return true;
2916 }
2917 case TemplateArgument::Expression: {
2918 // We have a template type parameter but the template argument is an
2919 // expression; see if maybe it is missing the "typename" keyword.
2920 CXXScopeSpec SS;
2921 DeclarationNameInfo NameInfo;
2922
2923 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2924 SS.Adopt(ArgExpr->getQualifierLoc());
2925 NameInfo = ArgExpr->getNameInfo();
2926 } else if (DependentScopeDeclRefExpr *ArgExpr =
2927 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2928 SS.Adopt(ArgExpr->getQualifierLoc());
2929 NameInfo = ArgExpr->getNameInfo();
2930 } else if (CXXDependentScopeMemberExpr *ArgExpr =
2931 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2932 if (ArgExpr->isImplicitAccess()) {
2933 SS.Adopt(ArgExpr->getQualifierLoc());
2934 NameInfo = ArgExpr->getMemberNameInfo();
2935 }
2936 }
2937
2938 if (NameInfo.getName().isIdentifier()) {
2939 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2940 LookupParsedName(Result, CurScope, &SS);
2941
2942 if (Result.getAsSingle<TypeDecl>() ||
2943 Result.getResultKind() ==
2944 LookupResult::NotFoundInCurrentInstantiation) {
2945 // FIXME: Add a FixIt and fix up the template argument for recovery.
2946 SourceLocation Loc = AL.getSourceRange().getBegin();
2947 Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2948 Diag(Param->getLocation(), diag::note_template_param_here);
2949 return true;
2950 }
2951 }
2952 // fallthrough
2953 }
2954 default: {
2955 // We have a template type parameter but the template argument
2956 // is not a type.
2957 SourceRange SR = AL.getSourceRange();
2958 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2959 Diag(Param->getLocation(), diag::note_template_param_here);
2960
2961 return true;
2962 }
2963 }
2964
2965 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2966 return true;
2967
2968 // Add the converted template type argument.
2969 QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2970
2971 // Objective-C ARC:
2972 // If an explicitly-specified template argument type is a lifetime type
2973 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2974 if (getLangOpts().ObjCAutoRefCount &&
2975 ArgType->isObjCLifetimeType() &&
2976 !ArgType.getObjCLifetime()) {
2977 Qualifiers Qs;
2978 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2979 ArgType = Context.getQualifiedType(ArgType, Qs);
2980 }
2981
2982 Converted.push_back(TemplateArgument(ArgType));
2983 return false;
2984 }
2985
2986 /// \brief Substitute template arguments into the default template argument for
2987 /// the given template type parameter.
2988 ///
2989 /// \param SemaRef the semantic analysis object for which we are performing
2990 /// the substitution.
2991 ///
2992 /// \param Template the template that we are synthesizing template arguments
2993 /// for.
2994 ///
2995 /// \param TemplateLoc the location of the template name that started the
2996 /// template-id we are checking.
2997 ///
2998 /// \param RAngleLoc the location of the right angle bracket ('>') that
2999 /// terminates the template-id.
3000 ///
3001 /// \param Param the template template parameter whose default we are
3002 /// substituting into.
3003 ///
3004 /// \param Converted the list of template arguments provided for template
3005 /// parameters that precede \p Param in the template parameter list.
3006 /// \returns the substituted template argument, or NULL if an error occurred.
3007 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3008 SubstDefaultTemplateArgument(Sema &SemaRef,
3009 TemplateDecl *Template,
3010 SourceLocation TemplateLoc,
3011 SourceLocation RAngleLoc,
3012 TemplateTypeParmDecl *Param,
3013 SmallVectorImpl<TemplateArgument> &Converted) {
3014 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3015
3016 // If the argument type is dependent, instantiate it now based
3017 // on the previously-computed template arguments.
3018 if (ArgType->getType()->isDependentType()) {
3019 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3020 Converted.data(), Converted.size());
3021
3022 MultiLevelTemplateArgumentList AllTemplateArgs
3023 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3024
3025 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3026 Template, Converted,
3027 SourceRange(TemplateLoc, RAngleLoc));
3028 if (Inst)
3029 return 0;
3030
3031 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3032 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
3033 Param->getDefaultArgumentLoc(),
3034 Param->getDeclName());
3035 }
3036
3037 return ArgType;
3038 }
3039
3040 /// \brief Substitute template arguments into the default template argument for
3041 /// the given non-type template parameter.
3042 ///
3043 /// \param SemaRef the semantic analysis object for which we are performing
3044 /// the substitution.
3045 ///
3046 /// \param Template the template that we are synthesizing template arguments
3047 /// for.
3048 ///
3049 /// \param TemplateLoc the location of the template name that started the
3050 /// template-id we are checking.
3051 ///
3052 /// \param RAngleLoc the location of the right angle bracket ('>') that
3053 /// terminates the template-id.
3054 ///
3055 /// \param Param the non-type template parameter whose default we are
3056 /// substituting into.
3057 ///
3058 /// \param Converted the list of template arguments provided for template
3059 /// parameters that precede \p Param in the template parameter list.
3060 ///
3061 /// \returns the substituted template argument, or NULL if an error occurred.
3062 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3063 SubstDefaultTemplateArgument(Sema &SemaRef,
3064 TemplateDecl *Template,
3065 SourceLocation TemplateLoc,
3066 SourceLocation RAngleLoc,
3067 NonTypeTemplateParmDecl *Param,
3068 SmallVectorImpl<TemplateArgument> &Converted) {
3069 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3070 Converted.data(), Converted.size());
3071
3072 MultiLevelTemplateArgumentList AllTemplateArgs
3073 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3074
3075 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3076 Template, Converted,
3077 SourceRange(TemplateLoc, RAngleLoc));
3078 if (Inst)
3079 return ExprError();
3080
3081 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3082 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3083 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
3084 }
3085
3086 /// \brief Substitute template arguments into the default template argument for
3087 /// the given template template parameter.
3088 ///
3089 /// \param SemaRef the semantic analysis object for which we are performing
3090 /// the substitution.
3091 ///
3092 /// \param Template the template that we are synthesizing template arguments
3093 /// for.
3094 ///
3095 /// \param TemplateLoc the location of the template name that started the
3096 /// template-id we are checking.
3097 ///
3098 /// \param RAngleLoc the location of the right angle bracket ('>') that
3099 /// terminates the template-id.
3100 ///
3101 /// \param Param the template template parameter whose default we are
3102 /// substituting into.
3103 ///
3104 /// \param Converted the list of template arguments provided for template
3105 /// parameters that precede \p Param in the template parameter list.
3106 ///
3107 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3108 /// source-location information) that precedes the template name.
3109 ///
3110 /// \returns the substituted template argument, or NULL if an error occurred.
3111 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3112 SubstDefaultTemplateArgument(Sema &SemaRef,
3113 TemplateDecl *Template,
3114 SourceLocation TemplateLoc,
3115 SourceLocation RAngleLoc,
3116 TemplateTemplateParmDecl *Param,
3117 SmallVectorImpl<TemplateArgument> &Converted,
3118 NestedNameSpecifierLoc &QualifierLoc) {
3119 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3120 Converted.data(), Converted.size());
3121
3122 MultiLevelTemplateArgumentList AllTemplateArgs
3123 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
3124
3125 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3126 Template, Converted,
3127 SourceRange(TemplateLoc, RAngleLoc));
3128 if (Inst)
3129 return TemplateName();
3130
3131 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3132 // Substitute into the nested-name-specifier first,
3133 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3134 if (QualifierLoc) {
3135 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
3136 AllTemplateArgs);
3137 if (!QualifierLoc)
3138 return TemplateName();
3139 }
3140
3141 return SemaRef.SubstTemplateName(QualifierLoc,
3142 Param->getDefaultArgument().getArgument().getAsTemplate(),
3143 Param->getDefaultArgument().getTemplateNameLoc(),
3144 AllTemplateArgs);
3145 }
3146
3147 /// \brief If the given template parameter has a default template
3148 /// argument, substitute into that default template argument and
3149 /// return the corresponding template argument.
3150 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3151 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3152 SourceLocation TemplateLoc,
3153 SourceLocation RAngleLoc,
3154 Decl *Param,
3155 SmallVectorImpl<TemplateArgument>
3156 &Converted,
3157 bool &HasDefaultArg) {
3158 HasDefaultArg = false;
3159
3160 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3161 if (!TypeParm->hasDefaultArgument())
3162 return TemplateArgumentLoc();
3163
3164 HasDefaultArg = true;
3165 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3166 TemplateLoc,
3167 RAngleLoc,
3168 TypeParm,
3169 Converted);
3170 if (DI)
3171 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3172
3173 return TemplateArgumentLoc();
3174 }
3175
3176 if (NonTypeTemplateParmDecl *NonTypeParm
3177 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3178 if (!NonTypeParm->hasDefaultArgument())
3179 return TemplateArgumentLoc();
3180
3181 HasDefaultArg = true;
3182 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3183 TemplateLoc,
3184 RAngleLoc,
3185 NonTypeParm,
3186 Converted);
3187 if (Arg.isInvalid())
3188 return TemplateArgumentLoc();
3189
3190 Expr *ArgE = Arg.takeAs<Expr>();
3191 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3192 }
3193
3194 TemplateTemplateParmDecl *TempTempParm
3195 = cast<TemplateTemplateParmDecl>(Param);
3196 if (!TempTempParm->hasDefaultArgument())
3197 return TemplateArgumentLoc();
3198
3199 HasDefaultArg = true;
3200 NestedNameSpecifierLoc QualifierLoc;
3201 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3202 TemplateLoc,
3203 RAngleLoc,
3204 TempTempParm,
3205 Converted,
3206 QualifierLoc);
3207 if (TName.isNull())
3208 return TemplateArgumentLoc();
3209
3210 return TemplateArgumentLoc(TemplateArgument(TName),
3211 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3212 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3213 }
3214
3215 /// \brief Check that the given template argument corresponds to the given
3216 /// template parameter.
3217 ///
3218 /// \param Param The template parameter against which the argument will be
3219 /// checked.
3220 ///
3221 /// \param Arg The template argument.
3222 ///
3223 /// \param Template The template in which the template argument resides.
3224 ///
3225 /// \param TemplateLoc The location of the template name for the template
3226 /// whose argument list we're matching.
3227 ///
3228 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3229 /// the template argument list.
3230 ///
3231 /// \param ArgumentPackIndex The index into the argument pack where this
3232 /// argument will be placed. Only valid if the parameter is a parameter pack.
3233 ///
3234 /// \param Converted The checked, converted argument will be added to the
3235 /// end of this small vector.
3236 ///
3237 /// \param CTAK Describes how we arrived at this particular template argument:
3238 /// explicitly written, deduced, etc.
3239 ///
3240 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,const TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3241 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3242 const TemplateArgumentLoc &Arg,
3243 NamedDecl *Template,
3244 SourceLocation TemplateLoc,
3245 SourceLocation RAngleLoc,
3246 unsigned ArgumentPackIndex,
3247 SmallVectorImpl<TemplateArgument> &Converted,
3248 CheckTemplateArgumentKind CTAK) {
3249 // Check template type parameters.
3250 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3251 return CheckTemplateTypeArgument(TTP, Arg, Converted);
3252
3253 // Check non-type template parameters.
3254 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3255 // Do substitution on the type of the non-type template parameter
3256 // with the template arguments we've seen thus far. But if the
3257 // template has a dependent context then we cannot substitute yet.
3258 QualType NTTPType = NTTP->getType();
3259 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3260 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3261
3262 if (NTTPType->isDependentType() &&
3263 !isa<TemplateTemplateParmDecl>(Template) &&
3264 !Template->getDeclContext()->isDependentContext()) {
3265 // Do substitution on the type of the non-type template parameter.
3266 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3267 NTTP, Converted,
3268 SourceRange(TemplateLoc, RAngleLoc));
3269 if (Inst)
3270 return true;
3271
3272 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3273 Converted.data(), Converted.size());
3274 NTTPType = SubstType(NTTPType,
3275 MultiLevelTemplateArgumentList(TemplateArgs),
3276 NTTP->getLocation(),
3277 NTTP->getDeclName());
3278 // If that worked, check the non-type template parameter type
3279 // for validity.
3280 if (!NTTPType.isNull())
3281 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3282 NTTP->getLocation());
3283 if (NTTPType.isNull())
3284 return true;
3285 }
3286
3287 switch (Arg.getArgument().getKind()) {
3288 case TemplateArgument::Null:
3289 llvm_unreachable("Should never see a NULL template argument here");
3290
3291 case TemplateArgument::Expression: {
3292 TemplateArgument Result;
3293 ExprResult Res =
3294 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3295 Result, CTAK);
3296 if (Res.isInvalid())
3297 return true;
3298
3299 Converted.push_back(Result);
3300 break;
3301 }
3302
3303 case TemplateArgument::Declaration:
3304 case TemplateArgument::Integral:
3305 case TemplateArgument::NullPtr:
3306 // We've already checked this template argument, so just copy
3307 // it to the list of converted arguments.
3308 Converted.push_back(Arg.getArgument());
3309 break;
3310
3311 case TemplateArgument::Template:
3312 case TemplateArgument::TemplateExpansion:
3313 // We were given a template template argument. It may not be ill-formed;
3314 // see below.
3315 if (DependentTemplateName *DTN
3316 = Arg.getArgument().getAsTemplateOrTemplatePattern()
3317 .getAsDependentTemplateName()) {
3318 // We have a template argument such as \c T::template X, which we
3319 // parsed as a template template argument. However, since we now
3320 // know that we need a non-type template argument, convert this
3321 // template name into an expression.
3322
3323 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3324 Arg.getTemplateNameLoc());
3325
3326 CXXScopeSpec SS;
3327 SS.Adopt(Arg.getTemplateQualifierLoc());
3328 // FIXME: the template-template arg was a DependentTemplateName,
3329 // so it was provided with a template keyword. However, its source
3330 // location is not stored in the template argument structure.
3331 SourceLocation TemplateKWLoc;
3332 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3333 SS.getWithLocInContext(Context),
3334 TemplateKWLoc,
3335 NameInfo, 0));
3336
3337 // If we parsed the template argument as a pack expansion, create a
3338 // pack expansion expression.
3339 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3340 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3341 if (E.isInvalid())
3342 return true;
3343 }
3344
3345 TemplateArgument Result;
3346 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3347 if (E.isInvalid())
3348 return true;
3349
3350 Converted.push_back(Result);
3351 break;
3352 }
3353
3354 // We have a template argument that actually does refer to a class
3355 // template, alias template, or template template parameter, and
3356 // therefore cannot be a non-type template argument.
3357 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3358 << Arg.getSourceRange();
3359
3360 Diag(Param->getLocation(), diag::note_template_param_here);
3361 return true;
3362
3363 case TemplateArgument::Type: {
3364 // We have a non-type template parameter but the template
3365 // argument is a type.
3366
3367 // C++ [temp.arg]p2:
3368 // In a template-argument, an ambiguity between a type-id and
3369 // an expression is resolved to a type-id, regardless of the
3370 // form of the corresponding template-parameter.
3371 //
3372 // We warn specifically about this case, since it can be rather
3373 // confusing for users.
3374 QualType T = Arg.getArgument().getAsType();
3375 SourceRange SR = Arg.getSourceRange();
3376 if (T->isFunctionType())
3377 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3378 else
3379 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3380 Diag(Param->getLocation(), diag::note_template_param_here);
3381 return true;
3382 }
3383
3384 case TemplateArgument::Pack:
3385 llvm_unreachable("Caller must expand template argument packs");
3386 }
3387
3388 return false;
3389 }
3390
3391
3392 // Check template template parameters.
3393 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3394
3395 // Substitute into the template parameter list of the template
3396 // template parameter, since previously-supplied template arguments
3397 // may appear within the template template parameter.
3398 {
3399 // Set up a template instantiation context.
3400 LocalInstantiationScope Scope(*this);
3401 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3402 TempParm, Converted,
3403 SourceRange(TemplateLoc, RAngleLoc));
3404 if (Inst)
3405 return true;
3406
3407 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3408 Converted.data(), Converted.size());
3409 TempParm = cast_or_null<TemplateTemplateParmDecl>(
3410 SubstDecl(TempParm, CurContext,
3411 MultiLevelTemplateArgumentList(TemplateArgs)));
3412 if (!TempParm)
3413 return true;
3414 }
3415
3416 switch (Arg.getArgument().getKind()) {
3417 case TemplateArgument::Null:
3418 llvm_unreachable("Should never see a NULL template argument here");
3419
3420 case TemplateArgument::Template:
3421 case TemplateArgument::TemplateExpansion:
3422 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3423 return true;
3424
3425 Converted.push_back(Arg.getArgument());
3426 break;
3427
3428 case TemplateArgument::Expression:
3429 case TemplateArgument::Type:
3430 // We have a template template parameter but the template
3431 // argument does not refer to a template.
3432 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3433 << getLangOpts().CPlusPlus11;
3434 return true;
3435
3436 case TemplateArgument::Declaration:
3437 llvm_unreachable("Declaration argument with template template parameter");
3438 case TemplateArgument::Integral:
3439 llvm_unreachable("Integral argument with template template parameter");
3440 case TemplateArgument::NullPtr:
3441 llvm_unreachable("Null pointer argument with template template parameter");
3442
3443 case TemplateArgument::Pack:
3444 llvm_unreachable("Caller must expand template argument packs");
3445 }
3446
3447 return false;
3448 }
3449
3450 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3451 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3452 SourceLocation TemplateLoc,
3453 TemplateArgumentListInfo &TemplateArgs) {
3454 TemplateParameterList *Params = Template->getTemplateParameters();
3455 unsigned NumParams = Params->size();
3456 unsigned NumArgs = TemplateArgs.size();
3457
3458 SourceRange Range;
3459 if (NumArgs > NumParams)
3460 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3461 TemplateArgs.getRAngleLoc());
3462 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3463 << (NumArgs > NumParams)
3464 << (isa<ClassTemplateDecl>(Template)? 0 :
3465 isa<FunctionTemplateDecl>(Template)? 1 :
3466 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3467 << Template << Range;
3468 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3469 << Params->getSourceRange();
3470 return true;
3471 }
3472
3473 /// \brief Check whether the template parameter is a pack expansion, and if so,
3474 /// determine the number of parameters produced by that expansion. For instance:
3475 ///
3476 /// \code
3477 /// template<typename ...Ts> struct A {
3478 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3479 /// };
3480 /// \endcode
3481 ///
3482 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3483 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3484 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3485 if (NonTypeTemplateParmDecl *NTTP
3486 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3487 if (NTTP->isExpandedParameterPack())
3488 return NTTP->getNumExpansionTypes();
3489 }
3490
3491 if (TemplateTemplateParmDecl *TTP
3492 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3493 if (TTP->isExpandedParameterPack())
3494 return TTP->getNumExpansionTemplateParameters();
3495 }
3496
3497 return None;
3498 }
3499
3500 /// \brief Check that the given template argument list is well-formed
3501 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool * ExpansionIntoFixedList)3502 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3503 SourceLocation TemplateLoc,
3504 TemplateArgumentListInfo &TemplateArgs,
3505 bool PartialTemplateArgs,
3506 SmallVectorImpl<TemplateArgument> &Converted,
3507 bool *ExpansionIntoFixedList) {
3508 if (ExpansionIntoFixedList)
3509 *ExpansionIntoFixedList = false;
3510
3511 TemplateParameterList *Params = Template->getTemplateParameters();
3512
3513 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3514
3515 // C++ [temp.arg]p1:
3516 // [...] The type and form of each template-argument specified in
3517 // a template-id shall match the type and form specified for the
3518 // corresponding parameter declared by the template in its
3519 // template-parameter-list.
3520 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3521 SmallVector<TemplateArgument, 2> ArgumentPack;
3522 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3523 LocalInstantiationScope InstScope(*this, true);
3524 for (TemplateParameterList::iterator Param = Params->begin(),
3525 ParamEnd = Params->end();
3526 Param != ParamEnd; /* increment in loop */) {
3527 // If we have an expanded parameter pack, make sure we don't have too
3528 // many arguments.
3529 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3530 if (*Expansions == ArgumentPack.size()) {
3531 // We're done with this parameter pack. Pack up its arguments and add
3532 // them to the list.
3533 Converted.push_back(
3534 TemplateArgument::CreatePackCopy(Context,
3535 ArgumentPack.data(),
3536 ArgumentPack.size()));
3537 ArgumentPack.clear();
3538
3539 // This argument is assigned to the next parameter.
3540 ++Param;
3541 continue;
3542 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3543 // Not enough arguments for this parameter pack.
3544 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3545 << false
3546 << (isa<ClassTemplateDecl>(Template)? 0 :
3547 isa<FunctionTemplateDecl>(Template)? 1 :
3548 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3549 << Template;
3550 Diag(Template->getLocation(), diag::note_template_decl_here)
3551 << Params->getSourceRange();
3552 return true;
3553 }
3554 }
3555
3556 if (ArgIdx < NumArgs) {
3557 // Check the template argument we were given.
3558 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3559 TemplateLoc, RAngleLoc,
3560 ArgumentPack.size(), Converted))
3561 return true;
3562
3563 // We're now done with this argument.
3564 ++ArgIdx;
3565
3566 if ((*Param)->isTemplateParameterPack()) {
3567 // The template parameter was a template parameter pack, so take the
3568 // deduced argument and place it on the argument pack. Note that we
3569 // stay on the same template parameter so that we can deduce more
3570 // arguments.
3571 ArgumentPack.push_back(Converted.back());
3572 Converted.pop_back();
3573 } else {
3574 // Move to the next template parameter.
3575 ++Param;
3576 }
3577
3578 // If we just saw a pack expansion, then directly convert the remaining
3579 // arguments, because we don't know what parameters they'll match up
3580 // with.
3581 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3582 bool InFinalParameterPack = Param != ParamEnd &&
3583 Param + 1 == ParamEnd &&
3584 (*Param)->isTemplateParameterPack() &&
3585 !getExpandedPackSize(*Param);
3586
3587 if (!InFinalParameterPack && !ArgumentPack.empty()) {
3588 // If we were part way through filling in an expanded parameter pack,
3589 // fall back to just producing individual arguments.
3590 Converted.insert(Converted.end(),
3591 ArgumentPack.begin(), ArgumentPack.end());
3592 ArgumentPack.clear();
3593 }
3594
3595 while (ArgIdx < NumArgs) {
3596 if (InFinalParameterPack)
3597 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3598 else
3599 Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3600 ++ArgIdx;
3601 }
3602
3603 // Push the argument pack onto the list of converted arguments.
3604 if (InFinalParameterPack) {
3605 Converted.push_back(
3606 TemplateArgument::CreatePackCopy(Context,
3607 ArgumentPack.data(),
3608 ArgumentPack.size()));
3609 ArgumentPack.clear();
3610 } else if (ExpansionIntoFixedList) {
3611 // We have expanded a pack into a fixed list.
3612 *ExpansionIntoFixedList = true;
3613 }
3614
3615 return false;
3616 }
3617
3618 continue;
3619 }
3620
3621 // If we're checking a partial template argument list, we're done.
3622 if (PartialTemplateArgs) {
3623 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3624 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3625 ArgumentPack.data(),
3626 ArgumentPack.size()));
3627
3628 return false;
3629 }
3630
3631 // If we have a template parameter pack with no more corresponding
3632 // arguments, just break out now and we'll fill in the argument pack below.
3633 if ((*Param)->isTemplateParameterPack()) {
3634 assert(!getExpandedPackSize(*Param) &&
3635 "Should have dealt with this already");
3636
3637 // A non-expanded parameter pack before the end of the parameter list
3638 // only occurs for an ill-formed template parameter list, unless we've
3639 // got a partial argument list for a function template, so just bail out.
3640 if (Param + 1 != ParamEnd)
3641 return true;
3642
3643 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3644 ArgumentPack.data(),
3645 ArgumentPack.size()));
3646 ArgumentPack.clear();
3647
3648 ++Param;
3649 continue;
3650 }
3651
3652 // Check whether we have a default argument.
3653 TemplateArgumentLoc Arg;
3654
3655 // Retrieve the default template argument from the template
3656 // parameter. For each kind of template parameter, we substitute the
3657 // template arguments provided thus far and any "outer" template arguments
3658 // (when the template parameter was part of a nested template) into
3659 // the default argument.
3660 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3661 if (!TTP->hasDefaultArgument())
3662 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3663 TemplateArgs);
3664
3665 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3666 Template,
3667 TemplateLoc,
3668 RAngleLoc,
3669 TTP,
3670 Converted);
3671 if (!ArgType)
3672 return true;
3673
3674 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3675 ArgType);
3676 } else if (NonTypeTemplateParmDecl *NTTP
3677 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3678 if (!NTTP->hasDefaultArgument())
3679 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3680 TemplateArgs);
3681
3682 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3683 TemplateLoc,
3684 RAngleLoc,
3685 NTTP,
3686 Converted);
3687 if (E.isInvalid())
3688 return true;
3689
3690 Expr *Ex = E.takeAs<Expr>();
3691 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3692 } else {
3693 TemplateTemplateParmDecl *TempParm
3694 = cast<TemplateTemplateParmDecl>(*Param);
3695
3696 if (!TempParm->hasDefaultArgument())
3697 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3698 TemplateArgs);
3699
3700 NestedNameSpecifierLoc QualifierLoc;
3701 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3702 TemplateLoc,
3703 RAngleLoc,
3704 TempParm,
3705 Converted,
3706 QualifierLoc);
3707 if (Name.isNull())
3708 return true;
3709
3710 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3711 TempParm->getDefaultArgument().getTemplateNameLoc());
3712 }
3713
3714 // Introduce an instantiation record that describes where we are using
3715 // the default template argument.
3716 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3717 *Param, Converted,
3718 SourceRange(TemplateLoc, RAngleLoc));
3719 if (Instantiating)
3720 return true;
3721
3722 // Check the default template argument.
3723 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3724 RAngleLoc, 0, Converted))
3725 return true;
3726
3727 // Core issue 150 (assumed resolution): if this is a template template
3728 // parameter, keep track of the default template arguments from the
3729 // template definition.
3730 if (isTemplateTemplateParameter)
3731 TemplateArgs.addArgument(Arg);
3732
3733 // Move to the next template parameter and argument.
3734 ++Param;
3735 ++ArgIdx;
3736 }
3737
3738 // If we have any leftover arguments, then there were too many arguments.
3739 // Complain and fail.
3740 if (ArgIdx < NumArgs)
3741 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3742
3743 return false;
3744 }
3745
3746 namespace {
3747 class UnnamedLocalNoLinkageFinder
3748 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3749 {
3750 Sema &S;
3751 SourceRange SR;
3752
3753 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3754
3755 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3756 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3757
Visit(QualType T)3758 bool Visit(QualType T) {
3759 return inherited::Visit(T.getTypePtr());
3760 }
3761
3762 #define TYPE(Class, Parent) \
3763 bool Visit##Class##Type(const Class##Type *);
3764 #define ABSTRACT_TYPE(Class, Parent) \
3765 bool Visit##Class##Type(const Class##Type *) { return false; }
3766 #define NON_CANONICAL_TYPE(Class, Parent) \
3767 bool Visit##Class##Type(const Class##Type *) { return false; }
3768 #include "clang/AST/TypeNodes.def"
3769
3770 bool VisitTagDecl(const TagDecl *Tag);
3771 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3772 };
3773 }
3774
VisitBuiltinType(const BuiltinType *)3775 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3776 return false;
3777 }
3778
VisitComplexType(const ComplexType * T)3779 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3780 return Visit(T->getElementType());
3781 }
3782
VisitPointerType(const PointerType * T)3783 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3784 return Visit(T->getPointeeType());
3785 }
3786
VisitBlockPointerType(const BlockPointerType * T)3787 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3788 const BlockPointerType* T) {
3789 return Visit(T->getPointeeType());
3790 }
3791
VisitLValueReferenceType(const LValueReferenceType * T)3792 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3793 const LValueReferenceType* T) {
3794 return Visit(T->getPointeeType());
3795 }
3796
VisitRValueReferenceType(const RValueReferenceType * T)3797 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3798 const RValueReferenceType* T) {
3799 return Visit(T->getPointeeType());
3800 }
3801
VisitMemberPointerType(const MemberPointerType * T)3802 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3803 const MemberPointerType* T) {
3804 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3805 }
3806
VisitConstantArrayType(const ConstantArrayType * T)3807 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3808 const ConstantArrayType* T) {
3809 return Visit(T->getElementType());
3810 }
3811
VisitIncompleteArrayType(const IncompleteArrayType * T)3812 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3813 const IncompleteArrayType* T) {
3814 return Visit(T->getElementType());
3815 }
3816
VisitVariableArrayType(const VariableArrayType * T)3817 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3818 const VariableArrayType* T) {
3819 return Visit(T->getElementType());
3820 }
3821
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3822 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3823 const DependentSizedArrayType* T) {
3824 return Visit(T->getElementType());
3825 }
3826
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3827 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3828 const DependentSizedExtVectorType* T) {
3829 return Visit(T->getElementType());
3830 }
3831
VisitVectorType(const VectorType * T)3832 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3833 return Visit(T->getElementType());
3834 }
3835
VisitExtVectorType(const ExtVectorType * T)3836 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3837 return Visit(T->getElementType());
3838 }
3839
VisitFunctionProtoType(const FunctionProtoType * T)3840 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3841 const FunctionProtoType* T) {
3842 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3843 AEnd = T->arg_type_end();
3844 A != AEnd; ++A) {
3845 if (Visit(*A))
3846 return true;
3847 }
3848
3849 return Visit(T->getResultType());
3850 }
3851
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3852 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3853 const FunctionNoProtoType* T) {
3854 return Visit(T->getResultType());
3855 }
3856
VisitUnresolvedUsingType(const UnresolvedUsingType *)3857 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3858 const UnresolvedUsingType*) {
3859 return false;
3860 }
3861
VisitTypeOfExprType(const TypeOfExprType *)3862 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3863 return false;
3864 }
3865
VisitTypeOfType(const TypeOfType * T)3866 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3867 return Visit(T->getUnderlyingType());
3868 }
3869
VisitDecltypeType(const DecltypeType *)3870 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3871 return false;
3872 }
3873
VisitUnaryTransformType(const UnaryTransformType *)3874 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3875 const UnaryTransformType*) {
3876 return false;
3877 }
3878
VisitAutoType(const AutoType * T)3879 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3880 return Visit(T->getDeducedType());
3881 }
3882
VisitRecordType(const RecordType * T)3883 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3884 return VisitTagDecl(T->getDecl());
3885 }
3886
VisitEnumType(const EnumType * T)3887 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3888 return VisitTagDecl(T->getDecl());
3889 }
3890
VisitTemplateTypeParmType(const TemplateTypeParmType *)3891 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3892 const TemplateTypeParmType*) {
3893 return false;
3894 }
3895
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)3896 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3897 const SubstTemplateTypeParmPackType *) {
3898 return false;
3899 }
3900
VisitTemplateSpecializationType(const TemplateSpecializationType *)3901 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3902 const TemplateSpecializationType*) {
3903 return false;
3904 }
3905
VisitInjectedClassNameType(const InjectedClassNameType * T)3906 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3907 const InjectedClassNameType* T) {
3908 return VisitTagDecl(T->getDecl());
3909 }
3910
VisitDependentNameType(const DependentNameType * T)3911 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3912 const DependentNameType* T) {
3913 return VisitNestedNameSpecifier(T->getQualifier());
3914 }
3915
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)3916 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3917 const DependentTemplateSpecializationType* T) {
3918 return VisitNestedNameSpecifier(T->getQualifier());
3919 }
3920
VisitPackExpansionType(const PackExpansionType * T)3921 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3922 const PackExpansionType* T) {
3923 return Visit(T->getPattern());
3924 }
3925
VisitObjCObjectType(const ObjCObjectType *)3926 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3927 return false;
3928 }
3929
VisitObjCInterfaceType(const ObjCInterfaceType *)3930 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3931 const ObjCInterfaceType *) {
3932 return false;
3933 }
3934
VisitObjCObjectPointerType(const ObjCObjectPointerType *)3935 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3936 const ObjCObjectPointerType *) {
3937 return false;
3938 }
3939
VisitAtomicType(const AtomicType * T)3940 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3941 return Visit(T->getValueType());
3942 }
3943
VisitTagDecl(const TagDecl * Tag)3944 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3945 if (Tag->getDeclContext()->isFunctionOrMethod()) {
3946 S.Diag(SR.getBegin(),
3947 S.getLangOpts().CPlusPlus11 ?
3948 diag::warn_cxx98_compat_template_arg_local_type :
3949 diag::ext_template_arg_local_type)
3950 << S.Context.getTypeDeclType(Tag) << SR;
3951 return true;
3952 }
3953
3954 if (!Tag->hasNameForLinkage()) {
3955 S.Diag(SR.getBegin(),
3956 S.getLangOpts().CPlusPlus11 ?
3957 diag::warn_cxx98_compat_template_arg_unnamed_type :
3958 diag::ext_template_arg_unnamed_type) << SR;
3959 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3960 return true;
3961 }
3962
3963 return false;
3964 }
3965
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)3966 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3967 NestedNameSpecifier *NNS) {
3968 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3969 return true;
3970
3971 switch (NNS->getKind()) {
3972 case NestedNameSpecifier::Identifier:
3973 case NestedNameSpecifier::Namespace:
3974 case NestedNameSpecifier::NamespaceAlias:
3975 case NestedNameSpecifier::Global:
3976 return false;
3977
3978 case NestedNameSpecifier::TypeSpec:
3979 case NestedNameSpecifier::TypeSpecWithTemplate:
3980 return Visit(QualType(NNS->getAsType(), 0));
3981 }
3982 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3983 }
3984
3985
3986 /// \brief Check a template argument against its corresponding
3987 /// template type parameter.
3988 ///
3989 /// This routine implements the semantics of C++ [temp.arg.type]. It
3990 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)3991 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3992 TypeSourceInfo *ArgInfo) {
3993 assert(ArgInfo && "invalid TypeSourceInfo");
3994 QualType Arg = ArgInfo->getType();
3995 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3996
3997 if (Arg->isVariablyModifiedType()) {
3998 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3999 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4000 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4001 }
4002
4003 // C++03 [temp.arg.type]p2:
4004 // A local type, a type with no linkage, an unnamed type or a type
4005 // compounded from any of these types shall not be used as a
4006 // template-argument for a template type-parameter.
4007 //
4008 // C++11 allows these, and even in C++03 we allow them as an extension with
4009 // a warning.
4010 if (LangOpts.CPlusPlus11 ?
4011 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
4012 SR.getBegin()) != DiagnosticsEngine::Ignored ||
4013 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
4014 SR.getBegin()) != DiagnosticsEngine::Ignored :
4015 Arg->hasUnnamedOrLocalType()) {
4016 UnnamedLocalNoLinkageFinder Finder(*this, SR);
4017 (void)Finder.Visit(Context.getCanonicalType(Arg));
4018 }
4019
4020 return false;
4021 }
4022
4023 enum NullPointerValueKind {
4024 NPV_NotNullPointer,
4025 NPV_NullPointer,
4026 NPV_Error
4027 };
4028
4029 /// \brief Determine whether the given template argument is a null pointer
4030 /// value of the appropriate type.
4031 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4032 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4033 QualType ParamType, Expr *Arg) {
4034 if (Arg->isValueDependent() || Arg->isTypeDependent())
4035 return NPV_NotNullPointer;
4036
4037 if (!S.getLangOpts().CPlusPlus11)
4038 return NPV_NotNullPointer;
4039
4040 // Determine whether we have a constant expression.
4041 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4042 if (ArgRV.isInvalid())
4043 return NPV_Error;
4044 Arg = ArgRV.take();
4045
4046 Expr::EvalResult EvalResult;
4047 SmallVector<PartialDiagnosticAt, 8> Notes;
4048 EvalResult.Diag = &Notes;
4049 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4050 EvalResult.HasSideEffects) {
4051 SourceLocation DiagLoc = Arg->getExprLoc();
4052
4053 // If our only note is the usual "invalid subexpression" note, just point
4054 // the caret at its location rather than producing an essentially
4055 // redundant note.
4056 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4057 diag::note_invalid_subexpr_in_const_expr) {
4058 DiagLoc = Notes[0].first;
4059 Notes.clear();
4060 }
4061
4062 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4063 << Arg->getType() << Arg->getSourceRange();
4064 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4065 S.Diag(Notes[I].first, Notes[I].second);
4066
4067 S.Diag(Param->getLocation(), diag::note_template_param_here);
4068 return NPV_Error;
4069 }
4070
4071 // C++11 [temp.arg.nontype]p1:
4072 // - an address constant expression of type std::nullptr_t
4073 if (Arg->getType()->isNullPtrType())
4074 return NPV_NullPointer;
4075
4076 // - a constant expression that evaluates to a null pointer value (4.10); or
4077 // - a constant expression that evaluates to a null member pointer value
4078 // (4.11); or
4079 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4080 (EvalResult.Val.isMemberPointer() &&
4081 !EvalResult.Val.getMemberPointerDecl())) {
4082 // If our expression has an appropriate type, we've succeeded.
4083 bool ObjCLifetimeConversion;
4084 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4085 S.IsQualificationConversion(Arg->getType(), ParamType, false,
4086 ObjCLifetimeConversion))
4087 return NPV_NullPointer;
4088
4089 // The types didn't match, but we know we got a null pointer; complain,
4090 // then recover as if the types were correct.
4091 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4092 << Arg->getType() << ParamType << Arg->getSourceRange();
4093 S.Diag(Param->getLocation(), diag::note_template_param_here);
4094 return NPV_NullPointer;
4095 }
4096
4097 // If we don't have a null pointer value, but we do have a NULL pointer
4098 // constant, suggest a cast to the appropriate type.
4099 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4100 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4101 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4102 << ParamType
4103 << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4104 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4105 ")");
4106 S.Diag(Param->getLocation(), diag::note_template_param_here);
4107 return NPV_NullPointer;
4108 }
4109
4110 // FIXME: If we ever want to support general, address-constant expressions
4111 // as non-type template arguments, we should return the ExprResult here to
4112 // be interpreted by the caller.
4113 return NPV_NotNullPointer;
4114 }
4115
4116 /// \brief Checks whether the given template argument is the address
4117 /// of an object or function according to C++ [temp.arg.nontype]p1.
4118 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4119 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4120 NonTypeTemplateParmDecl *Param,
4121 QualType ParamType,
4122 Expr *ArgIn,
4123 TemplateArgument &Converted) {
4124 bool Invalid = false;
4125 Expr *Arg = ArgIn;
4126 QualType ArgType = Arg->getType();
4127
4128 // If our parameter has pointer type, check for a null template value.
4129 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4130 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4131 case NPV_NullPointer:
4132 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4133 Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4134 return false;
4135
4136 case NPV_Error:
4137 return true;
4138
4139 case NPV_NotNullPointer:
4140 break;
4141 }
4142 }
4143
4144 // See through any implicit casts we added to fix the type.
4145 Arg = Arg->IgnoreImpCasts();
4146
4147 // C++ [temp.arg.nontype]p1:
4148 //
4149 // A template-argument for a non-type, non-template
4150 // template-parameter shall be one of: [...]
4151 //
4152 // -- the address of an object or function with external
4153 // linkage, including function templates and function
4154 // template-ids but excluding non-static class members,
4155 // expressed as & id-expression where the & is optional if
4156 // the name refers to a function or array, or if the
4157 // corresponding template-parameter is a reference; or
4158
4159 // In C++98/03 mode, give an extension warning on any extra parentheses.
4160 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4161 bool ExtraParens = false;
4162 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4163 if (!Invalid && !ExtraParens) {
4164 S.Diag(Arg->getLocStart(),
4165 S.getLangOpts().CPlusPlus11 ?
4166 diag::warn_cxx98_compat_template_arg_extra_parens :
4167 diag::ext_template_arg_extra_parens)
4168 << Arg->getSourceRange();
4169 ExtraParens = true;
4170 }
4171
4172 Arg = Parens->getSubExpr();
4173 }
4174
4175 while (SubstNonTypeTemplateParmExpr *subst =
4176 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4177 Arg = subst->getReplacement()->IgnoreImpCasts();
4178
4179 bool AddressTaken = false;
4180 SourceLocation AddrOpLoc;
4181 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4182 if (UnOp->getOpcode() == UO_AddrOf) {
4183 Arg = UnOp->getSubExpr();
4184 AddressTaken = true;
4185 AddrOpLoc = UnOp->getOperatorLoc();
4186 }
4187 }
4188
4189 if (isa<CXXUuidofExpr>(Arg)) {
4190 Converted = TemplateArgument(ArgIn);
4191 return false;
4192 }
4193
4194 while (SubstNonTypeTemplateParmExpr *subst =
4195 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4196 Arg = subst->getReplacement()->IgnoreImpCasts();
4197
4198 // Stop checking the precise nature of the argument if it is value dependent,
4199 // it should be checked when instantiated.
4200 if (Arg->isValueDependent()) {
4201 Converted = TemplateArgument(ArgIn);
4202 return false;
4203 }
4204
4205 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4206 if (!DRE) {
4207 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4208 << Arg->getSourceRange();
4209 S.Diag(Param->getLocation(), diag::note_template_param_here);
4210 return true;
4211 }
4212
4213 if (!isa<ValueDecl>(DRE->getDecl())) {
4214 S.Diag(Arg->getLocStart(),
4215 diag::err_template_arg_not_object_or_func_form)
4216 << Arg->getSourceRange();
4217 S.Diag(Param->getLocation(), diag::note_template_param_here);
4218 return true;
4219 }
4220
4221 ValueDecl *Entity = DRE->getDecl();
4222
4223 // Cannot refer to non-static data members
4224 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
4225 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4226 << Field << Arg->getSourceRange();
4227 S.Diag(Param->getLocation(), diag::note_template_param_here);
4228 return true;
4229 }
4230
4231 // Cannot refer to non-static member functions
4232 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4233 if (!Method->isStatic()) {
4234 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4235 << Method << Arg->getSourceRange();
4236 S.Diag(Param->getLocation(), diag::note_template_param_here);
4237 return true;
4238 }
4239 }
4240
4241 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4242 VarDecl *Var = dyn_cast<VarDecl>(Entity);
4243
4244 // A non-type template argument must refer to an object or function.
4245 if (!Func && !Var) {
4246 // We found something, but we don't know specifically what it is.
4247 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4248 << Arg->getSourceRange();
4249 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4250 return true;
4251 }
4252
4253 // Address / reference template args must have external linkage in C++98.
4254 if (Entity->getFormalLinkage() == InternalLinkage) {
4255 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4256 diag::warn_cxx98_compat_template_arg_object_internal :
4257 diag::ext_template_arg_object_internal)
4258 << !Func << Entity << Arg->getSourceRange();
4259 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4260 << !Func;
4261 } else if (!Entity->hasLinkage()) {
4262 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4263 << !Func << Entity << Arg->getSourceRange();
4264 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4265 << !Func;
4266 return true;
4267 }
4268
4269 if (Func) {
4270 // If the template parameter has pointer type, the function decays.
4271 if (ParamType->isPointerType() && !AddressTaken)
4272 ArgType = S.Context.getPointerType(Func->getType());
4273 else if (AddressTaken && ParamType->isReferenceType()) {
4274 // If we originally had an address-of operator, but the
4275 // parameter has reference type, complain and (if things look
4276 // like they will work) drop the address-of operator.
4277 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4278 ParamType.getNonReferenceType())) {
4279 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4280 << ParamType;
4281 S.Diag(Param->getLocation(), diag::note_template_param_here);
4282 return true;
4283 }
4284
4285 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4286 << ParamType
4287 << FixItHint::CreateRemoval(AddrOpLoc);
4288 S.Diag(Param->getLocation(), diag::note_template_param_here);
4289
4290 ArgType = Func->getType();
4291 }
4292 } else {
4293 // A value of reference type is not an object.
4294 if (Var->getType()->isReferenceType()) {
4295 S.Diag(Arg->getLocStart(),
4296 diag::err_template_arg_reference_var)
4297 << Var->getType() << Arg->getSourceRange();
4298 S.Diag(Param->getLocation(), diag::note_template_param_here);
4299 return true;
4300 }
4301
4302 // A template argument must have static storage duration.
4303 if (Var->getTLSKind()) {
4304 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4305 << Arg->getSourceRange();
4306 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4307 return true;
4308 }
4309
4310 // If the template parameter has pointer type, we must have taken
4311 // the address of this object.
4312 if (ParamType->isReferenceType()) {
4313 if (AddressTaken) {
4314 // If we originally had an address-of operator, but the
4315 // parameter has reference type, complain and (if things look
4316 // like they will work) drop the address-of operator.
4317 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4318 ParamType.getNonReferenceType())) {
4319 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4320 << ParamType;
4321 S.Diag(Param->getLocation(), diag::note_template_param_here);
4322 return true;
4323 }
4324
4325 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4326 << ParamType
4327 << FixItHint::CreateRemoval(AddrOpLoc);
4328 S.Diag(Param->getLocation(), diag::note_template_param_here);
4329
4330 ArgType = Var->getType();
4331 }
4332 } else if (!AddressTaken && ParamType->isPointerType()) {
4333 if (Var->getType()->isArrayType()) {
4334 // Array-to-pointer decay.
4335 ArgType = S.Context.getArrayDecayedType(Var->getType());
4336 } else {
4337 // If the template parameter has pointer type but the address of
4338 // this object was not taken, complain and (possibly) recover by
4339 // taking the address of the entity.
4340 ArgType = S.Context.getPointerType(Var->getType());
4341 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4342 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4343 << ParamType;
4344 S.Diag(Param->getLocation(), diag::note_template_param_here);
4345 return true;
4346 }
4347
4348 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4349 << ParamType
4350 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4351
4352 S.Diag(Param->getLocation(), diag::note_template_param_here);
4353 }
4354 }
4355 }
4356
4357 bool ObjCLifetimeConversion;
4358 if (ParamType->isPointerType() &&
4359 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4360 S.IsQualificationConversion(ArgType, ParamType, false,
4361 ObjCLifetimeConversion)) {
4362 // For pointer-to-object types, qualification conversions are
4363 // permitted.
4364 } else {
4365 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4366 if (!ParamRef->getPointeeType()->isFunctionType()) {
4367 // C++ [temp.arg.nontype]p5b3:
4368 // For a non-type template-parameter of type reference to
4369 // object, no conversions apply. The type referred to by the
4370 // reference may be more cv-qualified than the (otherwise
4371 // identical) type of the template- argument. The
4372 // template-parameter is bound directly to the
4373 // template-argument, which shall be an lvalue.
4374
4375 // FIXME: Other qualifiers?
4376 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4377 unsigned ArgQuals = ArgType.getCVRQualifiers();
4378
4379 if ((ParamQuals | ArgQuals) != ParamQuals) {
4380 S.Diag(Arg->getLocStart(),
4381 diag::err_template_arg_ref_bind_ignores_quals)
4382 << ParamType << Arg->getType()
4383 << Arg->getSourceRange();
4384 S.Diag(Param->getLocation(), diag::note_template_param_here);
4385 return true;
4386 }
4387 }
4388 }
4389
4390 // At this point, the template argument refers to an object or
4391 // function with external linkage. We now need to check whether the
4392 // argument and parameter types are compatible.
4393 if (!S.Context.hasSameUnqualifiedType(ArgType,
4394 ParamType.getNonReferenceType())) {
4395 // We can't perform this conversion or binding.
4396 if (ParamType->isReferenceType())
4397 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4398 << ParamType << ArgIn->getType() << Arg->getSourceRange();
4399 else
4400 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4401 << ArgIn->getType() << ParamType << Arg->getSourceRange();
4402 S.Diag(Param->getLocation(), diag::note_template_param_here);
4403 return true;
4404 }
4405 }
4406
4407 // Create the template argument.
4408 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4409 ParamType->isReferenceType());
4410 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4411 return false;
4412 }
4413
4414 /// \brief Checks whether the given template argument is a pointer to
4415 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4416 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4417 NonTypeTemplateParmDecl *Param,
4418 QualType ParamType,
4419 Expr *&ResultArg,
4420 TemplateArgument &Converted) {
4421 bool Invalid = false;
4422
4423 // Check for a null pointer value.
4424 Expr *Arg = ResultArg;
4425 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4426 case NPV_Error:
4427 return true;
4428 case NPV_NullPointer:
4429 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4430 Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4431 return false;
4432 case NPV_NotNullPointer:
4433 break;
4434 }
4435
4436 bool ObjCLifetimeConversion;
4437 if (S.IsQualificationConversion(Arg->getType(),
4438 ParamType.getNonReferenceType(),
4439 false, ObjCLifetimeConversion)) {
4440 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4441 Arg->getValueKind()).take();
4442 ResultArg = Arg;
4443 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4444 ParamType.getNonReferenceType())) {
4445 // We can't perform this conversion.
4446 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4447 << Arg->getType() << ParamType << Arg->getSourceRange();
4448 S.Diag(Param->getLocation(), diag::note_template_param_here);
4449 return true;
4450 }
4451
4452 // See through any implicit casts we added to fix the type.
4453 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4454 Arg = Cast->getSubExpr();
4455
4456 // C++ [temp.arg.nontype]p1:
4457 //
4458 // A template-argument for a non-type, non-template
4459 // template-parameter shall be one of: [...]
4460 //
4461 // -- a pointer to member expressed as described in 5.3.1.
4462 DeclRefExpr *DRE = 0;
4463
4464 // In C++98/03 mode, give an extension warning on any extra parentheses.
4465 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4466 bool ExtraParens = false;
4467 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4468 if (!Invalid && !ExtraParens) {
4469 S.Diag(Arg->getLocStart(),
4470 S.getLangOpts().CPlusPlus11 ?
4471 diag::warn_cxx98_compat_template_arg_extra_parens :
4472 diag::ext_template_arg_extra_parens)
4473 << Arg->getSourceRange();
4474 ExtraParens = true;
4475 }
4476
4477 Arg = Parens->getSubExpr();
4478 }
4479
4480 while (SubstNonTypeTemplateParmExpr *subst =
4481 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4482 Arg = subst->getReplacement()->IgnoreImpCasts();
4483
4484 // A pointer-to-member constant written &Class::member.
4485 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4486 if (UnOp->getOpcode() == UO_AddrOf) {
4487 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4488 if (DRE && !DRE->getQualifier())
4489 DRE = 0;
4490 }
4491 }
4492 // A constant of pointer-to-member type.
4493 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4494 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4495 if (VD->getType()->isMemberPointerType()) {
4496 if (isa<NonTypeTemplateParmDecl>(VD) ||
4497 (isa<VarDecl>(VD) &&
4498 S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4499 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4500 Converted = TemplateArgument(Arg);
4501 } else {
4502 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4503 Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4504 }
4505 return Invalid;
4506 }
4507 }
4508 }
4509
4510 DRE = 0;
4511 }
4512
4513 if (!DRE)
4514 return S.Diag(Arg->getLocStart(),
4515 diag::err_template_arg_not_pointer_to_member_form)
4516 << Arg->getSourceRange();
4517
4518 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4519 assert((isa<FieldDecl>(DRE->getDecl()) ||
4520 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4521 "Only non-static member pointers can make it here");
4522
4523 // Okay: this is the address of a non-static member, and therefore
4524 // a member pointer constant.
4525 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4526 Converted = TemplateArgument(Arg);
4527 } else {
4528 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4529 Converted = TemplateArgument(D, /*isReferenceParam*/false);
4530 }
4531 return Invalid;
4532 }
4533
4534 // We found something else, but we don't know specifically what it is.
4535 S.Diag(Arg->getLocStart(),
4536 diag::err_template_arg_not_pointer_to_member_form)
4537 << Arg->getSourceRange();
4538 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4539 return true;
4540 }
4541
4542 /// \brief Check a template argument against its corresponding
4543 /// non-type template parameter.
4544 ///
4545 /// This routine implements the semantics of C++ [temp.arg.nontype].
4546 /// If an error occurred, it returns ExprError(); otherwise, it
4547 /// returns the converted template argument. \p
4548 /// InstantiatedParamType is the type of the non-type template
4549 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4550 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4551 QualType InstantiatedParamType, Expr *Arg,
4552 TemplateArgument &Converted,
4553 CheckTemplateArgumentKind CTAK) {
4554 SourceLocation StartLoc = Arg->getLocStart();
4555
4556 // If either the parameter has a dependent type or the argument is
4557 // type-dependent, there's nothing we can check now.
4558 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4559 // FIXME: Produce a cloned, canonical expression?
4560 Converted = TemplateArgument(Arg);
4561 return Owned(Arg);
4562 }
4563
4564 // C++ [temp.arg.nontype]p5:
4565 // The following conversions are performed on each expression used
4566 // as a non-type template-argument. If a non-type
4567 // template-argument cannot be converted to the type of the
4568 // corresponding template-parameter then the program is
4569 // ill-formed.
4570 QualType ParamType = InstantiatedParamType;
4571 if (ParamType->isIntegralOrEnumerationType()) {
4572 // C++11:
4573 // -- for a non-type template-parameter of integral or
4574 // enumeration type, conversions permitted in a converted
4575 // constant expression are applied.
4576 //
4577 // C++98:
4578 // -- for a non-type template-parameter of integral or
4579 // enumeration type, integral promotions (4.5) and integral
4580 // conversions (4.7) are applied.
4581
4582 if (CTAK == CTAK_Deduced &&
4583 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4584 // C++ [temp.deduct.type]p17:
4585 // If, in the declaration of a function template with a non-type
4586 // template-parameter, the non-type template-parameter is used
4587 // in an expression in the function parameter-list and, if the
4588 // corresponding template-argument is deduced, the
4589 // template-argument type shall match the type of the
4590 // template-parameter exactly, except that a template-argument
4591 // deduced from an array bound may be of any integral type.
4592 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4593 << Arg->getType().getUnqualifiedType()
4594 << ParamType.getUnqualifiedType();
4595 Diag(Param->getLocation(), diag::note_template_param_here);
4596 return ExprError();
4597 }
4598
4599 if (getLangOpts().CPlusPlus11) {
4600 // We can't check arbitrary value-dependent arguments.
4601 // FIXME: If there's no viable conversion to the template parameter type,
4602 // we should be able to diagnose that prior to instantiation.
4603 if (Arg->isValueDependent()) {
4604 Converted = TemplateArgument(Arg);
4605 return Owned(Arg);
4606 }
4607
4608 // C++ [temp.arg.nontype]p1:
4609 // A template-argument for a non-type, non-template template-parameter
4610 // shall be one of:
4611 //
4612 // -- for a non-type template-parameter of integral or enumeration
4613 // type, a converted constant expression of the type of the
4614 // template-parameter; or
4615 llvm::APSInt Value;
4616 ExprResult ArgResult =
4617 CheckConvertedConstantExpression(Arg, ParamType, Value,
4618 CCEK_TemplateArg);
4619 if (ArgResult.isInvalid())
4620 return ExprError();
4621
4622 // Widen the argument value to sizeof(parameter type). This is almost
4623 // always a no-op, except when the parameter type is bool. In
4624 // that case, this may extend the argument from 1 bit to 8 bits.
4625 QualType IntegerType = ParamType;
4626 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4627 IntegerType = Enum->getDecl()->getIntegerType();
4628 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4629
4630 Converted = TemplateArgument(Context, Value,
4631 Context.getCanonicalType(ParamType));
4632 return ArgResult;
4633 }
4634
4635 ExprResult ArgResult = DefaultLvalueConversion(Arg);
4636 if (ArgResult.isInvalid())
4637 return ExprError();
4638 Arg = ArgResult.take();
4639
4640 QualType ArgType = Arg->getType();
4641
4642 // C++ [temp.arg.nontype]p1:
4643 // A template-argument for a non-type, non-template
4644 // template-parameter shall be one of:
4645 //
4646 // -- an integral constant-expression of integral or enumeration
4647 // type; or
4648 // -- the name of a non-type template-parameter; or
4649 SourceLocation NonConstantLoc;
4650 llvm::APSInt Value;
4651 if (!ArgType->isIntegralOrEnumerationType()) {
4652 Diag(Arg->getLocStart(),
4653 diag::err_template_arg_not_integral_or_enumeral)
4654 << ArgType << Arg->getSourceRange();
4655 Diag(Param->getLocation(), diag::note_template_param_here);
4656 return ExprError();
4657 } else if (!Arg->isValueDependent()) {
4658 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4659 QualType T;
4660
4661 public:
4662 TmplArgICEDiagnoser(QualType T) : T(T) { }
4663
4664 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4665 SourceRange SR) {
4666 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4667 }
4668 } Diagnoser(ArgType);
4669
4670 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4671 false).take();
4672 if (!Arg)
4673 return ExprError();
4674 }
4675
4676 // From here on out, all we care about are the unqualified forms
4677 // of the parameter and argument types.
4678 ParamType = ParamType.getUnqualifiedType();
4679 ArgType = ArgType.getUnqualifiedType();
4680
4681 // Try to convert the argument to the parameter's type.
4682 if (Context.hasSameType(ParamType, ArgType)) {
4683 // Okay: no conversion necessary
4684 } else if (ParamType->isBooleanType()) {
4685 // This is an integral-to-boolean conversion.
4686 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4687 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4688 !ParamType->isEnumeralType()) {
4689 // This is an integral promotion or conversion.
4690 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4691 } else {
4692 // We can't perform this conversion.
4693 Diag(Arg->getLocStart(),
4694 diag::err_template_arg_not_convertible)
4695 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4696 Diag(Param->getLocation(), diag::note_template_param_here);
4697 return ExprError();
4698 }
4699
4700 // Add the value of this argument to the list of converted
4701 // arguments. We use the bitwidth and signedness of the template
4702 // parameter.
4703 if (Arg->isValueDependent()) {
4704 // The argument is value-dependent. Create a new
4705 // TemplateArgument with the converted expression.
4706 Converted = TemplateArgument(Arg);
4707 return Owned(Arg);
4708 }
4709
4710 QualType IntegerType = Context.getCanonicalType(ParamType);
4711 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4712 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4713
4714 if (ParamType->isBooleanType()) {
4715 // Value must be zero or one.
4716 Value = Value != 0;
4717 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4718 if (Value.getBitWidth() != AllowedBits)
4719 Value = Value.extOrTrunc(AllowedBits);
4720 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4721 } else {
4722 llvm::APSInt OldValue = Value;
4723
4724 // Coerce the template argument's value to the value it will have
4725 // based on the template parameter's type.
4726 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4727 if (Value.getBitWidth() != AllowedBits)
4728 Value = Value.extOrTrunc(AllowedBits);
4729 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4730
4731 // Complain if an unsigned parameter received a negative value.
4732 if (IntegerType->isUnsignedIntegerOrEnumerationType()
4733 && (OldValue.isSigned() && OldValue.isNegative())) {
4734 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4735 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4736 << Arg->getSourceRange();
4737 Diag(Param->getLocation(), diag::note_template_param_here);
4738 }
4739
4740 // Complain if we overflowed the template parameter's type.
4741 unsigned RequiredBits;
4742 if (IntegerType->isUnsignedIntegerOrEnumerationType())
4743 RequiredBits = OldValue.getActiveBits();
4744 else if (OldValue.isUnsigned())
4745 RequiredBits = OldValue.getActiveBits() + 1;
4746 else
4747 RequiredBits = OldValue.getMinSignedBits();
4748 if (RequiredBits > AllowedBits) {
4749 Diag(Arg->getLocStart(),
4750 diag::warn_template_arg_too_large)
4751 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4752 << Arg->getSourceRange();
4753 Diag(Param->getLocation(), diag::note_template_param_here);
4754 }
4755 }
4756
4757 Converted = TemplateArgument(Context, Value,
4758 ParamType->isEnumeralType()
4759 ? Context.getCanonicalType(ParamType)
4760 : IntegerType);
4761 return Owned(Arg);
4762 }
4763
4764 QualType ArgType = Arg->getType();
4765 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4766
4767 // Handle pointer-to-function, reference-to-function, and
4768 // pointer-to-member-function all in (roughly) the same way.
4769 if (// -- For a non-type template-parameter of type pointer to
4770 // function, only the function-to-pointer conversion (4.3) is
4771 // applied. If the template-argument represents a set of
4772 // overloaded functions (or a pointer to such), the matching
4773 // function is selected from the set (13.4).
4774 (ParamType->isPointerType() &&
4775 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4776 // -- For a non-type template-parameter of type reference to
4777 // function, no conversions apply. If the template-argument
4778 // represents a set of overloaded functions, the matching
4779 // function is selected from the set (13.4).
4780 (ParamType->isReferenceType() &&
4781 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4782 // -- For a non-type template-parameter of type pointer to
4783 // member function, no conversions apply. If the
4784 // template-argument represents a set of overloaded member
4785 // functions, the matching member function is selected from
4786 // the set (13.4).
4787 (ParamType->isMemberPointerType() &&
4788 ParamType->getAs<MemberPointerType>()->getPointeeType()
4789 ->isFunctionType())) {
4790
4791 if (Arg->getType() == Context.OverloadTy) {
4792 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4793 true,
4794 FoundResult)) {
4795 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4796 return ExprError();
4797
4798 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4799 ArgType = Arg->getType();
4800 } else
4801 return ExprError();
4802 }
4803
4804 if (!ParamType->isMemberPointerType()) {
4805 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4806 ParamType,
4807 Arg, Converted))
4808 return ExprError();
4809 return Owned(Arg);
4810 }
4811
4812 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4813 Converted))
4814 return ExprError();
4815 return Owned(Arg);
4816 }
4817
4818 if (ParamType->isPointerType()) {
4819 // -- for a non-type template-parameter of type pointer to
4820 // object, qualification conversions (4.4) and the
4821 // array-to-pointer conversion (4.2) are applied.
4822 // C++0x also allows a value of std::nullptr_t.
4823 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4824 "Only object pointers allowed here");
4825
4826 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4827 ParamType,
4828 Arg, Converted))
4829 return ExprError();
4830 return Owned(Arg);
4831 }
4832
4833 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4834 // -- For a non-type template-parameter of type reference to
4835 // object, no conversions apply. The type referred to by the
4836 // reference may be more cv-qualified than the (otherwise
4837 // identical) type of the template-argument. The
4838 // template-parameter is bound directly to the
4839 // template-argument, which must be an lvalue.
4840 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4841 "Only object references allowed here");
4842
4843 if (Arg->getType() == Context.OverloadTy) {
4844 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4845 ParamRefType->getPointeeType(),
4846 true,
4847 FoundResult)) {
4848 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4849 return ExprError();
4850
4851 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4852 ArgType = Arg->getType();
4853 } else
4854 return ExprError();
4855 }
4856
4857 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4858 ParamType,
4859 Arg, Converted))
4860 return ExprError();
4861 return Owned(Arg);
4862 }
4863
4864 // Deal with parameters of type std::nullptr_t.
4865 if (ParamType->isNullPtrType()) {
4866 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4867 Converted = TemplateArgument(Arg);
4868 return Owned(Arg);
4869 }
4870
4871 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4872 case NPV_NotNullPointer:
4873 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4874 << Arg->getType() << ParamType;
4875 Diag(Param->getLocation(), diag::note_template_param_here);
4876 return ExprError();
4877
4878 case NPV_Error:
4879 return ExprError();
4880
4881 case NPV_NullPointer:
4882 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4883 Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4884 return Owned(Arg);
4885 }
4886 }
4887
4888 // -- For a non-type template-parameter of type pointer to data
4889 // member, qualification conversions (4.4) are applied.
4890 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4891
4892 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4893 Converted))
4894 return ExprError();
4895 return Owned(Arg);
4896 }
4897
4898 /// \brief Check a template argument against its corresponding
4899 /// template template parameter.
4900 ///
4901 /// This routine implements the semantics of C++ [temp.arg.template].
4902 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,const TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)4903 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4904 const TemplateArgumentLoc &Arg,
4905 unsigned ArgumentPackIndex) {
4906 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
4907 TemplateDecl *Template = Name.getAsTemplateDecl();
4908 if (!Template) {
4909 // Any dependent template name is fine.
4910 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4911 return false;
4912 }
4913
4914 // C++0x [temp.arg.template]p1:
4915 // A template-argument for a template template-parameter shall be
4916 // the name of a class template or an alias template, expressed as an
4917 // id-expression. When the template-argument names a class template, only
4918 // primary class templates are considered when matching the
4919 // template template argument with the corresponding parameter;
4920 // partial specializations are not considered even if their
4921 // parameter lists match that of the template template parameter.
4922 //
4923 // Note that we also allow template template parameters here, which
4924 // will happen when we are dealing with, e.g., class template
4925 // partial specializations.
4926 if (!isa<ClassTemplateDecl>(Template) &&
4927 !isa<TemplateTemplateParmDecl>(Template) &&
4928 !isa<TypeAliasTemplateDecl>(Template)) {
4929 assert(isa<FunctionTemplateDecl>(Template) &&
4930 "Only function templates are possible here");
4931 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4932 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4933 << Template;
4934 }
4935
4936 TemplateParameterList *Params = Param->getTemplateParameters();
4937 if (Param->isExpandedParameterPack())
4938 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4939
4940 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4941 Params,
4942 true,
4943 TPL_TemplateTemplateArgumentMatch,
4944 Arg.getLocation());
4945 }
4946
4947 /// \brief Given a non-type template argument that refers to a
4948 /// declaration and the type of its corresponding non-type template
4949 /// parameter, produce an expression that properly refers to that
4950 /// declaration.
4951 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)4952 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4953 QualType ParamType,
4954 SourceLocation Loc) {
4955 // C++ [temp.param]p8:
4956 //
4957 // A non-type template-parameter of type "array of T" or
4958 // "function returning T" is adjusted to be of type "pointer to
4959 // T" or "pointer to function returning T", respectively.
4960 if (ParamType->isArrayType())
4961 ParamType = Context.getArrayDecayedType(ParamType);
4962 else if (ParamType->isFunctionType())
4963 ParamType = Context.getPointerType(ParamType);
4964
4965 // For a NULL non-type template argument, return nullptr casted to the
4966 // parameter's type.
4967 if (Arg.getKind() == TemplateArgument::NullPtr) {
4968 return ImpCastExprToType(
4969 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4970 ParamType,
4971 ParamType->getAs<MemberPointerType>()
4972 ? CK_NullToMemberPointer
4973 : CK_NullToPointer);
4974 }
4975 assert(Arg.getKind() == TemplateArgument::Declaration &&
4976 "Only declaration template arguments permitted here");
4977
4978 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4979
4980 if (VD->getDeclContext()->isRecord() &&
4981 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4982 // If the value is a class member, we might have a pointer-to-member.
4983 // Determine whether the non-type template template parameter is of
4984 // pointer-to-member type. If so, we need to build an appropriate
4985 // expression for a pointer-to-member, since a "normal" DeclRefExpr
4986 // would refer to the member itself.
4987 if (ParamType->isMemberPointerType()) {
4988 QualType ClassType
4989 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4990 NestedNameSpecifier *Qualifier
4991 = NestedNameSpecifier::Create(Context, 0, false,
4992 ClassType.getTypePtr());
4993 CXXScopeSpec SS;
4994 SS.MakeTrivial(Context, Qualifier, Loc);
4995
4996 // The actual value-ness of this is unimportant, but for
4997 // internal consistency's sake, references to instance methods
4998 // are r-values.
4999 ExprValueKind VK = VK_LValue;
5000 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5001 VK = VK_RValue;
5002
5003 ExprResult RefExpr = BuildDeclRefExpr(VD,
5004 VD->getType().getNonReferenceType(),
5005 VK,
5006 Loc,
5007 &SS);
5008 if (RefExpr.isInvalid())
5009 return ExprError();
5010
5011 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5012
5013 // We might need to perform a trailing qualification conversion, since
5014 // the element type on the parameter could be more qualified than the
5015 // element type in the expression we constructed.
5016 bool ObjCLifetimeConversion;
5017 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5018 ParamType.getUnqualifiedType(), false,
5019 ObjCLifetimeConversion))
5020 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5021
5022 assert(!RefExpr.isInvalid() &&
5023 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5024 ParamType.getUnqualifiedType()));
5025 return RefExpr;
5026 }
5027 }
5028
5029 QualType T = VD->getType().getNonReferenceType();
5030
5031 if (ParamType->isPointerType()) {
5032 // When the non-type template parameter is a pointer, take the
5033 // address of the declaration.
5034 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5035 if (RefExpr.isInvalid())
5036 return ExprError();
5037
5038 if (T->isFunctionType() || T->isArrayType()) {
5039 // Decay functions and arrays.
5040 RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5041 if (RefExpr.isInvalid())
5042 return ExprError();
5043
5044 return RefExpr;
5045 }
5046
5047 // Take the address of everything else
5048 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5049 }
5050
5051 ExprValueKind VK = VK_RValue;
5052
5053 // If the non-type template parameter has reference type, qualify the
5054 // resulting declaration reference with the extra qualifiers on the
5055 // type that the reference refers to.
5056 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5057 VK = VK_LValue;
5058 T = Context.getQualifiedType(T,
5059 TargetRef->getPointeeType().getQualifiers());
5060 } else if (isa<FunctionDecl>(VD)) {
5061 // References to functions are always lvalues.
5062 VK = VK_LValue;
5063 }
5064
5065 return BuildDeclRefExpr(VD, T, VK, Loc);
5066 }
5067
5068 /// \brief Construct a new expression that refers to the given
5069 /// integral template argument with the given source-location
5070 /// information.
5071 ///
5072 /// This routine takes care of the mapping from an integral template
5073 /// argument (which may have any integral type) to the appropriate
5074 /// literal value.
5075 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5076 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5077 SourceLocation Loc) {
5078 assert(Arg.getKind() == TemplateArgument::Integral &&
5079 "Operation is only valid for integral template arguments");
5080 QualType OrigT = Arg.getIntegralType();
5081
5082 // If this is an enum type that we're instantiating, we need to use an integer
5083 // type the same size as the enumerator. We don't want to build an
5084 // IntegerLiteral with enum type. The integer type of an enum type can be of
5085 // any integral type with C++11 enum classes, make sure we create the right
5086 // type of literal for it.
5087 QualType T = OrigT;
5088 if (const EnumType *ET = OrigT->getAs<EnumType>())
5089 T = ET->getDecl()->getIntegerType();
5090
5091 Expr *E;
5092 if (T->isAnyCharacterType()) {
5093 CharacterLiteral::CharacterKind Kind;
5094 if (T->isWideCharType())
5095 Kind = CharacterLiteral::Wide;
5096 else if (T->isChar16Type())
5097 Kind = CharacterLiteral::UTF16;
5098 else if (T->isChar32Type())
5099 Kind = CharacterLiteral::UTF32;
5100 else
5101 Kind = CharacterLiteral::Ascii;
5102
5103 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5104 Kind, T, Loc);
5105 } else if (T->isBooleanType()) {
5106 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5107 T, Loc);
5108 } else if (T->isNullPtrType()) {
5109 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5110 } else {
5111 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5112 }
5113
5114 if (OrigT->isEnumeralType()) {
5115 // FIXME: This is a hack. We need a better way to handle substituted
5116 // non-type template parameters.
5117 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5118 Context.getTrivialTypeSourceInfo(OrigT, Loc),
5119 Loc, Loc);
5120 }
5121
5122 return Owned(E);
5123 }
5124
5125 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5126 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5127 bool Complain,
5128 Sema::TemplateParameterListEqualKind Kind,
5129 SourceLocation TemplateArgLoc) {
5130 // Check the actual kind (type, non-type, template).
5131 if (Old->getKind() != New->getKind()) {
5132 if (Complain) {
5133 unsigned NextDiag = diag::err_template_param_different_kind;
5134 if (TemplateArgLoc.isValid()) {
5135 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5136 NextDiag = diag::note_template_param_different_kind;
5137 }
5138 S.Diag(New->getLocation(), NextDiag)
5139 << (Kind != Sema::TPL_TemplateMatch);
5140 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5141 << (Kind != Sema::TPL_TemplateMatch);
5142 }
5143
5144 return false;
5145 }
5146
5147 // Check that both are parameter packs are neither are parameter packs.
5148 // However, if we are matching a template template argument to a
5149 // template template parameter, the template template parameter can have
5150 // a parameter pack where the template template argument does not.
5151 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5152 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5153 Old->isTemplateParameterPack())) {
5154 if (Complain) {
5155 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5156 if (TemplateArgLoc.isValid()) {
5157 S.Diag(TemplateArgLoc,
5158 diag::err_template_arg_template_params_mismatch);
5159 NextDiag = diag::note_template_parameter_pack_non_pack;
5160 }
5161
5162 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5163 : isa<NonTypeTemplateParmDecl>(New)? 1
5164 : 2;
5165 S.Diag(New->getLocation(), NextDiag)
5166 << ParamKind << New->isParameterPack();
5167 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5168 << ParamKind << Old->isParameterPack();
5169 }
5170
5171 return false;
5172 }
5173
5174 // For non-type template parameters, check the type of the parameter.
5175 if (NonTypeTemplateParmDecl *OldNTTP
5176 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5177 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5178
5179 // If we are matching a template template argument to a template
5180 // template parameter and one of the non-type template parameter types
5181 // is dependent, then we must wait until template instantiation time
5182 // to actually compare the arguments.
5183 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5184 (OldNTTP->getType()->isDependentType() ||
5185 NewNTTP->getType()->isDependentType()))
5186 return true;
5187
5188 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5189 if (Complain) {
5190 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5191 if (TemplateArgLoc.isValid()) {
5192 S.Diag(TemplateArgLoc,
5193 diag::err_template_arg_template_params_mismatch);
5194 NextDiag = diag::note_template_nontype_parm_different_type;
5195 }
5196 S.Diag(NewNTTP->getLocation(), NextDiag)
5197 << NewNTTP->getType()
5198 << (Kind != Sema::TPL_TemplateMatch);
5199 S.Diag(OldNTTP->getLocation(),
5200 diag::note_template_nontype_parm_prev_declaration)
5201 << OldNTTP->getType();
5202 }
5203
5204 return false;
5205 }
5206
5207 return true;
5208 }
5209
5210 // For template template parameters, check the template parameter types.
5211 // The template parameter lists of template template
5212 // parameters must agree.
5213 if (TemplateTemplateParmDecl *OldTTP
5214 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5215 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5216 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5217 OldTTP->getTemplateParameters(),
5218 Complain,
5219 (Kind == Sema::TPL_TemplateMatch
5220 ? Sema::TPL_TemplateTemplateParmMatch
5221 : Kind),
5222 TemplateArgLoc);
5223 }
5224
5225 return true;
5226 }
5227
5228 /// \brief Diagnose a known arity mismatch when comparing template argument
5229 /// lists.
5230 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5231 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5232 TemplateParameterList *New,
5233 TemplateParameterList *Old,
5234 Sema::TemplateParameterListEqualKind Kind,
5235 SourceLocation TemplateArgLoc) {
5236 unsigned NextDiag = diag::err_template_param_list_different_arity;
5237 if (TemplateArgLoc.isValid()) {
5238 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5239 NextDiag = diag::note_template_param_list_different_arity;
5240 }
5241 S.Diag(New->getTemplateLoc(), NextDiag)
5242 << (New->size() > Old->size())
5243 << (Kind != Sema::TPL_TemplateMatch)
5244 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5245 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5246 << (Kind != Sema::TPL_TemplateMatch)
5247 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5248 }
5249
5250 /// \brief Determine whether the given template parameter lists are
5251 /// equivalent.
5252 ///
5253 /// \param New The new template parameter list, typically written in the
5254 /// source code as part of a new template declaration.
5255 ///
5256 /// \param Old The old template parameter list, typically found via
5257 /// name lookup of the template declared with this template parameter
5258 /// list.
5259 ///
5260 /// \param Complain If true, this routine will produce a diagnostic if
5261 /// the template parameter lists are not equivalent.
5262 ///
5263 /// \param Kind describes how we are to match the template parameter lists.
5264 ///
5265 /// \param TemplateArgLoc If this source location is valid, then we
5266 /// are actually checking the template parameter list of a template
5267 /// argument (New) against the template parameter list of its
5268 /// corresponding template template parameter (Old). We produce
5269 /// slightly different diagnostics in this scenario.
5270 ///
5271 /// \returns True if the template parameter lists are equal, false
5272 /// otherwise.
5273 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5274 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5275 TemplateParameterList *Old,
5276 bool Complain,
5277 TemplateParameterListEqualKind Kind,
5278 SourceLocation TemplateArgLoc) {
5279 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5280 if (Complain)
5281 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5282 TemplateArgLoc);
5283
5284 return false;
5285 }
5286
5287 // C++0x [temp.arg.template]p3:
5288 // A template-argument matches a template template-parameter (call it P)
5289 // when each of the template parameters in the template-parameter-list of
5290 // the template-argument's corresponding class template or alias template
5291 // (call it A) matches the corresponding template parameter in the
5292 // template-parameter-list of P. [...]
5293 TemplateParameterList::iterator NewParm = New->begin();
5294 TemplateParameterList::iterator NewParmEnd = New->end();
5295 for (TemplateParameterList::iterator OldParm = Old->begin(),
5296 OldParmEnd = Old->end();
5297 OldParm != OldParmEnd; ++OldParm) {
5298 if (Kind != TPL_TemplateTemplateArgumentMatch ||
5299 !(*OldParm)->isTemplateParameterPack()) {
5300 if (NewParm == NewParmEnd) {
5301 if (Complain)
5302 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5303 TemplateArgLoc);
5304
5305 return false;
5306 }
5307
5308 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5309 Kind, TemplateArgLoc))
5310 return false;
5311
5312 ++NewParm;
5313 continue;
5314 }
5315
5316 // C++0x [temp.arg.template]p3:
5317 // [...] When P's template- parameter-list contains a template parameter
5318 // pack (14.5.3), the template parameter pack will match zero or more
5319 // template parameters or template parameter packs in the
5320 // template-parameter-list of A with the same type and form as the
5321 // template parameter pack in P (ignoring whether those template
5322 // parameters are template parameter packs).
5323 for (; NewParm != NewParmEnd; ++NewParm) {
5324 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5325 Kind, TemplateArgLoc))
5326 return false;
5327 }
5328 }
5329
5330 // Make sure we exhausted all of the arguments.
5331 if (NewParm != NewParmEnd) {
5332 if (Complain)
5333 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5334 TemplateArgLoc);
5335
5336 return false;
5337 }
5338
5339 return true;
5340 }
5341
5342 /// \brief Check whether a template can be declared within this scope.
5343 ///
5344 /// If the template declaration is valid in this scope, returns
5345 /// false. Otherwise, issues a diagnostic and returns true.
5346 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5347 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5348 if (!S)
5349 return false;
5350
5351 // Find the nearest enclosing declaration scope.
5352 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5353 (S->getFlags() & Scope::TemplateParamScope) != 0)
5354 S = S->getParent();
5355
5356 // C++ [temp]p2:
5357 // A template-declaration can appear only as a namespace scope or
5358 // class scope declaration.
5359 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
5360 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5361 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5362 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5363 << TemplateParams->getSourceRange();
5364
5365 while (Ctx && isa<LinkageSpecDecl>(Ctx))
5366 Ctx = Ctx->getParent();
5367
5368 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
5369 return false;
5370
5371 return Diag(TemplateParams->getTemplateLoc(),
5372 diag::err_template_outside_namespace_or_class_scope)
5373 << TemplateParams->getSourceRange();
5374 }
5375
5376 /// \brief Determine what kind of template specialization the given declaration
5377 /// is.
getTemplateSpecializationKind(Decl * D)5378 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5379 if (!D)
5380 return TSK_Undeclared;
5381
5382 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5383 return Record->getTemplateSpecializationKind();
5384 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5385 return Function->getTemplateSpecializationKind();
5386 if (VarDecl *Var = dyn_cast<VarDecl>(D))
5387 return Var->getTemplateSpecializationKind();
5388
5389 return TSK_Undeclared;
5390 }
5391
5392 /// \brief Check whether a specialization is well-formed in the current
5393 /// context.
5394 ///
5395 /// This routine determines whether a template specialization can be declared
5396 /// in the current context (C++ [temp.expl.spec]p2).
5397 ///
5398 /// \param S the semantic analysis object for which this check is being
5399 /// performed.
5400 ///
5401 /// \param Specialized the entity being specialized or instantiated, which
5402 /// may be a kind of template (class template, function template, etc.) or
5403 /// a member of a class template (member function, static data member,
5404 /// member class).
5405 ///
5406 /// \param PrevDecl the previous declaration of this entity, if any.
5407 ///
5408 /// \param Loc the location of the explicit specialization or instantiation of
5409 /// this entity.
5410 ///
5411 /// \param IsPartialSpecialization whether this is a partial specialization of
5412 /// a class template.
5413 ///
5414 /// \returns true if there was an error that we cannot recover from, false
5415 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5416 static bool CheckTemplateSpecializationScope(Sema &S,
5417 NamedDecl *Specialized,
5418 NamedDecl *PrevDecl,
5419 SourceLocation Loc,
5420 bool IsPartialSpecialization) {
5421 // Keep these "kind" numbers in sync with the %select statements in the
5422 // various diagnostics emitted by this routine.
5423 int EntityKind = 0;
5424 if (isa<ClassTemplateDecl>(Specialized))
5425 EntityKind = IsPartialSpecialization? 1 : 0;
5426 else if (isa<VarTemplateDecl>(Specialized))
5427 EntityKind = IsPartialSpecialization ? 3 : 2;
5428 else if (isa<FunctionTemplateDecl>(Specialized))
5429 EntityKind = 4;
5430 else if (isa<CXXMethodDecl>(Specialized))
5431 EntityKind = 5;
5432 else if (isa<VarDecl>(Specialized))
5433 EntityKind = 6;
5434 else if (isa<RecordDecl>(Specialized))
5435 EntityKind = 7;
5436 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5437 EntityKind = 8;
5438 else {
5439 S.Diag(Loc, diag::err_template_spec_unknown_kind)
5440 << S.getLangOpts().CPlusPlus11;
5441 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5442 return true;
5443 }
5444
5445 // C++ [temp.expl.spec]p2:
5446 // An explicit specialization shall be declared in the namespace
5447 // of which the template is a member, or, for member templates, in
5448 // the namespace of which the enclosing class or enclosing class
5449 // template is a member. An explicit specialization of a member
5450 // function, member class or static data member of a class
5451 // template shall be declared in the namespace of which the class
5452 // template is a member. Such a declaration may also be a
5453 // definition. If the declaration is not a definition, the
5454 // specialization may be defined later in the name- space in which
5455 // the explicit specialization was declared, or in a namespace
5456 // that encloses the one in which the explicit specialization was
5457 // declared.
5458 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5459 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5460 << Specialized;
5461 return true;
5462 }
5463
5464 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5465 if (S.getLangOpts().MicrosoftExt) {
5466 // Do not warn for class scope explicit specialization during
5467 // instantiation, warning was already emitted during pattern
5468 // semantic analysis.
5469 if (!S.ActiveTemplateInstantiations.size())
5470 S.Diag(Loc, diag::ext_function_specialization_in_class)
5471 << Specialized;
5472 } else {
5473 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5474 << Specialized;
5475 return true;
5476 }
5477 }
5478
5479 if (S.CurContext->isRecord() &&
5480 !S.CurContext->Equals(Specialized->getDeclContext())) {
5481 // Make sure that we're specializing in the right record context.
5482 // Otherwise, things can go horribly wrong.
5483 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5484 << Specialized;
5485 return true;
5486 }
5487
5488 // C++ [temp.class.spec]p6:
5489 // A class template partial specialization may be declared or redeclared
5490 // in any namespace scope in which its definition may be defined (14.5.1
5491 // and 14.5.2).
5492 bool ComplainedAboutScope = false;
5493 DeclContext *SpecializedContext
5494 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5495 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5496 if ((!PrevDecl ||
5497 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5498 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5499 // C++ [temp.exp.spec]p2:
5500 // An explicit specialization shall be declared in the namespace of which
5501 // the template is a member, or, for member templates, in the namespace
5502 // of which the enclosing class or enclosing class template is a member.
5503 // An explicit specialization of a member function, member class or
5504 // static data member of a class template shall be declared in the
5505 // namespace of which the class template is a member.
5506 //
5507 // C++0x [temp.expl.spec]p2:
5508 // An explicit specialization shall be declared in a namespace enclosing
5509 // the specialized template.
5510 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5511 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5512 if (isa<TranslationUnitDecl>(SpecializedContext)) {
5513 assert(!IsCPlusPlus11Extension &&
5514 "DC encloses TU but isn't in enclosing namespace set");
5515 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5516 << EntityKind << Specialized;
5517 } else if (isa<NamespaceDecl>(SpecializedContext)) {
5518 int Diag;
5519 if (!IsCPlusPlus11Extension)
5520 Diag = diag::err_template_spec_decl_out_of_scope;
5521 else if (!S.getLangOpts().CPlusPlus11)
5522 Diag = diag::ext_template_spec_decl_out_of_scope;
5523 else
5524 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5525 S.Diag(Loc, Diag)
5526 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5527 }
5528
5529 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5530 ComplainedAboutScope =
5531 !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5532 }
5533 }
5534
5535 // Make sure that this redeclaration (or definition) occurs in an enclosing
5536 // namespace.
5537 // Note that HandleDeclarator() performs this check for explicit
5538 // specializations of function templates, static data members, and member
5539 // functions, so we skip the check here for those kinds of entities.
5540 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5541 // Should we refactor that check, so that it occurs later?
5542 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5543 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5544 isa<FunctionDecl>(Specialized))) {
5545 if (isa<TranslationUnitDecl>(SpecializedContext))
5546 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5547 << EntityKind << Specialized;
5548 else if (isa<NamespaceDecl>(SpecializedContext))
5549 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5550 << EntityKind << Specialized
5551 << cast<NamedDecl>(SpecializedContext);
5552
5553 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5554 }
5555
5556 // FIXME: check for specialization-after-instantiation errors and such.
5557
5558 return false;
5559 }
5560
5561 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5562 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs)5563 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5564 Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5565 unsigned NumArgs) {
5566 for (unsigned I = 0; I != NumArgs; ++I) {
5567 if (Args[I].getKind() == TemplateArgument::Pack) {
5568 if (CheckNonTypeTemplatePartialSpecializationArgs(
5569 S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5570 return true;
5571
5572 continue;
5573 }
5574
5575 if (Args[I].getKind() != TemplateArgument::Expression)
5576 continue;
5577
5578 Expr *ArgExpr = Args[I].getAsExpr();
5579
5580 // We can have a pack expansion of any of the bullets below.
5581 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5582 ArgExpr = Expansion->getPattern();
5583
5584 // Strip off any implicit casts we added as part of type checking.
5585 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5586 ArgExpr = ICE->getSubExpr();
5587
5588 // C++ [temp.class.spec]p8:
5589 // A non-type argument is non-specialized if it is the name of a
5590 // non-type parameter. All other non-type arguments are
5591 // specialized.
5592 //
5593 // Below, we check the two conditions that only apply to
5594 // specialized non-type arguments, so skip any non-specialized
5595 // arguments.
5596 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5597 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5598 continue;
5599
5600 // C++ [temp.class.spec]p9:
5601 // Within the argument list of a class template partial
5602 // specialization, the following restrictions apply:
5603 // -- A partially specialized non-type argument expression
5604 // shall not involve a template parameter of the partial
5605 // specialization except when the argument expression is a
5606 // simple identifier.
5607 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5608 S.Diag(ArgExpr->getLocStart(),
5609 diag::err_dependent_non_type_arg_in_partial_spec)
5610 << ArgExpr->getSourceRange();
5611 return true;
5612 }
5613
5614 // -- The type of a template parameter corresponding to a
5615 // specialized non-type argument shall not be dependent on a
5616 // parameter of the specialization.
5617 if (Param->getType()->isDependentType()) {
5618 S.Diag(ArgExpr->getLocStart(),
5619 diag::err_dependent_typed_non_type_arg_in_partial_spec)
5620 << Param->getType()
5621 << ArgExpr->getSourceRange();
5622 S.Diag(Param->getLocation(), diag::note_template_param_here);
5623 return true;
5624 }
5625 }
5626
5627 return false;
5628 }
5629
5630 /// \brief Check the non-type template arguments of a class template
5631 /// partial specialization according to C++ [temp.class.spec]p9.
5632 ///
5633 /// \param TemplateParams the template parameters of the primary class
5634 /// template.
5635 ///
5636 /// \param TemplateArgs the template arguments of the class template
5637 /// partial specialization.
5638 ///
5639 /// \returns true if there was an error, false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<TemplateArgument> & TemplateArgs)5640 static bool CheckTemplatePartialSpecializationArgs(
5641 Sema &S, TemplateParameterList *TemplateParams,
5642 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5643 const TemplateArgument *ArgList = TemplateArgs.data();
5644
5645 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5646 NonTypeTemplateParmDecl *Param
5647 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5648 if (!Param)
5649 continue;
5650
5651 if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5652 return true;
5653 }
5654
5655 return false;
5656 }
5657
5658 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5659 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5660 TagUseKind TUK,
5661 SourceLocation KWLoc,
5662 SourceLocation ModulePrivateLoc,
5663 CXXScopeSpec &SS,
5664 TemplateTy TemplateD,
5665 SourceLocation TemplateNameLoc,
5666 SourceLocation LAngleLoc,
5667 ASTTemplateArgsPtr TemplateArgsIn,
5668 SourceLocation RAngleLoc,
5669 AttributeList *Attr,
5670 MultiTemplateParamsArg TemplateParameterLists) {
5671 assert(TUK != TUK_Reference && "References are not specializations");
5672
5673 // NOTE: KWLoc is the location of the tag keyword. This will instead
5674 // store the location of the outermost template keyword in the declaration.
5675 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5676 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5677
5678 // Find the class template we're specializing
5679 TemplateName Name = TemplateD.getAsVal<TemplateName>();
5680 ClassTemplateDecl *ClassTemplate
5681 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5682
5683 if (!ClassTemplate) {
5684 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5685 << (Name.getAsTemplateDecl() &&
5686 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5687 return true;
5688 }
5689
5690 bool isExplicitSpecialization = false;
5691 bool isPartialSpecialization = false;
5692
5693 // Check the validity of the template headers that introduce this
5694 // template.
5695 // FIXME: We probably shouldn't complain about these headers for
5696 // friend declarations.
5697 bool Invalid = false;
5698 TemplateParameterList *TemplateParams =
5699 MatchTemplateParametersToScopeSpecifier(
5700 TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5701 TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5702 if (Invalid)
5703 return true;
5704
5705 if (TemplateParams && TemplateParams->size() > 0) {
5706 isPartialSpecialization = true;
5707
5708 if (TUK == TUK_Friend) {
5709 Diag(KWLoc, diag::err_partial_specialization_friend)
5710 << SourceRange(LAngleLoc, RAngleLoc);
5711 return true;
5712 }
5713
5714 // C++ [temp.class.spec]p10:
5715 // The template parameter list of a specialization shall not
5716 // contain default template argument values.
5717 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5718 Decl *Param = TemplateParams->getParam(I);
5719 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5720 if (TTP->hasDefaultArgument()) {
5721 Diag(TTP->getDefaultArgumentLoc(),
5722 diag::err_default_arg_in_partial_spec);
5723 TTP->removeDefaultArgument();
5724 }
5725 } else if (NonTypeTemplateParmDecl *NTTP
5726 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5727 if (Expr *DefArg = NTTP->getDefaultArgument()) {
5728 Diag(NTTP->getDefaultArgumentLoc(),
5729 diag::err_default_arg_in_partial_spec)
5730 << DefArg->getSourceRange();
5731 NTTP->removeDefaultArgument();
5732 }
5733 } else {
5734 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5735 if (TTP->hasDefaultArgument()) {
5736 Diag(TTP->getDefaultArgument().getLocation(),
5737 diag::err_default_arg_in_partial_spec)
5738 << TTP->getDefaultArgument().getSourceRange();
5739 TTP->removeDefaultArgument();
5740 }
5741 }
5742 }
5743 } else if (TemplateParams) {
5744 if (TUK == TUK_Friend)
5745 Diag(KWLoc, diag::err_template_spec_friend)
5746 << FixItHint::CreateRemoval(
5747 SourceRange(TemplateParams->getTemplateLoc(),
5748 TemplateParams->getRAngleLoc()))
5749 << SourceRange(LAngleLoc, RAngleLoc);
5750 else
5751 isExplicitSpecialization = true;
5752 } else if (TUK != TUK_Friend) {
5753 Diag(KWLoc, diag::err_template_spec_needs_header)
5754 << FixItHint::CreateInsertion(KWLoc, "template<> ");
5755 TemplateKWLoc = KWLoc;
5756 isExplicitSpecialization = true;
5757 }
5758
5759 // Check that the specialization uses the same tag kind as the
5760 // original template.
5761 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5762 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5763 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5764 Kind, TUK == TUK_Definition, KWLoc,
5765 *ClassTemplate->getIdentifier())) {
5766 Diag(KWLoc, diag::err_use_with_wrong_tag)
5767 << ClassTemplate
5768 << FixItHint::CreateReplacement(KWLoc,
5769 ClassTemplate->getTemplatedDecl()->getKindName());
5770 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5771 diag::note_previous_use);
5772 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5773 }
5774
5775 // Translate the parser's template argument list in our AST format.
5776 TemplateArgumentListInfo TemplateArgs;
5777 TemplateArgs.setLAngleLoc(LAngleLoc);
5778 TemplateArgs.setRAngleLoc(RAngleLoc);
5779 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5780
5781 // Check for unexpanded parameter packs in any of the template arguments.
5782 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5783 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5784 UPPC_PartialSpecialization))
5785 return true;
5786
5787 // Check that the template argument list is well-formed for this
5788 // template.
5789 SmallVector<TemplateArgument, 4> Converted;
5790 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5791 TemplateArgs, false, Converted))
5792 return true;
5793
5794 // Find the class template (partial) specialization declaration that
5795 // corresponds to these arguments.
5796 if (isPartialSpecialization) {
5797 if (CheckTemplatePartialSpecializationArgs(
5798 *this, ClassTemplate->getTemplateParameters(), Converted))
5799 return true;
5800
5801 bool InstantiationDependent;
5802 if (!Name.isDependent() &&
5803 !TemplateSpecializationType::anyDependentTemplateArguments(
5804 TemplateArgs.getArgumentArray(),
5805 TemplateArgs.size(),
5806 InstantiationDependent)) {
5807 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5808 << ClassTemplate->getDeclName();
5809 isPartialSpecialization = false;
5810 }
5811 }
5812
5813 void *InsertPos = 0;
5814 ClassTemplateSpecializationDecl *PrevDecl = 0;
5815
5816 if (isPartialSpecialization)
5817 // FIXME: Template parameter list matters, too
5818 PrevDecl
5819 = ClassTemplate->findPartialSpecialization(Converted.data(),
5820 Converted.size(),
5821 InsertPos);
5822 else
5823 PrevDecl
5824 = ClassTemplate->findSpecialization(Converted.data(),
5825 Converted.size(), InsertPos);
5826
5827 ClassTemplateSpecializationDecl *Specialization = 0;
5828
5829 // Check whether we can declare a class template specialization in
5830 // the current scope.
5831 if (TUK != TUK_Friend &&
5832 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5833 TemplateNameLoc,
5834 isPartialSpecialization))
5835 return true;
5836
5837 // The canonical type
5838 QualType CanonType;
5839 if (PrevDecl &&
5840 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5841 TUK == TUK_Friend)) {
5842 // Since the only prior class template specialization with these
5843 // arguments was referenced but not declared, or we're only
5844 // referencing this specialization as a friend, reuse that
5845 // declaration node as our own, updating its source location and
5846 // the list of outer template parameters to reflect our new declaration.
5847 Specialization = PrevDecl;
5848 Specialization->setLocation(TemplateNameLoc);
5849 if (TemplateParameterLists.size() > 0) {
5850 Specialization->setTemplateParameterListsInfo(Context,
5851 TemplateParameterLists.size(),
5852 TemplateParameterLists.data());
5853 }
5854 PrevDecl = 0;
5855 CanonType = Context.getTypeDeclType(Specialization);
5856 } else if (isPartialSpecialization) {
5857 // Build the canonical type that describes the converted template
5858 // arguments of the class template partial specialization.
5859 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5860 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5861 Converted.data(),
5862 Converted.size());
5863
5864 if (Context.hasSameType(CanonType,
5865 ClassTemplate->getInjectedClassNameSpecialization())) {
5866 // C++ [temp.class.spec]p9b3:
5867 //
5868 // -- The argument list of the specialization shall not be identical
5869 // to the implicit argument list of the primary template.
5870 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5871 << (TUK == TUK_Definition)
5872 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5873 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5874 ClassTemplate->getIdentifier(),
5875 TemplateNameLoc,
5876 Attr,
5877 TemplateParams,
5878 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5879 TemplateParameterLists.size() - 1,
5880 TemplateParameterLists.data());
5881 }
5882
5883 // Create a new class template partial specialization declaration node.
5884 ClassTemplatePartialSpecializationDecl *PrevPartial
5885 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5886 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5887 : ClassTemplate->getNextPartialSpecSequenceNumber();
5888 ClassTemplatePartialSpecializationDecl *Partial
5889 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5890 ClassTemplate->getDeclContext(),
5891 KWLoc, TemplateNameLoc,
5892 TemplateParams,
5893 ClassTemplate,
5894 Converted.data(),
5895 Converted.size(),
5896 TemplateArgs,
5897 CanonType,
5898 PrevPartial,
5899 SequenceNumber);
5900 SetNestedNameSpecifier(Partial, SS);
5901 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5902 Partial->setTemplateParameterListsInfo(Context,
5903 TemplateParameterLists.size() - 1,
5904 TemplateParameterLists.data());
5905 }
5906
5907 if (!PrevPartial)
5908 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5909 Specialization = Partial;
5910
5911 // If we are providing an explicit specialization of a member class
5912 // template specialization, make a note of that.
5913 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5914 PrevPartial->setMemberSpecialization();
5915
5916 // Check that all of the template parameters of the class template
5917 // partial specialization are deducible from the template
5918 // arguments. If not, this class template partial specialization
5919 // will never be used.
5920 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5921 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5922 TemplateParams->getDepth(),
5923 DeducibleParams);
5924
5925 if (!DeducibleParams.all()) {
5926 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5927 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5928 << (NumNonDeducible > 1)
5929 << SourceRange(TemplateNameLoc, RAngleLoc);
5930 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5931 if (!DeducibleParams[I]) {
5932 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5933 if (Param->getDeclName())
5934 Diag(Param->getLocation(),
5935 diag::note_partial_spec_unused_parameter)
5936 << Param->getDeclName();
5937 else
5938 Diag(Param->getLocation(),
5939 diag::note_partial_spec_unused_parameter)
5940 << "<anonymous>";
5941 }
5942 }
5943 }
5944 } else {
5945 // Create a new class template specialization declaration node for
5946 // this explicit specialization or friend declaration.
5947 Specialization
5948 = ClassTemplateSpecializationDecl::Create(Context, Kind,
5949 ClassTemplate->getDeclContext(),
5950 KWLoc, TemplateNameLoc,
5951 ClassTemplate,
5952 Converted.data(),
5953 Converted.size(),
5954 PrevDecl);
5955 SetNestedNameSpecifier(Specialization, SS);
5956 if (TemplateParameterLists.size() > 0) {
5957 Specialization->setTemplateParameterListsInfo(Context,
5958 TemplateParameterLists.size(),
5959 TemplateParameterLists.data());
5960 }
5961
5962 if (!PrevDecl)
5963 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5964
5965 CanonType = Context.getTypeDeclType(Specialization);
5966 }
5967
5968 // C++ [temp.expl.spec]p6:
5969 // If a template, a member template or the member of a class template is
5970 // explicitly specialized then that specialization shall be declared
5971 // before the first use of that specialization that would cause an implicit
5972 // instantiation to take place, in every translation unit in which such a
5973 // use occurs; no diagnostic is required.
5974 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5975 bool Okay = false;
5976 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5977 // Is there any previous explicit specialization declaration?
5978 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5979 Okay = true;
5980 break;
5981 }
5982 }
5983
5984 if (!Okay) {
5985 SourceRange Range(TemplateNameLoc, RAngleLoc);
5986 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5987 << Context.getTypeDeclType(Specialization) << Range;
5988
5989 Diag(PrevDecl->getPointOfInstantiation(),
5990 diag::note_instantiation_required_here)
5991 << (PrevDecl->getTemplateSpecializationKind()
5992 != TSK_ImplicitInstantiation);
5993 return true;
5994 }
5995 }
5996
5997 // If this is not a friend, note that this is an explicit specialization.
5998 if (TUK != TUK_Friend)
5999 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6000
6001 // Check that this isn't a redefinition of this specialization.
6002 if (TUK == TUK_Definition) {
6003 if (RecordDecl *Def = Specialization->getDefinition()) {
6004 SourceRange Range(TemplateNameLoc, RAngleLoc);
6005 Diag(TemplateNameLoc, diag::err_redefinition)
6006 << Context.getTypeDeclType(Specialization) << Range;
6007 Diag(Def->getLocation(), diag::note_previous_definition);
6008 Specialization->setInvalidDecl();
6009 return true;
6010 }
6011 }
6012
6013 if (Attr)
6014 ProcessDeclAttributeList(S, Specialization, Attr);
6015
6016 // Add alignment attributes if necessary; these attributes are checked when
6017 // the ASTContext lays out the structure.
6018 if (TUK == TUK_Definition) {
6019 AddAlignmentAttributesForRecord(Specialization);
6020 AddMsStructLayoutForRecord(Specialization);
6021 }
6022
6023 if (ModulePrivateLoc.isValid())
6024 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6025 << (isPartialSpecialization? 1 : 0)
6026 << FixItHint::CreateRemoval(ModulePrivateLoc);
6027
6028 // Build the fully-sugared type for this class template
6029 // specialization as the user wrote in the specialization
6030 // itself. This means that we'll pretty-print the type retrieved
6031 // from the specialization's declaration the way that the user
6032 // actually wrote the specialization, rather than formatting the
6033 // name based on the "canonical" representation used to store the
6034 // template arguments in the specialization.
6035 TypeSourceInfo *WrittenTy
6036 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6037 TemplateArgs, CanonType);
6038 if (TUK != TUK_Friend) {
6039 Specialization->setTypeAsWritten(WrittenTy);
6040 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6041 }
6042
6043 // C++ [temp.expl.spec]p9:
6044 // A template explicit specialization is in the scope of the
6045 // namespace in which the template was defined.
6046 //
6047 // We actually implement this paragraph where we set the semantic
6048 // context (in the creation of the ClassTemplateSpecializationDecl),
6049 // but we also maintain the lexical context where the actual
6050 // definition occurs.
6051 Specialization->setLexicalDeclContext(CurContext);
6052
6053 // We may be starting the definition of this specialization.
6054 if (TUK == TUK_Definition)
6055 Specialization->startDefinition();
6056
6057 if (TUK == TUK_Friend) {
6058 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6059 TemplateNameLoc,
6060 WrittenTy,
6061 /*FIXME:*/KWLoc);
6062 Friend->setAccess(AS_public);
6063 CurContext->addDecl(Friend);
6064 } else {
6065 // Add the specialization into its lexical context, so that it can
6066 // be seen when iterating through the list of declarations in that
6067 // context. However, specializations are not found by name lookup.
6068 CurContext->addDecl(Specialization);
6069 }
6070 return Specialization;
6071 }
6072
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6073 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6074 MultiTemplateParamsArg TemplateParameterLists,
6075 Declarator &D) {
6076 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6077 ActOnDocumentableDecl(NewDecl);
6078 return NewDecl;
6079 }
6080
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6081 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6082 MultiTemplateParamsArg TemplateParameterLists,
6083 Declarator &D) {
6084 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6085 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6086
6087 if (FTI.hasPrototype) {
6088 // FIXME: Diagnose arguments without names in C.
6089 }
6090
6091 Scope *ParentScope = FnBodyScope->getParent();
6092
6093 D.setFunctionDefinitionKind(FDK_Definition);
6094 Decl *DP = HandleDeclarator(ParentScope, D,
6095 TemplateParameterLists);
6096 return ActOnStartOfFunctionDef(FnBodyScope, DP);
6097 }
6098
6099 /// \brief Strips various properties off an implicit instantiation
6100 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6101 static void StripImplicitInstantiation(NamedDecl *D) {
6102 D->dropAttrs();
6103
6104 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6105 FD->setInlineSpecified(false);
6106
6107 for (FunctionDecl::param_iterator I = FD->param_begin(),
6108 E = FD->param_end();
6109 I != E; ++I)
6110 (*I)->dropAttrs();
6111 }
6112 }
6113
6114 /// \brief Compute the diagnostic location for an explicit instantiation
6115 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6116 static SourceLocation DiagLocForExplicitInstantiation(
6117 NamedDecl* D, SourceLocation PointOfInstantiation) {
6118 // Explicit instantiations following a specialization have no effect and
6119 // hence no PointOfInstantiation. In that case, walk decl backwards
6120 // until a valid name loc is found.
6121 SourceLocation PrevDiagLoc = PointOfInstantiation;
6122 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6123 Prev = Prev->getPreviousDecl()) {
6124 PrevDiagLoc = Prev->getLocation();
6125 }
6126 assert(PrevDiagLoc.isValid() &&
6127 "Explicit instantiation without point of instantiation?");
6128 return PrevDiagLoc;
6129 }
6130
6131 /// \brief Diagnose cases where we have an explicit template specialization
6132 /// before/after an explicit template instantiation, producing diagnostics
6133 /// for those cases where they are required and determining whether the
6134 /// new specialization/instantiation will have any effect.
6135 ///
6136 /// \param NewLoc the location of the new explicit specialization or
6137 /// instantiation.
6138 ///
6139 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6140 ///
6141 /// \param PrevDecl the previous declaration of the entity.
6142 ///
6143 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6144 ///
6145 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6146 /// declaration was instantiated (either implicitly or explicitly).
6147 ///
6148 /// \param HasNoEffect will be set to true to indicate that the new
6149 /// specialization or instantiation has no effect and should be ignored.
6150 ///
6151 /// \returns true if there was an error that should prevent the introduction of
6152 /// the new declaration into the AST, false otherwise.
6153 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6154 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6155 TemplateSpecializationKind NewTSK,
6156 NamedDecl *PrevDecl,
6157 TemplateSpecializationKind PrevTSK,
6158 SourceLocation PrevPointOfInstantiation,
6159 bool &HasNoEffect) {
6160 HasNoEffect = false;
6161
6162 switch (NewTSK) {
6163 case TSK_Undeclared:
6164 case TSK_ImplicitInstantiation:
6165 llvm_unreachable("Don't check implicit instantiations here");
6166
6167 case TSK_ExplicitSpecialization:
6168 switch (PrevTSK) {
6169 case TSK_Undeclared:
6170 case TSK_ExplicitSpecialization:
6171 // Okay, we're just specializing something that is either already
6172 // explicitly specialized or has merely been mentioned without any
6173 // instantiation.
6174 return false;
6175
6176 case TSK_ImplicitInstantiation:
6177 if (PrevPointOfInstantiation.isInvalid()) {
6178 // The declaration itself has not actually been instantiated, so it is
6179 // still okay to specialize it.
6180 StripImplicitInstantiation(PrevDecl);
6181 return false;
6182 }
6183 // Fall through
6184
6185 case TSK_ExplicitInstantiationDeclaration:
6186 case TSK_ExplicitInstantiationDefinition:
6187 assert((PrevTSK == TSK_ImplicitInstantiation ||
6188 PrevPointOfInstantiation.isValid()) &&
6189 "Explicit instantiation without point of instantiation?");
6190
6191 // C++ [temp.expl.spec]p6:
6192 // If a template, a member template or the member of a class template
6193 // is explicitly specialized then that specialization shall be declared
6194 // before the first use of that specialization that would cause an
6195 // implicit instantiation to take place, in every translation unit in
6196 // which such a use occurs; no diagnostic is required.
6197 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6198 // Is there any previous explicit specialization declaration?
6199 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6200 return false;
6201 }
6202
6203 Diag(NewLoc, diag::err_specialization_after_instantiation)
6204 << PrevDecl;
6205 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6206 << (PrevTSK != TSK_ImplicitInstantiation);
6207
6208 return true;
6209 }
6210
6211 case TSK_ExplicitInstantiationDeclaration:
6212 switch (PrevTSK) {
6213 case TSK_ExplicitInstantiationDeclaration:
6214 // This explicit instantiation declaration is redundant (that's okay).
6215 HasNoEffect = true;
6216 return false;
6217
6218 case TSK_Undeclared:
6219 case TSK_ImplicitInstantiation:
6220 // We're explicitly instantiating something that may have already been
6221 // implicitly instantiated; that's fine.
6222 return false;
6223
6224 case TSK_ExplicitSpecialization:
6225 // C++0x [temp.explicit]p4:
6226 // For a given set of template parameters, if an explicit instantiation
6227 // of a template appears after a declaration of an explicit
6228 // specialization for that template, the explicit instantiation has no
6229 // effect.
6230 HasNoEffect = true;
6231 return false;
6232
6233 case TSK_ExplicitInstantiationDefinition:
6234 // C++0x [temp.explicit]p10:
6235 // If an entity is the subject of both an explicit instantiation
6236 // declaration and an explicit instantiation definition in the same
6237 // translation unit, the definition shall follow the declaration.
6238 Diag(NewLoc,
6239 diag::err_explicit_instantiation_declaration_after_definition);
6240
6241 // Explicit instantiations following a specialization have no effect and
6242 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6243 // until a valid name loc is found.
6244 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6245 diag::note_explicit_instantiation_definition_here);
6246 HasNoEffect = true;
6247 return false;
6248 }
6249
6250 case TSK_ExplicitInstantiationDefinition:
6251 switch (PrevTSK) {
6252 case TSK_Undeclared:
6253 case TSK_ImplicitInstantiation:
6254 // We're explicitly instantiating something that may have already been
6255 // implicitly instantiated; that's fine.
6256 return false;
6257
6258 case TSK_ExplicitSpecialization:
6259 // C++ DR 259, C++0x [temp.explicit]p4:
6260 // For a given set of template parameters, if an explicit
6261 // instantiation of a template appears after a declaration of
6262 // an explicit specialization for that template, the explicit
6263 // instantiation has no effect.
6264 //
6265 // In C++98/03 mode, we only give an extension warning here, because it
6266 // is not harmful to try to explicitly instantiate something that
6267 // has been explicitly specialized.
6268 Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6269 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6270 diag::ext_explicit_instantiation_after_specialization)
6271 << PrevDecl;
6272 Diag(PrevDecl->getLocation(),
6273 diag::note_previous_template_specialization);
6274 HasNoEffect = true;
6275 return false;
6276
6277 case TSK_ExplicitInstantiationDeclaration:
6278 // We're explicity instantiating a definition for something for which we
6279 // were previously asked to suppress instantiations. That's fine.
6280
6281 // C++0x [temp.explicit]p4:
6282 // For a given set of template parameters, if an explicit instantiation
6283 // of a template appears after a declaration of an explicit
6284 // specialization for that template, the explicit instantiation has no
6285 // effect.
6286 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6287 // Is there any previous explicit specialization declaration?
6288 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6289 HasNoEffect = true;
6290 break;
6291 }
6292 }
6293
6294 return false;
6295
6296 case TSK_ExplicitInstantiationDefinition:
6297 // C++0x [temp.spec]p5:
6298 // For a given template and a given set of template-arguments,
6299 // - an explicit instantiation definition shall appear at most once
6300 // in a program,
6301 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6302 << PrevDecl;
6303 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6304 diag::note_previous_explicit_instantiation);
6305 HasNoEffect = true;
6306 return false;
6307 }
6308 }
6309
6310 llvm_unreachable("Missing specialization/instantiation case?");
6311 }
6312
6313 /// \brief Perform semantic analysis for the given dependent function
6314 /// template specialization.
6315 ///
6316 /// The only possible way to get a dependent function template specialization
6317 /// is with a friend declaration, like so:
6318 ///
6319 /// \code
6320 /// template \<class T> void foo(T);
6321 /// template \<class T> class A {
6322 /// friend void foo<>(T);
6323 /// };
6324 /// \endcode
6325 ///
6326 /// There really isn't any useful analysis we can do here, so we
6327 /// just store the information.
6328 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6329 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6330 const TemplateArgumentListInfo &ExplicitTemplateArgs,
6331 LookupResult &Previous) {
6332 // Remove anything from Previous that isn't a function template in
6333 // the correct context.
6334 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6335 LookupResult::Filter F = Previous.makeFilter();
6336 while (F.hasNext()) {
6337 NamedDecl *D = F.next()->getUnderlyingDecl();
6338 if (!isa<FunctionTemplateDecl>(D) ||
6339 !FDLookupContext->InEnclosingNamespaceSetOf(
6340 D->getDeclContext()->getRedeclContext()))
6341 F.erase();
6342 }
6343 F.done();
6344
6345 // Should this be diagnosed here?
6346 if (Previous.empty()) return true;
6347
6348 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6349 ExplicitTemplateArgs);
6350 return false;
6351 }
6352
6353 /// \brief Perform semantic analysis for the given function template
6354 /// specialization.
6355 ///
6356 /// This routine performs all of the semantic analysis required for an
6357 /// explicit function template specialization. On successful completion,
6358 /// the function declaration \p FD will become a function template
6359 /// specialization.
6360 ///
6361 /// \param FD the function declaration, which will be updated to become a
6362 /// function template specialization.
6363 ///
6364 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6365 /// if any. Note that this may be valid info even when 0 arguments are
6366 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6367 /// as it anyway contains info on the angle brackets locations.
6368 ///
6369 /// \param Previous the set of declarations that may be specialized by
6370 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6371 bool Sema::CheckFunctionTemplateSpecialization(
6372 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6373 LookupResult &Previous) {
6374 // The set of function template specializations that could match this
6375 // explicit function template specialization.
6376 UnresolvedSet<8> Candidates;
6377 TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6378
6379 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6380 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6381 I != E; ++I) {
6382 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6383 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6384 // Only consider templates found within the same semantic lookup scope as
6385 // FD.
6386 if (!FDLookupContext->InEnclosingNamespaceSetOf(
6387 Ovl->getDeclContext()->getRedeclContext()))
6388 continue;
6389
6390 // When matching a constexpr member function template specialization
6391 // against the primary template, we don't yet know whether the
6392 // specialization has an implicit 'const' (because we don't know whether
6393 // it will be a static member function until we know which template it
6394 // specializes), so adjust it now assuming it specializes this template.
6395 QualType FT = FD->getType();
6396 if (FD->isConstexpr()) {
6397 CXXMethodDecl *OldMD =
6398 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6399 if (OldMD && OldMD->isConst()) {
6400 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6401 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6402 EPI.TypeQuals |= Qualifiers::Const;
6403 FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6404 EPI);
6405 }
6406 }
6407
6408 // C++ [temp.expl.spec]p11:
6409 // A trailing template-argument can be left unspecified in the
6410 // template-id naming an explicit function template specialization
6411 // provided it can be deduced from the function argument type.
6412 // Perform template argument deduction to determine whether we may be
6413 // specializing this template.
6414 // FIXME: It is somewhat wasteful to build
6415 TemplateDeductionInfo Info(FailedCandidates.getLocation());
6416 FunctionDecl *Specialization = 0;
6417 if (TemplateDeductionResult TDK
6418 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6419 Specialization, Info)) {
6420 // Template argument deduction failed; record why it failed, so
6421 // that we can provide nifty diagnostics.
6422 FailedCandidates.addCandidate()
6423 .set(FunTmpl->getTemplatedDecl(),
6424 MakeDeductionFailureInfo(Context, TDK, Info));
6425 (void)TDK;
6426 continue;
6427 }
6428
6429 // Record this candidate.
6430 Candidates.addDecl(Specialization, I.getAccess());
6431 }
6432 }
6433
6434 // Find the most specialized function template.
6435 UnresolvedSetIterator Result = getMostSpecialized(
6436 Candidates.begin(), Candidates.end(), FailedCandidates, TPOC_Other, 0,
6437 FD->getLocation(),
6438 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6439 PDiag(diag::err_function_template_spec_ambiguous)
6440 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6441 PDiag(diag::note_function_template_spec_matched));
6442
6443 if (Result == Candidates.end())
6444 return true;
6445
6446 // Ignore access information; it doesn't figure into redeclaration checking.
6447 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6448
6449 FunctionTemplateSpecializationInfo *SpecInfo
6450 = Specialization->getTemplateSpecializationInfo();
6451 assert(SpecInfo && "Function template specialization info missing?");
6452
6453 // Note: do not overwrite location info if previous template
6454 // specialization kind was explicit.
6455 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6456 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6457 Specialization->setLocation(FD->getLocation());
6458 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6459 // function can differ from the template declaration with respect to
6460 // the constexpr specifier.
6461 Specialization->setConstexpr(FD->isConstexpr());
6462 }
6463
6464 // FIXME: Check if the prior specialization has a point of instantiation.
6465 // If so, we have run afoul of .
6466
6467 // If this is a friend declaration, then we're not really declaring
6468 // an explicit specialization.
6469 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6470
6471 // Check the scope of this explicit specialization.
6472 if (!isFriend &&
6473 CheckTemplateSpecializationScope(*this,
6474 Specialization->getPrimaryTemplate(),
6475 Specialization, FD->getLocation(),
6476 false))
6477 return true;
6478
6479 // C++ [temp.expl.spec]p6:
6480 // If a template, a member template or the member of a class template is
6481 // explicitly specialized then that specialization shall be declared
6482 // before the first use of that specialization that would cause an implicit
6483 // instantiation to take place, in every translation unit in which such a
6484 // use occurs; no diagnostic is required.
6485 bool HasNoEffect = false;
6486 if (!isFriend &&
6487 CheckSpecializationInstantiationRedecl(FD->getLocation(),
6488 TSK_ExplicitSpecialization,
6489 Specialization,
6490 SpecInfo->getTemplateSpecializationKind(),
6491 SpecInfo->getPointOfInstantiation(),
6492 HasNoEffect))
6493 return true;
6494
6495 // Mark the prior declaration as an explicit specialization, so that later
6496 // clients know that this is an explicit specialization.
6497 if (!isFriend) {
6498 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6499 MarkUnusedFileScopedDecl(Specialization);
6500 }
6501
6502 // Turn the given function declaration into a function template
6503 // specialization, with the template arguments from the previous
6504 // specialization.
6505 // Take copies of (semantic and syntactic) template argument lists.
6506 const TemplateArgumentList* TemplArgs = new (Context)
6507 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6508 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6509 TemplArgs, /*InsertPos=*/0,
6510 SpecInfo->getTemplateSpecializationKind(),
6511 ExplicitTemplateArgs);
6512
6513 // The "previous declaration" for this function template specialization is
6514 // the prior function template specialization.
6515 Previous.clear();
6516 Previous.addDecl(Specialization);
6517 return false;
6518 }
6519
6520 /// \brief Perform semantic analysis for the given non-template member
6521 /// specialization.
6522 ///
6523 /// This routine performs all of the semantic analysis required for an
6524 /// explicit member function specialization. On successful completion,
6525 /// the function declaration \p FD will become a member function
6526 /// specialization.
6527 ///
6528 /// \param Member the member declaration, which will be updated to become a
6529 /// specialization.
6530 ///
6531 /// \param Previous the set of declarations, one of which may be specialized
6532 /// by this function specialization; the set will be modified to contain the
6533 /// redeclared member.
6534 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6535 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6536 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6537
6538 // Try to find the member we are instantiating.
6539 NamedDecl *Instantiation = 0;
6540 NamedDecl *InstantiatedFrom = 0;
6541 MemberSpecializationInfo *MSInfo = 0;
6542
6543 if (Previous.empty()) {
6544 // Nowhere to look anyway.
6545 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6546 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6547 I != E; ++I) {
6548 NamedDecl *D = (*I)->getUnderlyingDecl();
6549 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6550 if (Context.hasSameType(Function->getType(), Method->getType())) {
6551 Instantiation = Method;
6552 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6553 MSInfo = Method->getMemberSpecializationInfo();
6554 break;
6555 }
6556 }
6557 }
6558 } else if (isa<VarDecl>(Member)) {
6559 VarDecl *PrevVar;
6560 if (Previous.isSingleResult() &&
6561 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6562 if (PrevVar->isStaticDataMember()) {
6563 Instantiation = PrevVar;
6564 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6565 MSInfo = PrevVar->getMemberSpecializationInfo();
6566 }
6567 } else if (isa<RecordDecl>(Member)) {
6568 CXXRecordDecl *PrevRecord;
6569 if (Previous.isSingleResult() &&
6570 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6571 Instantiation = PrevRecord;
6572 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6573 MSInfo = PrevRecord->getMemberSpecializationInfo();
6574 }
6575 } else if (isa<EnumDecl>(Member)) {
6576 EnumDecl *PrevEnum;
6577 if (Previous.isSingleResult() &&
6578 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6579 Instantiation = PrevEnum;
6580 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6581 MSInfo = PrevEnum->getMemberSpecializationInfo();
6582 }
6583 }
6584
6585 if (!Instantiation) {
6586 // There is no previous declaration that matches. Since member
6587 // specializations are always out-of-line, the caller will complain about
6588 // this mismatch later.
6589 return false;
6590 }
6591
6592 // If this is a friend, just bail out here before we start turning
6593 // things into explicit specializations.
6594 if (Member->getFriendObjectKind() != Decl::FOK_None) {
6595 // Preserve instantiation information.
6596 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6597 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6598 cast<CXXMethodDecl>(InstantiatedFrom),
6599 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6600 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6601 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6602 cast<CXXRecordDecl>(InstantiatedFrom),
6603 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6604 }
6605
6606 Previous.clear();
6607 Previous.addDecl(Instantiation);
6608 return false;
6609 }
6610
6611 // Make sure that this is a specialization of a member.
6612 if (!InstantiatedFrom) {
6613 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6614 << Member;
6615 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6616 return true;
6617 }
6618
6619 // C++ [temp.expl.spec]p6:
6620 // If a template, a member template or the member of a class template is
6621 // explicitly specialized then that specialization shall be declared
6622 // before the first use of that specialization that would cause an implicit
6623 // instantiation to take place, in every translation unit in which such a
6624 // use occurs; no diagnostic is required.
6625 assert(MSInfo && "Member specialization info missing?");
6626
6627 bool HasNoEffect = false;
6628 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6629 TSK_ExplicitSpecialization,
6630 Instantiation,
6631 MSInfo->getTemplateSpecializationKind(),
6632 MSInfo->getPointOfInstantiation(),
6633 HasNoEffect))
6634 return true;
6635
6636 // Check the scope of this explicit specialization.
6637 if (CheckTemplateSpecializationScope(*this,
6638 InstantiatedFrom,
6639 Instantiation, Member->getLocation(),
6640 false))
6641 return true;
6642
6643 // Note that this is an explicit instantiation of a member.
6644 // the original declaration to note that it is an explicit specialization
6645 // (if it was previously an implicit instantiation). This latter step
6646 // makes bookkeeping easier.
6647 if (isa<FunctionDecl>(Member)) {
6648 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6649 if (InstantiationFunction->getTemplateSpecializationKind() ==
6650 TSK_ImplicitInstantiation) {
6651 InstantiationFunction->setTemplateSpecializationKind(
6652 TSK_ExplicitSpecialization);
6653 InstantiationFunction->setLocation(Member->getLocation());
6654 }
6655
6656 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6657 cast<CXXMethodDecl>(InstantiatedFrom),
6658 TSK_ExplicitSpecialization);
6659 MarkUnusedFileScopedDecl(InstantiationFunction);
6660 } else if (isa<VarDecl>(Member)) {
6661 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6662 if (InstantiationVar->getTemplateSpecializationKind() ==
6663 TSK_ImplicitInstantiation) {
6664 InstantiationVar->setTemplateSpecializationKind(
6665 TSK_ExplicitSpecialization);
6666 InstantiationVar->setLocation(Member->getLocation());
6667 }
6668
6669 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6670 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6671 MarkUnusedFileScopedDecl(InstantiationVar);
6672 } else if (isa<CXXRecordDecl>(Member)) {
6673 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6674 if (InstantiationClass->getTemplateSpecializationKind() ==
6675 TSK_ImplicitInstantiation) {
6676 InstantiationClass->setTemplateSpecializationKind(
6677 TSK_ExplicitSpecialization);
6678 InstantiationClass->setLocation(Member->getLocation());
6679 }
6680
6681 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6682 cast<CXXRecordDecl>(InstantiatedFrom),
6683 TSK_ExplicitSpecialization);
6684 } else {
6685 assert(isa<EnumDecl>(Member) && "Only member enums remain");
6686 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6687 if (InstantiationEnum->getTemplateSpecializationKind() ==
6688 TSK_ImplicitInstantiation) {
6689 InstantiationEnum->setTemplateSpecializationKind(
6690 TSK_ExplicitSpecialization);
6691 InstantiationEnum->setLocation(Member->getLocation());
6692 }
6693
6694 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6695 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6696 }
6697
6698 // Save the caller the trouble of having to figure out which declaration
6699 // this specialization matches.
6700 Previous.clear();
6701 Previous.addDecl(Instantiation);
6702 return false;
6703 }
6704
6705 /// \brief Check the scope of an explicit instantiation.
6706 ///
6707 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6708 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6709 SourceLocation InstLoc,
6710 bool WasQualifiedName) {
6711 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6712 DeclContext *CurContext = S.CurContext->getRedeclContext();
6713
6714 if (CurContext->isRecord()) {
6715 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6716 << D;
6717 return true;
6718 }
6719
6720 // C++11 [temp.explicit]p3:
6721 // An explicit instantiation shall appear in an enclosing namespace of its
6722 // template. If the name declared in the explicit instantiation is an
6723 // unqualified name, the explicit instantiation shall appear in the
6724 // namespace where its template is declared or, if that namespace is inline
6725 // (7.3.1), any namespace from its enclosing namespace set.
6726 //
6727 // This is DR275, which we do not retroactively apply to C++98/03.
6728 if (WasQualifiedName) {
6729 if (CurContext->Encloses(OrigContext))
6730 return false;
6731 } else {
6732 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6733 return false;
6734 }
6735
6736 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6737 if (WasQualifiedName)
6738 S.Diag(InstLoc,
6739 S.getLangOpts().CPlusPlus11?
6740 diag::err_explicit_instantiation_out_of_scope :
6741 diag::warn_explicit_instantiation_out_of_scope_0x)
6742 << D << NS;
6743 else
6744 S.Diag(InstLoc,
6745 S.getLangOpts().CPlusPlus11?
6746 diag::err_explicit_instantiation_unqualified_wrong_namespace :
6747 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6748 << D << NS;
6749 } else
6750 S.Diag(InstLoc,
6751 S.getLangOpts().CPlusPlus11?
6752 diag::err_explicit_instantiation_must_be_global :
6753 diag::warn_explicit_instantiation_must_be_global_0x)
6754 << D;
6755 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6756 return false;
6757 }
6758
6759 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)6760 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6761 if (!SS.isSet())
6762 return false;
6763
6764 // C++11 [temp.explicit]p3:
6765 // If the explicit instantiation is for a member function, a member class
6766 // or a static data member of a class template specialization, the name of
6767 // the class template specialization in the qualified-id for the member
6768 // name shall be a simple-template-id.
6769 //
6770 // C++98 has the same restriction, just worded differently.
6771 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6772 NNS; NNS = NNS->getPrefix())
6773 if (const Type *T = NNS->getAsType())
6774 if (isa<TemplateSpecializationType>(T))
6775 return true;
6776
6777 return false;
6778 }
6779
6780 // Explicit instantiation of a class template specialization
6781 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)6782 Sema::ActOnExplicitInstantiation(Scope *S,
6783 SourceLocation ExternLoc,
6784 SourceLocation TemplateLoc,
6785 unsigned TagSpec,
6786 SourceLocation KWLoc,
6787 const CXXScopeSpec &SS,
6788 TemplateTy TemplateD,
6789 SourceLocation TemplateNameLoc,
6790 SourceLocation LAngleLoc,
6791 ASTTemplateArgsPtr TemplateArgsIn,
6792 SourceLocation RAngleLoc,
6793 AttributeList *Attr) {
6794 // Find the class template we're specializing
6795 TemplateName Name = TemplateD.getAsVal<TemplateName>();
6796 TemplateDecl *TD = Name.getAsTemplateDecl();
6797 // Check that the specialization uses the same tag kind as the
6798 // original template.
6799 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6800 assert(Kind != TTK_Enum &&
6801 "Invalid enum tag in class template explicit instantiation!");
6802
6803 if (isa<TypeAliasTemplateDecl>(TD)) {
6804 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6805 Diag(TD->getTemplatedDecl()->getLocation(),
6806 diag::note_previous_use);
6807 return true;
6808 }
6809
6810 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6811
6812 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6813 Kind, /*isDefinition*/false, KWLoc,
6814 *ClassTemplate->getIdentifier())) {
6815 Diag(KWLoc, diag::err_use_with_wrong_tag)
6816 << ClassTemplate
6817 << FixItHint::CreateReplacement(KWLoc,
6818 ClassTemplate->getTemplatedDecl()->getKindName());
6819 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6820 diag::note_previous_use);
6821 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6822 }
6823
6824 // C++0x [temp.explicit]p2:
6825 // There are two forms of explicit instantiation: an explicit instantiation
6826 // definition and an explicit instantiation declaration. An explicit
6827 // instantiation declaration begins with the extern keyword. [...]
6828 TemplateSpecializationKind TSK
6829 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6830 : TSK_ExplicitInstantiationDeclaration;
6831
6832 // Translate the parser's template argument list in our AST format.
6833 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6834 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6835
6836 // Check that the template argument list is well-formed for this
6837 // template.
6838 SmallVector<TemplateArgument, 4> Converted;
6839 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6840 TemplateArgs, false, Converted))
6841 return true;
6842
6843 // Find the class template specialization declaration that
6844 // corresponds to these arguments.
6845 void *InsertPos = 0;
6846 ClassTemplateSpecializationDecl *PrevDecl
6847 = ClassTemplate->findSpecialization(Converted.data(),
6848 Converted.size(), InsertPos);
6849
6850 TemplateSpecializationKind PrevDecl_TSK
6851 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6852
6853 // C++0x [temp.explicit]p2:
6854 // [...] An explicit instantiation shall appear in an enclosing
6855 // namespace of its template. [...]
6856 //
6857 // This is C++ DR 275.
6858 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6859 SS.isSet()))
6860 return true;
6861
6862 ClassTemplateSpecializationDecl *Specialization = 0;
6863
6864 bool HasNoEffect = false;
6865 if (PrevDecl) {
6866 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6867 PrevDecl, PrevDecl_TSK,
6868 PrevDecl->getPointOfInstantiation(),
6869 HasNoEffect))
6870 return PrevDecl;
6871
6872 // Even though HasNoEffect == true means that this explicit instantiation
6873 // has no effect on semantics, we go on to put its syntax in the AST.
6874
6875 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6876 PrevDecl_TSK == TSK_Undeclared) {
6877 // Since the only prior class template specialization with these
6878 // arguments was referenced but not declared, reuse that
6879 // declaration node as our own, updating the source location
6880 // for the template name to reflect our new declaration.
6881 // (Other source locations will be updated later.)
6882 Specialization = PrevDecl;
6883 Specialization->setLocation(TemplateNameLoc);
6884 PrevDecl = 0;
6885 }
6886 }
6887
6888 if (!Specialization) {
6889 // Create a new class template specialization declaration node for
6890 // this explicit specialization.
6891 Specialization
6892 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6893 ClassTemplate->getDeclContext(),
6894 KWLoc, TemplateNameLoc,
6895 ClassTemplate,
6896 Converted.data(),
6897 Converted.size(),
6898 PrevDecl);
6899 SetNestedNameSpecifier(Specialization, SS);
6900
6901 if (!HasNoEffect && !PrevDecl) {
6902 // Insert the new specialization.
6903 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6904 }
6905 }
6906
6907 // Build the fully-sugared type for this explicit instantiation as
6908 // the user wrote in the explicit instantiation itself. This means
6909 // that we'll pretty-print the type retrieved from the
6910 // specialization's declaration the way that the user actually wrote
6911 // the explicit instantiation, rather than formatting the name based
6912 // on the "canonical" representation used to store the template
6913 // arguments in the specialization.
6914 TypeSourceInfo *WrittenTy
6915 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6916 TemplateArgs,
6917 Context.getTypeDeclType(Specialization));
6918 Specialization->setTypeAsWritten(WrittenTy);
6919
6920 // Set source locations for keywords.
6921 Specialization->setExternLoc(ExternLoc);
6922 Specialization->setTemplateKeywordLoc(TemplateLoc);
6923 Specialization->setRBraceLoc(SourceLocation());
6924
6925 if (Attr)
6926 ProcessDeclAttributeList(S, Specialization, Attr);
6927
6928 // Add the explicit instantiation into its lexical context. However,
6929 // since explicit instantiations are never found by name lookup, we
6930 // just put it into the declaration context directly.
6931 Specialization->setLexicalDeclContext(CurContext);
6932 CurContext->addDecl(Specialization);
6933
6934 // Syntax is now OK, so return if it has no other effect on semantics.
6935 if (HasNoEffect) {
6936 // Set the template specialization kind.
6937 Specialization->setTemplateSpecializationKind(TSK);
6938 return Specialization;
6939 }
6940
6941 // C++ [temp.explicit]p3:
6942 // A definition of a class template or class member template
6943 // shall be in scope at the point of the explicit instantiation of
6944 // the class template or class member template.
6945 //
6946 // This check comes when we actually try to perform the
6947 // instantiation.
6948 ClassTemplateSpecializationDecl *Def
6949 = cast_or_null<ClassTemplateSpecializationDecl>(
6950 Specialization->getDefinition());
6951 if (!Def)
6952 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6953 else if (TSK == TSK_ExplicitInstantiationDefinition) {
6954 MarkVTableUsed(TemplateNameLoc, Specialization, true);
6955 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6956 }
6957
6958 // Instantiate the members of this class template specialization.
6959 Def = cast_or_null<ClassTemplateSpecializationDecl>(
6960 Specialization->getDefinition());
6961 if (Def) {
6962 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6963
6964 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6965 // TSK_ExplicitInstantiationDefinition
6966 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6967 TSK == TSK_ExplicitInstantiationDefinition)
6968 Def->setTemplateSpecializationKind(TSK);
6969
6970 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6971 }
6972
6973 // Set the template specialization kind.
6974 Specialization->setTemplateSpecializationKind(TSK);
6975 return Specialization;
6976 }
6977
6978 // Explicit instantiation of a member class of a class template.
6979 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)6980 Sema::ActOnExplicitInstantiation(Scope *S,
6981 SourceLocation ExternLoc,
6982 SourceLocation TemplateLoc,
6983 unsigned TagSpec,
6984 SourceLocation KWLoc,
6985 CXXScopeSpec &SS,
6986 IdentifierInfo *Name,
6987 SourceLocation NameLoc,
6988 AttributeList *Attr) {
6989
6990 bool Owned = false;
6991 bool IsDependent = false;
6992 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6993 KWLoc, SS, Name, NameLoc, Attr, AS_none,
6994 /*ModulePrivateLoc=*/SourceLocation(),
6995 MultiTemplateParamsArg(), Owned, IsDependent,
6996 SourceLocation(), false, TypeResult());
6997 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6998
6999 if (!TagD)
7000 return true;
7001
7002 TagDecl *Tag = cast<TagDecl>(TagD);
7003 assert(!Tag->isEnum() && "shouldn't see enumerations here");
7004
7005 if (Tag->isInvalidDecl())
7006 return true;
7007
7008 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7009 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7010 if (!Pattern) {
7011 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7012 << Context.getTypeDeclType(Record);
7013 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7014 return true;
7015 }
7016
7017 // C++0x [temp.explicit]p2:
7018 // If the explicit instantiation is for a class or member class, the
7019 // elaborated-type-specifier in the declaration shall include a
7020 // simple-template-id.
7021 //
7022 // C++98 has the same restriction, just worded differently.
7023 if (!ScopeSpecifierHasTemplateId(SS))
7024 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7025 << Record << SS.getRange();
7026
7027 // C++0x [temp.explicit]p2:
7028 // There are two forms of explicit instantiation: an explicit instantiation
7029 // definition and an explicit instantiation declaration. An explicit
7030 // instantiation declaration begins with the extern keyword. [...]
7031 TemplateSpecializationKind TSK
7032 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7033 : TSK_ExplicitInstantiationDeclaration;
7034
7035 // C++0x [temp.explicit]p2:
7036 // [...] An explicit instantiation shall appear in an enclosing
7037 // namespace of its template. [...]
7038 //
7039 // This is C++ DR 275.
7040 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7041
7042 // Verify that it is okay to explicitly instantiate here.
7043 CXXRecordDecl *PrevDecl
7044 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7045 if (!PrevDecl && Record->getDefinition())
7046 PrevDecl = Record;
7047 if (PrevDecl) {
7048 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7049 bool HasNoEffect = false;
7050 assert(MSInfo && "No member specialization information?");
7051 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7052 PrevDecl,
7053 MSInfo->getTemplateSpecializationKind(),
7054 MSInfo->getPointOfInstantiation(),
7055 HasNoEffect))
7056 return true;
7057 if (HasNoEffect)
7058 return TagD;
7059 }
7060
7061 CXXRecordDecl *RecordDef
7062 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7063 if (!RecordDef) {
7064 // C++ [temp.explicit]p3:
7065 // A definition of a member class of a class template shall be in scope
7066 // at the point of an explicit instantiation of the member class.
7067 CXXRecordDecl *Def
7068 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7069 if (!Def) {
7070 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7071 << 0 << Record->getDeclName() << Record->getDeclContext();
7072 Diag(Pattern->getLocation(), diag::note_forward_declaration)
7073 << Pattern;
7074 return true;
7075 } else {
7076 if (InstantiateClass(NameLoc, Record, Def,
7077 getTemplateInstantiationArgs(Record),
7078 TSK))
7079 return true;
7080
7081 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7082 if (!RecordDef)
7083 return true;
7084 }
7085 }
7086
7087 // Instantiate all of the members of the class.
7088 InstantiateClassMembers(NameLoc, RecordDef,
7089 getTemplateInstantiationArgs(Record), TSK);
7090
7091 if (TSK == TSK_ExplicitInstantiationDefinition)
7092 MarkVTableUsed(NameLoc, RecordDef, true);
7093
7094 // FIXME: We don't have any representation for explicit instantiations of
7095 // member classes. Such a representation is not needed for compilation, but it
7096 // should be available for clients that want to see all of the declarations in
7097 // the source code.
7098 return TagD;
7099 }
7100
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7101 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7102 SourceLocation ExternLoc,
7103 SourceLocation TemplateLoc,
7104 Declarator &D) {
7105 // Explicit instantiations always require a name.
7106 // TODO: check if/when DNInfo should replace Name.
7107 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7108 DeclarationName Name = NameInfo.getName();
7109 if (!Name) {
7110 if (!D.isInvalidType())
7111 Diag(D.getDeclSpec().getLocStart(),
7112 diag::err_explicit_instantiation_requires_name)
7113 << D.getDeclSpec().getSourceRange()
7114 << D.getSourceRange();
7115
7116 return true;
7117 }
7118
7119 // The scope passed in may not be a decl scope. Zip up the scope tree until
7120 // we find one that is.
7121 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7122 (S->getFlags() & Scope::TemplateParamScope) != 0)
7123 S = S->getParent();
7124
7125 // Determine the type of the declaration.
7126 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7127 QualType R = T->getType();
7128 if (R.isNull())
7129 return true;
7130
7131 // C++ [dcl.stc]p1:
7132 // A storage-class-specifier shall not be specified in [...] an explicit
7133 // instantiation (14.7.2) directive.
7134 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7135 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7136 << Name;
7137 return true;
7138 } else if (D.getDeclSpec().getStorageClassSpec()
7139 != DeclSpec::SCS_unspecified) {
7140 // Complain about then remove the storage class specifier.
7141 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7142 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7143
7144 D.getMutableDeclSpec().ClearStorageClassSpecs();
7145 }
7146
7147 // C++0x [temp.explicit]p1:
7148 // [...] An explicit instantiation of a function template shall not use the
7149 // inline or constexpr specifiers.
7150 // Presumably, this also applies to member functions of class templates as
7151 // well.
7152 if (D.getDeclSpec().isInlineSpecified())
7153 Diag(D.getDeclSpec().getInlineSpecLoc(),
7154 getLangOpts().CPlusPlus11 ?
7155 diag::err_explicit_instantiation_inline :
7156 diag::warn_explicit_instantiation_inline_0x)
7157 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7158 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7159 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7160 // not already specified.
7161 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7162 diag::err_explicit_instantiation_constexpr);
7163
7164 // C++0x [temp.explicit]p2:
7165 // There are two forms of explicit instantiation: an explicit instantiation
7166 // definition and an explicit instantiation declaration. An explicit
7167 // instantiation declaration begins with the extern keyword. [...]
7168 TemplateSpecializationKind TSK
7169 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7170 : TSK_ExplicitInstantiationDeclaration;
7171
7172 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7173 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7174
7175 if (!R->isFunctionType()) {
7176 // C++ [temp.explicit]p1:
7177 // A [...] static data member of a class template can be explicitly
7178 // instantiated from the member definition associated with its class
7179 // template.
7180 // C++1y [temp.explicit]p1:
7181 // A [...] variable [...] template specialization can be explicitly
7182 // instantiated from its template.
7183 if (Previous.isAmbiguous())
7184 return true;
7185
7186 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7187 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7188
7189 if (!PrevTemplate) {
7190 if (!Prev || !Prev->isStaticDataMember()) {
7191 // We expect to see a data data member here.
7192 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7193 << Name;
7194 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7195 P != PEnd; ++P)
7196 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7197 return true;
7198 }
7199
7200 if (!Prev->getInstantiatedFromStaticDataMember()) {
7201 // FIXME: Check for explicit specialization?
7202 Diag(D.getIdentifierLoc(),
7203 diag::err_explicit_instantiation_data_member_not_instantiated)
7204 << Prev;
7205 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7206 // FIXME: Can we provide a note showing where this was declared?
7207 return true;
7208 }
7209 } else {
7210 // Explicitly instantiate a variable template.
7211
7212 // C++1y [dcl.spec.auto]p6:
7213 // ... A program that uses auto or decltype(auto) in a context not
7214 // explicitly allowed in this section is ill-formed.
7215 //
7216 // This includes auto-typed variable template instantiations.
7217 if (R->isUndeducedType()) {
7218 Diag(T->getTypeLoc().getLocStart(),
7219 diag::err_auto_not_allowed_var_inst);
7220 return true;
7221 }
7222
7223 TemplateArgumentListInfo TemplateArgs;
7224 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7225 // Translate the parser's template argument list into our AST format.
7226 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7227 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7228 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7229 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7230 TemplateId->NumArgs);
7231 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7232 }
7233
7234 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7235 D.getIdentifierLoc(), TemplateArgs);
7236 if (Res.isInvalid())
7237 return true;
7238
7239 // Ignore access control bits, we don't need them for redeclaration
7240 // checking.
7241 Prev = cast<VarDecl>(Res.get());
7242 }
7243
7244 // C++0x [temp.explicit]p2:
7245 // If the explicit instantiation is for a member function, a member class
7246 // or a static data member of a class template specialization, the name of
7247 // the class template specialization in the qualified-id for the member
7248 // name shall be a simple-template-id.
7249 //
7250 // C++98 has the same restriction, just worded differently.
7251 //
7252 // C++1y If the explicit instantiation is for a variable, the
7253 // unqualified-id in the declaration shall be a template-id.
7254 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) &&
7255 (!PrevTemplate ||
7256 (D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
7257 D.getCXXScopeSpec().isSet())))
7258 Diag(D.getIdentifierLoc(),
7259 diag::ext_explicit_instantiation_without_qualified_id)
7260 << Prev << D.getCXXScopeSpec().getRange();
7261
7262 // Check the scope of this explicit instantiation.
7263 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7264
7265 // Verify that it is okay to explicitly instantiate here.
7266 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
7267 TemplateSpecializationKind PrevTSK =
7268 MSInfo ? MSInfo->getTemplateSpecializationKind()
7269 : Prev->getTemplateSpecializationKind();
7270 SourceLocation POI = MSInfo ? MSInfo->getPointOfInstantiation()
7271 : cast<VarTemplateSpecializationDecl>(Prev)
7272 ->getPointOfInstantiation();
7273 bool HasNoEffect = false;
7274 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7275 PrevTSK, POI, HasNoEffect))
7276 return true;
7277
7278 if (!HasNoEffect) {
7279 // Instantiate static data member or variable template.
7280
7281 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7282 if (PrevTemplate) {
7283 // Merge attributes.
7284 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7285 ProcessDeclAttributeList(S, Prev, Attr);
7286 }
7287 if (TSK == TSK_ExplicitInstantiationDefinition)
7288 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7289 }
7290
7291 // Check the new variable specialization against the parsed input.
7292 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7293 Diag(T->getTypeLoc().getLocStart(),
7294 diag::err_invalid_var_template_spec_type)
7295 << 0 << PrevTemplate << R << Prev->getType();
7296 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7297 << 2 << PrevTemplate->getDeclName();
7298 return true;
7299 }
7300
7301 // FIXME: Create an ExplicitInstantiation node?
7302 return (Decl*) 0;
7303 }
7304
7305 // If the declarator is a template-id, translate the parser's template
7306 // argument list into our AST format.
7307 bool HasExplicitTemplateArgs = false;
7308 TemplateArgumentListInfo TemplateArgs;
7309 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7310 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7311 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7312 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7313 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7314 TemplateId->NumArgs);
7315 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7316 HasExplicitTemplateArgs = true;
7317 }
7318
7319 // C++ [temp.explicit]p1:
7320 // A [...] function [...] can be explicitly instantiated from its template.
7321 // A member function [...] of a class template can be explicitly
7322 // instantiated from the member definition associated with its class
7323 // template.
7324 UnresolvedSet<8> Matches;
7325 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7326 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7327 P != PEnd; ++P) {
7328 NamedDecl *Prev = *P;
7329 if (!HasExplicitTemplateArgs) {
7330 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7331 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7332 Matches.clear();
7333
7334 Matches.addDecl(Method, P.getAccess());
7335 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7336 break;
7337 }
7338 }
7339 }
7340
7341 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7342 if (!FunTmpl)
7343 continue;
7344
7345 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7346 FunctionDecl *Specialization = 0;
7347 if (TemplateDeductionResult TDK
7348 = DeduceTemplateArguments(FunTmpl,
7349 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7350 R, Specialization, Info)) {
7351 // Keep track of almost-matches.
7352 FailedCandidates.addCandidate()
7353 .set(FunTmpl->getTemplatedDecl(),
7354 MakeDeductionFailureInfo(Context, TDK, Info));
7355 (void)TDK;
7356 continue;
7357 }
7358
7359 Matches.addDecl(Specialization, P.getAccess());
7360 }
7361
7362 // Find the most specialized function template specialization.
7363 UnresolvedSetIterator Result = getMostSpecialized(
7364 Matches.begin(), Matches.end(), FailedCandidates, TPOC_Other, 0,
7365 D.getIdentifierLoc(),
7366 PDiag(diag::err_explicit_instantiation_not_known) << Name,
7367 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7368 PDiag(diag::note_explicit_instantiation_candidate));
7369
7370 if (Result == Matches.end())
7371 return true;
7372
7373 // Ignore access control bits, we don't need them for redeclaration checking.
7374 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7375
7376 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7377 Diag(D.getIdentifierLoc(),
7378 diag::err_explicit_instantiation_member_function_not_instantiated)
7379 << Specialization
7380 << (Specialization->getTemplateSpecializationKind() ==
7381 TSK_ExplicitSpecialization);
7382 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7383 return true;
7384 }
7385
7386 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7387 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7388 PrevDecl = Specialization;
7389
7390 if (PrevDecl) {
7391 bool HasNoEffect = false;
7392 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7393 PrevDecl,
7394 PrevDecl->getTemplateSpecializationKind(),
7395 PrevDecl->getPointOfInstantiation(),
7396 HasNoEffect))
7397 return true;
7398
7399 // FIXME: We may still want to build some representation of this
7400 // explicit specialization.
7401 if (HasNoEffect)
7402 return (Decl*) 0;
7403 }
7404
7405 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7406 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7407 if (Attr)
7408 ProcessDeclAttributeList(S, Specialization, Attr);
7409
7410 if (TSK == TSK_ExplicitInstantiationDefinition)
7411 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7412
7413 // C++0x [temp.explicit]p2:
7414 // If the explicit instantiation is for a member function, a member class
7415 // or a static data member of a class template specialization, the name of
7416 // the class template specialization in the qualified-id for the member
7417 // name shall be a simple-template-id.
7418 //
7419 // C++98 has the same restriction, just worded differently.
7420 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7421 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7422 D.getCXXScopeSpec().isSet() &&
7423 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7424 Diag(D.getIdentifierLoc(),
7425 diag::ext_explicit_instantiation_without_qualified_id)
7426 << Specialization << D.getCXXScopeSpec().getRange();
7427
7428 CheckExplicitInstantiationScope(*this,
7429 FunTmpl? (NamedDecl *)FunTmpl
7430 : Specialization->getInstantiatedFromMemberFunction(),
7431 D.getIdentifierLoc(),
7432 D.getCXXScopeSpec().isSet());
7433
7434 // FIXME: Create some kind of ExplicitInstantiationDecl here.
7435 return (Decl*) 0;
7436 }
7437
7438 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7439 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7440 const CXXScopeSpec &SS, IdentifierInfo *Name,
7441 SourceLocation TagLoc, SourceLocation NameLoc) {
7442 // This has to hold, because SS is expected to be defined.
7443 assert(Name && "Expected a name in a dependent tag");
7444
7445 NestedNameSpecifier *NNS
7446 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7447 if (!NNS)
7448 return true;
7449
7450 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7451
7452 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7453 Diag(NameLoc, diag::err_dependent_tag_decl)
7454 << (TUK == TUK_Definition) << Kind << SS.getRange();
7455 return true;
7456 }
7457
7458 // Create the resulting type.
7459 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7460 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7461
7462 // Create type-source location information for this type.
7463 TypeLocBuilder TLB;
7464 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7465 TL.setElaboratedKeywordLoc(TagLoc);
7466 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7467 TL.setNameLoc(NameLoc);
7468 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7469 }
7470
7471 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7472 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7473 const CXXScopeSpec &SS, const IdentifierInfo &II,
7474 SourceLocation IdLoc) {
7475 if (SS.isInvalid())
7476 return true;
7477
7478 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7479 Diag(TypenameLoc,
7480 getLangOpts().CPlusPlus11 ?
7481 diag::warn_cxx98_compat_typename_outside_of_template :
7482 diag::ext_typename_outside_of_template)
7483 << FixItHint::CreateRemoval(TypenameLoc);
7484
7485 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7486 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7487 TypenameLoc, QualifierLoc, II, IdLoc);
7488 if (T.isNull())
7489 return true;
7490
7491 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7492 if (isa<DependentNameType>(T)) {
7493 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7494 TL.setElaboratedKeywordLoc(TypenameLoc);
7495 TL.setQualifierLoc(QualifierLoc);
7496 TL.setNameLoc(IdLoc);
7497 } else {
7498 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7499 TL.setElaboratedKeywordLoc(TypenameLoc);
7500 TL.setQualifierLoc(QualifierLoc);
7501 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7502 }
7503
7504 return CreateParsedType(T, TSI);
7505 }
7506
7507 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)7508 Sema::ActOnTypenameType(Scope *S,
7509 SourceLocation TypenameLoc,
7510 const CXXScopeSpec &SS,
7511 SourceLocation TemplateKWLoc,
7512 TemplateTy TemplateIn,
7513 SourceLocation TemplateNameLoc,
7514 SourceLocation LAngleLoc,
7515 ASTTemplateArgsPtr TemplateArgsIn,
7516 SourceLocation RAngleLoc) {
7517 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7518 Diag(TypenameLoc,
7519 getLangOpts().CPlusPlus11 ?
7520 diag::warn_cxx98_compat_typename_outside_of_template :
7521 diag::ext_typename_outside_of_template)
7522 << FixItHint::CreateRemoval(TypenameLoc);
7523
7524 // Translate the parser's template argument list in our AST format.
7525 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7526 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7527
7528 TemplateName Template = TemplateIn.get();
7529 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7530 // Construct a dependent template specialization type.
7531 assert(DTN && "dependent template has non-dependent name?");
7532 assert(DTN->getQualifier()
7533 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7534 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7535 DTN->getQualifier(),
7536 DTN->getIdentifier(),
7537 TemplateArgs);
7538
7539 // Create source-location information for this type.
7540 TypeLocBuilder Builder;
7541 DependentTemplateSpecializationTypeLoc SpecTL
7542 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7543 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7544 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7545 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7546 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7547 SpecTL.setLAngleLoc(LAngleLoc);
7548 SpecTL.setRAngleLoc(RAngleLoc);
7549 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7550 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7551 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7552 }
7553
7554 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7555 if (T.isNull())
7556 return true;
7557
7558 // Provide source-location information for the template specialization type.
7559 TypeLocBuilder Builder;
7560 TemplateSpecializationTypeLoc SpecTL
7561 = Builder.push<TemplateSpecializationTypeLoc>(T);
7562 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7563 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7564 SpecTL.setLAngleLoc(LAngleLoc);
7565 SpecTL.setRAngleLoc(RAngleLoc);
7566 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7567 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7568
7569 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7570 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7571 TL.setElaboratedKeywordLoc(TypenameLoc);
7572 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7573
7574 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7575 return CreateParsedType(T, TSI);
7576 }
7577
7578
7579 /// Determine whether this failed name lookup should be treated as being
7580 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7581 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7582 SourceRange &CondRange) {
7583 // We must be looking for a ::type...
7584 if (!II.isStr("type"))
7585 return false;
7586
7587 // ... within an explicitly-written template specialization...
7588 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7589 return false;
7590 TypeLoc EnableIfTy = NNS.getTypeLoc();
7591 TemplateSpecializationTypeLoc EnableIfTSTLoc =
7592 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7593 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7594 return false;
7595 const TemplateSpecializationType *EnableIfTST =
7596 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7597
7598 // ... which names a complete class template declaration...
7599 const TemplateDecl *EnableIfDecl =
7600 EnableIfTST->getTemplateName().getAsTemplateDecl();
7601 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7602 return false;
7603
7604 // ... called "enable_if".
7605 const IdentifierInfo *EnableIfII =
7606 EnableIfDecl->getDeclName().getAsIdentifierInfo();
7607 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7608 return false;
7609
7610 // Assume the first template argument is the condition.
7611 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7612 return true;
7613 }
7614
7615 /// \brief Build the type that describes a C++ typename specifier,
7616 /// e.g., "typename T::type".
7617 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7618 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7619 SourceLocation KeywordLoc,
7620 NestedNameSpecifierLoc QualifierLoc,
7621 const IdentifierInfo &II,
7622 SourceLocation IILoc) {
7623 CXXScopeSpec SS;
7624 SS.Adopt(QualifierLoc);
7625
7626 DeclContext *Ctx = computeDeclContext(SS);
7627 if (!Ctx) {
7628 // If the nested-name-specifier is dependent and couldn't be
7629 // resolved to a type, build a typename type.
7630 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7631 return Context.getDependentNameType(Keyword,
7632 QualifierLoc.getNestedNameSpecifier(),
7633 &II);
7634 }
7635
7636 // If the nested-name-specifier refers to the current instantiation,
7637 // the "typename" keyword itself is superfluous. In C++03, the
7638 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7639 // allows such extraneous "typename" keywords, and we retroactively
7640 // apply this DR to C++03 code with only a warning. In any case we continue.
7641
7642 if (RequireCompleteDeclContext(SS, Ctx))
7643 return QualType();
7644
7645 DeclarationName Name(&II);
7646 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7647 LookupQualifiedName(Result, Ctx);
7648 unsigned DiagID = 0;
7649 Decl *Referenced = 0;
7650 switch (Result.getResultKind()) {
7651 case LookupResult::NotFound: {
7652 // If we're looking up 'type' within a template named 'enable_if', produce
7653 // a more specific diagnostic.
7654 SourceRange CondRange;
7655 if (isEnableIf(QualifierLoc, II, CondRange)) {
7656 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7657 << Ctx << CondRange;
7658 return QualType();
7659 }
7660
7661 DiagID = diag::err_typename_nested_not_found;
7662 break;
7663 }
7664
7665 case LookupResult::FoundUnresolvedValue: {
7666 // We found a using declaration that is a value. Most likely, the using
7667 // declaration itself is meant to have the 'typename' keyword.
7668 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7669 IILoc);
7670 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7671 << Name << Ctx << FullRange;
7672 if (UnresolvedUsingValueDecl *Using
7673 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7674 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7675 Diag(Loc, diag::note_using_value_decl_missing_typename)
7676 << FixItHint::CreateInsertion(Loc, "typename ");
7677 }
7678 }
7679 // Fall through to create a dependent typename type, from which we can recover
7680 // better.
7681
7682 case LookupResult::NotFoundInCurrentInstantiation:
7683 // Okay, it's a member of an unknown instantiation.
7684 return Context.getDependentNameType(Keyword,
7685 QualifierLoc.getNestedNameSpecifier(),
7686 &II);
7687
7688 case LookupResult::Found:
7689 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7690 // We found a type. Build an ElaboratedType, since the
7691 // typename-specifier was just sugar.
7692 return Context.getElaboratedType(ETK_Typename,
7693 QualifierLoc.getNestedNameSpecifier(),
7694 Context.getTypeDeclType(Type));
7695 }
7696
7697 DiagID = diag::err_typename_nested_not_type;
7698 Referenced = Result.getFoundDecl();
7699 break;
7700
7701 case LookupResult::FoundOverloaded:
7702 DiagID = diag::err_typename_nested_not_type;
7703 Referenced = *Result.begin();
7704 break;
7705
7706 case LookupResult::Ambiguous:
7707 return QualType();
7708 }
7709
7710 // If we get here, it's because name lookup did not find a
7711 // type. Emit an appropriate diagnostic and return an error.
7712 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7713 IILoc);
7714 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7715 if (Referenced)
7716 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7717 << Name;
7718 return QualType();
7719 }
7720
7721 namespace {
7722 // See Sema::RebuildTypeInCurrentInstantiation
7723 class CurrentInstantiationRebuilder
7724 : public TreeTransform<CurrentInstantiationRebuilder> {
7725 SourceLocation Loc;
7726 DeclarationName Entity;
7727
7728 public:
7729 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7730
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)7731 CurrentInstantiationRebuilder(Sema &SemaRef,
7732 SourceLocation Loc,
7733 DeclarationName Entity)
7734 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7735 Loc(Loc), Entity(Entity) { }
7736
7737 /// \brief Determine whether the given type \p T has already been
7738 /// transformed.
7739 ///
7740 /// For the purposes of type reconstruction, a type has already been
7741 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7742 bool AlreadyTransformed(QualType T) {
7743 return T.isNull() || !T->isDependentType();
7744 }
7745
7746 /// \brief Returns the location of the entity whose type is being
7747 /// rebuilt.
getBaseLocation()7748 SourceLocation getBaseLocation() { return Loc; }
7749
7750 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()7751 DeclarationName getBaseEntity() { return Entity; }
7752
7753 /// \brief Sets the "base" location and entity when that
7754 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)7755 void setBase(SourceLocation Loc, DeclarationName Entity) {
7756 this->Loc = Loc;
7757 this->Entity = Entity;
7758 }
7759
TransformLambdaExpr(LambdaExpr * E)7760 ExprResult TransformLambdaExpr(LambdaExpr *E) {
7761 // Lambdas never need to be transformed.
7762 return E;
7763 }
7764 };
7765 }
7766
7767 /// \brief Rebuilds a type within the context of the current instantiation.
7768 ///
7769 /// The type \p T is part of the type of an out-of-line member definition of
7770 /// a class template (or class template partial specialization) that was parsed
7771 /// and constructed before we entered the scope of the class template (or
7772 /// partial specialization thereof). This routine will rebuild that type now
7773 /// that we have entered the declarator's scope, which may produce different
7774 /// canonical types, e.g.,
7775 ///
7776 /// \code
7777 /// template<typename T>
7778 /// struct X {
7779 /// typedef T* pointer;
7780 /// pointer data();
7781 /// };
7782 ///
7783 /// template<typename T>
7784 /// typename X<T>::pointer X<T>::data() { ... }
7785 /// \endcode
7786 ///
7787 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7788 /// since we do not know that we can look into X<T> when we parsed the type.
7789 /// This function will rebuild the type, performing the lookup of "pointer"
7790 /// in X<T> and returning an ElaboratedType whose canonical type is the same
7791 /// as the canonical type of T*, allowing the return types of the out-of-line
7792 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)7793 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7794 SourceLocation Loc,
7795 DeclarationName Name) {
7796 if (!T || !T->getType()->isDependentType())
7797 return T;
7798
7799 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7800 return Rebuilder.TransformType(T);
7801 }
7802
RebuildExprInCurrentInstantiation(Expr * E)7803 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7804 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7805 DeclarationName());
7806 return Rebuilder.TransformExpr(E);
7807 }
7808
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)7809 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7810 if (SS.isInvalid())
7811 return true;
7812
7813 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7814 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7815 DeclarationName());
7816 NestedNameSpecifierLoc Rebuilt
7817 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7818 if (!Rebuilt)
7819 return true;
7820
7821 SS.Adopt(Rebuilt);
7822 return false;
7823 }
7824
7825 /// \brief Rebuild the template parameters now that we know we're in a current
7826 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)7827 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7828 TemplateParameterList *Params) {
7829 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7830 Decl *Param = Params->getParam(I);
7831
7832 // There is nothing to rebuild in a type parameter.
7833 if (isa<TemplateTypeParmDecl>(Param))
7834 continue;
7835
7836 // Rebuild the template parameter list of a template template parameter.
7837 if (TemplateTemplateParmDecl *TTP
7838 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7839 if (RebuildTemplateParamsInCurrentInstantiation(
7840 TTP->getTemplateParameters()))
7841 return true;
7842
7843 continue;
7844 }
7845
7846 // Rebuild the type of a non-type template parameter.
7847 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7848 TypeSourceInfo *NewTSI
7849 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7850 NTTP->getLocation(),
7851 NTTP->getDeclName());
7852 if (!NewTSI)
7853 return true;
7854
7855 if (NewTSI != NTTP->getTypeSourceInfo()) {
7856 NTTP->setTypeSourceInfo(NewTSI);
7857 NTTP->setType(NewTSI->getType());
7858 }
7859 }
7860
7861 return false;
7862 }
7863
7864 /// \brief Produces a formatted string that describes the binding of
7865 /// template parameters to template arguments.
7866 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)7867 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7868 const TemplateArgumentList &Args) {
7869 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7870 }
7871
7872 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)7873 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7874 const TemplateArgument *Args,
7875 unsigned NumArgs) {
7876 SmallString<128> Str;
7877 llvm::raw_svector_ostream Out(Str);
7878
7879 if (!Params || Params->size() == 0 || NumArgs == 0)
7880 return std::string();
7881
7882 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7883 if (I >= NumArgs)
7884 break;
7885
7886 if (I == 0)
7887 Out << "[with ";
7888 else
7889 Out << ", ";
7890
7891 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7892 Out << Id->getName();
7893 } else {
7894 Out << '$' << I;
7895 }
7896
7897 Out << " = ";
7898 Args[I].print(getPrintingPolicy(), Out);
7899 }
7900
7901 Out << ']';
7902 return Out.str();
7903 }
7904
MarkAsLateParsedTemplate(FunctionDecl * FD,bool Flag)7905 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7906 if (!FD)
7907 return;
7908 FD->setLateTemplateParsed(Flag);
7909 }
7910
IsInsideALocalClassWithinATemplateFunction()7911 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7912 DeclContext *DC = CurContext;
7913
7914 while (DC) {
7915 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7916 const FunctionDecl *FD = RD->isLocalClass();
7917 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7918 } else if (DC->isTranslationUnit() || DC->isNamespace())
7919 return false;
7920
7921 DC = DC->getParent();
7922 }
7923 return false;
7924 }
7925