1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/CommentDiagnostic.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31 #include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32 #include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33 #include "clang/Parse/ParseDiagnostic.h"
34 #include "clang/Sema/CXXFieldCollector.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/Triple.h"
44 #include <algorithm>
45 #include <cstring>
46 #include <functional>
47 using namespace clang;
48 using namespace sema;
49
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51 if (OwnedType) {
52 Decl *Group[2] = { OwnedType, Ptr };
53 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54 }
55
56 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57 }
58
59 namespace {
60
61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false)63 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65 WantExpressionKeywords = false;
66 WantCXXNamedCasts = false;
67 WantRemainingKeywords = false;
68 }
69
ValidateCandidate(const TypoCorrection & candidate)70 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71 if (NamedDecl *ND = candidate.getCorrectionDecl())
72 return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73 (AllowInvalidDecl || !ND->isInvalidDecl());
74 else
75 return !WantClassName && candidate.isKeyword();
76 }
77
78 private:
79 bool AllowInvalidDecl;
80 bool WantClassName;
81 };
82
83 }
84
85 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const86 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87 switch (Kind) {
88 // FIXME: Take into account the current language when deciding whether a
89 // token kind is a valid type specifier
90 case tok::kw_short:
91 case tok::kw_long:
92 case tok::kw___int64:
93 case tok::kw___int128:
94 case tok::kw_signed:
95 case tok::kw_unsigned:
96 case tok::kw_void:
97 case tok::kw_char:
98 case tok::kw_int:
99 case tok::kw_half:
100 case tok::kw_float:
101 case tok::kw_double:
102 case tok::kw_wchar_t:
103 case tok::kw_bool:
104 case tok::kw___underlying_type:
105 return true;
106
107 case tok::annot_typename:
108 case tok::kw_char16_t:
109 case tok::kw_char32_t:
110 case tok::kw_typeof:
111 case tok::kw_decltype:
112 return getLangOpts().CPlusPlus;
113
114 default:
115 break;
116 }
117
118 return false;
119 }
120
121 /// \brief If the identifier refers to a type name within this scope,
122 /// return the declaration of that type.
123 ///
124 /// This routine performs ordinary name lookup of the identifier II
125 /// within the given scope, with optional C++ scope specifier SS, to
126 /// determine whether the name refers to a type. If so, returns an
127 /// opaque pointer (actually a QualType) corresponding to that
128 /// type. Otherwise, returns NULL.
129 ///
130 /// If name lookup results in an ambiguity, this routine will complain
131 /// and then return NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)132 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133 Scope *S, CXXScopeSpec *SS,
134 bool isClassName, bool HasTrailingDot,
135 ParsedType ObjectTypePtr,
136 bool IsCtorOrDtorName,
137 bool WantNontrivialTypeSourceInfo,
138 IdentifierInfo **CorrectedII) {
139 // Determine where we will perform name lookup.
140 DeclContext *LookupCtx = 0;
141 if (ObjectTypePtr) {
142 QualType ObjectType = ObjectTypePtr.get();
143 if (ObjectType->isRecordType())
144 LookupCtx = computeDeclContext(ObjectType);
145 } else if (SS && SS->isNotEmpty()) {
146 LookupCtx = computeDeclContext(*SS, false);
147
148 if (!LookupCtx) {
149 if (isDependentScopeSpecifier(*SS)) {
150 // C++ [temp.res]p3:
151 // A qualified-id that refers to a type and in which the
152 // nested-name-specifier depends on a template-parameter (14.6.2)
153 // shall be prefixed by the keyword typename to indicate that the
154 // qualified-id denotes a type, forming an
155 // elaborated-type-specifier (7.1.5.3).
156 //
157 // We therefore do not perform any name lookup if the result would
158 // refer to a member of an unknown specialization.
159 if (!isClassName && !IsCtorOrDtorName)
160 return ParsedType();
161
162 // We know from the grammar that this name refers to a type,
163 // so build a dependent node to describe the type.
164 if (WantNontrivialTypeSourceInfo)
165 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168 QualType T =
169 CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170 II, NameLoc);
171
172 return ParsedType::make(T);
173 }
174
175 return ParsedType();
176 }
177
178 if (!LookupCtx->isDependentContext() &&
179 RequireCompleteDeclContext(*SS, LookupCtx))
180 return ParsedType();
181 }
182
183 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184 // lookup for class-names.
185 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186 LookupOrdinaryName;
187 LookupResult Result(*this, &II, NameLoc, Kind);
188 if (LookupCtx) {
189 // Perform "qualified" name lookup into the declaration context we
190 // computed, which is either the type of the base of a member access
191 // expression or the declaration context associated with a prior
192 // nested-name-specifier.
193 LookupQualifiedName(Result, LookupCtx);
194
195 if (ObjectTypePtr && Result.empty()) {
196 // C++ [basic.lookup.classref]p3:
197 // If the unqualified-id is ~type-name, the type-name is looked up
198 // in the context of the entire postfix-expression. If the type T of
199 // the object expression is of a class type C, the type-name is also
200 // looked up in the scope of class C. At least one of the lookups shall
201 // find a name that refers to (possibly cv-qualified) T.
202 LookupName(Result, S);
203 }
204 } else {
205 // Perform unqualified name lookup.
206 LookupName(Result, S);
207 }
208
209 NamedDecl *IIDecl = 0;
210 switch (Result.getResultKind()) {
211 case LookupResult::NotFound:
212 case LookupResult::NotFoundInCurrentInstantiation:
213 if (CorrectedII) {
214 TypeNameValidatorCCC Validator(true, isClassName);
215 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216 Kind, S, SS, Validator);
217 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218 TemplateTy Template;
219 bool MemberOfUnknownSpecialization;
220 UnqualifiedId TemplateName;
221 TemplateName.setIdentifier(NewII, NameLoc);
222 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223 CXXScopeSpec NewSS, *NewSSPtr = SS;
224 if (SS && NNS) {
225 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226 NewSSPtr = &NewSS;
227 }
228 if (Correction && (NNS || NewII != &II) &&
229 // Ignore a correction to a template type as the to-be-corrected
230 // identifier is not a template (typo correction for template names
231 // is handled elsewhere).
232 !(getLangOpts().CPlusPlus && NewSSPtr &&
233 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234 false, Template, MemberOfUnknownSpecialization))) {
235 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236 isClassName, HasTrailingDot, ObjectTypePtr,
237 IsCtorOrDtorName,
238 WantNontrivialTypeSourceInfo);
239 if (Ty) {
240 std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241 std::string CorrectedQuotedStr(
242 Correction.getQuoted(getLangOpts()));
243 Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244 << Result.getLookupName() << CorrectedQuotedStr << isClassName
245 << FixItHint::CreateReplacement(SourceRange(NameLoc),
246 CorrectedStr);
247 if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248 Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249 << CorrectedQuotedStr;
250
251 if (SS && NNS)
252 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253 *CorrectedII = NewII;
254 return Ty;
255 }
256 }
257 }
258 // If typo correction failed or was not performed, fall through
259 case LookupResult::FoundOverloaded:
260 case LookupResult::FoundUnresolvedValue:
261 Result.suppressDiagnostics();
262 return ParsedType();
263
264 case LookupResult::Ambiguous:
265 // Recover from type-hiding ambiguities by hiding the type. We'll
266 // do the lookup again when looking for an object, and we can
267 // diagnose the error then. If we don't do this, then the error
268 // about hiding the type will be immediately followed by an error
269 // that only makes sense if the identifier was treated like a type.
270 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271 Result.suppressDiagnostics();
272 return ParsedType();
273 }
274
275 // Look to see if we have a type anywhere in the list of results.
276 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277 Res != ResEnd; ++Res) {
278 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279 if (!IIDecl ||
280 (*Res)->getLocation().getRawEncoding() <
281 IIDecl->getLocation().getRawEncoding())
282 IIDecl = *Res;
283 }
284 }
285
286 if (!IIDecl) {
287 // None of the entities we found is a type, so there is no way
288 // to even assume that the result is a type. In this case, don't
289 // complain about the ambiguity. The parser will either try to
290 // perform this lookup again (e.g., as an object name), which
291 // will produce the ambiguity, or will complain that it expected
292 // a type name.
293 Result.suppressDiagnostics();
294 return ParsedType();
295 }
296
297 // We found a type within the ambiguous lookup; diagnose the
298 // ambiguity and then return that type. This might be the right
299 // answer, or it might not be, but it suppresses any attempt to
300 // perform the name lookup again.
301 break;
302
303 case LookupResult::Found:
304 IIDecl = Result.getFoundDecl();
305 break;
306 }
307
308 assert(IIDecl && "Didn't find decl");
309
310 QualType T;
311 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312 DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314 if (T.isNull())
315 T = Context.getTypeDeclType(TD);
316
317 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318 // constructor or destructor name (in such a case, the scope specifier
319 // will be attached to the enclosing Expr or Decl node).
320 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321 if (WantNontrivialTypeSourceInfo) {
322 // Construct a type with type-source information.
323 TypeLocBuilder Builder;
324 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326 T = getElaboratedType(ETK_None, *SS, T);
327 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328 ElabTL.setElaboratedKeywordLoc(SourceLocation());
329 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331 } else {
332 T = getElaboratedType(ETK_None, *SS, T);
333 }
334 }
335 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337 if (!HasTrailingDot)
338 T = Context.getObjCInterfaceType(IDecl);
339 }
340
341 if (T.isNull()) {
342 // If it's not plausibly a type, suppress diagnostics.
343 Result.suppressDiagnostics();
344 return ParsedType();
345 }
346 return ParsedType::make(T);
347 }
348
349 /// isTagName() - This method is called *for error recovery purposes only*
350 /// to determine if the specified name is a valid tag name ("struct foo"). If
351 /// so, this returns the TST for the tag corresponding to it (TST_enum,
352 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
353 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)354 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355 // Do a tag name lookup in this scope.
356 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357 LookupName(R, S, false);
358 R.suppressDiagnostics();
359 if (R.getResultKind() == LookupResult::Found)
360 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361 switch (TD->getTagKind()) {
362 case TTK_Struct: return DeclSpec::TST_struct;
363 case TTK_Interface: return DeclSpec::TST_interface;
364 case TTK_Union: return DeclSpec::TST_union;
365 case TTK_Class: return DeclSpec::TST_class;
366 case TTK_Enum: return DeclSpec::TST_enum;
367 }
368 }
369
370 return DeclSpec::TST_unspecified;
371 }
372
373 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
375 /// then downgrade the missing typename error to a warning.
376 /// This is needed for MSVC compatibility; Example:
377 /// @code
378 /// template<class T> class A {
379 /// public:
380 /// typedef int TYPE;
381 /// };
382 /// template<class T> class B : public A<T> {
383 /// public:
384 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
385 /// };
386 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)387 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388 if (CurContext->isRecord()) {
389 const Type *Ty = SS->getScopeRep()->getAsType();
390
391 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392 for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393 BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395 return true;
396 return S->isFunctionPrototypeScope();
397 }
398 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399 }
400
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)401 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402 SourceLocation IILoc,
403 Scope *S,
404 CXXScopeSpec *SS,
405 ParsedType &SuggestedType) {
406 // We don't have anything to suggest (yet).
407 SuggestedType = ParsedType();
408
409 // There may have been a typo in the name of the type. Look up typo
410 // results, in case we have something that we can suggest.
411 TypeNameValidatorCCC Validator(false);
412 if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413 LookupOrdinaryName, S, SS,
414 Validator)) {
415 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418 if (Corrected.isKeyword()) {
419 // We corrected to a keyword.
420 IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421 if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422 CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423 Diag(IILoc, diag::err_unknown_typename_suggest)
424 << II << CorrectedQuotedStr
425 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
426 CorrectedStr);
427 II = NewII;
428 } else {
429 NamedDecl *Result = Corrected.getCorrectionDecl();
430 // We found a similarly-named type or interface; suggest that.
431 if (!SS || !SS->isSet()) {
432 Diag(IILoc, diag::err_unknown_typename_suggest)
433 << II << CorrectedQuotedStr
434 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
435 CorrectedStr);
436 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
437 bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
438 II->getName().equals(CorrectedStr);
439 Diag(IILoc, diag::err_unknown_nested_typename_suggest)
440 << II << DC << droppedSpecifier << CorrectedQuotedStr
441 << SS->getRange()
442 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
443 CorrectedStr);
444 }
445 else {
446 llvm_unreachable("could not have corrected a typo here");
447 }
448
449 Diag(Result->getLocation(), diag::note_previous_decl)
450 << CorrectedQuotedStr;
451
452 SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
453 false, false, ParsedType(),
454 /*IsCtorOrDtorName=*/false,
455 /*NonTrivialTypeSourceInfo=*/true);
456 }
457 return true;
458 }
459
460 if (getLangOpts().CPlusPlus) {
461 // See if II is a class template that the user forgot to pass arguments to.
462 UnqualifiedId Name;
463 Name.setIdentifier(II, IILoc);
464 CXXScopeSpec EmptySS;
465 TemplateTy TemplateResult;
466 bool MemberOfUnknownSpecialization;
467 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
468 Name, ParsedType(), true, TemplateResult,
469 MemberOfUnknownSpecialization) == TNK_Type_template) {
470 TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
471 Diag(IILoc, diag::err_template_missing_args) << TplName;
472 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
473 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
474 << TplDecl->getTemplateParameters()->getSourceRange();
475 }
476 return true;
477 }
478 }
479
480 // FIXME: Should we move the logic that tries to recover from a missing tag
481 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
482
483 if (!SS || (!SS->isSet() && !SS->isInvalid()))
484 Diag(IILoc, diag::err_unknown_typename) << II;
485 else if (DeclContext *DC = computeDeclContext(*SS, false))
486 Diag(IILoc, diag::err_typename_nested_not_found)
487 << II << DC << SS->getRange();
488 else if (isDependentScopeSpecifier(*SS)) {
489 unsigned DiagID = diag::err_typename_missing;
490 if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
491 DiagID = diag::warn_typename_missing;
492
493 Diag(SS->getRange().getBegin(), DiagID)
494 << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
495 << SourceRange(SS->getRange().getBegin(), IILoc)
496 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
497 SuggestedType = ActOnTypenameType(S, SourceLocation(),
498 *SS, *II, IILoc).get();
499 } else {
500 assert(SS && SS->isInvalid() &&
501 "Invalid scope specifier has already been diagnosed");
502 }
503
504 return true;
505 }
506
507 /// \brief Determine whether the given result set contains either a type name
508 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)509 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
510 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
511 NextToken.is(tok::less);
512
513 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
514 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
515 return true;
516
517 if (CheckTemplate && isa<TemplateDecl>(*I))
518 return true;
519 }
520
521 return false;
522 }
523
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)524 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
525 Scope *S, CXXScopeSpec &SS,
526 IdentifierInfo *&Name,
527 SourceLocation NameLoc) {
528 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
529 SemaRef.LookupParsedName(R, S, &SS);
530 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
531 const char *TagName = 0;
532 const char *FixItTagName = 0;
533 switch (Tag->getTagKind()) {
534 case TTK_Class:
535 TagName = "class";
536 FixItTagName = "class ";
537 break;
538
539 case TTK_Enum:
540 TagName = "enum";
541 FixItTagName = "enum ";
542 break;
543
544 case TTK_Struct:
545 TagName = "struct";
546 FixItTagName = "struct ";
547 break;
548
549 case TTK_Interface:
550 TagName = "__interface";
551 FixItTagName = "__interface ";
552 break;
553
554 case TTK_Union:
555 TagName = "union";
556 FixItTagName = "union ";
557 break;
558 }
559
560 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
561 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
562 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
563
564 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
565 I != IEnd; ++I)
566 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
567 << Name << TagName;
568
569 // Replace lookup results with just the tag decl.
570 Result.clear(Sema::LookupTagName);
571 SemaRef.LookupParsedName(Result, S, &SS);
572 return true;
573 }
574
575 return false;
576 }
577
578 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)579 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
580 QualType T, SourceLocation NameLoc) {
581 ASTContext &Context = S.Context;
582
583 TypeLocBuilder Builder;
584 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
585
586 T = S.getElaboratedType(ETK_None, SS, T);
587 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
588 ElabTL.setElaboratedKeywordLoc(SourceLocation());
589 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
590 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
591 }
592
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)593 Sema::NameClassification Sema::ClassifyName(Scope *S,
594 CXXScopeSpec &SS,
595 IdentifierInfo *&Name,
596 SourceLocation NameLoc,
597 const Token &NextToken,
598 bool IsAddressOfOperand,
599 CorrectionCandidateCallback *CCC) {
600 DeclarationNameInfo NameInfo(Name, NameLoc);
601 ObjCMethodDecl *CurMethod = getCurMethodDecl();
602
603 if (NextToken.is(tok::coloncolon)) {
604 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
605 QualType(), false, SS, 0, false);
606
607 }
608
609 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
610 LookupParsedName(Result, S, &SS, !CurMethod);
611
612 // Perform lookup for Objective-C instance variables (including automatically
613 // synthesized instance variables), if we're in an Objective-C method.
614 // FIXME: This lookup really, really needs to be folded in to the normal
615 // unqualified lookup mechanism.
616 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
617 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
618 if (E.get() || E.isInvalid())
619 return E;
620 }
621
622 bool SecondTry = false;
623 bool IsFilteredTemplateName = false;
624
625 Corrected:
626 switch (Result.getResultKind()) {
627 case LookupResult::NotFound:
628 // If an unqualified-id is followed by a '(', then we have a function
629 // call.
630 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
631 // In C++, this is an ADL-only call.
632 // FIXME: Reference?
633 if (getLangOpts().CPlusPlus)
634 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
635
636 // C90 6.3.2.2:
637 // If the expression that precedes the parenthesized argument list in a
638 // function call consists solely of an identifier, and if no
639 // declaration is visible for this identifier, the identifier is
640 // implicitly declared exactly as if, in the innermost block containing
641 // the function call, the declaration
642 //
643 // extern int identifier ();
644 //
645 // appeared.
646 //
647 // We also allow this in C99 as an extension.
648 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
649 Result.addDecl(D);
650 Result.resolveKind();
651 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
652 }
653 }
654
655 // In C, we first see whether there is a tag type by the same name, in
656 // which case it's likely that the user just forget to write "enum",
657 // "struct", or "union".
658 if (!getLangOpts().CPlusPlus && !SecondTry &&
659 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
660 break;
661 }
662
663 // Perform typo correction to determine if there is another name that is
664 // close to this name.
665 if (!SecondTry && CCC) {
666 SecondTry = true;
667 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
668 Result.getLookupKind(), S,
669 &SS, *CCC)) {
670 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
671 unsigned QualifiedDiag = diag::err_no_member_suggest;
672 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
673 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
674
675 NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
676 NamedDecl *UnderlyingFirstDecl
677 = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
678 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
679 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
680 UnqualifiedDiag = diag::err_no_template_suggest;
681 QualifiedDiag = diag::err_no_member_template_suggest;
682 } else if (UnderlyingFirstDecl &&
683 (isa<TypeDecl>(UnderlyingFirstDecl) ||
684 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
685 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
686 UnqualifiedDiag = diag::err_unknown_typename_suggest;
687 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
688 }
689
690 if (SS.isEmpty()) {
691 Diag(NameLoc, UnqualifiedDiag)
692 << Name << CorrectedQuotedStr
693 << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
694 } else {// FIXME: is this even reachable? Test it.
695 bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
696 Name->getName().equals(CorrectedStr);
697 Diag(NameLoc, QualifiedDiag)
698 << Name << computeDeclContext(SS, false) << droppedSpecifier
699 << CorrectedQuotedStr << SS.getRange()
700 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
701 CorrectedStr);
702 }
703
704 // Update the name, so that the caller has the new name.
705 Name = Corrected.getCorrectionAsIdentifierInfo();
706
707 // Typo correction corrected to a keyword.
708 if (Corrected.isKeyword())
709 return Corrected.getCorrectionAsIdentifierInfo();
710
711 // Also update the LookupResult...
712 // FIXME: This should probably go away at some point
713 Result.clear();
714 Result.setLookupName(Corrected.getCorrection());
715 if (FirstDecl) {
716 Result.addDecl(FirstDecl);
717 Diag(FirstDecl->getLocation(), diag::note_previous_decl)
718 << CorrectedQuotedStr;
719 }
720
721 // If we found an Objective-C instance variable, let
722 // LookupInObjCMethod build the appropriate expression to
723 // reference the ivar.
724 // FIXME: This is a gross hack.
725 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
726 Result.clear();
727 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
728 return E;
729 }
730
731 goto Corrected;
732 }
733 }
734
735 // We failed to correct; just fall through and let the parser deal with it.
736 Result.suppressDiagnostics();
737 return NameClassification::Unknown();
738
739 case LookupResult::NotFoundInCurrentInstantiation: {
740 // We performed name lookup into the current instantiation, and there were
741 // dependent bases, so we treat this result the same way as any other
742 // dependent nested-name-specifier.
743
744 // C++ [temp.res]p2:
745 // A name used in a template declaration or definition and that is
746 // dependent on a template-parameter is assumed not to name a type
747 // unless the applicable name lookup finds a type name or the name is
748 // qualified by the keyword typename.
749 //
750 // FIXME: If the next token is '<', we might want to ask the parser to
751 // perform some heroics to see if we actually have a
752 // template-argument-list, which would indicate a missing 'template'
753 // keyword here.
754 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
755 NameInfo, IsAddressOfOperand,
756 /*TemplateArgs=*/0);
757 }
758
759 case LookupResult::Found:
760 case LookupResult::FoundOverloaded:
761 case LookupResult::FoundUnresolvedValue:
762 break;
763
764 case LookupResult::Ambiguous:
765 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
766 hasAnyAcceptableTemplateNames(Result)) {
767 // C++ [temp.local]p3:
768 // A lookup that finds an injected-class-name (10.2) can result in an
769 // ambiguity in certain cases (for example, if it is found in more than
770 // one base class). If all of the injected-class-names that are found
771 // refer to specializations of the same class template, and if the name
772 // is followed by a template-argument-list, the reference refers to the
773 // class template itself and not a specialization thereof, and is not
774 // ambiguous.
775 //
776 // This filtering can make an ambiguous result into an unambiguous one,
777 // so try again after filtering out template names.
778 FilterAcceptableTemplateNames(Result);
779 if (!Result.isAmbiguous()) {
780 IsFilteredTemplateName = true;
781 break;
782 }
783 }
784
785 // Diagnose the ambiguity and return an error.
786 return NameClassification::Error();
787 }
788
789 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
790 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
791 // C++ [temp.names]p3:
792 // After name lookup (3.4) finds that a name is a template-name or that
793 // an operator-function-id or a literal- operator-id refers to a set of
794 // overloaded functions any member of which is a function template if
795 // this is followed by a <, the < is always taken as the delimiter of a
796 // template-argument-list and never as the less-than operator.
797 if (!IsFilteredTemplateName)
798 FilterAcceptableTemplateNames(Result);
799
800 if (!Result.empty()) {
801 bool IsFunctionTemplate;
802 bool IsVarTemplate;
803 TemplateName Template;
804 if (Result.end() - Result.begin() > 1) {
805 IsFunctionTemplate = true;
806 Template = Context.getOverloadedTemplateName(Result.begin(),
807 Result.end());
808 } else {
809 TemplateDecl *TD
810 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
811 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
812 IsVarTemplate = isa<VarTemplateDecl>(TD);
813
814 if (SS.isSet() && !SS.isInvalid())
815 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
816 /*TemplateKeyword=*/false,
817 TD);
818 else
819 Template = TemplateName(TD);
820 }
821
822 if (IsFunctionTemplate) {
823 // Function templates always go through overload resolution, at which
824 // point we'll perform the various checks (e.g., accessibility) we need
825 // to based on which function we selected.
826 Result.suppressDiagnostics();
827
828 return NameClassification::FunctionTemplate(Template);
829 }
830
831 return IsVarTemplate ? NameClassification::VarTemplate(Template)
832 : NameClassification::TypeTemplate(Template);
833 }
834 }
835
836 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
837 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
838 DiagnoseUseOfDecl(Type, NameLoc);
839 QualType T = Context.getTypeDeclType(Type);
840 if (SS.isNotEmpty())
841 return buildNestedType(*this, SS, T, NameLoc);
842 return ParsedType::make(T);
843 }
844
845 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
846 if (!Class) {
847 // FIXME: It's unfortunate that we don't have a Type node for handling this.
848 if (ObjCCompatibleAliasDecl *Alias
849 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
850 Class = Alias->getClassInterface();
851 }
852
853 if (Class) {
854 DiagnoseUseOfDecl(Class, NameLoc);
855
856 if (NextToken.is(tok::period)) {
857 // Interface. <something> is parsed as a property reference expression.
858 // Just return "unknown" as a fall-through for now.
859 Result.suppressDiagnostics();
860 return NameClassification::Unknown();
861 }
862
863 QualType T = Context.getObjCInterfaceType(Class);
864 return ParsedType::make(T);
865 }
866
867 // We can have a type template here if we're classifying a template argument.
868 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
869 return NameClassification::TypeTemplate(
870 TemplateName(cast<TemplateDecl>(FirstDecl)));
871
872 // Check for a tag type hidden by a non-type decl in a few cases where it
873 // seems likely a type is wanted instead of the non-type that was found.
874 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
875 if ((NextToken.is(tok::identifier) ||
876 (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
877 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
878 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
879 DiagnoseUseOfDecl(Type, NameLoc);
880 QualType T = Context.getTypeDeclType(Type);
881 if (SS.isNotEmpty())
882 return buildNestedType(*this, SS, T, NameLoc);
883 return ParsedType::make(T);
884 }
885
886 if (FirstDecl->isCXXClassMember())
887 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
888
889 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
890 return BuildDeclarationNameExpr(SS, Result, ADL);
891 }
892
893 // Determines the context to return to after temporarily entering a
894 // context. This depends in an unnecessarily complicated way on the
895 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)896 DeclContext *Sema::getContainingDC(DeclContext *DC) {
897
898 // Functions defined inline within classes aren't parsed until we've
899 // finished parsing the top-level class, so the top-level class is
900 // the context we'll need to return to.
901 if (isa<FunctionDecl>(DC)) {
902 DC = DC->getLexicalParent();
903
904 // A function not defined within a class will always return to its
905 // lexical context.
906 if (!isa<CXXRecordDecl>(DC))
907 return DC;
908
909 // A C++ inline method/friend is parsed *after* the topmost class
910 // it was declared in is fully parsed ("complete"); the topmost
911 // class is the context we need to return to.
912 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
913 DC = RD;
914
915 // Return the declaration context of the topmost class the inline method is
916 // declared in.
917 return DC;
918 }
919
920 return DC->getLexicalParent();
921 }
922
PushDeclContext(Scope * S,DeclContext * DC)923 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
924 assert(getContainingDC(DC) == CurContext &&
925 "The next DeclContext should be lexically contained in the current one.");
926 CurContext = DC;
927 S->setEntity(DC);
928 }
929
PopDeclContext()930 void Sema::PopDeclContext() {
931 assert(CurContext && "DeclContext imbalance!");
932
933 CurContext = getContainingDC(CurContext);
934 assert(CurContext && "Popped translation unit!");
935 }
936
937 /// EnterDeclaratorContext - Used when we must lookup names in the context
938 /// of a declarator's nested name specifier.
939 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)940 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
941 // C++0x [basic.lookup.unqual]p13:
942 // A name used in the definition of a static data member of class
943 // X (after the qualified-id of the static member) is looked up as
944 // if the name was used in a member function of X.
945 // C++0x [basic.lookup.unqual]p14:
946 // If a variable member of a namespace is defined outside of the
947 // scope of its namespace then any name used in the definition of
948 // the variable member (after the declarator-id) is looked up as
949 // if the definition of the variable member occurred in its
950 // namespace.
951 // Both of these imply that we should push a scope whose context
952 // is the semantic context of the declaration. We can't use
953 // PushDeclContext here because that context is not necessarily
954 // lexically contained in the current context. Fortunately,
955 // the containing scope should have the appropriate information.
956
957 assert(!S->getEntity() && "scope already has entity");
958
959 #ifndef NDEBUG
960 Scope *Ancestor = S->getParent();
961 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
962 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
963 #endif
964
965 CurContext = DC;
966 S->setEntity(DC);
967 }
968
ExitDeclaratorContext(Scope * S)969 void Sema::ExitDeclaratorContext(Scope *S) {
970 assert(S->getEntity() == CurContext && "Context imbalance!");
971
972 // Switch back to the lexical context. The safety of this is
973 // enforced by an assert in EnterDeclaratorContext.
974 Scope *Ancestor = S->getParent();
975 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
976 CurContext = (DeclContext*) Ancestor->getEntity();
977
978 // We don't need to do anything with the scope, which is going to
979 // disappear.
980 }
981
982
ActOnReenterFunctionContext(Scope * S,Decl * D)983 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
984 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
985 if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
986 // We assume that the caller has already called
987 // ActOnReenterTemplateScope
988 FD = TFD->getTemplatedDecl();
989 }
990 if (!FD)
991 return;
992
993 // Same implementation as PushDeclContext, but enters the context
994 // from the lexical parent, rather than the top-level class.
995 assert(CurContext == FD->getLexicalParent() &&
996 "The next DeclContext should be lexically contained in the current one.");
997 CurContext = FD;
998 S->setEntity(CurContext);
999
1000 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1001 ParmVarDecl *Param = FD->getParamDecl(P);
1002 // If the parameter has an identifier, then add it to the scope
1003 if (Param->getIdentifier()) {
1004 S->AddDecl(Param);
1005 IdResolver.AddDecl(Param);
1006 }
1007 }
1008 }
1009
1010
ActOnExitFunctionContext()1011 void Sema::ActOnExitFunctionContext() {
1012 // Same implementation as PopDeclContext, but returns to the lexical parent,
1013 // rather than the top-level class.
1014 assert(CurContext && "DeclContext imbalance!");
1015 CurContext = CurContext->getLexicalParent();
1016 assert(CurContext && "Popped translation unit!");
1017 }
1018
1019
1020 /// \brief Determine whether we allow overloading of the function
1021 /// PrevDecl with another declaration.
1022 ///
1023 /// This routine determines whether overloading is possible, not
1024 /// whether some new function is actually an overload. It will return
1025 /// true in C++ (where we can always provide overloads) or, as an
1026 /// extension, in C when the previous function is already an
1027 /// overloaded function declaration or has the "overloadable"
1028 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1029 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1030 ASTContext &Context) {
1031 if (Context.getLangOpts().CPlusPlus)
1032 return true;
1033
1034 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1035 return true;
1036
1037 return (Previous.getResultKind() == LookupResult::Found
1038 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1039 }
1040
1041 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1042 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1043 // Move up the scope chain until we find the nearest enclosing
1044 // non-transparent context. The declaration will be introduced into this
1045 // scope.
1046 while (S->getEntity() &&
1047 ((DeclContext *)S->getEntity())->isTransparentContext())
1048 S = S->getParent();
1049
1050 // Add scoped declarations into their context, so that they can be
1051 // found later. Declarations without a context won't be inserted
1052 // into any context.
1053 if (AddToContext)
1054 CurContext->addDecl(D);
1055
1056 // Out-of-line definitions shouldn't be pushed into scope in C++.
1057 // Out-of-line variable and function definitions shouldn't even in C.
1058 if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1059 D->isOutOfLine() &&
1060 !D->getDeclContext()->getRedeclContext()->Equals(
1061 D->getLexicalDeclContext()->getRedeclContext()))
1062 return;
1063
1064 // Template instantiations should also not be pushed into scope.
1065 if (isa<FunctionDecl>(D) &&
1066 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1067 return;
1068
1069 // If this replaces anything in the current scope,
1070 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1071 IEnd = IdResolver.end();
1072 for (; I != IEnd; ++I) {
1073 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1074 S->RemoveDecl(*I);
1075 IdResolver.RemoveDecl(*I);
1076
1077 // Should only need to replace one decl.
1078 break;
1079 }
1080 }
1081
1082 S->AddDecl(D);
1083
1084 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1085 // Implicitly-generated labels may end up getting generated in an order that
1086 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1087 // the label at the appropriate place in the identifier chain.
1088 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1089 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1090 if (IDC == CurContext) {
1091 if (!S->isDeclScope(*I))
1092 continue;
1093 } else if (IDC->Encloses(CurContext))
1094 break;
1095 }
1096
1097 IdResolver.InsertDeclAfter(I, D);
1098 } else {
1099 IdResolver.AddDecl(D);
1100 }
1101 }
1102
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1103 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1104 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1105 TUScope->AddDecl(D);
1106 }
1107
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)1108 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1109 bool ExplicitInstantiationOrSpecialization) {
1110 return IdResolver.isDeclInScope(D, Ctx, S,
1111 ExplicitInstantiationOrSpecialization);
1112 }
1113
getScopeForDeclContext(Scope * S,DeclContext * DC)1114 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1115 DeclContext *TargetDC = DC->getPrimaryContext();
1116 do {
1117 if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1118 if (ScopeDC->getPrimaryContext() == TargetDC)
1119 return S;
1120 } while ((S = S->getParent()));
1121
1122 return 0;
1123 }
1124
1125 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1126 DeclContext*,
1127 ASTContext&);
1128
1129 /// Filters out lookup results that don't fall within the given scope
1130 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)1131 void Sema::FilterLookupForScope(LookupResult &R,
1132 DeclContext *Ctx, Scope *S,
1133 bool ConsiderLinkage,
1134 bool ExplicitInstantiationOrSpecialization) {
1135 LookupResult::Filter F = R.makeFilter();
1136 while (F.hasNext()) {
1137 NamedDecl *D = F.next();
1138
1139 if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1140 continue;
1141
1142 if (ConsiderLinkage &&
1143 isOutOfScopePreviousDeclaration(D, Ctx, Context))
1144 continue;
1145
1146 F.erase();
1147 }
1148
1149 F.done();
1150 }
1151
isUsingDecl(NamedDecl * D)1152 static bool isUsingDecl(NamedDecl *D) {
1153 return isa<UsingShadowDecl>(D) ||
1154 isa<UnresolvedUsingTypenameDecl>(D) ||
1155 isa<UnresolvedUsingValueDecl>(D);
1156 }
1157
1158 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1159 static void RemoveUsingDecls(LookupResult &R) {
1160 LookupResult::Filter F = R.makeFilter();
1161 while (F.hasNext())
1162 if (isUsingDecl(F.next()))
1163 F.erase();
1164
1165 F.done();
1166 }
1167
1168 /// \brief Check for this common pattern:
1169 /// @code
1170 /// class S {
1171 /// S(const S&); // DO NOT IMPLEMENT
1172 /// void operator=(const S&); // DO NOT IMPLEMENT
1173 /// };
1174 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1175 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1176 // FIXME: Should check for private access too but access is set after we get
1177 // the decl here.
1178 if (D->doesThisDeclarationHaveABody())
1179 return false;
1180
1181 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1182 return CD->isCopyConstructor();
1183 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1184 return Method->isCopyAssignmentOperator();
1185 return false;
1186 }
1187
1188 // We need this to handle
1189 //
1190 // typedef struct {
1191 // void *foo() { return 0; }
1192 // } A;
1193 //
1194 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1195 // for example. If 'A', foo will have external linkage. If we have '*A',
1196 // foo will have no linkage. Since we can't know untill we get to the end
1197 // of the typedef, this function finds out if D might have non external linkage.
1198 // Callers should verify at the end of the TU if it D has external linkage or
1199 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1200 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1201 const DeclContext *DC = D->getDeclContext();
1202 while (!DC->isTranslationUnit()) {
1203 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1204 if (!RD->hasNameForLinkage())
1205 return true;
1206 }
1207 DC = DC->getParent();
1208 }
1209
1210 return !D->isExternallyVisible();
1211 }
1212
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1213 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1214 assert(D);
1215
1216 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1217 return false;
1218
1219 // Ignore class templates.
1220 if (D->getDeclContext()->isDependentContext() ||
1221 D->getLexicalDeclContext()->isDependentContext())
1222 return false;
1223
1224 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1225 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1226 return false;
1227
1228 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1229 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1230 return false;
1231 } else {
1232 // 'static inline' functions are used in headers; don't warn.
1233 // Make sure we get the storage class from the canonical declaration,
1234 // since otherwise we will get spurious warnings on specialized
1235 // static template functions.
1236 if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1237 FD->isInlineSpecified())
1238 return false;
1239 }
1240
1241 if (FD->doesThisDeclarationHaveABody() &&
1242 Context.DeclMustBeEmitted(FD))
1243 return false;
1244 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1245 // Don't warn on variables of const-qualified or reference type, since their
1246 // values can be used even if though they're not odr-used, and because const
1247 // qualified variables can appear in headers in contexts where they're not
1248 // intended to be used.
1249 // FIXME: Use more principled rules for these exemptions.
1250 if (!VD->isFileVarDecl() ||
1251 VD->getType().isConstQualified() ||
1252 VD->getType()->isReferenceType() ||
1253 Context.DeclMustBeEmitted(VD))
1254 return false;
1255
1256 if (VD->isStaticDataMember() &&
1257 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1258 return false;
1259
1260 } else {
1261 return false;
1262 }
1263
1264 // Only warn for unused decls internal to the translation unit.
1265 return mightHaveNonExternalLinkage(D);
1266 }
1267
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1268 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1269 if (!D)
1270 return;
1271
1272 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1273 const FunctionDecl *First = FD->getFirstDeclaration();
1274 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1275 return; // First should already be in the vector.
1276 }
1277
1278 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1279 const VarDecl *First = VD->getFirstDeclaration();
1280 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1281 return; // First should already be in the vector.
1282 }
1283
1284 if (ShouldWarnIfUnusedFileScopedDecl(D))
1285 UnusedFileScopedDecls.push_back(D);
1286 }
1287
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1288 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1289 if (D->isInvalidDecl())
1290 return false;
1291
1292 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1293 return false;
1294
1295 if (isa<LabelDecl>(D))
1296 return true;
1297
1298 // White-list anything that isn't a local variable.
1299 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1300 !D->getDeclContext()->isFunctionOrMethod())
1301 return false;
1302
1303 // Types of valid local variables should be complete, so this should succeed.
1304 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1305
1306 // White-list anything with an __attribute__((unused)) type.
1307 QualType Ty = VD->getType();
1308
1309 // Only look at the outermost level of typedef.
1310 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1311 if (TT->getDecl()->hasAttr<UnusedAttr>())
1312 return false;
1313 }
1314
1315 // If we failed to complete the type for some reason, or if the type is
1316 // dependent, don't diagnose the variable.
1317 if (Ty->isIncompleteType() || Ty->isDependentType())
1318 return false;
1319
1320 if (const TagType *TT = Ty->getAs<TagType>()) {
1321 const TagDecl *Tag = TT->getDecl();
1322 if (Tag->hasAttr<UnusedAttr>())
1323 return false;
1324
1325 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1326 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1327 return false;
1328
1329 if (const Expr *Init = VD->getInit()) {
1330 if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1331 Init = Cleanups->getSubExpr();
1332 const CXXConstructExpr *Construct =
1333 dyn_cast<CXXConstructExpr>(Init);
1334 if (Construct && !Construct->isElidable()) {
1335 CXXConstructorDecl *CD = Construct->getConstructor();
1336 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1337 return false;
1338 }
1339 }
1340 }
1341 }
1342
1343 // TODO: __attribute__((unused)) templates?
1344 }
1345
1346 return true;
1347 }
1348
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1349 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1350 FixItHint &Hint) {
1351 if (isa<LabelDecl>(D)) {
1352 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1353 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1354 if (AfterColon.isInvalid())
1355 return;
1356 Hint = FixItHint::CreateRemoval(CharSourceRange::
1357 getCharRange(D->getLocStart(), AfterColon));
1358 }
1359 return;
1360 }
1361
1362 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1363 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1364 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1365 FixItHint Hint;
1366 if (!ShouldDiagnoseUnusedDecl(D))
1367 return;
1368
1369 GenerateFixForUnusedDecl(D, Context, Hint);
1370
1371 unsigned DiagID;
1372 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1373 DiagID = diag::warn_unused_exception_param;
1374 else if (isa<LabelDecl>(D))
1375 DiagID = diag::warn_unused_label;
1376 else
1377 DiagID = diag::warn_unused_variable;
1378
1379 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1380 }
1381
CheckPoppedLabel(LabelDecl * L,Sema & S)1382 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1383 // Verify that we have no forward references left. If so, there was a goto
1384 // or address of a label taken, but no definition of it. Label fwd
1385 // definitions are indicated with a null substmt.
1386 if (L->getStmt() == 0)
1387 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1388 }
1389
ActOnPopScope(SourceLocation Loc,Scope * S)1390 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1391 if (S->decl_empty()) return;
1392 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1393 "Scope shouldn't contain decls!");
1394
1395 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1396 I != E; ++I) {
1397 Decl *TmpD = (*I);
1398 assert(TmpD && "This decl didn't get pushed??");
1399
1400 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1401 NamedDecl *D = cast<NamedDecl>(TmpD);
1402
1403 if (!D->getDeclName()) continue;
1404
1405 // Diagnose unused variables in this scope.
1406 if (!S->hasUnrecoverableErrorOccurred())
1407 DiagnoseUnusedDecl(D);
1408
1409 // If this was a forward reference to a label, verify it was defined.
1410 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1411 CheckPoppedLabel(LD, *this);
1412
1413 // Remove this name from our lexical scope.
1414 IdResolver.RemoveDecl(D);
1415 }
1416 }
1417
ActOnStartFunctionDeclarator()1418 void Sema::ActOnStartFunctionDeclarator() {
1419 ++InFunctionDeclarator;
1420 }
1421
ActOnEndFunctionDeclarator()1422 void Sema::ActOnEndFunctionDeclarator() {
1423 assert(InFunctionDeclarator);
1424 --InFunctionDeclarator;
1425 }
1426
1427 /// \brief Look for an Objective-C class in the translation unit.
1428 ///
1429 /// \param Id The name of the Objective-C class we're looking for. If
1430 /// typo-correction fixes this name, the Id will be updated
1431 /// to the fixed name.
1432 ///
1433 /// \param IdLoc The location of the name in the translation unit.
1434 ///
1435 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1436 /// if there is no class with the given name.
1437 ///
1438 /// \returns The declaration of the named Objective-C class, or NULL if the
1439 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1440 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1441 SourceLocation IdLoc,
1442 bool DoTypoCorrection) {
1443 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1444 // creation from this context.
1445 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1446
1447 if (!IDecl && DoTypoCorrection) {
1448 // Perform typo correction at the given location, but only if we
1449 // find an Objective-C class name.
1450 DeclFilterCCC<ObjCInterfaceDecl> Validator;
1451 if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1452 LookupOrdinaryName, TUScope, NULL,
1453 Validator)) {
1454 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1455 Diag(IdLoc, diag::err_undef_interface_suggest)
1456 << Id << IDecl->getDeclName()
1457 << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1458 Diag(IDecl->getLocation(), diag::note_previous_decl)
1459 << IDecl->getDeclName();
1460
1461 Id = IDecl->getIdentifier();
1462 }
1463 }
1464 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1465 // This routine must always return a class definition, if any.
1466 if (Def && Def->getDefinition())
1467 Def = Def->getDefinition();
1468 return Def;
1469 }
1470
1471 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1472 /// from S, where a non-field would be declared. This routine copes
1473 /// with the difference between C and C++ scoping rules in structs and
1474 /// unions. For example, the following code is well-formed in C but
1475 /// ill-formed in C++:
1476 /// @code
1477 /// struct S6 {
1478 /// enum { BAR } e;
1479 /// };
1480 ///
1481 /// void test_S6() {
1482 /// struct S6 a;
1483 /// a.e = BAR;
1484 /// }
1485 /// @endcode
1486 /// For the declaration of BAR, this routine will return a different
1487 /// scope. The scope S will be the scope of the unnamed enumeration
1488 /// within S6. In C++, this routine will return the scope associated
1489 /// with S6, because the enumeration's scope is a transparent
1490 /// context but structures can contain non-field names. In C, this
1491 /// routine will return the translation unit scope, since the
1492 /// enumeration's scope is a transparent context and structures cannot
1493 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1494 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1495 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1496 (S->getEntity() &&
1497 ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1498 (S->isClassScope() && !getLangOpts().CPlusPlus))
1499 S = S->getParent();
1500 return S;
1501 }
1502
1503 /// \brief Looks up the declaration of "struct objc_super" and
1504 /// saves it for later use in building builtin declaration of
1505 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1506 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1507 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1508 IdentifierInfo *II) {
1509 if (!II->isStr("objc_msgSendSuper"))
1510 return;
1511 ASTContext &Context = ThisSema.Context;
1512
1513 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1514 SourceLocation(), Sema::LookupTagName);
1515 ThisSema.LookupName(Result, S);
1516 if (Result.getResultKind() == LookupResult::Found)
1517 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1518 Context.setObjCSuperType(Context.getTagDeclType(TD));
1519 }
1520
1521 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1522 /// file scope. lazily create a decl for it. ForRedeclaration is true
1523 /// if we're creating this built-in in anticipation of redeclaring the
1524 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1525 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1526 Scope *S, bool ForRedeclaration,
1527 SourceLocation Loc) {
1528 LookupPredefedObjCSuperType(*this, S, II);
1529
1530 Builtin::ID BID = (Builtin::ID)bid;
1531
1532 ASTContext::GetBuiltinTypeError Error;
1533 QualType R = Context.GetBuiltinType(BID, Error);
1534 switch (Error) {
1535 case ASTContext::GE_None:
1536 // Okay
1537 break;
1538
1539 case ASTContext::GE_Missing_stdio:
1540 if (ForRedeclaration)
1541 Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1542 << Context.BuiltinInfo.GetName(BID);
1543 return 0;
1544
1545 case ASTContext::GE_Missing_setjmp:
1546 if (ForRedeclaration)
1547 Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1548 << Context.BuiltinInfo.GetName(BID);
1549 return 0;
1550
1551 case ASTContext::GE_Missing_ucontext:
1552 if (ForRedeclaration)
1553 Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1554 << Context.BuiltinInfo.GetName(BID);
1555 return 0;
1556 }
1557
1558 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1559 Diag(Loc, diag::ext_implicit_lib_function_decl)
1560 << Context.BuiltinInfo.GetName(BID)
1561 << R;
1562 if (Context.BuiltinInfo.getHeaderName(BID) &&
1563 Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1564 != DiagnosticsEngine::Ignored)
1565 Diag(Loc, diag::note_please_include_header)
1566 << Context.BuiltinInfo.getHeaderName(BID)
1567 << Context.BuiltinInfo.GetName(BID);
1568 }
1569
1570 FunctionDecl *New = FunctionDecl::Create(Context,
1571 Context.getTranslationUnitDecl(),
1572 Loc, Loc, II, R, /*TInfo=*/0,
1573 SC_Extern,
1574 false,
1575 /*hasPrototype=*/true);
1576 New->setImplicit();
1577
1578 // Create Decl objects for each parameter, adding them to the
1579 // FunctionDecl.
1580 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1581 SmallVector<ParmVarDecl*, 16> Params;
1582 for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1583 ParmVarDecl *parm =
1584 ParmVarDecl::Create(Context, New, SourceLocation(),
1585 SourceLocation(), 0,
1586 FT->getArgType(i), /*TInfo=*/0,
1587 SC_None, 0);
1588 parm->setScopeInfo(0, i);
1589 Params.push_back(parm);
1590 }
1591 New->setParams(Params);
1592 }
1593
1594 AddKnownFunctionAttributes(New);
1595
1596 // TUScope is the translation-unit scope to insert this function into.
1597 // FIXME: This is hideous. We need to teach PushOnScopeChains to
1598 // relate Scopes to DeclContexts, and probably eliminate CurContext
1599 // entirely, but we're not there yet.
1600 DeclContext *SavedContext = CurContext;
1601 CurContext = Context.getTranslationUnitDecl();
1602 PushOnScopeChains(New, TUScope);
1603 CurContext = SavedContext;
1604 return New;
1605 }
1606
1607 /// \brief Filter out any previous declarations that the given declaration
1608 /// should not consider because they are not permitted to conflict, e.g.,
1609 /// because they come from hidden sub-modules and do not refer to the same
1610 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1611 static void filterNonConflictingPreviousDecls(ASTContext &context,
1612 NamedDecl *decl,
1613 LookupResult &previous){
1614 // This is only interesting when modules are enabled.
1615 if (!context.getLangOpts().Modules)
1616 return;
1617
1618 // Empty sets are uninteresting.
1619 if (previous.empty())
1620 return;
1621
1622 LookupResult::Filter filter = previous.makeFilter();
1623 while (filter.hasNext()) {
1624 NamedDecl *old = filter.next();
1625
1626 // Non-hidden declarations are never ignored.
1627 if (!old->isHidden())
1628 continue;
1629
1630 if (!old->isExternallyVisible())
1631 filter.erase();
1632 }
1633
1634 filter.done();
1635 }
1636
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1637 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1638 QualType OldType;
1639 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1640 OldType = OldTypedef->getUnderlyingType();
1641 else
1642 OldType = Context.getTypeDeclType(Old);
1643 QualType NewType = New->getUnderlyingType();
1644
1645 if (NewType->isVariablyModifiedType()) {
1646 // Must not redefine a typedef with a variably-modified type.
1647 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1649 << Kind << NewType;
1650 if (Old->getLocation().isValid())
1651 Diag(Old->getLocation(), diag::note_previous_definition);
1652 New->setInvalidDecl();
1653 return true;
1654 }
1655
1656 if (OldType != NewType &&
1657 !OldType->isDependentType() &&
1658 !NewType->isDependentType() &&
1659 !Context.hasSameType(OldType, NewType)) {
1660 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1661 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1662 << Kind << NewType << OldType;
1663 if (Old->getLocation().isValid())
1664 Diag(Old->getLocation(), diag::note_previous_definition);
1665 New->setInvalidDecl();
1666 return true;
1667 }
1668 return false;
1669 }
1670
1671 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1672 /// same name and scope as a previous declaration 'Old'. Figure out
1673 /// how to resolve this situation, merging decls or emitting
1674 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1675 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1676 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1677 // If the new decl is known invalid already, don't bother doing any
1678 // merging checks.
1679 if (New->isInvalidDecl()) return;
1680
1681 // Allow multiple definitions for ObjC built-in typedefs.
1682 // FIXME: Verify the underlying types are equivalent!
1683 if (getLangOpts().ObjC1) {
1684 const IdentifierInfo *TypeID = New->getIdentifier();
1685 switch (TypeID->getLength()) {
1686 default: break;
1687 case 2:
1688 {
1689 if (!TypeID->isStr("id"))
1690 break;
1691 QualType T = New->getUnderlyingType();
1692 if (!T->isPointerType())
1693 break;
1694 if (!T->isVoidPointerType()) {
1695 QualType PT = T->getAs<PointerType>()->getPointeeType();
1696 if (!PT->isStructureType())
1697 break;
1698 }
1699 Context.setObjCIdRedefinitionType(T);
1700 // Install the built-in type for 'id', ignoring the current definition.
1701 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1702 return;
1703 }
1704 case 5:
1705 if (!TypeID->isStr("Class"))
1706 break;
1707 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1708 // Install the built-in type for 'Class', ignoring the current definition.
1709 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1710 return;
1711 case 3:
1712 if (!TypeID->isStr("SEL"))
1713 break;
1714 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1715 // Install the built-in type for 'SEL', ignoring the current definition.
1716 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1717 return;
1718 }
1719 // Fall through - the typedef name was not a builtin type.
1720 }
1721
1722 // Verify the old decl was also a type.
1723 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1724 if (!Old) {
1725 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1726 << New->getDeclName();
1727
1728 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1729 if (OldD->getLocation().isValid())
1730 Diag(OldD->getLocation(), diag::note_previous_definition);
1731
1732 return New->setInvalidDecl();
1733 }
1734
1735 // If the old declaration is invalid, just give up here.
1736 if (Old->isInvalidDecl())
1737 return New->setInvalidDecl();
1738
1739 // If the typedef types are not identical, reject them in all languages and
1740 // with any extensions enabled.
1741 if (isIncompatibleTypedef(Old, New))
1742 return;
1743
1744 // The types match. Link up the redeclaration chain if the old
1745 // declaration was a typedef.
1746 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1747 New->setPreviousDeclaration(Typedef);
1748
1749 mergeDeclAttributes(New, Old);
1750
1751 if (getLangOpts().MicrosoftExt)
1752 return;
1753
1754 if (getLangOpts().CPlusPlus) {
1755 // C++ [dcl.typedef]p2:
1756 // In a given non-class scope, a typedef specifier can be used to
1757 // redefine the name of any type declared in that scope to refer
1758 // to the type to which it already refers.
1759 if (!isa<CXXRecordDecl>(CurContext))
1760 return;
1761
1762 // C++0x [dcl.typedef]p4:
1763 // In a given class scope, a typedef specifier can be used to redefine
1764 // any class-name declared in that scope that is not also a typedef-name
1765 // to refer to the type to which it already refers.
1766 //
1767 // This wording came in via DR424, which was a correction to the
1768 // wording in DR56, which accidentally banned code like:
1769 //
1770 // struct S {
1771 // typedef struct A { } A;
1772 // };
1773 //
1774 // in the C++03 standard. We implement the C++0x semantics, which
1775 // allow the above but disallow
1776 //
1777 // struct S {
1778 // typedef int I;
1779 // typedef int I;
1780 // };
1781 //
1782 // since that was the intent of DR56.
1783 if (!isa<TypedefNameDecl>(Old))
1784 return;
1785
1786 Diag(New->getLocation(), diag::err_redefinition)
1787 << New->getDeclName();
1788 Diag(Old->getLocation(), diag::note_previous_definition);
1789 return New->setInvalidDecl();
1790 }
1791
1792 // Modules always permit redefinition of typedefs, as does C11.
1793 if (getLangOpts().Modules || getLangOpts().C11)
1794 return;
1795
1796 // If we have a redefinition of a typedef in C, emit a warning. This warning
1797 // is normally mapped to an error, but can be controlled with
1798 // -Wtypedef-redefinition. If either the original or the redefinition is
1799 // in a system header, don't emit this for compatibility with GCC.
1800 if (getDiagnostics().getSuppressSystemWarnings() &&
1801 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1802 Context.getSourceManager().isInSystemHeader(New->getLocation())))
1803 return;
1804
1805 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1806 << New->getDeclName();
1807 Diag(Old->getLocation(), diag::note_previous_definition);
1808 return;
1809 }
1810
1811 /// DeclhasAttr - returns true if decl Declaration already has the target
1812 /// attribute.
1813 static bool
DeclHasAttr(const Decl * D,const Attr * A)1814 DeclHasAttr(const Decl *D, const Attr *A) {
1815 // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1816 // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1817 // responsible for making sure they are consistent.
1818 const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1819 if (AA)
1820 return false;
1821
1822 // The following thread safety attributes can also be duplicated.
1823 switch (A->getKind()) {
1824 case attr::ExclusiveLocksRequired:
1825 case attr::SharedLocksRequired:
1826 case attr::LocksExcluded:
1827 case attr::ExclusiveLockFunction:
1828 case attr::SharedLockFunction:
1829 case attr::UnlockFunction:
1830 case attr::ExclusiveTrylockFunction:
1831 case attr::SharedTrylockFunction:
1832 case attr::GuardedBy:
1833 case attr::PtGuardedBy:
1834 case attr::AcquiredBefore:
1835 case attr::AcquiredAfter:
1836 return false;
1837 default:
1838 ;
1839 }
1840
1841 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1842 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1843 for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1844 if ((*i)->getKind() == A->getKind()) {
1845 if (Ann) {
1846 if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1847 return true;
1848 continue;
1849 }
1850 // FIXME: Don't hardcode this check
1851 if (OA && isa<OwnershipAttr>(*i))
1852 return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1853 return true;
1854 }
1855
1856 return false;
1857 }
1858
isAttributeTargetADefinition(Decl * D)1859 static bool isAttributeTargetADefinition(Decl *D) {
1860 if (VarDecl *VD = dyn_cast<VarDecl>(D))
1861 return VD->isThisDeclarationADefinition();
1862 if (TagDecl *TD = dyn_cast<TagDecl>(D))
1863 return TD->isCompleteDefinition() || TD->isBeingDefined();
1864 return true;
1865 }
1866
1867 /// Merge alignment attributes from \p Old to \p New, taking into account the
1868 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1869 ///
1870 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)1871 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1872 // Look for alignas attributes on Old, and pick out whichever attribute
1873 // specifies the strictest alignment requirement.
1874 AlignedAttr *OldAlignasAttr = 0;
1875 AlignedAttr *OldStrictestAlignAttr = 0;
1876 unsigned OldAlign = 0;
1877 for (specific_attr_iterator<AlignedAttr>
1878 I = Old->specific_attr_begin<AlignedAttr>(),
1879 E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1880 // FIXME: We have no way of representing inherited dependent alignments
1881 // in a case like:
1882 // template<int A, int B> struct alignas(A) X;
1883 // template<int A, int B> struct alignas(B) X {};
1884 // For now, we just ignore any alignas attributes which are not on the
1885 // definition in such a case.
1886 if (I->isAlignmentDependent())
1887 return false;
1888
1889 if (I->isAlignas())
1890 OldAlignasAttr = *I;
1891
1892 unsigned Align = I->getAlignment(S.Context);
1893 if (Align > OldAlign) {
1894 OldAlign = Align;
1895 OldStrictestAlignAttr = *I;
1896 }
1897 }
1898
1899 // Look for alignas attributes on New.
1900 AlignedAttr *NewAlignasAttr = 0;
1901 unsigned NewAlign = 0;
1902 for (specific_attr_iterator<AlignedAttr>
1903 I = New->specific_attr_begin<AlignedAttr>(),
1904 E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1905 if (I->isAlignmentDependent())
1906 return false;
1907
1908 if (I->isAlignas())
1909 NewAlignasAttr = *I;
1910
1911 unsigned Align = I->getAlignment(S.Context);
1912 if (Align > NewAlign)
1913 NewAlign = Align;
1914 }
1915
1916 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1917 // Both declarations have 'alignas' attributes. We require them to match.
1918 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1919 // fall short. (If two declarations both have alignas, they must both match
1920 // every definition, and so must match each other if there is a definition.)
1921
1922 // If either declaration only contains 'alignas(0)' specifiers, then it
1923 // specifies the natural alignment for the type.
1924 if (OldAlign == 0 || NewAlign == 0) {
1925 QualType Ty;
1926 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1927 Ty = VD->getType();
1928 else
1929 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1930
1931 if (OldAlign == 0)
1932 OldAlign = S.Context.getTypeAlign(Ty);
1933 if (NewAlign == 0)
1934 NewAlign = S.Context.getTypeAlign(Ty);
1935 }
1936
1937 if (OldAlign != NewAlign) {
1938 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1939 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1940 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1941 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1942 }
1943 }
1944
1945 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1946 // C++11 [dcl.align]p6:
1947 // if any declaration of an entity has an alignment-specifier,
1948 // every defining declaration of that entity shall specify an
1949 // equivalent alignment.
1950 // C11 6.7.5/7:
1951 // If the definition of an object does not have an alignment
1952 // specifier, any other declaration of that object shall also
1953 // have no alignment specifier.
1954 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1955 << OldAlignasAttr->isC11();
1956 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1957 << OldAlignasAttr->isC11();
1958 }
1959
1960 bool AnyAdded = false;
1961
1962 // Ensure we have an attribute representing the strictest alignment.
1963 if (OldAlign > NewAlign) {
1964 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1965 Clone->setInherited(true);
1966 New->addAttr(Clone);
1967 AnyAdded = true;
1968 }
1969
1970 // Ensure we have an alignas attribute if the old declaration had one.
1971 if (OldAlignasAttr && !NewAlignasAttr &&
1972 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1973 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1974 Clone->setInherited(true);
1975 New->addAttr(Clone);
1976 AnyAdded = true;
1977 }
1978
1979 return AnyAdded;
1980 }
1981
mergeDeclAttribute(Sema & S,NamedDecl * D,InheritableAttr * Attr,bool Override)1982 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1983 bool Override) {
1984 InheritableAttr *NewAttr = NULL;
1985 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1986 if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1987 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1988 AA->getIntroduced(), AA->getDeprecated(),
1989 AA->getObsoleted(), AA->getUnavailable(),
1990 AA->getMessage(), Override,
1991 AttrSpellingListIndex);
1992 else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1993 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1994 AttrSpellingListIndex);
1995 else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1996 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1997 AttrSpellingListIndex);
1998 else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1999 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2000 AttrSpellingListIndex);
2001 else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
2002 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2003 AttrSpellingListIndex);
2004 else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2005 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2006 FA->getFormatIdx(), FA->getFirstArg(),
2007 AttrSpellingListIndex);
2008 else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2009 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2010 AttrSpellingListIndex);
2011 else if (isa<AlignedAttr>(Attr))
2012 // AlignedAttrs are handled separately, because we need to handle all
2013 // such attributes on a declaration at the same time.
2014 NewAttr = 0;
2015 else if (!DeclHasAttr(D, Attr))
2016 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2017
2018 if (NewAttr) {
2019 NewAttr->setInherited(true);
2020 D->addAttr(NewAttr);
2021 return true;
2022 }
2023
2024 return false;
2025 }
2026
getDefinition(const Decl * D)2027 static const Decl *getDefinition(const Decl *D) {
2028 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2029 return TD->getDefinition();
2030 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2031 return VD->getDefinition();
2032 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2033 const FunctionDecl* Def;
2034 if (FD->hasBody(Def))
2035 return Def;
2036 }
2037 return NULL;
2038 }
2039
hasAttribute(const Decl * D,attr::Kind Kind)2040 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2041 for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2042 I != E; ++I) {
2043 Attr *Attribute = *I;
2044 if (Attribute->getKind() == Kind)
2045 return true;
2046 }
2047 return false;
2048 }
2049
2050 /// checkNewAttributesAfterDef - If we already have a definition, check that
2051 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2052 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2053 if (!New->hasAttrs())
2054 return;
2055
2056 const Decl *Def = getDefinition(Old);
2057 if (!Def || Def == New)
2058 return;
2059
2060 AttrVec &NewAttributes = New->getAttrs();
2061 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2062 const Attr *NewAttribute = NewAttributes[I];
2063 if (hasAttribute(Def, NewAttribute->getKind())) {
2064 ++I;
2065 continue; // regular attr merging will take care of validating this.
2066 }
2067
2068 if (isa<C11NoReturnAttr>(NewAttribute)) {
2069 // C's _Noreturn is allowed to be added to a function after it is defined.
2070 ++I;
2071 continue;
2072 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2073 if (AA->isAlignas()) {
2074 // C++11 [dcl.align]p6:
2075 // if any declaration of an entity has an alignment-specifier,
2076 // every defining declaration of that entity shall specify an
2077 // equivalent alignment.
2078 // C11 6.7.5/7:
2079 // If the definition of an object does not have an alignment
2080 // specifier, any other declaration of that object shall also
2081 // have no alignment specifier.
2082 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2083 << AA->isC11();
2084 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2085 << AA->isC11();
2086 NewAttributes.erase(NewAttributes.begin() + I);
2087 --E;
2088 continue;
2089 }
2090 }
2091
2092 S.Diag(NewAttribute->getLocation(),
2093 diag::warn_attribute_precede_definition);
2094 S.Diag(Def->getLocation(), diag::note_previous_definition);
2095 NewAttributes.erase(NewAttributes.begin() + I);
2096 --E;
2097 }
2098 }
2099
2100 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2101 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2102 AvailabilityMergeKind AMK) {
2103 if (!Old->hasAttrs() && !New->hasAttrs())
2104 return;
2105
2106 // attributes declared post-definition are currently ignored
2107 checkNewAttributesAfterDef(*this, New, Old);
2108
2109 if (!Old->hasAttrs())
2110 return;
2111
2112 bool foundAny = New->hasAttrs();
2113
2114 // Ensure that any moving of objects within the allocated map is done before
2115 // we process them.
2116 if (!foundAny) New->setAttrs(AttrVec());
2117
2118 for (specific_attr_iterator<InheritableAttr>
2119 i = Old->specific_attr_begin<InheritableAttr>(),
2120 e = Old->specific_attr_end<InheritableAttr>();
2121 i != e; ++i) {
2122 bool Override = false;
2123 // Ignore deprecated/unavailable/availability attributes if requested.
2124 if (isa<DeprecatedAttr>(*i) ||
2125 isa<UnavailableAttr>(*i) ||
2126 isa<AvailabilityAttr>(*i)) {
2127 switch (AMK) {
2128 case AMK_None:
2129 continue;
2130
2131 case AMK_Redeclaration:
2132 break;
2133
2134 case AMK_Override:
2135 Override = true;
2136 break;
2137 }
2138 }
2139
2140 if (mergeDeclAttribute(*this, New, *i, Override))
2141 foundAny = true;
2142 }
2143
2144 if (mergeAlignedAttrs(*this, New, Old))
2145 foundAny = true;
2146
2147 if (!foundAny) New->dropAttrs();
2148 }
2149
2150 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2151 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2152 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2153 const ParmVarDecl *oldDecl,
2154 Sema &S) {
2155 // C++11 [dcl.attr.depend]p2:
2156 // The first declaration of a function shall specify the
2157 // carries_dependency attribute for its declarator-id if any declaration
2158 // of the function specifies the carries_dependency attribute.
2159 if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2160 !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2161 S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2162 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2163 // Find the first declaration of the parameter.
2164 // FIXME: Should we build redeclaration chains for function parameters?
2165 const FunctionDecl *FirstFD =
2166 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2167 const ParmVarDecl *FirstVD =
2168 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2169 S.Diag(FirstVD->getLocation(),
2170 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2171 }
2172
2173 if (!oldDecl->hasAttrs())
2174 return;
2175
2176 bool foundAny = newDecl->hasAttrs();
2177
2178 // Ensure that any moving of objects within the allocated map is
2179 // done before we process them.
2180 if (!foundAny) newDecl->setAttrs(AttrVec());
2181
2182 for (specific_attr_iterator<InheritableParamAttr>
2183 i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2184 e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2185 if (!DeclHasAttr(newDecl, *i)) {
2186 InheritableAttr *newAttr =
2187 cast<InheritableParamAttr>((*i)->clone(S.Context));
2188 newAttr->setInherited(true);
2189 newDecl->addAttr(newAttr);
2190 foundAny = true;
2191 }
2192 }
2193
2194 if (!foundAny) newDecl->dropAttrs();
2195 }
2196
2197 namespace {
2198
2199 /// Used in MergeFunctionDecl to keep track of function parameters in
2200 /// C.
2201 struct GNUCompatibleParamWarning {
2202 ParmVarDecl *OldParm;
2203 ParmVarDecl *NewParm;
2204 QualType PromotedType;
2205 };
2206
2207 }
2208
2209 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2210 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2211 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2212 if (Ctor->isDefaultConstructor())
2213 return Sema::CXXDefaultConstructor;
2214
2215 if (Ctor->isCopyConstructor())
2216 return Sema::CXXCopyConstructor;
2217
2218 if (Ctor->isMoveConstructor())
2219 return Sema::CXXMoveConstructor;
2220 } else if (isa<CXXDestructorDecl>(MD)) {
2221 return Sema::CXXDestructor;
2222 } else if (MD->isCopyAssignmentOperator()) {
2223 return Sema::CXXCopyAssignment;
2224 } else if (MD->isMoveAssignmentOperator()) {
2225 return Sema::CXXMoveAssignment;
2226 }
2227
2228 return Sema::CXXInvalid;
2229 }
2230
2231 /// canRedefineFunction - checks if a function can be redefined. Currently,
2232 /// only extern inline functions can be redefined, and even then only in
2233 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2234 static bool canRedefineFunction(const FunctionDecl *FD,
2235 const LangOptions& LangOpts) {
2236 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2237 !LangOpts.CPlusPlus &&
2238 FD->isInlineSpecified() &&
2239 FD->getStorageClass() == SC_Extern);
2240 }
2241
2242 /// Is the given calling convention the ABI default for the given
2243 /// declaration?
isABIDefaultCC(Sema & S,CallingConv CC,FunctionDecl * D)2244 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2245 CallingConv ABIDefaultCC;
2246 if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2247 ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2248 } else {
2249 // Free C function or a static method.
2250 ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2251 }
2252 return ABIDefaultCC == CC;
2253 }
2254
2255 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2256 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2257 const DeclContext *DC = Old->getDeclContext();
2258 if (DC->isRecord())
2259 return false;
2260
2261 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2262 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2263 return true;
2264 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2265 return true;
2266 return false;
2267 }
2268
2269 /// MergeFunctionDecl - We just parsed a function 'New' from
2270 /// declarator D which has the same name and scope as a previous
2271 /// declaration 'Old'. Figure out how to resolve this situation,
2272 /// merging decls or emitting diagnostics as appropriate.
2273 ///
2274 /// In C++, New and Old must be declarations that are not
2275 /// overloaded. Use IsOverload to determine whether New and Old are
2276 /// overloaded, and to select the Old declaration that New should be
2277 /// merged with.
2278 ///
2279 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD,Scope * S)2280 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2281 // Verify the old decl was also a function.
2282 FunctionDecl *Old = 0;
2283 if (FunctionTemplateDecl *OldFunctionTemplate
2284 = dyn_cast<FunctionTemplateDecl>(OldD))
2285 Old = OldFunctionTemplate->getTemplatedDecl();
2286 else
2287 Old = dyn_cast<FunctionDecl>(OldD);
2288 if (!Old) {
2289 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2290 if (New->getFriendObjectKind()) {
2291 Diag(New->getLocation(), diag::err_using_decl_friend);
2292 Diag(Shadow->getTargetDecl()->getLocation(),
2293 diag::note_using_decl_target);
2294 Diag(Shadow->getUsingDecl()->getLocation(),
2295 diag::note_using_decl) << 0;
2296 return true;
2297 }
2298
2299 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2300 Diag(Shadow->getTargetDecl()->getLocation(),
2301 diag::note_using_decl_target);
2302 Diag(Shadow->getUsingDecl()->getLocation(),
2303 diag::note_using_decl) << 0;
2304 return true;
2305 }
2306
2307 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2308 << New->getDeclName();
2309 Diag(OldD->getLocation(), diag::note_previous_definition);
2310 return true;
2311 }
2312
2313 // If the old declaration is invalid, just give up here.
2314 if (Old->isInvalidDecl())
2315 return true;
2316
2317 // Determine whether the previous declaration was a definition,
2318 // implicit declaration, or a declaration.
2319 diag::kind PrevDiag;
2320 if (Old->isThisDeclarationADefinition())
2321 PrevDiag = diag::note_previous_definition;
2322 else if (Old->isImplicit())
2323 PrevDiag = diag::note_previous_implicit_declaration;
2324 else
2325 PrevDiag = diag::note_previous_declaration;
2326
2327 QualType OldQType = Context.getCanonicalType(Old->getType());
2328 QualType NewQType = Context.getCanonicalType(New->getType());
2329
2330 // Don't complain about this if we're in GNU89 mode and the old function
2331 // is an extern inline function.
2332 // Don't complain about specializations. They are not supposed to have
2333 // storage classes.
2334 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2335 New->getStorageClass() == SC_Static &&
2336 Old->hasExternalFormalLinkage() &&
2337 !New->getTemplateSpecializationInfo() &&
2338 !canRedefineFunction(Old, getLangOpts())) {
2339 if (getLangOpts().MicrosoftExt) {
2340 Diag(New->getLocation(), diag::warn_static_non_static) << New;
2341 Diag(Old->getLocation(), PrevDiag);
2342 } else {
2343 Diag(New->getLocation(), diag::err_static_non_static) << New;
2344 Diag(Old->getLocation(), PrevDiag);
2345 return true;
2346 }
2347 }
2348
2349 // If a function is first declared with a calling convention, but is
2350 // later declared or defined without one, the second decl assumes the
2351 // calling convention of the first.
2352 //
2353 // It's OK if a function is first declared without a calling convention,
2354 // but is later declared or defined with the default calling convention.
2355 //
2356 // For the new decl, we have to look at the NON-canonical type to tell the
2357 // difference between a function that really doesn't have a calling
2358 // convention and one that is declared cdecl. That's because in
2359 // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2360 // because it is the default calling convention.
2361 //
2362 // Note also that we DO NOT return at this point, because we still have
2363 // other tests to run.
2364 const FunctionType *OldType = cast<FunctionType>(OldQType);
2365 const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2366 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2367 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2368 bool RequiresAdjustment = false;
2369 if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2370 // Fast path: nothing to do.
2371
2372 // Inherit the CC from the previous declaration if it was specified
2373 // there but not here.
2374 } else if (NewTypeInfo.getCC() == CC_Default) {
2375 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2376 RequiresAdjustment = true;
2377
2378 // Don't complain about mismatches when the default CC is
2379 // effectively the same as the explict one. Only Old decl contains correct
2380 // information about storage class of CXXMethod.
2381 } else if (OldTypeInfo.getCC() == CC_Default &&
2382 isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2383 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2384 RequiresAdjustment = true;
2385
2386 } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2387 NewTypeInfo.getCC())) {
2388 // Calling conventions really aren't compatible, so complain.
2389 Diag(New->getLocation(), diag::err_cconv_change)
2390 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2391 << (OldTypeInfo.getCC() == CC_Default)
2392 << (OldTypeInfo.getCC() == CC_Default ? "" :
2393 FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2394 Diag(Old->getLocation(), diag::note_previous_declaration);
2395 return true;
2396 }
2397
2398 // FIXME: diagnose the other way around?
2399 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2400 NewTypeInfo = NewTypeInfo.withNoReturn(true);
2401 RequiresAdjustment = true;
2402 }
2403
2404 // Merge regparm attribute.
2405 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2406 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2407 if (NewTypeInfo.getHasRegParm()) {
2408 Diag(New->getLocation(), diag::err_regparm_mismatch)
2409 << NewType->getRegParmType()
2410 << OldType->getRegParmType();
2411 Diag(Old->getLocation(), diag::note_previous_declaration);
2412 return true;
2413 }
2414
2415 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2416 RequiresAdjustment = true;
2417 }
2418
2419 // Merge ns_returns_retained attribute.
2420 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2421 if (NewTypeInfo.getProducesResult()) {
2422 Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2423 Diag(Old->getLocation(), diag::note_previous_declaration);
2424 return true;
2425 }
2426
2427 NewTypeInfo = NewTypeInfo.withProducesResult(true);
2428 RequiresAdjustment = true;
2429 }
2430
2431 if (RequiresAdjustment) {
2432 NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2433 New->setType(QualType(NewType, 0));
2434 NewQType = Context.getCanonicalType(New->getType());
2435 }
2436
2437 // If this redeclaration makes the function inline, we may need to add it to
2438 // UndefinedButUsed.
2439 if (!Old->isInlined() && New->isInlined() &&
2440 !New->hasAttr<GNUInlineAttr>() &&
2441 (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2442 Old->isUsed(false) &&
2443 !Old->isDefined() && !New->isThisDeclarationADefinition())
2444 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2445 SourceLocation()));
2446
2447 // If this redeclaration makes it newly gnu_inline, we don't want to warn
2448 // about it.
2449 if (New->hasAttr<GNUInlineAttr>() &&
2450 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2451 UndefinedButUsed.erase(Old->getCanonicalDecl());
2452 }
2453
2454 if (getLangOpts().CPlusPlus) {
2455 // (C++98 13.1p2):
2456 // Certain function declarations cannot be overloaded:
2457 // -- Function declarations that differ only in the return type
2458 // cannot be overloaded.
2459
2460 // Go back to the type source info to compare the declared return types,
2461 // per C++1y [dcl.type.auto]p??:
2462 // Redeclarations or specializations of a function or function template
2463 // with a declared return type that uses a placeholder type shall also
2464 // use that placeholder, not a deduced type.
2465 QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2466 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2467 : OldType)->getResultType();
2468 QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2469 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2470 : NewType)->getResultType();
2471 QualType ResQT;
2472 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2473 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2474 OldDeclaredReturnType->isObjCObjectPointerType())
2475 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2476 if (ResQT.isNull()) {
2477 if (New->isCXXClassMember() && New->isOutOfLine())
2478 Diag(New->getLocation(),
2479 diag::err_member_def_does_not_match_ret_type) << New;
2480 else
2481 Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2482 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2483 return true;
2484 }
2485 else
2486 NewQType = ResQT;
2487 }
2488
2489 QualType OldReturnType = OldType->getResultType();
2490 QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2491 if (OldReturnType != NewReturnType) {
2492 // If this function has a deduced return type and has already been
2493 // defined, copy the deduced value from the old declaration.
2494 AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2495 if (OldAT && OldAT->isDeduced()) {
2496 New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2497 NewQType = Context.getCanonicalType(
2498 SubstAutoType(NewQType, OldAT->getDeducedType()));
2499 }
2500 }
2501
2502 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2503 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2504 if (OldMethod && NewMethod) {
2505 // Preserve triviality.
2506 NewMethod->setTrivial(OldMethod->isTrivial());
2507
2508 // MSVC allows explicit template specialization at class scope:
2509 // 2 CXMethodDecls referring to the same function will be injected.
2510 // We don't want a redeclartion error.
2511 bool IsClassScopeExplicitSpecialization =
2512 OldMethod->isFunctionTemplateSpecialization() &&
2513 NewMethod->isFunctionTemplateSpecialization();
2514 bool isFriend = NewMethod->getFriendObjectKind();
2515
2516 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2517 !IsClassScopeExplicitSpecialization) {
2518 // -- Member function declarations with the same name and the
2519 // same parameter types cannot be overloaded if any of them
2520 // is a static member function declaration.
2521 if (OldMethod->isStatic() != NewMethod->isStatic()) {
2522 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2523 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2524 return true;
2525 }
2526
2527 // C++ [class.mem]p1:
2528 // [...] A member shall not be declared twice in the
2529 // member-specification, except that a nested class or member
2530 // class template can be declared and then later defined.
2531 if (ActiveTemplateInstantiations.empty()) {
2532 unsigned NewDiag;
2533 if (isa<CXXConstructorDecl>(OldMethod))
2534 NewDiag = diag::err_constructor_redeclared;
2535 else if (isa<CXXDestructorDecl>(NewMethod))
2536 NewDiag = diag::err_destructor_redeclared;
2537 else if (isa<CXXConversionDecl>(NewMethod))
2538 NewDiag = diag::err_conv_function_redeclared;
2539 else
2540 NewDiag = diag::err_member_redeclared;
2541
2542 Diag(New->getLocation(), NewDiag);
2543 } else {
2544 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2545 << New << New->getType();
2546 }
2547 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2548
2549 // Complain if this is an explicit declaration of a special
2550 // member that was initially declared implicitly.
2551 //
2552 // As an exception, it's okay to befriend such methods in order
2553 // to permit the implicit constructor/destructor/operator calls.
2554 } else if (OldMethod->isImplicit()) {
2555 if (isFriend) {
2556 NewMethod->setImplicit();
2557 } else {
2558 Diag(NewMethod->getLocation(),
2559 diag::err_definition_of_implicitly_declared_member)
2560 << New << getSpecialMember(OldMethod);
2561 return true;
2562 }
2563 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2564 Diag(NewMethod->getLocation(),
2565 diag::err_definition_of_explicitly_defaulted_member)
2566 << getSpecialMember(OldMethod);
2567 return true;
2568 }
2569 }
2570
2571 // C++11 [dcl.attr.noreturn]p1:
2572 // The first declaration of a function shall specify the noreturn
2573 // attribute if any declaration of that function specifies the noreturn
2574 // attribute.
2575 if (New->hasAttr<CXX11NoReturnAttr>() &&
2576 !Old->hasAttr<CXX11NoReturnAttr>()) {
2577 Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2578 diag::err_noreturn_missing_on_first_decl);
2579 Diag(Old->getFirstDeclaration()->getLocation(),
2580 diag::note_noreturn_missing_first_decl);
2581 }
2582
2583 // C++11 [dcl.attr.depend]p2:
2584 // The first declaration of a function shall specify the
2585 // carries_dependency attribute for its declarator-id if any declaration
2586 // of the function specifies the carries_dependency attribute.
2587 if (New->hasAttr<CarriesDependencyAttr>() &&
2588 !Old->hasAttr<CarriesDependencyAttr>()) {
2589 Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2590 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2591 Diag(Old->getFirstDeclaration()->getLocation(),
2592 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2593 }
2594
2595 // (C++98 8.3.5p3):
2596 // All declarations for a function shall agree exactly in both the
2597 // return type and the parameter-type-list.
2598 // We also want to respect all the extended bits except noreturn.
2599
2600 // noreturn should now match unless the old type info didn't have it.
2601 QualType OldQTypeForComparison = OldQType;
2602 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2603 assert(OldQType == QualType(OldType, 0));
2604 const FunctionType *OldTypeForComparison
2605 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2606 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2607 assert(OldQTypeForComparison.isCanonical());
2608 }
2609
2610 if (haveIncompatibleLanguageLinkages(Old, New)) {
2611 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2612 Diag(Old->getLocation(), PrevDiag);
2613 return true;
2614 }
2615
2616 if (OldQTypeForComparison == NewQType)
2617 return MergeCompatibleFunctionDecls(New, Old, S);
2618
2619 // Fall through for conflicting redeclarations and redefinitions.
2620 }
2621
2622 // C: Function types need to be compatible, not identical. This handles
2623 // duplicate function decls like "void f(int); void f(enum X);" properly.
2624 if (!getLangOpts().CPlusPlus &&
2625 Context.typesAreCompatible(OldQType, NewQType)) {
2626 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2627 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2628 const FunctionProtoType *OldProto = 0;
2629 if (isa<FunctionNoProtoType>(NewFuncType) &&
2630 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2631 // The old declaration provided a function prototype, but the
2632 // new declaration does not. Merge in the prototype.
2633 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2634 SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2635 OldProto->arg_type_end());
2636 NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2637 ParamTypes,
2638 OldProto->getExtProtoInfo());
2639 New->setType(NewQType);
2640 New->setHasInheritedPrototype();
2641
2642 // Synthesize a parameter for each argument type.
2643 SmallVector<ParmVarDecl*, 16> Params;
2644 for (FunctionProtoType::arg_type_iterator
2645 ParamType = OldProto->arg_type_begin(),
2646 ParamEnd = OldProto->arg_type_end();
2647 ParamType != ParamEnd; ++ParamType) {
2648 ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2649 SourceLocation(),
2650 SourceLocation(), 0,
2651 *ParamType, /*TInfo=*/0,
2652 SC_None,
2653 0);
2654 Param->setScopeInfo(0, Params.size());
2655 Param->setImplicit();
2656 Params.push_back(Param);
2657 }
2658
2659 New->setParams(Params);
2660 }
2661
2662 return MergeCompatibleFunctionDecls(New, Old, S);
2663 }
2664
2665 // GNU C permits a K&R definition to follow a prototype declaration
2666 // if the declared types of the parameters in the K&R definition
2667 // match the types in the prototype declaration, even when the
2668 // promoted types of the parameters from the K&R definition differ
2669 // from the types in the prototype. GCC then keeps the types from
2670 // the prototype.
2671 //
2672 // If a variadic prototype is followed by a non-variadic K&R definition,
2673 // the K&R definition becomes variadic. This is sort of an edge case, but
2674 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2675 // C99 6.9.1p8.
2676 if (!getLangOpts().CPlusPlus &&
2677 Old->hasPrototype() && !New->hasPrototype() &&
2678 New->getType()->getAs<FunctionProtoType>() &&
2679 Old->getNumParams() == New->getNumParams()) {
2680 SmallVector<QualType, 16> ArgTypes;
2681 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2682 const FunctionProtoType *OldProto
2683 = Old->getType()->getAs<FunctionProtoType>();
2684 const FunctionProtoType *NewProto
2685 = New->getType()->getAs<FunctionProtoType>();
2686
2687 // Determine whether this is the GNU C extension.
2688 QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2689 NewProto->getResultType());
2690 bool LooseCompatible = !MergedReturn.isNull();
2691 for (unsigned Idx = 0, End = Old->getNumParams();
2692 LooseCompatible && Idx != End; ++Idx) {
2693 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2694 ParmVarDecl *NewParm = New->getParamDecl(Idx);
2695 if (Context.typesAreCompatible(OldParm->getType(),
2696 NewProto->getArgType(Idx))) {
2697 ArgTypes.push_back(NewParm->getType());
2698 } else if (Context.typesAreCompatible(OldParm->getType(),
2699 NewParm->getType(),
2700 /*CompareUnqualified=*/true)) {
2701 GNUCompatibleParamWarning Warn
2702 = { OldParm, NewParm, NewProto->getArgType(Idx) };
2703 Warnings.push_back(Warn);
2704 ArgTypes.push_back(NewParm->getType());
2705 } else
2706 LooseCompatible = false;
2707 }
2708
2709 if (LooseCompatible) {
2710 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2711 Diag(Warnings[Warn].NewParm->getLocation(),
2712 diag::ext_param_promoted_not_compatible_with_prototype)
2713 << Warnings[Warn].PromotedType
2714 << Warnings[Warn].OldParm->getType();
2715 if (Warnings[Warn].OldParm->getLocation().isValid())
2716 Diag(Warnings[Warn].OldParm->getLocation(),
2717 diag::note_previous_declaration);
2718 }
2719
2720 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2721 OldProto->getExtProtoInfo()));
2722 return MergeCompatibleFunctionDecls(New, Old, S);
2723 }
2724
2725 // Fall through to diagnose conflicting types.
2726 }
2727
2728 // A function that has already been declared has been redeclared or
2729 // defined with a different type; show an appropriate diagnostic.
2730
2731 // If the previous declaration was an implicitly-generated builtin
2732 // declaration, then at the very least we should use a specialized note.
2733 unsigned BuiltinID;
2734 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2735 // If it's actually a library-defined builtin function like 'malloc'
2736 // or 'printf', just warn about the incompatible redeclaration.
2737 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2738 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2739 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2740 << Old << Old->getType();
2741
2742 // If this is a global redeclaration, just forget hereafter
2743 // about the "builtin-ness" of the function.
2744 //
2745 // Doing this for local extern declarations is problematic. If
2746 // the builtin declaration remains visible, a second invalid
2747 // local declaration will produce a hard error; if it doesn't
2748 // remain visible, a single bogus local redeclaration (which is
2749 // actually only a warning) could break all the downstream code.
2750 if (!New->getDeclContext()->isFunctionOrMethod())
2751 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2752
2753 return false;
2754 }
2755
2756 PrevDiag = diag::note_previous_builtin_declaration;
2757 }
2758
2759 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2760 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2761 return true;
2762 }
2763
2764 /// \brief Completes the merge of two function declarations that are
2765 /// known to be compatible.
2766 ///
2767 /// This routine handles the merging of attributes and other
2768 /// properties of function declarations form the old declaration to
2769 /// the new declaration, once we know that New is in fact a
2770 /// redeclaration of Old.
2771 ///
2772 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S)2773 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2774 Scope *S) {
2775 // Merge the attributes
2776 mergeDeclAttributes(New, Old);
2777
2778 // Merge "pure" flag.
2779 if (Old->isPure())
2780 New->setPure();
2781
2782 // Merge "used" flag.
2783 if (Old->isUsed(false))
2784 New->setUsed();
2785
2786 // Merge attributes from the parameters. These can mismatch with K&R
2787 // declarations.
2788 if (New->getNumParams() == Old->getNumParams())
2789 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2790 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2791 *this);
2792
2793 if (getLangOpts().CPlusPlus)
2794 return MergeCXXFunctionDecl(New, Old, S);
2795
2796 // Merge the function types so the we get the composite types for the return
2797 // and argument types.
2798 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2799 if (!Merged.isNull())
2800 New->setType(Merged);
2801
2802 return false;
2803 }
2804
2805
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2806 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2807 ObjCMethodDecl *oldMethod) {
2808
2809 // Merge the attributes, including deprecated/unavailable
2810 AvailabilityMergeKind MergeKind =
2811 isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2812 : AMK_Override;
2813 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2814
2815 // Merge attributes from the parameters.
2816 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2817 oe = oldMethod->param_end();
2818 for (ObjCMethodDecl::param_iterator
2819 ni = newMethod->param_begin(), ne = newMethod->param_end();
2820 ni != ne && oi != oe; ++ni, ++oi)
2821 mergeParamDeclAttributes(*ni, *oi, *this);
2822
2823 CheckObjCMethodOverride(newMethod, oldMethod);
2824 }
2825
2826 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2827 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
2828 /// emitting diagnostics as appropriate.
2829 ///
2830 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2831 /// to here in AddInitializerToDecl. We can't check them before the initializer
2832 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool OldWasHidden)2833 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2834 if (New->isInvalidDecl() || Old->isInvalidDecl())
2835 return;
2836
2837 QualType MergedT;
2838 if (getLangOpts().CPlusPlus) {
2839 if (New->getType()->isUndeducedType()) {
2840 // We don't know what the new type is until the initializer is attached.
2841 return;
2842 } else if (Context.hasSameType(New->getType(), Old->getType())) {
2843 // These could still be something that needs exception specs checked.
2844 return MergeVarDeclExceptionSpecs(New, Old);
2845 }
2846 // C++ [basic.link]p10:
2847 // [...] the types specified by all declarations referring to a given
2848 // object or function shall be identical, except that declarations for an
2849 // array object can specify array types that differ by the presence or
2850 // absence of a major array bound (8.3.4).
2851 else if (Old->getType()->isIncompleteArrayType() &&
2852 New->getType()->isArrayType()) {
2853 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2854 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2855 if (Context.hasSameType(OldArray->getElementType(),
2856 NewArray->getElementType()))
2857 MergedT = New->getType();
2858 } else if (Old->getType()->isArrayType() &&
2859 New->getType()->isIncompleteArrayType()) {
2860 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2861 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2862 if (Context.hasSameType(OldArray->getElementType(),
2863 NewArray->getElementType()))
2864 MergedT = Old->getType();
2865 } else if (New->getType()->isObjCObjectPointerType()
2866 && Old->getType()->isObjCObjectPointerType()) {
2867 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2868 Old->getType());
2869 }
2870 } else {
2871 MergedT = Context.mergeTypes(New->getType(), Old->getType());
2872 }
2873 if (MergedT.isNull()) {
2874 Diag(New->getLocation(), diag::err_redefinition_different_type)
2875 << New->getDeclName() << New->getType() << Old->getType();
2876 Diag(Old->getLocation(), diag::note_previous_definition);
2877 return New->setInvalidDecl();
2878 }
2879
2880 // Don't actually update the type on the new declaration if the old
2881 // declaration was a extern declaration in a different scope.
2882 if (!OldWasHidden)
2883 New->setType(MergedT);
2884 }
2885
2886 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2887 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
2888 /// situation, merging decls or emitting diagnostics as appropriate.
2889 ///
2890 /// Tentative definition rules (C99 6.9.2p2) are checked by
2891 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2892 /// definitions here, since the initializer hasn't been attached.
2893 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous,bool PreviousWasHidden)2894 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2895 bool PreviousWasHidden) {
2896 // If the new decl is already invalid, don't do any other checking.
2897 if (New->isInvalidDecl())
2898 return;
2899
2900 // Verify the old decl was also a variable.
2901 VarDecl *Old = 0;
2902 if (!Previous.isSingleResult() ||
2903 !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2904 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2905 << New->getDeclName();
2906 Diag(Previous.getRepresentativeDecl()->getLocation(),
2907 diag::note_previous_definition);
2908 return New->setInvalidDecl();
2909 }
2910
2911 if (!shouldLinkPossiblyHiddenDecl(Old, New))
2912 return;
2913
2914 // C++ [class.mem]p1:
2915 // A member shall not be declared twice in the member-specification [...]
2916 //
2917 // Here, we need only consider static data members.
2918 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2919 Diag(New->getLocation(), diag::err_duplicate_member)
2920 << New->getIdentifier();
2921 Diag(Old->getLocation(), diag::note_previous_declaration);
2922 New->setInvalidDecl();
2923 }
2924
2925 mergeDeclAttributes(New, Old);
2926 // Warn if an already-declared variable is made a weak_import in a subsequent
2927 // declaration
2928 if (New->getAttr<WeakImportAttr>() &&
2929 Old->getStorageClass() == SC_None &&
2930 !Old->getAttr<WeakImportAttr>()) {
2931 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2932 Diag(Old->getLocation(), diag::note_previous_definition);
2933 // Remove weak_import attribute on new declaration.
2934 New->dropAttr<WeakImportAttr>();
2935 }
2936
2937 // Merge the types.
2938 MergeVarDeclTypes(New, Old, PreviousWasHidden);
2939 if (New->isInvalidDecl())
2940 return;
2941
2942 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2943 if (New->getStorageClass() == SC_Static &&
2944 !New->isStaticDataMember() &&
2945 Old->hasExternalFormalLinkage()) {
2946 Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2947 Diag(Old->getLocation(), diag::note_previous_definition);
2948 return New->setInvalidDecl();
2949 }
2950 // C99 6.2.2p4:
2951 // For an identifier declared with the storage-class specifier
2952 // extern in a scope in which a prior declaration of that
2953 // identifier is visible,23) if the prior declaration specifies
2954 // internal or external linkage, the linkage of the identifier at
2955 // the later declaration is the same as the linkage specified at
2956 // the prior declaration. If no prior declaration is visible, or
2957 // if the prior declaration specifies no linkage, then the
2958 // identifier has external linkage.
2959 if (New->hasExternalStorage() && Old->hasLinkage())
2960 /* Okay */;
2961 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2962 !New->isStaticDataMember() &&
2963 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2964 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2965 Diag(Old->getLocation(), diag::note_previous_definition);
2966 return New->setInvalidDecl();
2967 }
2968
2969 // Check if extern is followed by non-extern and vice-versa.
2970 if (New->hasExternalStorage() &&
2971 !Old->hasLinkage() && Old->isLocalVarDecl()) {
2972 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2973 Diag(Old->getLocation(), diag::note_previous_definition);
2974 return New->setInvalidDecl();
2975 }
2976 if (Old->hasLinkage() && New->isLocalVarDecl() &&
2977 !New->hasExternalStorage()) {
2978 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2979 Diag(Old->getLocation(), diag::note_previous_definition);
2980 return New->setInvalidDecl();
2981 }
2982
2983 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2984
2985 // FIXME: The test for external storage here seems wrong? We still
2986 // need to check for mismatches.
2987 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2988 // Don't complain about out-of-line definitions of static members.
2989 !(Old->getLexicalDeclContext()->isRecord() &&
2990 !New->getLexicalDeclContext()->isRecord())) {
2991 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2992 Diag(Old->getLocation(), diag::note_previous_definition);
2993 return New->setInvalidDecl();
2994 }
2995
2996 if (New->getTLSKind() != Old->getTLSKind()) {
2997 if (!Old->getTLSKind()) {
2998 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2999 Diag(Old->getLocation(), diag::note_previous_declaration);
3000 } else if (!New->getTLSKind()) {
3001 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3002 Diag(Old->getLocation(), diag::note_previous_declaration);
3003 } else {
3004 // Do not allow redeclaration to change the variable between requiring
3005 // static and dynamic initialization.
3006 // FIXME: GCC allows this, but uses the TLS keyword on the first
3007 // declaration to determine the kind. Do we need to be compatible here?
3008 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3009 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3010 Diag(Old->getLocation(), diag::note_previous_declaration);
3011 }
3012 }
3013
3014 // C++ doesn't have tentative definitions, so go right ahead and check here.
3015 const VarDecl *Def;
3016 if (getLangOpts().CPlusPlus &&
3017 New->isThisDeclarationADefinition() == VarDecl::Definition &&
3018 (Def = Old->getDefinition())) {
3019 Diag(New->getLocation(), diag::err_redefinition) << New;
3020 Diag(Def->getLocation(), diag::note_previous_definition);
3021 New->setInvalidDecl();
3022 return;
3023 }
3024
3025 if (haveIncompatibleLanguageLinkages(Old, New)) {
3026 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3027 Diag(Old->getLocation(), diag::note_previous_definition);
3028 New->setInvalidDecl();
3029 return;
3030 }
3031
3032 // Merge "used" flag.
3033 if (Old->isUsed(false))
3034 New->setUsed();
3035
3036 // Keep a chain of previous declarations.
3037 New->setPreviousDeclaration(Old);
3038
3039 // Inherit access appropriately.
3040 New->setAccess(Old->getAccess());
3041 }
3042
3043 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3044 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3045 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3046 DeclSpec &DS) {
3047 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3048 }
3049
HandleTagNumbering(Sema & S,const TagDecl * Tag)3050 static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3051 if (isa<CXXRecordDecl>(Tag->getParent())) {
3052 // If this tag is the direct child of a class, number it if
3053 // it is anonymous.
3054 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3055 return;
3056 MangleNumberingContext &MCtx =
3057 S.Context.getManglingNumberContext(Tag->getParent());
3058 S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3059 return;
3060 }
3061
3062 // If this tag isn't a direct child of a class, number it if it is local.
3063 Decl *ManglingContextDecl;
3064 if (MangleNumberingContext *MCtx =
3065 S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3066 ManglingContextDecl)) {
3067 S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3068 }
3069 }
3070
3071 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3072 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3073 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3074 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3075 DeclSpec &DS,
3076 MultiTemplateParamsArg TemplateParams,
3077 bool IsExplicitInstantiation) {
3078 Decl *TagD = 0;
3079 TagDecl *Tag = 0;
3080 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3081 DS.getTypeSpecType() == DeclSpec::TST_struct ||
3082 DS.getTypeSpecType() == DeclSpec::TST_interface ||
3083 DS.getTypeSpecType() == DeclSpec::TST_union ||
3084 DS.getTypeSpecType() == DeclSpec::TST_enum) {
3085 TagD = DS.getRepAsDecl();
3086
3087 if (!TagD) // We probably had an error
3088 return 0;
3089
3090 // Note that the above type specs guarantee that the
3091 // type rep is a Decl, whereas in many of the others
3092 // it's a Type.
3093 if (isa<TagDecl>(TagD))
3094 Tag = cast<TagDecl>(TagD);
3095 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3096 Tag = CTD->getTemplatedDecl();
3097 }
3098
3099 if (Tag) {
3100 HandleTagNumbering(*this, Tag);
3101 Tag->setFreeStanding();
3102 if (Tag->isInvalidDecl())
3103 return Tag;
3104 }
3105
3106 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3107 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3108 // or incomplete types shall not be restrict-qualified."
3109 if (TypeQuals & DeclSpec::TQ_restrict)
3110 Diag(DS.getRestrictSpecLoc(),
3111 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3112 << DS.getSourceRange();
3113 }
3114
3115 if (DS.isConstexprSpecified()) {
3116 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3117 // and definitions of functions and variables.
3118 if (Tag)
3119 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3120 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3121 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3122 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3123 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3124 else
3125 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3126 // Don't emit warnings after this error.
3127 return TagD;
3128 }
3129
3130 DiagnoseFunctionSpecifiers(DS);
3131
3132 if (DS.isFriendSpecified()) {
3133 // If we're dealing with a decl but not a TagDecl, assume that
3134 // whatever routines created it handled the friendship aspect.
3135 if (TagD && !Tag)
3136 return 0;
3137 return ActOnFriendTypeDecl(S, DS, TemplateParams);
3138 }
3139
3140 CXXScopeSpec &SS = DS.getTypeSpecScope();
3141 bool IsExplicitSpecialization =
3142 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3143 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3144 !IsExplicitInstantiation && !IsExplicitSpecialization) {
3145 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3146 // nested-name-specifier unless it is an explicit instantiation
3147 // or an explicit specialization.
3148 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3149 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3150 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3151 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3152 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3153 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3154 << SS.getRange();
3155 return 0;
3156 }
3157
3158 // Track whether this decl-specifier declares anything.
3159 bool DeclaresAnything = true;
3160
3161 // Handle anonymous struct definitions.
3162 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3163 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3164 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3165 if (getLangOpts().CPlusPlus ||
3166 Record->getDeclContext()->isRecord())
3167 return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3168
3169 DeclaresAnything = false;
3170 }
3171 }
3172
3173 // Check for Microsoft C extension: anonymous struct member.
3174 if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3175 CurContext->isRecord() &&
3176 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3177 // Handle 2 kinds of anonymous struct:
3178 // struct STRUCT;
3179 // and
3180 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
3181 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3182 if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3183 (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3184 DS.getRepAsType().get()->isStructureType())) {
3185 Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3186 << DS.getSourceRange();
3187 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3188 }
3189 }
3190
3191 // Skip all the checks below if we have a type error.
3192 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3193 (TagD && TagD->isInvalidDecl()))
3194 return TagD;
3195
3196 if (getLangOpts().CPlusPlus &&
3197 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3198 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3199 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3200 !Enum->getIdentifier() && !Enum->isInvalidDecl())
3201 DeclaresAnything = false;
3202
3203 if (!DS.isMissingDeclaratorOk()) {
3204 // Customize diagnostic for a typedef missing a name.
3205 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3206 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3207 << DS.getSourceRange();
3208 else
3209 DeclaresAnything = false;
3210 }
3211
3212 if (DS.isModulePrivateSpecified() &&
3213 Tag && Tag->getDeclContext()->isFunctionOrMethod())
3214 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3215 << Tag->getTagKind()
3216 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3217
3218 ActOnDocumentableDecl(TagD);
3219
3220 // C 6.7/2:
3221 // A declaration [...] shall declare at least a declarator [...], a tag,
3222 // or the members of an enumeration.
3223 // C++ [dcl.dcl]p3:
3224 // [If there are no declarators], and except for the declaration of an
3225 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
3226 // names into the program, or shall redeclare a name introduced by a
3227 // previous declaration.
3228 if (!DeclaresAnything) {
3229 // In C, we allow this as a (popular) extension / bug. Don't bother
3230 // producing further diagnostics for redundant qualifiers after this.
3231 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3232 return TagD;
3233 }
3234
3235 // C++ [dcl.stc]p1:
3236 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3237 // init-declarator-list of the declaration shall not be empty.
3238 // C++ [dcl.fct.spec]p1:
3239 // If a cv-qualifier appears in a decl-specifier-seq, the
3240 // init-declarator-list of the declaration shall not be empty.
3241 //
3242 // Spurious qualifiers here appear to be valid in C.
3243 unsigned DiagID = diag::warn_standalone_specifier;
3244 if (getLangOpts().CPlusPlus)
3245 DiagID = diag::ext_standalone_specifier;
3246
3247 // Note that a linkage-specification sets a storage class, but
3248 // 'extern "C" struct foo;' is actually valid and not theoretically
3249 // useless.
3250 if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3251 if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3252 Diag(DS.getStorageClassSpecLoc(), DiagID)
3253 << DeclSpec::getSpecifierName(SCS);
3254
3255 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3256 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3257 << DeclSpec::getSpecifierName(TSCS);
3258 if (DS.getTypeQualifiers()) {
3259 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3260 Diag(DS.getConstSpecLoc(), DiagID) << "const";
3261 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3262 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3263 // Restrict is covered above.
3264 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3265 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3266 }
3267
3268 // Warn about ignored type attributes, for example:
3269 // __attribute__((aligned)) struct A;
3270 // Attributes should be placed after tag to apply to type declaration.
3271 if (!DS.getAttributes().empty()) {
3272 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3273 if (TypeSpecType == DeclSpec::TST_class ||
3274 TypeSpecType == DeclSpec::TST_struct ||
3275 TypeSpecType == DeclSpec::TST_interface ||
3276 TypeSpecType == DeclSpec::TST_union ||
3277 TypeSpecType == DeclSpec::TST_enum) {
3278 AttributeList* attrs = DS.getAttributes().getList();
3279 while (attrs) {
3280 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3281 << attrs->getName()
3282 << (TypeSpecType == DeclSpec::TST_class ? 0 :
3283 TypeSpecType == DeclSpec::TST_struct ? 1 :
3284 TypeSpecType == DeclSpec::TST_union ? 2 :
3285 TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3286 attrs = attrs->getNext();
3287 }
3288 }
3289 }
3290
3291 return TagD;
3292 }
3293
3294 /// We are trying to inject an anonymous member into the given scope;
3295 /// check if there's an existing declaration that can't be overloaded.
3296 ///
3297 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3298 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3299 Scope *S,
3300 DeclContext *Owner,
3301 DeclarationName Name,
3302 SourceLocation NameLoc,
3303 unsigned diagnostic) {
3304 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3305 Sema::ForRedeclaration);
3306 if (!SemaRef.LookupName(R, S)) return false;
3307
3308 if (R.getAsSingle<TagDecl>())
3309 return false;
3310
3311 // Pick a representative declaration.
3312 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3313 assert(PrevDecl && "Expected a non-null Decl");
3314
3315 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3316 return false;
3317
3318 SemaRef.Diag(NameLoc, diagnostic) << Name;
3319 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3320
3321 return true;
3322 }
3323
3324 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3325 /// anonymous struct or union AnonRecord into the owning context Owner
3326 /// and scope S. This routine will be invoked just after we realize
3327 /// that an unnamed union or struct is actually an anonymous union or
3328 /// struct, e.g.,
3329 ///
3330 /// @code
3331 /// union {
3332 /// int i;
3333 /// float f;
3334 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3335 /// // f into the surrounding scope.x
3336 /// @endcode
3337 ///
3338 /// This routine is recursive, injecting the names of nested anonymous
3339 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3340 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3341 DeclContext *Owner,
3342 RecordDecl *AnonRecord,
3343 AccessSpecifier AS,
3344 SmallVectorImpl<NamedDecl *> &Chaining,
3345 bool MSAnonStruct) {
3346 unsigned diagKind
3347 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3348 : diag::err_anonymous_struct_member_redecl;
3349
3350 bool Invalid = false;
3351
3352 // Look every FieldDecl and IndirectFieldDecl with a name.
3353 for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3354 DEnd = AnonRecord->decls_end();
3355 D != DEnd; ++D) {
3356 if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3357 cast<NamedDecl>(*D)->getDeclName()) {
3358 ValueDecl *VD = cast<ValueDecl>(*D);
3359 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3360 VD->getLocation(), diagKind)) {
3361 // C++ [class.union]p2:
3362 // The names of the members of an anonymous union shall be
3363 // distinct from the names of any other entity in the
3364 // scope in which the anonymous union is declared.
3365 Invalid = true;
3366 } else {
3367 // C++ [class.union]p2:
3368 // For the purpose of name lookup, after the anonymous union
3369 // definition, the members of the anonymous union are
3370 // considered to have been defined in the scope in which the
3371 // anonymous union is declared.
3372 unsigned OldChainingSize = Chaining.size();
3373 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3374 for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3375 PE = IF->chain_end(); PI != PE; ++PI)
3376 Chaining.push_back(*PI);
3377 else
3378 Chaining.push_back(VD);
3379
3380 assert(Chaining.size() >= 2);
3381 NamedDecl **NamedChain =
3382 new (SemaRef.Context)NamedDecl*[Chaining.size()];
3383 for (unsigned i = 0; i < Chaining.size(); i++)
3384 NamedChain[i] = Chaining[i];
3385
3386 IndirectFieldDecl* IndirectField =
3387 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3388 VD->getIdentifier(), VD->getType(),
3389 NamedChain, Chaining.size());
3390
3391 IndirectField->setAccess(AS);
3392 IndirectField->setImplicit();
3393 SemaRef.PushOnScopeChains(IndirectField, S);
3394
3395 // That includes picking up the appropriate access specifier.
3396 if (AS != AS_none) IndirectField->setAccess(AS);
3397
3398 Chaining.resize(OldChainingSize);
3399 }
3400 }
3401 }
3402
3403 return Invalid;
3404 }
3405
3406 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3407 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3408 /// illegal input values are mapped to SC_None.
3409 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3410 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3411 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3412 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3413 "Parser allowed 'typedef' as storage class VarDecl.");
3414 switch (StorageClassSpec) {
3415 case DeclSpec::SCS_unspecified: return SC_None;
3416 case DeclSpec::SCS_extern:
3417 if (DS.isExternInLinkageSpec())
3418 return SC_None;
3419 return SC_Extern;
3420 case DeclSpec::SCS_static: return SC_Static;
3421 case DeclSpec::SCS_auto: return SC_Auto;
3422 case DeclSpec::SCS_register: return SC_Register;
3423 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3424 // Illegal SCSs map to None: error reporting is up to the caller.
3425 case DeclSpec::SCS_mutable: // Fall through.
3426 case DeclSpec::SCS_typedef: return SC_None;
3427 }
3428 llvm_unreachable("unknown storage class specifier");
3429 }
3430
3431 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3432 /// anonymous structure or union. Anonymous unions are a C++ feature
3433 /// (C++ [class.union]) and a C11 feature; anonymous structures
3434 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)3435 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3436 AccessSpecifier AS,
3437 RecordDecl *Record) {
3438 DeclContext *Owner = Record->getDeclContext();
3439
3440 // Diagnose whether this anonymous struct/union is an extension.
3441 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3442 Diag(Record->getLocation(), diag::ext_anonymous_union);
3443 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3444 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3445 else if (!Record->isUnion() && !getLangOpts().C11)
3446 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3447
3448 // C and C++ require different kinds of checks for anonymous
3449 // structs/unions.
3450 bool Invalid = false;
3451 if (getLangOpts().CPlusPlus) {
3452 const char* PrevSpec = 0;
3453 unsigned DiagID;
3454 if (Record->isUnion()) {
3455 // C++ [class.union]p6:
3456 // Anonymous unions declared in a named namespace or in the
3457 // global namespace shall be declared static.
3458 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3459 (isa<TranslationUnitDecl>(Owner) ||
3460 (isa<NamespaceDecl>(Owner) &&
3461 cast<NamespaceDecl>(Owner)->getDeclName()))) {
3462 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3463 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3464
3465 // Recover by adding 'static'.
3466 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3467 PrevSpec, DiagID);
3468 }
3469 // C++ [class.union]p6:
3470 // A storage class is not allowed in a declaration of an
3471 // anonymous union in a class scope.
3472 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3473 isa<RecordDecl>(Owner)) {
3474 Diag(DS.getStorageClassSpecLoc(),
3475 diag::err_anonymous_union_with_storage_spec)
3476 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3477
3478 // Recover by removing the storage specifier.
3479 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3480 SourceLocation(),
3481 PrevSpec, DiagID);
3482 }
3483 }
3484
3485 // Ignore const/volatile/restrict qualifiers.
3486 if (DS.getTypeQualifiers()) {
3487 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3488 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3489 << Record->isUnion() << "const"
3490 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3491 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3492 Diag(DS.getVolatileSpecLoc(),
3493 diag::ext_anonymous_struct_union_qualified)
3494 << Record->isUnion() << "volatile"
3495 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3496 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3497 Diag(DS.getRestrictSpecLoc(),
3498 diag::ext_anonymous_struct_union_qualified)
3499 << Record->isUnion() << "restrict"
3500 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3501 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3502 Diag(DS.getAtomicSpecLoc(),
3503 diag::ext_anonymous_struct_union_qualified)
3504 << Record->isUnion() << "_Atomic"
3505 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3506
3507 DS.ClearTypeQualifiers();
3508 }
3509
3510 // C++ [class.union]p2:
3511 // The member-specification of an anonymous union shall only
3512 // define non-static data members. [Note: nested types and
3513 // functions cannot be declared within an anonymous union. ]
3514 for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3515 MemEnd = Record->decls_end();
3516 Mem != MemEnd; ++Mem) {
3517 if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3518 // C++ [class.union]p3:
3519 // An anonymous union shall not have private or protected
3520 // members (clause 11).
3521 assert(FD->getAccess() != AS_none);
3522 if (FD->getAccess() != AS_public) {
3523 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3524 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3525 Invalid = true;
3526 }
3527
3528 // C++ [class.union]p1
3529 // An object of a class with a non-trivial constructor, a non-trivial
3530 // copy constructor, a non-trivial destructor, or a non-trivial copy
3531 // assignment operator cannot be a member of a union, nor can an
3532 // array of such objects.
3533 if (CheckNontrivialField(FD))
3534 Invalid = true;
3535 } else if ((*Mem)->isImplicit()) {
3536 // Any implicit members are fine.
3537 } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3538 // This is a type that showed up in an
3539 // elaborated-type-specifier inside the anonymous struct or
3540 // union, but which actually declares a type outside of the
3541 // anonymous struct or union. It's okay.
3542 } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3543 if (!MemRecord->isAnonymousStructOrUnion() &&
3544 MemRecord->getDeclName()) {
3545 // Visual C++ allows type definition in anonymous struct or union.
3546 if (getLangOpts().MicrosoftExt)
3547 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3548 << (int)Record->isUnion();
3549 else {
3550 // This is a nested type declaration.
3551 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3552 << (int)Record->isUnion();
3553 Invalid = true;
3554 }
3555 } else {
3556 // This is an anonymous type definition within another anonymous type.
3557 // This is a popular extension, provided by Plan9, MSVC and GCC, but
3558 // not part of standard C++.
3559 Diag(MemRecord->getLocation(),
3560 diag::ext_anonymous_record_with_anonymous_type)
3561 << (int)Record->isUnion();
3562 }
3563 } else if (isa<AccessSpecDecl>(*Mem)) {
3564 // Any access specifier is fine.
3565 } else {
3566 // We have something that isn't a non-static data
3567 // member. Complain about it.
3568 unsigned DK = diag::err_anonymous_record_bad_member;
3569 if (isa<TypeDecl>(*Mem))
3570 DK = diag::err_anonymous_record_with_type;
3571 else if (isa<FunctionDecl>(*Mem))
3572 DK = diag::err_anonymous_record_with_function;
3573 else if (isa<VarDecl>(*Mem))
3574 DK = diag::err_anonymous_record_with_static;
3575
3576 // Visual C++ allows type definition in anonymous struct or union.
3577 if (getLangOpts().MicrosoftExt &&
3578 DK == diag::err_anonymous_record_with_type)
3579 Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3580 << (int)Record->isUnion();
3581 else {
3582 Diag((*Mem)->getLocation(), DK)
3583 << (int)Record->isUnion();
3584 Invalid = true;
3585 }
3586 }
3587 }
3588 }
3589
3590 if (!Record->isUnion() && !Owner->isRecord()) {
3591 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3592 << (int)getLangOpts().CPlusPlus;
3593 Invalid = true;
3594 }
3595
3596 // Mock up a declarator.
3597 Declarator Dc(DS, Declarator::MemberContext);
3598 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3599 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3600
3601 // Create a declaration for this anonymous struct/union.
3602 NamedDecl *Anon = 0;
3603 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3604 Anon = FieldDecl::Create(Context, OwningClass,
3605 DS.getLocStart(),
3606 Record->getLocation(),
3607 /*IdentifierInfo=*/0,
3608 Context.getTypeDeclType(Record),
3609 TInfo,
3610 /*BitWidth=*/0, /*Mutable=*/false,
3611 /*InitStyle=*/ICIS_NoInit);
3612 Anon->setAccess(AS);
3613 if (getLangOpts().CPlusPlus)
3614 FieldCollector->Add(cast<FieldDecl>(Anon));
3615 } else {
3616 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3617 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3618 if (SCSpec == DeclSpec::SCS_mutable) {
3619 // mutable can only appear on non-static class members, so it's always
3620 // an error here
3621 Diag(Record->getLocation(), diag::err_mutable_nonmember);
3622 Invalid = true;
3623 SC = SC_None;
3624 }
3625
3626 Anon = VarDecl::Create(Context, Owner,
3627 DS.getLocStart(),
3628 Record->getLocation(), /*IdentifierInfo=*/0,
3629 Context.getTypeDeclType(Record),
3630 TInfo, SC);
3631
3632 // Default-initialize the implicit variable. This initialization will be
3633 // trivial in almost all cases, except if a union member has an in-class
3634 // initializer:
3635 // union { int n = 0; };
3636 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3637 }
3638 Anon->setImplicit();
3639
3640 // Add the anonymous struct/union object to the current
3641 // context. We'll be referencing this object when we refer to one of
3642 // its members.
3643 Owner->addDecl(Anon);
3644
3645 // Inject the members of the anonymous struct/union into the owning
3646 // context and into the identifier resolver chain for name lookup
3647 // purposes.
3648 SmallVector<NamedDecl*, 2> Chain;
3649 Chain.push_back(Anon);
3650
3651 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3652 Chain, false))
3653 Invalid = true;
3654
3655 // Mark this as an anonymous struct/union type. Note that we do not
3656 // do this until after we have already checked and injected the
3657 // members of this anonymous struct/union type, because otherwise
3658 // the members could be injected twice: once by DeclContext when it
3659 // builds its lookup table, and once by
3660 // InjectAnonymousStructOrUnionMembers.
3661 Record->setAnonymousStructOrUnion(true);
3662
3663 if (Invalid)
3664 Anon->setInvalidDecl();
3665
3666 return Anon;
3667 }
3668
3669 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3670 /// Microsoft C anonymous structure.
3671 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3672 /// Example:
3673 ///
3674 /// struct A { int a; };
3675 /// struct B { struct A; int b; };
3676 ///
3677 /// void foo() {
3678 /// B var;
3679 /// var.a = 3;
3680 /// }
3681 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3682 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3683 RecordDecl *Record) {
3684
3685 // If there is no Record, get the record via the typedef.
3686 if (!Record)
3687 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3688
3689 // Mock up a declarator.
3690 Declarator Dc(DS, Declarator::TypeNameContext);
3691 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3692 assert(TInfo && "couldn't build declarator info for anonymous struct");
3693
3694 // Create a declaration for this anonymous struct.
3695 NamedDecl* Anon = FieldDecl::Create(Context,
3696 cast<RecordDecl>(CurContext),
3697 DS.getLocStart(),
3698 DS.getLocStart(),
3699 /*IdentifierInfo=*/0,
3700 Context.getTypeDeclType(Record),
3701 TInfo,
3702 /*BitWidth=*/0, /*Mutable=*/false,
3703 /*InitStyle=*/ICIS_NoInit);
3704 Anon->setImplicit();
3705
3706 // Add the anonymous struct object to the current context.
3707 CurContext->addDecl(Anon);
3708
3709 // Inject the members of the anonymous struct into the current
3710 // context and into the identifier resolver chain for name lookup
3711 // purposes.
3712 SmallVector<NamedDecl*, 2> Chain;
3713 Chain.push_back(Anon);
3714
3715 RecordDecl *RecordDef = Record->getDefinition();
3716 if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3717 RecordDef, AS_none,
3718 Chain, true))
3719 Anon->setInvalidDecl();
3720
3721 return Anon;
3722 }
3723
3724 /// GetNameForDeclarator - Determine the full declaration name for the
3725 /// given Declarator.
GetNameForDeclarator(Declarator & D)3726 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3727 return GetNameFromUnqualifiedId(D.getName());
3728 }
3729
3730 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3731 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)3732 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3733 DeclarationNameInfo NameInfo;
3734 NameInfo.setLoc(Name.StartLocation);
3735
3736 switch (Name.getKind()) {
3737
3738 case UnqualifiedId::IK_ImplicitSelfParam:
3739 case UnqualifiedId::IK_Identifier:
3740 NameInfo.setName(Name.Identifier);
3741 NameInfo.setLoc(Name.StartLocation);
3742 return NameInfo;
3743
3744 case UnqualifiedId::IK_OperatorFunctionId:
3745 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3746 Name.OperatorFunctionId.Operator));
3747 NameInfo.setLoc(Name.StartLocation);
3748 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3749 = Name.OperatorFunctionId.SymbolLocations[0];
3750 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3751 = Name.EndLocation.getRawEncoding();
3752 return NameInfo;
3753
3754 case UnqualifiedId::IK_LiteralOperatorId:
3755 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3756 Name.Identifier));
3757 NameInfo.setLoc(Name.StartLocation);
3758 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3759 return NameInfo;
3760
3761 case UnqualifiedId::IK_ConversionFunctionId: {
3762 TypeSourceInfo *TInfo;
3763 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3764 if (Ty.isNull())
3765 return DeclarationNameInfo();
3766 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3767 Context.getCanonicalType(Ty)));
3768 NameInfo.setLoc(Name.StartLocation);
3769 NameInfo.setNamedTypeInfo(TInfo);
3770 return NameInfo;
3771 }
3772
3773 case UnqualifiedId::IK_ConstructorName: {
3774 TypeSourceInfo *TInfo;
3775 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3776 if (Ty.isNull())
3777 return DeclarationNameInfo();
3778 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3779 Context.getCanonicalType(Ty)));
3780 NameInfo.setLoc(Name.StartLocation);
3781 NameInfo.setNamedTypeInfo(TInfo);
3782 return NameInfo;
3783 }
3784
3785 case UnqualifiedId::IK_ConstructorTemplateId: {
3786 // In well-formed code, we can only have a constructor
3787 // template-id that refers to the current context, so go there
3788 // to find the actual type being constructed.
3789 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3790 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3791 return DeclarationNameInfo();
3792
3793 // Determine the type of the class being constructed.
3794 QualType CurClassType = Context.getTypeDeclType(CurClass);
3795
3796 // FIXME: Check two things: that the template-id names the same type as
3797 // CurClassType, and that the template-id does not occur when the name
3798 // was qualified.
3799
3800 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3801 Context.getCanonicalType(CurClassType)));
3802 NameInfo.setLoc(Name.StartLocation);
3803 // FIXME: should we retrieve TypeSourceInfo?
3804 NameInfo.setNamedTypeInfo(0);
3805 return NameInfo;
3806 }
3807
3808 case UnqualifiedId::IK_DestructorName: {
3809 TypeSourceInfo *TInfo;
3810 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3811 if (Ty.isNull())
3812 return DeclarationNameInfo();
3813 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3814 Context.getCanonicalType(Ty)));
3815 NameInfo.setLoc(Name.StartLocation);
3816 NameInfo.setNamedTypeInfo(TInfo);
3817 return NameInfo;
3818 }
3819
3820 case UnqualifiedId::IK_TemplateId: {
3821 TemplateName TName = Name.TemplateId->Template.get();
3822 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3823 return Context.getNameForTemplate(TName, TNameLoc);
3824 }
3825
3826 } // switch (Name.getKind())
3827
3828 llvm_unreachable("Unknown name kind");
3829 }
3830
getCoreType(QualType Ty)3831 static QualType getCoreType(QualType Ty) {
3832 do {
3833 if (Ty->isPointerType() || Ty->isReferenceType())
3834 Ty = Ty->getPointeeType();
3835 else if (Ty->isArrayType())
3836 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3837 else
3838 return Ty.withoutLocalFastQualifiers();
3839 } while (true);
3840 }
3841
3842 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3843 /// and Definition have "nearly" matching parameters. This heuristic is
3844 /// used to improve diagnostics in the case where an out-of-line function
3845 /// definition doesn't match any declaration within the class or namespace.
3846 /// Also sets Params to the list of indices to the parameters that differ
3847 /// between the declaration and the definition. If hasSimilarParameters
3848 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)3849 static bool hasSimilarParameters(ASTContext &Context,
3850 FunctionDecl *Declaration,
3851 FunctionDecl *Definition,
3852 SmallVectorImpl<unsigned> &Params) {
3853 Params.clear();
3854 if (Declaration->param_size() != Definition->param_size())
3855 return false;
3856 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3857 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3858 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3859
3860 // The parameter types are identical
3861 if (Context.hasSameType(DefParamTy, DeclParamTy))
3862 continue;
3863
3864 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3865 QualType DefParamBaseTy = getCoreType(DefParamTy);
3866 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3867 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3868
3869 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3870 (DeclTyName && DeclTyName == DefTyName))
3871 Params.push_back(Idx);
3872 else // The two parameters aren't even close
3873 return false;
3874 }
3875
3876 return true;
3877 }
3878
3879 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3880 /// declarator needs to be rebuilt in the current instantiation.
3881 /// Any bits of declarator which appear before the name are valid for
3882 /// consideration here. That's specifically the type in the decl spec
3883 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)3884 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3885 DeclarationName Name) {
3886 // The types we specifically need to rebuild are:
3887 // - typenames, typeofs, and decltypes
3888 // - types which will become injected class names
3889 // Of course, we also need to rebuild any type referencing such a
3890 // type. It's safest to just say "dependent", but we call out a
3891 // few cases here.
3892
3893 DeclSpec &DS = D.getMutableDeclSpec();
3894 switch (DS.getTypeSpecType()) {
3895 case DeclSpec::TST_typename:
3896 case DeclSpec::TST_typeofType:
3897 case DeclSpec::TST_underlyingType:
3898 case DeclSpec::TST_atomic: {
3899 // Grab the type from the parser.
3900 TypeSourceInfo *TSI = 0;
3901 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3902 if (T.isNull() || !T->isDependentType()) break;
3903
3904 // Make sure there's a type source info. This isn't really much
3905 // of a waste; most dependent types should have type source info
3906 // attached already.
3907 if (!TSI)
3908 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3909
3910 // Rebuild the type in the current instantiation.
3911 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3912 if (!TSI) return true;
3913
3914 // Store the new type back in the decl spec.
3915 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3916 DS.UpdateTypeRep(LocType);
3917 break;
3918 }
3919
3920 case DeclSpec::TST_decltype:
3921 case DeclSpec::TST_typeofExpr: {
3922 Expr *E = DS.getRepAsExpr();
3923 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3924 if (Result.isInvalid()) return true;
3925 DS.UpdateExprRep(Result.get());
3926 break;
3927 }
3928
3929 default:
3930 // Nothing to do for these decl specs.
3931 break;
3932 }
3933
3934 // It doesn't matter what order we do this in.
3935 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3936 DeclaratorChunk &Chunk = D.getTypeObject(I);
3937
3938 // The only type information in the declarator which can come
3939 // before the declaration name is the base type of a member
3940 // pointer.
3941 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3942 continue;
3943
3944 // Rebuild the scope specifier in-place.
3945 CXXScopeSpec &SS = Chunk.Mem.Scope();
3946 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3947 return true;
3948 }
3949
3950 return false;
3951 }
3952
ActOnDeclarator(Scope * S,Declarator & D)3953 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3954 D.setFunctionDefinitionKind(FDK_Declaration);
3955 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3956
3957 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3958 Dcl && Dcl->getDeclContext()->isFileContext())
3959 Dcl->setTopLevelDeclInObjCContainer();
3960
3961 return Dcl;
3962 }
3963
3964 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3965 /// If T is the name of a class, then each of the following shall have a
3966 /// name different from T:
3967 /// - every static data member of class T;
3968 /// - every member function of class T
3969 /// - every member of class T that is itself a type;
3970 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)3971 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3972 DeclarationNameInfo NameInfo) {
3973 DeclarationName Name = NameInfo.getName();
3974
3975 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3976 if (Record->getIdentifier() && Record->getDeclName() == Name) {
3977 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3978 return true;
3979 }
3980
3981 return false;
3982 }
3983
3984 /// \brief Diagnose a declaration whose declarator-id has the given
3985 /// nested-name-specifier.
3986 ///
3987 /// \param SS The nested-name-specifier of the declarator-id.
3988 ///
3989 /// \param DC The declaration context to which the nested-name-specifier
3990 /// resolves.
3991 ///
3992 /// \param Name The name of the entity being declared.
3993 ///
3994 /// \param Loc The location of the name of the entity being declared.
3995 ///
3996 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)3997 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3998 DeclarationName Name,
3999 SourceLocation Loc) {
4000 DeclContext *Cur = CurContext;
4001 while (isa<LinkageSpecDecl>(Cur))
4002 Cur = Cur->getParent();
4003
4004 // C++ [dcl.meaning]p1:
4005 // A declarator-id shall not be qualified except for the definition
4006 // of a member function (9.3) or static data member (9.4) outside of
4007 // its class, the definition or explicit instantiation of a function
4008 // or variable member of a namespace outside of its namespace, or the
4009 // definition of an explicit specialization outside of its namespace,
4010 // or the declaration of a friend function that is a member of
4011 // another class or namespace (11.3). [...]
4012
4013 // The user provided a superfluous scope specifier that refers back to the
4014 // class or namespaces in which the entity is already declared.
4015 //
4016 // class X {
4017 // void X::f();
4018 // };
4019 if (Cur->Equals(DC)) {
4020 Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4021 : diag::err_member_extra_qualification)
4022 << Name << FixItHint::CreateRemoval(SS.getRange());
4023 SS.clear();
4024 return false;
4025 }
4026
4027 // Check whether the qualifying scope encloses the scope of the original
4028 // declaration.
4029 if (!Cur->Encloses(DC)) {
4030 if (Cur->isRecord())
4031 Diag(Loc, diag::err_member_qualification)
4032 << Name << SS.getRange();
4033 else if (isa<TranslationUnitDecl>(DC))
4034 Diag(Loc, diag::err_invalid_declarator_global_scope)
4035 << Name << SS.getRange();
4036 else if (isa<FunctionDecl>(Cur))
4037 Diag(Loc, diag::err_invalid_declarator_in_function)
4038 << Name << SS.getRange();
4039 else
4040 Diag(Loc, diag::err_invalid_declarator_scope)
4041 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4042
4043 return true;
4044 }
4045
4046 if (Cur->isRecord()) {
4047 // Cannot qualify members within a class.
4048 Diag(Loc, diag::err_member_qualification)
4049 << Name << SS.getRange();
4050 SS.clear();
4051
4052 // C++ constructors and destructors with incorrect scopes can break
4053 // our AST invariants by having the wrong underlying types. If
4054 // that's the case, then drop this declaration entirely.
4055 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4056 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4057 !Context.hasSameType(Name.getCXXNameType(),
4058 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4059 return true;
4060
4061 return false;
4062 }
4063
4064 // C++11 [dcl.meaning]p1:
4065 // [...] "The nested-name-specifier of the qualified declarator-id shall
4066 // not begin with a decltype-specifer"
4067 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4068 while (SpecLoc.getPrefix())
4069 SpecLoc = SpecLoc.getPrefix();
4070 if (dyn_cast_or_null<DecltypeType>(
4071 SpecLoc.getNestedNameSpecifier()->getAsType()))
4072 Diag(Loc, diag::err_decltype_in_declarator)
4073 << SpecLoc.getTypeLoc().getSourceRange();
4074
4075 return false;
4076 }
4077
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4078 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4079 MultiTemplateParamsArg TemplateParamLists) {
4080 // TODO: consider using NameInfo for diagnostic.
4081 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4082 DeclarationName Name = NameInfo.getName();
4083
4084 // All of these full declarators require an identifier. If it doesn't have
4085 // one, the ParsedFreeStandingDeclSpec action should be used.
4086 if (!Name) {
4087 if (!D.isInvalidType()) // Reject this if we think it is valid.
4088 Diag(D.getDeclSpec().getLocStart(),
4089 diag::err_declarator_need_ident)
4090 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4091 return 0;
4092 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4093 return 0;
4094
4095 // The scope passed in may not be a decl scope. Zip up the scope tree until
4096 // we find one that is.
4097 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4098 (S->getFlags() & Scope::TemplateParamScope) != 0)
4099 S = S->getParent();
4100
4101 DeclContext *DC = CurContext;
4102 if (D.getCXXScopeSpec().isInvalid())
4103 D.setInvalidType();
4104 else if (D.getCXXScopeSpec().isSet()) {
4105 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4106 UPPC_DeclarationQualifier))
4107 return 0;
4108
4109 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4110 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4111 if (!DC) {
4112 // If we could not compute the declaration context, it's because the
4113 // declaration context is dependent but does not refer to a class,
4114 // class template, or class template partial specialization. Complain
4115 // and return early, to avoid the coming semantic disaster.
4116 Diag(D.getIdentifierLoc(),
4117 diag::err_template_qualified_declarator_no_match)
4118 << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4119 << D.getCXXScopeSpec().getRange();
4120 return 0;
4121 }
4122 bool IsDependentContext = DC->isDependentContext();
4123
4124 if (!IsDependentContext &&
4125 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4126 return 0;
4127
4128 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4129 Diag(D.getIdentifierLoc(),
4130 diag::err_member_def_undefined_record)
4131 << Name << DC << D.getCXXScopeSpec().getRange();
4132 D.setInvalidType();
4133 } else if (!D.getDeclSpec().isFriendSpecified()) {
4134 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4135 Name, D.getIdentifierLoc())) {
4136 if (DC->isRecord())
4137 return 0;
4138
4139 D.setInvalidType();
4140 }
4141 }
4142
4143 // Check whether we need to rebuild the type of the given
4144 // declaration in the current instantiation.
4145 if (EnteringContext && IsDependentContext &&
4146 TemplateParamLists.size() != 0) {
4147 ContextRAII SavedContext(*this, DC);
4148 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4149 D.setInvalidType();
4150 }
4151 }
4152
4153 if (DiagnoseClassNameShadow(DC, NameInfo))
4154 // If this is a typedef, we'll end up spewing multiple diagnostics.
4155 // Just return early; it's safer.
4156 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4157 return 0;
4158
4159 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4160 QualType R = TInfo->getType();
4161
4162 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4163 UPPC_DeclarationType))
4164 D.setInvalidType();
4165
4166 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4167 ForRedeclaration);
4168
4169 // See if this is a redefinition of a variable in the same scope.
4170 if (!D.getCXXScopeSpec().isSet()) {
4171 bool IsLinkageLookup = false;
4172
4173 // If the declaration we're planning to build will be a function
4174 // or object with linkage, then look for another declaration with
4175 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4176 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4177 /* Do nothing*/;
4178 else if (R->isFunctionType()) {
4179 if (CurContext->isFunctionOrMethod() ||
4180 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4181 IsLinkageLookup = true;
4182 } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4183 IsLinkageLookup = true;
4184 else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4185 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4186 IsLinkageLookup = true;
4187
4188 if (IsLinkageLookup)
4189 Previous.clear(LookupRedeclarationWithLinkage);
4190
4191 LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4192 } else { // Something like "int foo::x;"
4193 LookupQualifiedName(Previous, DC);
4194
4195 // C++ [dcl.meaning]p1:
4196 // When the declarator-id is qualified, the declaration shall refer to a
4197 // previously declared member of the class or namespace to which the
4198 // qualifier refers (or, in the case of a namespace, of an element of the
4199 // inline namespace set of that namespace (7.3.1)) or to a specialization
4200 // thereof; [...]
4201 //
4202 // Note that we already checked the context above, and that we do not have
4203 // enough information to make sure that Previous contains the declaration
4204 // we want to match. For example, given:
4205 //
4206 // class X {
4207 // void f();
4208 // void f(float);
4209 // };
4210 //
4211 // void X::f(int) { } // ill-formed
4212 //
4213 // In this case, Previous will point to the overload set
4214 // containing the two f's declared in X, but neither of them
4215 // matches.
4216
4217 // C++ [dcl.meaning]p1:
4218 // [...] the member shall not merely have been introduced by a
4219 // using-declaration in the scope of the class or namespace nominated by
4220 // the nested-name-specifier of the declarator-id.
4221 RemoveUsingDecls(Previous);
4222 }
4223
4224 if (Previous.isSingleResult() &&
4225 Previous.getFoundDecl()->isTemplateParameter()) {
4226 // Maybe we will complain about the shadowed template parameter.
4227 if (!D.isInvalidType())
4228 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4229 Previous.getFoundDecl());
4230
4231 // Just pretend that we didn't see the previous declaration.
4232 Previous.clear();
4233 }
4234
4235 // In C++, the previous declaration we find might be a tag type
4236 // (class or enum). In this case, the new declaration will hide the
4237 // tag type. Note that this does does not apply if we're declaring a
4238 // typedef (C++ [dcl.typedef]p4).
4239 if (Previous.isSingleTagDecl() &&
4240 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4241 Previous.clear();
4242
4243 // Check that there are no default arguments other than in the parameters
4244 // of a function declaration (C++ only).
4245 if (getLangOpts().CPlusPlus)
4246 CheckExtraCXXDefaultArguments(D);
4247
4248 NamedDecl *New;
4249
4250 bool AddToScope = true;
4251 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4252 if (TemplateParamLists.size()) {
4253 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4254 return 0;
4255 }
4256
4257 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4258 } else if (R->isFunctionType()) {
4259 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4260 TemplateParamLists,
4261 AddToScope);
4262 } else {
4263 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4264 AddToScope);
4265 }
4266
4267 if (New == 0)
4268 return 0;
4269
4270 // If this has an identifier and is not an invalid redeclaration or
4271 // function template specialization, add it to the scope stack.
4272 if (New->getDeclName() && AddToScope &&
4273 !(D.isRedeclaration() && New->isInvalidDecl()))
4274 PushOnScopeChains(New, S);
4275
4276 return New;
4277 }
4278
4279 /// Helper method to turn variable array types into constant array
4280 /// types in certain situations which would otherwise be errors (for
4281 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4282 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4283 ASTContext &Context,
4284 bool &SizeIsNegative,
4285 llvm::APSInt &Oversized) {
4286 // This method tries to turn a variable array into a constant
4287 // array even when the size isn't an ICE. This is necessary
4288 // for compatibility with code that depends on gcc's buggy
4289 // constant expression folding, like struct {char x[(int)(char*)2];}
4290 SizeIsNegative = false;
4291 Oversized = 0;
4292
4293 if (T->isDependentType())
4294 return QualType();
4295
4296 QualifierCollector Qs;
4297 const Type *Ty = Qs.strip(T);
4298
4299 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4300 QualType Pointee = PTy->getPointeeType();
4301 QualType FixedType =
4302 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4303 Oversized);
4304 if (FixedType.isNull()) return FixedType;
4305 FixedType = Context.getPointerType(FixedType);
4306 return Qs.apply(Context, FixedType);
4307 }
4308 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4309 QualType Inner = PTy->getInnerType();
4310 QualType FixedType =
4311 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4312 Oversized);
4313 if (FixedType.isNull()) return FixedType;
4314 FixedType = Context.getParenType(FixedType);
4315 return Qs.apply(Context, FixedType);
4316 }
4317
4318 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4319 if (!VLATy)
4320 return QualType();
4321 // FIXME: We should probably handle this case
4322 if (VLATy->getElementType()->isVariablyModifiedType())
4323 return QualType();
4324
4325 llvm::APSInt Res;
4326 if (!VLATy->getSizeExpr() ||
4327 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4328 return QualType();
4329
4330 // Check whether the array size is negative.
4331 if (Res.isSigned() && Res.isNegative()) {
4332 SizeIsNegative = true;
4333 return QualType();
4334 }
4335
4336 // Check whether the array is too large to be addressed.
4337 unsigned ActiveSizeBits
4338 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4339 Res);
4340 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4341 Oversized = Res;
4342 return QualType();
4343 }
4344
4345 return Context.getConstantArrayType(VLATy->getElementType(),
4346 Res, ArrayType::Normal, 0);
4347 }
4348
4349 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4350 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4351 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4352 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4353 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4354 DstPTL.getPointeeLoc());
4355 DstPTL.setStarLoc(SrcPTL.getStarLoc());
4356 return;
4357 }
4358 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4359 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4360 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4361 DstPTL.getInnerLoc());
4362 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4363 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4364 return;
4365 }
4366 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4367 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4368 TypeLoc SrcElemTL = SrcATL.getElementLoc();
4369 TypeLoc DstElemTL = DstATL.getElementLoc();
4370 DstElemTL.initializeFullCopy(SrcElemTL);
4371 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4372 DstATL.setSizeExpr(SrcATL.getSizeExpr());
4373 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4374 }
4375
4376 /// Helper method to turn variable array types into constant array
4377 /// types in certain situations which would otherwise be errors (for
4378 /// GCC compatibility).
4379 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4380 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4381 ASTContext &Context,
4382 bool &SizeIsNegative,
4383 llvm::APSInt &Oversized) {
4384 QualType FixedTy
4385 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4386 SizeIsNegative, Oversized);
4387 if (FixedTy.isNull())
4388 return 0;
4389 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4390 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4391 FixedTInfo->getTypeLoc());
4392 return FixedTInfo;
4393 }
4394
4395 /// \brief Register the given locally-scoped extern "C" declaration so
4396 /// that it can be found later for redeclarations. We include any extern "C"
4397 /// declaration that is not visible in the translation unit here, not just
4398 /// function-scope declarations.
4399 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4400 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4401 if (!getLangOpts().CPlusPlus &&
4402 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4403 // Don't need to track declarations in the TU in C.
4404 return;
4405
4406 // Note that we have a locally-scoped external with this name.
4407 // FIXME: There can be multiple such declarations if they are functions marked
4408 // __attribute__((overloadable)) declared in function scope in C.
4409 LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4410 }
4411
findLocallyScopedExternCDecl(DeclarationName Name)4412 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4413 if (ExternalSource) {
4414 // Load locally-scoped external decls from the external source.
4415 // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4416 SmallVector<NamedDecl *, 4> Decls;
4417 ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4418 for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4419 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4420 = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4421 if (Pos == LocallyScopedExternCDecls.end())
4422 LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4423 }
4424 }
4425
4426 NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4427 return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4428 }
4429
4430 /// \brief Diagnose function specifiers on a declaration of an identifier that
4431 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4432 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4433 // FIXME: We should probably indicate the identifier in question to avoid
4434 // confusion for constructs like "inline int a(), b;"
4435 if (DS.isInlineSpecified())
4436 Diag(DS.getInlineSpecLoc(),
4437 diag::err_inline_non_function);
4438
4439 if (DS.isVirtualSpecified())
4440 Diag(DS.getVirtualSpecLoc(),
4441 diag::err_virtual_non_function);
4442
4443 if (DS.isExplicitSpecified())
4444 Diag(DS.getExplicitSpecLoc(),
4445 diag::err_explicit_non_function);
4446
4447 if (DS.isNoreturnSpecified())
4448 Diag(DS.getNoreturnSpecLoc(),
4449 diag::err_noreturn_non_function);
4450 }
4451
4452 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4453 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4454 TypeSourceInfo *TInfo, LookupResult &Previous) {
4455 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4456 if (D.getCXXScopeSpec().isSet()) {
4457 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4458 << D.getCXXScopeSpec().getRange();
4459 D.setInvalidType();
4460 // Pretend we didn't see the scope specifier.
4461 DC = CurContext;
4462 Previous.clear();
4463 }
4464
4465 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4466
4467 if (D.getDeclSpec().isConstexprSpecified())
4468 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4469 << 1;
4470
4471 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4472 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4473 << D.getName().getSourceRange();
4474 return 0;
4475 }
4476
4477 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4478 if (!NewTD) return 0;
4479
4480 // Handle attributes prior to checking for duplicates in MergeVarDecl
4481 ProcessDeclAttributes(S, NewTD, D);
4482
4483 CheckTypedefForVariablyModifiedType(S, NewTD);
4484
4485 bool Redeclaration = D.isRedeclaration();
4486 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4487 D.setRedeclaration(Redeclaration);
4488 return ND;
4489 }
4490
4491 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)4492 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4493 // C99 6.7.7p2: If a typedef name specifies a variably modified type
4494 // then it shall have block scope.
4495 // Note that variably modified types must be fixed before merging the decl so
4496 // that redeclarations will match.
4497 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4498 QualType T = TInfo->getType();
4499 if (T->isVariablyModifiedType()) {
4500 getCurFunction()->setHasBranchProtectedScope();
4501
4502 if (S->getFnParent() == 0) {
4503 bool SizeIsNegative;
4504 llvm::APSInt Oversized;
4505 TypeSourceInfo *FixedTInfo =
4506 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4507 SizeIsNegative,
4508 Oversized);
4509 if (FixedTInfo) {
4510 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4511 NewTD->setTypeSourceInfo(FixedTInfo);
4512 } else {
4513 if (SizeIsNegative)
4514 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4515 else if (T->isVariableArrayType())
4516 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4517 else if (Oversized.getBoolValue())
4518 Diag(NewTD->getLocation(), diag::err_array_too_large)
4519 << Oversized.toString(10);
4520 else
4521 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4522 NewTD->setInvalidDecl();
4523 }
4524 }
4525 }
4526 }
4527
4528
4529 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4530 /// declares a typedef-name, either using the 'typedef' type specifier or via
4531 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4532 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4533 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4534 LookupResult &Previous, bool &Redeclaration) {
4535 // Merge the decl with the existing one if appropriate. If the decl is
4536 // in an outer scope, it isn't the same thing.
4537 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4538 /*ExplicitInstantiationOrSpecialization=*/false);
4539 filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4540 if (!Previous.empty()) {
4541 Redeclaration = true;
4542 MergeTypedefNameDecl(NewTD, Previous);
4543 }
4544
4545 // If this is the C FILE type, notify the AST context.
4546 if (IdentifierInfo *II = NewTD->getIdentifier())
4547 if (!NewTD->isInvalidDecl() &&
4548 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4549 if (II->isStr("FILE"))
4550 Context.setFILEDecl(NewTD);
4551 else if (II->isStr("jmp_buf"))
4552 Context.setjmp_bufDecl(NewTD);
4553 else if (II->isStr("sigjmp_buf"))
4554 Context.setsigjmp_bufDecl(NewTD);
4555 else if (II->isStr("ucontext_t"))
4556 Context.setucontext_tDecl(NewTD);
4557 }
4558
4559 return NewTD;
4560 }
4561
4562 /// \brief Determines whether the given declaration is an out-of-scope
4563 /// previous declaration.
4564 ///
4565 /// This routine should be invoked when name lookup has found a
4566 /// previous declaration (PrevDecl) that is not in the scope where a
4567 /// new declaration by the same name is being introduced. If the new
4568 /// declaration occurs in a local scope, previous declarations with
4569 /// linkage may still be considered previous declarations (C99
4570 /// 6.2.2p4-5, C++ [basic.link]p6).
4571 ///
4572 /// \param PrevDecl the previous declaration found by name
4573 /// lookup
4574 ///
4575 /// \param DC the context in which the new declaration is being
4576 /// declared.
4577 ///
4578 /// \returns true if PrevDecl is an out-of-scope previous declaration
4579 /// for a new delcaration with the same name.
4580 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4581 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4582 ASTContext &Context) {
4583 if (!PrevDecl)
4584 return false;
4585
4586 if (!PrevDecl->hasLinkage())
4587 return false;
4588
4589 if (Context.getLangOpts().CPlusPlus) {
4590 // C++ [basic.link]p6:
4591 // If there is a visible declaration of an entity with linkage
4592 // having the same name and type, ignoring entities declared
4593 // outside the innermost enclosing namespace scope, the block
4594 // scope declaration declares that same entity and receives the
4595 // linkage of the previous declaration.
4596 DeclContext *OuterContext = DC->getRedeclContext();
4597 if (!OuterContext->isFunctionOrMethod())
4598 // This rule only applies to block-scope declarations.
4599 return false;
4600
4601 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4602 if (PrevOuterContext->isRecord())
4603 // We found a member function: ignore it.
4604 return false;
4605
4606 // Find the innermost enclosing namespace for the new and
4607 // previous declarations.
4608 OuterContext = OuterContext->getEnclosingNamespaceContext();
4609 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4610
4611 // The previous declaration is in a different namespace, so it
4612 // isn't the same function.
4613 if (!OuterContext->Equals(PrevOuterContext))
4614 return false;
4615 }
4616
4617 return true;
4618 }
4619
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4620 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4621 CXXScopeSpec &SS = D.getCXXScopeSpec();
4622 if (!SS.isSet()) return;
4623 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4624 }
4625
inferObjCARCLifetime(ValueDecl * decl)4626 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4627 QualType type = decl->getType();
4628 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4629 if (lifetime == Qualifiers::OCL_Autoreleasing) {
4630 // Various kinds of declaration aren't allowed to be __autoreleasing.
4631 unsigned kind = -1U;
4632 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4633 if (var->hasAttr<BlocksAttr>())
4634 kind = 0; // __block
4635 else if (!var->hasLocalStorage())
4636 kind = 1; // global
4637 } else if (isa<ObjCIvarDecl>(decl)) {
4638 kind = 3; // ivar
4639 } else if (isa<FieldDecl>(decl)) {
4640 kind = 2; // field
4641 }
4642
4643 if (kind != -1U) {
4644 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4645 << kind;
4646 }
4647 } else if (lifetime == Qualifiers::OCL_None) {
4648 // Try to infer lifetime.
4649 if (!type->isObjCLifetimeType())
4650 return false;
4651
4652 lifetime = type->getObjCARCImplicitLifetime();
4653 type = Context.getLifetimeQualifiedType(type, lifetime);
4654 decl->setType(type);
4655 }
4656
4657 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4658 // Thread-local variables cannot have lifetime.
4659 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4660 var->getTLSKind()) {
4661 Diag(var->getLocation(), diag::err_arc_thread_ownership)
4662 << var->getType();
4663 return true;
4664 }
4665 }
4666
4667 return false;
4668 }
4669
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)4670 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4671 // 'weak' only applies to declarations with external linkage.
4672 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4673 if (!ND.isExternallyVisible()) {
4674 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4675 ND.dropAttr<WeakAttr>();
4676 }
4677 }
4678 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4679 if (ND.isExternallyVisible()) {
4680 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4681 ND.dropAttr<WeakRefAttr>();
4682 }
4683 }
4684
4685 // 'selectany' only applies to externally visible varable declarations.
4686 // It does not apply to functions.
4687 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4688 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4689 S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4690 ND.dropAttr<SelectAnyAttr>();
4691 }
4692 }
4693 }
4694
4695 /// Given that we are within the definition of the given function,
4696 /// will that definition behave like C99's 'inline', where the
4697 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)4698 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4699 // Try to avoid calling GetGVALinkageForFunction.
4700
4701 // All cases of this require the 'inline' keyword.
4702 if (!FD->isInlined()) return false;
4703
4704 // This is only possible in C++ with the gnu_inline attribute.
4705 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4706 return false;
4707
4708 // Okay, go ahead and call the relatively-more-expensive function.
4709
4710 #ifndef NDEBUG
4711 // AST quite reasonably asserts that it's working on a function
4712 // definition. We don't really have a way to tell it that we're
4713 // currently defining the function, so just lie to it in +Asserts
4714 // builds. This is an awful hack.
4715 FD->setLazyBody(1);
4716 #endif
4717
4718 bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4719
4720 #ifndef NDEBUG
4721 FD->setLazyBody(0);
4722 #endif
4723
4724 return isC99Inline;
4725 }
4726
4727 /// Determine whether a variable is extern "C" prior to attaching
4728 /// an initializer. We can't just call isExternC() here, because that
4729 /// will also compute and cache whether the declaration is externally
4730 /// visible, which might change when we attach the initializer.
4731 ///
4732 /// This can only be used if the declaration is known to not be a
4733 /// redeclaration of an internal linkage declaration.
4734 ///
4735 /// For instance:
4736 ///
4737 /// auto x = []{};
4738 ///
4739 /// Attaching the initializer here makes this declaration not externally
4740 /// visible, because its type has internal linkage.
4741 ///
4742 /// FIXME: This is a hack.
4743 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)4744 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4745 if (S.getLangOpts().CPlusPlus) {
4746 // In C++, the overloadable attribute negates the effects of extern "C".
4747 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4748 return false;
4749 }
4750 return D->isExternC();
4751 }
4752
shouldConsiderLinkage(const VarDecl * VD)4753 static bool shouldConsiderLinkage(const VarDecl *VD) {
4754 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4755 if (DC->isFunctionOrMethod())
4756 return VD->hasExternalStorage();
4757 if (DC->isFileContext())
4758 return true;
4759 if (DC->isRecord())
4760 return false;
4761 llvm_unreachable("Unexpected context");
4762 }
4763
shouldConsiderLinkage(const FunctionDecl * FD)4764 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4765 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4766 if (DC->isFileContext() || DC->isFunctionOrMethod())
4767 return true;
4768 if (DC->isRecord())
4769 return false;
4770 llvm_unreachable("Unexpected context");
4771 }
4772
HandleVariableRedeclaration(Decl * D,CXXScopeSpec & SS)4773 bool Sema::HandleVariableRedeclaration(Decl *D, CXXScopeSpec &SS) {
4774 // If this is a redeclaration of a variable template or a forward
4775 // declaration of a variable template partial specialization
4776 // with nested name specifier, complain.
4777
4778 if (D && SS.isNotEmpty() &&
4779 (isa<VarTemplateDecl>(D) ||
4780 isa<VarTemplatePartialSpecializationDecl>(D))) {
4781 Diag(SS.getBeginLoc(), diag::err_forward_var_nested_name_specifier)
4782 << isa<VarTemplatePartialSpecializationDecl>(D) << SS.getRange();
4783 return true;
4784 }
4785 return false;
4786 }
4787
4788 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)4789 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4790 TypeSourceInfo *TInfo, LookupResult &Previous,
4791 MultiTemplateParamsArg TemplateParamLists,
4792 bool &AddToScope) {
4793 QualType R = TInfo->getType();
4794 DeclarationName Name = GetNameForDeclarator(D).getName();
4795
4796 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4797 VarDecl::StorageClass SC =
4798 StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4799
4800 if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4801 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4802 // half array type (unless the cl_khr_fp16 extension is enabled).
4803 if (Context.getBaseElementType(R)->isHalfType()) {
4804 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4805 D.setInvalidType();
4806 }
4807 }
4808
4809 if (SCSpec == DeclSpec::SCS_mutable) {
4810 // mutable can only appear on non-static class members, so it's always
4811 // an error here
4812 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4813 D.setInvalidType();
4814 SC = SC_None;
4815 }
4816
4817 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4818 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4819 D.getDeclSpec().getStorageClassSpecLoc())) {
4820 // In C++11, the 'register' storage class specifier is deprecated.
4821 // Suppress the warning in system macros, it's used in macros in some
4822 // popular C system headers, such as in glibc's htonl() macro.
4823 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4824 diag::warn_deprecated_register)
4825 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4826 }
4827
4828 IdentifierInfo *II = Name.getAsIdentifierInfo();
4829 if (!II) {
4830 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4831 << Name;
4832 return 0;
4833 }
4834
4835 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4836
4837 if (!DC->isRecord() && S->getFnParent() == 0) {
4838 // C99 6.9p2: The storage-class specifiers auto and register shall not
4839 // appear in the declaration specifiers in an external declaration.
4840 if (SC == SC_Auto || SC == SC_Register) {
4841 // If this is a register variable with an asm label specified, then this
4842 // is a GNU extension.
4843 if (SC == SC_Register && D.getAsmLabel())
4844 Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4845 else
4846 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4847 D.setInvalidType();
4848 }
4849 }
4850
4851 if (getLangOpts().OpenCL) {
4852 // Set up the special work-group-local storage class for variables in the
4853 // OpenCL __local address space.
4854 if (R.getAddressSpace() == LangAS::opencl_local) {
4855 SC = SC_OpenCLWorkGroupLocal;
4856 }
4857
4858 // OpenCL v1.2 s6.9.b p4:
4859 // The sampler type cannot be used with the __local and __global address
4860 // space qualifiers.
4861 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4862 R.getAddressSpace() == LangAS::opencl_global)) {
4863 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4864 }
4865
4866 // OpenCL 1.2 spec, p6.9 r:
4867 // The event type cannot be used to declare a program scope variable.
4868 // The event type cannot be used with the __local, __constant and __global
4869 // address space qualifiers.
4870 if (R->isEventT()) {
4871 if (S->getParent() == 0) {
4872 Diag(D.getLocStart(), diag::err_event_t_global_var);
4873 D.setInvalidType();
4874 }
4875
4876 if (R.getAddressSpace()) {
4877 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4878 D.setInvalidType();
4879 }
4880 }
4881 }
4882
4883 bool IsExplicitSpecialization = false;
4884 bool IsVariableTemplateSpecialization = false;
4885 bool IsPartialSpecialization = false;
4886 bool Invalid = false; // TODO: Can we remove this (error-prone)?
4887 TemplateParameterList *TemplateParams = 0;
4888 VarTemplateDecl *PrevVarTemplate = 0;
4889 VarDecl *NewVD;
4890 if (!getLangOpts().CPlusPlus) {
4891 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4892 D.getIdentifierLoc(), II,
4893 R, TInfo, SC);
4894
4895 if (D.isInvalidType())
4896 NewVD->setInvalidDecl();
4897 } else {
4898 if (DC->isRecord() && !CurContext->isRecord()) {
4899 // This is an out-of-line definition of a static data member.
4900 switch (SC) {
4901 case SC_None:
4902 break;
4903 case SC_Static:
4904 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4905 diag::err_static_out_of_line)
4906 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4907 break;
4908 case SC_Auto:
4909 case SC_Register:
4910 case SC_Extern:
4911 // [dcl.stc] p2: The auto or register specifiers shall be applied only
4912 // to names of variables declared in a block or to function parameters.
4913 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4914 // of class members
4915
4916 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4917 diag::err_storage_class_for_static_member)
4918 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4919 break;
4920 case SC_PrivateExtern:
4921 llvm_unreachable("C storage class in c++!");
4922 case SC_OpenCLWorkGroupLocal:
4923 llvm_unreachable("OpenCL storage class in c++!");
4924 }
4925 }
4926
4927 if (SC == SC_Static && CurContext->isRecord()) {
4928 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4929 if (RD->isLocalClass())
4930 Diag(D.getIdentifierLoc(),
4931 diag::err_static_data_member_not_allowed_in_local_class)
4932 << Name << RD->getDeclName();
4933
4934 // C++98 [class.union]p1: If a union contains a static data member,
4935 // the program is ill-formed. C++11 drops this restriction.
4936 if (RD->isUnion())
4937 Diag(D.getIdentifierLoc(),
4938 getLangOpts().CPlusPlus11
4939 ? diag::warn_cxx98_compat_static_data_member_in_union
4940 : diag::ext_static_data_member_in_union) << Name;
4941 // We conservatively disallow static data members in anonymous structs.
4942 else if (!RD->getDeclName())
4943 Diag(D.getIdentifierLoc(),
4944 diag::err_static_data_member_not_allowed_in_anon_struct)
4945 << Name << RD->isUnion();
4946 }
4947 }
4948
4949 NamedDecl *PrevDecl = 0;
4950 if (Previous.begin() != Previous.end())
4951 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
4952 PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
4953
4954 // Match up the template parameter lists with the scope specifier, then
4955 // determine whether we have a template or a template specialization.
4956 TemplateParams = MatchTemplateParametersToScopeSpecifier(
4957 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
4958 D.getCXXScopeSpec(), TemplateParamLists,
4959 /*never a friend*/ false, IsExplicitSpecialization, Invalid);
4960 if (TemplateParams) {
4961 if (!TemplateParams->size() &&
4962 D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4963 // There is an extraneous 'template<>' for this variable. Complain
4964 // about it, but allow the declaration of the variable.
4965 Diag(TemplateParams->getTemplateLoc(),
4966 diag::err_template_variable_noparams)
4967 << II
4968 << SourceRange(TemplateParams->getTemplateLoc(),
4969 TemplateParams->getRAngleLoc());
4970 } else {
4971 // Only C++1y supports variable templates (N3651).
4972 Diag(D.getIdentifierLoc(),
4973 getLangOpts().CPlusPlus1y
4974 ? diag::warn_cxx11_compat_variable_template
4975 : diag::ext_variable_template);
4976
4977 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4978 // This is an explicit specialization or a partial specialization.
4979 // Check that we can declare a specialization here
4980
4981 IsVariableTemplateSpecialization = true;
4982 IsPartialSpecialization = TemplateParams->size() > 0;
4983
4984 } else { // if (TemplateParams->size() > 0)
4985 // This is a template declaration.
4986
4987 // Check that we can declare a template here.
4988 if (CheckTemplateDeclScope(S, TemplateParams))
4989 return 0;
4990
4991 // If there is a previous declaration with the same name, check
4992 // whether this is a valid redeclaration.
4993 if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
4994 PrevDecl = PrevVarTemplate = 0;
4995
4996 if (PrevVarTemplate) {
4997 // Ensure that the template parameter lists are compatible.
4998 if (!TemplateParameterListsAreEqual(
4999 TemplateParams, PrevVarTemplate->getTemplateParameters(),
5000 /*Complain=*/true, TPL_TemplateMatch))
5001 return 0;
5002 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5003 // Maybe we will complain about the shadowed template parameter.
5004 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5005
5006 // Just pretend that we didn't see the previous declaration.
5007 PrevDecl = 0;
5008 } else if (PrevDecl) {
5009 // C++ [temp]p5:
5010 // ... a template name declared in namespace scope or in class
5011 // scope shall be unique in that scope.
5012 Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5013 << Name;
5014 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5015 return 0;
5016 }
5017
5018 // Check the template parameter list of this declaration, possibly
5019 // merging in the template parameter list from the previous variable
5020 // template declaration.
5021 if (CheckTemplateParameterList(
5022 TemplateParams,
5023 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5024 : 0,
5025 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5026 DC->isDependentContext())
5027 ? TPC_ClassTemplateMember
5028 : TPC_VarTemplate))
5029 Invalid = true;
5030
5031 if (D.getCXXScopeSpec().isSet()) {
5032 // If the name of the template was qualified, we must be defining
5033 // the template out-of-line.
5034 if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5035 !PrevVarTemplate) {
5036 Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
5037 << Name << DC << D.getCXXScopeSpec().getRange();
5038 Invalid = true;
5039 }
5040 }
5041 }
5042 }
5043 } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5044 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5045
5046 // We have encountered something that the user meant to be a
5047 // specialization (because it has explicitly-specified template
5048 // arguments) but that was not introduced with a "template<>" (or had
5049 // too few of them).
5050 // FIXME: Differentiate between attempts for explicit instantiations
5051 // (starting with "template") and the rest.
5052 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5053 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5054 << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5055 "template<> ");
5056 IsVariableTemplateSpecialization = true;
5057 }
5058
5059 if (IsVariableTemplateSpecialization) {
5060 if (!PrevVarTemplate) {
5061 Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5062 << IsPartialSpecialization;
5063 return 0;
5064 }
5065
5066 SourceLocation TemplateKWLoc =
5067 TemplateParamLists.size() > 0
5068 ? TemplateParamLists[0]->getTemplateLoc()
5069 : SourceLocation();
5070 DeclResult Res = ActOnVarTemplateSpecialization(
5071 S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5072 IsPartialSpecialization);
5073 if (Res.isInvalid())
5074 return 0;
5075 NewVD = cast<VarDecl>(Res.get());
5076 AddToScope = false;
5077 } else
5078 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5079 D.getIdentifierLoc(), II, R, TInfo, SC);
5080
5081 // If this decl has an auto type in need of deduction, make a note of the
5082 // Decl so we can diagnose uses of it in its own initializer.
5083 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5084 ParsingInitForAutoVars.insert(NewVD);
5085
5086 if (D.isInvalidType() || Invalid)
5087 NewVD->setInvalidDecl();
5088
5089 SetNestedNameSpecifier(NewVD, D);
5090
5091 // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5092 if (TemplateParams && TemplateParamLists.size() > 1 &&
5093 (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5094 NewVD->setTemplateParameterListsInfo(
5095 Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5096 } else if (IsVariableTemplateSpecialization ||
5097 (!TemplateParams && TemplateParamLists.size() > 0 &&
5098 (D.getCXXScopeSpec().isSet()))) {
5099 NewVD->setTemplateParameterListsInfo(Context,
5100 TemplateParamLists.size(),
5101 TemplateParamLists.data());
5102 }
5103
5104 if (D.getDeclSpec().isConstexprSpecified())
5105 NewVD->setConstexpr(true);
5106 }
5107
5108 // Set the lexical context. If the declarator has a C++ scope specifier, the
5109 // lexical context will be different from the semantic context.
5110 NewVD->setLexicalDeclContext(CurContext);
5111
5112 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5113 if (NewVD->hasLocalStorage()) {
5114 // C++11 [dcl.stc]p4:
5115 // When thread_local is applied to a variable of block scope the
5116 // storage-class-specifier static is implied if it does not appear
5117 // explicitly.
5118 // Core issue: 'static' is not implied if the variable is declared
5119 // 'extern'.
5120 if (SCSpec == DeclSpec::SCS_unspecified &&
5121 TSCS == DeclSpec::TSCS_thread_local &&
5122 DC->isFunctionOrMethod())
5123 NewVD->setTSCSpec(TSCS);
5124 else
5125 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5126 diag::err_thread_non_global)
5127 << DeclSpec::getSpecifierName(TSCS);
5128 } else if (!Context.getTargetInfo().isTLSSupported())
5129 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5130 diag::err_thread_unsupported);
5131 else
5132 NewVD->setTSCSpec(TSCS);
5133 }
5134
5135 // C99 6.7.4p3
5136 // An inline definition of a function with external linkage shall
5137 // not contain a definition of a modifiable object with static or
5138 // thread storage duration...
5139 // We only apply this when the function is required to be defined
5140 // elsewhere, i.e. when the function is not 'extern inline'. Note
5141 // that a local variable with thread storage duration still has to
5142 // be marked 'static'. Also note that it's possible to get these
5143 // semantics in C++ using __attribute__((gnu_inline)).
5144 if (SC == SC_Static && S->getFnParent() != 0 &&
5145 !NewVD->getType().isConstQualified()) {
5146 FunctionDecl *CurFD = getCurFunctionDecl();
5147 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5148 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5149 diag::warn_static_local_in_extern_inline);
5150 MaybeSuggestAddingStaticToDecl(CurFD);
5151 }
5152 }
5153
5154 if (D.getDeclSpec().isModulePrivateSpecified()) {
5155 if (IsVariableTemplateSpecialization)
5156 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5157 << (IsPartialSpecialization ? 1 : 0)
5158 << FixItHint::CreateRemoval(
5159 D.getDeclSpec().getModulePrivateSpecLoc());
5160 else if (IsExplicitSpecialization)
5161 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5162 << 2
5163 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5164 else if (NewVD->hasLocalStorage())
5165 Diag(NewVD->getLocation(), diag::err_module_private_local)
5166 << 0 << NewVD->getDeclName()
5167 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5168 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5169 else
5170 NewVD->setModulePrivate();
5171 }
5172
5173 // Handle attributes prior to checking for duplicates in MergeVarDecl
5174 ProcessDeclAttributes(S, NewVD, D);
5175
5176 if (NewVD->hasAttrs())
5177 CheckAlignasUnderalignment(NewVD);
5178
5179 if (getLangOpts().CUDA) {
5180 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5181 // storage [duration]."
5182 if (SC == SC_None && S->getFnParent() != 0 &&
5183 (NewVD->hasAttr<CUDASharedAttr>() ||
5184 NewVD->hasAttr<CUDAConstantAttr>())) {
5185 NewVD->setStorageClass(SC_Static);
5186 }
5187 }
5188
5189 // In auto-retain/release, infer strong retension for variables of
5190 // retainable type.
5191 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5192 NewVD->setInvalidDecl();
5193
5194 // Handle GNU asm-label extension (encoded as an attribute).
5195 if (Expr *E = (Expr*)D.getAsmLabel()) {
5196 // The parser guarantees this is a string.
5197 StringLiteral *SE = cast<StringLiteral>(E);
5198 StringRef Label = SE->getString();
5199 if (S->getFnParent() != 0) {
5200 switch (SC) {
5201 case SC_None:
5202 case SC_Auto:
5203 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5204 break;
5205 case SC_Register:
5206 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5207 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5208 break;
5209 case SC_Static:
5210 case SC_Extern:
5211 case SC_PrivateExtern:
5212 case SC_OpenCLWorkGroupLocal:
5213 break;
5214 }
5215 }
5216
5217 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5218 Context, Label));
5219 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5220 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5221 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5222 if (I != ExtnameUndeclaredIdentifiers.end()) {
5223 NewVD->addAttr(I->second);
5224 ExtnameUndeclaredIdentifiers.erase(I);
5225 }
5226 }
5227
5228 // Diagnose shadowed variables before filtering for scope.
5229 // FIXME: Special treatment for static variable template members (?).
5230 if (!D.getCXXScopeSpec().isSet())
5231 CheckShadow(S, NewVD, Previous);
5232
5233 // Don't consider existing declarations that are in a different
5234 // scope and are out-of-semantic-context declarations (if the new
5235 // declaration has linkage).
5236 FilterLookupForScope(
5237 Previous, DC, S, shouldConsiderLinkage(NewVD),
5238 IsExplicitSpecialization || IsVariableTemplateSpecialization);
5239
5240 if (!getLangOpts().CPlusPlus) {
5241 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5242 } else {
5243 // Merge the decl with the existing one if appropriate.
5244 if (!Previous.empty()) {
5245 if (Previous.isSingleResult() &&
5246 isa<FieldDecl>(Previous.getFoundDecl()) &&
5247 D.getCXXScopeSpec().isSet()) {
5248 // The user tried to define a non-static data member
5249 // out-of-line (C++ [dcl.meaning]p1).
5250 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5251 << D.getCXXScopeSpec().getRange();
5252 Previous.clear();
5253 NewVD->setInvalidDecl();
5254 }
5255 } else if (D.getCXXScopeSpec().isSet()) {
5256 // No previous declaration in the qualifying scope.
5257 Diag(D.getIdentifierLoc(), diag::err_no_member)
5258 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5259 << D.getCXXScopeSpec().getRange();
5260 NewVD->setInvalidDecl();
5261 }
5262
5263 if (!IsVariableTemplateSpecialization) {
5264 if (PrevVarTemplate) {
5265 LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5266 LookupOrdinaryName, ForRedeclaration);
5267 PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5268 D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5269 } else
5270 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5271 }
5272
5273 // This is an explicit specialization of a static data member. Check it.
5274 // FIXME: Special treatment for static variable template members (?).
5275 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5276 CheckMemberSpecialization(NewVD, Previous))
5277 NewVD->setInvalidDecl();
5278 }
5279
5280 ProcessPragmaWeak(S, NewVD);
5281 checkAttributesAfterMerging(*this, *NewVD);
5282
5283 // If this is the first declaration of an extern C variable, update
5284 // the map of such variables.
5285 if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5286 isIncompleteDeclExternC(*this, NewVD))
5287 RegisterLocallyScopedExternCDecl(NewVD, S);
5288
5289 if (NewVD->isStaticLocal()) {
5290 Decl *ManglingContextDecl;
5291 if (MangleNumberingContext *MCtx =
5292 getCurrentMangleNumberContext(NewVD->getDeclContext(),
5293 ManglingContextDecl)) {
5294 Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5295 }
5296 }
5297
5298 // If this is not a variable template, return it now
5299 if (!TemplateParams || IsVariableTemplateSpecialization)
5300 return NewVD;
5301
5302 // If this is supposed to be a variable template, create it as such.
5303 VarTemplateDecl *NewTemplate =
5304 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5305 TemplateParams, NewVD, PrevVarTemplate);
5306 NewVD->setDescribedVarTemplate(NewTemplate);
5307
5308 if (D.getDeclSpec().isModulePrivateSpecified())
5309 NewTemplate->setModulePrivate();
5310
5311 // If we are providing an explicit specialization of a static variable
5312 // template, make a note of that.
5313 if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5314 NewTemplate->setMemberSpecialization();
5315
5316 // Set the lexical context of this template
5317 NewTemplate->setLexicalDeclContext(CurContext);
5318 if (NewVD->isStaticDataMember() && NewVD->isOutOfLine())
5319 NewTemplate->setAccess(NewVD->getAccess());
5320
5321 if (PrevVarTemplate)
5322 mergeDeclAttributes(NewVD, PrevVarTemplate->getTemplatedDecl());
5323
5324 AddPushedVisibilityAttribute(NewVD);
5325
5326 PushOnScopeChains(NewTemplate, S);
5327 AddToScope = false;
5328
5329 if (Invalid) {
5330 NewTemplate->setInvalidDecl();
5331 NewVD->setInvalidDecl();
5332 }
5333
5334 ActOnDocumentableDecl(NewTemplate);
5335
5336 return NewTemplate;
5337 }
5338
5339 /// \brief Diagnose variable or built-in function shadowing. Implements
5340 /// -Wshadow.
5341 ///
5342 /// This method is called whenever a VarDecl is added to a "useful"
5343 /// scope.
5344 ///
5345 /// \param S the scope in which the shadowing name is being declared
5346 /// \param R the lookup of the name
5347 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)5348 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5349 // Return if warning is ignored.
5350 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5351 DiagnosticsEngine::Ignored)
5352 return;
5353
5354 // Don't diagnose declarations at file scope.
5355 if (D->hasGlobalStorage())
5356 return;
5357
5358 DeclContext *NewDC = D->getDeclContext();
5359
5360 // Only diagnose if we're shadowing an unambiguous field or variable.
5361 if (R.getResultKind() != LookupResult::Found)
5362 return;
5363
5364 NamedDecl* ShadowedDecl = R.getFoundDecl();
5365 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5366 return;
5367
5368 // Fields are not shadowed by variables in C++ static methods.
5369 if (isa<FieldDecl>(ShadowedDecl))
5370 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5371 if (MD->isStatic())
5372 return;
5373
5374 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5375 if (shadowedVar->isExternC()) {
5376 // For shadowing external vars, make sure that we point to the global
5377 // declaration, not a locally scoped extern declaration.
5378 for (VarDecl::redecl_iterator
5379 I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5380 I != E; ++I)
5381 if (I->isFileVarDecl()) {
5382 ShadowedDecl = *I;
5383 break;
5384 }
5385 }
5386
5387 DeclContext *OldDC = ShadowedDecl->getDeclContext();
5388
5389 // Only warn about certain kinds of shadowing for class members.
5390 if (NewDC && NewDC->isRecord()) {
5391 // In particular, don't warn about shadowing non-class members.
5392 if (!OldDC->isRecord())
5393 return;
5394
5395 // TODO: should we warn about static data members shadowing
5396 // static data members from base classes?
5397
5398 // TODO: don't diagnose for inaccessible shadowed members.
5399 // This is hard to do perfectly because we might friend the
5400 // shadowing context, but that's just a false negative.
5401 }
5402
5403 // Determine what kind of declaration we're shadowing.
5404 unsigned Kind;
5405 if (isa<RecordDecl>(OldDC)) {
5406 if (isa<FieldDecl>(ShadowedDecl))
5407 Kind = 3; // field
5408 else
5409 Kind = 2; // static data member
5410 } else if (OldDC->isFileContext())
5411 Kind = 1; // global
5412 else
5413 Kind = 0; // local
5414
5415 DeclarationName Name = R.getLookupName();
5416
5417 // Emit warning and note.
5418 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5419 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5420 }
5421
5422 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)5423 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5424 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5425 DiagnosticsEngine::Ignored)
5426 return;
5427
5428 LookupResult R(*this, D->getDeclName(), D->getLocation(),
5429 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5430 LookupName(R, S);
5431 CheckShadow(S, D, R);
5432 }
5433
5434 /// Check for conflict between this global or extern "C" declaration and
5435 /// previous global or extern "C" declarations. This is only used in C++.
5436 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)5437 static bool checkGlobalOrExternCConflict(
5438 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5439 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5440 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5441
5442 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5443 // The common case: this global doesn't conflict with any extern "C"
5444 // declaration.
5445 return false;
5446 }
5447
5448 if (Prev) {
5449 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5450 // Both the old and new declarations have C language linkage. This is a
5451 // redeclaration.
5452 Previous.clear();
5453 Previous.addDecl(Prev);
5454 return true;
5455 }
5456
5457 // This is a global, non-extern "C" declaration, and there is a previous
5458 // non-global extern "C" declaration. Diagnose if this is a variable
5459 // declaration.
5460 if (!isa<VarDecl>(ND))
5461 return false;
5462 } else {
5463 // The declaration is extern "C". Check for any declaration in the
5464 // translation unit which might conflict.
5465 if (IsGlobal) {
5466 // We have already performed the lookup into the translation unit.
5467 IsGlobal = false;
5468 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5469 I != E; ++I) {
5470 if (isa<VarDecl>(*I)) {
5471 Prev = *I;
5472 break;
5473 }
5474 }
5475 } else {
5476 DeclContext::lookup_result R =
5477 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5478 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5479 I != E; ++I) {
5480 if (isa<VarDecl>(*I)) {
5481 Prev = *I;
5482 break;
5483 }
5484 // FIXME: If we have any other entity with this name in global scope,
5485 // the declaration is ill-formed, but that is a defect: it breaks the
5486 // 'stat' hack, for instance. Only variables can have mangled name
5487 // clashes with extern "C" declarations, so only they deserve a
5488 // diagnostic.
5489 }
5490 }
5491
5492 if (!Prev)
5493 return false;
5494 }
5495
5496 // Use the first declaration's location to ensure we point at something which
5497 // is lexically inside an extern "C" linkage-spec.
5498 assert(Prev && "should have found a previous declaration to diagnose");
5499 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5500 Prev = FD->getFirstDeclaration();
5501 else
5502 Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5503
5504 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5505 << IsGlobal << ND;
5506 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5507 << IsGlobal;
5508 return false;
5509 }
5510
5511 /// Apply special rules for handling extern "C" declarations. Returns \c true
5512 /// if we have found that this is a redeclaration of some prior entity.
5513 ///
5514 /// Per C++ [dcl.link]p6:
5515 /// Two declarations [for a function or variable] with C language linkage
5516 /// with the same name that appear in different scopes refer to the same
5517 /// [entity]. An entity with C language linkage shall not be declared with
5518 /// the same name as an entity in global scope.
5519 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)5520 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5521 LookupResult &Previous) {
5522 if (!S.getLangOpts().CPlusPlus) {
5523 // In C, when declaring a global variable, look for a corresponding 'extern'
5524 // variable declared in function scope.
5525 //
5526 // FIXME: The corresponding case in C++ does not work. We should instead
5527 // set the semantic DC for an extern local variable to be the innermost
5528 // enclosing namespace, and ensure they are only found by redeclaration
5529 // lookup.
5530 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5531 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5532 Previous.clear();
5533 Previous.addDecl(Prev);
5534 return true;
5535 }
5536 }
5537 return false;
5538 }
5539
5540 // A declaration in the translation unit can conflict with an extern "C"
5541 // declaration.
5542 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5543 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5544
5545 // An extern "C" declaration can conflict with a declaration in the
5546 // translation unit or can be a redeclaration of an extern "C" declaration
5547 // in another scope.
5548 if (isIncompleteDeclExternC(S,ND))
5549 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5550
5551 // Neither global nor extern "C": nothing to do.
5552 return false;
5553 }
5554
CheckVariableDeclarationType(VarDecl * NewVD)5555 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5556 // If the decl is already known invalid, don't check it.
5557 if (NewVD->isInvalidDecl())
5558 return;
5559
5560 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5561 QualType T = TInfo->getType();
5562
5563 // Defer checking an 'auto' type until its initializer is attached.
5564 if (T->isUndeducedType())
5565 return;
5566
5567 if (T->isObjCObjectType()) {
5568 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5569 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5570 T = Context.getObjCObjectPointerType(T);
5571 NewVD->setType(T);
5572 }
5573
5574 // Emit an error if an address space was applied to decl with local storage.
5575 // This includes arrays of objects with address space qualifiers, but not
5576 // automatic variables that point to other address spaces.
5577 // ISO/IEC TR 18037 S5.1.2
5578 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5579 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5580 NewVD->setInvalidDecl();
5581 return;
5582 }
5583
5584 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5585 // __constant address space.
5586 if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5587 && T.getAddressSpace() != LangAS::opencl_constant
5588 && !T->isSamplerT()){
5589 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5590 NewVD->setInvalidDecl();
5591 return;
5592 }
5593
5594 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5595 // scope.
5596 if ((getLangOpts().OpenCLVersion >= 120)
5597 && NewVD->isStaticLocal()) {
5598 Diag(NewVD->getLocation(), diag::err_static_function_scope);
5599 NewVD->setInvalidDecl();
5600 return;
5601 }
5602
5603 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5604 && !NewVD->hasAttr<BlocksAttr>()) {
5605 if (getLangOpts().getGC() != LangOptions::NonGC)
5606 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5607 else {
5608 assert(!getLangOpts().ObjCAutoRefCount);
5609 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5610 }
5611 }
5612
5613 bool isVM = T->isVariablyModifiedType();
5614 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5615 NewVD->hasAttr<BlocksAttr>())
5616 getCurFunction()->setHasBranchProtectedScope();
5617
5618 if ((isVM && NewVD->hasLinkage()) ||
5619 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5620 bool SizeIsNegative;
5621 llvm::APSInt Oversized;
5622 TypeSourceInfo *FixedTInfo =
5623 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5624 SizeIsNegative, Oversized);
5625 if (FixedTInfo == 0 && T->isVariableArrayType()) {
5626 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5627 // FIXME: This won't give the correct result for
5628 // int a[10][n];
5629 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5630
5631 if (NewVD->isFileVarDecl())
5632 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5633 << SizeRange;
5634 else if (NewVD->isStaticLocal())
5635 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5636 << SizeRange;
5637 else
5638 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5639 << SizeRange;
5640 NewVD->setInvalidDecl();
5641 return;
5642 }
5643
5644 if (FixedTInfo == 0) {
5645 if (NewVD->isFileVarDecl())
5646 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5647 else
5648 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5649 NewVD->setInvalidDecl();
5650 return;
5651 }
5652
5653 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5654 NewVD->setType(FixedTInfo->getType());
5655 NewVD->setTypeSourceInfo(FixedTInfo);
5656 }
5657
5658 if (T->isVoidType()) {
5659 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5660 // of objects and functions.
5661 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5662 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5663 << T;
5664 NewVD->setInvalidDecl();
5665 return;
5666 }
5667 }
5668
5669 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5670 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5671 NewVD->setInvalidDecl();
5672 return;
5673 }
5674
5675 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5676 Diag(NewVD->getLocation(), diag::err_block_on_vm);
5677 NewVD->setInvalidDecl();
5678 return;
5679 }
5680
5681 if (NewVD->isConstexpr() && !T->isDependentType() &&
5682 RequireLiteralType(NewVD->getLocation(), T,
5683 diag::err_constexpr_var_non_literal)) {
5684 // Can't perform this check until the type is deduced.
5685 NewVD->setInvalidDecl();
5686 return;
5687 }
5688 }
5689
5690 /// \brief Perform semantic checking on a newly-created variable
5691 /// declaration.
5692 ///
5693 /// This routine performs all of the type-checking required for a
5694 /// variable declaration once it has been built. It is used both to
5695 /// check variables after they have been parsed and their declarators
5696 /// have been translated into a declaration, and to check variables
5697 /// that have been instantiated from a template.
5698 ///
5699 /// Sets NewVD->isInvalidDecl() if an error was encountered.
5700 ///
5701 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)5702 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5703 LookupResult &Previous) {
5704 CheckVariableDeclarationType(NewVD);
5705
5706 // If the decl is already known invalid, don't check it.
5707 if (NewVD->isInvalidDecl())
5708 return false;
5709
5710 // If we did not find anything by this name, look for a non-visible
5711 // extern "C" declaration with the same name.
5712 //
5713 // Clang has a lot of problems with extern local declarations.
5714 // The actual standards text here is:
5715 //
5716 // C++11 [basic.link]p6:
5717 // The name of a function declared in block scope and the name
5718 // of a variable declared by a block scope extern declaration
5719 // have linkage. If there is a visible declaration of an entity
5720 // with linkage having the same name and type, ignoring entities
5721 // declared outside the innermost enclosing namespace scope, the
5722 // block scope declaration declares that same entity and
5723 // receives the linkage of the previous declaration.
5724 //
5725 // C11 6.2.7p4:
5726 // For an identifier with internal or external linkage declared
5727 // in a scope in which a prior declaration of that identifier is
5728 // visible, if the prior declaration specifies internal or
5729 // external linkage, the type of the identifier at the later
5730 // declaration becomes the composite type.
5731 //
5732 // The most important point here is that we're not allowed to
5733 // update our understanding of the type according to declarations
5734 // not in scope.
5735 bool PreviousWasHidden =
5736 Previous.empty() &&
5737 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
5738
5739 // Filter out any non-conflicting previous declarations.
5740 filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5741
5742 if (!Previous.empty()) {
5743 MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5744 return true;
5745 }
5746 return false;
5747 }
5748
5749 /// \brief Data used with FindOverriddenMethod
5750 struct FindOverriddenMethodData {
5751 Sema *S;
5752 CXXMethodDecl *Method;
5753 };
5754
5755 /// \brief Member lookup function that determines whether a given C++
5756 /// method overrides a method in a base class, to be used with
5757 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)5758 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5759 CXXBasePath &Path,
5760 void *UserData) {
5761 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5762
5763 FindOverriddenMethodData *Data
5764 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5765
5766 DeclarationName Name = Data->Method->getDeclName();
5767
5768 // FIXME: Do we care about other names here too?
5769 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5770 // We really want to find the base class destructor here.
5771 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5772 CanQualType CT = Data->S->Context.getCanonicalType(T);
5773
5774 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5775 }
5776
5777 for (Path.Decls = BaseRecord->lookup(Name);
5778 !Path.Decls.empty();
5779 Path.Decls = Path.Decls.slice(1)) {
5780 NamedDecl *D = Path.Decls.front();
5781 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5782 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5783 return true;
5784 }
5785 }
5786
5787 return false;
5788 }
5789
5790 namespace {
5791 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5792 }
5793 /// \brief Report an error regarding overriding, along with any relevant
5794 /// overriden methods.
5795 ///
5796 /// \param DiagID the primary error to report.
5797 /// \param MD the overriding method.
5798 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)5799 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5800 OverrideErrorKind OEK = OEK_All) {
5801 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5802 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5803 E = MD->end_overridden_methods();
5804 I != E; ++I) {
5805 // This check (& the OEK parameter) could be replaced by a predicate, but
5806 // without lambdas that would be overkill. This is still nicer than writing
5807 // out the diag loop 3 times.
5808 if ((OEK == OEK_All) ||
5809 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5810 (OEK == OEK_Deleted && (*I)->isDeleted()))
5811 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5812 }
5813 }
5814
5815 /// AddOverriddenMethods - See if a method overrides any in the base classes,
5816 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)5817 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5818 // Look for virtual methods in base classes that this method might override.
5819 CXXBasePaths Paths;
5820 FindOverriddenMethodData Data;
5821 Data.Method = MD;
5822 Data.S = this;
5823 bool hasDeletedOverridenMethods = false;
5824 bool hasNonDeletedOverridenMethods = false;
5825 bool AddedAny = false;
5826 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5827 for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5828 E = Paths.found_decls_end(); I != E; ++I) {
5829 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5830 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5831 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5832 !CheckOverridingFunctionAttributes(MD, OldMD) &&
5833 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5834 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5835 hasDeletedOverridenMethods |= OldMD->isDeleted();
5836 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5837 AddedAny = true;
5838 }
5839 }
5840 }
5841 }
5842
5843 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5844 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5845 }
5846 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5847 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5848 }
5849
5850 return AddedAny;
5851 }
5852
5853 namespace {
5854 // Struct for holding all of the extra arguments needed by
5855 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5856 struct ActOnFDArgs {
5857 Scope *S;
5858 Declarator &D;
5859 MultiTemplateParamsArg TemplateParamLists;
5860 bool AddToScope;
5861 };
5862 }
5863
5864 namespace {
5865
5866 // Callback to only accept typo corrections that have a non-zero edit distance.
5867 // Also only accept corrections that have the same parent decl.
5868 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5869 public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)5870 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5871 CXXRecordDecl *Parent)
5872 : Context(Context), OriginalFD(TypoFD),
5873 ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5874
ValidateCandidate(const TypoCorrection & candidate)5875 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5876 if (candidate.getEditDistance() == 0)
5877 return false;
5878
5879 SmallVector<unsigned, 1> MismatchedParams;
5880 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5881 CDeclEnd = candidate.end();
5882 CDecl != CDeclEnd; ++CDecl) {
5883 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5884
5885 if (FD && !FD->hasBody() &&
5886 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5887 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5888 CXXRecordDecl *Parent = MD->getParent();
5889 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5890 return true;
5891 } else if (!ExpectedParent) {
5892 return true;
5893 }
5894 }
5895 }
5896
5897 return false;
5898 }
5899
5900 private:
5901 ASTContext &Context;
5902 FunctionDecl *OriginalFD;
5903 CXXRecordDecl *ExpectedParent;
5904 };
5905
5906 }
5907
5908 /// \brief Generate diagnostics for an invalid function redeclaration.
5909 ///
5910 /// This routine handles generating the diagnostic messages for an invalid
5911 /// function redeclaration, including finding possible similar declarations
5912 /// or performing typo correction if there are no previous declarations with
5913 /// the same name.
5914 ///
5915 /// Returns a NamedDecl iff typo correction was performed and substituting in
5916 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs)5917 static NamedDecl* DiagnoseInvalidRedeclaration(
5918 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5919 ActOnFDArgs &ExtraArgs) {
5920 NamedDecl *Result = NULL;
5921 DeclarationName Name = NewFD->getDeclName();
5922 DeclContext *NewDC = NewFD->getDeclContext();
5923 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5924 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5925 SmallVector<unsigned, 1> MismatchedParams;
5926 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5927 TypoCorrection Correction;
5928 bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5929 ExtraArgs.D.getDeclSpec().isFriendSpecified());
5930 unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5931 : diag::err_member_def_does_not_match;
5932
5933 NewFD->setInvalidDecl();
5934 SemaRef.LookupQualifiedName(Prev, NewDC);
5935 assert(!Prev.isAmbiguous() &&
5936 "Cannot have an ambiguity in previous-declaration lookup");
5937 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5938 DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5939 MD ? MD->getParent() : 0);
5940 if (!Prev.empty()) {
5941 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5942 Func != FuncEnd; ++Func) {
5943 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5944 if (FD &&
5945 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5946 // Add 1 to the index so that 0 can mean the mismatch didn't
5947 // involve a parameter
5948 unsigned ParamNum =
5949 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5950 NearMatches.push_back(std::make_pair(FD, ParamNum));
5951 }
5952 }
5953 // If the qualified name lookup yielded nothing, try typo correction
5954 } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5955 Prev.getLookupKind(), 0, 0,
5956 Validator, NewDC))) {
5957 // Trap errors.
5958 Sema::SFINAETrap Trap(SemaRef);
5959
5960 // Set up everything for the call to ActOnFunctionDeclarator
5961 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5962 ExtraArgs.D.getIdentifierLoc());
5963 Previous.clear();
5964 Previous.setLookupName(Correction.getCorrection());
5965 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5966 CDeclEnd = Correction.end();
5967 CDecl != CDeclEnd; ++CDecl) {
5968 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5969 if (FD && !FD->hasBody() &&
5970 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5971 Previous.addDecl(FD);
5972 }
5973 }
5974 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5975 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5976 // pieces need to verify the typo-corrected C++ declaraction and hopefully
5977 // eliminate the need for the parameter pack ExtraArgs.
5978 Result = SemaRef.ActOnFunctionDeclarator(
5979 ExtraArgs.S, ExtraArgs.D,
5980 Correction.getCorrectionDecl()->getDeclContext(),
5981 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5982 ExtraArgs.AddToScope);
5983 if (Trap.hasErrorOccurred()) {
5984 // Pretend the typo correction never occurred
5985 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5986 ExtraArgs.D.getIdentifierLoc());
5987 ExtraArgs.D.setRedeclaration(wasRedeclaration);
5988 Previous.clear();
5989 Previous.setLookupName(Name);
5990 Result = NULL;
5991 } else {
5992 for (LookupResult::iterator Func = Previous.begin(),
5993 FuncEnd = Previous.end();
5994 Func != FuncEnd; ++Func) {
5995 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5996 NearMatches.push_back(std::make_pair(FD, 0));
5997 }
5998 }
5999 if (NearMatches.empty()) {
6000 // Ignore the correction if it didn't yield any close FunctionDecl matches
6001 Correction = TypoCorrection();
6002 } else {
6003 DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
6004 : diag::err_member_def_does_not_match_suggest;
6005 }
6006 }
6007
6008 if (Correction) {
6009 // FIXME: use Correction.getCorrectionRange() instead of computing the range
6010 // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
6011 // turn causes the correction to fully qualify the name. If we fix
6012 // CorrectTypo to minimally qualify then this change should be good.
6013 SourceRange FixItLoc(NewFD->getLocation());
6014 CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
6015 if (Correction.getCorrectionSpecifier() && SS.isValid())
6016 FixItLoc.setBegin(SS.getBeginLoc());
6017 SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
6018 << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
6019 << FixItHint::CreateReplacement(
6020 FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
6021 } else {
6022 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6023 << Name << NewDC << NewFD->getLocation();
6024 }
6025
6026 bool NewFDisConst = false;
6027 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6028 NewFDisConst = NewMD->isConst();
6029
6030 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6031 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6032 NearMatch != NearMatchEnd; ++NearMatch) {
6033 FunctionDecl *FD = NearMatch->first;
6034 bool FDisConst = false;
6035 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
6036 FDisConst = MD->isConst();
6037
6038 if (unsigned Idx = NearMatch->second) {
6039 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6040 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6041 if (Loc.isInvalid()) Loc = FD->getLocation();
6042 SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
6043 << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
6044 } else if (Correction) {
6045 SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
6046 << Correction.getQuoted(SemaRef.getLangOpts());
6047 } else if (FDisConst != NewFDisConst) {
6048 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6049 << NewFDisConst << FD->getSourceRange().getEnd();
6050 } else
6051 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
6052 }
6053 return Result;
6054 }
6055
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6056 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6057 Declarator &D) {
6058 switch (D.getDeclSpec().getStorageClassSpec()) {
6059 default: llvm_unreachable("Unknown storage class!");
6060 case DeclSpec::SCS_auto:
6061 case DeclSpec::SCS_register:
6062 case DeclSpec::SCS_mutable:
6063 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6064 diag::err_typecheck_sclass_func);
6065 D.setInvalidType();
6066 break;
6067 case DeclSpec::SCS_unspecified: break;
6068 case DeclSpec::SCS_extern:
6069 if (D.getDeclSpec().isExternInLinkageSpec())
6070 return SC_None;
6071 return SC_Extern;
6072 case DeclSpec::SCS_static: {
6073 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6074 // C99 6.7.1p5:
6075 // The declaration of an identifier for a function that has
6076 // block scope shall have no explicit storage-class specifier
6077 // other than extern
6078 // See also (C++ [dcl.stc]p4).
6079 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6080 diag::err_static_block_func);
6081 break;
6082 } else
6083 return SC_Static;
6084 }
6085 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6086 }
6087
6088 // No explicit storage class has already been returned
6089 return SC_None;
6090 }
6091
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)6092 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6093 DeclContext *DC, QualType &R,
6094 TypeSourceInfo *TInfo,
6095 FunctionDecl::StorageClass SC,
6096 bool &IsVirtualOkay) {
6097 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6098 DeclarationName Name = NameInfo.getName();
6099
6100 FunctionDecl *NewFD = 0;
6101 bool isInline = D.getDeclSpec().isInlineSpecified();
6102
6103 if (!SemaRef.getLangOpts().CPlusPlus) {
6104 // Determine whether the function was written with a
6105 // prototype. This true when:
6106 // - there is a prototype in the declarator, or
6107 // - the type R of the function is some kind of typedef or other reference
6108 // to a type name (which eventually refers to a function type).
6109 bool HasPrototype =
6110 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6111 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6112
6113 NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6114 D.getLocStart(), NameInfo, R,
6115 TInfo, SC, isInline,
6116 HasPrototype, false);
6117 if (D.isInvalidType())
6118 NewFD->setInvalidDecl();
6119
6120 // Set the lexical context.
6121 NewFD->setLexicalDeclContext(SemaRef.CurContext);
6122
6123 return NewFD;
6124 }
6125
6126 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6127 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6128
6129 // Check that the return type is not an abstract class type.
6130 // For record types, this is done by the AbstractClassUsageDiagnoser once
6131 // the class has been completely parsed.
6132 if (!DC->isRecord() &&
6133 SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6134 R->getAs<FunctionType>()->getResultType(),
6135 diag::err_abstract_type_in_decl,
6136 SemaRef.AbstractReturnType))
6137 D.setInvalidType();
6138
6139 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6140 // This is a C++ constructor declaration.
6141 assert(DC->isRecord() &&
6142 "Constructors can only be declared in a member context");
6143
6144 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6145 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6146 D.getLocStart(), NameInfo,
6147 R, TInfo, isExplicit, isInline,
6148 /*isImplicitlyDeclared=*/false,
6149 isConstexpr);
6150
6151 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6152 // This is a C++ destructor declaration.
6153 if (DC->isRecord()) {
6154 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6155 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6156 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6157 SemaRef.Context, Record,
6158 D.getLocStart(),
6159 NameInfo, R, TInfo, isInline,
6160 /*isImplicitlyDeclared=*/false);
6161
6162 // If the class is complete, then we now create the implicit exception
6163 // specification. If the class is incomplete or dependent, we can't do
6164 // it yet.
6165 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6166 Record->getDefinition() && !Record->isBeingDefined() &&
6167 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6168 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6169 }
6170
6171 // The Microsoft ABI requires that we perform the destructor body
6172 // checks (i.e. operator delete() lookup) at every declaration, as
6173 // any translation unit may need to emit a deleting destructor.
6174 if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6175 !Record->isDependentType() && Record->getDefinition() &&
6176 !Record->isBeingDefined()) {
6177 SemaRef.CheckDestructor(NewDD);
6178 }
6179
6180 IsVirtualOkay = true;
6181 return NewDD;
6182
6183 } else {
6184 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6185 D.setInvalidType();
6186
6187 // Create a FunctionDecl to satisfy the function definition parsing
6188 // code path.
6189 return FunctionDecl::Create(SemaRef.Context, DC,
6190 D.getLocStart(),
6191 D.getIdentifierLoc(), Name, R, TInfo,
6192 SC, isInline,
6193 /*hasPrototype=*/true, isConstexpr);
6194 }
6195
6196 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6197 if (!DC->isRecord()) {
6198 SemaRef.Diag(D.getIdentifierLoc(),
6199 diag::err_conv_function_not_member);
6200 return 0;
6201 }
6202
6203 SemaRef.CheckConversionDeclarator(D, R, SC);
6204 IsVirtualOkay = true;
6205 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6206 D.getLocStart(), NameInfo,
6207 R, TInfo, isInline, isExplicit,
6208 isConstexpr, SourceLocation());
6209
6210 } else if (DC->isRecord()) {
6211 // If the name of the function is the same as the name of the record,
6212 // then this must be an invalid constructor that has a return type.
6213 // (The parser checks for a return type and makes the declarator a
6214 // constructor if it has no return type).
6215 if (Name.getAsIdentifierInfo() &&
6216 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6217 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6218 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6219 << SourceRange(D.getIdentifierLoc());
6220 return 0;
6221 }
6222
6223 // This is a C++ method declaration.
6224 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6225 cast<CXXRecordDecl>(DC),
6226 D.getLocStart(), NameInfo, R,
6227 TInfo, SC, isInline,
6228 isConstexpr, SourceLocation());
6229 IsVirtualOkay = !Ret->isStatic();
6230 return Ret;
6231 } else {
6232 // Determine whether the function was written with a
6233 // prototype. This true when:
6234 // - we're in C++ (where every function has a prototype),
6235 return FunctionDecl::Create(SemaRef.Context, DC,
6236 D.getLocStart(),
6237 NameInfo, R, TInfo, SC, isInline,
6238 true/*HasPrototype*/, isConstexpr);
6239 }
6240 }
6241
checkVoidParamDecl(ParmVarDecl * Param)6242 void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6243 // In C++, the empty parameter-type-list must be spelled "void"; a
6244 // typedef of void is not permitted.
6245 if (getLangOpts().CPlusPlus &&
6246 Param->getType().getUnqualifiedType() != Context.VoidTy) {
6247 bool IsTypeAlias = false;
6248 if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6249 IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6250 else if (const TemplateSpecializationType *TST =
6251 Param->getType()->getAs<TemplateSpecializationType>())
6252 IsTypeAlias = TST->isTypeAlias();
6253 Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6254 << IsTypeAlias;
6255 }
6256 }
6257
6258 enum OpenCLParamType {
6259 ValidKernelParam,
6260 PtrPtrKernelParam,
6261 PtrKernelParam,
6262 InvalidKernelParam,
6263 RecordKernelParam
6264 };
6265
getOpenCLKernelParameterType(QualType PT)6266 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6267 if (PT->isPointerType()) {
6268 QualType PointeeType = PT->getPointeeType();
6269 return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6270 }
6271
6272 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6273 // be used as builtin types.
6274
6275 if (PT->isImageType())
6276 return PtrKernelParam;
6277
6278 if (PT->isBooleanType())
6279 return InvalidKernelParam;
6280
6281 if (PT->isEventT())
6282 return InvalidKernelParam;
6283
6284 if (PT->isHalfType())
6285 return InvalidKernelParam;
6286
6287 if (PT->isRecordType())
6288 return RecordKernelParam;
6289
6290 return ValidKernelParam;
6291 }
6292
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSet<const Type *,16> & ValidTypes)6293 static void checkIsValidOpenCLKernelParameter(
6294 Sema &S,
6295 Declarator &D,
6296 ParmVarDecl *Param,
6297 llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6298 QualType PT = Param->getType();
6299
6300 // Cache the valid types we encounter to avoid rechecking structs that are
6301 // used again
6302 if (ValidTypes.count(PT.getTypePtr()))
6303 return;
6304
6305 switch (getOpenCLKernelParameterType(PT)) {
6306 case PtrPtrKernelParam:
6307 // OpenCL v1.2 s6.9.a:
6308 // A kernel function argument cannot be declared as a
6309 // pointer to a pointer type.
6310 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6311 D.setInvalidType();
6312 return;
6313
6314 // OpenCL v1.2 s6.9.k:
6315 // Arguments to kernel functions in a program cannot be declared with the
6316 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6317 // uintptr_t or a struct and/or union that contain fields declared to be
6318 // one of these built-in scalar types.
6319
6320 case InvalidKernelParam:
6321 // OpenCL v1.2 s6.8 n:
6322 // A kernel function argument cannot be declared
6323 // of event_t type.
6324 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6325 D.setInvalidType();
6326 return;
6327
6328 case PtrKernelParam:
6329 case ValidKernelParam:
6330 ValidTypes.insert(PT.getTypePtr());
6331 return;
6332
6333 case RecordKernelParam:
6334 break;
6335 }
6336
6337 // Track nested structs we will inspect
6338 SmallVector<const Decl *, 4> VisitStack;
6339
6340 // Track where we are in the nested structs. Items will migrate from
6341 // VisitStack to HistoryStack as we do the DFS for bad field.
6342 SmallVector<const FieldDecl *, 4> HistoryStack;
6343 HistoryStack.push_back((const FieldDecl *) 0);
6344
6345 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6346 VisitStack.push_back(PD);
6347
6348 assert(VisitStack.back() && "First decl null?");
6349
6350 do {
6351 const Decl *Next = VisitStack.pop_back_val();
6352 if (!Next) {
6353 assert(!HistoryStack.empty());
6354 // Found a marker, we have gone up a level
6355 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6356 ValidTypes.insert(Hist->getType().getTypePtr());
6357
6358 continue;
6359 }
6360
6361 // Adds everything except the original parameter declaration (which is not a
6362 // field itself) to the history stack.
6363 const RecordDecl *RD;
6364 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6365 HistoryStack.push_back(Field);
6366 RD = Field->getType()->castAs<RecordType>()->getDecl();
6367 } else {
6368 RD = cast<RecordDecl>(Next);
6369 }
6370
6371 // Add a null marker so we know when we've gone back up a level
6372 VisitStack.push_back((const Decl *) 0);
6373
6374 for (RecordDecl::field_iterator I = RD->field_begin(),
6375 E = RD->field_end(); I != E; ++I) {
6376 const FieldDecl *FD = *I;
6377 QualType QT = FD->getType();
6378
6379 if (ValidTypes.count(QT.getTypePtr()))
6380 continue;
6381
6382 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6383 if (ParamType == ValidKernelParam)
6384 continue;
6385
6386 if (ParamType == RecordKernelParam) {
6387 VisitStack.push_back(FD);
6388 continue;
6389 }
6390
6391 // OpenCL v1.2 s6.9.p:
6392 // Arguments to kernel functions that are declared to be a struct or union
6393 // do not allow OpenCL objects to be passed as elements of the struct or
6394 // union.
6395 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6396 S.Diag(Param->getLocation(),
6397 diag::err_record_with_pointers_kernel_param)
6398 << PT->isUnionType()
6399 << PT;
6400 } else {
6401 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6402 }
6403
6404 S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6405 << PD->getDeclName();
6406
6407 // We have an error, now let's go back up through history and show where
6408 // the offending field came from
6409 for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6410 E = HistoryStack.end(); I != E; ++I) {
6411 const FieldDecl *OuterField = *I;
6412 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6413 << OuterField->getType();
6414 }
6415
6416 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6417 << QT->isPointerType()
6418 << QT;
6419 D.setInvalidType();
6420 return;
6421 }
6422 } while (!VisitStack.empty());
6423 }
6424
6425 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)6426 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6427 TypeSourceInfo *TInfo, LookupResult &Previous,
6428 MultiTemplateParamsArg TemplateParamLists,
6429 bool &AddToScope) {
6430 QualType R = TInfo->getType();
6431
6432 assert(R.getTypePtr()->isFunctionType());
6433
6434 // TODO: consider using NameInfo for diagnostic.
6435 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6436 DeclarationName Name = NameInfo.getName();
6437 FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6438
6439 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6440 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6441 diag::err_invalid_thread)
6442 << DeclSpec::getSpecifierName(TSCS);
6443
6444 bool isFriend = false;
6445 FunctionTemplateDecl *FunctionTemplate = 0;
6446 bool isExplicitSpecialization = false;
6447 bool isFunctionTemplateSpecialization = false;
6448
6449 bool isDependentClassScopeExplicitSpecialization = false;
6450 bool HasExplicitTemplateArgs = false;
6451 TemplateArgumentListInfo TemplateArgs;
6452
6453 bool isVirtualOkay = false;
6454
6455 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6456 isVirtualOkay);
6457 if (!NewFD) return 0;
6458
6459 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6460 NewFD->setTopLevelDeclInObjCContainer();
6461
6462 if (getLangOpts().CPlusPlus) {
6463 bool isInline = D.getDeclSpec().isInlineSpecified();
6464 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6465 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6466 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6467 isFriend = D.getDeclSpec().isFriendSpecified();
6468 if (isFriend && !isInline && D.isFunctionDefinition()) {
6469 // C++ [class.friend]p5
6470 // A function can be defined in a friend declaration of a
6471 // class . . . . Such a function is implicitly inline.
6472 NewFD->setImplicitlyInline();
6473 }
6474
6475 // If this is a method defined in an __interface, and is not a constructor
6476 // or an overloaded operator, then set the pure flag (isVirtual will already
6477 // return true).
6478 if (const CXXRecordDecl *Parent =
6479 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6480 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6481 NewFD->setPure(true);
6482 }
6483
6484 SetNestedNameSpecifier(NewFD, D);
6485 isExplicitSpecialization = false;
6486 isFunctionTemplateSpecialization = false;
6487 if (D.isInvalidType())
6488 NewFD->setInvalidDecl();
6489
6490 // Set the lexical context. If the declarator has a C++
6491 // scope specifier, or is the object of a friend declaration, the
6492 // lexical context will be different from the semantic context.
6493 NewFD->setLexicalDeclContext(CurContext);
6494
6495 // Match up the template parameter lists with the scope specifier, then
6496 // determine whether we have a template or a template specialization.
6497 bool Invalid = false;
6498 if (TemplateParameterList *TemplateParams =
6499 MatchTemplateParametersToScopeSpecifier(
6500 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6501 D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6502 isExplicitSpecialization, Invalid)) {
6503 if (TemplateParams->size() > 0) {
6504 // This is a function template
6505
6506 // Check that we can declare a template here.
6507 if (CheckTemplateDeclScope(S, TemplateParams))
6508 return 0;
6509
6510 // A destructor cannot be a template.
6511 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6512 Diag(NewFD->getLocation(), diag::err_destructor_template);
6513 return 0;
6514 }
6515
6516 // If we're adding a template to a dependent context, we may need to
6517 // rebuilding some of the types used within the template parameter list,
6518 // now that we know what the current instantiation is.
6519 if (DC->isDependentContext()) {
6520 ContextRAII SavedContext(*this, DC);
6521 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6522 Invalid = true;
6523 }
6524
6525
6526 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6527 NewFD->getLocation(),
6528 Name, TemplateParams,
6529 NewFD);
6530 FunctionTemplate->setLexicalDeclContext(CurContext);
6531 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6532
6533 // For source fidelity, store the other template param lists.
6534 if (TemplateParamLists.size() > 1) {
6535 NewFD->setTemplateParameterListsInfo(Context,
6536 TemplateParamLists.size() - 1,
6537 TemplateParamLists.data());
6538 }
6539 } else {
6540 // This is a function template specialization.
6541 isFunctionTemplateSpecialization = true;
6542 // For source fidelity, store all the template param lists.
6543 NewFD->setTemplateParameterListsInfo(Context,
6544 TemplateParamLists.size(),
6545 TemplateParamLists.data());
6546
6547 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6548 if (isFriend) {
6549 // We want to remove the "template<>", found here.
6550 SourceRange RemoveRange = TemplateParams->getSourceRange();
6551
6552 // If we remove the template<> and the name is not a
6553 // template-id, we're actually silently creating a problem:
6554 // the friend declaration will refer to an untemplated decl,
6555 // and clearly the user wants a template specialization. So
6556 // we need to insert '<>' after the name.
6557 SourceLocation InsertLoc;
6558 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6559 InsertLoc = D.getName().getSourceRange().getEnd();
6560 InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6561 }
6562
6563 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6564 << Name << RemoveRange
6565 << FixItHint::CreateRemoval(RemoveRange)
6566 << FixItHint::CreateInsertion(InsertLoc, "<>");
6567 }
6568 }
6569 }
6570 else {
6571 // All template param lists were matched against the scope specifier:
6572 // this is NOT (an explicit specialization of) a template.
6573 if (TemplateParamLists.size() > 0)
6574 // For source fidelity, store all the template param lists.
6575 NewFD->setTemplateParameterListsInfo(Context,
6576 TemplateParamLists.size(),
6577 TemplateParamLists.data());
6578 }
6579
6580 if (Invalid) {
6581 NewFD->setInvalidDecl();
6582 if (FunctionTemplate)
6583 FunctionTemplate->setInvalidDecl();
6584 }
6585
6586 // C++ [dcl.fct.spec]p5:
6587 // The virtual specifier shall only be used in declarations of
6588 // nonstatic class member functions that appear within a
6589 // member-specification of a class declaration; see 10.3.
6590 //
6591 if (isVirtual && !NewFD->isInvalidDecl()) {
6592 if (!isVirtualOkay) {
6593 Diag(D.getDeclSpec().getVirtualSpecLoc(),
6594 diag::err_virtual_non_function);
6595 } else if (!CurContext->isRecord()) {
6596 // 'virtual' was specified outside of the class.
6597 Diag(D.getDeclSpec().getVirtualSpecLoc(),
6598 diag::err_virtual_out_of_class)
6599 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6600 } else if (NewFD->getDescribedFunctionTemplate()) {
6601 // C++ [temp.mem]p3:
6602 // A member function template shall not be virtual.
6603 Diag(D.getDeclSpec().getVirtualSpecLoc(),
6604 diag::err_virtual_member_function_template)
6605 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6606 } else {
6607 // Okay: Add virtual to the method.
6608 NewFD->setVirtualAsWritten(true);
6609 }
6610
6611 if (getLangOpts().CPlusPlus1y &&
6612 NewFD->getResultType()->isUndeducedType())
6613 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6614 }
6615
6616 // C++ [dcl.fct.spec]p3:
6617 // The inline specifier shall not appear on a block scope function
6618 // declaration.
6619 if (isInline && !NewFD->isInvalidDecl()) {
6620 if (CurContext->isFunctionOrMethod()) {
6621 // 'inline' is not allowed on block scope function declaration.
6622 Diag(D.getDeclSpec().getInlineSpecLoc(),
6623 diag::err_inline_declaration_block_scope) << Name
6624 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6625 }
6626 }
6627
6628 // C++ [dcl.fct.spec]p6:
6629 // The explicit specifier shall be used only in the declaration of a
6630 // constructor or conversion function within its class definition;
6631 // see 12.3.1 and 12.3.2.
6632 if (isExplicit && !NewFD->isInvalidDecl()) {
6633 if (!CurContext->isRecord()) {
6634 // 'explicit' was specified outside of the class.
6635 Diag(D.getDeclSpec().getExplicitSpecLoc(),
6636 diag::err_explicit_out_of_class)
6637 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6638 } else if (!isa<CXXConstructorDecl>(NewFD) &&
6639 !isa<CXXConversionDecl>(NewFD)) {
6640 // 'explicit' was specified on a function that wasn't a constructor
6641 // or conversion function.
6642 Diag(D.getDeclSpec().getExplicitSpecLoc(),
6643 diag::err_explicit_non_ctor_or_conv_function)
6644 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6645 }
6646 }
6647
6648 if (isConstexpr) {
6649 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6650 // are implicitly inline.
6651 NewFD->setImplicitlyInline();
6652
6653 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6654 // be either constructors or to return a literal type. Therefore,
6655 // destructors cannot be declared constexpr.
6656 if (isa<CXXDestructorDecl>(NewFD))
6657 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6658 }
6659
6660 // If __module_private__ was specified, mark the function accordingly.
6661 if (D.getDeclSpec().isModulePrivateSpecified()) {
6662 if (isFunctionTemplateSpecialization) {
6663 SourceLocation ModulePrivateLoc
6664 = D.getDeclSpec().getModulePrivateSpecLoc();
6665 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6666 << 0
6667 << FixItHint::CreateRemoval(ModulePrivateLoc);
6668 } else {
6669 NewFD->setModulePrivate();
6670 if (FunctionTemplate)
6671 FunctionTemplate->setModulePrivate();
6672 }
6673 }
6674
6675 if (isFriend) {
6676 if (FunctionTemplate) {
6677 FunctionTemplate->setObjectOfFriendDecl();
6678 FunctionTemplate->setAccess(AS_public);
6679 }
6680 NewFD->setObjectOfFriendDecl();
6681 NewFD->setAccess(AS_public);
6682 }
6683
6684 // If a function is defined as defaulted or deleted, mark it as such now.
6685 switch (D.getFunctionDefinitionKind()) {
6686 case FDK_Declaration:
6687 case FDK_Definition:
6688 break;
6689
6690 case FDK_Defaulted:
6691 NewFD->setDefaulted();
6692 break;
6693
6694 case FDK_Deleted:
6695 NewFD->setDeletedAsWritten();
6696 break;
6697 }
6698
6699 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6700 D.isFunctionDefinition()) {
6701 // C++ [class.mfct]p2:
6702 // A member function may be defined (8.4) in its class definition, in
6703 // which case it is an inline member function (7.1.2)
6704 NewFD->setImplicitlyInline();
6705 }
6706
6707 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6708 !CurContext->isRecord()) {
6709 // C++ [class.static]p1:
6710 // A data or function member of a class may be declared static
6711 // in a class definition, in which case it is a static member of
6712 // the class.
6713
6714 // Complain about the 'static' specifier if it's on an out-of-line
6715 // member function definition.
6716 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6717 diag::err_static_out_of_line)
6718 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6719 }
6720
6721 // C++11 [except.spec]p15:
6722 // A deallocation function with no exception-specification is treated
6723 // as if it were specified with noexcept(true).
6724 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6725 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6726 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6727 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6728 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6729 EPI.ExceptionSpecType = EST_BasicNoexcept;
6730 NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6731 FPT->getArgTypes(), EPI));
6732 }
6733 }
6734
6735 // Filter out previous declarations that don't match the scope.
6736 FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6737 isExplicitSpecialization ||
6738 isFunctionTemplateSpecialization);
6739
6740 // Handle GNU asm-label extension (encoded as an attribute).
6741 if (Expr *E = (Expr*) D.getAsmLabel()) {
6742 // The parser guarantees this is a string.
6743 StringLiteral *SE = cast<StringLiteral>(E);
6744 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6745 SE->getString()));
6746 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6747 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6748 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6749 if (I != ExtnameUndeclaredIdentifiers.end()) {
6750 NewFD->addAttr(I->second);
6751 ExtnameUndeclaredIdentifiers.erase(I);
6752 }
6753 }
6754
6755 // Copy the parameter declarations from the declarator D to the function
6756 // declaration NewFD, if they are available. First scavenge them into Params.
6757 SmallVector<ParmVarDecl*, 16> Params;
6758 if (D.isFunctionDeclarator()) {
6759 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6760
6761 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6762 // function that takes no arguments, not a function that takes a
6763 // single void argument.
6764 // We let through "const void" here because Sema::GetTypeForDeclarator
6765 // already checks for that case.
6766 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6767 FTI.ArgInfo[0].Param &&
6768 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6769 // Empty arg list, don't push any params.
6770 checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6771 } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6772 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6773 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6774 assert(Param->getDeclContext() != NewFD && "Was set before ?");
6775 Param->setDeclContext(NewFD);
6776 Params.push_back(Param);
6777
6778 if (Param->isInvalidDecl())
6779 NewFD->setInvalidDecl();
6780 }
6781 }
6782
6783 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6784 // When we're declaring a function with a typedef, typeof, etc as in the
6785 // following example, we'll need to synthesize (unnamed)
6786 // parameters for use in the declaration.
6787 //
6788 // @code
6789 // typedef void fn(int);
6790 // fn f;
6791 // @endcode
6792
6793 // Synthesize a parameter for each argument type.
6794 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6795 AE = FT->arg_type_end(); AI != AE; ++AI) {
6796 ParmVarDecl *Param =
6797 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6798 Param->setScopeInfo(0, Params.size());
6799 Params.push_back(Param);
6800 }
6801 } else {
6802 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6803 "Should not need args for typedef of non-prototype fn");
6804 }
6805
6806 // Finally, we know we have the right number of parameters, install them.
6807 NewFD->setParams(Params);
6808
6809 // Find all anonymous symbols defined during the declaration of this function
6810 // and add to NewFD. This lets us track decls such 'enum Y' in:
6811 //
6812 // void f(enum Y {AA} x) {}
6813 //
6814 // which would otherwise incorrectly end up in the translation unit scope.
6815 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6816 DeclsInPrototypeScope.clear();
6817
6818 if (D.getDeclSpec().isNoreturnSpecified())
6819 NewFD->addAttr(
6820 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6821 Context));
6822
6823 // Process the non-inheritable attributes on this declaration.
6824 ProcessDeclAttributes(S, NewFD, D,
6825 /*NonInheritable=*/true, /*Inheritable=*/false);
6826
6827 // Functions returning a variably modified type violate C99 6.7.5.2p2
6828 // because all functions have linkage.
6829 if (!NewFD->isInvalidDecl() &&
6830 NewFD->getResultType()->isVariablyModifiedType()) {
6831 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6832 NewFD->setInvalidDecl();
6833 }
6834
6835 // Handle attributes.
6836 ProcessDeclAttributes(S, NewFD, D,
6837 /*NonInheritable=*/false, /*Inheritable=*/true);
6838
6839 QualType RetType = NewFD->getResultType();
6840 const CXXRecordDecl *Ret = RetType->isRecordType() ?
6841 RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6842 if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6843 Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6844 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6845 if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6846 NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6847 Context));
6848 }
6849 }
6850
6851 if (!getLangOpts().CPlusPlus) {
6852 // Perform semantic checking on the function declaration.
6853 bool isExplicitSpecialization=false;
6854 if (!NewFD->isInvalidDecl() && NewFD->isMain())
6855 CheckMain(NewFD, D.getDeclSpec());
6856
6857 if (!NewFD->isInvalidDecl())
6858 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6859 isExplicitSpecialization));
6860 // Make graceful recovery from an invalid redeclaration.
6861 else if (!Previous.empty())
6862 D.setRedeclaration(true);
6863 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6864 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6865 "previous declaration set still overloaded");
6866 } else {
6867 // If the declarator is a template-id, translate the parser's template
6868 // argument list into our AST format.
6869 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6870 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6871 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6872 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6873 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6874 TemplateId->NumArgs);
6875 translateTemplateArguments(TemplateArgsPtr,
6876 TemplateArgs);
6877
6878 HasExplicitTemplateArgs = true;
6879
6880 if (NewFD->isInvalidDecl()) {
6881 HasExplicitTemplateArgs = false;
6882 } else if (FunctionTemplate) {
6883 // Function template with explicit template arguments.
6884 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6885 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6886
6887 HasExplicitTemplateArgs = false;
6888 } else if (!isFunctionTemplateSpecialization &&
6889 !D.getDeclSpec().isFriendSpecified()) {
6890 // We have encountered something that the user meant to be a
6891 // specialization (because it has explicitly-specified template
6892 // arguments) but that was not introduced with a "template<>" (or had
6893 // too few of them).
6894 // FIXME: Differentiate between attempts for explicit instantiations
6895 // (starting with "template") and the rest.
6896 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6897 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6898 << FixItHint::CreateInsertion(
6899 D.getDeclSpec().getLocStart(),
6900 "template<> ");
6901 isFunctionTemplateSpecialization = true;
6902 } else {
6903 // "friend void foo<>(int);" is an implicit specialization decl.
6904 isFunctionTemplateSpecialization = true;
6905 }
6906 } else if (isFriend && isFunctionTemplateSpecialization) {
6907 // This combination is only possible in a recovery case; the user
6908 // wrote something like:
6909 // template <> friend void foo(int);
6910 // which we're recovering from as if the user had written:
6911 // friend void foo<>(int);
6912 // Go ahead and fake up a template id.
6913 HasExplicitTemplateArgs = true;
6914 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6915 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6916 }
6917
6918 // If it's a friend (and only if it's a friend), it's possible
6919 // that either the specialized function type or the specialized
6920 // template is dependent, and therefore matching will fail. In
6921 // this case, don't check the specialization yet.
6922 bool InstantiationDependent = false;
6923 if (isFunctionTemplateSpecialization && isFriend &&
6924 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6925 TemplateSpecializationType::anyDependentTemplateArguments(
6926 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6927 InstantiationDependent))) {
6928 assert(HasExplicitTemplateArgs &&
6929 "friend function specialization without template args");
6930 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6931 Previous))
6932 NewFD->setInvalidDecl();
6933 } else if (isFunctionTemplateSpecialization) {
6934 if (CurContext->isDependentContext() && CurContext->isRecord()
6935 && !isFriend) {
6936 isDependentClassScopeExplicitSpecialization = true;
6937 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6938 diag::ext_function_specialization_in_class :
6939 diag::err_function_specialization_in_class)
6940 << NewFD->getDeclName();
6941 } else if (CheckFunctionTemplateSpecialization(NewFD,
6942 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6943 Previous))
6944 NewFD->setInvalidDecl();
6945
6946 // C++ [dcl.stc]p1:
6947 // A storage-class-specifier shall not be specified in an explicit
6948 // specialization (14.7.3)
6949 FunctionTemplateSpecializationInfo *Info =
6950 NewFD->getTemplateSpecializationInfo();
6951 if (Info && SC != SC_None) {
6952 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
6953 Diag(NewFD->getLocation(),
6954 diag::err_explicit_specialization_inconsistent_storage_class)
6955 << SC
6956 << FixItHint::CreateRemoval(
6957 D.getDeclSpec().getStorageClassSpecLoc());
6958
6959 else
6960 Diag(NewFD->getLocation(),
6961 diag::ext_explicit_specialization_storage_class)
6962 << FixItHint::CreateRemoval(
6963 D.getDeclSpec().getStorageClassSpecLoc());
6964 }
6965
6966 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6967 if (CheckMemberSpecialization(NewFD, Previous))
6968 NewFD->setInvalidDecl();
6969 }
6970
6971 // Perform semantic checking on the function declaration.
6972 if (!isDependentClassScopeExplicitSpecialization) {
6973 if (!NewFD->isInvalidDecl() && NewFD->isMain())
6974 CheckMain(NewFD, D.getDeclSpec());
6975
6976 if (NewFD->isInvalidDecl()) {
6977 // If this is a class member, mark the class invalid immediately.
6978 // This avoids some consistency errors later.
6979 if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6980 methodDecl->getParent()->setInvalidDecl();
6981 } else
6982 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6983 isExplicitSpecialization));
6984 }
6985
6986 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6987 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6988 "previous declaration set still overloaded");
6989
6990 NamedDecl *PrincipalDecl = (FunctionTemplate
6991 ? cast<NamedDecl>(FunctionTemplate)
6992 : NewFD);
6993
6994 if (isFriend && D.isRedeclaration()) {
6995 AccessSpecifier Access = AS_public;
6996 if (!NewFD->isInvalidDecl())
6997 Access = NewFD->getPreviousDecl()->getAccess();
6998
6999 NewFD->setAccess(Access);
7000 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7001 }
7002
7003 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7004 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7005 PrincipalDecl->setNonMemberOperator();
7006
7007 // If we have a function template, check the template parameter
7008 // list. This will check and merge default template arguments.
7009 if (FunctionTemplate) {
7010 FunctionTemplateDecl *PrevTemplate =
7011 FunctionTemplate->getPreviousDecl();
7012 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7013 PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7014 D.getDeclSpec().isFriendSpecified()
7015 ? (D.isFunctionDefinition()
7016 ? TPC_FriendFunctionTemplateDefinition
7017 : TPC_FriendFunctionTemplate)
7018 : (D.getCXXScopeSpec().isSet() &&
7019 DC && DC->isRecord() &&
7020 DC->isDependentContext())
7021 ? TPC_ClassTemplateMember
7022 : TPC_FunctionTemplate);
7023 }
7024
7025 if (NewFD->isInvalidDecl()) {
7026 // Ignore all the rest of this.
7027 } else if (!D.isRedeclaration()) {
7028 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7029 AddToScope };
7030 // Fake up an access specifier if it's supposed to be a class member.
7031 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7032 NewFD->setAccess(AS_public);
7033
7034 // Qualified decls generally require a previous declaration.
7035 if (D.getCXXScopeSpec().isSet()) {
7036 // ...with the major exception of templated-scope or
7037 // dependent-scope friend declarations.
7038
7039 // TODO: we currently also suppress this check in dependent
7040 // contexts because (1) the parameter depth will be off when
7041 // matching friend templates and (2) we might actually be
7042 // selecting a friend based on a dependent factor. But there
7043 // are situations where these conditions don't apply and we
7044 // can actually do this check immediately.
7045 if (isFriend &&
7046 (TemplateParamLists.size() ||
7047 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7048 CurContext->isDependentContext())) {
7049 // ignore these
7050 } else {
7051 // The user tried to provide an out-of-line definition for a
7052 // function that is a member of a class or namespace, but there
7053 // was no such member function declared (C++ [class.mfct]p2,
7054 // C++ [namespace.memdef]p2). For example:
7055 //
7056 // class X {
7057 // void f() const;
7058 // };
7059 //
7060 // void X::f() { } // ill-formed
7061 //
7062 // Complain about this problem, and attempt to suggest close
7063 // matches (e.g., those that differ only in cv-qualifiers and
7064 // whether the parameter types are references).
7065
7066 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
7067 NewFD,
7068 ExtraArgs)) {
7069 AddToScope = ExtraArgs.AddToScope;
7070 return Result;
7071 }
7072 }
7073
7074 // Unqualified local friend declarations are required to resolve
7075 // to something.
7076 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7077 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
7078 NewFD,
7079 ExtraArgs)) {
7080 AddToScope = ExtraArgs.AddToScope;
7081 return Result;
7082 }
7083 }
7084
7085 } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7086 !isFriend && !isFunctionTemplateSpecialization &&
7087 !isExplicitSpecialization) {
7088 // An out-of-line member function declaration must also be a
7089 // definition (C++ [dcl.meaning]p1).
7090 // Note that this is not the case for explicit specializations of
7091 // function templates or member functions of class templates, per
7092 // C++ [temp.expl.spec]p2. We also allow these declarations as an
7093 // extension for compatibility with old SWIG code which likes to
7094 // generate them.
7095 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7096 << D.getCXXScopeSpec().getRange();
7097 }
7098 }
7099
7100 ProcessPragmaWeak(S, NewFD);
7101 checkAttributesAfterMerging(*this, *NewFD);
7102
7103 AddKnownFunctionAttributes(NewFD);
7104
7105 if (NewFD->hasAttr<OverloadableAttr>() &&
7106 !NewFD->getType()->getAs<FunctionProtoType>()) {
7107 Diag(NewFD->getLocation(),
7108 diag::err_attribute_overloadable_no_prototype)
7109 << NewFD;
7110
7111 // Turn this into a variadic function with no parameters.
7112 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7113 FunctionProtoType::ExtProtoInfo EPI;
7114 EPI.Variadic = true;
7115 EPI.ExtInfo = FT->getExtInfo();
7116
7117 QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7118 NewFD->setType(R);
7119 }
7120
7121 // If there's a #pragma GCC visibility in scope, and this isn't a class
7122 // member, set the visibility of this function.
7123 if (!DC->isRecord() && NewFD->isExternallyVisible())
7124 AddPushedVisibilityAttribute(NewFD);
7125
7126 // If there's a #pragma clang arc_cf_code_audited in scope, consider
7127 // marking the function.
7128 AddCFAuditedAttribute(NewFD);
7129
7130 // If this is the first declaration of an extern C variable, update
7131 // the map of such variables.
7132 if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
7133 isIncompleteDeclExternC(*this, NewFD))
7134 RegisterLocallyScopedExternCDecl(NewFD, S);
7135
7136 // Set this FunctionDecl's range up to the right paren.
7137 NewFD->setRangeEnd(D.getSourceRange().getEnd());
7138
7139 if (getLangOpts().CPlusPlus) {
7140 if (FunctionTemplate) {
7141 if (NewFD->isInvalidDecl())
7142 FunctionTemplate->setInvalidDecl();
7143 return FunctionTemplate;
7144 }
7145 }
7146
7147 if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7148 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7149 if ((getLangOpts().OpenCLVersion >= 120)
7150 && (SC == SC_Static)) {
7151 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7152 D.setInvalidType();
7153 }
7154
7155 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7156 if (!NewFD->getResultType()->isVoidType()) {
7157 Diag(D.getIdentifierLoc(),
7158 diag::err_expected_kernel_void_return_type);
7159 D.setInvalidType();
7160 }
7161
7162 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7163 for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7164 PE = NewFD->param_end(); PI != PE; ++PI) {
7165 ParmVarDecl *Param = *PI;
7166 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7167 }
7168 }
7169
7170 MarkUnusedFileScopedDecl(NewFD);
7171
7172 if (getLangOpts().CUDA)
7173 if (IdentifierInfo *II = NewFD->getIdentifier())
7174 if (!NewFD->isInvalidDecl() &&
7175 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7176 if (II->isStr("cudaConfigureCall")) {
7177 if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7178 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7179
7180 Context.setcudaConfigureCallDecl(NewFD);
7181 }
7182 }
7183
7184 // Here we have an function template explicit specialization at class scope.
7185 // The actually specialization will be postponed to template instatiation
7186 // time via the ClassScopeFunctionSpecializationDecl node.
7187 if (isDependentClassScopeExplicitSpecialization) {
7188 ClassScopeFunctionSpecializationDecl *NewSpec =
7189 ClassScopeFunctionSpecializationDecl::Create(
7190 Context, CurContext, SourceLocation(),
7191 cast<CXXMethodDecl>(NewFD),
7192 HasExplicitTemplateArgs, TemplateArgs);
7193 CurContext->addDecl(NewSpec);
7194 AddToScope = false;
7195 }
7196
7197 return NewFD;
7198 }
7199
7200 /// \brief Perform semantic checking of a new function declaration.
7201 ///
7202 /// Performs semantic analysis of the new function declaration
7203 /// NewFD. This routine performs all semantic checking that does not
7204 /// require the actual declarator involved in the declaration, and is
7205 /// used both for the declaration of functions as they are parsed
7206 /// (called via ActOnDeclarator) and for the declaration of functions
7207 /// that have been instantiated via C++ template instantiation (called
7208 /// via InstantiateDecl).
7209 ///
7210 /// \param IsExplicitSpecialization whether this new function declaration is
7211 /// an explicit specialization of the previous declaration.
7212 ///
7213 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7214 ///
7215 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7216 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7217 LookupResult &Previous,
7218 bool IsExplicitSpecialization) {
7219 assert(!NewFD->getResultType()->isVariablyModifiedType()
7220 && "Variably modified return types are not handled here");
7221
7222 // Filter out any non-conflicting previous declarations.
7223 filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7224
7225 bool Redeclaration = false;
7226 NamedDecl *OldDecl = 0;
7227
7228 // Merge or overload the declaration with an existing declaration of
7229 // the same name, if appropriate.
7230 if (!Previous.empty()) {
7231 // Determine whether NewFD is an overload of PrevDecl or
7232 // a declaration that requires merging. If it's an overload,
7233 // there's no more work to do here; we'll just add the new
7234 // function to the scope.
7235 if (!AllowOverloadingOfFunction(Previous, Context)) {
7236 NamedDecl *Candidate = Previous.getFoundDecl();
7237 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7238 Redeclaration = true;
7239 OldDecl = Candidate;
7240 }
7241 } else {
7242 switch (CheckOverload(S, NewFD, Previous, OldDecl,
7243 /*NewIsUsingDecl*/ false)) {
7244 case Ovl_Match:
7245 Redeclaration = true;
7246 break;
7247
7248 case Ovl_NonFunction:
7249 Redeclaration = true;
7250 break;
7251
7252 case Ovl_Overload:
7253 Redeclaration = false;
7254 break;
7255 }
7256
7257 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7258 // If a function name is overloadable in C, then every function
7259 // with that name must be marked "overloadable".
7260 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7261 << Redeclaration << NewFD;
7262 NamedDecl *OverloadedDecl = 0;
7263 if (Redeclaration)
7264 OverloadedDecl = OldDecl;
7265 else if (!Previous.empty())
7266 OverloadedDecl = Previous.getRepresentativeDecl();
7267 if (OverloadedDecl)
7268 Diag(OverloadedDecl->getLocation(),
7269 diag::note_attribute_overloadable_prev_overload);
7270 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7271 Context));
7272 }
7273 }
7274 }
7275
7276 // Check for a previous extern "C" declaration with this name.
7277 if (!Redeclaration &&
7278 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7279 filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7280 if (!Previous.empty()) {
7281 // This is an extern "C" declaration with the same name as a previous
7282 // declaration, and thus redeclares that entity...
7283 Redeclaration = true;
7284 OldDecl = Previous.getFoundDecl();
7285
7286 // ... except in the presence of __attribute__((overloadable)).
7287 if (OldDecl->hasAttr<OverloadableAttr>()) {
7288 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7289 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7290 << Redeclaration << NewFD;
7291 Diag(Previous.getFoundDecl()->getLocation(),
7292 diag::note_attribute_overloadable_prev_overload);
7293 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7294 Context));
7295 }
7296 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7297 Redeclaration = false;
7298 OldDecl = 0;
7299 }
7300 }
7301 }
7302 }
7303
7304 // C++11 [dcl.constexpr]p8:
7305 // A constexpr specifier for a non-static member function that is not
7306 // a constructor declares that member function to be const.
7307 //
7308 // This needs to be delayed until we know whether this is an out-of-line
7309 // definition of a static member function.
7310 //
7311 // This rule is not present in C++1y, so we produce a backwards
7312 // compatibility warning whenever it happens in C++11.
7313 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7314 if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7315 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7316 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7317 CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7318 if (FunctionTemplateDecl *OldTD =
7319 dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7320 OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7321 if (!OldMD || !OldMD->isStatic()) {
7322 const FunctionProtoType *FPT =
7323 MD->getType()->castAs<FunctionProtoType>();
7324 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7325 EPI.TypeQuals |= Qualifiers::Const;
7326 MD->setType(Context.getFunctionType(FPT->getResultType(),
7327 FPT->getArgTypes(), EPI));
7328
7329 // Warn that we did this, if we're not performing template instantiation.
7330 // In that case, we'll have warned already when the template was defined.
7331 if (ActiveTemplateInstantiations.empty()) {
7332 SourceLocation AddConstLoc;
7333 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7334 .IgnoreParens().getAs<FunctionTypeLoc>())
7335 AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7336
7337 Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7338 << FixItHint::CreateInsertion(AddConstLoc, " const");
7339 }
7340 }
7341 }
7342
7343 if (Redeclaration) {
7344 // NewFD and OldDecl represent declarations that need to be
7345 // merged.
7346 if (MergeFunctionDecl(NewFD, OldDecl, S)) {
7347 NewFD->setInvalidDecl();
7348 return Redeclaration;
7349 }
7350
7351 Previous.clear();
7352 Previous.addDecl(OldDecl);
7353
7354 if (FunctionTemplateDecl *OldTemplateDecl
7355 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7356 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7357 FunctionTemplateDecl *NewTemplateDecl
7358 = NewFD->getDescribedFunctionTemplate();
7359 assert(NewTemplateDecl && "Template/non-template mismatch");
7360 if (CXXMethodDecl *Method
7361 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7362 Method->setAccess(OldTemplateDecl->getAccess());
7363 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7364 }
7365
7366 // If this is an explicit specialization of a member that is a function
7367 // template, mark it as a member specialization.
7368 if (IsExplicitSpecialization &&
7369 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7370 NewTemplateDecl->setMemberSpecialization();
7371 assert(OldTemplateDecl->isMemberSpecialization());
7372 }
7373
7374 } else {
7375 // This needs to happen first so that 'inline' propagates.
7376 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7377
7378 if (isa<CXXMethodDecl>(NewFD)) {
7379 // A valid redeclaration of a C++ method must be out-of-line,
7380 // but (unfortunately) it's not necessarily a definition
7381 // because of templates, which means that the previous
7382 // declaration is not necessarily from the class definition.
7383
7384 // For just setting the access, that doesn't matter.
7385 CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7386 NewFD->setAccess(oldMethod->getAccess());
7387
7388 // Update the key-function state if necessary for this ABI.
7389 if (NewFD->isInlined() &&
7390 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7391 // setNonKeyFunction needs to work with the original
7392 // declaration from the class definition, and isVirtual() is
7393 // just faster in that case, so map back to that now.
7394 oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7395 if (oldMethod->isVirtual()) {
7396 Context.setNonKeyFunction(oldMethod);
7397 }
7398 }
7399 }
7400 }
7401 }
7402
7403 // Semantic checking for this function declaration (in isolation).
7404 if (getLangOpts().CPlusPlus) {
7405 // C++-specific checks.
7406 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7407 CheckConstructor(Constructor);
7408 } else if (CXXDestructorDecl *Destructor =
7409 dyn_cast<CXXDestructorDecl>(NewFD)) {
7410 CXXRecordDecl *Record = Destructor->getParent();
7411 QualType ClassType = Context.getTypeDeclType(Record);
7412
7413 // FIXME: Shouldn't we be able to perform this check even when the class
7414 // type is dependent? Both gcc and edg can handle that.
7415 if (!ClassType->isDependentType()) {
7416 DeclarationName Name
7417 = Context.DeclarationNames.getCXXDestructorName(
7418 Context.getCanonicalType(ClassType));
7419 if (NewFD->getDeclName() != Name) {
7420 Diag(NewFD->getLocation(), diag::err_destructor_name);
7421 NewFD->setInvalidDecl();
7422 return Redeclaration;
7423 }
7424 }
7425 } else if (CXXConversionDecl *Conversion
7426 = dyn_cast<CXXConversionDecl>(NewFD)) {
7427 ActOnConversionDeclarator(Conversion);
7428 }
7429
7430 // Find any virtual functions that this function overrides.
7431 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7432 if (!Method->isFunctionTemplateSpecialization() &&
7433 !Method->getDescribedFunctionTemplate() &&
7434 Method->isCanonicalDecl()) {
7435 if (AddOverriddenMethods(Method->getParent(), Method)) {
7436 // If the function was marked as "static", we have a problem.
7437 if (NewFD->getStorageClass() == SC_Static) {
7438 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7439 }
7440 }
7441 }
7442
7443 if (Method->isStatic())
7444 checkThisInStaticMemberFunctionType(Method);
7445 }
7446
7447 // Extra checking for C++ overloaded operators (C++ [over.oper]).
7448 if (NewFD->isOverloadedOperator() &&
7449 CheckOverloadedOperatorDeclaration(NewFD)) {
7450 NewFD->setInvalidDecl();
7451 return Redeclaration;
7452 }
7453
7454 // Extra checking for C++0x literal operators (C++0x [over.literal]).
7455 if (NewFD->getLiteralIdentifier() &&
7456 CheckLiteralOperatorDeclaration(NewFD)) {
7457 NewFD->setInvalidDecl();
7458 return Redeclaration;
7459 }
7460
7461 // In C++, check default arguments now that we have merged decls. Unless
7462 // the lexical context is the class, because in this case this is done
7463 // during delayed parsing anyway.
7464 if (!CurContext->isRecord())
7465 CheckCXXDefaultArguments(NewFD);
7466
7467 // If this function declares a builtin function, check the type of this
7468 // declaration against the expected type for the builtin.
7469 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7470 ASTContext::GetBuiltinTypeError Error;
7471 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7472 QualType T = Context.GetBuiltinType(BuiltinID, Error);
7473 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7474 // The type of this function differs from the type of the builtin,
7475 // so forget about the builtin entirely.
7476 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7477 }
7478 }
7479
7480 // If this function is declared as being extern "C", then check to see if
7481 // the function returns a UDT (class, struct, or union type) that is not C
7482 // compatible, and if it does, warn the user.
7483 // But, issue any diagnostic on the first declaration only.
7484 if (NewFD->isExternC() && Previous.empty()) {
7485 QualType R = NewFD->getResultType();
7486 if (R->isIncompleteType() && !R->isVoidType())
7487 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7488 << NewFD << R;
7489 else if (!R.isPODType(Context) && !R->isVoidType() &&
7490 !R->isObjCObjectPointerType())
7491 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7492 }
7493 }
7494 return Redeclaration;
7495 }
7496
getResultSourceRange(const FunctionDecl * FD)7497 static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7498 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7499 if (!TSI)
7500 return SourceRange();
7501
7502 TypeLoc TL = TSI->getTypeLoc();
7503 FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7504 if (!FunctionTL)
7505 return SourceRange();
7506
7507 TypeLoc ResultTL = FunctionTL.getResultLoc();
7508 if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7509 return ResultTL.getSourceRange();
7510
7511 return SourceRange();
7512 }
7513
CheckMain(FunctionDecl * FD,const DeclSpec & DS)7514 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7515 // C++11 [basic.start.main]p3: A program that declares main to be inline,
7516 // static or constexpr is ill-formed.
7517 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
7518 // appear in a declaration of main.
7519 // static main is not an error under C99, but we should warn about it.
7520 // We accept _Noreturn main as an extension.
7521 if (FD->getStorageClass() == SC_Static)
7522 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7523 ? diag::err_static_main : diag::warn_static_main)
7524 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7525 if (FD->isInlineSpecified())
7526 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7527 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7528 if (DS.isNoreturnSpecified()) {
7529 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7530 SourceRange NoreturnRange(NoreturnLoc,
7531 PP.getLocForEndOfToken(NoreturnLoc));
7532 Diag(NoreturnLoc, diag::ext_noreturn_main);
7533 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7534 << FixItHint::CreateRemoval(NoreturnRange);
7535 }
7536 if (FD->isConstexpr()) {
7537 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7538 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7539 FD->setConstexpr(false);
7540 }
7541
7542 QualType T = FD->getType();
7543 assert(T->isFunctionType() && "function decl is not of function type");
7544 const FunctionType* FT = T->castAs<FunctionType>();
7545
7546 // All the standards say that main() should should return 'int'.
7547 if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7548 // In C and C++, main magically returns 0 if you fall off the end;
7549 // set the flag which tells us that.
7550 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7551 FD->setHasImplicitReturnZero(true);
7552
7553 // In C with GNU extensions we allow main() to have non-integer return
7554 // type, but we should warn about the extension, and we disable the
7555 // implicit-return-zero rule.
7556 } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7557 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7558
7559 SourceRange ResultRange = getResultSourceRange(FD);
7560 if (ResultRange.isValid())
7561 Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7562 << FixItHint::CreateReplacement(ResultRange, "int");
7563
7564 // Otherwise, this is just a flat-out error.
7565 } else {
7566 SourceRange ResultRange = getResultSourceRange(FD);
7567 if (ResultRange.isValid())
7568 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7569 << FixItHint::CreateReplacement(ResultRange, "int");
7570 else
7571 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7572
7573 FD->setInvalidDecl(true);
7574 }
7575
7576 // Treat protoless main() as nullary.
7577 if (isa<FunctionNoProtoType>(FT)) return;
7578
7579 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7580 unsigned nparams = FTP->getNumArgs();
7581 assert(FD->getNumParams() == nparams);
7582
7583 bool HasExtraParameters = (nparams > 3);
7584
7585 // Darwin passes an undocumented fourth argument of type char**. If
7586 // other platforms start sprouting these, the logic below will start
7587 // getting shifty.
7588 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7589 HasExtraParameters = false;
7590
7591 if (HasExtraParameters) {
7592 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7593 FD->setInvalidDecl(true);
7594 nparams = 3;
7595 }
7596
7597 // FIXME: a lot of the following diagnostics would be improved
7598 // if we had some location information about types.
7599
7600 QualType CharPP =
7601 Context.getPointerType(Context.getPointerType(Context.CharTy));
7602 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7603
7604 for (unsigned i = 0; i < nparams; ++i) {
7605 QualType AT = FTP->getArgType(i);
7606
7607 bool mismatch = true;
7608
7609 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7610 mismatch = false;
7611 else if (Expected[i] == CharPP) {
7612 // As an extension, the following forms are okay:
7613 // char const **
7614 // char const * const *
7615 // char * const *
7616
7617 QualifierCollector qs;
7618 const PointerType* PT;
7619 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7620 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7621 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7622 Context.CharTy)) {
7623 qs.removeConst();
7624 mismatch = !qs.empty();
7625 }
7626 }
7627
7628 if (mismatch) {
7629 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7630 // TODO: suggest replacing given type with expected type
7631 FD->setInvalidDecl(true);
7632 }
7633 }
7634
7635 if (nparams == 1 && !FD->isInvalidDecl()) {
7636 Diag(FD->getLocation(), diag::warn_main_one_arg);
7637 }
7638
7639 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7640 Diag(FD->getLocation(), diag::err_main_template_decl);
7641 FD->setInvalidDecl();
7642 }
7643 }
7644
CheckForConstantInitializer(Expr * Init,QualType DclT)7645 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7646 // FIXME: Need strict checking. In C89, we need to check for
7647 // any assignment, increment, decrement, function-calls, or
7648 // commas outside of a sizeof. In C99, it's the same list,
7649 // except that the aforementioned are allowed in unevaluated
7650 // expressions. Everything else falls under the
7651 // "may accept other forms of constant expressions" exception.
7652 // (We never end up here for C++, so the constant expression
7653 // rules there don't matter.)
7654 if (Init->isConstantInitializer(Context, false))
7655 return false;
7656 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7657 << Init->getSourceRange();
7658 return true;
7659 }
7660
7661 namespace {
7662 // Visits an initialization expression to see if OrigDecl is evaluated in
7663 // its own initialization and throws a warning if it does.
7664 class SelfReferenceChecker
7665 : public EvaluatedExprVisitor<SelfReferenceChecker> {
7666 Sema &S;
7667 Decl *OrigDecl;
7668 bool isRecordType;
7669 bool isPODType;
7670 bool isReferenceType;
7671
7672 public:
7673 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7674
SelfReferenceChecker(Sema & S,Decl * OrigDecl)7675 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7676 S(S), OrigDecl(OrigDecl) {
7677 isPODType = false;
7678 isRecordType = false;
7679 isReferenceType = false;
7680 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7681 isPODType = VD->getType().isPODType(S.Context);
7682 isRecordType = VD->getType()->isRecordType();
7683 isReferenceType = VD->getType()->isReferenceType();
7684 }
7685 }
7686
7687 // For most expressions, the cast is directly above the DeclRefExpr.
7688 // For conditional operators, the cast can be outside the conditional
7689 // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)7690 void HandleValue(Expr *E) {
7691 if (isReferenceType)
7692 return;
7693 E = E->IgnoreParenImpCasts();
7694 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7695 HandleDeclRefExpr(DRE);
7696 return;
7697 }
7698
7699 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7700 HandleValue(CO->getTrueExpr());
7701 HandleValue(CO->getFalseExpr());
7702 return;
7703 }
7704
7705 if (isa<MemberExpr>(E)) {
7706 Expr *Base = E->IgnoreParenImpCasts();
7707 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7708 // Check for static member variables and don't warn on them.
7709 if (!isa<FieldDecl>(ME->getMemberDecl()))
7710 return;
7711 Base = ME->getBase()->IgnoreParenImpCasts();
7712 }
7713 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7714 HandleDeclRefExpr(DRE);
7715 return;
7716 }
7717 }
7718
7719 // Reference types are handled here since all uses of references are
7720 // bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)7721 void VisitDeclRefExpr(DeclRefExpr *E) {
7722 if (isReferenceType)
7723 HandleDeclRefExpr(E);
7724 }
7725
VisitImplicitCastExpr(ImplicitCastExpr * E)7726 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7727 if (E->getCastKind() == CK_LValueToRValue ||
7728 (isRecordType && E->getCastKind() == CK_NoOp))
7729 HandleValue(E->getSubExpr());
7730
7731 Inherited::VisitImplicitCastExpr(E);
7732 }
7733
VisitMemberExpr(MemberExpr * E)7734 void VisitMemberExpr(MemberExpr *E) {
7735 // Don't warn on arrays since they can be treated as pointers.
7736 if (E->getType()->canDecayToPointerType()) return;
7737
7738 // Warn when a non-static method call is followed by non-static member
7739 // field accesses, which is followed by a DeclRefExpr.
7740 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7741 bool Warn = (MD && !MD->isStatic());
7742 Expr *Base = E->getBase()->IgnoreParenImpCasts();
7743 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7744 if (!isa<FieldDecl>(ME->getMemberDecl()))
7745 Warn = false;
7746 Base = ME->getBase()->IgnoreParenImpCasts();
7747 }
7748
7749 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7750 if (Warn)
7751 HandleDeclRefExpr(DRE);
7752 return;
7753 }
7754
7755 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7756 // Visit that expression.
7757 Visit(Base);
7758 }
7759
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)7760 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7761 if (E->getNumArgs() > 0)
7762 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7763 HandleDeclRefExpr(DRE);
7764
7765 Inherited::VisitCXXOperatorCallExpr(E);
7766 }
7767
VisitUnaryOperator(UnaryOperator * E)7768 void VisitUnaryOperator(UnaryOperator *E) {
7769 // For POD record types, addresses of its own members are well-defined.
7770 if (E->getOpcode() == UO_AddrOf && isRecordType &&
7771 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7772 if (!isPODType)
7773 HandleValue(E->getSubExpr());
7774 return;
7775 }
7776 Inherited::VisitUnaryOperator(E);
7777 }
7778
VisitObjCMessageExpr(ObjCMessageExpr * E)7779 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7780
HandleDeclRefExpr(DeclRefExpr * DRE)7781 void HandleDeclRefExpr(DeclRefExpr *DRE) {
7782 Decl* ReferenceDecl = DRE->getDecl();
7783 if (OrigDecl != ReferenceDecl) return;
7784 unsigned diag;
7785 if (isReferenceType) {
7786 diag = diag::warn_uninit_self_reference_in_reference_init;
7787 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7788 diag = diag::warn_static_self_reference_in_init;
7789 } else {
7790 diag = diag::warn_uninit_self_reference_in_init;
7791 }
7792
7793 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7794 S.PDiag(diag)
7795 << DRE->getNameInfo().getName()
7796 << OrigDecl->getLocation()
7797 << DRE->getSourceRange());
7798 }
7799 };
7800
7801 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)7802 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7803 bool DirectInit) {
7804 // Parameters arguments are occassionially constructed with itself,
7805 // for instance, in recursive functions. Skip them.
7806 if (isa<ParmVarDecl>(OrigDecl))
7807 return;
7808
7809 E = E->IgnoreParens();
7810
7811 // Skip checking T a = a where T is not a record or reference type.
7812 // Doing so is a way to silence uninitialized warnings.
7813 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7814 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7815 if (ICE->getCastKind() == CK_LValueToRValue)
7816 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7817 if (DRE->getDecl() == OrigDecl)
7818 return;
7819
7820 SelfReferenceChecker(S, OrigDecl).Visit(E);
7821 }
7822 }
7823
7824 /// AddInitializerToDecl - Adds the initializer Init to the
7825 /// declaration dcl. If DirectInit is true, this is C++ direct
7826 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)7827 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7828 bool DirectInit, bool TypeMayContainAuto) {
7829 // If there is no declaration, there was an error parsing it. Just ignore
7830 // the initializer.
7831 if (RealDecl == 0 || RealDecl->isInvalidDecl())
7832 return;
7833
7834 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7835 // With declarators parsed the way they are, the parser cannot
7836 // distinguish between a normal initializer and a pure-specifier.
7837 // Thus this grotesque test.
7838 IntegerLiteral *IL;
7839 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7840 Context.getCanonicalType(IL->getType()) == Context.IntTy)
7841 CheckPureMethod(Method, Init->getSourceRange());
7842 else {
7843 Diag(Method->getLocation(), diag::err_member_function_initialization)
7844 << Method->getDeclName() << Init->getSourceRange();
7845 Method->setInvalidDecl();
7846 }
7847 return;
7848 }
7849
7850 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7851 if (!VDecl) {
7852 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7853 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7854 RealDecl->setInvalidDecl();
7855 return;
7856 }
7857 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7858
7859 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7860 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7861 Expr *DeduceInit = Init;
7862 // Initializer could be a C++ direct-initializer. Deduction only works if it
7863 // contains exactly one expression.
7864 if (CXXDirectInit) {
7865 if (CXXDirectInit->getNumExprs() == 0) {
7866 // It isn't possible to write this directly, but it is possible to
7867 // end up in this situation with "auto x(some_pack...);"
7868 Diag(CXXDirectInit->getLocStart(),
7869 diag::err_auto_var_init_no_expression)
7870 << VDecl->getDeclName() << VDecl->getType()
7871 << VDecl->getSourceRange();
7872 RealDecl->setInvalidDecl();
7873 return;
7874 } else if (CXXDirectInit->getNumExprs() > 1) {
7875 Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7876 diag::err_auto_var_init_multiple_expressions)
7877 << VDecl->getDeclName() << VDecl->getType()
7878 << VDecl->getSourceRange();
7879 RealDecl->setInvalidDecl();
7880 return;
7881 } else {
7882 DeduceInit = CXXDirectInit->getExpr(0);
7883 }
7884 }
7885
7886 // Expressions default to 'id' when we're in a debugger.
7887 bool DefaultedToAuto = false;
7888 if (getLangOpts().DebuggerCastResultToId &&
7889 Init->getType() == Context.UnknownAnyTy) {
7890 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7891 if (Result.isInvalid()) {
7892 VDecl->setInvalidDecl();
7893 return;
7894 }
7895 Init = Result.take();
7896 DefaultedToAuto = true;
7897 }
7898
7899 QualType DeducedType;
7900 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7901 DAR_Failed)
7902 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7903 if (DeducedType.isNull()) {
7904 RealDecl->setInvalidDecl();
7905 return;
7906 }
7907 VDecl->setType(DeducedType);
7908 assert(VDecl->isLinkageValid());
7909
7910 // In ARC, infer lifetime.
7911 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7912 VDecl->setInvalidDecl();
7913
7914 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7915 // 'id' instead of a specific object type prevents most of our usual checks.
7916 // We only want to warn outside of template instantiations, though:
7917 // inside a template, the 'id' could have come from a parameter.
7918 if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7919 DeducedType->isObjCIdType()) {
7920 SourceLocation Loc =
7921 VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7922 Diag(Loc, diag::warn_auto_var_is_id)
7923 << VDecl->getDeclName() << DeduceInit->getSourceRange();
7924 }
7925
7926 // If this is a redeclaration, check that the type we just deduced matches
7927 // the previously declared type.
7928 if (VarDecl *Old = VDecl->getPreviousDecl())
7929 MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7930
7931 // Check the deduced type is valid for a variable declaration.
7932 CheckVariableDeclarationType(VDecl);
7933 if (VDecl->isInvalidDecl())
7934 return;
7935 }
7936
7937 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7938 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7939 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7940 VDecl->setInvalidDecl();
7941 return;
7942 }
7943
7944 if (!VDecl->getType()->isDependentType()) {
7945 // A definition must end up with a complete type, which means it must be
7946 // complete with the restriction that an array type might be completed by
7947 // the initializer; note that later code assumes this restriction.
7948 QualType BaseDeclType = VDecl->getType();
7949 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7950 BaseDeclType = Array->getElementType();
7951 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7952 diag::err_typecheck_decl_incomplete_type)) {
7953 RealDecl->setInvalidDecl();
7954 return;
7955 }
7956
7957 // The variable can not have an abstract class type.
7958 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7959 diag::err_abstract_type_in_decl,
7960 AbstractVariableType))
7961 VDecl->setInvalidDecl();
7962 }
7963
7964 const VarDecl *Def;
7965 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7966 Diag(VDecl->getLocation(), diag::err_redefinition)
7967 << VDecl->getDeclName();
7968 Diag(Def->getLocation(), diag::note_previous_definition);
7969 VDecl->setInvalidDecl();
7970 return;
7971 }
7972
7973 const VarDecl* PrevInit = 0;
7974 if (getLangOpts().CPlusPlus) {
7975 // C++ [class.static.data]p4
7976 // If a static data member is of const integral or const
7977 // enumeration type, its declaration in the class definition can
7978 // specify a constant-initializer which shall be an integral
7979 // constant expression (5.19). In that case, the member can appear
7980 // in integral constant expressions. The member shall still be
7981 // defined in a namespace scope if it is used in the program and the
7982 // namespace scope definition shall not contain an initializer.
7983 //
7984 // We already performed a redefinition check above, but for static
7985 // data members we also need to check whether there was an in-class
7986 // declaration with an initializer.
7987 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7988 Diag(VDecl->getLocation(), diag::err_redefinition)
7989 << VDecl->getDeclName();
7990 Diag(PrevInit->getLocation(), diag::note_previous_definition);
7991 return;
7992 }
7993
7994 if (VDecl->hasLocalStorage())
7995 getCurFunction()->setHasBranchProtectedScope();
7996
7997 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7998 VDecl->setInvalidDecl();
7999 return;
8000 }
8001 }
8002
8003 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8004 // a kernel function cannot be initialized."
8005 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8006 Diag(VDecl->getLocation(), diag::err_local_cant_init);
8007 VDecl->setInvalidDecl();
8008 return;
8009 }
8010
8011 // Get the decls type and save a reference for later, since
8012 // CheckInitializerTypes may change it.
8013 QualType DclT = VDecl->getType(), SavT = DclT;
8014
8015 // Expressions default to 'id' when we're in a debugger
8016 // and we are assigning it to a variable of Objective-C pointer type.
8017 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8018 Init->getType() == Context.UnknownAnyTy) {
8019 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8020 if (Result.isInvalid()) {
8021 VDecl->setInvalidDecl();
8022 return;
8023 }
8024 Init = Result.take();
8025 }
8026
8027 // Perform the initialization.
8028 if (!VDecl->isInvalidDecl()) {
8029 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8030 InitializationKind Kind
8031 = DirectInit ?
8032 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8033 Init->getLocStart(),
8034 Init->getLocEnd())
8035 : InitializationKind::CreateDirectList(
8036 VDecl->getLocation())
8037 : InitializationKind::CreateCopy(VDecl->getLocation(),
8038 Init->getLocStart());
8039
8040 MultiExprArg Args = Init;
8041 if (CXXDirectInit)
8042 Args = MultiExprArg(CXXDirectInit->getExprs(),
8043 CXXDirectInit->getNumExprs());
8044
8045 InitializationSequence InitSeq(*this, Entity, Kind, Args);
8046 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8047 if (Result.isInvalid()) {
8048 VDecl->setInvalidDecl();
8049 return;
8050 }
8051
8052 Init = Result.takeAs<Expr>();
8053 }
8054
8055 // Check for self-references within variable initializers.
8056 // Variables declared within a function/method body (except for references)
8057 // are handled by a dataflow analysis.
8058 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8059 VDecl->getType()->isReferenceType()) {
8060 CheckSelfReference(*this, RealDecl, Init, DirectInit);
8061 }
8062
8063 // If the type changed, it means we had an incomplete type that was
8064 // completed by the initializer. For example:
8065 // int ary[] = { 1, 3, 5 };
8066 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8067 if (!VDecl->isInvalidDecl() && (DclT != SavT))
8068 VDecl->setType(DclT);
8069
8070 if (!VDecl->isInvalidDecl()) {
8071 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8072
8073 if (VDecl->hasAttr<BlocksAttr>())
8074 checkRetainCycles(VDecl, Init);
8075
8076 // It is safe to assign a weak reference into a strong variable.
8077 // Although this code can still have problems:
8078 // id x = self.weakProp;
8079 // id y = self.weakProp;
8080 // we do not warn to warn spuriously when 'x' and 'y' are on separate
8081 // paths through the function. This should be revisited if
8082 // -Wrepeated-use-of-weak is made flow-sensitive.
8083 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8084 DiagnosticsEngine::Level Level =
8085 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8086 Init->getLocStart());
8087 if (Level != DiagnosticsEngine::Ignored)
8088 getCurFunction()->markSafeWeakUse(Init);
8089 }
8090 }
8091
8092 // The initialization is usually a full-expression.
8093 //
8094 // FIXME: If this is a braced initialization of an aggregate, it is not
8095 // an expression, and each individual field initializer is a separate
8096 // full-expression. For instance, in:
8097 //
8098 // struct Temp { ~Temp(); };
8099 // struct S { S(Temp); };
8100 // struct T { S a, b; } t = { Temp(), Temp() }
8101 //
8102 // we should destroy the first Temp before constructing the second.
8103 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8104 false,
8105 VDecl->isConstexpr());
8106 if (Result.isInvalid()) {
8107 VDecl->setInvalidDecl();
8108 return;
8109 }
8110 Init = Result.take();
8111
8112 // Attach the initializer to the decl.
8113 VDecl->setInit(Init);
8114
8115 if (VDecl->isLocalVarDecl()) {
8116 // C99 6.7.8p4: All the expressions in an initializer for an object that has
8117 // static storage duration shall be constant expressions or string literals.
8118 // C++ does not have this restriction.
8119 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8120 if (VDecl->getStorageClass() == SC_Static)
8121 CheckForConstantInitializer(Init, DclT);
8122 // C89 is stricter than C99 for non-static aggregate types.
8123 // C89 6.5.7p3: All the expressions [...] in an initializer list
8124 // for an object that has aggregate or union type shall be
8125 // constant expressions.
8126 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8127 isa<InitListExpr>(Init) &&
8128 !Init->isConstantInitializer(Context, false))
8129 Diag(Init->getExprLoc(),
8130 diag::ext_aggregate_init_not_constant)
8131 << Init->getSourceRange();
8132 }
8133 } else if (VDecl->isStaticDataMember() &&
8134 VDecl->getLexicalDeclContext()->isRecord()) {
8135 // This is an in-class initialization for a static data member, e.g.,
8136 //
8137 // struct S {
8138 // static const int value = 17;
8139 // };
8140
8141 // C++ [class.mem]p4:
8142 // A member-declarator can contain a constant-initializer only
8143 // if it declares a static member (9.4) of const integral or
8144 // const enumeration type, see 9.4.2.
8145 //
8146 // C++11 [class.static.data]p3:
8147 // If a non-volatile const static data member is of integral or
8148 // enumeration type, its declaration in the class definition can
8149 // specify a brace-or-equal-initializer in which every initalizer-clause
8150 // that is an assignment-expression is a constant expression. A static
8151 // data member of literal type can be declared in the class definition
8152 // with the constexpr specifier; if so, its declaration shall specify a
8153 // brace-or-equal-initializer in which every initializer-clause that is
8154 // an assignment-expression is a constant expression.
8155
8156 // Do nothing on dependent types.
8157 if (DclT->isDependentType()) {
8158
8159 // Allow any 'static constexpr' members, whether or not they are of literal
8160 // type. We separately check that every constexpr variable is of literal
8161 // type.
8162 } else if (VDecl->isConstexpr()) {
8163
8164 // Require constness.
8165 } else if (!DclT.isConstQualified()) {
8166 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8167 << Init->getSourceRange();
8168 VDecl->setInvalidDecl();
8169
8170 // We allow integer constant expressions in all cases.
8171 } else if (DclT->isIntegralOrEnumerationType()) {
8172 // Check whether the expression is a constant expression.
8173 SourceLocation Loc;
8174 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8175 // In C++11, a non-constexpr const static data member with an
8176 // in-class initializer cannot be volatile.
8177 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8178 else if (Init->isValueDependent())
8179 ; // Nothing to check.
8180 else if (Init->isIntegerConstantExpr(Context, &Loc))
8181 ; // Ok, it's an ICE!
8182 else if (Init->isEvaluatable(Context)) {
8183 // If we can constant fold the initializer through heroics, accept it,
8184 // but report this as a use of an extension for -pedantic.
8185 Diag(Loc, diag::ext_in_class_initializer_non_constant)
8186 << Init->getSourceRange();
8187 } else {
8188 // Otherwise, this is some crazy unknown case. Report the issue at the
8189 // location provided by the isIntegerConstantExpr failed check.
8190 Diag(Loc, diag::err_in_class_initializer_non_constant)
8191 << Init->getSourceRange();
8192 VDecl->setInvalidDecl();
8193 }
8194
8195 // We allow foldable floating-point constants as an extension.
8196 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8197 // In C++98, this is a GNU extension. In C++11, it is not, but we support
8198 // it anyway and provide a fixit to add the 'constexpr'.
8199 if (getLangOpts().CPlusPlus11) {
8200 Diag(VDecl->getLocation(),
8201 diag::ext_in_class_initializer_float_type_cxx11)
8202 << DclT << Init->getSourceRange();
8203 Diag(VDecl->getLocStart(),
8204 diag::note_in_class_initializer_float_type_cxx11)
8205 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8206 } else {
8207 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8208 << DclT << Init->getSourceRange();
8209
8210 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8211 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8212 << Init->getSourceRange();
8213 VDecl->setInvalidDecl();
8214 }
8215 }
8216
8217 // Suggest adding 'constexpr' in C++11 for literal types.
8218 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8219 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8220 << DclT << Init->getSourceRange()
8221 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8222 VDecl->setConstexpr(true);
8223
8224 } else {
8225 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8226 << DclT << Init->getSourceRange();
8227 VDecl->setInvalidDecl();
8228 }
8229 } else if (VDecl->isFileVarDecl()) {
8230 if (VDecl->getStorageClass() == SC_Extern &&
8231 (!getLangOpts().CPlusPlus ||
8232 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8233 VDecl->isExternC())))
8234 Diag(VDecl->getLocation(), diag::warn_extern_init);
8235
8236 // C99 6.7.8p4. All file scoped initializers need to be constant.
8237 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8238 CheckForConstantInitializer(Init, DclT);
8239 else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8240 !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8241 !Init->isValueDependent() && !VDecl->isConstexpr() &&
8242 !Init->isConstantInitializer(
8243 Context, VDecl->getType()->isReferenceType())) {
8244 // GNU C++98 edits for __thread, [basic.start.init]p4:
8245 // An object of thread storage duration shall not require dynamic
8246 // initialization.
8247 // FIXME: Need strict checking here.
8248 Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8249 if (getLangOpts().CPlusPlus11)
8250 Diag(VDecl->getLocation(), diag::note_use_thread_local);
8251 }
8252 }
8253
8254 // We will represent direct-initialization similarly to copy-initialization:
8255 // int x(1); -as-> int x = 1;
8256 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8257 //
8258 // Clients that want to distinguish between the two forms, can check for
8259 // direct initializer using VarDecl::getInitStyle().
8260 // A major benefit is that clients that don't particularly care about which
8261 // exactly form was it (like the CodeGen) can handle both cases without
8262 // special case code.
8263
8264 // C++ 8.5p11:
8265 // The form of initialization (using parentheses or '=') is generally
8266 // insignificant, but does matter when the entity being initialized has a
8267 // class type.
8268 if (CXXDirectInit) {
8269 assert(DirectInit && "Call-style initializer must be direct init.");
8270 VDecl->setInitStyle(VarDecl::CallInit);
8271 } else if (DirectInit) {
8272 // This must be list-initialization. No other way is direct-initialization.
8273 VDecl->setInitStyle(VarDecl::ListInit);
8274 }
8275
8276 CheckCompleteVariableDeclaration(VDecl);
8277 }
8278
8279 /// ActOnInitializerError - Given that there was an error parsing an
8280 /// initializer for the given declaration, try to return to some form
8281 /// of sanity.
ActOnInitializerError(Decl * D)8282 void Sema::ActOnInitializerError(Decl *D) {
8283 // Our main concern here is re-establishing invariants like "a
8284 // variable's type is either dependent or complete".
8285 if (!D || D->isInvalidDecl()) return;
8286
8287 VarDecl *VD = dyn_cast<VarDecl>(D);
8288 if (!VD) return;
8289
8290 // Auto types are meaningless if we can't make sense of the initializer.
8291 if (ParsingInitForAutoVars.count(D)) {
8292 D->setInvalidDecl();
8293 return;
8294 }
8295
8296 QualType Ty = VD->getType();
8297 if (Ty->isDependentType()) return;
8298
8299 // Require a complete type.
8300 if (RequireCompleteType(VD->getLocation(),
8301 Context.getBaseElementType(Ty),
8302 diag::err_typecheck_decl_incomplete_type)) {
8303 VD->setInvalidDecl();
8304 return;
8305 }
8306
8307 // Require an abstract type.
8308 if (RequireNonAbstractType(VD->getLocation(), Ty,
8309 diag::err_abstract_type_in_decl,
8310 AbstractVariableType)) {
8311 VD->setInvalidDecl();
8312 return;
8313 }
8314
8315 // Don't bother complaining about constructors or destructors,
8316 // though.
8317 }
8318
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)8319 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8320 bool TypeMayContainAuto) {
8321 // If there is no declaration, there was an error parsing it. Just ignore it.
8322 if (RealDecl == 0)
8323 return;
8324
8325 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8326 QualType Type = Var->getType();
8327
8328 // C++11 [dcl.spec.auto]p3
8329 if (TypeMayContainAuto && Type->getContainedAutoType()) {
8330 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8331 << Var->getDeclName() << Type;
8332 Var->setInvalidDecl();
8333 return;
8334 }
8335
8336 // C++11 [class.static.data]p3: A static data member can be declared with
8337 // the constexpr specifier; if so, its declaration shall specify
8338 // a brace-or-equal-initializer.
8339 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8340 // the definition of a variable [...] or the declaration of a static data
8341 // member.
8342 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8343 if (Var->isStaticDataMember())
8344 Diag(Var->getLocation(),
8345 diag::err_constexpr_static_mem_var_requires_init)
8346 << Var->getDeclName();
8347 else
8348 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8349 Var->setInvalidDecl();
8350 return;
8351 }
8352
8353 switch (Var->isThisDeclarationADefinition()) {
8354 case VarDecl::Definition:
8355 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8356 break;
8357
8358 // We have an out-of-line definition of a static data member
8359 // that has an in-class initializer, so we type-check this like
8360 // a declaration.
8361 //
8362 // Fall through
8363
8364 case VarDecl::DeclarationOnly:
8365 // It's only a declaration.
8366
8367 // Block scope. C99 6.7p7: If an identifier for an object is
8368 // declared with no linkage (C99 6.2.2p6), the type for the
8369 // object shall be complete.
8370 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8371 !Var->hasLinkage() && !Var->isInvalidDecl() &&
8372 RequireCompleteType(Var->getLocation(), Type,
8373 diag::err_typecheck_decl_incomplete_type))
8374 Var->setInvalidDecl();
8375
8376 // Make sure that the type is not abstract.
8377 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8378 RequireNonAbstractType(Var->getLocation(), Type,
8379 diag::err_abstract_type_in_decl,
8380 AbstractVariableType))
8381 Var->setInvalidDecl();
8382 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8383 Var->getStorageClass() == SC_PrivateExtern) {
8384 Diag(Var->getLocation(), diag::warn_private_extern);
8385 Diag(Var->getLocation(), diag::note_private_extern);
8386 }
8387
8388 return;
8389
8390 case VarDecl::TentativeDefinition:
8391 // File scope. C99 6.9.2p2: A declaration of an identifier for an
8392 // object that has file scope without an initializer, and without a
8393 // storage-class specifier or with the storage-class specifier "static",
8394 // constitutes a tentative definition. Note: A tentative definition with
8395 // external linkage is valid (C99 6.2.2p5).
8396 if (!Var->isInvalidDecl()) {
8397 if (const IncompleteArrayType *ArrayT
8398 = Context.getAsIncompleteArrayType(Type)) {
8399 if (RequireCompleteType(Var->getLocation(),
8400 ArrayT->getElementType(),
8401 diag::err_illegal_decl_array_incomplete_type))
8402 Var->setInvalidDecl();
8403 } else if (Var->getStorageClass() == SC_Static) {
8404 // C99 6.9.2p3: If the declaration of an identifier for an object is
8405 // a tentative definition and has internal linkage (C99 6.2.2p3), the
8406 // declared type shall not be an incomplete type.
8407 // NOTE: code such as the following
8408 // static struct s;
8409 // struct s { int a; };
8410 // is accepted by gcc. Hence here we issue a warning instead of
8411 // an error and we do not invalidate the static declaration.
8412 // NOTE: to avoid multiple warnings, only check the first declaration.
8413 if (Var->getPreviousDecl() == 0)
8414 RequireCompleteType(Var->getLocation(), Type,
8415 diag::ext_typecheck_decl_incomplete_type);
8416 }
8417 }
8418
8419 // Record the tentative definition; we're done.
8420 if (!Var->isInvalidDecl())
8421 TentativeDefinitions.push_back(Var);
8422 return;
8423 }
8424
8425 // Provide a specific diagnostic for uninitialized variable
8426 // definitions with incomplete array type.
8427 if (Type->isIncompleteArrayType()) {
8428 Diag(Var->getLocation(),
8429 diag::err_typecheck_incomplete_array_needs_initializer);
8430 Var->setInvalidDecl();
8431 return;
8432 }
8433
8434 // Provide a specific diagnostic for uninitialized variable
8435 // definitions with reference type.
8436 if (Type->isReferenceType()) {
8437 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8438 << Var->getDeclName()
8439 << SourceRange(Var->getLocation(), Var->getLocation());
8440 Var->setInvalidDecl();
8441 return;
8442 }
8443
8444 // Do not attempt to type-check the default initializer for a
8445 // variable with dependent type.
8446 if (Type->isDependentType())
8447 return;
8448
8449 if (Var->isInvalidDecl())
8450 return;
8451
8452 if (RequireCompleteType(Var->getLocation(),
8453 Context.getBaseElementType(Type),
8454 diag::err_typecheck_decl_incomplete_type)) {
8455 Var->setInvalidDecl();
8456 return;
8457 }
8458
8459 // The variable can not have an abstract class type.
8460 if (RequireNonAbstractType(Var->getLocation(), Type,
8461 diag::err_abstract_type_in_decl,
8462 AbstractVariableType)) {
8463 Var->setInvalidDecl();
8464 return;
8465 }
8466
8467 // Check for jumps past the implicit initializer. C++0x
8468 // clarifies that this applies to a "variable with automatic
8469 // storage duration", not a "local variable".
8470 // C++11 [stmt.dcl]p3
8471 // A program that jumps from a point where a variable with automatic
8472 // storage duration is not in scope to a point where it is in scope is
8473 // ill-formed unless the variable has scalar type, class type with a
8474 // trivial default constructor and a trivial destructor, a cv-qualified
8475 // version of one of these types, or an array of one of the preceding
8476 // types and is declared without an initializer.
8477 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8478 if (const RecordType *Record
8479 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8480 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8481 // Mark the function for further checking even if the looser rules of
8482 // C++11 do not require such checks, so that we can diagnose
8483 // incompatibilities with C++98.
8484 if (!CXXRecord->isPOD())
8485 getCurFunction()->setHasBranchProtectedScope();
8486 }
8487 }
8488
8489 // C++03 [dcl.init]p9:
8490 // If no initializer is specified for an object, and the
8491 // object is of (possibly cv-qualified) non-POD class type (or
8492 // array thereof), the object shall be default-initialized; if
8493 // the object is of const-qualified type, the underlying class
8494 // type shall have a user-declared default
8495 // constructor. Otherwise, if no initializer is specified for
8496 // a non- static object, the object and its subobjects, if
8497 // any, have an indeterminate initial value); if the object
8498 // or any of its subobjects are of const-qualified type, the
8499 // program is ill-formed.
8500 // C++0x [dcl.init]p11:
8501 // If no initializer is specified for an object, the object is
8502 // default-initialized; [...].
8503 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8504 InitializationKind Kind
8505 = InitializationKind::CreateDefault(Var->getLocation());
8506
8507 InitializationSequence InitSeq(*this, Entity, Kind, None);
8508 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8509 if (Init.isInvalid())
8510 Var->setInvalidDecl();
8511 else if (Init.get()) {
8512 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8513 // This is important for template substitution.
8514 Var->setInitStyle(VarDecl::CallInit);
8515 }
8516
8517 CheckCompleteVariableDeclaration(Var);
8518 }
8519 }
8520
ActOnCXXForRangeDecl(Decl * D)8521 void Sema::ActOnCXXForRangeDecl(Decl *D) {
8522 VarDecl *VD = dyn_cast<VarDecl>(D);
8523 if (!VD) {
8524 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8525 D->setInvalidDecl();
8526 return;
8527 }
8528
8529 VD->setCXXForRangeDecl(true);
8530
8531 // for-range-declaration cannot be given a storage class specifier.
8532 int Error = -1;
8533 switch (VD->getStorageClass()) {
8534 case SC_None:
8535 break;
8536 case SC_Extern:
8537 Error = 0;
8538 break;
8539 case SC_Static:
8540 Error = 1;
8541 break;
8542 case SC_PrivateExtern:
8543 Error = 2;
8544 break;
8545 case SC_Auto:
8546 Error = 3;
8547 break;
8548 case SC_Register:
8549 Error = 4;
8550 break;
8551 case SC_OpenCLWorkGroupLocal:
8552 llvm_unreachable("Unexpected storage class");
8553 }
8554 if (VD->isConstexpr())
8555 Error = 5;
8556 if (Error != -1) {
8557 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8558 << VD->getDeclName() << Error;
8559 D->setInvalidDecl();
8560 }
8561 }
8562
CheckCompleteVariableDeclaration(VarDecl * var)8563 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8564 if (var->isInvalidDecl()) return;
8565
8566 // In ARC, don't allow jumps past the implicit initialization of a
8567 // local retaining variable.
8568 if (getLangOpts().ObjCAutoRefCount &&
8569 var->hasLocalStorage()) {
8570 switch (var->getType().getObjCLifetime()) {
8571 case Qualifiers::OCL_None:
8572 case Qualifiers::OCL_ExplicitNone:
8573 case Qualifiers::OCL_Autoreleasing:
8574 break;
8575
8576 case Qualifiers::OCL_Weak:
8577 case Qualifiers::OCL_Strong:
8578 getCurFunction()->setHasBranchProtectedScope();
8579 break;
8580 }
8581 }
8582
8583 if (var->isThisDeclarationADefinition() &&
8584 var->isExternallyVisible() &&
8585 getDiagnostics().getDiagnosticLevel(
8586 diag::warn_missing_variable_declarations,
8587 var->getLocation())) {
8588 // Find a previous declaration that's not a definition.
8589 VarDecl *prev = var->getPreviousDecl();
8590 while (prev && prev->isThisDeclarationADefinition())
8591 prev = prev->getPreviousDecl();
8592
8593 if (!prev)
8594 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8595 }
8596
8597 if (var->getTLSKind() == VarDecl::TLS_Static &&
8598 var->getType().isDestructedType()) {
8599 // GNU C++98 edits for __thread, [basic.start.term]p3:
8600 // The type of an object with thread storage duration shall not
8601 // have a non-trivial destructor.
8602 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8603 if (getLangOpts().CPlusPlus11)
8604 Diag(var->getLocation(), diag::note_use_thread_local);
8605 }
8606
8607 // All the following checks are C++ only.
8608 if (!getLangOpts().CPlusPlus) return;
8609
8610 QualType type = var->getType();
8611 if (type->isDependentType()) return;
8612
8613 // __block variables might require us to capture a copy-initializer.
8614 if (var->hasAttr<BlocksAttr>()) {
8615 // It's currently invalid to ever have a __block variable with an
8616 // array type; should we diagnose that here?
8617
8618 // Regardless, we don't want to ignore array nesting when
8619 // constructing this copy.
8620 if (type->isStructureOrClassType()) {
8621 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8622 SourceLocation poi = var->getLocation();
8623 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8624 ExprResult result
8625 = PerformMoveOrCopyInitialization(
8626 InitializedEntity::InitializeBlock(poi, type, false),
8627 var, var->getType(), varRef, /*AllowNRVO=*/true);
8628 if (!result.isInvalid()) {
8629 result = MaybeCreateExprWithCleanups(result);
8630 Expr *init = result.takeAs<Expr>();
8631 Context.setBlockVarCopyInits(var, init);
8632 }
8633 }
8634 }
8635
8636 Expr *Init = var->getInit();
8637 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8638 QualType baseType = Context.getBaseElementType(type);
8639
8640 if (!var->getDeclContext()->isDependentContext() &&
8641 Init && !Init->isValueDependent()) {
8642 if (IsGlobal && !var->isConstexpr() &&
8643 getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8644 var->getLocation())
8645 != DiagnosticsEngine::Ignored) {
8646 // Warn about globals which don't have a constant initializer. Don't
8647 // warn about globals with a non-trivial destructor because we already
8648 // warned about them.
8649 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8650 if (!(RD && !RD->hasTrivialDestructor()) &&
8651 !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8652 Diag(var->getLocation(), diag::warn_global_constructor)
8653 << Init->getSourceRange();
8654 }
8655
8656 if (var->isConstexpr()) {
8657 SmallVector<PartialDiagnosticAt, 8> Notes;
8658 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8659 SourceLocation DiagLoc = var->getLocation();
8660 // If the note doesn't add any useful information other than a source
8661 // location, fold it into the primary diagnostic.
8662 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8663 diag::note_invalid_subexpr_in_const_expr) {
8664 DiagLoc = Notes[0].first;
8665 Notes.clear();
8666 }
8667 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8668 << var << Init->getSourceRange();
8669 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8670 Diag(Notes[I].first, Notes[I].second);
8671 }
8672 } else if (var->isUsableInConstantExpressions(Context)) {
8673 // Check whether the initializer of a const variable of integral or
8674 // enumeration type is an ICE now, since we can't tell whether it was
8675 // initialized by a constant expression if we check later.
8676 var->checkInitIsICE();
8677 }
8678 }
8679
8680 // Require the destructor.
8681 if (const RecordType *recordType = baseType->getAs<RecordType>())
8682 FinalizeVarWithDestructor(var, recordType);
8683 }
8684
8685 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8686 /// any semantic actions necessary after any initializer has been attached.
8687 void
FinalizeDeclaration(Decl * ThisDecl)8688 Sema::FinalizeDeclaration(Decl *ThisDecl) {
8689 // Note that we are no longer parsing the initializer for this declaration.
8690 ParsingInitForAutoVars.erase(ThisDecl);
8691
8692 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8693 if (!VD)
8694 return;
8695
8696 const DeclContext *DC = VD->getDeclContext();
8697 // If there's a #pragma GCC visibility in scope, and this isn't a class
8698 // member, set the visibility of this variable.
8699 if (!DC->isRecord() && VD->isExternallyVisible())
8700 AddPushedVisibilityAttribute(VD);
8701
8702 if (VD->isFileVarDecl())
8703 MarkUnusedFileScopedDecl(VD);
8704
8705 // Now we have parsed the initializer and can update the table of magic
8706 // tag values.
8707 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8708 !VD->getType()->isIntegralOrEnumerationType())
8709 return;
8710
8711 for (specific_attr_iterator<TypeTagForDatatypeAttr>
8712 I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8713 E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8714 I != E; ++I) {
8715 const Expr *MagicValueExpr = VD->getInit();
8716 if (!MagicValueExpr) {
8717 continue;
8718 }
8719 llvm::APSInt MagicValueInt;
8720 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8721 Diag(I->getRange().getBegin(),
8722 diag::err_type_tag_for_datatype_not_ice)
8723 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8724 continue;
8725 }
8726 if (MagicValueInt.getActiveBits() > 64) {
8727 Diag(I->getRange().getBegin(),
8728 diag::err_type_tag_for_datatype_too_large)
8729 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8730 continue;
8731 }
8732 uint64_t MagicValue = MagicValueInt.getZExtValue();
8733 RegisterTypeTagForDatatype(I->getArgumentKind(),
8734 MagicValue,
8735 I->getMatchingCType(),
8736 I->getLayoutCompatible(),
8737 I->getMustBeNull());
8738 }
8739 }
8740
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)8741 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8742 ArrayRef<Decl *> Group) {
8743 SmallVector<Decl*, 8> Decls;
8744
8745 if (DS.isTypeSpecOwned())
8746 Decls.push_back(DS.getRepAsDecl());
8747
8748 for (unsigned i = 0, e = Group.size(); i != e; ++i)
8749 if (Decl *D = Group[i])
8750 Decls.push_back(D);
8751
8752 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8753 if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8754 HandleTagNumbering(*this, Tag);
8755 }
8756
8757 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8758 }
8759
8760 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
8761 /// group, performing any necessary semantic checking.
8762 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(llvm::MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)8763 Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8764 bool TypeMayContainAuto) {
8765 // C++0x [dcl.spec.auto]p7:
8766 // If the type deduced for the template parameter U is not the same in each
8767 // deduction, the program is ill-formed.
8768 // FIXME: When initializer-list support is added, a distinction is needed
8769 // between the deduced type U and the deduced type which 'auto' stands for.
8770 // auto a = 0, b = { 1, 2, 3 };
8771 // is legal because the deduced type U is 'int' in both cases.
8772 if (TypeMayContainAuto && Group.size() > 1) {
8773 QualType Deduced;
8774 CanQualType DeducedCanon;
8775 VarDecl *DeducedDecl = 0;
8776 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
8777 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8778 AutoType *AT = D->getType()->getContainedAutoType();
8779 // Don't reissue diagnostics when instantiating a template.
8780 if (AT && D->isInvalidDecl())
8781 break;
8782 QualType U = AT ? AT->getDeducedType() : QualType();
8783 if (!U.isNull()) {
8784 CanQualType UCanon = Context.getCanonicalType(U);
8785 if (Deduced.isNull()) {
8786 Deduced = U;
8787 DeducedCanon = UCanon;
8788 DeducedDecl = D;
8789 } else if (DeducedCanon != UCanon) {
8790 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8791 diag::err_auto_different_deductions)
8792 << (AT->isDecltypeAuto() ? 1 : 0)
8793 << Deduced << DeducedDecl->getDeclName()
8794 << U << D->getDeclName()
8795 << DeducedDecl->getInit()->getSourceRange()
8796 << D->getInit()->getSourceRange();
8797 D->setInvalidDecl();
8798 break;
8799 }
8800 }
8801 }
8802 }
8803 }
8804
8805 ActOnDocumentableDecls(Group);
8806
8807 return DeclGroupPtrTy::make(
8808 DeclGroupRef::Create(Context, Group.data(), Group.size()));
8809 }
8810
ActOnDocumentableDecl(Decl * D)8811 void Sema::ActOnDocumentableDecl(Decl *D) {
8812 ActOnDocumentableDecls(D);
8813 }
8814
ActOnDocumentableDecls(ArrayRef<Decl * > Group)8815 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
8816 // Don't parse the comment if Doxygen diagnostics are ignored.
8817 if (Group.empty() || !Group[0])
8818 return;
8819
8820 if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8821 Group[0]->getLocation())
8822 == DiagnosticsEngine::Ignored)
8823 return;
8824
8825 if (Group.size() >= 2) {
8826 // This is a decl group. Normally it will contain only declarations
8827 // produced from declarator list. But in case we have any definitions or
8828 // additional declaration references:
8829 // 'typedef struct S {} S;'
8830 // 'typedef struct S *S;'
8831 // 'struct S *pS;'
8832 // FinalizeDeclaratorGroup adds these as separate declarations.
8833 Decl *MaybeTagDecl = Group[0];
8834 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8835 Group = Group.slice(1);
8836 }
8837 }
8838
8839 // See if there are any new comments that are not attached to a decl.
8840 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8841 if (!Comments.empty() &&
8842 !Comments.back()->isAttached()) {
8843 // There is at least one comment that not attached to a decl.
8844 // Maybe it should be attached to one of these decls?
8845 //
8846 // Note that this way we pick up not only comments that precede the
8847 // declaration, but also comments that *follow* the declaration -- thanks to
8848 // the lookahead in the lexer: we've consumed the semicolon and looked
8849 // ahead through comments.
8850 for (unsigned i = 0, e = Group.size(); i != e; ++i)
8851 Context.getCommentForDecl(Group[i], &PP);
8852 }
8853 }
8854
8855 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8856 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)8857 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8858 const DeclSpec &DS = D.getDeclSpec();
8859
8860 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8861 // C++03 [dcl.stc]p2 also permits 'auto'.
8862 VarDecl::StorageClass StorageClass = SC_None;
8863 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8864 StorageClass = SC_Register;
8865 } else if (getLangOpts().CPlusPlus &&
8866 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8867 StorageClass = SC_Auto;
8868 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8869 Diag(DS.getStorageClassSpecLoc(),
8870 diag::err_invalid_storage_class_in_func_decl);
8871 D.getMutableDeclSpec().ClearStorageClassSpecs();
8872 }
8873
8874 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8875 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8876 << DeclSpec::getSpecifierName(TSCS);
8877 if (DS.isConstexprSpecified())
8878 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8879 << 0;
8880
8881 DiagnoseFunctionSpecifiers(DS);
8882
8883 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8884 QualType parmDeclType = TInfo->getType();
8885
8886 if (getLangOpts().CPlusPlus) {
8887 // Check that there are no default arguments inside the type of this
8888 // parameter.
8889 CheckExtraCXXDefaultArguments(D);
8890
8891 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8892 if (D.getCXXScopeSpec().isSet()) {
8893 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8894 << D.getCXXScopeSpec().getRange();
8895 D.getCXXScopeSpec().clear();
8896 }
8897 }
8898
8899 // Ensure we have a valid name
8900 IdentifierInfo *II = 0;
8901 if (D.hasName()) {
8902 II = D.getIdentifier();
8903 if (!II) {
8904 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8905 << GetNameForDeclarator(D).getName().getAsString();
8906 D.setInvalidType(true);
8907 }
8908 }
8909
8910 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8911 if (II) {
8912 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8913 ForRedeclaration);
8914 LookupName(R, S);
8915 if (R.isSingleResult()) {
8916 NamedDecl *PrevDecl = R.getFoundDecl();
8917 if (PrevDecl->isTemplateParameter()) {
8918 // Maybe we will complain about the shadowed template parameter.
8919 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8920 // Just pretend that we didn't see the previous declaration.
8921 PrevDecl = 0;
8922 } else if (S->isDeclScope(PrevDecl)) {
8923 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8924 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8925
8926 // Recover by removing the name
8927 II = 0;
8928 D.SetIdentifier(0, D.getIdentifierLoc());
8929 D.setInvalidType(true);
8930 }
8931 }
8932 }
8933
8934 // Temporarily put parameter variables in the translation unit, not
8935 // the enclosing context. This prevents them from accidentally
8936 // looking like class members in C++.
8937 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8938 D.getLocStart(),
8939 D.getIdentifierLoc(), II,
8940 parmDeclType, TInfo,
8941 StorageClass);
8942
8943 if (D.isInvalidType())
8944 New->setInvalidDecl();
8945
8946 assert(S->isFunctionPrototypeScope());
8947 assert(S->getFunctionPrototypeDepth() >= 1);
8948 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8949 S->getNextFunctionPrototypeIndex());
8950
8951 // Add the parameter declaration into this scope.
8952 S->AddDecl(New);
8953 if (II)
8954 IdResolver.AddDecl(New);
8955
8956 ProcessDeclAttributes(S, New, D);
8957
8958 if (D.getDeclSpec().isModulePrivateSpecified())
8959 Diag(New->getLocation(), diag::err_module_private_local)
8960 << 1 << New->getDeclName()
8961 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8962 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8963
8964 if (New->hasAttr<BlocksAttr>()) {
8965 Diag(New->getLocation(), diag::err_block_on_nonlocal);
8966 }
8967 return New;
8968 }
8969
8970 /// \brief Synthesizes a variable for a parameter arising from a
8971 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)8972 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8973 SourceLocation Loc,
8974 QualType T) {
8975 /* FIXME: setting StartLoc == Loc.
8976 Would it be worth to modify callers so as to provide proper source
8977 location for the unnamed parameters, embedding the parameter's type? */
8978 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8979 T, Context.getTrivialTypeSourceInfo(T, Loc),
8980 SC_None, 0);
8981 Param->setImplicit();
8982 return Param;
8983 }
8984
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)8985 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8986 ParmVarDecl * const *ParamEnd) {
8987 // Don't diagnose unused-parameter errors in template instantiations; we
8988 // will already have done so in the template itself.
8989 if (!ActiveTemplateInstantiations.empty())
8990 return;
8991
8992 for (; Param != ParamEnd; ++Param) {
8993 if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8994 !(*Param)->hasAttr<UnusedAttr>()) {
8995 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8996 << (*Param)->getDeclName();
8997 }
8998 }
8999 }
9000
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)9001 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9002 ParmVarDecl * const *ParamEnd,
9003 QualType ReturnTy,
9004 NamedDecl *D) {
9005 if (LangOpts.NumLargeByValueCopy == 0) // No check.
9006 return;
9007
9008 // Warn if the return value is pass-by-value and larger than the specified
9009 // threshold.
9010 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9011 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9012 if (Size > LangOpts.NumLargeByValueCopy)
9013 Diag(D->getLocation(), diag::warn_return_value_size)
9014 << D->getDeclName() << Size;
9015 }
9016
9017 // Warn if any parameter is pass-by-value and larger than the specified
9018 // threshold.
9019 for (; Param != ParamEnd; ++Param) {
9020 QualType T = (*Param)->getType();
9021 if (T->isDependentType() || !T.isPODType(Context))
9022 continue;
9023 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9024 if (Size > LangOpts.NumLargeByValueCopy)
9025 Diag((*Param)->getLocation(), diag::warn_parameter_size)
9026 << (*Param)->getDeclName() << Size;
9027 }
9028 }
9029
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass)9030 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9031 SourceLocation NameLoc, IdentifierInfo *Name,
9032 QualType T, TypeSourceInfo *TSInfo,
9033 VarDecl::StorageClass StorageClass) {
9034 // In ARC, infer a lifetime qualifier for appropriate parameter types.
9035 if (getLangOpts().ObjCAutoRefCount &&
9036 T.getObjCLifetime() == Qualifiers::OCL_None &&
9037 T->isObjCLifetimeType()) {
9038
9039 Qualifiers::ObjCLifetime lifetime;
9040
9041 // Special cases for arrays:
9042 // - if it's const, use __unsafe_unretained
9043 // - otherwise, it's an error
9044 if (T->isArrayType()) {
9045 if (!T.isConstQualified()) {
9046 DelayedDiagnostics.add(
9047 sema::DelayedDiagnostic::makeForbiddenType(
9048 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9049 }
9050 lifetime = Qualifiers::OCL_ExplicitNone;
9051 } else {
9052 lifetime = T->getObjCARCImplicitLifetime();
9053 }
9054 T = Context.getLifetimeQualifiedType(T, lifetime);
9055 }
9056
9057 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9058 Context.getAdjustedParameterType(T),
9059 TSInfo,
9060 StorageClass, 0);
9061
9062 // Parameters can not be abstract class types.
9063 // For record types, this is done by the AbstractClassUsageDiagnoser once
9064 // the class has been completely parsed.
9065 if (!CurContext->isRecord() &&
9066 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9067 AbstractParamType))
9068 New->setInvalidDecl();
9069
9070 // Parameter declarators cannot be interface types. All ObjC objects are
9071 // passed by reference.
9072 if (T->isObjCObjectType()) {
9073 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9074 Diag(NameLoc,
9075 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9076 << FixItHint::CreateInsertion(TypeEndLoc, "*");
9077 T = Context.getObjCObjectPointerType(T);
9078 New->setType(T);
9079 }
9080
9081 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9082 // duration shall not be qualified by an address-space qualifier."
9083 // Since all parameters have automatic store duration, they can not have
9084 // an address space.
9085 if (T.getAddressSpace() != 0) {
9086 Diag(NameLoc, diag::err_arg_with_address_space);
9087 New->setInvalidDecl();
9088 }
9089
9090 return New;
9091 }
9092
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)9093 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9094 SourceLocation LocAfterDecls) {
9095 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9096
9097 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9098 // for a K&R function.
9099 if (!FTI.hasPrototype) {
9100 for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9101 --i;
9102 if (FTI.ArgInfo[i].Param == 0) {
9103 SmallString<256> Code;
9104 llvm::raw_svector_ostream(Code) << " int "
9105 << FTI.ArgInfo[i].Ident->getName()
9106 << ";\n";
9107 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9108 << FTI.ArgInfo[i].Ident
9109 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9110
9111 // Implicitly declare the argument as type 'int' for lack of a better
9112 // type.
9113 AttributeFactory attrs;
9114 DeclSpec DS(attrs);
9115 const char* PrevSpec; // unused
9116 unsigned DiagID; // unused
9117 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9118 PrevSpec, DiagID);
9119 // Use the identifier location for the type source range.
9120 DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9121 DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9122 Declarator ParamD(DS, Declarator::KNRTypeListContext);
9123 ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9124 FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9125 }
9126 }
9127 }
9128 }
9129
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)9130 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9131 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9132 assert(D.isFunctionDeclarator() && "Not a function declarator!");
9133 Scope *ParentScope = FnBodyScope->getParent();
9134
9135 D.setFunctionDefinitionKind(FDK_Definition);
9136 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9137 return ActOnStartOfFunctionDef(FnBodyScope, DP);
9138 }
9139
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)9140 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9141 const FunctionDecl*& PossibleZeroParamPrototype) {
9142 // Don't warn about invalid declarations.
9143 if (FD->isInvalidDecl())
9144 return false;
9145
9146 // Or declarations that aren't global.
9147 if (!FD->isGlobal())
9148 return false;
9149
9150 // Don't warn about C++ member functions.
9151 if (isa<CXXMethodDecl>(FD))
9152 return false;
9153
9154 // Don't warn about 'main'.
9155 if (FD->isMain())
9156 return false;
9157
9158 // Don't warn about inline functions.
9159 if (FD->isInlined())
9160 return false;
9161
9162 // Don't warn about function templates.
9163 if (FD->getDescribedFunctionTemplate())
9164 return false;
9165
9166 // Don't warn about function template specializations.
9167 if (FD->isFunctionTemplateSpecialization())
9168 return false;
9169
9170 // Don't warn for OpenCL kernels.
9171 if (FD->hasAttr<OpenCLKernelAttr>())
9172 return false;
9173
9174 bool MissingPrototype = true;
9175 for (const FunctionDecl *Prev = FD->getPreviousDecl();
9176 Prev; Prev = Prev->getPreviousDecl()) {
9177 // Ignore any declarations that occur in function or method
9178 // scope, because they aren't visible from the header.
9179 if (Prev->getDeclContext()->isFunctionOrMethod())
9180 continue;
9181
9182 MissingPrototype = !Prev->getType()->isFunctionProtoType();
9183 if (FD->getNumParams() == 0)
9184 PossibleZeroParamPrototype = Prev;
9185 break;
9186 }
9187
9188 return MissingPrototype;
9189 }
9190
CheckForFunctionRedefinition(FunctionDecl * FD)9191 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
9192 // Don't complain if we're in GNU89 mode and the previous definition
9193 // was an extern inline function.
9194 const FunctionDecl *Definition;
9195 if (FD->isDefined(Definition) &&
9196 !canRedefineFunction(Definition, getLangOpts())) {
9197 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9198 Definition->getStorageClass() == SC_Extern)
9199 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9200 << FD->getDeclName() << getLangOpts().CPlusPlus;
9201 else
9202 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9203 Diag(Definition->getLocation(), diag::note_previous_definition);
9204 FD->setInvalidDecl();
9205 }
9206 }
9207
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)9208 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9209 // Clear the last template instantiation error context.
9210 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9211
9212 if (!D)
9213 return D;
9214 FunctionDecl *FD = 0;
9215
9216 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9217 FD = FunTmpl->getTemplatedDecl();
9218 else
9219 FD = cast<FunctionDecl>(D);
9220
9221 // Enter a new function scope
9222 PushFunctionScope();
9223
9224 // See if this is a redefinition.
9225 if (!FD->isLateTemplateParsed())
9226 CheckForFunctionRedefinition(FD);
9227
9228 // Builtin functions cannot be defined.
9229 if (unsigned BuiltinID = FD->getBuiltinID()) {
9230 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9231 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9232 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9233 FD->setInvalidDecl();
9234 }
9235 }
9236
9237 // The return type of a function definition must be complete
9238 // (C99 6.9.1p3, C++ [dcl.fct]p6).
9239 QualType ResultType = FD->getResultType();
9240 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9241 !FD->isInvalidDecl() &&
9242 RequireCompleteType(FD->getLocation(), ResultType,
9243 diag::err_func_def_incomplete_result))
9244 FD->setInvalidDecl();
9245
9246 // GNU warning -Wmissing-prototypes:
9247 // Warn if a global function is defined without a previous
9248 // prototype declaration. This warning is issued even if the
9249 // definition itself provides a prototype. The aim is to detect
9250 // global functions that fail to be declared in header files.
9251 const FunctionDecl *PossibleZeroParamPrototype = 0;
9252 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9253 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9254
9255 if (PossibleZeroParamPrototype) {
9256 // We found a declaration that is not a prototype,
9257 // but that could be a zero-parameter prototype
9258 if (TypeSourceInfo *TI =
9259 PossibleZeroParamPrototype->getTypeSourceInfo()) {
9260 TypeLoc TL = TI->getTypeLoc();
9261 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9262 Diag(PossibleZeroParamPrototype->getLocation(),
9263 diag::note_declaration_not_a_prototype)
9264 << PossibleZeroParamPrototype
9265 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9266 }
9267 }
9268 }
9269
9270 if (FnBodyScope)
9271 PushDeclContext(FnBodyScope, FD);
9272
9273 // Check the validity of our function parameters
9274 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9275 /*CheckParameterNames=*/true);
9276
9277 // Introduce our parameters into the function scope
9278 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9279 ParmVarDecl *Param = FD->getParamDecl(p);
9280 Param->setOwningFunction(FD);
9281
9282 // If this has an identifier, add it to the scope stack.
9283 if (Param->getIdentifier() && FnBodyScope) {
9284 CheckShadow(FnBodyScope, Param);
9285
9286 PushOnScopeChains(Param, FnBodyScope);
9287 }
9288 }
9289
9290 // If we had any tags defined in the function prototype,
9291 // introduce them into the function scope.
9292 if (FnBodyScope) {
9293 for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
9294 E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
9295 NamedDecl *D = *I;
9296
9297 // Some of these decls (like enums) may have been pinned to the translation unit
9298 // for lack of a real context earlier. If so, remove from the translation unit
9299 // and reattach to the current context.
9300 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9301 // Is the decl actually in the context?
9302 for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9303 DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9304 if (*DI == D) {
9305 Context.getTranslationUnitDecl()->removeDecl(D);
9306 break;
9307 }
9308 }
9309 // Either way, reassign the lexical decl context to our FunctionDecl.
9310 D->setLexicalDeclContext(CurContext);
9311 }
9312
9313 // If the decl has a non-null name, make accessible in the current scope.
9314 if (!D->getName().empty())
9315 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9316
9317 // Similarly, dive into enums and fish their constants out, making them
9318 // accessible in this scope.
9319 if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9320 for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9321 EE = ED->enumerator_end(); EI != EE; ++EI)
9322 PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9323 }
9324 }
9325 }
9326
9327 // Ensure that the function's exception specification is instantiated.
9328 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9329 ResolveExceptionSpec(D->getLocation(), FPT);
9330
9331 // Checking attributes of current function definition
9332 // dllimport attribute.
9333 DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9334 if (DA && (!FD->getAttr<DLLExportAttr>())) {
9335 // dllimport attribute cannot be directly applied to definition.
9336 // Microsoft accepts dllimport for functions defined within class scope.
9337 if (!DA->isInherited() &&
9338 !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9339 Diag(FD->getLocation(),
9340 diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9341 << "dllimport";
9342 FD->setInvalidDecl();
9343 return D;
9344 }
9345
9346 // Visual C++ appears to not think this is an issue, so only issue
9347 // a warning when Microsoft extensions are disabled.
9348 if (!LangOpts.MicrosoftExt) {
9349 // If a symbol previously declared dllimport is later defined, the
9350 // attribute is ignored in subsequent references, and a warning is
9351 // emitted.
9352 Diag(FD->getLocation(),
9353 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9354 << FD->getName() << "dllimport";
9355 }
9356 }
9357 // We want to attach documentation to original Decl (which might be
9358 // a function template).
9359 ActOnDocumentableDecl(D);
9360 return D;
9361 }
9362
9363 /// \brief Given the set of return statements within a function body,
9364 /// compute the variables that are subject to the named return value
9365 /// optimization.
9366 ///
9367 /// Each of the variables that is subject to the named return value
9368 /// optimization will be marked as NRVO variables in the AST, and any
9369 /// return statement that has a marked NRVO variable as its NRVO candidate can
9370 /// use the named return value optimization.
9371 ///
9372 /// This function applies a very simplistic algorithm for NRVO: if every return
9373 /// statement in the function has the same NRVO candidate, that candidate is
9374 /// the NRVO variable.
9375 ///
9376 /// FIXME: Employ a smarter algorithm that accounts for multiple return
9377 /// statements and the lifetimes of the NRVO candidates. We should be able to
9378 /// find a maximal set of NRVO variables.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)9379 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9380 ReturnStmt **Returns = Scope->Returns.data();
9381
9382 const VarDecl *NRVOCandidate = 0;
9383 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9384 if (!Returns[I]->getNRVOCandidate())
9385 return;
9386
9387 if (!NRVOCandidate)
9388 NRVOCandidate = Returns[I]->getNRVOCandidate();
9389 else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9390 return;
9391 }
9392
9393 if (NRVOCandidate)
9394 const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9395 }
9396
canSkipFunctionBody(Decl * D)9397 bool Sema::canSkipFunctionBody(Decl *D) {
9398 if (!Consumer.shouldSkipFunctionBody(D))
9399 return false;
9400
9401 if (isa<ObjCMethodDecl>(D))
9402 return true;
9403
9404 FunctionDecl *FD = 0;
9405 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9406 FD = FTD->getTemplatedDecl();
9407 else
9408 FD = cast<FunctionDecl>(D);
9409
9410 // We cannot skip the body of a function (or function template) which is
9411 // constexpr, since we may need to evaluate its body in order to parse the
9412 // rest of the file.
9413 // We cannot skip the body of a function with an undeduced return type,
9414 // because any callers of that function need to know the type.
9415 return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9416 }
9417
ActOnSkippedFunctionBody(Decl * Decl)9418 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9419 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9420 FD->setHasSkippedBody();
9421 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9422 MD->setHasSkippedBody();
9423 return ActOnFinishFunctionBody(Decl, 0);
9424 }
9425
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)9426 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9427 return ActOnFinishFunctionBody(D, BodyArg, false);
9428 }
9429
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)9430 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9431 bool IsInstantiation) {
9432 FunctionDecl *FD = 0;
9433 FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9434 if (FunTmpl)
9435 FD = FunTmpl->getTemplatedDecl();
9436 else
9437 FD = dyn_cast_or_null<FunctionDecl>(dcl);
9438
9439 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9440 sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9441
9442 if (FD) {
9443 FD->setBody(Body);
9444
9445 if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9446 !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9447 // If the function has a deduced result type but contains no 'return'
9448 // statements, the result type as written must be exactly 'auto', and
9449 // the deduced result type is 'void'.
9450 if (!FD->getResultType()->getAs<AutoType>()) {
9451 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9452 << FD->getResultType();
9453 FD->setInvalidDecl();
9454 } else {
9455 // Substitute 'void' for the 'auto' in the type.
9456 TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9457 IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9458 Context.adjustDeducedFunctionResultType(
9459 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9460 }
9461 }
9462
9463 // The only way to be included in UndefinedButUsed is if there is an
9464 // ODR use before the definition. Avoid the expensive map lookup if this
9465 // is the first declaration.
9466 if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9467 if (!FD->isExternallyVisible())
9468 UndefinedButUsed.erase(FD);
9469 else if (FD->isInlined() &&
9470 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9471 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9472 UndefinedButUsed.erase(FD);
9473 }
9474
9475 // If the function implicitly returns zero (like 'main') or is naked,
9476 // don't complain about missing return statements.
9477 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9478 WP.disableCheckFallThrough();
9479
9480 // MSVC permits the use of pure specifier (=0) on function definition,
9481 // defined at class scope, warn about this non standard construct.
9482 if (getLangOpts().MicrosoftExt && FD->isPure())
9483 Diag(FD->getLocation(), diag::warn_pure_function_definition);
9484
9485 if (!FD->isInvalidDecl()) {
9486 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9487 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9488 FD->getResultType(), FD);
9489
9490 // If this is a constructor, we need a vtable.
9491 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9492 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9493
9494 // Try to apply the named return value optimization. We have to check
9495 // if we can do this here because lambdas keep return statements around
9496 // to deduce an implicit return type.
9497 if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9498 !FD->isDependentContext())
9499 computeNRVO(Body, getCurFunction());
9500 }
9501
9502 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9503 "Function parsing confused");
9504 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9505 assert(MD == getCurMethodDecl() && "Method parsing confused");
9506 MD->setBody(Body);
9507 if (!MD->isInvalidDecl()) {
9508 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9509 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9510 MD->getResultType(), MD);
9511
9512 if (Body)
9513 computeNRVO(Body, getCurFunction());
9514 }
9515 if (getCurFunction()->ObjCShouldCallSuper) {
9516 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9517 << MD->getSelector().getAsString();
9518 getCurFunction()->ObjCShouldCallSuper = false;
9519 }
9520 } else {
9521 return 0;
9522 }
9523
9524 assert(!getCurFunction()->ObjCShouldCallSuper &&
9525 "This should only be set for ObjC methods, which should have been "
9526 "handled in the block above.");
9527
9528 // Verify and clean out per-function state.
9529 if (Body) {
9530 // C++ constructors that have function-try-blocks can't have return
9531 // statements in the handlers of that block. (C++ [except.handle]p14)
9532 // Verify this.
9533 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9534 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9535
9536 // Verify that gotos and switch cases don't jump into scopes illegally.
9537 if (getCurFunction()->NeedsScopeChecking() &&
9538 !dcl->isInvalidDecl() &&
9539 !hasAnyUnrecoverableErrorsInThisFunction() &&
9540 !PP.isCodeCompletionEnabled())
9541 DiagnoseInvalidJumps(Body);
9542
9543 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9544 if (!Destructor->getParent()->isDependentType())
9545 CheckDestructor(Destructor);
9546
9547 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9548 Destructor->getParent());
9549 }
9550
9551 // If any errors have occurred, clear out any temporaries that may have
9552 // been leftover. This ensures that these temporaries won't be picked up for
9553 // deletion in some later function.
9554 if (PP.getDiagnostics().hasErrorOccurred() ||
9555 PP.getDiagnostics().getSuppressAllDiagnostics()) {
9556 DiscardCleanupsInEvaluationContext();
9557 }
9558 if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9559 !isa<FunctionTemplateDecl>(dcl)) {
9560 // Since the body is valid, issue any analysis-based warnings that are
9561 // enabled.
9562 ActivePolicy = &WP;
9563 }
9564
9565 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9566 (!CheckConstexprFunctionDecl(FD) ||
9567 !CheckConstexprFunctionBody(FD, Body)))
9568 FD->setInvalidDecl();
9569
9570 assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9571 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9572 assert(MaybeODRUseExprs.empty() &&
9573 "Leftover expressions for odr-use checking");
9574 }
9575
9576 if (!IsInstantiation)
9577 PopDeclContext();
9578
9579 PopFunctionScopeInfo(ActivePolicy, dcl);
9580
9581 // If any errors have occurred, clear out any temporaries that may have
9582 // been leftover. This ensures that these temporaries won't be picked up for
9583 // deletion in some later function.
9584 if (getDiagnostics().hasErrorOccurred()) {
9585 DiscardCleanupsInEvaluationContext();
9586 }
9587
9588 return dcl;
9589 }
9590
9591
9592 /// When we finish delayed parsing of an attribute, we must attach it to the
9593 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)9594 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9595 ParsedAttributes &Attrs) {
9596 // Always attach attributes to the underlying decl.
9597 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9598 D = TD->getTemplatedDecl();
9599 ProcessDeclAttributeList(S, D, Attrs.getList());
9600
9601 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9602 if (Method->isStatic())
9603 checkThisInStaticMemberFunctionAttributes(Method);
9604 }
9605
9606
9607 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9608 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)9609 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9610 IdentifierInfo &II, Scope *S) {
9611 // Before we produce a declaration for an implicitly defined
9612 // function, see whether there was a locally-scoped declaration of
9613 // this name as a function or variable. If so, use that
9614 // (non-visible) declaration, and complain about it.
9615 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9616 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9617 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9618 return ExternCPrev;
9619 }
9620
9621 // Extension in C99. Legal in C90, but warn about it.
9622 unsigned diag_id;
9623 if (II.getName().startswith("__builtin_"))
9624 diag_id = diag::warn_builtin_unknown;
9625 else if (getLangOpts().C99)
9626 diag_id = diag::ext_implicit_function_decl;
9627 else
9628 diag_id = diag::warn_implicit_function_decl;
9629 Diag(Loc, diag_id) << &II;
9630
9631 // Because typo correction is expensive, only do it if the implicit
9632 // function declaration is going to be treated as an error.
9633 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9634 TypoCorrection Corrected;
9635 DeclFilterCCC<FunctionDecl> Validator;
9636 if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9637 LookupOrdinaryName, S, 0, Validator))) {
9638 std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9639 std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9640 FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9641
9642 Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9643 << FixItHint::CreateReplacement(Loc, CorrectedStr);
9644
9645 if (Func->getLocation().isValid()
9646 && !II.getName().startswith("__builtin_"))
9647 Diag(Func->getLocation(), diag::note_previous_decl)
9648 << CorrectedQuotedStr;
9649 }
9650 }
9651
9652 // Set a Declarator for the implicit definition: int foo();
9653 const char *Dummy;
9654 AttributeFactory attrFactory;
9655 DeclSpec DS(attrFactory);
9656 unsigned DiagID;
9657 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9658 (void)Error; // Silence warning.
9659 assert(!Error && "Error setting up implicit decl!");
9660 SourceLocation NoLoc;
9661 Declarator D(DS, Declarator::BlockContext);
9662 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9663 /*IsAmbiguous=*/false,
9664 /*RParenLoc=*/NoLoc,
9665 /*ArgInfo=*/0,
9666 /*NumArgs=*/0,
9667 /*EllipsisLoc=*/NoLoc,
9668 /*RParenLoc=*/NoLoc,
9669 /*TypeQuals=*/0,
9670 /*RefQualifierIsLvalueRef=*/true,
9671 /*RefQualifierLoc=*/NoLoc,
9672 /*ConstQualifierLoc=*/NoLoc,
9673 /*VolatileQualifierLoc=*/NoLoc,
9674 /*MutableLoc=*/NoLoc,
9675 EST_None,
9676 /*ESpecLoc=*/NoLoc,
9677 /*Exceptions=*/0,
9678 /*ExceptionRanges=*/0,
9679 /*NumExceptions=*/0,
9680 /*NoexceptExpr=*/0,
9681 Loc, Loc, D),
9682 DS.getAttributes(),
9683 SourceLocation());
9684 D.SetIdentifier(&II, Loc);
9685
9686 // Insert this function into translation-unit scope.
9687
9688 DeclContext *PrevDC = CurContext;
9689 CurContext = Context.getTranslationUnitDecl();
9690
9691 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9692 FD->setImplicit();
9693
9694 CurContext = PrevDC;
9695
9696 AddKnownFunctionAttributes(FD);
9697
9698 return FD;
9699 }
9700
9701 /// \brief Adds any function attributes that we know a priori based on
9702 /// the declaration of this function.
9703 ///
9704 /// These attributes can apply both to implicitly-declared builtins
9705 /// (like __builtin___printf_chk) or to library-declared functions
9706 /// like NSLog or printf.
9707 ///
9708 /// We need to check for duplicate attributes both here and where user-written
9709 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)9710 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9711 if (FD->isInvalidDecl())
9712 return;
9713
9714 // If this is a built-in function, map its builtin attributes to
9715 // actual attributes.
9716 if (unsigned BuiltinID = FD->getBuiltinID()) {
9717 // Handle printf-formatting attributes.
9718 unsigned FormatIdx;
9719 bool HasVAListArg;
9720 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9721 if (!FD->getAttr<FormatAttr>()) {
9722 const char *fmt = "printf";
9723 unsigned int NumParams = FD->getNumParams();
9724 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9725 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9726 fmt = "NSString";
9727 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9728 fmt, FormatIdx+1,
9729 HasVAListArg ? 0 : FormatIdx+2));
9730 }
9731 }
9732 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9733 HasVAListArg)) {
9734 if (!FD->getAttr<FormatAttr>())
9735 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9736 "scanf", FormatIdx+1,
9737 HasVAListArg ? 0 : FormatIdx+2));
9738 }
9739
9740 // Mark const if we don't care about errno and that is the only
9741 // thing preventing the function from being const. This allows
9742 // IRgen to use LLVM intrinsics for such functions.
9743 if (!getLangOpts().MathErrno &&
9744 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9745 if (!FD->getAttr<ConstAttr>())
9746 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9747 }
9748
9749 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9750 !FD->getAttr<ReturnsTwiceAttr>())
9751 FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9752 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9753 FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9754 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9755 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9756 }
9757
9758 IdentifierInfo *Name = FD->getIdentifier();
9759 if (!Name)
9760 return;
9761 if ((!getLangOpts().CPlusPlus &&
9762 FD->getDeclContext()->isTranslationUnit()) ||
9763 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9764 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9765 LinkageSpecDecl::lang_c)) {
9766 // Okay: this could be a libc/libm/Objective-C function we know
9767 // about.
9768 } else
9769 return;
9770
9771 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9772 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9773 // target-specific builtins, perhaps?
9774 if (!FD->getAttr<FormatAttr>())
9775 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9776 "printf", 2,
9777 Name->isStr("vasprintf") ? 0 : 3));
9778 }
9779
9780 if (Name->isStr("__CFStringMakeConstantString")) {
9781 // We already have a __builtin___CFStringMakeConstantString,
9782 // but builds that use -fno-constant-cfstrings don't go through that.
9783 if (!FD->getAttr<FormatArgAttr>())
9784 FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9785 }
9786 }
9787
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)9788 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9789 TypeSourceInfo *TInfo) {
9790 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9791 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9792
9793 if (!TInfo) {
9794 assert(D.isInvalidType() && "no declarator info for valid type");
9795 TInfo = Context.getTrivialTypeSourceInfo(T);
9796 }
9797
9798 // Scope manipulation handled by caller.
9799 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9800 D.getLocStart(),
9801 D.getIdentifierLoc(),
9802 D.getIdentifier(),
9803 TInfo);
9804
9805 // Bail out immediately if we have an invalid declaration.
9806 if (D.isInvalidType()) {
9807 NewTD->setInvalidDecl();
9808 return NewTD;
9809 }
9810
9811 if (D.getDeclSpec().isModulePrivateSpecified()) {
9812 if (CurContext->isFunctionOrMethod())
9813 Diag(NewTD->getLocation(), diag::err_module_private_local)
9814 << 2 << NewTD->getDeclName()
9815 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9816 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9817 else
9818 NewTD->setModulePrivate();
9819 }
9820
9821 // C++ [dcl.typedef]p8:
9822 // If the typedef declaration defines an unnamed class (or
9823 // enum), the first typedef-name declared by the declaration
9824 // to be that class type (or enum type) is used to denote the
9825 // class type (or enum type) for linkage purposes only.
9826 // We need to check whether the type was declared in the declaration.
9827 switch (D.getDeclSpec().getTypeSpecType()) {
9828 case TST_enum:
9829 case TST_struct:
9830 case TST_interface:
9831 case TST_union:
9832 case TST_class: {
9833 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9834
9835 // Do nothing if the tag is not anonymous or already has an
9836 // associated typedef (from an earlier typedef in this decl group).
9837 if (tagFromDeclSpec->getIdentifier()) break;
9838 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9839
9840 // A well-formed anonymous tag must always be a TUK_Definition.
9841 assert(tagFromDeclSpec->isThisDeclarationADefinition());
9842
9843 // The type must match the tag exactly; no qualifiers allowed.
9844 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9845 break;
9846
9847 // Otherwise, set this is the anon-decl typedef for the tag.
9848 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9849 break;
9850 }
9851
9852 default:
9853 break;
9854 }
9855
9856 return NewTD;
9857 }
9858
9859
9860 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)9861 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9862 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9863 QualType T = TI->getType();
9864
9865 if (T->isDependentType())
9866 return false;
9867
9868 if (const BuiltinType *BT = T->getAs<BuiltinType>())
9869 if (BT->isInteger())
9870 return false;
9871
9872 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9873 return true;
9874 }
9875
9876 /// Check whether this is a valid redeclaration of a previous enumeration.
9877 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)9878 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9879 QualType EnumUnderlyingTy,
9880 const EnumDecl *Prev) {
9881 bool IsFixed = !EnumUnderlyingTy.isNull();
9882
9883 if (IsScoped != Prev->isScoped()) {
9884 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9885 << Prev->isScoped();
9886 Diag(Prev->getLocation(), diag::note_previous_use);
9887 return true;
9888 }
9889
9890 if (IsFixed && Prev->isFixed()) {
9891 if (!EnumUnderlyingTy->isDependentType() &&
9892 !Prev->getIntegerType()->isDependentType() &&
9893 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9894 Prev->getIntegerType())) {
9895 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9896 << EnumUnderlyingTy << Prev->getIntegerType();
9897 Diag(Prev->getLocation(), diag::note_previous_use);
9898 return true;
9899 }
9900 } else if (IsFixed != Prev->isFixed()) {
9901 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9902 << Prev->isFixed();
9903 Diag(Prev->getLocation(), diag::note_previous_use);
9904 return true;
9905 }
9906
9907 return false;
9908 }
9909
9910 /// \brief Get diagnostic %select index for tag kind for
9911 /// redeclaration diagnostic message.
9912 /// WARNING: Indexes apply to particular diagnostics only!
9913 ///
9914 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)9915 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9916 switch (Tag) {
9917 case TTK_Struct: return 0;
9918 case TTK_Interface: return 1;
9919 case TTK_Class: return 2;
9920 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9921 }
9922 }
9923
9924 /// \brief Determine if tag kind is a class-key compatible with
9925 /// class for redeclaration (class, struct, or __interface).
9926 ///
9927 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)9928 static bool isClassCompatTagKind(TagTypeKind Tag)
9929 {
9930 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9931 }
9932
9933 /// \brief Determine whether a tag with a given kind is acceptable
9934 /// as a redeclaration of the given tag declaration.
9935 ///
9936 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)9937 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9938 TagTypeKind NewTag, bool isDefinition,
9939 SourceLocation NewTagLoc,
9940 const IdentifierInfo &Name) {
9941 // C++ [dcl.type.elab]p3:
9942 // The class-key or enum keyword present in the
9943 // elaborated-type-specifier shall agree in kind with the
9944 // declaration to which the name in the elaborated-type-specifier
9945 // refers. This rule also applies to the form of
9946 // elaborated-type-specifier that declares a class-name or
9947 // friend class since it can be construed as referring to the
9948 // definition of the class. Thus, in any
9949 // elaborated-type-specifier, the enum keyword shall be used to
9950 // refer to an enumeration (7.2), the union class-key shall be
9951 // used to refer to a union (clause 9), and either the class or
9952 // struct class-key shall be used to refer to a class (clause 9)
9953 // declared using the class or struct class-key.
9954 TagTypeKind OldTag = Previous->getTagKind();
9955 if (!isDefinition || !isClassCompatTagKind(NewTag))
9956 if (OldTag == NewTag)
9957 return true;
9958
9959 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9960 // Warn about the struct/class tag mismatch.
9961 bool isTemplate = false;
9962 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9963 isTemplate = Record->getDescribedClassTemplate();
9964
9965 if (!ActiveTemplateInstantiations.empty()) {
9966 // In a template instantiation, do not offer fix-its for tag mismatches
9967 // since they usually mess up the template instead of fixing the problem.
9968 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9969 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9970 << getRedeclDiagFromTagKind(OldTag);
9971 return true;
9972 }
9973
9974 if (isDefinition) {
9975 // On definitions, check previous tags and issue a fix-it for each
9976 // one that doesn't match the current tag.
9977 if (Previous->getDefinition()) {
9978 // Don't suggest fix-its for redefinitions.
9979 return true;
9980 }
9981
9982 bool previousMismatch = false;
9983 for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9984 E(Previous->redecls_end()); I != E; ++I) {
9985 if (I->getTagKind() != NewTag) {
9986 if (!previousMismatch) {
9987 previousMismatch = true;
9988 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9989 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9990 << getRedeclDiagFromTagKind(I->getTagKind());
9991 }
9992 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9993 << getRedeclDiagFromTagKind(NewTag)
9994 << FixItHint::CreateReplacement(I->getInnerLocStart(),
9995 TypeWithKeyword::getTagTypeKindName(NewTag));
9996 }
9997 }
9998 return true;
9999 }
10000
10001 // Check for a previous definition. If current tag and definition
10002 // are same type, do nothing. If no definition, but disagree with
10003 // with previous tag type, give a warning, but no fix-it.
10004 const TagDecl *Redecl = Previous->getDefinition() ?
10005 Previous->getDefinition() : Previous;
10006 if (Redecl->getTagKind() == NewTag) {
10007 return true;
10008 }
10009
10010 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10011 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10012 << getRedeclDiagFromTagKind(OldTag);
10013 Diag(Redecl->getLocation(), diag::note_previous_use);
10014
10015 // If there is a previous defintion, suggest a fix-it.
10016 if (Previous->getDefinition()) {
10017 Diag(NewTagLoc, diag::note_struct_class_suggestion)
10018 << getRedeclDiagFromTagKind(Redecl->getTagKind())
10019 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10020 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10021 }
10022
10023 return true;
10024 }
10025 return false;
10026 }
10027
10028 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
10029 /// former case, Name will be non-null. In the later case, Name will be null.
10030 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10031 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)10032 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10033 SourceLocation KWLoc, CXXScopeSpec &SS,
10034 IdentifierInfo *Name, SourceLocation NameLoc,
10035 AttributeList *Attr, AccessSpecifier AS,
10036 SourceLocation ModulePrivateLoc,
10037 MultiTemplateParamsArg TemplateParameterLists,
10038 bool &OwnedDecl, bool &IsDependent,
10039 SourceLocation ScopedEnumKWLoc,
10040 bool ScopedEnumUsesClassTag,
10041 TypeResult UnderlyingType) {
10042 // If this is not a definition, it must have a name.
10043 IdentifierInfo *OrigName = Name;
10044 assert((Name != 0 || TUK == TUK_Definition) &&
10045 "Nameless record must be a definition!");
10046 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10047
10048 OwnedDecl = false;
10049 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10050 bool ScopedEnum = ScopedEnumKWLoc.isValid();
10051
10052 // FIXME: Check explicit specializations more carefully.
10053 bool isExplicitSpecialization = false;
10054 bool Invalid = false;
10055
10056 // We only need to do this matching if we have template parameters
10057 // or a scope specifier, which also conveniently avoids this work
10058 // for non-C++ cases.
10059 if (TemplateParameterLists.size() > 0 ||
10060 (SS.isNotEmpty() && TUK != TUK_Reference)) {
10061 if (TemplateParameterList *TemplateParams =
10062 MatchTemplateParametersToScopeSpecifier(
10063 KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10064 isExplicitSpecialization, Invalid)) {
10065 if (Kind == TTK_Enum) {
10066 Diag(KWLoc, diag::err_enum_template);
10067 return 0;
10068 }
10069
10070 if (TemplateParams->size() > 0) {
10071 // This is a declaration or definition of a class template (which may
10072 // be a member of another template).
10073
10074 if (Invalid)
10075 return 0;
10076
10077 OwnedDecl = false;
10078 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10079 SS, Name, NameLoc, Attr,
10080 TemplateParams, AS,
10081 ModulePrivateLoc,
10082 TemplateParameterLists.size()-1,
10083 TemplateParameterLists.data());
10084 return Result.get();
10085 } else {
10086 // The "template<>" header is extraneous.
10087 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10088 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10089 isExplicitSpecialization = true;
10090 }
10091 }
10092 }
10093
10094 // Figure out the underlying type if this a enum declaration. We need to do
10095 // this early, because it's needed to detect if this is an incompatible
10096 // redeclaration.
10097 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10098
10099 if (Kind == TTK_Enum) {
10100 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10101 // No underlying type explicitly specified, or we failed to parse the
10102 // type, default to int.
10103 EnumUnderlying = Context.IntTy.getTypePtr();
10104 else if (UnderlyingType.get()) {
10105 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10106 // integral type; any cv-qualification is ignored.
10107 TypeSourceInfo *TI = 0;
10108 GetTypeFromParser(UnderlyingType.get(), &TI);
10109 EnumUnderlying = TI;
10110
10111 if (CheckEnumUnderlyingType(TI))
10112 // Recover by falling back to int.
10113 EnumUnderlying = Context.IntTy.getTypePtr();
10114
10115 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10116 UPPC_FixedUnderlyingType))
10117 EnumUnderlying = Context.IntTy.getTypePtr();
10118
10119 } else if (getLangOpts().MicrosoftMode)
10120 // Microsoft enums are always of int type.
10121 EnumUnderlying = Context.IntTy.getTypePtr();
10122 }
10123
10124 DeclContext *SearchDC = CurContext;
10125 DeclContext *DC = CurContext;
10126 bool isStdBadAlloc = false;
10127
10128 RedeclarationKind Redecl = ForRedeclaration;
10129 if (TUK == TUK_Friend || TUK == TUK_Reference)
10130 Redecl = NotForRedeclaration;
10131
10132 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10133 bool FriendSawTagOutsideEnclosingNamespace = false;
10134 if (Name && SS.isNotEmpty()) {
10135 // We have a nested-name tag ('struct foo::bar').
10136
10137 // Check for invalid 'foo::'.
10138 if (SS.isInvalid()) {
10139 Name = 0;
10140 goto CreateNewDecl;
10141 }
10142
10143 // If this is a friend or a reference to a class in a dependent
10144 // context, don't try to make a decl for it.
10145 if (TUK == TUK_Friend || TUK == TUK_Reference) {
10146 DC = computeDeclContext(SS, false);
10147 if (!DC) {
10148 IsDependent = true;
10149 return 0;
10150 }
10151 } else {
10152 DC = computeDeclContext(SS, true);
10153 if (!DC) {
10154 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10155 << SS.getRange();
10156 return 0;
10157 }
10158 }
10159
10160 if (RequireCompleteDeclContext(SS, DC))
10161 return 0;
10162
10163 SearchDC = DC;
10164 // Look-up name inside 'foo::'.
10165 LookupQualifiedName(Previous, DC);
10166
10167 if (Previous.isAmbiguous())
10168 return 0;
10169
10170 if (Previous.empty()) {
10171 // Name lookup did not find anything. However, if the
10172 // nested-name-specifier refers to the current instantiation,
10173 // and that current instantiation has any dependent base
10174 // classes, we might find something at instantiation time: treat
10175 // this as a dependent elaborated-type-specifier.
10176 // But this only makes any sense for reference-like lookups.
10177 if (Previous.wasNotFoundInCurrentInstantiation() &&
10178 (TUK == TUK_Reference || TUK == TUK_Friend)) {
10179 IsDependent = true;
10180 return 0;
10181 }
10182
10183 // A tag 'foo::bar' must already exist.
10184 Diag(NameLoc, diag::err_not_tag_in_scope)
10185 << Kind << Name << DC << SS.getRange();
10186 Name = 0;
10187 Invalid = true;
10188 goto CreateNewDecl;
10189 }
10190 } else if (Name) {
10191 // If this is a named struct, check to see if there was a previous forward
10192 // declaration or definition.
10193 // FIXME: We're looking into outer scopes here, even when we
10194 // shouldn't be. Doing so can result in ambiguities that we
10195 // shouldn't be diagnosing.
10196 LookupName(Previous, S);
10197
10198 // When declaring or defining a tag, ignore ambiguities introduced
10199 // by types using'ed into this scope.
10200 if (Previous.isAmbiguous() &&
10201 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10202 LookupResult::Filter F = Previous.makeFilter();
10203 while (F.hasNext()) {
10204 NamedDecl *ND = F.next();
10205 if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10206 F.erase();
10207 }
10208 F.done();
10209 }
10210
10211 // C++11 [namespace.memdef]p3:
10212 // If the name in a friend declaration is neither qualified nor
10213 // a template-id and the declaration is a function or an
10214 // elaborated-type-specifier, the lookup to determine whether
10215 // the entity has been previously declared shall not consider
10216 // any scopes outside the innermost enclosing namespace.
10217 //
10218 // Does it matter that this should be by scope instead of by
10219 // semantic context?
10220 if (!Previous.empty() && TUK == TUK_Friend) {
10221 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10222 LookupResult::Filter F = Previous.makeFilter();
10223 while (F.hasNext()) {
10224 NamedDecl *ND = F.next();
10225 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10226 if (DC->isFileContext() &&
10227 !EnclosingNS->Encloses(ND->getDeclContext())) {
10228 F.erase();
10229 FriendSawTagOutsideEnclosingNamespace = true;
10230 }
10231 }
10232 F.done();
10233 }
10234
10235 // Note: there used to be some attempt at recovery here.
10236 if (Previous.isAmbiguous())
10237 return 0;
10238
10239 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10240 // FIXME: This makes sure that we ignore the contexts associated
10241 // with C structs, unions, and enums when looking for a matching
10242 // tag declaration or definition. See the similar lookup tweak
10243 // in Sema::LookupName; is there a better way to deal with this?
10244 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10245 SearchDC = SearchDC->getParent();
10246 }
10247 } else if (S->isFunctionPrototypeScope()) {
10248 // If this is an enum declaration in function prototype scope, set its
10249 // initial context to the translation unit.
10250 // FIXME: [citation needed]
10251 SearchDC = Context.getTranslationUnitDecl();
10252 }
10253
10254 if (Previous.isSingleResult() &&
10255 Previous.getFoundDecl()->isTemplateParameter()) {
10256 // Maybe we will complain about the shadowed template parameter.
10257 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10258 // Just pretend that we didn't see the previous declaration.
10259 Previous.clear();
10260 }
10261
10262 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10263 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10264 // This is a declaration of or a reference to "std::bad_alloc".
10265 isStdBadAlloc = true;
10266
10267 if (Previous.empty() && StdBadAlloc) {
10268 // std::bad_alloc has been implicitly declared (but made invisible to
10269 // name lookup). Fill in this implicit declaration as the previous
10270 // declaration, so that the declarations get chained appropriately.
10271 Previous.addDecl(getStdBadAlloc());
10272 }
10273 }
10274
10275 // If we didn't find a previous declaration, and this is a reference
10276 // (or friend reference), move to the correct scope. In C++, we
10277 // also need to do a redeclaration lookup there, just in case
10278 // there's a shadow friend decl.
10279 if (Name && Previous.empty() &&
10280 (TUK == TUK_Reference || TUK == TUK_Friend)) {
10281 if (Invalid) goto CreateNewDecl;
10282 assert(SS.isEmpty());
10283
10284 if (TUK == TUK_Reference) {
10285 // C++ [basic.scope.pdecl]p5:
10286 // -- for an elaborated-type-specifier of the form
10287 //
10288 // class-key identifier
10289 //
10290 // if the elaborated-type-specifier is used in the
10291 // decl-specifier-seq or parameter-declaration-clause of a
10292 // function defined in namespace scope, the identifier is
10293 // declared as a class-name in the namespace that contains
10294 // the declaration; otherwise, except as a friend
10295 // declaration, the identifier is declared in the smallest
10296 // non-class, non-function-prototype scope that contains the
10297 // declaration.
10298 //
10299 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10300 // C structs and unions.
10301 //
10302 // It is an error in C++ to declare (rather than define) an enum
10303 // type, including via an elaborated type specifier. We'll
10304 // diagnose that later; for now, declare the enum in the same
10305 // scope as we would have picked for any other tag type.
10306 //
10307 // GNU C also supports this behavior as part of its incomplete
10308 // enum types extension, while GNU C++ does not.
10309 //
10310 // Find the context where we'll be declaring the tag.
10311 // FIXME: We would like to maintain the current DeclContext as the
10312 // lexical context,
10313 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10314 SearchDC = SearchDC->getParent();
10315
10316 // Find the scope where we'll be declaring the tag.
10317 while (S->isClassScope() ||
10318 (getLangOpts().CPlusPlus &&
10319 S->isFunctionPrototypeScope()) ||
10320 ((S->getFlags() & Scope::DeclScope) == 0) ||
10321 (S->getEntity() &&
10322 ((DeclContext *)S->getEntity())->isTransparentContext()))
10323 S = S->getParent();
10324 } else {
10325 assert(TUK == TUK_Friend);
10326 // C++ [namespace.memdef]p3:
10327 // If a friend declaration in a non-local class first declares a
10328 // class or function, the friend class or function is a member of
10329 // the innermost enclosing namespace.
10330 SearchDC = SearchDC->getEnclosingNamespaceContext();
10331 }
10332
10333 // In C++, we need to do a redeclaration lookup to properly
10334 // diagnose some problems.
10335 if (getLangOpts().CPlusPlus) {
10336 Previous.setRedeclarationKind(ForRedeclaration);
10337 LookupQualifiedName(Previous, SearchDC);
10338 }
10339 }
10340
10341 if (!Previous.empty()) {
10342 NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10343
10344 // It's okay to have a tag decl in the same scope as a typedef
10345 // which hides a tag decl in the same scope. Finding this
10346 // insanity with a redeclaration lookup can only actually happen
10347 // in C++.
10348 //
10349 // This is also okay for elaborated-type-specifiers, which is
10350 // technically forbidden by the current standard but which is
10351 // okay according to the likely resolution of an open issue;
10352 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10353 if (getLangOpts().CPlusPlus) {
10354 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10355 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10356 TagDecl *Tag = TT->getDecl();
10357 if (Tag->getDeclName() == Name &&
10358 Tag->getDeclContext()->getRedeclContext()
10359 ->Equals(TD->getDeclContext()->getRedeclContext())) {
10360 PrevDecl = Tag;
10361 Previous.clear();
10362 Previous.addDecl(Tag);
10363 Previous.resolveKind();
10364 }
10365 }
10366 }
10367 }
10368
10369 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10370 // If this is a use of a previous tag, or if the tag is already declared
10371 // in the same scope (so that the definition/declaration completes or
10372 // rementions the tag), reuse the decl.
10373 if (TUK == TUK_Reference || TUK == TUK_Friend ||
10374 isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10375 // Make sure that this wasn't declared as an enum and now used as a
10376 // struct or something similar.
10377 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10378 TUK == TUK_Definition, KWLoc,
10379 *Name)) {
10380 bool SafeToContinue
10381 = (PrevTagDecl->getTagKind() != TTK_Enum &&
10382 Kind != TTK_Enum);
10383 if (SafeToContinue)
10384 Diag(KWLoc, diag::err_use_with_wrong_tag)
10385 << Name
10386 << FixItHint::CreateReplacement(SourceRange(KWLoc),
10387 PrevTagDecl->getKindName());
10388 else
10389 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10390 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10391
10392 if (SafeToContinue)
10393 Kind = PrevTagDecl->getTagKind();
10394 else {
10395 // Recover by making this an anonymous redefinition.
10396 Name = 0;
10397 Previous.clear();
10398 Invalid = true;
10399 }
10400 }
10401
10402 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10403 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10404
10405 // If this is an elaborated-type-specifier for a scoped enumeration,
10406 // the 'class' keyword is not necessary and not permitted.
10407 if (TUK == TUK_Reference || TUK == TUK_Friend) {
10408 if (ScopedEnum)
10409 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10410 << PrevEnum->isScoped()
10411 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10412 return PrevTagDecl;
10413 }
10414
10415 QualType EnumUnderlyingTy;
10416 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10417 EnumUnderlyingTy = TI->getType();
10418 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10419 EnumUnderlyingTy = QualType(T, 0);
10420
10421 // All conflicts with previous declarations are recovered by
10422 // returning the previous declaration, unless this is a definition,
10423 // in which case we want the caller to bail out.
10424 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10425 ScopedEnum, EnumUnderlyingTy, PrevEnum))
10426 return TUK == TUK_Declaration ? PrevTagDecl : 0;
10427 }
10428
10429 // C++11 [class.mem]p1:
10430 // A member shall not be declared twice in the member-specification,
10431 // except that a nested class or member class template can be declared
10432 // and then later defined.
10433 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10434 S->isDeclScope(PrevDecl)) {
10435 Diag(NameLoc, diag::ext_member_redeclared);
10436 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10437 }
10438
10439 if (!Invalid) {
10440 // If this is a use, just return the declaration we found.
10441
10442 // FIXME: In the future, return a variant or some other clue
10443 // for the consumer of this Decl to know it doesn't own it.
10444 // For our current ASTs this shouldn't be a problem, but will
10445 // need to be changed with DeclGroups.
10446 if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10447 getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10448 return PrevTagDecl;
10449
10450 // Diagnose attempts to redefine a tag.
10451 if (TUK == TUK_Definition) {
10452 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10453 // If we're defining a specialization and the previous definition
10454 // is from an implicit instantiation, don't emit an error
10455 // here; we'll catch this in the general case below.
10456 bool IsExplicitSpecializationAfterInstantiation = false;
10457 if (isExplicitSpecialization) {
10458 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10459 IsExplicitSpecializationAfterInstantiation =
10460 RD->getTemplateSpecializationKind() !=
10461 TSK_ExplicitSpecialization;
10462 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10463 IsExplicitSpecializationAfterInstantiation =
10464 ED->getTemplateSpecializationKind() !=
10465 TSK_ExplicitSpecialization;
10466 }
10467
10468 if (!IsExplicitSpecializationAfterInstantiation) {
10469 // A redeclaration in function prototype scope in C isn't
10470 // visible elsewhere, so merely issue a warning.
10471 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10472 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10473 else
10474 Diag(NameLoc, diag::err_redefinition) << Name;
10475 Diag(Def->getLocation(), diag::note_previous_definition);
10476 // If this is a redefinition, recover by making this
10477 // struct be anonymous, which will make any later
10478 // references get the previous definition.
10479 Name = 0;
10480 Previous.clear();
10481 Invalid = true;
10482 }
10483 } else {
10484 // If the type is currently being defined, complain
10485 // about a nested redefinition.
10486 const TagType *Tag
10487 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10488 if (Tag->isBeingDefined()) {
10489 Diag(NameLoc, diag::err_nested_redefinition) << Name;
10490 Diag(PrevTagDecl->getLocation(),
10491 diag::note_previous_definition);
10492 Name = 0;
10493 Previous.clear();
10494 Invalid = true;
10495 }
10496 }
10497
10498 // Okay, this is definition of a previously declared or referenced
10499 // tag PrevDecl. We're going to create a new Decl for it.
10500 }
10501 }
10502 // If we get here we have (another) forward declaration or we
10503 // have a definition. Just create a new decl.
10504
10505 } else {
10506 // If we get here, this is a definition of a new tag type in a nested
10507 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10508 // new decl/type. We set PrevDecl to NULL so that the entities
10509 // have distinct types.
10510 Previous.clear();
10511 }
10512 // If we get here, we're going to create a new Decl. If PrevDecl
10513 // is non-NULL, it's a definition of the tag declared by
10514 // PrevDecl. If it's NULL, we have a new definition.
10515
10516
10517 // Otherwise, PrevDecl is not a tag, but was found with tag
10518 // lookup. This is only actually possible in C++, where a few
10519 // things like templates still live in the tag namespace.
10520 } else {
10521 // Use a better diagnostic if an elaborated-type-specifier
10522 // found the wrong kind of type on the first
10523 // (non-redeclaration) lookup.
10524 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10525 !Previous.isForRedeclaration()) {
10526 unsigned Kind = 0;
10527 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10528 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10529 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10530 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10531 Diag(PrevDecl->getLocation(), diag::note_declared_at);
10532 Invalid = true;
10533
10534 // Otherwise, only diagnose if the declaration is in scope.
10535 } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10536 isExplicitSpecialization)) {
10537 // do nothing
10538
10539 // Diagnose implicit declarations introduced by elaborated types.
10540 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10541 unsigned Kind = 0;
10542 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10543 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10544 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10545 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10546 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10547 Invalid = true;
10548
10549 // Otherwise it's a declaration. Call out a particularly common
10550 // case here.
10551 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10552 unsigned Kind = 0;
10553 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10554 Diag(NameLoc, diag::err_tag_definition_of_typedef)
10555 << Name << Kind << TND->getUnderlyingType();
10556 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10557 Invalid = true;
10558
10559 // Otherwise, diagnose.
10560 } else {
10561 // The tag name clashes with something else in the target scope,
10562 // issue an error and recover by making this tag be anonymous.
10563 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10564 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10565 Name = 0;
10566 Invalid = true;
10567 }
10568
10569 // The existing declaration isn't relevant to us; we're in a
10570 // new scope, so clear out the previous declaration.
10571 Previous.clear();
10572 }
10573 }
10574
10575 CreateNewDecl:
10576
10577 TagDecl *PrevDecl = 0;
10578 if (Previous.isSingleResult())
10579 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10580
10581 // If there is an identifier, use the location of the identifier as the
10582 // location of the decl, otherwise use the location of the struct/union
10583 // keyword.
10584 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10585
10586 // Otherwise, create a new declaration. If there is a previous
10587 // declaration of the same entity, the two will be linked via
10588 // PrevDecl.
10589 TagDecl *New;
10590
10591 bool IsForwardReference = false;
10592 if (Kind == TTK_Enum) {
10593 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10594 // enum X { A, B, C } D; D should chain to X.
10595 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10596 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10597 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10598 // If this is an undefined enum, warn.
10599 if (TUK != TUK_Definition && !Invalid) {
10600 TagDecl *Def;
10601 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10602 cast<EnumDecl>(New)->isFixed()) {
10603 // C++0x: 7.2p2: opaque-enum-declaration.
10604 // Conflicts are diagnosed above. Do nothing.
10605 }
10606 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10607 Diag(Loc, diag::ext_forward_ref_enum_def)
10608 << New;
10609 Diag(Def->getLocation(), diag::note_previous_definition);
10610 } else {
10611 unsigned DiagID = diag::ext_forward_ref_enum;
10612 if (getLangOpts().MicrosoftMode)
10613 DiagID = diag::ext_ms_forward_ref_enum;
10614 else if (getLangOpts().CPlusPlus)
10615 DiagID = diag::err_forward_ref_enum;
10616 Diag(Loc, DiagID);
10617
10618 // If this is a forward-declared reference to an enumeration, make a
10619 // note of it; we won't actually be introducing the declaration into
10620 // the declaration context.
10621 if (TUK == TUK_Reference)
10622 IsForwardReference = true;
10623 }
10624 }
10625
10626 if (EnumUnderlying) {
10627 EnumDecl *ED = cast<EnumDecl>(New);
10628 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10629 ED->setIntegerTypeSourceInfo(TI);
10630 else
10631 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10632 ED->setPromotionType(ED->getIntegerType());
10633 }
10634
10635 } else {
10636 // struct/union/class
10637
10638 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10639 // struct X { int A; } D; D should chain to X.
10640 if (getLangOpts().CPlusPlus) {
10641 // FIXME: Look for a way to use RecordDecl for simple structs.
10642 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10643 cast_or_null<CXXRecordDecl>(PrevDecl));
10644
10645 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10646 StdBadAlloc = cast<CXXRecordDecl>(New);
10647 } else
10648 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10649 cast_or_null<RecordDecl>(PrevDecl));
10650 }
10651
10652 // Maybe add qualifier info.
10653 if (SS.isNotEmpty()) {
10654 if (SS.isSet()) {
10655 // If this is either a declaration or a definition, check the
10656 // nested-name-specifier against the current context. We don't do this
10657 // for explicit specializations, because they have similar checking
10658 // (with more specific diagnostics) in the call to
10659 // CheckMemberSpecialization, below.
10660 if (!isExplicitSpecialization &&
10661 (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10662 diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10663 Invalid = true;
10664
10665 New->setQualifierInfo(SS.getWithLocInContext(Context));
10666 if (TemplateParameterLists.size() > 0) {
10667 New->setTemplateParameterListsInfo(Context,
10668 TemplateParameterLists.size(),
10669 TemplateParameterLists.data());
10670 }
10671 }
10672 else
10673 Invalid = true;
10674 }
10675
10676 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10677 // Add alignment attributes if necessary; these attributes are checked when
10678 // the ASTContext lays out the structure.
10679 //
10680 // It is important for implementing the correct semantics that this
10681 // happen here (in act on tag decl). The #pragma pack stack is
10682 // maintained as a result of parser callbacks which can occur at
10683 // many points during the parsing of a struct declaration (because
10684 // the #pragma tokens are effectively skipped over during the
10685 // parsing of the struct).
10686 if (TUK == TUK_Definition) {
10687 AddAlignmentAttributesForRecord(RD);
10688 AddMsStructLayoutForRecord(RD);
10689 }
10690 }
10691
10692 if (ModulePrivateLoc.isValid()) {
10693 if (isExplicitSpecialization)
10694 Diag(New->getLocation(), diag::err_module_private_specialization)
10695 << 2
10696 << FixItHint::CreateRemoval(ModulePrivateLoc);
10697 // __module_private__ does not apply to local classes. However, we only
10698 // diagnose this as an error when the declaration specifiers are
10699 // freestanding. Here, we just ignore the __module_private__.
10700 else if (!SearchDC->isFunctionOrMethod())
10701 New->setModulePrivate();
10702 }
10703
10704 // If this is a specialization of a member class (of a class template),
10705 // check the specialization.
10706 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10707 Invalid = true;
10708
10709 if (Invalid)
10710 New->setInvalidDecl();
10711
10712 if (Attr)
10713 ProcessDeclAttributeList(S, New, Attr);
10714
10715 // If we're declaring or defining a tag in function prototype scope
10716 // in C, note that this type can only be used within the function.
10717 if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10718 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10719
10720 // Set the lexical context. If the tag has a C++ scope specifier, the
10721 // lexical context will be different from the semantic context.
10722 New->setLexicalDeclContext(CurContext);
10723
10724 // Mark this as a friend decl if applicable.
10725 // In Microsoft mode, a friend declaration also acts as a forward
10726 // declaration so we always pass true to setObjectOfFriendDecl to make
10727 // the tag name visible.
10728 if (TUK == TUK_Friend)
10729 New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
10730 getLangOpts().MicrosoftExt);
10731
10732 // Set the access specifier.
10733 if (!Invalid && SearchDC->isRecord())
10734 SetMemberAccessSpecifier(New, PrevDecl, AS);
10735
10736 if (TUK == TUK_Definition)
10737 New->startDefinition();
10738
10739 // If this has an identifier, add it to the scope stack.
10740 if (TUK == TUK_Friend) {
10741 // We might be replacing an existing declaration in the lookup tables;
10742 // if so, borrow its access specifier.
10743 if (PrevDecl)
10744 New->setAccess(PrevDecl->getAccess());
10745
10746 DeclContext *DC = New->getDeclContext()->getRedeclContext();
10747 DC->makeDeclVisibleInContext(New);
10748 if (Name) // can be null along some error paths
10749 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10750 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10751 } else if (Name) {
10752 S = getNonFieldDeclScope(S);
10753 PushOnScopeChains(New, S, !IsForwardReference);
10754 if (IsForwardReference)
10755 SearchDC->makeDeclVisibleInContext(New);
10756
10757 } else {
10758 CurContext->addDecl(New);
10759 }
10760
10761 // If this is the C FILE type, notify the AST context.
10762 if (IdentifierInfo *II = New->getIdentifier())
10763 if (!New->isInvalidDecl() &&
10764 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10765 II->isStr("FILE"))
10766 Context.setFILEDecl(New);
10767
10768 // If we were in function prototype scope (and not in C++ mode), add this
10769 // tag to the list of decls to inject into the function definition scope.
10770 if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10771 InFunctionDeclarator && Name)
10772 DeclsInPrototypeScope.push_back(New);
10773
10774 if (PrevDecl)
10775 mergeDeclAttributes(New, PrevDecl);
10776
10777 // If there's a #pragma GCC visibility in scope, set the visibility of this
10778 // record.
10779 AddPushedVisibilityAttribute(New);
10780
10781 OwnedDecl = true;
10782 // In C++, don't return an invalid declaration. We can't recover well from
10783 // the cases where we make the type anonymous.
10784 return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10785 }
10786
ActOnTagStartDefinition(Scope * S,Decl * TagD)10787 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10788 AdjustDeclIfTemplate(TagD);
10789 TagDecl *Tag = cast<TagDecl>(TagD);
10790
10791 // Enter the tag context.
10792 PushDeclContext(S, Tag);
10793
10794 ActOnDocumentableDecl(TagD);
10795
10796 // If there's a #pragma GCC visibility in scope, set the visibility of this
10797 // record.
10798 AddPushedVisibilityAttribute(Tag);
10799 }
10800
ActOnObjCContainerStartDefinition(Decl * IDecl)10801 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10802 assert(isa<ObjCContainerDecl>(IDecl) &&
10803 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10804 DeclContext *OCD = cast<DeclContext>(IDecl);
10805 assert(getContainingDC(OCD) == CurContext &&
10806 "The next DeclContext should be lexically contained in the current one.");
10807 CurContext = OCD;
10808 return IDecl;
10809 }
10810
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)10811 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10812 SourceLocation FinalLoc,
10813 SourceLocation LBraceLoc) {
10814 AdjustDeclIfTemplate(TagD);
10815 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10816
10817 FieldCollector->StartClass();
10818
10819 if (!Record->getIdentifier())
10820 return;
10821
10822 if (FinalLoc.isValid())
10823 Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10824
10825 // C++ [class]p2:
10826 // [...] The class-name is also inserted into the scope of the
10827 // class itself; this is known as the injected-class-name. For
10828 // purposes of access checking, the injected-class-name is treated
10829 // as if it were a public member name.
10830 CXXRecordDecl *InjectedClassName
10831 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10832 Record->getLocStart(), Record->getLocation(),
10833 Record->getIdentifier(),
10834 /*PrevDecl=*/0,
10835 /*DelayTypeCreation=*/true);
10836 Context.getTypeDeclType(InjectedClassName, Record);
10837 InjectedClassName->setImplicit();
10838 InjectedClassName->setAccess(AS_public);
10839 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10840 InjectedClassName->setDescribedClassTemplate(Template);
10841 PushOnScopeChains(InjectedClassName, S);
10842 assert(InjectedClassName->isInjectedClassName() &&
10843 "Broken injected-class-name");
10844 }
10845
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)10846 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10847 SourceLocation RBraceLoc) {
10848 AdjustDeclIfTemplate(TagD);
10849 TagDecl *Tag = cast<TagDecl>(TagD);
10850 Tag->setRBraceLoc(RBraceLoc);
10851
10852 // Make sure we "complete" the definition even it is invalid.
10853 if (Tag->isBeingDefined()) {
10854 assert(Tag->isInvalidDecl() && "We should already have completed it");
10855 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10856 RD->completeDefinition();
10857 }
10858
10859 if (isa<CXXRecordDecl>(Tag))
10860 FieldCollector->FinishClass();
10861
10862 // Exit this scope of this tag's definition.
10863 PopDeclContext();
10864
10865 if (getCurLexicalContext()->isObjCContainer() &&
10866 Tag->getDeclContext()->isFileContext())
10867 Tag->setTopLevelDeclInObjCContainer();
10868
10869 // Notify the consumer that we've defined a tag.
10870 if (!Tag->isInvalidDecl())
10871 Consumer.HandleTagDeclDefinition(Tag);
10872 }
10873
ActOnObjCContainerFinishDefinition()10874 void Sema::ActOnObjCContainerFinishDefinition() {
10875 // Exit this scope of this interface definition.
10876 PopDeclContext();
10877 }
10878
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)10879 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10880 assert(DC == CurContext && "Mismatch of container contexts");
10881 OriginalLexicalContext = DC;
10882 ActOnObjCContainerFinishDefinition();
10883 }
10884
ActOnObjCReenterContainerContext(DeclContext * DC)10885 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10886 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10887 OriginalLexicalContext = 0;
10888 }
10889
ActOnTagDefinitionError(Scope * S,Decl * TagD)10890 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10891 AdjustDeclIfTemplate(TagD);
10892 TagDecl *Tag = cast<TagDecl>(TagD);
10893 Tag->setInvalidDecl();
10894
10895 // Make sure we "complete" the definition even it is invalid.
10896 if (Tag->isBeingDefined()) {
10897 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10898 RD->completeDefinition();
10899 }
10900
10901 // We're undoing ActOnTagStartDefinition here, not
10902 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10903 // the FieldCollector.
10904
10905 PopDeclContext();
10906 }
10907
10908 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)10909 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10910 IdentifierInfo *FieldName,
10911 QualType FieldTy, bool IsMsStruct,
10912 Expr *BitWidth, bool *ZeroWidth) {
10913 // Default to true; that shouldn't confuse checks for emptiness
10914 if (ZeroWidth)
10915 *ZeroWidth = true;
10916
10917 // C99 6.7.2.1p4 - verify the field type.
10918 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10919 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10920 // Handle incomplete types with specific error.
10921 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10922 return ExprError();
10923 if (FieldName)
10924 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10925 << FieldName << FieldTy << BitWidth->getSourceRange();
10926 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10927 << FieldTy << BitWidth->getSourceRange();
10928 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10929 UPPC_BitFieldWidth))
10930 return ExprError();
10931
10932 // If the bit-width is type- or value-dependent, don't try to check
10933 // it now.
10934 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10935 return Owned(BitWidth);
10936
10937 llvm::APSInt Value;
10938 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10939 if (ICE.isInvalid())
10940 return ICE;
10941 BitWidth = ICE.take();
10942
10943 if (Value != 0 && ZeroWidth)
10944 *ZeroWidth = false;
10945
10946 // Zero-width bitfield is ok for anonymous field.
10947 if (Value == 0 && FieldName)
10948 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10949
10950 if (Value.isSigned() && Value.isNegative()) {
10951 if (FieldName)
10952 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10953 << FieldName << Value.toString(10);
10954 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10955 << Value.toString(10);
10956 }
10957
10958 if (!FieldTy->isDependentType()) {
10959 uint64_t TypeSize = Context.getTypeSize(FieldTy);
10960 if (Value.getZExtValue() > TypeSize) {
10961 if (!getLangOpts().CPlusPlus || IsMsStruct) {
10962 if (FieldName)
10963 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10964 << FieldName << (unsigned)Value.getZExtValue()
10965 << (unsigned)TypeSize;
10966
10967 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10968 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10969 }
10970
10971 if (FieldName)
10972 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10973 << FieldName << (unsigned)Value.getZExtValue()
10974 << (unsigned)TypeSize;
10975 else
10976 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10977 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10978 }
10979 }
10980
10981 return Owned(BitWidth);
10982 }
10983
10984 /// ActOnField - Each field of a C struct/union is passed into this in order
10985 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)10986 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10987 Declarator &D, Expr *BitfieldWidth) {
10988 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10989 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10990 /*InitStyle=*/ICIS_NoInit, AS_public);
10991 return Res;
10992 }
10993
10994 /// HandleField - Analyze a field of a C struct or a C++ data member.
10995 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)10996 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10997 SourceLocation DeclStart,
10998 Declarator &D, Expr *BitWidth,
10999 InClassInitStyle InitStyle,
11000 AccessSpecifier AS) {
11001 IdentifierInfo *II = D.getIdentifier();
11002 SourceLocation Loc = DeclStart;
11003 if (II) Loc = D.getIdentifierLoc();
11004
11005 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11006 QualType T = TInfo->getType();
11007 if (getLangOpts().CPlusPlus) {
11008 CheckExtraCXXDefaultArguments(D);
11009
11010 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11011 UPPC_DataMemberType)) {
11012 D.setInvalidType();
11013 T = Context.IntTy;
11014 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11015 }
11016 }
11017
11018 // TR 18037 does not allow fields to be declared with address spaces.
11019 if (T.getQualifiers().hasAddressSpace()) {
11020 Diag(Loc, diag::err_field_with_address_space);
11021 D.setInvalidType();
11022 }
11023
11024 // OpenCL 1.2 spec, s6.9 r:
11025 // The event type cannot be used to declare a structure or union field.
11026 if (LangOpts.OpenCL && T->isEventT()) {
11027 Diag(Loc, diag::err_event_t_struct_field);
11028 D.setInvalidType();
11029 }
11030
11031 DiagnoseFunctionSpecifiers(D.getDeclSpec());
11032
11033 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11034 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11035 diag::err_invalid_thread)
11036 << DeclSpec::getSpecifierName(TSCS);
11037
11038 // Check to see if this name was declared as a member previously
11039 NamedDecl *PrevDecl = 0;
11040 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11041 LookupName(Previous, S);
11042 switch (Previous.getResultKind()) {
11043 case LookupResult::Found:
11044 case LookupResult::FoundUnresolvedValue:
11045 PrevDecl = Previous.getAsSingle<NamedDecl>();
11046 break;
11047
11048 case LookupResult::FoundOverloaded:
11049 PrevDecl = Previous.getRepresentativeDecl();
11050 break;
11051
11052 case LookupResult::NotFound:
11053 case LookupResult::NotFoundInCurrentInstantiation:
11054 case LookupResult::Ambiguous:
11055 break;
11056 }
11057 Previous.suppressDiagnostics();
11058
11059 if (PrevDecl && PrevDecl->isTemplateParameter()) {
11060 // Maybe we will complain about the shadowed template parameter.
11061 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11062 // Just pretend that we didn't see the previous declaration.
11063 PrevDecl = 0;
11064 }
11065
11066 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11067 PrevDecl = 0;
11068
11069 bool Mutable
11070 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11071 SourceLocation TSSL = D.getLocStart();
11072 FieldDecl *NewFD
11073 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11074 TSSL, AS, PrevDecl, &D);
11075
11076 if (NewFD->isInvalidDecl())
11077 Record->setInvalidDecl();
11078
11079 if (D.getDeclSpec().isModulePrivateSpecified())
11080 NewFD->setModulePrivate();
11081
11082 if (NewFD->isInvalidDecl() && PrevDecl) {
11083 // Don't introduce NewFD into scope; there's already something
11084 // with the same name in the same scope.
11085 } else if (II) {
11086 PushOnScopeChains(NewFD, S);
11087 } else
11088 Record->addDecl(NewFD);
11089
11090 return NewFD;
11091 }
11092
11093 /// \brief Build a new FieldDecl and check its well-formedness.
11094 ///
11095 /// This routine builds a new FieldDecl given the fields name, type,
11096 /// record, etc. \p PrevDecl should refer to any previous declaration
11097 /// with the same name and in the same scope as the field to be
11098 /// created.
11099 ///
11100 /// \returns a new FieldDecl.
11101 ///
11102 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)11103 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11104 TypeSourceInfo *TInfo,
11105 RecordDecl *Record, SourceLocation Loc,
11106 bool Mutable, Expr *BitWidth,
11107 InClassInitStyle InitStyle,
11108 SourceLocation TSSL,
11109 AccessSpecifier AS, NamedDecl *PrevDecl,
11110 Declarator *D) {
11111 IdentifierInfo *II = Name.getAsIdentifierInfo();
11112 bool InvalidDecl = false;
11113 if (D) InvalidDecl = D->isInvalidType();
11114
11115 // If we receive a broken type, recover by assuming 'int' and
11116 // marking this declaration as invalid.
11117 if (T.isNull()) {
11118 InvalidDecl = true;
11119 T = Context.IntTy;
11120 }
11121
11122 QualType EltTy = Context.getBaseElementType(T);
11123 if (!EltTy->isDependentType()) {
11124 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11125 // Fields of incomplete type force their record to be invalid.
11126 Record->setInvalidDecl();
11127 InvalidDecl = true;
11128 } else {
11129 NamedDecl *Def;
11130 EltTy->isIncompleteType(&Def);
11131 if (Def && Def->isInvalidDecl()) {
11132 Record->setInvalidDecl();
11133 InvalidDecl = true;
11134 }
11135 }
11136 }
11137
11138 // OpenCL v1.2 s6.9.c: bitfields are not supported.
11139 if (BitWidth && getLangOpts().OpenCL) {
11140 Diag(Loc, diag::err_opencl_bitfields);
11141 InvalidDecl = true;
11142 }
11143
11144 // C99 6.7.2.1p8: A member of a structure or union may have any type other
11145 // than a variably modified type.
11146 if (!InvalidDecl && T->isVariablyModifiedType()) {
11147 bool SizeIsNegative;
11148 llvm::APSInt Oversized;
11149
11150 TypeSourceInfo *FixedTInfo =
11151 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11152 SizeIsNegative,
11153 Oversized);
11154 if (FixedTInfo) {
11155 Diag(Loc, diag::warn_illegal_constant_array_size);
11156 TInfo = FixedTInfo;
11157 T = FixedTInfo->getType();
11158 } else {
11159 if (SizeIsNegative)
11160 Diag(Loc, diag::err_typecheck_negative_array_size);
11161 else if (Oversized.getBoolValue())
11162 Diag(Loc, diag::err_array_too_large)
11163 << Oversized.toString(10);
11164 else
11165 Diag(Loc, diag::err_typecheck_field_variable_size);
11166 InvalidDecl = true;
11167 }
11168 }
11169
11170 // Fields can not have abstract class types
11171 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11172 diag::err_abstract_type_in_decl,
11173 AbstractFieldType))
11174 InvalidDecl = true;
11175
11176 bool ZeroWidth = false;
11177 // If this is declared as a bit-field, check the bit-field.
11178 if (!InvalidDecl && BitWidth) {
11179 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11180 &ZeroWidth).take();
11181 if (!BitWidth) {
11182 InvalidDecl = true;
11183 BitWidth = 0;
11184 ZeroWidth = false;
11185 }
11186 }
11187
11188 // Check that 'mutable' is consistent with the type of the declaration.
11189 if (!InvalidDecl && Mutable) {
11190 unsigned DiagID = 0;
11191 if (T->isReferenceType())
11192 DiagID = diag::err_mutable_reference;
11193 else if (T.isConstQualified())
11194 DiagID = diag::err_mutable_const;
11195
11196 if (DiagID) {
11197 SourceLocation ErrLoc = Loc;
11198 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11199 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11200 Diag(ErrLoc, DiagID);
11201 Mutable = false;
11202 InvalidDecl = true;
11203 }
11204 }
11205
11206 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11207 BitWidth, Mutable, InitStyle);
11208 if (InvalidDecl)
11209 NewFD->setInvalidDecl();
11210
11211 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11212 Diag(Loc, diag::err_duplicate_member) << II;
11213 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11214 NewFD->setInvalidDecl();
11215 }
11216
11217 if (!InvalidDecl && getLangOpts().CPlusPlus) {
11218 if (Record->isUnion()) {
11219 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11220 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11221 if (RDecl->getDefinition()) {
11222 // C++ [class.union]p1: An object of a class with a non-trivial
11223 // constructor, a non-trivial copy constructor, a non-trivial
11224 // destructor, or a non-trivial copy assignment operator
11225 // cannot be a member of a union, nor can an array of such
11226 // objects.
11227 if (CheckNontrivialField(NewFD))
11228 NewFD->setInvalidDecl();
11229 }
11230 }
11231
11232 // C++ [class.union]p1: If a union contains a member of reference type,
11233 // the program is ill-formed, except when compiling with MSVC extensions
11234 // enabled.
11235 if (EltTy->isReferenceType()) {
11236 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11237 diag::ext_union_member_of_reference_type :
11238 diag::err_union_member_of_reference_type)
11239 << NewFD->getDeclName() << EltTy;
11240 if (!getLangOpts().MicrosoftExt)
11241 NewFD->setInvalidDecl();
11242 }
11243 }
11244 }
11245
11246 // FIXME: We need to pass in the attributes given an AST
11247 // representation, not a parser representation.
11248 if (D) {
11249 // FIXME: The current scope is almost... but not entirely... correct here.
11250 ProcessDeclAttributes(getCurScope(), NewFD, *D);
11251
11252 if (NewFD->hasAttrs())
11253 CheckAlignasUnderalignment(NewFD);
11254 }
11255
11256 // In auto-retain/release, infer strong retension for fields of
11257 // retainable type.
11258 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11259 NewFD->setInvalidDecl();
11260
11261 if (T.isObjCGCWeak())
11262 Diag(Loc, diag::warn_attribute_weak_on_field);
11263
11264 NewFD->setAccess(AS);
11265 return NewFD;
11266 }
11267
CheckNontrivialField(FieldDecl * FD)11268 bool Sema::CheckNontrivialField(FieldDecl *FD) {
11269 assert(FD);
11270 assert(getLangOpts().CPlusPlus && "valid check only for C++");
11271
11272 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11273 return false;
11274
11275 QualType EltTy = Context.getBaseElementType(FD->getType());
11276 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11277 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11278 if (RDecl->getDefinition()) {
11279 // We check for copy constructors before constructors
11280 // because otherwise we'll never get complaints about
11281 // copy constructors.
11282
11283 CXXSpecialMember member = CXXInvalid;
11284 // We're required to check for any non-trivial constructors. Since the
11285 // implicit default constructor is suppressed if there are any
11286 // user-declared constructors, we just need to check that there is a
11287 // trivial default constructor and a trivial copy constructor. (We don't
11288 // worry about move constructors here, since this is a C++98 check.)
11289 if (RDecl->hasNonTrivialCopyConstructor())
11290 member = CXXCopyConstructor;
11291 else if (!RDecl->hasTrivialDefaultConstructor())
11292 member = CXXDefaultConstructor;
11293 else if (RDecl->hasNonTrivialCopyAssignment())
11294 member = CXXCopyAssignment;
11295 else if (RDecl->hasNonTrivialDestructor())
11296 member = CXXDestructor;
11297
11298 if (member != CXXInvalid) {
11299 if (!getLangOpts().CPlusPlus11 &&
11300 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11301 // Objective-C++ ARC: it is an error to have a non-trivial field of
11302 // a union. However, system headers in Objective-C programs
11303 // occasionally have Objective-C lifetime objects within unions,
11304 // and rather than cause the program to fail, we make those
11305 // members unavailable.
11306 SourceLocation Loc = FD->getLocation();
11307 if (getSourceManager().isInSystemHeader(Loc)) {
11308 if (!FD->hasAttr<UnavailableAttr>())
11309 FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11310 "this system field has retaining ownership"));
11311 return false;
11312 }
11313 }
11314
11315 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11316 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11317 diag::err_illegal_union_or_anon_struct_member)
11318 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11319 DiagnoseNontrivial(RDecl, member);
11320 return !getLangOpts().CPlusPlus11;
11321 }
11322 }
11323 }
11324
11325 return false;
11326 }
11327
11328 /// TranslateIvarVisibility - Translate visibility from a token ID to an
11329 /// AST enum value.
11330 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)11331 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11332 switch (ivarVisibility) {
11333 default: llvm_unreachable("Unknown visitibility kind");
11334 case tok::objc_private: return ObjCIvarDecl::Private;
11335 case tok::objc_public: return ObjCIvarDecl::Public;
11336 case tok::objc_protected: return ObjCIvarDecl::Protected;
11337 case tok::objc_package: return ObjCIvarDecl::Package;
11338 }
11339 }
11340
11341 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
11342 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)11343 Decl *Sema::ActOnIvar(Scope *S,
11344 SourceLocation DeclStart,
11345 Declarator &D, Expr *BitfieldWidth,
11346 tok::ObjCKeywordKind Visibility) {
11347
11348 IdentifierInfo *II = D.getIdentifier();
11349 Expr *BitWidth = (Expr*)BitfieldWidth;
11350 SourceLocation Loc = DeclStart;
11351 if (II) Loc = D.getIdentifierLoc();
11352
11353 // FIXME: Unnamed fields can be handled in various different ways, for
11354 // example, unnamed unions inject all members into the struct namespace!
11355
11356 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11357 QualType T = TInfo->getType();
11358
11359 if (BitWidth) {
11360 // 6.7.2.1p3, 6.7.2.1p4
11361 BitWidth =
11362 VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
11363 if (!BitWidth)
11364 D.setInvalidType();
11365 } else {
11366 // Not a bitfield.
11367
11368 // validate II.
11369
11370 }
11371 if (T->isReferenceType()) {
11372 Diag(Loc, diag::err_ivar_reference_type);
11373 D.setInvalidType();
11374 }
11375 // C99 6.7.2.1p8: A member of a structure or union may have any type other
11376 // than a variably modified type.
11377 else if (T->isVariablyModifiedType()) {
11378 Diag(Loc, diag::err_typecheck_ivar_variable_size);
11379 D.setInvalidType();
11380 }
11381
11382 // Get the visibility (access control) for this ivar.
11383 ObjCIvarDecl::AccessControl ac =
11384 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11385 : ObjCIvarDecl::None;
11386 // Must set ivar's DeclContext to its enclosing interface.
11387 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11388 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11389 return 0;
11390 ObjCContainerDecl *EnclosingContext;
11391 if (ObjCImplementationDecl *IMPDecl =
11392 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11393 if (LangOpts.ObjCRuntime.isFragile()) {
11394 // Case of ivar declared in an implementation. Context is that of its class.
11395 EnclosingContext = IMPDecl->getClassInterface();
11396 assert(EnclosingContext && "Implementation has no class interface!");
11397 }
11398 else
11399 EnclosingContext = EnclosingDecl;
11400 } else {
11401 if (ObjCCategoryDecl *CDecl =
11402 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11403 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11404 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11405 return 0;
11406 }
11407 }
11408 EnclosingContext = EnclosingDecl;
11409 }
11410
11411 // Construct the decl.
11412 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11413 DeclStart, Loc, II, T,
11414 TInfo, ac, (Expr *)BitfieldWidth);
11415
11416 if (II) {
11417 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11418 ForRedeclaration);
11419 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11420 && !isa<TagDecl>(PrevDecl)) {
11421 Diag(Loc, diag::err_duplicate_member) << II;
11422 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11423 NewID->setInvalidDecl();
11424 }
11425 }
11426
11427 // Process attributes attached to the ivar.
11428 ProcessDeclAttributes(S, NewID, D);
11429
11430 if (D.isInvalidType())
11431 NewID->setInvalidDecl();
11432
11433 // In ARC, infer 'retaining' for ivars of retainable type.
11434 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11435 NewID->setInvalidDecl();
11436
11437 if (D.getDeclSpec().isModulePrivateSpecified())
11438 NewID->setModulePrivate();
11439
11440 if (II) {
11441 // FIXME: When interfaces are DeclContexts, we'll need to add
11442 // these to the interface.
11443 S->AddDecl(NewID);
11444 IdResolver.AddDecl(NewID);
11445 }
11446
11447 if (LangOpts.ObjCRuntime.isNonFragile() &&
11448 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11449 Diag(Loc, diag::warn_ivars_in_interface);
11450
11451 return NewID;
11452 }
11453
11454 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11455 /// class and class extensions. For every class \@interface and class
11456 /// extension \@interface, if the last ivar is a bitfield of any type,
11457 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)11458 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11459 SmallVectorImpl<Decl *> &AllIvarDecls) {
11460 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11461 return;
11462
11463 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11464 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11465
11466 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11467 return;
11468 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11469 if (!ID) {
11470 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11471 if (!CD->IsClassExtension())
11472 return;
11473 }
11474 // No need to add this to end of @implementation.
11475 else
11476 return;
11477 }
11478 // All conditions are met. Add a new bitfield to the tail end of ivars.
11479 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11480 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11481
11482 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11483 DeclLoc, DeclLoc, 0,
11484 Context.CharTy,
11485 Context.getTrivialTypeSourceInfo(Context.CharTy,
11486 DeclLoc),
11487 ObjCIvarDecl::Private, BW,
11488 true);
11489 AllIvarDecls.push_back(Ivar);
11490 }
11491
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,llvm::ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)11492 void Sema::ActOnFields(Scope* S,
11493 SourceLocation RecLoc, Decl *EnclosingDecl,
11494 llvm::ArrayRef<Decl *> Fields,
11495 SourceLocation LBrac, SourceLocation RBrac,
11496 AttributeList *Attr) {
11497 assert(EnclosingDecl && "missing record or interface decl");
11498
11499 // If this is an Objective-C @implementation or category and we have
11500 // new fields here we should reset the layout of the interface since
11501 // it will now change.
11502 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11503 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11504 switch (DC->getKind()) {
11505 default: break;
11506 case Decl::ObjCCategory:
11507 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11508 break;
11509 case Decl::ObjCImplementation:
11510 Context.
11511 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11512 break;
11513 }
11514 }
11515
11516 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11517
11518 // Start counting up the number of named members; make sure to include
11519 // members of anonymous structs and unions in the total.
11520 unsigned NumNamedMembers = 0;
11521 if (Record) {
11522 for (RecordDecl::decl_iterator i = Record->decls_begin(),
11523 e = Record->decls_end(); i != e; i++) {
11524 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11525 if (IFD->getDeclName())
11526 ++NumNamedMembers;
11527 }
11528 }
11529
11530 // Verify that all the fields are okay.
11531 SmallVector<FieldDecl*, 32> RecFields;
11532
11533 bool ARCErrReported = false;
11534 for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11535 i != end; ++i) {
11536 FieldDecl *FD = cast<FieldDecl>(*i);
11537
11538 // Get the type for the field.
11539 const Type *FDTy = FD->getType().getTypePtr();
11540
11541 if (!FD->isAnonymousStructOrUnion()) {
11542 // Remember all fields written by the user.
11543 RecFields.push_back(FD);
11544 }
11545
11546 // If the field is already invalid for some reason, don't emit more
11547 // diagnostics about it.
11548 if (FD->isInvalidDecl()) {
11549 EnclosingDecl->setInvalidDecl();
11550 continue;
11551 }
11552
11553 // C99 6.7.2.1p2:
11554 // A structure or union shall not contain a member with
11555 // incomplete or function type (hence, a structure shall not
11556 // contain an instance of itself, but may contain a pointer to
11557 // an instance of itself), except that the last member of a
11558 // structure with more than one named member may have incomplete
11559 // array type; such a structure (and any union containing,
11560 // possibly recursively, a member that is such a structure)
11561 // shall not be a member of a structure or an element of an
11562 // array.
11563 if (FDTy->isFunctionType()) {
11564 // Field declared as a function.
11565 Diag(FD->getLocation(), diag::err_field_declared_as_function)
11566 << FD->getDeclName();
11567 FD->setInvalidDecl();
11568 EnclosingDecl->setInvalidDecl();
11569 continue;
11570 } else if (FDTy->isIncompleteArrayType() && Record &&
11571 ((i + 1 == Fields.end() && !Record->isUnion()) ||
11572 ((getLangOpts().MicrosoftExt ||
11573 getLangOpts().CPlusPlus) &&
11574 (i + 1 == Fields.end() || Record->isUnion())))) {
11575 // Flexible array member.
11576 // Microsoft and g++ is more permissive regarding flexible array.
11577 // It will accept flexible array in union and also
11578 // as the sole element of a struct/class.
11579 if (getLangOpts().MicrosoftExt) {
11580 if (Record->isUnion())
11581 Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11582 << FD->getDeclName();
11583 else if (Fields.size() == 1)
11584 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11585 << FD->getDeclName() << Record->getTagKind();
11586 } else if (getLangOpts().CPlusPlus) {
11587 if (Record->isUnion())
11588 Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11589 << FD->getDeclName();
11590 else if (Fields.size() == 1)
11591 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11592 << FD->getDeclName() << Record->getTagKind();
11593 } else if (!getLangOpts().C99) {
11594 if (Record->isUnion())
11595 Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11596 << FD->getDeclName();
11597 else
11598 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11599 << FD->getDeclName() << Record->getTagKind();
11600 } else if (NumNamedMembers < 1) {
11601 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11602 << FD->getDeclName();
11603 FD->setInvalidDecl();
11604 EnclosingDecl->setInvalidDecl();
11605 continue;
11606 }
11607 if (!FD->getType()->isDependentType() &&
11608 !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11609 Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11610 << FD->getDeclName() << FD->getType();
11611 FD->setInvalidDecl();
11612 EnclosingDecl->setInvalidDecl();
11613 continue;
11614 }
11615 // Okay, we have a legal flexible array member at the end of the struct.
11616 if (Record)
11617 Record->setHasFlexibleArrayMember(true);
11618 } else if (!FDTy->isDependentType() &&
11619 RequireCompleteType(FD->getLocation(), FD->getType(),
11620 diag::err_field_incomplete)) {
11621 // Incomplete type
11622 FD->setInvalidDecl();
11623 EnclosingDecl->setInvalidDecl();
11624 continue;
11625 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11626 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11627 // If this is a member of a union, then entire union becomes "flexible".
11628 if (Record && Record->isUnion()) {
11629 Record->setHasFlexibleArrayMember(true);
11630 } else {
11631 // If this is a struct/class and this is not the last element, reject
11632 // it. Note that GCC supports variable sized arrays in the middle of
11633 // structures.
11634 if (i + 1 != Fields.end())
11635 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11636 << FD->getDeclName() << FD->getType();
11637 else {
11638 // We support flexible arrays at the end of structs in
11639 // other structs as an extension.
11640 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11641 << FD->getDeclName();
11642 if (Record)
11643 Record->setHasFlexibleArrayMember(true);
11644 }
11645 }
11646 }
11647 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11648 RequireNonAbstractType(FD->getLocation(), FD->getType(),
11649 diag::err_abstract_type_in_decl,
11650 AbstractIvarType)) {
11651 // Ivars can not have abstract class types
11652 FD->setInvalidDecl();
11653 }
11654 if (Record && FDTTy->getDecl()->hasObjectMember())
11655 Record->setHasObjectMember(true);
11656 if (Record && FDTTy->getDecl()->hasVolatileMember())
11657 Record->setHasVolatileMember(true);
11658 } else if (FDTy->isObjCObjectType()) {
11659 /// A field cannot be an Objective-c object
11660 Diag(FD->getLocation(), diag::err_statically_allocated_object)
11661 << FixItHint::CreateInsertion(FD->getLocation(), "*");
11662 QualType T = Context.getObjCObjectPointerType(FD->getType());
11663 FD->setType(T);
11664 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11665 (!getLangOpts().CPlusPlus || Record->isUnion())) {
11666 // It's an error in ARC if a field has lifetime.
11667 // We don't want to report this in a system header, though,
11668 // so we just make the field unavailable.
11669 // FIXME: that's really not sufficient; we need to make the type
11670 // itself invalid to, say, initialize or copy.
11671 QualType T = FD->getType();
11672 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11673 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11674 SourceLocation loc = FD->getLocation();
11675 if (getSourceManager().isInSystemHeader(loc)) {
11676 if (!FD->hasAttr<UnavailableAttr>()) {
11677 FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11678 "this system field has retaining ownership"));
11679 }
11680 } else {
11681 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11682 << T->isBlockPointerType() << Record->getTagKind();
11683 }
11684 ARCErrReported = true;
11685 }
11686 } else if (getLangOpts().ObjC1 &&
11687 getLangOpts().getGC() != LangOptions::NonGC &&
11688 Record && !Record->hasObjectMember()) {
11689 if (FD->getType()->isObjCObjectPointerType() ||
11690 FD->getType().isObjCGCStrong())
11691 Record->setHasObjectMember(true);
11692 else if (Context.getAsArrayType(FD->getType())) {
11693 QualType BaseType = Context.getBaseElementType(FD->getType());
11694 if (BaseType->isRecordType() &&
11695 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11696 Record->setHasObjectMember(true);
11697 else if (BaseType->isObjCObjectPointerType() ||
11698 BaseType.isObjCGCStrong())
11699 Record->setHasObjectMember(true);
11700 }
11701 }
11702 if (Record && FD->getType().isVolatileQualified())
11703 Record->setHasVolatileMember(true);
11704 // Keep track of the number of named members.
11705 if (FD->getIdentifier())
11706 ++NumNamedMembers;
11707 }
11708
11709 // Okay, we successfully defined 'Record'.
11710 if (Record) {
11711 bool Completed = false;
11712 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11713 if (!CXXRecord->isInvalidDecl()) {
11714 // Set access bits correctly on the directly-declared conversions.
11715 for (CXXRecordDecl::conversion_iterator
11716 I = CXXRecord->conversion_begin(),
11717 E = CXXRecord->conversion_end(); I != E; ++I)
11718 I.setAccess((*I)->getAccess());
11719
11720 if (!CXXRecord->isDependentType()) {
11721 if (CXXRecord->hasUserDeclaredDestructor()) {
11722 // Adjust user-defined destructor exception spec.
11723 if (getLangOpts().CPlusPlus11)
11724 AdjustDestructorExceptionSpec(CXXRecord,
11725 CXXRecord->getDestructor());
11726
11727 // The Microsoft ABI requires that we perform the destructor body
11728 // checks (i.e. operator delete() lookup) at every declaration, as
11729 // any translation unit may need to emit a deleting destructor.
11730 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11731 CheckDestructor(CXXRecord->getDestructor());
11732 }
11733
11734 // Add any implicitly-declared members to this class.
11735 AddImplicitlyDeclaredMembersToClass(CXXRecord);
11736
11737 // If we have virtual base classes, we may end up finding multiple
11738 // final overriders for a given virtual function. Check for this
11739 // problem now.
11740 if (CXXRecord->getNumVBases()) {
11741 CXXFinalOverriderMap FinalOverriders;
11742 CXXRecord->getFinalOverriders(FinalOverriders);
11743
11744 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11745 MEnd = FinalOverriders.end();
11746 M != MEnd; ++M) {
11747 for (OverridingMethods::iterator SO = M->second.begin(),
11748 SOEnd = M->second.end();
11749 SO != SOEnd; ++SO) {
11750 assert(SO->second.size() > 0 &&
11751 "Virtual function without overridding functions?");
11752 if (SO->second.size() == 1)
11753 continue;
11754
11755 // C++ [class.virtual]p2:
11756 // In a derived class, if a virtual member function of a base
11757 // class subobject has more than one final overrider the
11758 // program is ill-formed.
11759 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11760 << (const NamedDecl *)M->first << Record;
11761 Diag(M->first->getLocation(),
11762 diag::note_overridden_virtual_function);
11763 for (OverridingMethods::overriding_iterator
11764 OM = SO->second.begin(),
11765 OMEnd = SO->second.end();
11766 OM != OMEnd; ++OM)
11767 Diag(OM->Method->getLocation(), diag::note_final_overrider)
11768 << (const NamedDecl *)M->first << OM->Method->getParent();
11769
11770 Record->setInvalidDecl();
11771 }
11772 }
11773 CXXRecord->completeDefinition(&FinalOverriders);
11774 Completed = true;
11775 }
11776 }
11777 }
11778 }
11779
11780 if (!Completed)
11781 Record->completeDefinition();
11782
11783 if (Record->hasAttrs())
11784 CheckAlignasUnderalignment(Record);
11785
11786 // Check if the structure/union declaration is a language extension.
11787 if (!getLangOpts().CPlusPlus) {
11788 bool ZeroSize = true;
11789 bool IsEmpty = true;
11790 unsigned NonBitFields = 0;
11791 for (RecordDecl::field_iterator I = Record->field_begin(),
11792 E = Record->field_end();
11793 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11794 IsEmpty = false;
11795 if (I->isUnnamedBitfield()) {
11796 if (I->getBitWidthValue(Context) > 0)
11797 ZeroSize = false;
11798 } else {
11799 ++NonBitFields;
11800 QualType FieldType = I->getType();
11801 if (FieldType->isIncompleteType() ||
11802 !Context.getTypeSizeInChars(FieldType).isZero())
11803 ZeroSize = false;
11804 }
11805 }
11806
11807 // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11808 // C++.
11809 if (ZeroSize)
11810 Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11811 << Record->isUnion() << (NonBitFields > 1);
11812
11813 // Structs without named members are extension in C (C99 6.7.2.1p7), but
11814 // are accepted by GCC.
11815 if (NonBitFields == 0) {
11816 if (IsEmpty)
11817 Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11818 else
11819 Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11820 }
11821 }
11822 } else {
11823 ObjCIvarDecl **ClsFields =
11824 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11825 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11826 ID->setEndOfDefinitionLoc(RBrac);
11827 // Add ivar's to class's DeclContext.
11828 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11829 ClsFields[i]->setLexicalDeclContext(ID);
11830 ID->addDecl(ClsFields[i]);
11831 }
11832 // Must enforce the rule that ivars in the base classes may not be
11833 // duplicates.
11834 if (ID->getSuperClass())
11835 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11836 } else if (ObjCImplementationDecl *IMPDecl =
11837 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11838 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11839 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11840 // Ivar declared in @implementation never belongs to the implementation.
11841 // Only it is in implementation's lexical context.
11842 ClsFields[I]->setLexicalDeclContext(IMPDecl);
11843 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11844 IMPDecl->setIvarLBraceLoc(LBrac);
11845 IMPDecl->setIvarRBraceLoc(RBrac);
11846 } else if (ObjCCategoryDecl *CDecl =
11847 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11848 // case of ivars in class extension; all other cases have been
11849 // reported as errors elsewhere.
11850 // FIXME. Class extension does not have a LocEnd field.
11851 // CDecl->setLocEnd(RBrac);
11852 // Add ivar's to class extension's DeclContext.
11853 // Diagnose redeclaration of private ivars.
11854 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11855 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11856 if (IDecl) {
11857 if (const ObjCIvarDecl *ClsIvar =
11858 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11859 Diag(ClsFields[i]->getLocation(),
11860 diag::err_duplicate_ivar_declaration);
11861 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11862 continue;
11863 }
11864 for (ObjCInterfaceDecl::known_extensions_iterator
11865 Ext = IDecl->known_extensions_begin(),
11866 ExtEnd = IDecl->known_extensions_end();
11867 Ext != ExtEnd; ++Ext) {
11868 if (const ObjCIvarDecl *ClsExtIvar
11869 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11870 Diag(ClsFields[i]->getLocation(),
11871 diag::err_duplicate_ivar_declaration);
11872 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11873 continue;
11874 }
11875 }
11876 }
11877 ClsFields[i]->setLexicalDeclContext(CDecl);
11878 CDecl->addDecl(ClsFields[i]);
11879 }
11880 CDecl->setIvarLBraceLoc(LBrac);
11881 CDecl->setIvarRBraceLoc(RBrac);
11882 }
11883 }
11884
11885 if (Attr)
11886 ProcessDeclAttributeList(S, Record, Attr);
11887 }
11888
11889 /// \brief Determine whether the given integral value is representable within
11890 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)11891 static bool isRepresentableIntegerValue(ASTContext &Context,
11892 llvm::APSInt &Value,
11893 QualType T) {
11894 assert(T->isIntegralType(Context) && "Integral type required!");
11895 unsigned BitWidth = Context.getIntWidth(T);
11896
11897 if (Value.isUnsigned() || Value.isNonNegative()) {
11898 if (T->isSignedIntegerOrEnumerationType())
11899 --BitWidth;
11900 return Value.getActiveBits() <= BitWidth;
11901 }
11902 return Value.getMinSignedBits() <= BitWidth;
11903 }
11904
11905 // \brief Given an integral type, return the next larger integral type
11906 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)11907 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11908 // FIXME: Int128/UInt128 support, which also needs to be introduced into
11909 // enum checking below.
11910 assert(T->isIntegralType(Context) && "Integral type required!");
11911 const unsigned NumTypes = 4;
11912 QualType SignedIntegralTypes[NumTypes] = {
11913 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11914 };
11915 QualType UnsignedIntegralTypes[NumTypes] = {
11916 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11917 Context.UnsignedLongLongTy
11918 };
11919
11920 unsigned BitWidth = Context.getTypeSize(T);
11921 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11922 : UnsignedIntegralTypes;
11923 for (unsigned I = 0; I != NumTypes; ++I)
11924 if (Context.getTypeSize(Types[I]) > BitWidth)
11925 return Types[I];
11926
11927 return QualType();
11928 }
11929
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)11930 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11931 EnumConstantDecl *LastEnumConst,
11932 SourceLocation IdLoc,
11933 IdentifierInfo *Id,
11934 Expr *Val) {
11935 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11936 llvm::APSInt EnumVal(IntWidth);
11937 QualType EltTy;
11938
11939 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11940 Val = 0;
11941
11942 if (Val)
11943 Val = DefaultLvalueConversion(Val).take();
11944
11945 if (Val) {
11946 if (Enum->isDependentType() || Val->isTypeDependent())
11947 EltTy = Context.DependentTy;
11948 else {
11949 SourceLocation ExpLoc;
11950 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11951 !getLangOpts().MicrosoftMode) {
11952 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11953 // constant-expression in the enumerator-definition shall be a converted
11954 // constant expression of the underlying type.
11955 EltTy = Enum->getIntegerType();
11956 ExprResult Converted =
11957 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11958 CCEK_Enumerator);
11959 if (Converted.isInvalid())
11960 Val = 0;
11961 else
11962 Val = Converted.take();
11963 } else if (!Val->isValueDependent() &&
11964 !(Val = VerifyIntegerConstantExpression(Val,
11965 &EnumVal).take())) {
11966 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11967 } else {
11968 if (Enum->isFixed()) {
11969 EltTy = Enum->getIntegerType();
11970
11971 // In Obj-C and Microsoft mode, require the enumeration value to be
11972 // representable in the underlying type of the enumeration. In C++11,
11973 // we perform a non-narrowing conversion as part of converted constant
11974 // expression checking.
11975 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11976 if (getLangOpts().MicrosoftMode) {
11977 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11978 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11979 } else
11980 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11981 } else
11982 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11983 } else if (getLangOpts().CPlusPlus) {
11984 // C++11 [dcl.enum]p5:
11985 // If the underlying type is not fixed, the type of each enumerator
11986 // is the type of its initializing value:
11987 // - If an initializer is specified for an enumerator, the
11988 // initializing value has the same type as the expression.
11989 EltTy = Val->getType();
11990 } else {
11991 // C99 6.7.2.2p2:
11992 // The expression that defines the value of an enumeration constant
11993 // shall be an integer constant expression that has a value
11994 // representable as an int.
11995
11996 // Complain if the value is not representable in an int.
11997 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11998 Diag(IdLoc, diag::ext_enum_value_not_int)
11999 << EnumVal.toString(10) << Val->getSourceRange()
12000 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12001 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12002 // Force the type of the expression to 'int'.
12003 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12004 }
12005 EltTy = Val->getType();
12006 }
12007 }
12008 }
12009 }
12010
12011 if (!Val) {
12012 if (Enum->isDependentType())
12013 EltTy = Context.DependentTy;
12014 else if (!LastEnumConst) {
12015 // C++0x [dcl.enum]p5:
12016 // If the underlying type is not fixed, the type of each enumerator
12017 // is the type of its initializing value:
12018 // - If no initializer is specified for the first enumerator, the
12019 // initializing value has an unspecified integral type.
12020 //
12021 // GCC uses 'int' for its unspecified integral type, as does
12022 // C99 6.7.2.2p3.
12023 if (Enum->isFixed()) {
12024 EltTy = Enum->getIntegerType();
12025 }
12026 else {
12027 EltTy = Context.IntTy;
12028 }
12029 } else {
12030 // Assign the last value + 1.
12031 EnumVal = LastEnumConst->getInitVal();
12032 ++EnumVal;
12033 EltTy = LastEnumConst->getType();
12034
12035 // Check for overflow on increment.
12036 if (EnumVal < LastEnumConst->getInitVal()) {
12037 // C++0x [dcl.enum]p5:
12038 // If the underlying type is not fixed, the type of each enumerator
12039 // is the type of its initializing value:
12040 //
12041 // - Otherwise the type of the initializing value is the same as
12042 // the type of the initializing value of the preceding enumerator
12043 // unless the incremented value is not representable in that type,
12044 // in which case the type is an unspecified integral type
12045 // sufficient to contain the incremented value. If no such type
12046 // exists, the program is ill-formed.
12047 QualType T = getNextLargerIntegralType(Context, EltTy);
12048 if (T.isNull() || Enum->isFixed()) {
12049 // There is no integral type larger enough to represent this
12050 // value. Complain, then allow the value to wrap around.
12051 EnumVal = LastEnumConst->getInitVal();
12052 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12053 ++EnumVal;
12054 if (Enum->isFixed())
12055 // When the underlying type is fixed, this is ill-formed.
12056 Diag(IdLoc, diag::err_enumerator_wrapped)
12057 << EnumVal.toString(10)
12058 << EltTy;
12059 else
12060 Diag(IdLoc, diag::warn_enumerator_too_large)
12061 << EnumVal.toString(10);
12062 } else {
12063 EltTy = T;
12064 }
12065
12066 // Retrieve the last enumerator's value, extent that type to the
12067 // type that is supposed to be large enough to represent the incremented
12068 // value, then increment.
12069 EnumVal = LastEnumConst->getInitVal();
12070 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12071 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12072 ++EnumVal;
12073
12074 // If we're not in C++, diagnose the overflow of enumerator values,
12075 // which in C99 means that the enumerator value is not representable in
12076 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12077 // permits enumerator values that are representable in some larger
12078 // integral type.
12079 if (!getLangOpts().CPlusPlus && !T.isNull())
12080 Diag(IdLoc, diag::warn_enum_value_overflow);
12081 } else if (!getLangOpts().CPlusPlus &&
12082 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12083 // Enforce C99 6.7.2.2p2 even when we compute the next value.
12084 Diag(IdLoc, diag::ext_enum_value_not_int)
12085 << EnumVal.toString(10) << 1;
12086 }
12087 }
12088 }
12089
12090 if (!EltTy->isDependentType()) {
12091 // Make the enumerator value match the signedness and size of the
12092 // enumerator's type.
12093 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12094 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12095 }
12096
12097 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12098 Val, EnumVal);
12099 }
12100
12101
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)12102 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12103 SourceLocation IdLoc, IdentifierInfo *Id,
12104 AttributeList *Attr,
12105 SourceLocation EqualLoc, Expr *Val) {
12106 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12107 EnumConstantDecl *LastEnumConst =
12108 cast_or_null<EnumConstantDecl>(lastEnumConst);
12109
12110 // The scope passed in may not be a decl scope. Zip up the scope tree until
12111 // we find one that is.
12112 S = getNonFieldDeclScope(S);
12113
12114 // Verify that there isn't already something declared with this name in this
12115 // scope.
12116 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12117 ForRedeclaration);
12118 if (PrevDecl && PrevDecl->isTemplateParameter()) {
12119 // Maybe we will complain about the shadowed template parameter.
12120 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12121 // Just pretend that we didn't see the previous declaration.
12122 PrevDecl = 0;
12123 }
12124
12125 if (PrevDecl) {
12126 // When in C++, we may get a TagDecl with the same name; in this case the
12127 // enum constant will 'hide' the tag.
12128 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12129 "Received TagDecl when not in C++!");
12130 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12131 if (isa<EnumConstantDecl>(PrevDecl))
12132 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12133 else
12134 Diag(IdLoc, diag::err_redefinition) << Id;
12135 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12136 return 0;
12137 }
12138 }
12139
12140 // C++ [class.mem]p15:
12141 // If T is the name of a class, then each of the following shall have a name
12142 // different from T:
12143 // - every enumerator of every member of class T that is an unscoped
12144 // enumerated type
12145 if (CXXRecordDecl *Record
12146 = dyn_cast<CXXRecordDecl>(
12147 TheEnumDecl->getDeclContext()->getRedeclContext()))
12148 if (!TheEnumDecl->isScoped() &&
12149 Record->getIdentifier() && Record->getIdentifier() == Id)
12150 Diag(IdLoc, diag::err_member_name_of_class) << Id;
12151
12152 EnumConstantDecl *New =
12153 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12154
12155 if (New) {
12156 // Process attributes.
12157 if (Attr) ProcessDeclAttributeList(S, New, Attr);
12158
12159 // Register this decl in the current scope stack.
12160 New->setAccess(TheEnumDecl->getAccess());
12161 PushOnScopeChains(New, S);
12162 }
12163
12164 ActOnDocumentableDecl(New);
12165
12166 return New;
12167 }
12168
12169 // Returns true when the enum initial expression does not trigger the
12170 // duplicate enum warning. A few common cases are exempted as follows:
12171 // Element2 = Element1
12172 // Element2 = Element1 + 1
12173 // Element2 = Element1 - 1
12174 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)12175 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12176 Expr *InitExpr = ECD->getInitExpr();
12177 if (!InitExpr)
12178 return true;
12179 InitExpr = InitExpr->IgnoreImpCasts();
12180
12181 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12182 if (!BO->isAdditiveOp())
12183 return true;
12184 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12185 if (!IL)
12186 return true;
12187 if (IL->getValue() != 1)
12188 return true;
12189
12190 InitExpr = BO->getLHS();
12191 }
12192
12193 // This checks if the elements are from the same enum.
12194 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12195 if (!DRE)
12196 return true;
12197
12198 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12199 if (!EnumConstant)
12200 return true;
12201
12202 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12203 Enum)
12204 return true;
12205
12206 return false;
12207 }
12208
12209 struct DupKey {
12210 int64_t val;
12211 bool isTombstoneOrEmptyKey;
DupKeyDupKey12212 DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12213 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12214 };
12215
GetDupKey(const llvm::APSInt & Val)12216 static DupKey GetDupKey(const llvm::APSInt& Val) {
12217 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12218 false);
12219 }
12220
12221 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey12222 static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey12223 static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey12224 static unsigned getHashValue(const DupKey Key) {
12225 return (unsigned)(Key.val * 37);
12226 }
isEqualDenseMapInfoDupKey12227 static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12228 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12229 LHS.val == RHS.val;
12230 }
12231 };
12232
12233 // Emits a warning when an element is implicitly set a value that
12234 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)12235 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12236 EnumDecl *Enum,
12237 QualType EnumType) {
12238 if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12239 Enum->getLocation()) ==
12240 DiagnosticsEngine::Ignored)
12241 return;
12242 // Avoid anonymous enums
12243 if (!Enum->getIdentifier())
12244 return;
12245
12246 // Only check for small enums.
12247 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12248 return;
12249
12250 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12251 typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12252
12253 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12254 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12255 ValueToVectorMap;
12256
12257 DuplicatesVector DupVector;
12258 ValueToVectorMap EnumMap;
12259
12260 // Populate the EnumMap with all values represented by enum constants without
12261 // an initialier.
12262 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12263 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12264
12265 // Null EnumConstantDecl means a previous diagnostic has been emitted for
12266 // this constant. Skip this enum since it may be ill-formed.
12267 if (!ECD) {
12268 return;
12269 }
12270
12271 if (ECD->getInitExpr())
12272 continue;
12273
12274 DupKey Key = GetDupKey(ECD->getInitVal());
12275 DeclOrVector &Entry = EnumMap[Key];
12276
12277 // First time encountering this value.
12278 if (Entry.isNull())
12279 Entry = ECD;
12280 }
12281
12282 // Create vectors for any values that has duplicates.
12283 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12284 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12285 if (!ValidDuplicateEnum(ECD, Enum))
12286 continue;
12287
12288 DupKey Key = GetDupKey(ECD->getInitVal());
12289
12290 DeclOrVector& Entry = EnumMap[Key];
12291 if (Entry.isNull())
12292 continue;
12293
12294 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12295 // Ensure constants are different.
12296 if (D == ECD)
12297 continue;
12298
12299 // Create new vector and push values onto it.
12300 ECDVector *Vec = new ECDVector();
12301 Vec->push_back(D);
12302 Vec->push_back(ECD);
12303
12304 // Update entry to point to the duplicates vector.
12305 Entry = Vec;
12306
12307 // Store the vector somewhere we can consult later for quick emission of
12308 // diagnostics.
12309 DupVector.push_back(Vec);
12310 continue;
12311 }
12312
12313 ECDVector *Vec = Entry.get<ECDVector*>();
12314 // Make sure constants are not added more than once.
12315 if (*Vec->begin() == ECD)
12316 continue;
12317
12318 Vec->push_back(ECD);
12319 }
12320
12321 // Emit diagnostics.
12322 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12323 DupVectorEnd = DupVector.end();
12324 DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12325 ECDVector *Vec = *DupVectorIter;
12326 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12327
12328 // Emit warning for one enum constant.
12329 ECDVector::iterator I = Vec->begin();
12330 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12331 << (*I)->getName() << (*I)->getInitVal().toString(10)
12332 << (*I)->getSourceRange();
12333 ++I;
12334
12335 // Emit one note for each of the remaining enum constants with
12336 // the same value.
12337 for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12338 S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12339 << (*I)->getName() << (*I)->getInitVal().toString(10)
12340 << (*I)->getSourceRange();
12341 delete Vec;
12342 }
12343 }
12344
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)12345 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12346 SourceLocation RBraceLoc, Decl *EnumDeclX,
12347 ArrayRef<Decl *> Elements,
12348 Scope *S, AttributeList *Attr) {
12349 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12350 QualType EnumType = Context.getTypeDeclType(Enum);
12351
12352 if (Attr)
12353 ProcessDeclAttributeList(S, Enum, Attr);
12354
12355 if (Enum->isDependentType()) {
12356 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12357 EnumConstantDecl *ECD =
12358 cast_or_null<EnumConstantDecl>(Elements[i]);
12359 if (!ECD) continue;
12360
12361 ECD->setType(EnumType);
12362 }
12363
12364 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12365 return;
12366 }
12367
12368 // TODO: If the result value doesn't fit in an int, it must be a long or long
12369 // long value. ISO C does not support this, but GCC does as an extension,
12370 // emit a warning.
12371 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12372 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12373 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12374
12375 // Verify that all the values are okay, compute the size of the values, and
12376 // reverse the list.
12377 unsigned NumNegativeBits = 0;
12378 unsigned NumPositiveBits = 0;
12379
12380 // Keep track of whether all elements have type int.
12381 bool AllElementsInt = true;
12382
12383 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12384 EnumConstantDecl *ECD =
12385 cast_or_null<EnumConstantDecl>(Elements[i]);
12386 if (!ECD) continue; // Already issued a diagnostic.
12387
12388 const llvm::APSInt &InitVal = ECD->getInitVal();
12389
12390 // Keep track of the size of positive and negative values.
12391 if (InitVal.isUnsigned() || InitVal.isNonNegative())
12392 NumPositiveBits = std::max(NumPositiveBits,
12393 (unsigned)InitVal.getActiveBits());
12394 else
12395 NumNegativeBits = std::max(NumNegativeBits,
12396 (unsigned)InitVal.getMinSignedBits());
12397
12398 // Keep track of whether every enum element has type int (very commmon).
12399 if (AllElementsInt)
12400 AllElementsInt = ECD->getType() == Context.IntTy;
12401 }
12402
12403 // Figure out the type that should be used for this enum.
12404 QualType BestType;
12405 unsigned BestWidth;
12406
12407 // C++0x N3000 [conv.prom]p3:
12408 // An rvalue of an unscoped enumeration type whose underlying
12409 // type is not fixed can be converted to an rvalue of the first
12410 // of the following types that can represent all the values of
12411 // the enumeration: int, unsigned int, long int, unsigned long
12412 // int, long long int, or unsigned long long int.
12413 // C99 6.4.4.3p2:
12414 // An identifier declared as an enumeration constant has type int.
12415 // The C99 rule is modified by a gcc extension
12416 QualType BestPromotionType;
12417
12418 bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12419 // -fshort-enums is the equivalent to specifying the packed attribute on all
12420 // enum definitions.
12421 if (LangOpts.ShortEnums)
12422 Packed = true;
12423
12424 if (Enum->isFixed()) {
12425 BestType = Enum->getIntegerType();
12426 if (BestType->isPromotableIntegerType())
12427 BestPromotionType = Context.getPromotedIntegerType(BestType);
12428 else
12429 BestPromotionType = BestType;
12430 // We don't need to set BestWidth, because BestType is going to be the type
12431 // of the enumerators, but we do anyway because otherwise some compilers
12432 // warn that it might be used uninitialized.
12433 BestWidth = CharWidth;
12434 }
12435 else if (NumNegativeBits) {
12436 // If there is a negative value, figure out the smallest integer type (of
12437 // int/long/longlong) that fits.
12438 // If it's packed, check also if it fits a char or a short.
12439 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12440 BestType = Context.SignedCharTy;
12441 BestWidth = CharWidth;
12442 } else if (Packed && NumNegativeBits <= ShortWidth &&
12443 NumPositiveBits < ShortWidth) {
12444 BestType = Context.ShortTy;
12445 BestWidth = ShortWidth;
12446 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12447 BestType = Context.IntTy;
12448 BestWidth = IntWidth;
12449 } else {
12450 BestWidth = Context.getTargetInfo().getLongWidth();
12451
12452 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12453 BestType = Context.LongTy;
12454 } else {
12455 BestWidth = Context.getTargetInfo().getLongLongWidth();
12456
12457 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12458 Diag(Enum->getLocation(), diag::warn_enum_too_large);
12459 BestType = Context.LongLongTy;
12460 }
12461 }
12462 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12463 } else {
12464 // If there is no negative value, figure out the smallest type that fits
12465 // all of the enumerator values.
12466 // If it's packed, check also if it fits a char or a short.
12467 if (Packed && NumPositiveBits <= CharWidth) {
12468 BestType = Context.UnsignedCharTy;
12469 BestPromotionType = Context.IntTy;
12470 BestWidth = CharWidth;
12471 } else if (Packed && NumPositiveBits <= ShortWidth) {
12472 BestType = Context.UnsignedShortTy;
12473 BestPromotionType = Context.IntTy;
12474 BestWidth = ShortWidth;
12475 } else if (NumPositiveBits <= IntWidth) {
12476 BestType = Context.UnsignedIntTy;
12477 BestWidth = IntWidth;
12478 BestPromotionType
12479 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12480 ? Context.UnsignedIntTy : Context.IntTy;
12481 } else if (NumPositiveBits <=
12482 (BestWidth = Context.getTargetInfo().getLongWidth())) {
12483 BestType = Context.UnsignedLongTy;
12484 BestPromotionType
12485 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12486 ? Context.UnsignedLongTy : Context.LongTy;
12487 } else {
12488 BestWidth = Context.getTargetInfo().getLongLongWidth();
12489 assert(NumPositiveBits <= BestWidth &&
12490 "How could an initializer get larger than ULL?");
12491 BestType = Context.UnsignedLongLongTy;
12492 BestPromotionType
12493 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12494 ? Context.UnsignedLongLongTy : Context.LongLongTy;
12495 }
12496 }
12497
12498 // Loop over all of the enumerator constants, changing their types to match
12499 // the type of the enum if needed.
12500 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12501 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12502 if (!ECD) continue; // Already issued a diagnostic.
12503
12504 // Standard C says the enumerators have int type, but we allow, as an
12505 // extension, the enumerators to be larger than int size. If each
12506 // enumerator value fits in an int, type it as an int, otherwise type it the
12507 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
12508 // that X has type 'int', not 'unsigned'.
12509
12510 // Determine whether the value fits into an int.
12511 llvm::APSInt InitVal = ECD->getInitVal();
12512
12513 // If it fits into an integer type, force it. Otherwise force it to match
12514 // the enum decl type.
12515 QualType NewTy;
12516 unsigned NewWidth;
12517 bool NewSign;
12518 if (!getLangOpts().CPlusPlus &&
12519 !Enum->isFixed() &&
12520 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12521 NewTy = Context.IntTy;
12522 NewWidth = IntWidth;
12523 NewSign = true;
12524 } else if (ECD->getType() == BestType) {
12525 // Already the right type!
12526 if (getLangOpts().CPlusPlus)
12527 // C++ [dcl.enum]p4: Following the closing brace of an
12528 // enum-specifier, each enumerator has the type of its
12529 // enumeration.
12530 ECD->setType(EnumType);
12531 continue;
12532 } else {
12533 NewTy = BestType;
12534 NewWidth = BestWidth;
12535 NewSign = BestType->isSignedIntegerOrEnumerationType();
12536 }
12537
12538 // Adjust the APSInt value.
12539 InitVal = InitVal.extOrTrunc(NewWidth);
12540 InitVal.setIsSigned(NewSign);
12541 ECD->setInitVal(InitVal);
12542
12543 // Adjust the Expr initializer and type.
12544 if (ECD->getInitExpr() &&
12545 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12546 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12547 CK_IntegralCast,
12548 ECD->getInitExpr(),
12549 /*base paths*/ 0,
12550 VK_RValue));
12551 if (getLangOpts().CPlusPlus)
12552 // C++ [dcl.enum]p4: Following the closing brace of an
12553 // enum-specifier, each enumerator has the type of its
12554 // enumeration.
12555 ECD->setType(EnumType);
12556 else
12557 ECD->setType(NewTy);
12558 }
12559
12560 Enum->completeDefinition(BestType, BestPromotionType,
12561 NumPositiveBits, NumNegativeBits);
12562
12563 // If we're declaring a function, ensure this decl isn't forgotten about -
12564 // it needs to go into the function scope.
12565 if (InFunctionDeclarator)
12566 DeclsInPrototypeScope.push_back(Enum);
12567
12568 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12569
12570 // Now that the enum type is defined, ensure it's not been underaligned.
12571 if (Enum->hasAttrs())
12572 CheckAlignasUnderalignment(Enum);
12573 }
12574
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)12575 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12576 SourceLocation StartLoc,
12577 SourceLocation EndLoc) {
12578 StringLiteral *AsmString = cast<StringLiteral>(expr);
12579
12580 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12581 AsmString, StartLoc,
12582 EndLoc);
12583 CurContext->addDecl(New);
12584 return New;
12585 }
12586
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)12587 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12588 SourceLocation ImportLoc,
12589 ModuleIdPath Path) {
12590 Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12591 Module::AllVisible,
12592 /*IsIncludeDirective=*/false);
12593 if (!Mod)
12594 return true;
12595
12596 SmallVector<SourceLocation, 2> IdentifierLocs;
12597 Module *ModCheck = Mod;
12598 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12599 // If we've run out of module parents, just drop the remaining identifiers.
12600 // We need the length to be consistent.
12601 if (!ModCheck)
12602 break;
12603 ModCheck = ModCheck->Parent;
12604
12605 IdentifierLocs.push_back(Path[I].second);
12606 }
12607
12608 ImportDecl *Import = ImportDecl::Create(Context,
12609 Context.getTranslationUnitDecl(),
12610 AtLoc.isValid()? AtLoc : ImportLoc,
12611 Mod, IdentifierLocs);
12612 Context.getTranslationUnitDecl()->addDecl(Import);
12613 return Import;
12614 }
12615
createImplicitModuleImport(SourceLocation Loc,Module * Mod)12616 void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12617 // Create the implicit import declaration.
12618 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12619 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12620 Loc, Mod, Loc);
12621 TU->addDecl(ImportD);
12622 Consumer.HandleImplicitImportDecl(ImportD);
12623
12624 // Make the module visible.
12625 PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12626 /*Complain=*/false);
12627 }
12628
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)12629 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12630 IdentifierInfo* AliasName,
12631 SourceLocation PragmaLoc,
12632 SourceLocation NameLoc,
12633 SourceLocation AliasNameLoc) {
12634 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12635 LookupOrdinaryName);
12636 AsmLabelAttr *Attr =
12637 ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12638
12639 if (PrevDecl)
12640 PrevDecl->addAttr(Attr);
12641 else
12642 (void)ExtnameUndeclaredIdentifiers.insert(
12643 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12644 }
12645
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)12646 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12647 SourceLocation PragmaLoc,
12648 SourceLocation NameLoc) {
12649 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12650
12651 if (PrevDecl) {
12652 PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12653 } else {
12654 (void)WeakUndeclaredIdentifiers.insert(
12655 std::pair<IdentifierInfo*,WeakInfo>
12656 (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12657 }
12658 }
12659
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)12660 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12661 IdentifierInfo* AliasName,
12662 SourceLocation PragmaLoc,
12663 SourceLocation NameLoc,
12664 SourceLocation AliasNameLoc) {
12665 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12666 LookupOrdinaryName);
12667 WeakInfo W = WeakInfo(Name, NameLoc);
12668
12669 if (PrevDecl) {
12670 if (!PrevDecl->hasAttr<AliasAttr>())
12671 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12672 DeclApplyPragmaWeak(TUScope, ND, W);
12673 } else {
12674 (void)WeakUndeclaredIdentifiers.insert(
12675 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12676 }
12677 }
12678
getObjCDeclContext() const12679 Decl *Sema::getObjCDeclContext() const {
12680 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12681 }
12682
getCurContextAvailability() const12683 AvailabilityResult Sema::getCurContextAvailability() const {
12684 const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12685 return D->getAvailability();
12686 }
12687