• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/CommentDiagnostic.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31 #include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32 #include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33 #include "clang/Parse/ParseDiagnostic.h"
34 #include "clang/Sema/CXXFieldCollector.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/Triple.h"
44 #include <algorithm>
45 #include <cstring>
46 #include <functional>
47 using namespace clang;
48 using namespace sema;
49 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51   if (OwnedType) {
52     Decl *Group[2] = { OwnedType, Ptr };
53     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54   }
55 
56   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57 }
58 
59 namespace {
60 
61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false)63   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65     WantExpressionKeywords = false;
66     WantCXXNamedCasts = false;
67     WantRemainingKeywords = false;
68   }
69 
ValidateCandidate(const TypoCorrection & candidate)70   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71     if (NamedDecl *ND = candidate.getCorrectionDecl())
72       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73           (AllowInvalidDecl || !ND->isInvalidDecl());
74     else
75       return !WantClassName && candidate.isKeyword();
76   }
77 
78  private:
79   bool AllowInvalidDecl;
80   bool WantClassName;
81 };
82 
83 }
84 
85 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const86 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87   switch (Kind) {
88   // FIXME: Take into account the current language when deciding whether a
89   // token kind is a valid type specifier
90   case tok::kw_short:
91   case tok::kw_long:
92   case tok::kw___int64:
93   case tok::kw___int128:
94   case tok::kw_signed:
95   case tok::kw_unsigned:
96   case tok::kw_void:
97   case tok::kw_char:
98   case tok::kw_int:
99   case tok::kw_half:
100   case tok::kw_float:
101   case tok::kw_double:
102   case tok::kw_wchar_t:
103   case tok::kw_bool:
104   case tok::kw___underlying_type:
105     return true;
106 
107   case tok::annot_typename:
108   case tok::kw_char16_t:
109   case tok::kw_char32_t:
110   case tok::kw_typeof:
111   case tok::kw_decltype:
112     return getLangOpts().CPlusPlus;
113 
114   default:
115     break;
116   }
117 
118   return false;
119 }
120 
121 /// \brief If the identifier refers to a type name within this scope,
122 /// return the declaration of that type.
123 ///
124 /// This routine performs ordinary name lookup of the identifier II
125 /// within the given scope, with optional C++ scope specifier SS, to
126 /// determine whether the name refers to a type. If so, returns an
127 /// opaque pointer (actually a QualType) corresponding to that
128 /// type. Otherwise, returns NULL.
129 ///
130 /// If name lookup results in an ambiguity, this routine will complain
131 /// and then return NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)132 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                              Scope *S, CXXScopeSpec *SS,
134                              bool isClassName, bool HasTrailingDot,
135                              ParsedType ObjectTypePtr,
136                              bool IsCtorOrDtorName,
137                              bool WantNontrivialTypeSourceInfo,
138                              IdentifierInfo **CorrectedII) {
139   // Determine where we will perform name lookup.
140   DeclContext *LookupCtx = 0;
141   if (ObjectTypePtr) {
142     QualType ObjectType = ObjectTypePtr.get();
143     if (ObjectType->isRecordType())
144       LookupCtx = computeDeclContext(ObjectType);
145   } else if (SS && SS->isNotEmpty()) {
146     LookupCtx = computeDeclContext(*SS, false);
147 
148     if (!LookupCtx) {
149       if (isDependentScopeSpecifier(*SS)) {
150         // C++ [temp.res]p3:
151         //   A qualified-id that refers to a type and in which the
152         //   nested-name-specifier depends on a template-parameter (14.6.2)
153         //   shall be prefixed by the keyword typename to indicate that the
154         //   qualified-id denotes a type, forming an
155         //   elaborated-type-specifier (7.1.5.3).
156         //
157         // We therefore do not perform any name lookup if the result would
158         // refer to a member of an unknown specialization.
159         if (!isClassName && !IsCtorOrDtorName)
160           return ParsedType();
161 
162         // We know from the grammar that this name refers to a type,
163         // so build a dependent node to describe the type.
164         if (WantNontrivialTypeSourceInfo)
165           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166 
167         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168         QualType T =
169           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                             II, NameLoc);
171 
172           return ParsedType::make(T);
173       }
174 
175       return ParsedType();
176     }
177 
178     if (!LookupCtx->isDependentContext() &&
179         RequireCompleteDeclContext(*SS, LookupCtx))
180       return ParsedType();
181   }
182 
183   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184   // lookup for class-names.
185   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                       LookupOrdinaryName;
187   LookupResult Result(*this, &II, NameLoc, Kind);
188   if (LookupCtx) {
189     // Perform "qualified" name lookup into the declaration context we
190     // computed, which is either the type of the base of a member access
191     // expression or the declaration context associated with a prior
192     // nested-name-specifier.
193     LookupQualifiedName(Result, LookupCtx);
194 
195     if (ObjectTypePtr && Result.empty()) {
196       // C++ [basic.lookup.classref]p3:
197       //   If the unqualified-id is ~type-name, the type-name is looked up
198       //   in the context of the entire postfix-expression. If the type T of
199       //   the object expression is of a class type C, the type-name is also
200       //   looked up in the scope of class C. At least one of the lookups shall
201       //   find a name that refers to (possibly cv-qualified) T.
202       LookupName(Result, S);
203     }
204   } else {
205     // Perform unqualified name lookup.
206     LookupName(Result, S);
207   }
208 
209   NamedDecl *IIDecl = 0;
210   switch (Result.getResultKind()) {
211   case LookupResult::NotFound:
212   case LookupResult::NotFoundInCurrentInstantiation:
213     if (CorrectedII) {
214       TypeNameValidatorCCC Validator(true, isClassName);
215       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                               Kind, S, SS, Validator);
217       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218       TemplateTy Template;
219       bool MemberOfUnknownSpecialization;
220       UnqualifiedId TemplateName;
221       TemplateName.setIdentifier(NewII, NameLoc);
222       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223       CXXScopeSpec NewSS, *NewSSPtr = SS;
224       if (SS && NNS) {
225         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226         NewSSPtr = &NewSS;
227       }
228       if (Correction && (NNS || NewII != &II) &&
229           // Ignore a correction to a template type as the to-be-corrected
230           // identifier is not a template (typo correction for template names
231           // is handled elsewhere).
232           !(getLangOpts().CPlusPlus && NewSSPtr &&
233             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                            false, Template, MemberOfUnknownSpecialization))) {
235         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                     isClassName, HasTrailingDot, ObjectTypePtr,
237                                     IsCtorOrDtorName,
238                                     WantNontrivialTypeSourceInfo);
239         if (Ty) {
240           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241           std::string CorrectedQuotedStr(
242               Correction.getQuoted(getLangOpts()));
243           Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244               << Result.getLookupName() << CorrectedQuotedStr << isClassName
245               << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                               CorrectedStr);
247           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249               << CorrectedQuotedStr;
250 
251           if (SS && NNS)
252             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253           *CorrectedII = NewII;
254           return Ty;
255         }
256       }
257     }
258     // If typo correction failed or was not performed, fall through
259   case LookupResult::FoundOverloaded:
260   case LookupResult::FoundUnresolvedValue:
261     Result.suppressDiagnostics();
262     return ParsedType();
263 
264   case LookupResult::Ambiguous:
265     // Recover from type-hiding ambiguities by hiding the type.  We'll
266     // do the lookup again when looking for an object, and we can
267     // diagnose the error then.  If we don't do this, then the error
268     // about hiding the type will be immediately followed by an error
269     // that only makes sense if the identifier was treated like a type.
270     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271       Result.suppressDiagnostics();
272       return ParsedType();
273     }
274 
275     // Look to see if we have a type anywhere in the list of results.
276     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277          Res != ResEnd; ++Res) {
278       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279         if (!IIDecl ||
280             (*Res)->getLocation().getRawEncoding() <
281               IIDecl->getLocation().getRawEncoding())
282           IIDecl = *Res;
283       }
284     }
285 
286     if (!IIDecl) {
287       // None of the entities we found is a type, so there is no way
288       // to even assume that the result is a type. In this case, don't
289       // complain about the ambiguity. The parser will either try to
290       // perform this lookup again (e.g., as an object name), which
291       // will produce the ambiguity, or will complain that it expected
292       // a type name.
293       Result.suppressDiagnostics();
294       return ParsedType();
295     }
296 
297     // We found a type within the ambiguous lookup; diagnose the
298     // ambiguity and then return that type. This might be the right
299     // answer, or it might not be, but it suppresses any attempt to
300     // perform the name lookup again.
301     break;
302 
303   case LookupResult::Found:
304     IIDecl = Result.getFoundDecl();
305     break;
306   }
307 
308   assert(IIDecl && "Didn't find decl");
309 
310   QualType T;
311   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312     DiagnoseUseOfDecl(IIDecl, NameLoc);
313 
314     if (T.isNull())
315       T = Context.getTypeDeclType(TD);
316 
317     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318     // constructor or destructor name (in such a case, the scope specifier
319     // will be attached to the enclosing Expr or Decl node).
320     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321       if (WantNontrivialTypeSourceInfo) {
322         // Construct a type with type-source information.
323         TypeLocBuilder Builder;
324         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325 
326         T = getElaboratedType(ETK_None, *SS, T);
327         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328         ElabTL.setElaboratedKeywordLoc(SourceLocation());
329         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331       } else {
332         T = getElaboratedType(ETK_None, *SS, T);
333       }
334     }
335   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337     if (!HasTrailingDot)
338       T = Context.getObjCInterfaceType(IDecl);
339   }
340 
341   if (T.isNull()) {
342     // If it's not plausibly a type, suppress diagnostics.
343     Result.suppressDiagnostics();
344     return ParsedType();
345   }
346   return ParsedType::make(T);
347 }
348 
349 /// isTagName() - This method is called *for error recovery purposes only*
350 /// to determine if the specified name is a valid tag name ("struct foo").  If
351 /// so, this returns the TST for the tag corresponding to it (TST_enum,
352 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)354 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355   // Do a tag name lookup in this scope.
356   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357   LookupName(R, S, false);
358   R.suppressDiagnostics();
359   if (R.getResultKind() == LookupResult::Found)
360     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361       switch (TD->getTagKind()) {
362       case TTK_Struct: return DeclSpec::TST_struct;
363       case TTK_Interface: return DeclSpec::TST_interface;
364       case TTK_Union:  return DeclSpec::TST_union;
365       case TTK_Class:  return DeclSpec::TST_class;
366       case TTK_Enum:   return DeclSpec::TST_enum;
367       }
368     }
369 
370   return DeclSpec::TST_unspecified;
371 }
372 
373 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
375 /// then downgrade the missing typename error to a warning.
376 /// This is needed for MSVC compatibility; Example:
377 /// @code
378 /// template<class T> class A {
379 /// public:
380 ///   typedef int TYPE;
381 /// };
382 /// template<class T> class B : public A<T> {
383 /// public:
384 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385 /// };
386 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)387 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388   if (CurContext->isRecord()) {
389     const Type *Ty = SS->getScopeRep()->getAsType();
390 
391     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395         return true;
396     return S->isFunctionPrototypeScope();
397   }
398   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399 }
400 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)401 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                    SourceLocation IILoc,
403                                    Scope *S,
404                                    CXXScopeSpec *SS,
405                                    ParsedType &SuggestedType) {
406   // We don't have anything to suggest (yet).
407   SuggestedType = ParsedType();
408 
409   // There may have been a typo in the name of the type. Look up typo
410   // results, in case we have something that we can suggest.
411   TypeNameValidatorCCC Validator(false);
412   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                              LookupOrdinaryName, S, SS,
414                                              Validator)) {
415     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417 
418     if (Corrected.isKeyword()) {
419       // We corrected to a keyword.
420       IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421       if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422         CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423       Diag(IILoc, diag::err_unknown_typename_suggest)
424         << II << CorrectedQuotedStr
425         << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
426                                         CorrectedStr);
427       II = NewII;
428     } else {
429       NamedDecl *Result = Corrected.getCorrectionDecl();
430       // We found a similarly-named type or interface; suggest that.
431       if (!SS || !SS->isSet()) {
432         Diag(IILoc, diag::err_unknown_typename_suggest)
433           << II << CorrectedQuotedStr
434           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
435                                           CorrectedStr);
436       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
437         bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
438                                 II->getName().equals(CorrectedStr);
439         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
440             << II << DC << droppedSpecifier << CorrectedQuotedStr
441             << SS->getRange()
442             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
443                                             CorrectedStr);
444       }
445       else {
446         llvm_unreachable("could not have corrected a typo here");
447       }
448 
449       Diag(Result->getLocation(), diag::note_previous_decl)
450         << CorrectedQuotedStr;
451 
452       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
453                                   false, false, ParsedType(),
454                                   /*IsCtorOrDtorName=*/false,
455                                   /*NonTrivialTypeSourceInfo=*/true);
456     }
457     return true;
458   }
459 
460   if (getLangOpts().CPlusPlus) {
461     // See if II is a class template that the user forgot to pass arguments to.
462     UnqualifiedId Name;
463     Name.setIdentifier(II, IILoc);
464     CXXScopeSpec EmptySS;
465     TemplateTy TemplateResult;
466     bool MemberOfUnknownSpecialization;
467     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
468                        Name, ParsedType(), true, TemplateResult,
469                        MemberOfUnknownSpecialization) == TNK_Type_template) {
470       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
471       Diag(IILoc, diag::err_template_missing_args) << TplName;
472       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
473         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
474           << TplDecl->getTemplateParameters()->getSourceRange();
475       }
476       return true;
477     }
478   }
479 
480   // FIXME: Should we move the logic that tries to recover from a missing tag
481   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
482 
483   if (!SS || (!SS->isSet() && !SS->isInvalid()))
484     Diag(IILoc, diag::err_unknown_typename) << II;
485   else if (DeclContext *DC = computeDeclContext(*SS, false))
486     Diag(IILoc, diag::err_typename_nested_not_found)
487       << II << DC << SS->getRange();
488   else if (isDependentScopeSpecifier(*SS)) {
489     unsigned DiagID = diag::err_typename_missing;
490     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
491       DiagID = diag::warn_typename_missing;
492 
493     Diag(SS->getRange().getBegin(), DiagID)
494       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
495       << SourceRange(SS->getRange().getBegin(), IILoc)
496       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
497     SuggestedType = ActOnTypenameType(S, SourceLocation(),
498                                       *SS, *II, IILoc).get();
499   } else {
500     assert(SS && SS->isInvalid() &&
501            "Invalid scope specifier has already been diagnosed");
502   }
503 
504   return true;
505 }
506 
507 /// \brief Determine whether the given result set contains either a type name
508 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)509 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
510   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
511                        NextToken.is(tok::less);
512 
513   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
514     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
515       return true;
516 
517     if (CheckTemplate && isa<TemplateDecl>(*I))
518       return true;
519   }
520 
521   return false;
522 }
523 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)524 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
525                                     Scope *S, CXXScopeSpec &SS,
526                                     IdentifierInfo *&Name,
527                                     SourceLocation NameLoc) {
528   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
529   SemaRef.LookupParsedName(R, S, &SS);
530   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
531     const char *TagName = 0;
532     const char *FixItTagName = 0;
533     switch (Tag->getTagKind()) {
534       case TTK_Class:
535         TagName = "class";
536         FixItTagName = "class ";
537         break;
538 
539       case TTK_Enum:
540         TagName = "enum";
541         FixItTagName = "enum ";
542         break;
543 
544       case TTK_Struct:
545         TagName = "struct";
546         FixItTagName = "struct ";
547         break;
548 
549       case TTK_Interface:
550         TagName = "__interface";
551         FixItTagName = "__interface ";
552         break;
553 
554       case TTK_Union:
555         TagName = "union";
556         FixItTagName = "union ";
557         break;
558     }
559 
560     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
561       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
562       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
563 
564     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
565          I != IEnd; ++I)
566       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
567         << Name << TagName;
568 
569     // Replace lookup results with just the tag decl.
570     Result.clear(Sema::LookupTagName);
571     SemaRef.LookupParsedName(Result, S, &SS);
572     return true;
573   }
574 
575   return false;
576 }
577 
578 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)579 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
580                                   QualType T, SourceLocation NameLoc) {
581   ASTContext &Context = S.Context;
582 
583   TypeLocBuilder Builder;
584   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
585 
586   T = S.getElaboratedType(ETK_None, SS, T);
587   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
588   ElabTL.setElaboratedKeywordLoc(SourceLocation());
589   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
590   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
591 }
592 
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)593 Sema::NameClassification Sema::ClassifyName(Scope *S,
594                                             CXXScopeSpec &SS,
595                                             IdentifierInfo *&Name,
596                                             SourceLocation NameLoc,
597                                             const Token &NextToken,
598                                             bool IsAddressOfOperand,
599                                             CorrectionCandidateCallback *CCC) {
600   DeclarationNameInfo NameInfo(Name, NameLoc);
601   ObjCMethodDecl *CurMethod = getCurMethodDecl();
602 
603   if (NextToken.is(tok::coloncolon)) {
604     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
605                                 QualType(), false, SS, 0, false);
606 
607   }
608 
609   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
610   LookupParsedName(Result, S, &SS, !CurMethod);
611 
612   // Perform lookup for Objective-C instance variables (including automatically
613   // synthesized instance variables), if we're in an Objective-C method.
614   // FIXME: This lookup really, really needs to be folded in to the normal
615   // unqualified lookup mechanism.
616   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
617     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
618     if (E.get() || E.isInvalid())
619       return E;
620   }
621 
622   bool SecondTry = false;
623   bool IsFilteredTemplateName = false;
624 
625 Corrected:
626   switch (Result.getResultKind()) {
627   case LookupResult::NotFound:
628     // If an unqualified-id is followed by a '(', then we have a function
629     // call.
630     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
631       // In C++, this is an ADL-only call.
632       // FIXME: Reference?
633       if (getLangOpts().CPlusPlus)
634         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
635 
636       // C90 6.3.2.2:
637       //   If the expression that precedes the parenthesized argument list in a
638       //   function call consists solely of an identifier, and if no
639       //   declaration is visible for this identifier, the identifier is
640       //   implicitly declared exactly as if, in the innermost block containing
641       //   the function call, the declaration
642       //
643       //     extern int identifier ();
644       //
645       //   appeared.
646       //
647       // We also allow this in C99 as an extension.
648       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
649         Result.addDecl(D);
650         Result.resolveKind();
651         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
652       }
653     }
654 
655     // In C, we first see whether there is a tag type by the same name, in
656     // which case it's likely that the user just forget to write "enum",
657     // "struct", or "union".
658     if (!getLangOpts().CPlusPlus && !SecondTry &&
659         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
660       break;
661     }
662 
663     // Perform typo correction to determine if there is another name that is
664     // close to this name.
665     if (!SecondTry && CCC) {
666       SecondTry = true;
667       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
668                                                  Result.getLookupKind(), S,
669                                                  &SS, *CCC)) {
670         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
671         unsigned QualifiedDiag = diag::err_no_member_suggest;
672         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
673         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
674 
675         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
676         NamedDecl *UnderlyingFirstDecl
677           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
678         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
679             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
680           UnqualifiedDiag = diag::err_no_template_suggest;
681           QualifiedDiag = diag::err_no_member_template_suggest;
682         } else if (UnderlyingFirstDecl &&
683                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
684                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
685                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
686           UnqualifiedDiag = diag::err_unknown_typename_suggest;
687           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
688         }
689 
690         if (SS.isEmpty()) {
691           Diag(NameLoc, UnqualifiedDiag)
692             << Name << CorrectedQuotedStr
693             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
694         } else {// FIXME: is this even reachable? Test it.
695           bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
696                                   Name->getName().equals(CorrectedStr);
697           Diag(NameLoc, QualifiedDiag)
698             << Name << computeDeclContext(SS, false) << droppedSpecifier
699             << CorrectedQuotedStr << SS.getRange()
700             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
701                                             CorrectedStr);
702         }
703 
704         // Update the name, so that the caller has the new name.
705         Name = Corrected.getCorrectionAsIdentifierInfo();
706 
707         // Typo correction corrected to a keyword.
708         if (Corrected.isKeyword())
709           return Corrected.getCorrectionAsIdentifierInfo();
710 
711         // Also update the LookupResult...
712         // FIXME: This should probably go away at some point
713         Result.clear();
714         Result.setLookupName(Corrected.getCorrection());
715         if (FirstDecl) {
716           Result.addDecl(FirstDecl);
717           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
718             << CorrectedQuotedStr;
719         }
720 
721         // If we found an Objective-C instance variable, let
722         // LookupInObjCMethod build the appropriate expression to
723         // reference the ivar.
724         // FIXME: This is a gross hack.
725         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
726           Result.clear();
727           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
728           return E;
729         }
730 
731         goto Corrected;
732       }
733     }
734 
735     // We failed to correct; just fall through and let the parser deal with it.
736     Result.suppressDiagnostics();
737     return NameClassification::Unknown();
738 
739   case LookupResult::NotFoundInCurrentInstantiation: {
740     // We performed name lookup into the current instantiation, and there were
741     // dependent bases, so we treat this result the same way as any other
742     // dependent nested-name-specifier.
743 
744     // C++ [temp.res]p2:
745     //   A name used in a template declaration or definition and that is
746     //   dependent on a template-parameter is assumed not to name a type
747     //   unless the applicable name lookup finds a type name or the name is
748     //   qualified by the keyword typename.
749     //
750     // FIXME: If the next token is '<', we might want to ask the parser to
751     // perform some heroics to see if we actually have a
752     // template-argument-list, which would indicate a missing 'template'
753     // keyword here.
754     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
755                                       NameInfo, IsAddressOfOperand,
756                                       /*TemplateArgs=*/0);
757   }
758 
759   case LookupResult::Found:
760   case LookupResult::FoundOverloaded:
761   case LookupResult::FoundUnresolvedValue:
762     break;
763 
764   case LookupResult::Ambiguous:
765     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
766         hasAnyAcceptableTemplateNames(Result)) {
767       // C++ [temp.local]p3:
768       //   A lookup that finds an injected-class-name (10.2) can result in an
769       //   ambiguity in certain cases (for example, if it is found in more than
770       //   one base class). If all of the injected-class-names that are found
771       //   refer to specializations of the same class template, and if the name
772       //   is followed by a template-argument-list, the reference refers to the
773       //   class template itself and not a specialization thereof, and is not
774       //   ambiguous.
775       //
776       // This filtering can make an ambiguous result into an unambiguous one,
777       // so try again after filtering out template names.
778       FilterAcceptableTemplateNames(Result);
779       if (!Result.isAmbiguous()) {
780         IsFilteredTemplateName = true;
781         break;
782       }
783     }
784 
785     // Diagnose the ambiguity and return an error.
786     return NameClassification::Error();
787   }
788 
789   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
790       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
791     // C++ [temp.names]p3:
792     //   After name lookup (3.4) finds that a name is a template-name or that
793     //   an operator-function-id or a literal- operator-id refers to a set of
794     //   overloaded functions any member of which is a function template if
795     //   this is followed by a <, the < is always taken as the delimiter of a
796     //   template-argument-list and never as the less-than operator.
797     if (!IsFilteredTemplateName)
798       FilterAcceptableTemplateNames(Result);
799 
800     if (!Result.empty()) {
801       bool IsFunctionTemplate;
802       bool IsVarTemplate;
803       TemplateName Template;
804       if (Result.end() - Result.begin() > 1) {
805         IsFunctionTemplate = true;
806         Template = Context.getOverloadedTemplateName(Result.begin(),
807                                                      Result.end());
808       } else {
809         TemplateDecl *TD
810           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
811         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
812         IsVarTemplate = isa<VarTemplateDecl>(TD);
813 
814         if (SS.isSet() && !SS.isInvalid())
815           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
816                                                     /*TemplateKeyword=*/false,
817                                                       TD);
818         else
819           Template = TemplateName(TD);
820       }
821 
822       if (IsFunctionTemplate) {
823         // Function templates always go through overload resolution, at which
824         // point we'll perform the various checks (e.g., accessibility) we need
825         // to based on which function we selected.
826         Result.suppressDiagnostics();
827 
828         return NameClassification::FunctionTemplate(Template);
829       }
830 
831       return IsVarTemplate ? NameClassification::VarTemplate(Template)
832                            : NameClassification::TypeTemplate(Template);
833     }
834   }
835 
836   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
837   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
838     DiagnoseUseOfDecl(Type, NameLoc);
839     QualType T = Context.getTypeDeclType(Type);
840     if (SS.isNotEmpty())
841       return buildNestedType(*this, SS, T, NameLoc);
842     return ParsedType::make(T);
843   }
844 
845   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
846   if (!Class) {
847     // FIXME: It's unfortunate that we don't have a Type node for handling this.
848     if (ObjCCompatibleAliasDecl *Alias
849                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
850       Class = Alias->getClassInterface();
851   }
852 
853   if (Class) {
854     DiagnoseUseOfDecl(Class, NameLoc);
855 
856     if (NextToken.is(tok::period)) {
857       // Interface. <something> is parsed as a property reference expression.
858       // Just return "unknown" as a fall-through for now.
859       Result.suppressDiagnostics();
860       return NameClassification::Unknown();
861     }
862 
863     QualType T = Context.getObjCInterfaceType(Class);
864     return ParsedType::make(T);
865   }
866 
867   // We can have a type template here if we're classifying a template argument.
868   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
869     return NameClassification::TypeTemplate(
870         TemplateName(cast<TemplateDecl>(FirstDecl)));
871 
872   // Check for a tag type hidden by a non-type decl in a few cases where it
873   // seems likely a type is wanted instead of the non-type that was found.
874   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
875   if ((NextToken.is(tok::identifier) ||
876        (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
877       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
878     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
879     DiagnoseUseOfDecl(Type, NameLoc);
880     QualType T = Context.getTypeDeclType(Type);
881     if (SS.isNotEmpty())
882       return buildNestedType(*this, SS, T, NameLoc);
883     return ParsedType::make(T);
884   }
885 
886   if (FirstDecl->isCXXClassMember())
887     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
888 
889   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
890   return BuildDeclarationNameExpr(SS, Result, ADL);
891 }
892 
893 // Determines the context to return to after temporarily entering a
894 // context.  This depends in an unnecessarily complicated way on the
895 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)896 DeclContext *Sema::getContainingDC(DeclContext *DC) {
897 
898   // Functions defined inline within classes aren't parsed until we've
899   // finished parsing the top-level class, so the top-level class is
900   // the context we'll need to return to.
901   if (isa<FunctionDecl>(DC)) {
902     DC = DC->getLexicalParent();
903 
904     // A function not defined within a class will always return to its
905     // lexical context.
906     if (!isa<CXXRecordDecl>(DC))
907       return DC;
908 
909     // A C++ inline method/friend is parsed *after* the topmost class
910     // it was declared in is fully parsed ("complete");  the topmost
911     // class is the context we need to return to.
912     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
913       DC = RD;
914 
915     // Return the declaration context of the topmost class the inline method is
916     // declared in.
917     return DC;
918   }
919 
920   return DC->getLexicalParent();
921 }
922 
PushDeclContext(Scope * S,DeclContext * DC)923 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
924   assert(getContainingDC(DC) == CurContext &&
925       "The next DeclContext should be lexically contained in the current one.");
926   CurContext = DC;
927   S->setEntity(DC);
928 }
929 
PopDeclContext()930 void Sema::PopDeclContext() {
931   assert(CurContext && "DeclContext imbalance!");
932 
933   CurContext = getContainingDC(CurContext);
934   assert(CurContext && "Popped translation unit!");
935 }
936 
937 /// EnterDeclaratorContext - Used when we must lookup names in the context
938 /// of a declarator's nested name specifier.
939 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)940 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
941   // C++0x [basic.lookup.unqual]p13:
942   //   A name used in the definition of a static data member of class
943   //   X (after the qualified-id of the static member) is looked up as
944   //   if the name was used in a member function of X.
945   // C++0x [basic.lookup.unqual]p14:
946   //   If a variable member of a namespace is defined outside of the
947   //   scope of its namespace then any name used in the definition of
948   //   the variable member (after the declarator-id) is looked up as
949   //   if the definition of the variable member occurred in its
950   //   namespace.
951   // Both of these imply that we should push a scope whose context
952   // is the semantic context of the declaration.  We can't use
953   // PushDeclContext here because that context is not necessarily
954   // lexically contained in the current context.  Fortunately,
955   // the containing scope should have the appropriate information.
956 
957   assert(!S->getEntity() && "scope already has entity");
958 
959 #ifndef NDEBUG
960   Scope *Ancestor = S->getParent();
961   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
962   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
963 #endif
964 
965   CurContext = DC;
966   S->setEntity(DC);
967 }
968 
ExitDeclaratorContext(Scope * S)969 void Sema::ExitDeclaratorContext(Scope *S) {
970   assert(S->getEntity() == CurContext && "Context imbalance!");
971 
972   // Switch back to the lexical context.  The safety of this is
973   // enforced by an assert in EnterDeclaratorContext.
974   Scope *Ancestor = S->getParent();
975   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
976   CurContext = (DeclContext*) Ancestor->getEntity();
977 
978   // We don't need to do anything with the scope, which is going to
979   // disappear.
980 }
981 
982 
ActOnReenterFunctionContext(Scope * S,Decl * D)983 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
984   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
985   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
986     // We assume that the caller has already called
987     // ActOnReenterTemplateScope
988     FD = TFD->getTemplatedDecl();
989   }
990   if (!FD)
991     return;
992 
993   // Same implementation as PushDeclContext, but enters the context
994   // from the lexical parent, rather than the top-level class.
995   assert(CurContext == FD->getLexicalParent() &&
996     "The next DeclContext should be lexically contained in the current one.");
997   CurContext = FD;
998   S->setEntity(CurContext);
999 
1000   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1001     ParmVarDecl *Param = FD->getParamDecl(P);
1002     // If the parameter has an identifier, then add it to the scope
1003     if (Param->getIdentifier()) {
1004       S->AddDecl(Param);
1005       IdResolver.AddDecl(Param);
1006     }
1007   }
1008 }
1009 
1010 
ActOnExitFunctionContext()1011 void Sema::ActOnExitFunctionContext() {
1012   // Same implementation as PopDeclContext, but returns to the lexical parent,
1013   // rather than the top-level class.
1014   assert(CurContext && "DeclContext imbalance!");
1015   CurContext = CurContext->getLexicalParent();
1016   assert(CurContext && "Popped translation unit!");
1017 }
1018 
1019 
1020 /// \brief Determine whether we allow overloading of the function
1021 /// PrevDecl with another declaration.
1022 ///
1023 /// This routine determines whether overloading is possible, not
1024 /// whether some new function is actually an overload. It will return
1025 /// true in C++ (where we can always provide overloads) or, as an
1026 /// extension, in C when the previous function is already an
1027 /// overloaded function declaration or has the "overloadable"
1028 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1029 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1030                                        ASTContext &Context) {
1031   if (Context.getLangOpts().CPlusPlus)
1032     return true;
1033 
1034   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1035     return true;
1036 
1037   return (Previous.getResultKind() == LookupResult::Found
1038           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1039 }
1040 
1041 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1042 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1043   // Move up the scope chain until we find the nearest enclosing
1044   // non-transparent context. The declaration will be introduced into this
1045   // scope.
1046   while (S->getEntity() &&
1047          ((DeclContext *)S->getEntity())->isTransparentContext())
1048     S = S->getParent();
1049 
1050   // Add scoped declarations into their context, so that they can be
1051   // found later. Declarations without a context won't be inserted
1052   // into any context.
1053   if (AddToContext)
1054     CurContext->addDecl(D);
1055 
1056   // Out-of-line definitions shouldn't be pushed into scope in C++.
1057   // Out-of-line variable and function definitions shouldn't even in C.
1058   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1059       D->isOutOfLine() &&
1060       !D->getDeclContext()->getRedeclContext()->Equals(
1061         D->getLexicalDeclContext()->getRedeclContext()))
1062     return;
1063 
1064   // Template instantiations should also not be pushed into scope.
1065   if (isa<FunctionDecl>(D) &&
1066       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1067     return;
1068 
1069   // If this replaces anything in the current scope,
1070   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1071                                IEnd = IdResolver.end();
1072   for (; I != IEnd; ++I) {
1073     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1074       S->RemoveDecl(*I);
1075       IdResolver.RemoveDecl(*I);
1076 
1077       // Should only need to replace one decl.
1078       break;
1079     }
1080   }
1081 
1082   S->AddDecl(D);
1083 
1084   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1085     // Implicitly-generated labels may end up getting generated in an order that
1086     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1087     // the label at the appropriate place in the identifier chain.
1088     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1089       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1090       if (IDC == CurContext) {
1091         if (!S->isDeclScope(*I))
1092           continue;
1093       } else if (IDC->Encloses(CurContext))
1094         break;
1095     }
1096 
1097     IdResolver.InsertDeclAfter(I, D);
1098   } else {
1099     IdResolver.AddDecl(D);
1100   }
1101 }
1102 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1103 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1104   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1105     TUScope->AddDecl(D);
1106 }
1107 
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)1108 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1109                          bool ExplicitInstantiationOrSpecialization) {
1110   return IdResolver.isDeclInScope(D, Ctx, S,
1111                                   ExplicitInstantiationOrSpecialization);
1112 }
1113 
getScopeForDeclContext(Scope * S,DeclContext * DC)1114 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1115   DeclContext *TargetDC = DC->getPrimaryContext();
1116   do {
1117     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1118       if (ScopeDC->getPrimaryContext() == TargetDC)
1119         return S;
1120   } while ((S = S->getParent()));
1121 
1122   return 0;
1123 }
1124 
1125 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1126                                             DeclContext*,
1127                                             ASTContext&);
1128 
1129 /// Filters out lookup results that don't fall within the given scope
1130 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)1131 void Sema::FilterLookupForScope(LookupResult &R,
1132                                 DeclContext *Ctx, Scope *S,
1133                                 bool ConsiderLinkage,
1134                                 bool ExplicitInstantiationOrSpecialization) {
1135   LookupResult::Filter F = R.makeFilter();
1136   while (F.hasNext()) {
1137     NamedDecl *D = F.next();
1138 
1139     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1140       continue;
1141 
1142     if (ConsiderLinkage &&
1143         isOutOfScopePreviousDeclaration(D, Ctx, Context))
1144       continue;
1145 
1146     F.erase();
1147   }
1148 
1149   F.done();
1150 }
1151 
isUsingDecl(NamedDecl * D)1152 static bool isUsingDecl(NamedDecl *D) {
1153   return isa<UsingShadowDecl>(D) ||
1154          isa<UnresolvedUsingTypenameDecl>(D) ||
1155          isa<UnresolvedUsingValueDecl>(D);
1156 }
1157 
1158 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1159 static void RemoveUsingDecls(LookupResult &R) {
1160   LookupResult::Filter F = R.makeFilter();
1161   while (F.hasNext())
1162     if (isUsingDecl(F.next()))
1163       F.erase();
1164 
1165   F.done();
1166 }
1167 
1168 /// \brief Check for this common pattern:
1169 /// @code
1170 /// class S {
1171 ///   S(const S&); // DO NOT IMPLEMENT
1172 ///   void operator=(const S&); // DO NOT IMPLEMENT
1173 /// };
1174 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1175 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1176   // FIXME: Should check for private access too but access is set after we get
1177   // the decl here.
1178   if (D->doesThisDeclarationHaveABody())
1179     return false;
1180 
1181   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1182     return CD->isCopyConstructor();
1183   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1184     return Method->isCopyAssignmentOperator();
1185   return false;
1186 }
1187 
1188 // We need this to handle
1189 //
1190 // typedef struct {
1191 //   void *foo() { return 0; }
1192 // } A;
1193 //
1194 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1195 // for example. If 'A', foo will have external linkage. If we have '*A',
1196 // foo will have no linkage. Since we can't know untill we get to the end
1197 // of the typedef, this function finds out if D might have non external linkage.
1198 // Callers should verify at the end of the TU if it D has external linkage or
1199 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1200 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1201   const DeclContext *DC = D->getDeclContext();
1202   while (!DC->isTranslationUnit()) {
1203     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1204       if (!RD->hasNameForLinkage())
1205         return true;
1206     }
1207     DC = DC->getParent();
1208   }
1209 
1210   return !D->isExternallyVisible();
1211 }
1212 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1213 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1214   assert(D);
1215 
1216   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1217     return false;
1218 
1219   // Ignore class templates.
1220   if (D->getDeclContext()->isDependentContext() ||
1221       D->getLexicalDeclContext()->isDependentContext())
1222     return false;
1223 
1224   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1225     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1226       return false;
1227 
1228     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1229       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1230         return false;
1231     } else {
1232       // 'static inline' functions are used in headers; don't warn.
1233       // Make sure we get the storage class from the canonical declaration,
1234       // since otherwise we will get spurious warnings on specialized
1235       // static template functions.
1236       if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1237           FD->isInlineSpecified())
1238         return false;
1239     }
1240 
1241     if (FD->doesThisDeclarationHaveABody() &&
1242         Context.DeclMustBeEmitted(FD))
1243       return false;
1244   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1245     // Don't warn on variables of const-qualified or reference type, since their
1246     // values can be used even if though they're not odr-used, and because const
1247     // qualified variables can appear in headers in contexts where they're not
1248     // intended to be used.
1249     // FIXME: Use more principled rules for these exemptions.
1250     if (!VD->isFileVarDecl() ||
1251         VD->getType().isConstQualified() ||
1252         VD->getType()->isReferenceType() ||
1253         Context.DeclMustBeEmitted(VD))
1254       return false;
1255 
1256     if (VD->isStaticDataMember() &&
1257         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1258       return false;
1259 
1260   } else {
1261     return false;
1262   }
1263 
1264   // Only warn for unused decls internal to the translation unit.
1265   return mightHaveNonExternalLinkage(D);
1266 }
1267 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1268 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1269   if (!D)
1270     return;
1271 
1272   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1273     const FunctionDecl *First = FD->getFirstDeclaration();
1274     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1275       return; // First should already be in the vector.
1276   }
1277 
1278   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1279     const VarDecl *First = VD->getFirstDeclaration();
1280     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1281       return; // First should already be in the vector.
1282   }
1283 
1284   if (ShouldWarnIfUnusedFileScopedDecl(D))
1285     UnusedFileScopedDecls.push_back(D);
1286 }
1287 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1288 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1289   if (D->isInvalidDecl())
1290     return false;
1291 
1292   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1293     return false;
1294 
1295   if (isa<LabelDecl>(D))
1296     return true;
1297 
1298   // White-list anything that isn't a local variable.
1299   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1300       !D->getDeclContext()->isFunctionOrMethod())
1301     return false;
1302 
1303   // Types of valid local variables should be complete, so this should succeed.
1304   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1305 
1306     // White-list anything with an __attribute__((unused)) type.
1307     QualType Ty = VD->getType();
1308 
1309     // Only look at the outermost level of typedef.
1310     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1311       if (TT->getDecl()->hasAttr<UnusedAttr>())
1312         return false;
1313     }
1314 
1315     // If we failed to complete the type for some reason, or if the type is
1316     // dependent, don't diagnose the variable.
1317     if (Ty->isIncompleteType() || Ty->isDependentType())
1318       return false;
1319 
1320     if (const TagType *TT = Ty->getAs<TagType>()) {
1321       const TagDecl *Tag = TT->getDecl();
1322       if (Tag->hasAttr<UnusedAttr>())
1323         return false;
1324 
1325       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1326         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1327           return false;
1328 
1329         if (const Expr *Init = VD->getInit()) {
1330           if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1331             Init = Cleanups->getSubExpr();
1332           const CXXConstructExpr *Construct =
1333             dyn_cast<CXXConstructExpr>(Init);
1334           if (Construct && !Construct->isElidable()) {
1335             CXXConstructorDecl *CD = Construct->getConstructor();
1336             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1337               return false;
1338           }
1339         }
1340       }
1341     }
1342 
1343     // TODO: __attribute__((unused)) templates?
1344   }
1345 
1346   return true;
1347 }
1348 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1349 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1350                                      FixItHint &Hint) {
1351   if (isa<LabelDecl>(D)) {
1352     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1353                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1354     if (AfterColon.isInvalid())
1355       return;
1356     Hint = FixItHint::CreateRemoval(CharSourceRange::
1357                                     getCharRange(D->getLocStart(), AfterColon));
1358   }
1359   return;
1360 }
1361 
1362 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1363 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1364 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1365   FixItHint Hint;
1366   if (!ShouldDiagnoseUnusedDecl(D))
1367     return;
1368 
1369   GenerateFixForUnusedDecl(D, Context, Hint);
1370 
1371   unsigned DiagID;
1372   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1373     DiagID = diag::warn_unused_exception_param;
1374   else if (isa<LabelDecl>(D))
1375     DiagID = diag::warn_unused_label;
1376   else
1377     DiagID = diag::warn_unused_variable;
1378 
1379   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1380 }
1381 
CheckPoppedLabel(LabelDecl * L,Sema & S)1382 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1383   // Verify that we have no forward references left.  If so, there was a goto
1384   // or address of a label taken, but no definition of it.  Label fwd
1385   // definitions are indicated with a null substmt.
1386   if (L->getStmt() == 0)
1387     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1388 }
1389 
ActOnPopScope(SourceLocation Loc,Scope * S)1390 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1391   if (S->decl_empty()) return;
1392   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1393          "Scope shouldn't contain decls!");
1394 
1395   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1396        I != E; ++I) {
1397     Decl *TmpD = (*I);
1398     assert(TmpD && "This decl didn't get pushed??");
1399 
1400     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1401     NamedDecl *D = cast<NamedDecl>(TmpD);
1402 
1403     if (!D->getDeclName()) continue;
1404 
1405     // Diagnose unused variables in this scope.
1406     if (!S->hasUnrecoverableErrorOccurred())
1407       DiagnoseUnusedDecl(D);
1408 
1409     // If this was a forward reference to a label, verify it was defined.
1410     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1411       CheckPoppedLabel(LD, *this);
1412 
1413     // Remove this name from our lexical scope.
1414     IdResolver.RemoveDecl(D);
1415   }
1416 }
1417 
ActOnStartFunctionDeclarator()1418 void Sema::ActOnStartFunctionDeclarator() {
1419   ++InFunctionDeclarator;
1420 }
1421 
ActOnEndFunctionDeclarator()1422 void Sema::ActOnEndFunctionDeclarator() {
1423   assert(InFunctionDeclarator);
1424   --InFunctionDeclarator;
1425 }
1426 
1427 /// \brief Look for an Objective-C class in the translation unit.
1428 ///
1429 /// \param Id The name of the Objective-C class we're looking for. If
1430 /// typo-correction fixes this name, the Id will be updated
1431 /// to the fixed name.
1432 ///
1433 /// \param IdLoc The location of the name in the translation unit.
1434 ///
1435 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1436 /// if there is no class with the given name.
1437 ///
1438 /// \returns The declaration of the named Objective-C class, or NULL if the
1439 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1440 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1441                                               SourceLocation IdLoc,
1442                                               bool DoTypoCorrection) {
1443   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1444   // creation from this context.
1445   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1446 
1447   if (!IDecl && DoTypoCorrection) {
1448     // Perform typo correction at the given location, but only if we
1449     // find an Objective-C class name.
1450     DeclFilterCCC<ObjCInterfaceDecl> Validator;
1451     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1452                                        LookupOrdinaryName, TUScope, NULL,
1453                                        Validator)) {
1454       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1455       Diag(IdLoc, diag::err_undef_interface_suggest)
1456         << Id << IDecl->getDeclName()
1457         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1458       Diag(IDecl->getLocation(), diag::note_previous_decl)
1459         << IDecl->getDeclName();
1460 
1461       Id = IDecl->getIdentifier();
1462     }
1463   }
1464   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1465   // This routine must always return a class definition, if any.
1466   if (Def && Def->getDefinition())
1467       Def = Def->getDefinition();
1468   return Def;
1469 }
1470 
1471 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1472 /// from S, where a non-field would be declared. This routine copes
1473 /// with the difference between C and C++ scoping rules in structs and
1474 /// unions. For example, the following code is well-formed in C but
1475 /// ill-formed in C++:
1476 /// @code
1477 /// struct S6 {
1478 ///   enum { BAR } e;
1479 /// };
1480 ///
1481 /// void test_S6() {
1482 ///   struct S6 a;
1483 ///   a.e = BAR;
1484 /// }
1485 /// @endcode
1486 /// For the declaration of BAR, this routine will return a different
1487 /// scope. The scope S will be the scope of the unnamed enumeration
1488 /// within S6. In C++, this routine will return the scope associated
1489 /// with S6, because the enumeration's scope is a transparent
1490 /// context but structures can contain non-field names. In C, this
1491 /// routine will return the translation unit scope, since the
1492 /// enumeration's scope is a transparent context and structures cannot
1493 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1494 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1495   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1496          (S->getEntity() &&
1497           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1498          (S->isClassScope() && !getLangOpts().CPlusPlus))
1499     S = S->getParent();
1500   return S;
1501 }
1502 
1503 /// \brief Looks up the declaration of "struct objc_super" and
1504 /// saves it for later use in building builtin declaration of
1505 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1506 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1507 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1508                                         IdentifierInfo *II) {
1509   if (!II->isStr("objc_msgSendSuper"))
1510     return;
1511   ASTContext &Context = ThisSema.Context;
1512 
1513   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1514                       SourceLocation(), Sema::LookupTagName);
1515   ThisSema.LookupName(Result, S);
1516   if (Result.getResultKind() == LookupResult::Found)
1517     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1518       Context.setObjCSuperType(Context.getTagDeclType(TD));
1519 }
1520 
1521 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1522 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1523 /// if we're creating this built-in in anticipation of redeclaring the
1524 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1525 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1526                                      Scope *S, bool ForRedeclaration,
1527                                      SourceLocation Loc) {
1528   LookupPredefedObjCSuperType(*this, S, II);
1529 
1530   Builtin::ID BID = (Builtin::ID)bid;
1531 
1532   ASTContext::GetBuiltinTypeError Error;
1533   QualType R = Context.GetBuiltinType(BID, Error);
1534   switch (Error) {
1535   case ASTContext::GE_None:
1536     // Okay
1537     break;
1538 
1539   case ASTContext::GE_Missing_stdio:
1540     if (ForRedeclaration)
1541       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1542         << Context.BuiltinInfo.GetName(BID);
1543     return 0;
1544 
1545   case ASTContext::GE_Missing_setjmp:
1546     if (ForRedeclaration)
1547       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1548         << Context.BuiltinInfo.GetName(BID);
1549     return 0;
1550 
1551   case ASTContext::GE_Missing_ucontext:
1552     if (ForRedeclaration)
1553       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1554         << Context.BuiltinInfo.GetName(BID);
1555     return 0;
1556   }
1557 
1558   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1559     Diag(Loc, diag::ext_implicit_lib_function_decl)
1560       << Context.BuiltinInfo.GetName(BID)
1561       << R;
1562     if (Context.BuiltinInfo.getHeaderName(BID) &&
1563         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1564           != DiagnosticsEngine::Ignored)
1565       Diag(Loc, diag::note_please_include_header)
1566         << Context.BuiltinInfo.getHeaderName(BID)
1567         << Context.BuiltinInfo.GetName(BID);
1568   }
1569 
1570   FunctionDecl *New = FunctionDecl::Create(Context,
1571                                            Context.getTranslationUnitDecl(),
1572                                            Loc, Loc, II, R, /*TInfo=*/0,
1573                                            SC_Extern,
1574                                            false,
1575                                            /*hasPrototype=*/true);
1576   New->setImplicit();
1577 
1578   // Create Decl objects for each parameter, adding them to the
1579   // FunctionDecl.
1580   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1581     SmallVector<ParmVarDecl*, 16> Params;
1582     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1583       ParmVarDecl *parm =
1584         ParmVarDecl::Create(Context, New, SourceLocation(),
1585                             SourceLocation(), 0,
1586                             FT->getArgType(i), /*TInfo=*/0,
1587                             SC_None, 0);
1588       parm->setScopeInfo(0, i);
1589       Params.push_back(parm);
1590     }
1591     New->setParams(Params);
1592   }
1593 
1594   AddKnownFunctionAttributes(New);
1595 
1596   // TUScope is the translation-unit scope to insert this function into.
1597   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1598   // relate Scopes to DeclContexts, and probably eliminate CurContext
1599   // entirely, but we're not there yet.
1600   DeclContext *SavedContext = CurContext;
1601   CurContext = Context.getTranslationUnitDecl();
1602   PushOnScopeChains(New, TUScope);
1603   CurContext = SavedContext;
1604   return New;
1605 }
1606 
1607 /// \brief Filter out any previous declarations that the given declaration
1608 /// should not consider because they are not permitted to conflict, e.g.,
1609 /// because they come from hidden sub-modules and do not refer to the same
1610 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1611 static void filterNonConflictingPreviousDecls(ASTContext &context,
1612                                               NamedDecl *decl,
1613                                               LookupResult &previous){
1614   // This is only interesting when modules are enabled.
1615   if (!context.getLangOpts().Modules)
1616     return;
1617 
1618   // Empty sets are uninteresting.
1619   if (previous.empty())
1620     return;
1621 
1622   LookupResult::Filter filter = previous.makeFilter();
1623   while (filter.hasNext()) {
1624     NamedDecl *old = filter.next();
1625 
1626     // Non-hidden declarations are never ignored.
1627     if (!old->isHidden())
1628       continue;
1629 
1630     if (!old->isExternallyVisible())
1631       filter.erase();
1632   }
1633 
1634   filter.done();
1635 }
1636 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1637 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1638   QualType OldType;
1639   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1640     OldType = OldTypedef->getUnderlyingType();
1641   else
1642     OldType = Context.getTypeDeclType(Old);
1643   QualType NewType = New->getUnderlyingType();
1644 
1645   if (NewType->isVariablyModifiedType()) {
1646     // Must not redefine a typedef with a variably-modified type.
1647     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1649       << Kind << NewType;
1650     if (Old->getLocation().isValid())
1651       Diag(Old->getLocation(), diag::note_previous_definition);
1652     New->setInvalidDecl();
1653     return true;
1654   }
1655 
1656   if (OldType != NewType &&
1657       !OldType->isDependentType() &&
1658       !NewType->isDependentType() &&
1659       !Context.hasSameType(OldType, NewType)) {
1660     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1661     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1662       << Kind << NewType << OldType;
1663     if (Old->getLocation().isValid())
1664       Diag(Old->getLocation(), diag::note_previous_definition);
1665     New->setInvalidDecl();
1666     return true;
1667   }
1668   return false;
1669 }
1670 
1671 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1672 /// same name and scope as a previous declaration 'Old'.  Figure out
1673 /// how to resolve this situation, merging decls or emitting
1674 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1675 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1676 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1677   // If the new decl is known invalid already, don't bother doing any
1678   // merging checks.
1679   if (New->isInvalidDecl()) return;
1680 
1681   // Allow multiple definitions for ObjC built-in typedefs.
1682   // FIXME: Verify the underlying types are equivalent!
1683   if (getLangOpts().ObjC1) {
1684     const IdentifierInfo *TypeID = New->getIdentifier();
1685     switch (TypeID->getLength()) {
1686     default: break;
1687     case 2:
1688       {
1689         if (!TypeID->isStr("id"))
1690           break;
1691         QualType T = New->getUnderlyingType();
1692         if (!T->isPointerType())
1693           break;
1694         if (!T->isVoidPointerType()) {
1695           QualType PT = T->getAs<PointerType>()->getPointeeType();
1696           if (!PT->isStructureType())
1697             break;
1698         }
1699         Context.setObjCIdRedefinitionType(T);
1700         // Install the built-in type for 'id', ignoring the current definition.
1701         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1702         return;
1703       }
1704     case 5:
1705       if (!TypeID->isStr("Class"))
1706         break;
1707       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1708       // Install the built-in type for 'Class', ignoring the current definition.
1709       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1710       return;
1711     case 3:
1712       if (!TypeID->isStr("SEL"))
1713         break;
1714       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1715       // Install the built-in type for 'SEL', ignoring the current definition.
1716       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1717       return;
1718     }
1719     // Fall through - the typedef name was not a builtin type.
1720   }
1721 
1722   // Verify the old decl was also a type.
1723   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1724   if (!Old) {
1725     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1726       << New->getDeclName();
1727 
1728     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1729     if (OldD->getLocation().isValid())
1730       Diag(OldD->getLocation(), diag::note_previous_definition);
1731 
1732     return New->setInvalidDecl();
1733   }
1734 
1735   // If the old declaration is invalid, just give up here.
1736   if (Old->isInvalidDecl())
1737     return New->setInvalidDecl();
1738 
1739   // If the typedef types are not identical, reject them in all languages and
1740   // with any extensions enabled.
1741   if (isIncompatibleTypedef(Old, New))
1742     return;
1743 
1744   // The types match.  Link up the redeclaration chain if the old
1745   // declaration was a typedef.
1746   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1747     New->setPreviousDeclaration(Typedef);
1748 
1749   mergeDeclAttributes(New, Old);
1750 
1751   if (getLangOpts().MicrosoftExt)
1752     return;
1753 
1754   if (getLangOpts().CPlusPlus) {
1755     // C++ [dcl.typedef]p2:
1756     //   In a given non-class scope, a typedef specifier can be used to
1757     //   redefine the name of any type declared in that scope to refer
1758     //   to the type to which it already refers.
1759     if (!isa<CXXRecordDecl>(CurContext))
1760       return;
1761 
1762     // C++0x [dcl.typedef]p4:
1763     //   In a given class scope, a typedef specifier can be used to redefine
1764     //   any class-name declared in that scope that is not also a typedef-name
1765     //   to refer to the type to which it already refers.
1766     //
1767     // This wording came in via DR424, which was a correction to the
1768     // wording in DR56, which accidentally banned code like:
1769     //
1770     //   struct S {
1771     //     typedef struct A { } A;
1772     //   };
1773     //
1774     // in the C++03 standard. We implement the C++0x semantics, which
1775     // allow the above but disallow
1776     //
1777     //   struct S {
1778     //     typedef int I;
1779     //     typedef int I;
1780     //   };
1781     //
1782     // since that was the intent of DR56.
1783     if (!isa<TypedefNameDecl>(Old))
1784       return;
1785 
1786     Diag(New->getLocation(), diag::err_redefinition)
1787       << New->getDeclName();
1788     Diag(Old->getLocation(), diag::note_previous_definition);
1789     return New->setInvalidDecl();
1790   }
1791 
1792   // Modules always permit redefinition of typedefs, as does C11.
1793   if (getLangOpts().Modules || getLangOpts().C11)
1794     return;
1795 
1796   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1797   // is normally mapped to an error, but can be controlled with
1798   // -Wtypedef-redefinition.  If either the original or the redefinition is
1799   // in a system header, don't emit this for compatibility with GCC.
1800   if (getDiagnostics().getSuppressSystemWarnings() &&
1801       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1802        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1803     return;
1804 
1805   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1806     << New->getDeclName();
1807   Diag(Old->getLocation(), diag::note_previous_definition);
1808   return;
1809 }
1810 
1811 /// DeclhasAttr - returns true if decl Declaration already has the target
1812 /// attribute.
1813 static bool
DeclHasAttr(const Decl * D,const Attr * A)1814 DeclHasAttr(const Decl *D, const Attr *A) {
1815   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1816   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1817   // responsible for making sure they are consistent.
1818   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1819   if (AA)
1820     return false;
1821 
1822   // The following thread safety attributes can also be duplicated.
1823   switch (A->getKind()) {
1824     case attr::ExclusiveLocksRequired:
1825     case attr::SharedLocksRequired:
1826     case attr::LocksExcluded:
1827     case attr::ExclusiveLockFunction:
1828     case attr::SharedLockFunction:
1829     case attr::UnlockFunction:
1830     case attr::ExclusiveTrylockFunction:
1831     case attr::SharedTrylockFunction:
1832     case attr::GuardedBy:
1833     case attr::PtGuardedBy:
1834     case attr::AcquiredBefore:
1835     case attr::AcquiredAfter:
1836       return false;
1837     default:
1838       ;
1839   }
1840 
1841   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1842   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1843   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1844     if ((*i)->getKind() == A->getKind()) {
1845       if (Ann) {
1846         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1847           return true;
1848         continue;
1849       }
1850       // FIXME: Don't hardcode this check
1851       if (OA && isa<OwnershipAttr>(*i))
1852         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1853       return true;
1854     }
1855 
1856   return false;
1857 }
1858 
isAttributeTargetADefinition(Decl * D)1859 static bool isAttributeTargetADefinition(Decl *D) {
1860   if (VarDecl *VD = dyn_cast<VarDecl>(D))
1861     return VD->isThisDeclarationADefinition();
1862   if (TagDecl *TD = dyn_cast<TagDecl>(D))
1863     return TD->isCompleteDefinition() || TD->isBeingDefined();
1864   return true;
1865 }
1866 
1867 /// Merge alignment attributes from \p Old to \p New, taking into account the
1868 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1869 ///
1870 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)1871 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1872   // Look for alignas attributes on Old, and pick out whichever attribute
1873   // specifies the strictest alignment requirement.
1874   AlignedAttr *OldAlignasAttr = 0;
1875   AlignedAttr *OldStrictestAlignAttr = 0;
1876   unsigned OldAlign = 0;
1877   for (specific_attr_iterator<AlignedAttr>
1878          I = Old->specific_attr_begin<AlignedAttr>(),
1879          E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1880     // FIXME: We have no way of representing inherited dependent alignments
1881     // in a case like:
1882     //   template<int A, int B> struct alignas(A) X;
1883     //   template<int A, int B> struct alignas(B) X {};
1884     // For now, we just ignore any alignas attributes which are not on the
1885     // definition in such a case.
1886     if (I->isAlignmentDependent())
1887       return false;
1888 
1889     if (I->isAlignas())
1890       OldAlignasAttr = *I;
1891 
1892     unsigned Align = I->getAlignment(S.Context);
1893     if (Align > OldAlign) {
1894       OldAlign = Align;
1895       OldStrictestAlignAttr = *I;
1896     }
1897   }
1898 
1899   // Look for alignas attributes on New.
1900   AlignedAttr *NewAlignasAttr = 0;
1901   unsigned NewAlign = 0;
1902   for (specific_attr_iterator<AlignedAttr>
1903          I = New->specific_attr_begin<AlignedAttr>(),
1904          E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1905     if (I->isAlignmentDependent())
1906       return false;
1907 
1908     if (I->isAlignas())
1909       NewAlignasAttr = *I;
1910 
1911     unsigned Align = I->getAlignment(S.Context);
1912     if (Align > NewAlign)
1913       NewAlign = Align;
1914   }
1915 
1916   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1917     // Both declarations have 'alignas' attributes. We require them to match.
1918     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1919     // fall short. (If two declarations both have alignas, they must both match
1920     // every definition, and so must match each other if there is a definition.)
1921 
1922     // If either declaration only contains 'alignas(0)' specifiers, then it
1923     // specifies the natural alignment for the type.
1924     if (OldAlign == 0 || NewAlign == 0) {
1925       QualType Ty;
1926       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1927         Ty = VD->getType();
1928       else
1929         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1930 
1931       if (OldAlign == 0)
1932         OldAlign = S.Context.getTypeAlign(Ty);
1933       if (NewAlign == 0)
1934         NewAlign = S.Context.getTypeAlign(Ty);
1935     }
1936 
1937     if (OldAlign != NewAlign) {
1938       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1939         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1940         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1941       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1942     }
1943   }
1944 
1945   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1946     // C++11 [dcl.align]p6:
1947     //   if any declaration of an entity has an alignment-specifier,
1948     //   every defining declaration of that entity shall specify an
1949     //   equivalent alignment.
1950     // C11 6.7.5/7:
1951     //   If the definition of an object does not have an alignment
1952     //   specifier, any other declaration of that object shall also
1953     //   have no alignment specifier.
1954     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1955       << OldAlignasAttr->isC11();
1956     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1957       << OldAlignasAttr->isC11();
1958   }
1959 
1960   bool AnyAdded = false;
1961 
1962   // Ensure we have an attribute representing the strictest alignment.
1963   if (OldAlign > NewAlign) {
1964     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1965     Clone->setInherited(true);
1966     New->addAttr(Clone);
1967     AnyAdded = true;
1968   }
1969 
1970   // Ensure we have an alignas attribute if the old declaration had one.
1971   if (OldAlignasAttr && !NewAlignasAttr &&
1972       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1973     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1974     Clone->setInherited(true);
1975     New->addAttr(Clone);
1976     AnyAdded = true;
1977   }
1978 
1979   return AnyAdded;
1980 }
1981 
mergeDeclAttribute(Sema & S,NamedDecl * D,InheritableAttr * Attr,bool Override)1982 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1983                                bool Override) {
1984   InheritableAttr *NewAttr = NULL;
1985   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1986   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1987     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1988                                       AA->getIntroduced(), AA->getDeprecated(),
1989                                       AA->getObsoleted(), AA->getUnavailable(),
1990                                       AA->getMessage(), Override,
1991                                       AttrSpellingListIndex);
1992   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1993     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1994                                     AttrSpellingListIndex);
1995   else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1996     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1997                                         AttrSpellingListIndex);
1998   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1999     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2000                                    AttrSpellingListIndex);
2001   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
2002     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2003                                    AttrSpellingListIndex);
2004   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2005     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2006                                 FA->getFormatIdx(), FA->getFirstArg(),
2007                                 AttrSpellingListIndex);
2008   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2009     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2010                                  AttrSpellingListIndex);
2011   else if (isa<AlignedAttr>(Attr))
2012     // AlignedAttrs are handled separately, because we need to handle all
2013     // such attributes on a declaration at the same time.
2014     NewAttr = 0;
2015   else if (!DeclHasAttr(D, Attr))
2016     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2017 
2018   if (NewAttr) {
2019     NewAttr->setInherited(true);
2020     D->addAttr(NewAttr);
2021     return true;
2022   }
2023 
2024   return false;
2025 }
2026 
getDefinition(const Decl * D)2027 static const Decl *getDefinition(const Decl *D) {
2028   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2029     return TD->getDefinition();
2030   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2031     return VD->getDefinition();
2032   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2033     const FunctionDecl* Def;
2034     if (FD->hasBody(Def))
2035       return Def;
2036   }
2037   return NULL;
2038 }
2039 
hasAttribute(const Decl * D,attr::Kind Kind)2040 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2041   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2042        I != E; ++I) {
2043     Attr *Attribute = *I;
2044     if (Attribute->getKind() == Kind)
2045       return true;
2046   }
2047   return false;
2048 }
2049 
2050 /// checkNewAttributesAfterDef - If we already have a definition, check that
2051 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2052 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2053   if (!New->hasAttrs())
2054     return;
2055 
2056   const Decl *Def = getDefinition(Old);
2057   if (!Def || Def == New)
2058     return;
2059 
2060   AttrVec &NewAttributes = New->getAttrs();
2061   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2062     const Attr *NewAttribute = NewAttributes[I];
2063     if (hasAttribute(Def, NewAttribute->getKind())) {
2064       ++I;
2065       continue; // regular attr merging will take care of validating this.
2066     }
2067 
2068     if (isa<C11NoReturnAttr>(NewAttribute)) {
2069       // C's _Noreturn is allowed to be added to a function after it is defined.
2070       ++I;
2071       continue;
2072     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2073       if (AA->isAlignas()) {
2074         // C++11 [dcl.align]p6:
2075         //   if any declaration of an entity has an alignment-specifier,
2076         //   every defining declaration of that entity shall specify an
2077         //   equivalent alignment.
2078         // C11 6.7.5/7:
2079         //   If the definition of an object does not have an alignment
2080         //   specifier, any other declaration of that object shall also
2081         //   have no alignment specifier.
2082         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2083           << AA->isC11();
2084         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2085           << AA->isC11();
2086         NewAttributes.erase(NewAttributes.begin() + I);
2087         --E;
2088         continue;
2089       }
2090     }
2091 
2092     S.Diag(NewAttribute->getLocation(),
2093            diag::warn_attribute_precede_definition);
2094     S.Diag(Def->getLocation(), diag::note_previous_definition);
2095     NewAttributes.erase(NewAttributes.begin() + I);
2096     --E;
2097   }
2098 }
2099 
2100 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2101 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2102                                AvailabilityMergeKind AMK) {
2103   if (!Old->hasAttrs() && !New->hasAttrs())
2104     return;
2105 
2106   // attributes declared post-definition are currently ignored
2107   checkNewAttributesAfterDef(*this, New, Old);
2108 
2109   if (!Old->hasAttrs())
2110     return;
2111 
2112   bool foundAny = New->hasAttrs();
2113 
2114   // Ensure that any moving of objects within the allocated map is done before
2115   // we process them.
2116   if (!foundAny) New->setAttrs(AttrVec());
2117 
2118   for (specific_attr_iterator<InheritableAttr>
2119          i = Old->specific_attr_begin<InheritableAttr>(),
2120          e = Old->specific_attr_end<InheritableAttr>();
2121        i != e; ++i) {
2122     bool Override = false;
2123     // Ignore deprecated/unavailable/availability attributes if requested.
2124     if (isa<DeprecatedAttr>(*i) ||
2125         isa<UnavailableAttr>(*i) ||
2126         isa<AvailabilityAttr>(*i)) {
2127       switch (AMK) {
2128       case AMK_None:
2129         continue;
2130 
2131       case AMK_Redeclaration:
2132         break;
2133 
2134       case AMK_Override:
2135         Override = true;
2136         break;
2137       }
2138     }
2139 
2140     if (mergeDeclAttribute(*this, New, *i, Override))
2141       foundAny = true;
2142   }
2143 
2144   if (mergeAlignedAttrs(*this, New, Old))
2145     foundAny = true;
2146 
2147   if (!foundAny) New->dropAttrs();
2148 }
2149 
2150 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2151 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2152 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2153                                      const ParmVarDecl *oldDecl,
2154                                      Sema &S) {
2155   // C++11 [dcl.attr.depend]p2:
2156   //   The first declaration of a function shall specify the
2157   //   carries_dependency attribute for its declarator-id if any declaration
2158   //   of the function specifies the carries_dependency attribute.
2159   if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2160       !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2161     S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2162            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2163     // Find the first declaration of the parameter.
2164     // FIXME: Should we build redeclaration chains for function parameters?
2165     const FunctionDecl *FirstFD =
2166       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2167     const ParmVarDecl *FirstVD =
2168       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2169     S.Diag(FirstVD->getLocation(),
2170            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2171   }
2172 
2173   if (!oldDecl->hasAttrs())
2174     return;
2175 
2176   bool foundAny = newDecl->hasAttrs();
2177 
2178   // Ensure that any moving of objects within the allocated map is
2179   // done before we process them.
2180   if (!foundAny) newDecl->setAttrs(AttrVec());
2181 
2182   for (specific_attr_iterator<InheritableParamAttr>
2183        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2184        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2185     if (!DeclHasAttr(newDecl, *i)) {
2186       InheritableAttr *newAttr =
2187         cast<InheritableParamAttr>((*i)->clone(S.Context));
2188       newAttr->setInherited(true);
2189       newDecl->addAttr(newAttr);
2190       foundAny = true;
2191     }
2192   }
2193 
2194   if (!foundAny) newDecl->dropAttrs();
2195 }
2196 
2197 namespace {
2198 
2199 /// Used in MergeFunctionDecl to keep track of function parameters in
2200 /// C.
2201 struct GNUCompatibleParamWarning {
2202   ParmVarDecl *OldParm;
2203   ParmVarDecl *NewParm;
2204   QualType PromotedType;
2205 };
2206 
2207 }
2208 
2209 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2210 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2211   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2212     if (Ctor->isDefaultConstructor())
2213       return Sema::CXXDefaultConstructor;
2214 
2215     if (Ctor->isCopyConstructor())
2216       return Sema::CXXCopyConstructor;
2217 
2218     if (Ctor->isMoveConstructor())
2219       return Sema::CXXMoveConstructor;
2220   } else if (isa<CXXDestructorDecl>(MD)) {
2221     return Sema::CXXDestructor;
2222   } else if (MD->isCopyAssignmentOperator()) {
2223     return Sema::CXXCopyAssignment;
2224   } else if (MD->isMoveAssignmentOperator()) {
2225     return Sema::CXXMoveAssignment;
2226   }
2227 
2228   return Sema::CXXInvalid;
2229 }
2230 
2231 /// canRedefineFunction - checks if a function can be redefined. Currently,
2232 /// only extern inline functions can be redefined, and even then only in
2233 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2234 static bool canRedefineFunction(const FunctionDecl *FD,
2235                                 const LangOptions& LangOpts) {
2236   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2237           !LangOpts.CPlusPlus &&
2238           FD->isInlineSpecified() &&
2239           FD->getStorageClass() == SC_Extern);
2240 }
2241 
2242 /// Is the given calling convention the ABI default for the given
2243 /// declaration?
isABIDefaultCC(Sema & S,CallingConv CC,FunctionDecl * D)2244 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2245   CallingConv ABIDefaultCC;
2246   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2247     ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2248   } else {
2249     // Free C function or a static method.
2250     ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2251   }
2252   return ABIDefaultCC == CC;
2253 }
2254 
2255 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2256 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2257   const DeclContext *DC = Old->getDeclContext();
2258   if (DC->isRecord())
2259     return false;
2260 
2261   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2262   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2263     return true;
2264   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2265     return true;
2266   return false;
2267 }
2268 
2269 /// MergeFunctionDecl - We just parsed a function 'New' from
2270 /// declarator D which has the same name and scope as a previous
2271 /// declaration 'Old'.  Figure out how to resolve this situation,
2272 /// merging decls or emitting diagnostics as appropriate.
2273 ///
2274 /// In C++, New and Old must be declarations that are not
2275 /// overloaded. Use IsOverload to determine whether New and Old are
2276 /// overloaded, and to select the Old declaration that New should be
2277 /// merged with.
2278 ///
2279 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD,Scope * S)2280 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2281   // Verify the old decl was also a function.
2282   FunctionDecl *Old = 0;
2283   if (FunctionTemplateDecl *OldFunctionTemplate
2284         = dyn_cast<FunctionTemplateDecl>(OldD))
2285     Old = OldFunctionTemplate->getTemplatedDecl();
2286   else
2287     Old = dyn_cast<FunctionDecl>(OldD);
2288   if (!Old) {
2289     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2290       if (New->getFriendObjectKind()) {
2291         Diag(New->getLocation(), diag::err_using_decl_friend);
2292         Diag(Shadow->getTargetDecl()->getLocation(),
2293              diag::note_using_decl_target);
2294         Diag(Shadow->getUsingDecl()->getLocation(),
2295              diag::note_using_decl) << 0;
2296         return true;
2297       }
2298 
2299       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2300       Diag(Shadow->getTargetDecl()->getLocation(),
2301            diag::note_using_decl_target);
2302       Diag(Shadow->getUsingDecl()->getLocation(),
2303            diag::note_using_decl) << 0;
2304       return true;
2305     }
2306 
2307     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2308       << New->getDeclName();
2309     Diag(OldD->getLocation(), diag::note_previous_definition);
2310     return true;
2311   }
2312 
2313   // If the old declaration is invalid, just give up here.
2314   if (Old->isInvalidDecl())
2315     return true;
2316 
2317   // Determine whether the previous declaration was a definition,
2318   // implicit declaration, or a declaration.
2319   diag::kind PrevDiag;
2320   if (Old->isThisDeclarationADefinition())
2321     PrevDiag = diag::note_previous_definition;
2322   else if (Old->isImplicit())
2323     PrevDiag = diag::note_previous_implicit_declaration;
2324   else
2325     PrevDiag = diag::note_previous_declaration;
2326 
2327   QualType OldQType = Context.getCanonicalType(Old->getType());
2328   QualType NewQType = Context.getCanonicalType(New->getType());
2329 
2330   // Don't complain about this if we're in GNU89 mode and the old function
2331   // is an extern inline function.
2332   // Don't complain about specializations. They are not supposed to have
2333   // storage classes.
2334   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2335       New->getStorageClass() == SC_Static &&
2336       Old->hasExternalFormalLinkage() &&
2337       !New->getTemplateSpecializationInfo() &&
2338       !canRedefineFunction(Old, getLangOpts())) {
2339     if (getLangOpts().MicrosoftExt) {
2340       Diag(New->getLocation(), diag::warn_static_non_static) << New;
2341       Diag(Old->getLocation(), PrevDiag);
2342     } else {
2343       Diag(New->getLocation(), diag::err_static_non_static) << New;
2344       Diag(Old->getLocation(), PrevDiag);
2345       return true;
2346     }
2347   }
2348 
2349   // If a function is first declared with a calling convention, but is
2350   // later declared or defined without one, the second decl assumes the
2351   // calling convention of the first.
2352   //
2353   // It's OK if a function is first declared without a calling convention,
2354   // but is later declared or defined with the default calling convention.
2355   //
2356   // For the new decl, we have to look at the NON-canonical type to tell the
2357   // difference between a function that really doesn't have a calling
2358   // convention and one that is declared cdecl. That's because in
2359   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2360   // because it is the default calling convention.
2361   //
2362   // Note also that we DO NOT return at this point, because we still have
2363   // other tests to run.
2364   const FunctionType *OldType = cast<FunctionType>(OldQType);
2365   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2366   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2367   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2368   bool RequiresAdjustment = false;
2369   if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2370     // Fast path: nothing to do.
2371 
2372   // Inherit the CC from the previous declaration if it was specified
2373   // there but not here.
2374   } else if (NewTypeInfo.getCC() == CC_Default) {
2375     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2376     RequiresAdjustment = true;
2377 
2378   // Don't complain about mismatches when the default CC is
2379   // effectively the same as the explict one. Only Old decl contains correct
2380   // information about storage class of CXXMethod.
2381   } else if (OldTypeInfo.getCC() == CC_Default &&
2382              isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2383     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2384     RequiresAdjustment = true;
2385 
2386   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2387                                      NewTypeInfo.getCC())) {
2388     // Calling conventions really aren't compatible, so complain.
2389     Diag(New->getLocation(), diag::err_cconv_change)
2390       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2391       << (OldTypeInfo.getCC() == CC_Default)
2392       << (OldTypeInfo.getCC() == CC_Default ? "" :
2393           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2394     Diag(Old->getLocation(), diag::note_previous_declaration);
2395     return true;
2396   }
2397 
2398   // FIXME: diagnose the other way around?
2399   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2400     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2401     RequiresAdjustment = true;
2402   }
2403 
2404   // Merge regparm attribute.
2405   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2406       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2407     if (NewTypeInfo.getHasRegParm()) {
2408       Diag(New->getLocation(), diag::err_regparm_mismatch)
2409         << NewType->getRegParmType()
2410         << OldType->getRegParmType();
2411       Diag(Old->getLocation(), diag::note_previous_declaration);
2412       return true;
2413     }
2414 
2415     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2416     RequiresAdjustment = true;
2417   }
2418 
2419   // Merge ns_returns_retained attribute.
2420   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2421     if (NewTypeInfo.getProducesResult()) {
2422       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2423       Diag(Old->getLocation(), diag::note_previous_declaration);
2424       return true;
2425     }
2426 
2427     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2428     RequiresAdjustment = true;
2429   }
2430 
2431   if (RequiresAdjustment) {
2432     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2433     New->setType(QualType(NewType, 0));
2434     NewQType = Context.getCanonicalType(New->getType());
2435   }
2436 
2437   // If this redeclaration makes the function inline, we may need to add it to
2438   // UndefinedButUsed.
2439   if (!Old->isInlined() && New->isInlined() &&
2440       !New->hasAttr<GNUInlineAttr>() &&
2441       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2442       Old->isUsed(false) &&
2443       !Old->isDefined() && !New->isThisDeclarationADefinition())
2444     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2445                                            SourceLocation()));
2446 
2447   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2448   // about it.
2449   if (New->hasAttr<GNUInlineAttr>() &&
2450       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2451     UndefinedButUsed.erase(Old->getCanonicalDecl());
2452   }
2453 
2454   if (getLangOpts().CPlusPlus) {
2455     // (C++98 13.1p2):
2456     //   Certain function declarations cannot be overloaded:
2457     //     -- Function declarations that differ only in the return type
2458     //        cannot be overloaded.
2459 
2460     // Go back to the type source info to compare the declared return types,
2461     // per C++1y [dcl.type.auto]p??:
2462     //   Redeclarations or specializations of a function or function template
2463     //   with a declared return type that uses a placeholder type shall also
2464     //   use that placeholder, not a deduced type.
2465     QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2466       ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2467       : OldType)->getResultType();
2468     QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2469       ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2470       : NewType)->getResultType();
2471     QualType ResQT;
2472     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2473       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2474           OldDeclaredReturnType->isObjCObjectPointerType())
2475         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2476       if (ResQT.isNull()) {
2477         if (New->isCXXClassMember() && New->isOutOfLine())
2478           Diag(New->getLocation(),
2479                diag::err_member_def_does_not_match_ret_type) << New;
2480         else
2481           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2482         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2483         return true;
2484       }
2485       else
2486         NewQType = ResQT;
2487     }
2488 
2489     QualType OldReturnType = OldType->getResultType();
2490     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2491     if (OldReturnType != NewReturnType) {
2492       // If this function has a deduced return type and has already been
2493       // defined, copy the deduced value from the old declaration.
2494       AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2495       if (OldAT && OldAT->isDeduced()) {
2496         New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2497         NewQType = Context.getCanonicalType(
2498             SubstAutoType(NewQType, OldAT->getDeducedType()));
2499       }
2500     }
2501 
2502     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2503     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2504     if (OldMethod && NewMethod) {
2505       // Preserve triviality.
2506       NewMethod->setTrivial(OldMethod->isTrivial());
2507 
2508       // MSVC allows explicit template specialization at class scope:
2509       // 2 CXMethodDecls referring to the same function will be injected.
2510       // We don't want a redeclartion error.
2511       bool IsClassScopeExplicitSpecialization =
2512                               OldMethod->isFunctionTemplateSpecialization() &&
2513                               NewMethod->isFunctionTemplateSpecialization();
2514       bool isFriend = NewMethod->getFriendObjectKind();
2515 
2516       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2517           !IsClassScopeExplicitSpecialization) {
2518         //    -- Member function declarations with the same name and the
2519         //       same parameter types cannot be overloaded if any of them
2520         //       is a static member function declaration.
2521         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2522           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2523           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2524           return true;
2525         }
2526 
2527         // C++ [class.mem]p1:
2528         //   [...] A member shall not be declared twice in the
2529         //   member-specification, except that a nested class or member
2530         //   class template can be declared and then later defined.
2531         if (ActiveTemplateInstantiations.empty()) {
2532           unsigned NewDiag;
2533           if (isa<CXXConstructorDecl>(OldMethod))
2534             NewDiag = diag::err_constructor_redeclared;
2535           else if (isa<CXXDestructorDecl>(NewMethod))
2536             NewDiag = diag::err_destructor_redeclared;
2537           else if (isa<CXXConversionDecl>(NewMethod))
2538             NewDiag = diag::err_conv_function_redeclared;
2539           else
2540             NewDiag = diag::err_member_redeclared;
2541 
2542           Diag(New->getLocation(), NewDiag);
2543         } else {
2544           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2545             << New << New->getType();
2546         }
2547         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2548 
2549       // Complain if this is an explicit declaration of a special
2550       // member that was initially declared implicitly.
2551       //
2552       // As an exception, it's okay to befriend such methods in order
2553       // to permit the implicit constructor/destructor/operator calls.
2554       } else if (OldMethod->isImplicit()) {
2555         if (isFriend) {
2556           NewMethod->setImplicit();
2557         } else {
2558           Diag(NewMethod->getLocation(),
2559                diag::err_definition_of_implicitly_declared_member)
2560             << New << getSpecialMember(OldMethod);
2561           return true;
2562         }
2563       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2564         Diag(NewMethod->getLocation(),
2565              diag::err_definition_of_explicitly_defaulted_member)
2566           << getSpecialMember(OldMethod);
2567         return true;
2568       }
2569     }
2570 
2571     // C++11 [dcl.attr.noreturn]p1:
2572     //   The first declaration of a function shall specify the noreturn
2573     //   attribute if any declaration of that function specifies the noreturn
2574     //   attribute.
2575     if (New->hasAttr<CXX11NoReturnAttr>() &&
2576         !Old->hasAttr<CXX11NoReturnAttr>()) {
2577       Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2578            diag::err_noreturn_missing_on_first_decl);
2579       Diag(Old->getFirstDeclaration()->getLocation(),
2580            diag::note_noreturn_missing_first_decl);
2581     }
2582 
2583     // C++11 [dcl.attr.depend]p2:
2584     //   The first declaration of a function shall specify the
2585     //   carries_dependency attribute for its declarator-id if any declaration
2586     //   of the function specifies the carries_dependency attribute.
2587     if (New->hasAttr<CarriesDependencyAttr>() &&
2588         !Old->hasAttr<CarriesDependencyAttr>()) {
2589       Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2590            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2591       Diag(Old->getFirstDeclaration()->getLocation(),
2592            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2593     }
2594 
2595     // (C++98 8.3.5p3):
2596     //   All declarations for a function shall agree exactly in both the
2597     //   return type and the parameter-type-list.
2598     // We also want to respect all the extended bits except noreturn.
2599 
2600     // noreturn should now match unless the old type info didn't have it.
2601     QualType OldQTypeForComparison = OldQType;
2602     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2603       assert(OldQType == QualType(OldType, 0));
2604       const FunctionType *OldTypeForComparison
2605         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2606       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2607       assert(OldQTypeForComparison.isCanonical());
2608     }
2609 
2610     if (haveIncompatibleLanguageLinkages(Old, New)) {
2611       Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2612       Diag(Old->getLocation(), PrevDiag);
2613       return true;
2614     }
2615 
2616     if (OldQTypeForComparison == NewQType)
2617       return MergeCompatibleFunctionDecls(New, Old, S);
2618 
2619     // Fall through for conflicting redeclarations and redefinitions.
2620   }
2621 
2622   // C: Function types need to be compatible, not identical. This handles
2623   // duplicate function decls like "void f(int); void f(enum X);" properly.
2624   if (!getLangOpts().CPlusPlus &&
2625       Context.typesAreCompatible(OldQType, NewQType)) {
2626     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2627     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2628     const FunctionProtoType *OldProto = 0;
2629     if (isa<FunctionNoProtoType>(NewFuncType) &&
2630         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2631       // The old declaration provided a function prototype, but the
2632       // new declaration does not. Merge in the prototype.
2633       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2634       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2635                                                  OldProto->arg_type_end());
2636       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2637                                          ParamTypes,
2638                                          OldProto->getExtProtoInfo());
2639       New->setType(NewQType);
2640       New->setHasInheritedPrototype();
2641 
2642       // Synthesize a parameter for each argument type.
2643       SmallVector<ParmVarDecl*, 16> Params;
2644       for (FunctionProtoType::arg_type_iterator
2645              ParamType = OldProto->arg_type_begin(),
2646              ParamEnd = OldProto->arg_type_end();
2647            ParamType != ParamEnd; ++ParamType) {
2648         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2649                                                  SourceLocation(),
2650                                                  SourceLocation(), 0,
2651                                                  *ParamType, /*TInfo=*/0,
2652                                                  SC_None,
2653                                                  0);
2654         Param->setScopeInfo(0, Params.size());
2655         Param->setImplicit();
2656         Params.push_back(Param);
2657       }
2658 
2659       New->setParams(Params);
2660     }
2661 
2662     return MergeCompatibleFunctionDecls(New, Old, S);
2663   }
2664 
2665   // GNU C permits a K&R definition to follow a prototype declaration
2666   // if the declared types of the parameters in the K&R definition
2667   // match the types in the prototype declaration, even when the
2668   // promoted types of the parameters from the K&R definition differ
2669   // from the types in the prototype. GCC then keeps the types from
2670   // the prototype.
2671   //
2672   // If a variadic prototype is followed by a non-variadic K&R definition,
2673   // the K&R definition becomes variadic.  This is sort of an edge case, but
2674   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2675   // C99 6.9.1p8.
2676   if (!getLangOpts().CPlusPlus &&
2677       Old->hasPrototype() && !New->hasPrototype() &&
2678       New->getType()->getAs<FunctionProtoType>() &&
2679       Old->getNumParams() == New->getNumParams()) {
2680     SmallVector<QualType, 16> ArgTypes;
2681     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2682     const FunctionProtoType *OldProto
2683       = Old->getType()->getAs<FunctionProtoType>();
2684     const FunctionProtoType *NewProto
2685       = New->getType()->getAs<FunctionProtoType>();
2686 
2687     // Determine whether this is the GNU C extension.
2688     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2689                                                NewProto->getResultType());
2690     bool LooseCompatible = !MergedReturn.isNull();
2691     for (unsigned Idx = 0, End = Old->getNumParams();
2692          LooseCompatible && Idx != End; ++Idx) {
2693       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2694       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2695       if (Context.typesAreCompatible(OldParm->getType(),
2696                                      NewProto->getArgType(Idx))) {
2697         ArgTypes.push_back(NewParm->getType());
2698       } else if (Context.typesAreCompatible(OldParm->getType(),
2699                                             NewParm->getType(),
2700                                             /*CompareUnqualified=*/true)) {
2701         GNUCompatibleParamWarning Warn
2702           = { OldParm, NewParm, NewProto->getArgType(Idx) };
2703         Warnings.push_back(Warn);
2704         ArgTypes.push_back(NewParm->getType());
2705       } else
2706         LooseCompatible = false;
2707     }
2708 
2709     if (LooseCompatible) {
2710       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2711         Diag(Warnings[Warn].NewParm->getLocation(),
2712              diag::ext_param_promoted_not_compatible_with_prototype)
2713           << Warnings[Warn].PromotedType
2714           << Warnings[Warn].OldParm->getType();
2715         if (Warnings[Warn].OldParm->getLocation().isValid())
2716           Diag(Warnings[Warn].OldParm->getLocation(),
2717                diag::note_previous_declaration);
2718       }
2719 
2720       New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2721                                            OldProto->getExtProtoInfo()));
2722       return MergeCompatibleFunctionDecls(New, Old, S);
2723     }
2724 
2725     // Fall through to diagnose conflicting types.
2726   }
2727 
2728   // A function that has already been declared has been redeclared or
2729   // defined with a different type; show an appropriate diagnostic.
2730 
2731   // If the previous declaration was an implicitly-generated builtin
2732   // declaration, then at the very least we should use a specialized note.
2733   unsigned BuiltinID;
2734   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2735     // If it's actually a library-defined builtin function like 'malloc'
2736     // or 'printf', just warn about the incompatible redeclaration.
2737     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2738       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2739       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2740         << Old << Old->getType();
2741 
2742       // If this is a global redeclaration, just forget hereafter
2743       // about the "builtin-ness" of the function.
2744       //
2745       // Doing this for local extern declarations is problematic.  If
2746       // the builtin declaration remains visible, a second invalid
2747       // local declaration will produce a hard error; if it doesn't
2748       // remain visible, a single bogus local redeclaration (which is
2749       // actually only a warning) could break all the downstream code.
2750       if (!New->getDeclContext()->isFunctionOrMethod())
2751         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2752 
2753       return false;
2754     }
2755 
2756     PrevDiag = diag::note_previous_builtin_declaration;
2757   }
2758 
2759   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2760   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2761   return true;
2762 }
2763 
2764 /// \brief Completes the merge of two function declarations that are
2765 /// known to be compatible.
2766 ///
2767 /// This routine handles the merging of attributes and other
2768 /// properties of function declarations form the old declaration to
2769 /// the new declaration, once we know that New is in fact a
2770 /// redeclaration of Old.
2771 ///
2772 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S)2773 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2774                                         Scope *S) {
2775   // Merge the attributes
2776   mergeDeclAttributes(New, Old);
2777 
2778   // Merge "pure" flag.
2779   if (Old->isPure())
2780     New->setPure();
2781 
2782   // Merge "used" flag.
2783   if (Old->isUsed(false))
2784     New->setUsed();
2785 
2786   // Merge attributes from the parameters.  These can mismatch with K&R
2787   // declarations.
2788   if (New->getNumParams() == Old->getNumParams())
2789     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2790       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2791                                *this);
2792 
2793   if (getLangOpts().CPlusPlus)
2794     return MergeCXXFunctionDecl(New, Old, S);
2795 
2796   // Merge the function types so the we get the composite types for the return
2797   // and argument types.
2798   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2799   if (!Merged.isNull())
2800     New->setType(Merged);
2801 
2802   return false;
2803 }
2804 
2805 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2806 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2807                                 ObjCMethodDecl *oldMethod) {
2808 
2809   // Merge the attributes, including deprecated/unavailable
2810   AvailabilityMergeKind MergeKind =
2811     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2812                                                    : AMK_Override;
2813   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2814 
2815   // Merge attributes from the parameters.
2816   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2817                                        oe = oldMethod->param_end();
2818   for (ObjCMethodDecl::param_iterator
2819          ni = newMethod->param_begin(), ne = newMethod->param_end();
2820        ni != ne && oi != oe; ++ni, ++oi)
2821     mergeParamDeclAttributes(*ni, *oi, *this);
2822 
2823   CheckObjCMethodOverride(newMethod, oldMethod);
2824 }
2825 
2826 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2827 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2828 /// emitting diagnostics as appropriate.
2829 ///
2830 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2831 /// to here in AddInitializerToDecl. We can't check them before the initializer
2832 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool OldWasHidden)2833 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2834   if (New->isInvalidDecl() || Old->isInvalidDecl())
2835     return;
2836 
2837   QualType MergedT;
2838   if (getLangOpts().CPlusPlus) {
2839     if (New->getType()->isUndeducedType()) {
2840       // We don't know what the new type is until the initializer is attached.
2841       return;
2842     } else if (Context.hasSameType(New->getType(), Old->getType())) {
2843       // These could still be something that needs exception specs checked.
2844       return MergeVarDeclExceptionSpecs(New, Old);
2845     }
2846     // C++ [basic.link]p10:
2847     //   [...] the types specified by all declarations referring to a given
2848     //   object or function shall be identical, except that declarations for an
2849     //   array object can specify array types that differ by the presence or
2850     //   absence of a major array bound (8.3.4).
2851     else if (Old->getType()->isIncompleteArrayType() &&
2852              New->getType()->isArrayType()) {
2853       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2854       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2855       if (Context.hasSameType(OldArray->getElementType(),
2856                               NewArray->getElementType()))
2857         MergedT = New->getType();
2858     } else if (Old->getType()->isArrayType() &&
2859              New->getType()->isIncompleteArrayType()) {
2860       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2861       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2862       if (Context.hasSameType(OldArray->getElementType(),
2863                               NewArray->getElementType()))
2864         MergedT = Old->getType();
2865     } else if (New->getType()->isObjCObjectPointerType()
2866                && Old->getType()->isObjCObjectPointerType()) {
2867         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2868                                                         Old->getType());
2869     }
2870   } else {
2871     MergedT = Context.mergeTypes(New->getType(), Old->getType());
2872   }
2873   if (MergedT.isNull()) {
2874     Diag(New->getLocation(), diag::err_redefinition_different_type)
2875       << New->getDeclName() << New->getType() << Old->getType();
2876     Diag(Old->getLocation(), diag::note_previous_definition);
2877     return New->setInvalidDecl();
2878   }
2879 
2880   // Don't actually update the type on the new declaration if the old
2881   // declaration was a extern declaration in a different scope.
2882   if (!OldWasHidden)
2883     New->setType(MergedT);
2884 }
2885 
2886 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2887 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2888 /// situation, merging decls or emitting diagnostics as appropriate.
2889 ///
2890 /// Tentative definition rules (C99 6.9.2p2) are checked by
2891 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2892 /// definitions here, since the initializer hasn't been attached.
2893 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous,bool PreviousWasHidden)2894 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2895                         bool PreviousWasHidden) {
2896   // If the new decl is already invalid, don't do any other checking.
2897   if (New->isInvalidDecl())
2898     return;
2899 
2900   // Verify the old decl was also a variable.
2901   VarDecl *Old = 0;
2902   if (!Previous.isSingleResult() ||
2903       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2904     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2905       << New->getDeclName();
2906     Diag(Previous.getRepresentativeDecl()->getLocation(),
2907          diag::note_previous_definition);
2908     return New->setInvalidDecl();
2909   }
2910 
2911   if (!shouldLinkPossiblyHiddenDecl(Old, New))
2912     return;
2913 
2914   // C++ [class.mem]p1:
2915   //   A member shall not be declared twice in the member-specification [...]
2916   //
2917   // Here, we need only consider static data members.
2918   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2919     Diag(New->getLocation(), diag::err_duplicate_member)
2920       << New->getIdentifier();
2921     Diag(Old->getLocation(), diag::note_previous_declaration);
2922     New->setInvalidDecl();
2923   }
2924 
2925   mergeDeclAttributes(New, Old);
2926   // Warn if an already-declared variable is made a weak_import in a subsequent
2927   // declaration
2928   if (New->getAttr<WeakImportAttr>() &&
2929       Old->getStorageClass() == SC_None &&
2930       !Old->getAttr<WeakImportAttr>()) {
2931     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2932     Diag(Old->getLocation(), diag::note_previous_definition);
2933     // Remove weak_import attribute on new declaration.
2934     New->dropAttr<WeakImportAttr>();
2935   }
2936 
2937   // Merge the types.
2938   MergeVarDeclTypes(New, Old, PreviousWasHidden);
2939   if (New->isInvalidDecl())
2940     return;
2941 
2942   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2943   if (New->getStorageClass() == SC_Static &&
2944       !New->isStaticDataMember() &&
2945       Old->hasExternalFormalLinkage()) {
2946     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2947     Diag(Old->getLocation(), diag::note_previous_definition);
2948     return New->setInvalidDecl();
2949   }
2950   // C99 6.2.2p4:
2951   //   For an identifier declared with the storage-class specifier
2952   //   extern in a scope in which a prior declaration of that
2953   //   identifier is visible,23) if the prior declaration specifies
2954   //   internal or external linkage, the linkage of the identifier at
2955   //   the later declaration is the same as the linkage specified at
2956   //   the prior declaration. If no prior declaration is visible, or
2957   //   if the prior declaration specifies no linkage, then the
2958   //   identifier has external linkage.
2959   if (New->hasExternalStorage() && Old->hasLinkage())
2960     /* Okay */;
2961   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2962            !New->isStaticDataMember() &&
2963            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2964     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2965     Diag(Old->getLocation(), diag::note_previous_definition);
2966     return New->setInvalidDecl();
2967   }
2968 
2969   // Check if extern is followed by non-extern and vice-versa.
2970   if (New->hasExternalStorage() &&
2971       !Old->hasLinkage() && Old->isLocalVarDecl()) {
2972     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2973     Diag(Old->getLocation(), diag::note_previous_definition);
2974     return New->setInvalidDecl();
2975   }
2976   if (Old->hasLinkage() && New->isLocalVarDecl() &&
2977       !New->hasExternalStorage()) {
2978     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2979     Diag(Old->getLocation(), diag::note_previous_definition);
2980     return New->setInvalidDecl();
2981   }
2982 
2983   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2984 
2985   // FIXME: The test for external storage here seems wrong? We still
2986   // need to check for mismatches.
2987   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2988       // Don't complain about out-of-line definitions of static members.
2989       !(Old->getLexicalDeclContext()->isRecord() &&
2990         !New->getLexicalDeclContext()->isRecord())) {
2991     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2992     Diag(Old->getLocation(), diag::note_previous_definition);
2993     return New->setInvalidDecl();
2994   }
2995 
2996   if (New->getTLSKind() != Old->getTLSKind()) {
2997     if (!Old->getTLSKind()) {
2998       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2999       Diag(Old->getLocation(), diag::note_previous_declaration);
3000     } else if (!New->getTLSKind()) {
3001       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3002       Diag(Old->getLocation(), diag::note_previous_declaration);
3003     } else {
3004       // Do not allow redeclaration to change the variable between requiring
3005       // static and dynamic initialization.
3006       // FIXME: GCC allows this, but uses the TLS keyword on the first
3007       // declaration to determine the kind. Do we need to be compatible here?
3008       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3009         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3010       Diag(Old->getLocation(), diag::note_previous_declaration);
3011     }
3012   }
3013 
3014   // C++ doesn't have tentative definitions, so go right ahead and check here.
3015   const VarDecl *Def;
3016   if (getLangOpts().CPlusPlus &&
3017       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3018       (Def = Old->getDefinition())) {
3019     Diag(New->getLocation(), diag::err_redefinition) << New;
3020     Diag(Def->getLocation(), diag::note_previous_definition);
3021     New->setInvalidDecl();
3022     return;
3023   }
3024 
3025   if (haveIncompatibleLanguageLinkages(Old, New)) {
3026     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3027     Diag(Old->getLocation(), diag::note_previous_definition);
3028     New->setInvalidDecl();
3029     return;
3030   }
3031 
3032   // Merge "used" flag.
3033   if (Old->isUsed(false))
3034     New->setUsed();
3035 
3036   // Keep a chain of previous declarations.
3037   New->setPreviousDeclaration(Old);
3038 
3039   // Inherit access appropriately.
3040   New->setAccess(Old->getAccess());
3041 }
3042 
3043 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3044 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3045 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3046                                        DeclSpec &DS) {
3047   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3048 }
3049 
HandleTagNumbering(Sema & S,const TagDecl * Tag)3050 static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3051   if (isa<CXXRecordDecl>(Tag->getParent())) {
3052     // If this tag is the direct child of a class, number it if
3053     // it is anonymous.
3054     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3055       return;
3056     MangleNumberingContext &MCtx =
3057         S.Context.getManglingNumberContext(Tag->getParent());
3058     S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3059     return;
3060   }
3061 
3062   // If this tag isn't a direct child of a class, number it if it is local.
3063   Decl *ManglingContextDecl;
3064   if (MangleNumberingContext *MCtx =
3065           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3066                                           ManglingContextDecl)) {
3067     S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3068   }
3069 }
3070 
3071 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3072 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3073 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3074 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3075                                        DeclSpec &DS,
3076                                        MultiTemplateParamsArg TemplateParams,
3077                                        bool IsExplicitInstantiation) {
3078   Decl *TagD = 0;
3079   TagDecl *Tag = 0;
3080   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3081       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3082       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3083       DS.getTypeSpecType() == DeclSpec::TST_union ||
3084       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3085     TagD = DS.getRepAsDecl();
3086 
3087     if (!TagD) // We probably had an error
3088       return 0;
3089 
3090     // Note that the above type specs guarantee that the
3091     // type rep is a Decl, whereas in many of the others
3092     // it's a Type.
3093     if (isa<TagDecl>(TagD))
3094       Tag = cast<TagDecl>(TagD);
3095     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3096       Tag = CTD->getTemplatedDecl();
3097   }
3098 
3099   if (Tag) {
3100     HandleTagNumbering(*this, Tag);
3101     Tag->setFreeStanding();
3102     if (Tag->isInvalidDecl())
3103       return Tag;
3104   }
3105 
3106   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3107     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3108     // or incomplete types shall not be restrict-qualified."
3109     if (TypeQuals & DeclSpec::TQ_restrict)
3110       Diag(DS.getRestrictSpecLoc(),
3111            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3112            << DS.getSourceRange();
3113   }
3114 
3115   if (DS.isConstexprSpecified()) {
3116     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3117     // and definitions of functions and variables.
3118     if (Tag)
3119       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3120         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3121             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3122             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3123             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3124     else
3125       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3126     // Don't emit warnings after this error.
3127     return TagD;
3128   }
3129 
3130   DiagnoseFunctionSpecifiers(DS);
3131 
3132   if (DS.isFriendSpecified()) {
3133     // If we're dealing with a decl but not a TagDecl, assume that
3134     // whatever routines created it handled the friendship aspect.
3135     if (TagD && !Tag)
3136       return 0;
3137     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3138   }
3139 
3140   CXXScopeSpec &SS = DS.getTypeSpecScope();
3141   bool IsExplicitSpecialization =
3142     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3143   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3144       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3145     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3146     // nested-name-specifier unless it is an explicit instantiation
3147     // or an explicit specialization.
3148     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3149     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3150       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3151           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3152           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3153           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3154       << SS.getRange();
3155     return 0;
3156   }
3157 
3158   // Track whether this decl-specifier declares anything.
3159   bool DeclaresAnything = true;
3160 
3161   // Handle anonymous struct definitions.
3162   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3163     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3164         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3165       if (getLangOpts().CPlusPlus ||
3166           Record->getDeclContext()->isRecord())
3167         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3168 
3169       DeclaresAnything = false;
3170     }
3171   }
3172 
3173   // Check for Microsoft C extension: anonymous struct member.
3174   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3175       CurContext->isRecord() &&
3176       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3177     // Handle 2 kinds of anonymous struct:
3178     //   struct STRUCT;
3179     // and
3180     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3181     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3182     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3183         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3184          DS.getRepAsType().get()->isStructureType())) {
3185       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3186         << DS.getSourceRange();
3187       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3188     }
3189   }
3190 
3191   // Skip all the checks below if we have a type error.
3192   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3193       (TagD && TagD->isInvalidDecl()))
3194     return TagD;
3195 
3196   if (getLangOpts().CPlusPlus &&
3197       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3198     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3199       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3200           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3201         DeclaresAnything = false;
3202 
3203   if (!DS.isMissingDeclaratorOk()) {
3204     // Customize diagnostic for a typedef missing a name.
3205     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3206       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3207         << DS.getSourceRange();
3208     else
3209       DeclaresAnything = false;
3210   }
3211 
3212   if (DS.isModulePrivateSpecified() &&
3213       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3214     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3215       << Tag->getTagKind()
3216       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3217 
3218   ActOnDocumentableDecl(TagD);
3219 
3220   // C 6.7/2:
3221   //   A declaration [...] shall declare at least a declarator [...], a tag,
3222   //   or the members of an enumeration.
3223   // C++ [dcl.dcl]p3:
3224   //   [If there are no declarators], and except for the declaration of an
3225   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3226   //   names into the program, or shall redeclare a name introduced by a
3227   //   previous declaration.
3228   if (!DeclaresAnything) {
3229     // In C, we allow this as a (popular) extension / bug. Don't bother
3230     // producing further diagnostics for redundant qualifiers after this.
3231     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3232     return TagD;
3233   }
3234 
3235   // C++ [dcl.stc]p1:
3236   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3237   //   init-declarator-list of the declaration shall not be empty.
3238   // C++ [dcl.fct.spec]p1:
3239   //   If a cv-qualifier appears in a decl-specifier-seq, the
3240   //   init-declarator-list of the declaration shall not be empty.
3241   //
3242   // Spurious qualifiers here appear to be valid in C.
3243   unsigned DiagID = diag::warn_standalone_specifier;
3244   if (getLangOpts().CPlusPlus)
3245     DiagID = diag::ext_standalone_specifier;
3246 
3247   // Note that a linkage-specification sets a storage class, but
3248   // 'extern "C" struct foo;' is actually valid and not theoretically
3249   // useless.
3250   if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3251     if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3252       Diag(DS.getStorageClassSpecLoc(), DiagID)
3253         << DeclSpec::getSpecifierName(SCS);
3254 
3255   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3256     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3257       << DeclSpec::getSpecifierName(TSCS);
3258   if (DS.getTypeQualifiers()) {
3259     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3260       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3261     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3262       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3263     // Restrict is covered above.
3264     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3265       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3266   }
3267 
3268   // Warn about ignored type attributes, for example:
3269   // __attribute__((aligned)) struct A;
3270   // Attributes should be placed after tag to apply to type declaration.
3271   if (!DS.getAttributes().empty()) {
3272     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3273     if (TypeSpecType == DeclSpec::TST_class ||
3274         TypeSpecType == DeclSpec::TST_struct ||
3275         TypeSpecType == DeclSpec::TST_interface ||
3276         TypeSpecType == DeclSpec::TST_union ||
3277         TypeSpecType == DeclSpec::TST_enum) {
3278       AttributeList* attrs = DS.getAttributes().getList();
3279       while (attrs) {
3280         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3281         << attrs->getName()
3282         << (TypeSpecType == DeclSpec::TST_class ? 0 :
3283             TypeSpecType == DeclSpec::TST_struct ? 1 :
3284             TypeSpecType == DeclSpec::TST_union ? 2 :
3285             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3286         attrs = attrs->getNext();
3287       }
3288     }
3289   }
3290 
3291   return TagD;
3292 }
3293 
3294 /// We are trying to inject an anonymous member into the given scope;
3295 /// check if there's an existing declaration that can't be overloaded.
3296 ///
3297 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3298 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3299                                          Scope *S,
3300                                          DeclContext *Owner,
3301                                          DeclarationName Name,
3302                                          SourceLocation NameLoc,
3303                                          unsigned diagnostic) {
3304   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3305                  Sema::ForRedeclaration);
3306   if (!SemaRef.LookupName(R, S)) return false;
3307 
3308   if (R.getAsSingle<TagDecl>())
3309     return false;
3310 
3311   // Pick a representative declaration.
3312   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3313   assert(PrevDecl && "Expected a non-null Decl");
3314 
3315   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3316     return false;
3317 
3318   SemaRef.Diag(NameLoc, diagnostic) << Name;
3319   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3320 
3321   return true;
3322 }
3323 
3324 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3325 /// anonymous struct or union AnonRecord into the owning context Owner
3326 /// and scope S. This routine will be invoked just after we realize
3327 /// that an unnamed union or struct is actually an anonymous union or
3328 /// struct, e.g.,
3329 ///
3330 /// @code
3331 /// union {
3332 ///   int i;
3333 ///   float f;
3334 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3335 ///    // f into the surrounding scope.x
3336 /// @endcode
3337 ///
3338 /// This routine is recursive, injecting the names of nested anonymous
3339 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3340 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3341                                          DeclContext *Owner,
3342                                          RecordDecl *AnonRecord,
3343                                          AccessSpecifier AS,
3344                                          SmallVectorImpl<NamedDecl *> &Chaining,
3345                                          bool MSAnonStruct) {
3346   unsigned diagKind
3347     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3348                             : diag::err_anonymous_struct_member_redecl;
3349 
3350   bool Invalid = false;
3351 
3352   // Look every FieldDecl and IndirectFieldDecl with a name.
3353   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3354                                DEnd = AnonRecord->decls_end();
3355        D != DEnd; ++D) {
3356     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3357         cast<NamedDecl>(*D)->getDeclName()) {
3358       ValueDecl *VD = cast<ValueDecl>(*D);
3359       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3360                                        VD->getLocation(), diagKind)) {
3361         // C++ [class.union]p2:
3362         //   The names of the members of an anonymous union shall be
3363         //   distinct from the names of any other entity in the
3364         //   scope in which the anonymous union is declared.
3365         Invalid = true;
3366       } else {
3367         // C++ [class.union]p2:
3368         //   For the purpose of name lookup, after the anonymous union
3369         //   definition, the members of the anonymous union are
3370         //   considered to have been defined in the scope in which the
3371         //   anonymous union is declared.
3372         unsigned OldChainingSize = Chaining.size();
3373         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3374           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3375                PE = IF->chain_end(); PI != PE; ++PI)
3376             Chaining.push_back(*PI);
3377         else
3378           Chaining.push_back(VD);
3379 
3380         assert(Chaining.size() >= 2);
3381         NamedDecl **NamedChain =
3382           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3383         for (unsigned i = 0; i < Chaining.size(); i++)
3384           NamedChain[i] = Chaining[i];
3385 
3386         IndirectFieldDecl* IndirectField =
3387           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3388                                     VD->getIdentifier(), VD->getType(),
3389                                     NamedChain, Chaining.size());
3390 
3391         IndirectField->setAccess(AS);
3392         IndirectField->setImplicit();
3393         SemaRef.PushOnScopeChains(IndirectField, S);
3394 
3395         // That includes picking up the appropriate access specifier.
3396         if (AS != AS_none) IndirectField->setAccess(AS);
3397 
3398         Chaining.resize(OldChainingSize);
3399       }
3400     }
3401   }
3402 
3403   return Invalid;
3404 }
3405 
3406 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3407 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3408 /// illegal input values are mapped to SC_None.
3409 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3410 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3411   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3412   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3413          "Parser allowed 'typedef' as storage class VarDecl.");
3414   switch (StorageClassSpec) {
3415   case DeclSpec::SCS_unspecified:    return SC_None;
3416   case DeclSpec::SCS_extern:
3417     if (DS.isExternInLinkageSpec())
3418       return SC_None;
3419     return SC_Extern;
3420   case DeclSpec::SCS_static:         return SC_Static;
3421   case DeclSpec::SCS_auto:           return SC_Auto;
3422   case DeclSpec::SCS_register:       return SC_Register;
3423   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3424     // Illegal SCSs map to None: error reporting is up to the caller.
3425   case DeclSpec::SCS_mutable:        // Fall through.
3426   case DeclSpec::SCS_typedef:        return SC_None;
3427   }
3428   llvm_unreachable("unknown storage class specifier");
3429 }
3430 
3431 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3432 /// anonymous structure or union. Anonymous unions are a C++ feature
3433 /// (C++ [class.union]) and a C11 feature; anonymous structures
3434 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)3435 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3436                                              AccessSpecifier AS,
3437                                              RecordDecl *Record) {
3438   DeclContext *Owner = Record->getDeclContext();
3439 
3440   // Diagnose whether this anonymous struct/union is an extension.
3441   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3442     Diag(Record->getLocation(), diag::ext_anonymous_union);
3443   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3444     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3445   else if (!Record->isUnion() && !getLangOpts().C11)
3446     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3447 
3448   // C and C++ require different kinds of checks for anonymous
3449   // structs/unions.
3450   bool Invalid = false;
3451   if (getLangOpts().CPlusPlus) {
3452     const char* PrevSpec = 0;
3453     unsigned DiagID;
3454     if (Record->isUnion()) {
3455       // C++ [class.union]p6:
3456       //   Anonymous unions declared in a named namespace or in the
3457       //   global namespace shall be declared static.
3458       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3459           (isa<TranslationUnitDecl>(Owner) ||
3460            (isa<NamespaceDecl>(Owner) &&
3461             cast<NamespaceDecl>(Owner)->getDeclName()))) {
3462         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3463           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3464 
3465         // Recover by adding 'static'.
3466         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3467                                PrevSpec, DiagID);
3468       }
3469       // C++ [class.union]p6:
3470       //   A storage class is not allowed in a declaration of an
3471       //   anonymous union in a class scope.
3472       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3473                isa<RecordDecl>(Owner)) {
3474         Diag(DS.getStorageClassSpecLoc(),
3475              diag::err_anonymous_union_with_storage_spec)
3476           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3477 
3478         // Recover by removing the storage specifier.
3479         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3480                                SourceLocation(),
3481                                PrevSpec, DiagID);
3482       }
3483     }
3484 
3485     // Ignore const/volatile/restrict qualifiers.
3486     if (DS.getTypeQualifiers()) {
3487       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3488         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3489           << Record->isUnion() << "const"
3490           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3491       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3492         Diag(DS.getVolatileSpecLoc(),
3493              diag::ext_anonymous_struct_union_qualified)
3494           << Record->isUnion() << "volatile"
3495           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3496       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3497         Diag(DS.getRestrictSpecLoc(),
3498              diag::ext_anonymous_struct_union_qualified)
3499           << Record->isUnion() << "restrict"
3500           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3501       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3502         Diag(DS.getAtomicSpecLoc(),
3503              diag::ext_anonymous_struct_union_qualified)
3504           << Record->isUnion() << "_Atomic"
3505           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3506 
3507       DS.ClearTypeQualifiers();
3508     }
3509 
3510     // C++ [class.union]p2:
3511     //   The member-specification of an anonymous union shall only
3512     //   define non-static data members. [Note: nested types and
3513     //   functions cannot be declared within an anonymous union. ]
3514     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3515                                  MemEnd = Record->decls_end();
3516          Mem != MemEnd; ++Mem) {
3517       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3518         // C++ [class.union]p3:
3519         //   An anonymous union shall not have private or protected
3520         //   members (clause 11).
3521         assert(FD->getAccess() != AS_none);
3522         if (FD->getAccess() != AS_public) {
3523           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3524             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3525           Invalid = true;
3526         }
3527 
3528         // C++ [class.union]p1
3529         //   An object of a class with a non-trivial constructor, a non-trivial
3530         //   copy constructor, a non-trivial destructor, or a non-trivial copy
3531         //   assignment operator cannot be a member of a union, nor can an
3532         //   array of such objects.
3533         if (CheckNontrivialField(FD))
3534           Invalid = true;
3535       } else if ((*Mem)->isImplicit()) {
3536         // Any implicit members are fine.
3537       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3538         // This is a type that showed up in an
3539         // elaborated-type-specifier inside the anonymous struct or
3540         // union, but which actually declares a type outside of the
3541         // anonymous struct or union. It's okay.
3542       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3543         if (!MemRecord->isAnonymousStructOrUnion() &&
3544             MemRecord->getDeclName()) {
3545           // Visual C++ allows type definition in anonymous struct or union.
3546           if (getLangOpts().MicrosoftExt)
3547             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3548               << (int)Record->isUnion();
3549           else {
3550             // This is a nested type declaration.
3551             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3552               << (int)Record->isUnion();
3553             Invalid = true;
3554           }
3555         } else {
3556           // This is an anonymous type definition within another anonymous type.
3557           // This is a popular extension, provided by Plan9, MSVC and GCC, but
3558           // not part of standard C++.
3559           Diag(MemRecord->getLocation(),
3560                diag::ext_anonymous_record_with_anonymous_type)
3561             << (int)Record->isUnion();
3562         }
3563       } else if (isa<AccessSpecDecl>(*Mem)) {
3564         // Any access specifier is fine.
3565       } else {
3566         // We have something that isn't a non-static data
3567         // member. Complain about it.
3568         unsigned DK = diag::err_anonymous_record_bad_member;
3569         if (isa<TypeDecl>(*Mem))
3570           DK = diag::err_anonymous_record_with_type;
3571         else if (isa<FunctionDecl>(*Mem))
3572           DK = diag::err_anonymous_record_with_function;
3573         else if (isa<VarDecl>(*Mem))
3574           DK = diag::err_anonymous_record_with_static;
3575 
3576         // Visual C++ allows type definition in anonymous struct or union.
3577         if (getLangOpts().MicrosoftExt &&
3578             DK == diag::err_anonymous_record_with_type)
3579           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3580             << (int)Record->isUnion();
3581         else {
3582           Diag((*Mem)->getLocation(), DK)
3583               << (int)Record->isUnion();
3584           Invalid = true;
3585         }
3586       }
3587     }
3588   }
3589 
3590   if (!Record->isUnion() && !Owner->isRecord()) {
3591     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3592       << (int)getLangOpts().CPlusPlus;
3593     Invalid = true;
3594   }
3595 
3596   // Mock up a declarator.
3597   Declarator Dc(DS, Declarator::MemberContext);
3598   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3599   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3600 
3601   // Create a declaration for this anonymous struct/union.
3602   NamedDecl *Anon = 0;
3603   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3604     Anon = FieldDecl::Create(Context, OwningClass,
3605                              DS.getLocStart(),
3606                              Record->getLocation(),
3607                              /*IdentifierInfo=*/0,
3608                              Context.getTypeDeclType(Record),
3609                              TInfo,
3610                              /*BitWidth=*/0, /*Mutable=*/false,
3611                              /*InitStyle=*/ICIS_NoInit);
3612     Anon->setAccess(AS);
3613     if (getLangOpts().CPlusPlus)
3614       FieldCollector->Add(cast<FieldDecl>(Anon));
3615   } else {
3616     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3617     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3618     if (SCSpec == DeclSpec::SCS_mutable) {
3619       // mutable can only appear on non-static class members, so it's always
3620       // an error here
3621       Diag(Record->getLocation(), diag::err_mutable_nonmember);
3622       Invalid = true;
3623       SC = SC_None;
3624     }
3625 
3626     Anon = VarDecl::Create(Context, Owner,
3627                            DS.getLocStart(),
3628                            Record->getLocation(), /*IdentifierInfo=*/0,
3629                            Context.getTypeDeclType(Record),
3630                            TInfo, SC);
3631 
3632     // Default-initialize the implicit variable. This initialization will be
3633     // trivial in almost all cases, except if a union member has an in-class
3634     // initializer:
3635     //   union { int n = 0; };
3636     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3637   }
3638   Anon->setImplicit();
3639 
3640   // Add the anonymous struct/union object to the current
3641   // context. We'll be referencing this object when we refer to one of
3642   // its members.
3643   Owner->addDecl(Anon);
3644 
3645   // Inject the members of the anonymous struct/union into the owning
3646   // context and into the identifier resolver chain for name lookup
3647   // purposes.
3648   SmallVector<NamedDecl*, 2> Chain;
3649   Chain.push_back(Anon);
3650 
3651   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3652                                           Chain, false))
3653     Invalid = true;
3654 
3655   // Mark this as an anonymous struct/union type. Note that we do not
3656   // do this until after we have already checked and injected the
3657   // members of this anonymous struct/union type, because otherwise
3658   // the members could be injected twice: once by DeclContext when it
3659   // builds its lookup table, and once by
3660   // InjectAnonymousStructOrUnionMembers.
3661   Record->setAnonymousStructOrUnion(true);
3662 
3663   if (Invalid)
3664     Anon->setInvalidDecl();
3665 
3666   return Anon;
3667 }
3668 
3669 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3670 /// Microsoft C anonymous structure.
3671 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3672 /// Example:
3673 ///
3674 /// struct A { int a; };
3675 /// struct B { struct A; int b; };
3676 ///
3677 /// void foo() {
3678 ///   B var;
3679 ///   var.a = 3;
3680 /// }
3681 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3682 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3683                                            RecordDecl *Record) {
3684 
3685   // If there is no Record, get the record via the typedef.
3686   if (!Record)
3687     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3688 
3689   // Mock up a declarator.
3690   Declarator Dc(DS, Declarator::TypeNameContext);
3691   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3692   assert(TInfo && "couldn't build declarator info for anonymous struct");
3693 
3694   // Create a declaration for this anonymous struct.
3695   NamedDecl* Anon = FieldDecl::Create(Context,
3696                              cast<RecordDecl>(CurContext),
3697                              DS.getLocStart(),
3698                              DS.getLocStart(),
3699                              /*IdentifierInfo=*/0,
3700                              Context.getTypeDeclType(Record),
3701                              TInfo,
3702                              /*BitWidth=*/0, /*Mutable=*/false,
3703                              /*InitStyle=*/ICIS_NoInit);
3704   Anon->setImplicit();
3705 
3706   // Add the anonymous struct object to the current context.
3707   CurContext->addDecl(Anon);
3708 
3709   // Inject the members of the anonymous struct into the current
3710   // context and into the identifier resolver chain for name lookup
3711   // purposes.
3712   SmallVector<NamedDecl*, 2> Chain;
3713   Chain.push_back(Anon);
3714 
3715   RecordDecl *RecordDef = Record->getDefinition();
3716   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3717                                                         RecordDef, AS_none,
3718                                                         Chain, true))
3719     Anon->setInvalidDecl();
3720 
3721   return Anon;
3722 }
3723 
3724 /// GetNameForDeclarator - Determine the full declaration name for the
3725 /// given Declarator.
GetNameForDeclarator(Declarator & D)3726 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3727   return GetNameFromUnqualifiedId(D.getName());
3728 }
3729 
3730 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3731 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)3732 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3733   DeclarationNameInfo NameInfo;
3734   NameInfo.setLoc(Name.StartLocation);
3735 
3736   switch (Name.getKind()) {
3737 
3738   case UnqualifiedId::IK_ImplicitSelfParam:
3739   case UnqualifiedId::IK_Identifier:
3740     NameInfo.setName(Name.Identifier);
3741     NameInfo.setLoc(Name.StartLocation);
3742     return NameInfo;
3743 
3744   case UnqualifiedId::IK_OperatorFunctionId:
3745     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3746                                            Name.OperatorFunctionId.Operator));
3747     NameInfo.setLoc(Name.StartLocation);
3748     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3749       = Name.OperatorFunctionId.SymbolLocations[0];
3750     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3751       = Name.EndLocation.getRawEncoding();
3752     return NameInfo;
3753 
3754   case UnqualifiedId::IK_LiteralOperatorId:
3755     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3756                                                            Name.Identifier));
3757     NameInfo.setLoc(Name.StartLocation);
3758     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3759     return NameInfo;
3760 
3761   case UnqualifiedId::IK_ConversionFunctionId: {
3762     TypeSourceInfo *TInfo;
3763     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3764     if (Ty.isNull())
3765       return DeclarationNameInfo();
3766     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3767                                                Context.getCanonicalType(Ty)));
3768     NameInfo.setLoc(Name.StartLocation);
3769     NameInfo.setNamedTypeInfo(TInfo);
3770     return NameInfo;
3771   }
3772 
3773   case UnqualifiedId::IK_ConstructorName: {
3774     TypeSourceInfo *TInfo;
3775     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3776     if (Ty.isNull())
3777       return DeclarationNameInfo();
3778     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3779                                               Context.getCanonicalType(Ty)));
3780     NameInfo.setLoc(Name.StartLocation);
3781     NameInfo.setNamedTypeInfo(TInfo);
3782     return NameInfo;
3783   }
3784 
3785   case UnqualifiedId::IK_ConstructorTemplateId: {
3786     // In well-formed code, we can only have a constructor
3787     // template-id that refers to the current context, so go there
3788     // to find the actual type being constructed.
3789     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3790     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3791       return DeclarationNameInfo();
3792 
3793     // Determine the type of the class being constructed.
3794     QualType CurClassType = Context.getTypeDeclType(CurClass);
3795 
3796     // FIXME: Check two things: that the template-id names the same type as
3797     // CurClassType, and that the template-id does not occur when the name
3798     // was qualified.
3799 
3800     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3801                                     Context.getCanonicalType(CurClassType)));
3802     NameInfo.setLoc(Name.StartLocation);
3803     // FIXME: should we retrieve TypeSourceInfo?
3804     NameInfo.setNamedTypeInfo(0);
3805     return NameInfo;
3806   }
3807 
3808   case UnqualifiedId::IK_DestructorName: {
3809     TypeSourceInfo *TInfo;
3810     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3811     if (Ty.isNull())
3812       return DeclarationNameInfo();
3813     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3814                                               Context.getCanonicalType(Ty)));
3815     NameInfo.setLoc(Name.StartLocation);
3816     NameInfo.setNamedTypeInfo(TInfo);
3817     return NameInfo;
3818   }
3819 
3820   case UnqualifiedId::IK_TemplateId: {
3821     TemplateName TName = Name.TemplateId->Template.get();
3822     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3823     return Context.getNameForTemplate(TName, TNameLoc);
3824   }
3825 
3826   } // switch (Name.getKind())
3827 
3828   llvm_unreachable("Unknown name kind");
3829 }
3830 
getCoreType(QualType Ty)3831 static QualType getCoreType(QualType Ty) {
3832   do {
3833     if (Ty->isPointerType() || Ty->isReferenceType())
3834       Ty = Ty->getPointeeType();
3835     else if (Ty->isArrayType())
3836       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3837     else
3838       return Ty.withoutLocalFastQualifiers();
3839   } while (true);
3840 }
3841 
3842 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3843 /// and Definition have "nearly" matching parameters. This heuristic is
3844 /// used to improve diagnostics in the case where an out-of-line function
3845 /// definition doesn't match any declaration within the class or namespace.
3846 /// Also sets Params to the list of indices to the parameters that differ
3847 /// between the declaration and the definition. If hasSimilarParameters
3848 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)3849 static bool hasSimilarParameters(ASTContext &Context,
3850                                      FunctionDecl *Declaration,
3851                                      FunctionDecl *Definition,
3852                                      SmallVectorImpl<unsigned> &Params) {
3853   Params.clear();
3854   if (Declaration->param_size() != Definition->param_size())
3855     return false;
3856   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3857     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3858     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3859 
3860     // The parameter types are identical
3861     if (Context.hasSameType(DefParamTy, DeclParamTy))
3862       continue;
3863 
3864     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3865     QualType DefParamBaseTy = getCoreType(DefParamTy);
3866     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3867     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3868 
3869     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3870         (DeclTyName && DeclTyName == DefTyName))
3871       Params.push_back(Idx);
3872     else  // The two parameters aren't even close
3873       return false;
3874   }
3875 
3876   return true;
3877 }
3878 
3879 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3880 /// declarator needs to be rebuilt in the current instantiation.
3881 /// Any bits of declarator which appear before the name are valid for
3882 /// consideration here.  That's specifically the type in the decl spec
3883 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)3884 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3885                                                     DeclarationName Name) {
3886   // The types we specifically need to rebuild are:
3887   //   - typenames, typeofs, and decltypes
3888   //   - types which will become injected class names
3889   // Of course, we also need to rebuild any type referencing such a
3890   // type.  It's safest to just say "dependent", but we call out a
3891   // few cases here.
3892 
3893   DeclSpec &DS = D.getMutableDeclSpec();
3894   switch (DS.getTypeSpecType()) {
3895   case DeclSpec::TST_typename:
3896   case DeclSpec::TST_typeofType:
3897   case DeclSpec::TST_underlyingType:
3898   case DeclSpec::TST_atomic: {
3899     // Grab the type from the parser.
3900     TypeSourceInfo *TSI = 0;
3901     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3902     if (T.isNull() || !T->isDependentType()) break;
3903 
3904     // Make sure there's a type source info.  This isn't really much
3905     // of a waste; most dependent types should have type source info
3906     // attached already.
3907     if (!TSI)
3908       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3909 
3910     // Rebuild the type in the current instantiation.
3911     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3912     if (!TSI) return true;
3913 
3914     // Store the new type back in the decl spec.
3915     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3916     DS.UpdateTypeRep(LocType);
3917     break;
3918   }
3919 
3920   case DeclSpec::TST_decltype:
3921   case DeclSpec::TST_typeofExpr: {
3922     Expr *E = DS.getRepAsExpr();
3923     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3924     if (Result.isInvalid()) return true;
3925     DS.UpdateExprRep(Result.get());
3926     break;
3927   }
3928 
3929   default:
3930     // Nothing to do for these decl specs.
3931     break;
3932   }
3933 
3934   // It doesn't matter what order we do this in.
3935   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3936     DeclaratorChunk &Chunk = D.getTypeObject(I);
3937 
3938     // The only type information in the declarator which can come
3939     // before the declaration name is the base type of a member
3940     // pointer.
3941     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3942       continue;
3943 
3944     // Rebuild the scope specifier in-place.
3945     CXXScopeSpec &SS = Chunk.Mem.Scope();
3946     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3947       return true;
3948   }
3949 
3950   return false;
3951 }
3952 
ActOnDeclarator(Scope * S,Declarator & D)3953 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3954   D.setFunctionDefinitionKind(FDK_Declaration);
3955   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3956 
3957   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3958       Dcl && Dcl->getDeclContext()->isFileContext())
3959     Dcl->setTopLevelDeclInObjCContainer();
3960 
3961   return Dcl;
3962 }
3963 
3964 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3965 ///   If T is the name of a class, then each of the following shall have a
3966 ///   name different from T:
3967 ///     - every static data member of class T;
3968 ///     - every member function of class T
3969 ///     - every member of class T that is itself a type;
3970 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)3971 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3972                                    DeclarationNameInfo NameInfo) {
3973   DeclarationName Name = NameInfo.getName();
3974 
3975   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3976     if (Record->getIdentifier() && Record->getDeclName() == Name) {
3977       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3978       return true;
3979     }
3980 
3981   return false;
3982 }
3983 
3984 /// \brief Diagnose a declaration whose declarator-id has the given
3985 /// nested-name-specifier.
3986 ///
3987 /// \param SS The nested-name-specifier of the declarator-id.
3988 ///
3989 /// \param DC The declaration context to which the nested-name-specifier
3990 /// resolves.
3991 ///
3992 /// \param Name The name of the entity being declared.
3993 ///
3994 /// \param Loc The location of the name of the entity being declared.
3995 ///
3996 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)3997 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3998                                         DeclarationName Name,
3999                                       SourceLocation Loc) {
4000   DeclContext *Cur = CurContext;
4001   while (isa<LinkageSpecDecl>(Cur))
4002     Cur = Cur->getParent();
4003 
4004   // C++ [dcl.meaning]p1:
4005   //   A declarator-id shall not be qualified except for the definition
4006   //   of a member function (9.3) or static data member (9.4) outside of
4007   //   its class, the definition or explicit instantiation of a function
4008   //   or variable member of a namespace outside of its namespace, or the
4009   //   definition of an explicit specialization outside of its namespace,
4010   //   or the declaration of a friend function that is a member of
4011   //   another class or namespace (11.3). [...]
4012 
4013   // The user provided a superfluous scope specifier that refers back to the
4014   // class or namespaces in which the entity is already declared.
4015   //
4016   // class X {
4017   //   void X::f();
4018   // };
4019   if (Cur->Equals(DC)) {
4020     Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4021                                    : diag::err_member_extra_qualification)
4022       << Name << FixItHint::CreateRemoval(SS.getRange());
4023     SS.clear();
4024     return false;
4025   }
4026 
4027   // Check whether the qualifying scope encloses the scope of the original
4028   // declaration.
4029   if (!Cur->Encloses(DC)) {
4030     if (Cur->isRecord())
4031       Diag(Loc, diag::err_member_qualification)
4032         << Name << SS.getRange();
4033     else if (isa<TranslationUnitDecl>(DC))
4034       Diag(Loc, diag::err_invalid_declarator_global_scope)
4035         << Name << SS.getRange();
4036     else if (isa<FunctionDecl>(Cur))
4037       Diag(Loc, diag::err_invalid_declarator_in_function)
4038         << Name << SS.getRange();
4039     else
4040       Diag(Loc, diag::err_invalid_declarator_scope)
4041       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4042 
4043     return true;
4044   }
4045 
4046   if (Cur->isRecord()) {
4047     // Cannot qualify members within a class.
4048     Diag(Loc, diag::err_member_qualification)
4049       << Name << SS.getRange();
4050     SS.clear();
4051 
4052     // C++ constructors and destructors with incorrect scopes can break
4053     // our AST invariants by having the wrong underlying types. If
4054     // that's the case, then drop this declaration entirely.
4055     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4056          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4057         !Context.hasSameType(Name.getCXXNameType(),
4058                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4059       return true;
4060 
4061     return false;
4062   }
4063 
4064   // C++11 [dcl.meaning]p1:
4065   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4066   //   not begin with a decltype-specifer"
4067   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4068   while (SpecLoc.getPrefix())
4069     SpecLoc = SpecLoc.getPrefix();
4070   if (dyn_cast_or_null<DecltypeType>(
4071         SpecLoc.getNestedNameSpecifier()->getAsType()))
4072     Diag(Loc, diag::err_decltype_in_declarator)
4073       << SpecLoc.getTypeLoc().getSourceRange();
4074 
4075   return false;
4076 }
4077 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4078 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4079                                   MultiTemplateParamsArg TemplateParamLists) {
4080   // TODO: consider using NameInfo for diagnostic.
4081   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4082   DeclarationName Name = NameInfo.getName();
4083 
4084   // All of these full declarators require an identifier.  If it doesn't have
4085   // one, the ParsedFreeStandingDeclSpec action should be used.
4086   if (!Name) {
4087     if (!D.isInvalidType())  // Reject this if we think it is valid.
4088       Diag(D.getDeclSpec().getLocStart(),
4089            diag::err_declarator_need_ident)
4090         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4091     return 0;
4092   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4093     return 0;
4094 
4095   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4096   // we find one that is.
4097   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4098          (S->getFlags() & Scope::TemplateParamScope) != 0)
4099     S = S->getParent();
4100 
4101   DeclContext *DC = CurContext;
4102   if (D.getCXXScopeSpec().isInvalid())
4103     D.setInvalidType();
4104   else if (D.getCXXScopeSpec().isSet()) {
4105     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4106                                         UPPC_DeclarationQualifier))
4107       return 0;
4108 
4109     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4110     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4111     if (!DC) {
4112       // If we could not compute the declaration context, it's because the
4113       // declaration context is dependent but does not refer to a class,
4114       // class template, or class template partial specialization. Complain
4115       // and return early, to avoid the coming semantic disaster.
4116       Diag(D.getIdentifierLoc(),
4117            diag::err_template_qualified_declarator_no_match)
4118         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4119         << D.getCXXScopeSpec().getRange();
4120       return 0;
4121     }
4122     bool IsDependentContext = DC->isDependentContext();
4123 
4124     if (!IsDependentContext &&
4125         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4126       return 0;
4127 
4128     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4129       Diag(D.getIdentifierLoc(),
4130            diag::err_member_def_undefined_record)
4131         << Name << DC << D.getCXXScopeSpec().getRange();
4132       D.setInvalidType();
4133     } else if (!D.getDeclSpec().isFriendSpecified()) {
4134       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4135                                       Name, D.getIdentifierLoc())) {
4136         if (DC->isRecord())
4137           return 0;
4138 
4139         D.setInvalidType();
4140       }
4141     }
4142 
4143     // Check whether we need to rebuild the type of the given
4144     // declaration in the current instantiation.
4145     if (EnteringContext && IsDependentContext &&
4146         TemplateParamLists.size() != 0) {
4147       ContextRAII SavedContext(*this, DC);
4148       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4149         D.setInvalidType();
4150     }
4151   }
4152 
4153   if (DiagnoseClassNameShadow(DC, NameInfo))
4154     // If this is a typedef, we'll end up spewing multiple diagnostics.
4155     // Just return early; it's safer.
4156     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4157       return 0;
4158 
4159   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4160   QualType R = TInfo->getType();
4161 
4162   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4163                                       UPPC_DeclarationType))
4164     D.setInvalidType();
4165 
4166   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4167                         ForRedeclaration);
4168 
4169   // See if this is a redefinition of a variable in the same scope.
4170   if (!D.getCXXScopeSpec().isSet()) {
4171     bool IsLinkageLookup = false;
4172 
4173     // If the declaration we're planning to build will be a function
4174     // or object with linkage, then look for another declaration with
4175     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4176     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4177       /* Do nothing*/;
4178     else if (R->isFunctionType()) {
4179       if (CurContext->isFunctionOrMethod() ||
4180           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4181         IsLinkageLookup = true;
4182     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4183       IsLinkageLookup = true;
4184     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4185              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4186       IsLinkageLookup = true;
4187 
4188     if (IsLinkageLookup)
4189       Previous.clear(LookupRedeclarationWithLinkage);
4190 
4191     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4192   } else { // Something like "int foo::x;"
4193     LookupQualifiedName(Previous, DC);
4194 
4195     // C++ [dcl.meaning]p1:
4196     //   When the declarator-id is qualified, the declaration shall refer to a
4197     //  previously declared member of the class or namespace to which the
4198     //  qualifier refers (or, in the case of a namespace, of an element of the
4199     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4200     //  thereof; [...]
4201     //
4202     // Note that we already checked the context above, and that we do not have
4203     // enough information to make sure that Previous contains the declaration
4204     // we want to match. For example, given:
4205     //
4206     //   class X {
4207     //     void f();
4208     //     void f(float);
4209     //   };
4210     //
4211     //   void X::f(int) { } // ill-formed
4212     //
4213     // In this case, Previous will point to the overload set
4214     // containing the two f's declared in X, but neither of them
4215     // matches.
4216 
4217     // C++ [dcl.meaning]p1:
4218     //   [...] the member shall not merely have been introduced by a
4219     //   using-declaration in the scope of the class or namespace nominated by
4220     //   the nested-name-specifier of the declarator-id.
4221     RemoveUsingDecls(Previous);
4222   }
4223 
4224   if (Previous.isSingleResult() &&
4225       Previous.getFoundDecl()->isTemplateParameter()) {
4226     // Maybe we will complain about the shadowed template parameter.
4227     if (!D.isInvalidType())
4228       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4229                                       Previous.getFoundDecl());
4230 
4231     // Just pretend that we didn't see the previous declaration.
4232     Previous.clear();
4233   }
4234 
4235   // In C++, the previous declaration we find might be a tag type
4236   // (class or enum). In this case, the new declaration will hide the
4237   // tag type. Note that this does does not apply if we're declaring a
4238   // typedef (C++ [dcl.typedef]p4).
4239   if (Previous.isSingleTagDecl() &&
4240       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4241     Previous.clear();
4242 
4243   // Check that there are no default arguments other than in the parameters
4244   // of a function declaration (C++ only).
4245   if (getLangOpts().CPlusPlus)
4246     CheckExtraCXXDefaultArguments(D);
4247 
4248   NamedDecl *New;
4249 
4250   bool AddToScope = true;
4251   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4252     if (TemplateParamLists.size()) {
4253       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4254       return 0;
4255     }
4256 
4257     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4258   } else if (R->isFunctionType()) {
4259     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4260                                   TemplateParamLists,
4261                                   AddToScope);
4262   } else {
4263     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4264                                   AddToScope);
4265   }
4266 
4267   if (New == 0)
4268     return 0;
4269 
4270   // If this has an identifier and is not an invalid redeclaration or
4271   // function template specialization, add it to the scope stack.
4272   if (New->getDeclName() && AddToScope &&
4273        !(D.isRedeclaration() && New->isInvalidDecl()))
4274     PushOnScopeChains(New, S);
4275 
4276   return New;
4277 }
4278 
4279 /// Helper method to turn variable array types into constant array
4280 /// types in certain situations which would otherwise be errors (for
4281 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4282 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4283                                                     ASTContext &Context,
4284                                                     bool &SizeIsNegative,
4285                                                     llvm::APSInt &Oversized) {
4286   // This method tries to turn a variable array into a constant
4287   // array even when the size isn't an ICE.  This is necessary
4288   // for compatibility with code that depends on gcc's buggy
4289   // constant expression folding, like struct {char x[(int)(char*)2];}
4290   SizeIsNegative = false;
4291   Oversized = 0;
4292 
4293   if (T->isDependentType())
4294     return QualType();
4295 
4296   QualifierCollector Qs;
4297   const Type *Ty = Qs.strip(T);
4298 
4299   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4300     QualType Pointee = PTy->getPointeeType();
4301     QualType FixedType =
4302         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4303                                             Oversized);
4304     if (FixedType.isNull()) return FixedType;
4305     FixedType = Context.getPointerType(FixedType);
4306     return Qs.apply(Context, FixedType);
4307   }
4308   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4309     QualType Inner = PTy->getInnerType();
4310     QualType FixedType =
4311         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4312                                             Oversized);
4313     if (FixedType.isNull()) return FixedType;
4314     FixedType = Context.getParenType(FixedType);
4315     return Qs.apply(Context, FixedType);
4316   }
4317 
4318   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4319   if (!VLATy)
4320     return QualType();
4321   // FIXME: We should probably handle this case
4322   if (VLATy->getElementType()->isVariablyModifiedType())
4323     return QualType();
4324 
4325   llvm::APSInt Res;
4326   if (!VLATy->getSizeExpr() ||
4327       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4328     return QualType();
4329 
4330   // Check whether the array size is negative.
4331   if (Res.isSigned() && Res.isNegative()) {
4332     SizeIsNegative = true;
4333     return QualType();
4334   }
4335 
4336   // Check whether the array is too large to be addressed.
4337   unsigned ActiveSizeBits
4338     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4339                                               Res);
4340   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4341     Oversized = Res;
4342     return QualType();
4343   }
4344 
4345   return Context.getConstantArrayType(VLATy->getElementType(),
4346                                       Res, ArrayType::Normal, 0);
4347 }
4348 
4349 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4350 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4351   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4352     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4353     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4354                                       DstPTL.getPointeeLoc());
4355     DstPTL.setStarLoc(SrcPTL.getStarLoc());
4356     return;
4357   }
4358   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4359     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4360     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4361                                       DstPTL.getInnerLoc());
4362     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4363     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4364     return;
4365   }
4366   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4367   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4368   TypeLoc SrcElemTL = SrcATL.getElementLoc();
4369   TypeLoc DstElemTL = DstATL.getElementLoc();
4370   DstElemTL.initializeFullCopy(SrcElemTL);
4371   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4372   DstATL.setSizeExpr(SrcATL.getSizeExpr());
4373   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4374 }
4375 
4376 /// Helper method to turn variable array types into constant array
4377 /// types in certain situations which would otherwise be errors (for
4378 /// GCC compatibility).
4379 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4380 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4381                                               ASTContext &Context,
4382                                               bool &SizeIsNegative,
4383                                               llvm::APSInt &Oversized) {
4384   QualType FixedTy
4385     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4386                                           SizeIsNegative, Oversized);
4387   if (FixedTy.isNull())
4388     return 0;
4389   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4390   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4391                                     FixedTInfo->getTypeLoc());
4392   return FixedTInfo;
4393 }
4394 
4395 /// \brief Register the given locally-scoped extern "C" declaration so
4396 /// that it can be found later for redeclarations. We include any extern "C"
4397 /// declaration that is not visible in the translation unit here, not just
4398 /// function-scope declarations.
4399 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4400 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4401   if (!getLangOpts().CPlusPlus &&
4402       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4403     // Don't need to track declarations in the TU in C.
4404     return;
4405 
4406   // Note that we have a locally-scoped external with this name.
4407   // FIXME: There can be multiple such declarations if they are functions marked
4408   // __attribute__((overloadable)) declared in function scope in C.
4409   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4410 }
4411 
findLocallyScopedExternCDecl(DeclarationName Name)4412 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4413   if (ExternalSource) {
4414     // Load locally-scoped external decls from the external source.
4415     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4416     SmallVector<NamedDecl *, 4> Decls;
4417     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4418     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4419       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4420         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4421       if (Pos == LocallyScopedExternCDecls.end())
4422         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4423     }
4424   }
4425 
4426   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4427   return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4428 }
4429 
4430 /// \brief Diagnose function specifiers on a declaration of an identifier that
4431 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4432 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4433   // FIXME: We should probably indicate the identifier in question to avoid
4434   // confusion for constructs like "inline int a(), b;"
4435   if (DS.isInlineSpecified())
4436     Diag(DS.getInlineSpecLoc(),
4437          diag::err_inline_non_function);
4438 
4439   if (DS.isVirtualSpecified())
4440     Diag(DS.getVirtualSpecLoc(),
4441          diag::err_virtual_non_function);
4442 
4443   if (DS.isExplicitSpecified())
4444     Diag(DS.getExplicitSpecLoc(),
4445          diag::err_explicit_non_function);
4446 
4447   if (DS.isNoreturnSpecified())
4448     Diag(DS.getNoreturnSpecLoc(),
4449          diag::err_noreturn_non_function);
4450 }
4451 
4452 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4453 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4454                              TypeSourceInfo *TInfo, LookupResult &Previous) {
4455   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4456   if (D.getCXXScopeSpec().isSet()) {
4457     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4458       << D.getCXXScopeSpec().getRange();
4459     D.setInvalidType();
4460     // Pretend we didn't see the scope specifier.
4461     DC = CurContext;
4462     Previous.clear();
4463   }
4464 
4465   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4466 
4467   if (D.getDeclSpec().isConstexprSpecified())
4468     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4469       << 1;
4470 
4471   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4472     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4473       << D.getName().getSourceRange();
4474     return 0;
4475   }
4476 
4477   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4478   if (!NewTD) return 0;
4479 
4480   // Handle attributes prior to checking for duplicates in MergeVarDecl
4481   ProcessDeclAttributes(S, NewTD, D);
4482 
4483   CheckTypedefForVariablyModifiedType(S, NewTD);
4484 
4485   bool Redeclaration = D.isRedeclaration();
4486   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4487   D.setRedeclaration(Redeclaration);
4488   return ND;
4489 }
4490 
4491 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)4492 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4493   // C99 6.7.7p2: If a typedef name specifies a variably modified type
4494   // then it shall have block scope.
4495   // Note that variably modified types must be fixed before merging the decl so
4496   // that redeclarations will match.
4497   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4498   QualType T = TInfo->getType();
4499   if (T->isVariablyModifiedType()) {
4500     getCurFunction()->setHasBranchProtectedScope();
4501 
4502     if (S->getFnParent() == 0) {
4503       bool SizeIsNegative;
4504       llvm::APSInt Oversized;
4505       TypeSourceInfo *FixedTInfo =
4506         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4507                                                       SizeIsNegative,
4508                                                       Oversized);
4509       if (FixedTInfo) {
4510         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4511         NewTD->setTypeSourceInfo(FixedTInfo);
4512       } else {
4513         if (SizeIsNegative)
4514           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4515         else if (T->isVariableArrayType())
4516           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4517         else if (Oversized.getBoolValue())
4518           Diag(NewTD->getLocation(), diag::err_array_too_large)
4519             << Oversized.toString(10);
4520         else
4521           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4522         NewTD->setInvalidDecl();
4523       }
4524     }
4525   }
4526 }
4527 
4528 
4529 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4530 /// declares a typedef-name, either using the 'typedef' type specifier or via
4531 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4532 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4533 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4534                            LookupResult &Previous, bool &Redeclaration) {
4535   // Merge the decl with the existing one if appropriate. If the decl is
4536   // in an outer scope, it isn't the same thing.
4537   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4538                        /*ExplicitInstantiationOrSpecialization=*/false);
4539   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4540   if (!Previous.empty()) {
4541     Redeclaration = true;
4542     MergeTypedefNameDecl(NewTD, Previous);
4543   }
4544 
4545   // If this is the C FILE type, notify the AST context.
4546   if (IdentifierInfo *II = NewTD->getIdentifier())
4547     if (!NewTD->isInvalidDecl() &&
4548         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4549       if (II->isStr("FILE"))
4550         Context.setFILEDecl(NewTD);
4551       else if (II->isStr("jmp_buf"))
4552         Context.setjmp_bufDecl(NewTD);
4553       else if (II->isStr("sigjmp_buf"))
4554         Context.setsigjmp_bufDecl(NewTD);
4555       else if (II->isStr("ucontext_t"))
4556         Context.setucontext_tDecl(NewTD);
4557     }
4558 
4559   return NewTD;
4560 }
4561 
4562 /// \brief Determines whether the given declaration is an out-of-scope
4563 /// previous declaration.
4564 ///
4565 /// This routine should be invoked when name lookup has found a
4566 /// previous declaration (PrevDecl) that is not in the scope where a
4567 /// new declaration by the same name is being introduced. If the new
4568 /// declaration occurs in a local scope, previous declarations with
4569 /// linkage may still be considered previous declarations (C99
4570 /// 6.2.2p4-5, C++ [basic.link]p6).
4571 ///
4572 /// \param PrevDecl the previous declaration found by name
4573 /// lookup
4574 ///
4575 /// \param DC the context in which the new declaration is being
4576 /// declared.
4577 ///
4578 /// \returns true if PrevDecl is an out-of-scope previous declaration
4579 /// for a new delcaration with the same name.
4580 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4581 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4582                                 ASTContext &Context) {
4583   if (!PrevDecl)
4584     return false;
4585 
4586   if (!PrevDecl->hasLinkage())
4587     return false;
4588 
4589   if (Context.getLangOpts().CPlusPlus) {
4590     // C++ [basic.link]p6:
4591     //   If there is a visible declaration of an entity with linkage
4592     //   having the same name and type, ignoring entities declared
4593     //   outside the innermost enclosing namespace scope, the block
4594     //   scope declaration declares that same entity and receives the
4595     //   linkage of the previous declaration.
4596     DeclContext *OuterContext = DC->getRedeclContext();
4597     if (!OuterContext->isFunctionOrMethod())
4598       // This rule only applies to block-scope declarations.
4599       return false;
4600 
4601     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4602     if (PrevOuterContext->isRecord())
4603       // We found a member function: ignore it.
4604       return false;
4605 
4606     // Find the innermost enclosing namespace for the new and
4607     // previous declarations.
4608     OuterContext = OuterContext->getEnclosingNamespaceContext();
4609     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4610 
4611     // The previous declaration is in a different namespace, so it
4612     // isn't the same function.
4613     if (!OuterContext->Equals(PrevOuterContext))
4614       return false;
4615   }
4616 
4617   return true;
4618 }
4619 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4620 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4621   CXXScopeSpec &SS = D.getCXXScopeSpec();
4622   if (!SS.isSet()) return;
4623   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4624 }
4625 
inferObjCARCLifetime(ValueDecl * decl)4626 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4627   QualType type = decl->getType();
4628   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4629   if (lifetime == Qualifiers::OCL_Autoreleasing) {
4630     // Various kinds of declaration aren't allowed to be __autoreleasing.
4631     unsigned kind = -1U;
4632     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4633       if (var->hasAttr<BlocksAttr>())
4634         kind = 0; // __block
4635       else if (!var->hasLocalStorage())
4636         kind = 1; // global
4637     } else if (isa<ObjCIvarDecl>(decl)) {
4638       kind = 3; // ivar
4639     } else if (isa<FieldDecl>(decl)) {
4640       kind = 2; // field
4641     }
4642 
4643     if (kind != -1U) {
4644       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4645         << kind;
4646     }
4647   } else if (lifetime == Qualifiers::OCL_None) {
4648     // Try to infer lifetime.
4649     if (!type->isObjCLifetimeType())
4650       return false;
4651 
4652     lifetime = type->getObjCARCImplicitLifetime();
4653     type = Context.getLifetimeQualifiedType(type, lifetime);
4654     decl->setType(type);
4655   }
4656 
4657   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4658     // Thread-local variables cannot have lifetime.
4659     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4660         var->getTLSKind()) {
4661       Diag(var->getLocation(), diag::err_arc_thread_ownership)
4662         << var->getType();
4663       return true;
4664     }
4665   }
4666 
4667   return false;
4668 }
4669 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)4670 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4671   // 'weak' only applies to declarations with external linkage.
4672   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4673     if (!ND.isExternallyVisible()) {
4674       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4675       ND.dropAttr<WeakAttr>();
4676     }
4677   }
4678   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4679     if (ND.isExternallyVisible()) {
4680       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4681       ND.dropAttr<WeakRefAttr>();
4682     }
4683   }
4684 
4685   // 'selectany' only applies to externally visible varable declarations.
4686   // It does not apply to functions.
4687   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4688     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4689       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4690       ND.dropAttr<SelectAnyAttr>();
4691     }
4692   }
4693 }
4694 
4695 /// Given that we are within the definition of the given function,
4696 /// will that definition behave like C99's 'inline', where the
4697 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)4698 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4699   // Try to avoid calling GetGVALinkageForFunction.
4700 
4701   // All cases of this require the 'inline' keyword.
4702   if (!FD->isInlined()) return false;
4703 
4704   // This is only possible in C++ with the gnu_inline attribute.
4705   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4706     return false;
4707 
4708   // Okay, go ahead and call the relatively-more-expensive function.
4709 
4710 #ifndef NDEBUG
4711   // AST quite reasonably asserts that it's working on a function
4712   // definition.  We don't really have a way to tell it that we're
4713   // currently defining the function, so just lie to it in +Asserts
4714   // builds.  This is an awful hack.
4715   FD->setLazyBody(1);
4716 #endif
4717 
4718   bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4719 
4720 #ifndef NDEBUG
4721   FD->setLazyBody(0);
4722 #endif
4723 
4724   return isC99Inline;
4725 }
4726 
4727 /// Determine whether a variable is extern "C" prior to attaching
4728 /// an initializer. We can't just call isExternC() here, because that
4729 /// will also compute and cache whether the declaration is externally
4730 /// visible, which might change when we attach the initializer.
4731 ///
4732 /// This can only be used if the declaration is known to not be a
4733 /// redeclaration of an internal linkage declaration.
4734 ///
4735 /// For instance:
4736 ///
4737 ///   auto x = []{};
4738 ///
4739 /// Attaching the initializer here makes this declaration not externally
4740 /// visible, because its type has internal linkage.
4741 ///
4742 /// FIXME: This is a hack.
4743 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)4744 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4745   if (S.getLangOpts().CPlusPlus) {
4746     // In C++, the overloadable attribute negates the effects of extern "C".
4747     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4748       return false;
4749   }
4750   return D->isExternC();
4751 }
4752 
shouldConsiderLinkage(const VarDecl * VD)4753 static bool shouldConsiderLinkage(const VarDecl *VD) {
4754   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4755   if (DC->isFunctionOrMethod())
4756     return VD->hasExternalStorage();
4757   if (DC->isFileContext())
4758     return true;
4759   if (DC->isRecord())
4760     return false;
4761   llvm_unreachable("Unexpected context");
4762 }
4763 
shouldConsiderLinkage(const FunctionDecl * FD)4764 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4765   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4766   if (DC->isFileContext() || DC->isFunctionOrMethod())
4767     return true;
4768   if (DC->isRecord())
4769     return false;
4770   llvm_unreachable("Unexpected context");
4771 }
4772 
HandleVariableRedeclaration(Decl * D,CXXScopeSpec & SS)4773 bool Sema::HandleVariableRedeclaration(Decl *D, CXXScopeSpec &SS) {
4774   // If this is a redeclaration of a variable template or a forward
4775   // declaration of a variable template partial specialization
4776   // with nested name specifier, complain.
4777 
4778   if (D && SS.isNotEmpty() &&
4779       (isa<VarTemplateDecl>(D) ||
4780        isa<VarTemplatePartialSpecializationDecl>(D))) {
4781     Diag(SS.getBeginLoc(), diag::err_forward_var_nested_name_specifier)
4782       << isa<VarTemplatePartialSpecializationDecl>(D) << SS.getRange();
4783     return true;
4784   }
4785   return false;
4786 }
4787 
4788 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)4789 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4790                               TypeSourceInfo *TInfo, LookupResult &Previous,
4791                               MultiTemplateParamsArg TemplateParamLists,
4792                               bool &AddToScope) {
4793   QualType R = TInfo->getType();
4794   DeclarationName Name = GetNameForDeclarator(D).getName();
4795 
4796   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4797   VarDecl::StorageClass SC =
4798     StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4799 
4800   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4801     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4802     // half array type (unless the cl_khr_fp16 extension is enabled).
4803     if (Context.getBaseElementType(R)->isHalfType()) {
4804       Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4805       D.setInvalidType();
4806     }
4807   }
4808 
4809   if (SCSpec == DeclSpec::SCS_mutable) {
4810     // mutable can only appear on non-static class members, so it's always
4811     // an error here
4812     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4813     D.setInvalidType();
4814     SC = SC_None;
4815   }
4816 
4817   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4818       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4819                               D.getDeclSpec().getStorageClassSpecLoc())) {
4820     // In C++11, the 'register' storage class specifier is deprecated.
4821     // Suppress the warning in system macros, it's used in macros in some
4822     // popular C system headers, such as in glibc's htonl() macro.
4823     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4824          diag::warn_deprecated_register)
4825       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4826   }
4827 
4828   IdentifierInfo *II = Name.getAsIdentifierInfo();
4829   if (!II) {
4830     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4831       << Name;
4832     return 0;
4833   }
4834 
4835   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4836 
4837   if (!DC->isRecord() && S->getFnParent() == 0) {
4838     // C99 6.9p2: The storage-class specifiers auto and register shall not
4839     // appear in the declaration specifiers in an external declaration.
4840     if (SC == SC_Auto || SC == SC_Register) {
4841       // If this is a register variable with an asm label specified, then this
4842       // is a GNU extension.
4843       if (SC == SC_Register && D.getAsmLabel())
4844         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4845       else
4846         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4847       D.setInvalidType();
4848     }
4849   }
4850 
4851   if (getLangOpts().OpenCL) {
4852     // Set up the special work-group-local storage class for variables in the
4853     // OpenCL __local address space.
4854     if (R.getAddressSpace() == LangAS::opencl_local) {
4855       SC = SC_OpenCLWorkGroupLocal;
4856     }
4857 
4858     // OpenCL v1.2 s6.9.b p4:
4859     // The sampler type cannot be used with the __local and __global address
4860     // space qualifiers.
4861     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4862       R.getAddressSpace() == LangAS::opencl_global)) {
4863       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4864     }
4865 
4866     // OpenCL 1.2 spec, p6.9 r:
4867     // The event type cannot be used to declare a program scope variable.
4868     // The event type cannot be used with the __local, __constant and __global
4869     // address space qualifiers.
4870     if (R->isEventT()) {
4871       if (S->getParent() == 0) {
4872         Diag(D.getLocStart(), diag::err_event_t_global_var);
4873         D.setInvalidType();
4874       }
4875 
4876       if (R.getAddressSpace()) {
4877         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4878         D.setInvalidType();
4879       }
4880     }
4881   }
4882 
4883   bool IsExplicitSpecialization = false;
4884   bool IsVariableTemplateSpecialization = false;
4885   bool IsPartialSpecialization = false;
4886   bool Invalid = false; // TODO: Can we remove this (error-prone)?
4887   TemplateParameterList *TemplateParams = 0;
4888   VarTemplateDecl *PrevVarTemplate = 0;
4889   VarDecl *NewVD;
4890   if (!getLangOpts().CPlusPlus) {
4891     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4892                             D.getIdentifierLoc(), II,
4893                             R, TInfo, SC);
4894 
4895     if (D.isInvalidType())
4896       NewVD->setInvalidDecl();
4897   } else {
4898     if (DC->isRecord() && !CurContext->isRecord()) {
4899       // This is an out-of-line definition of a static data member.
4900       switch (SC) {
4901       case SC_None:
4902         break;
4903       case SC_Static:
4904         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4905              diag::err_static_out_of_line)
4906           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4907         break;
4908       case SC_Auto:
4909       case SC_Register:
4910       case SC_Extern:
4911         // [dcl.stc] p2: The auto or register specifiers shall be applied only
4912         // to names of variables declared in a block or to function parameters.
4913         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4914         // of class members
4915 
4916         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4917              diag::err_storage_class_for_static_member)
4918           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4919         break;
4920       case SC_PrivateExtern:
4921         llvm_unreachable("C storage class in c++!");
4922       case SC_OpenCLWorkGroupLocal:
4923         llvm_unreachable("OpenCL storage class in c++!");
4924       }
4925     }
4926 
4927     if (SC == SC_Static && CurContext->isRecord()) {
4928       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4929         if (RD->isLocalClass())
4930           Diag(D.getIdentifierLoc(),
4931                diag::err_static_data_member_not_allowed_in_local_class)
4932             << Name << RD->getDeclName();
4933 
4934         // C++98 [class.union]p1: If a union contains a static data member,
4935         // the program is ill-formed. C++11 drops this restriction.
4936         if (RD->isUnion())
4937           Diag(D.getIdentifierLoc(),
4938                getLangOpts().CPlusPlus11
4939                  ? diag::warn_cxx98_compat_static_data_member_in_union
4940                  : diag::ext_static_data_member_in_union) << Name;
4941         // We conservatively disallow static data members in anonymous structs.
4942         else if (!RD->getDeclName())
4943           Diag(D.getIdentifierLoc(),
4944                diag::err_static_data_member_not_allowed_in_anon_struct)
4945             << Name << RD->isUnion();
4946       }
4947     }
4948 
4949     NamedDecl *PrevDecl = 0;
4950     if (Previous.begin() != Previous.end())
4951       PrevDecl = (*Previous.begin())->getUnderlyingDecl();
4952     PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
4953 
4954     // Match up the template parameter lists with the scope specifier, then
4955     // determine whether we have a template or a template specialization.
4956     TemplateParams = MatchTemplateParametersToScopeSpecifier(
4957         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
4958         D.getCXXScopeSpec(), TemplateParamLists,
4959         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
4960     if (TemplateParams) {
4961       if (!TemplateParams->size() &&
4962           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4963         // There is an extraneous 'template<>' for this variable. Complain
4964         // about it, but allow the declaration of the variable.
4965         Diag(TemplateParams->getTemplateLoc(),
4966              diag::err_template_variable_noparams)
4967           << II
4968           << SourceRange(TemplateParams->getTemplateLoc(),
4969                          TemplateParams->getRAngleLoc());
4970       } else {
4971         // Only C++1y supports variable templates (N3651).
4972         Diag(D.getIdentifierLoc(),
4973              getLangOpts().CPlusPlus1y
4974                  ? diag::warn_cxx11_compat_variable_template
4975                  : diag::ext_variable_template);
4976 
4977         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4978           // This is an explicit specialization or a partial specialization.
4979           // Check that we can declare a specialization here
4980 
4981           IsVariableTemplateSpecialization = true;
4982           IsPartialSpecialization = TemplateParams->size() > 0;
4983 
4984         } else { // if (TemplateParams->size() > 0)
4985           // This is a template declaration.
4986 
4987           // Check that we can declare a template here.
4988           if (CheckTemplateDeclScope(S, TemplateParams))
4989             return 0;
4990 
4991           // If there is a previous declaration with the same name, check
4992           // whether this is a valid redeclaration.
4993           if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
4994             PrevDecl = PrevVarTemplate = 0;
4995 
4996           if (PrevVarTemplate) {
4997             // Ensure that the template parameter lists are compatible.
4998             if (!TemplateParameterListsAreEqual(
4999                     TemplateParams, PrevVarTemplate->getTemplateParameters(),
5000                     /*Complain=*/true, TPL_TemplateMatch))
5001               return 0;
5002           } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5003             // Maybe we will complain about the shadowed template parameter.
5004             DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5005 
5006             // Just pretend that we didn't see the previous declaration.
5007             PrevDecl = 0;
5008           } else if (PrevDecl) {
5009             // C++ [temp]p5:
5010             // ... a template name declared in namespace scope or in class
5011             // scope shall be unique in that scope.
5012             Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5013                 << Name;
5014             Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5015             return 0;
5016           }
5017 
5018           // Check the template parameter list of this declaration, possibly
5019           // merging in the template parameter list from the previous variable
5020           // template declaration.
5021           if (CheckTemplateParameterList(
5022                   TemplateParams,
5023                   PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5024                                   : 0,
5025                   (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5026                    DC->isDependentContext())
5027                       ? TPC_ClassTemplateMember
5028                       : TPC_VarTemplate))
5029             Invalid = true;
5030 
5031           if (D.getCXXScopeSpec().isSet()) {
5032             // If the name of the template was qualified, we must be defining
5033             // the template out-of-line.
5034             if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5035                 !PrevVarTemplate) {
5036               Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
5037                   << Name << DC << D.getCXXScopeSpec().getRange();
5038               Invalid = true;
5039             }
5040           }
5041         }
5042       }
5043     } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5044       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5045 
5046       // We have encountered something that the user meant to be a
5047       // specialization (because it has explicitly-specified template
5048       // arguments) but that was not introduced with a "template<>" (or had
5049       // too few of them).
5050       // FIXME: Differentiate between attempts for explicit instantiations
5051       // (starting with "template") and the rest.
5052       Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5053           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5054           << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5055                                         "template<> ");
5056       IsVariableTemplateSpecialization = true;
5057     }
5058 
5059     if (IsVariableTemplateSpecialization) {
5060       if (!PrevVarTemplate) {
5061         Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5062             << IsPartialSpecialization;
5063         return 0;
5064       }
5065 
5066       SourceLocation TemplateKWLoc =
5067           TemplateParamLists.size() > 0
5068               ? TemplateParamLists[0]->getTemplateLoc()
5069               : SourceLocation();
5070       DeclResult Res = ActOnVarTemplateSpecialization(
5071           S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5072           IsPartialSpecialization);
5073       if (Res.isInvalid())
5074         return 0;
5075       NewVD = cast<VarDecl>(Res.get());
5076       AddToScope = false;
5077     } else
5078       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5079                               D.getIdentifierLoc(), II, R, TInfo, SC);
5080 
5081     // If this decl has an auto type in need of deduction, make a note of the
5082     // Decl so we can diagnose uses of it in its own initializer.
5083     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5084       ParsingInitForAutoVars.insert(NewVD);
5085 
5086     if (D.isInvalidType() || Invalid)
5087       NewVD->setInvalidDecl();
5088 
5089     SetNestedNameSpecifier(NewVD, D);
5090 
5091     // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5092     if (TemplateParams && TemplateParamLists.size() > 1 &&
5093         (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5094       NewVD->setTemplateParameterListsInfo(
5095           Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5096     } else if (IsVariableTemplateSpecialization ||
5097                (!TemplateParams && TemplateParamLists.size() > 0 &&
5098                 (D.getCXXScopeSpec().isSet()))) {
5099       NewVD->setTemplateParameterListsInfo(Context,
5100                                            TemplateParamLists.size(),
5101                                            TemplateParamLists.data());
5102     }
5103 
5104     if (D.getDeclSpec().isConstexprSpecified())
5105       NewVD->setConstexpr(true);
5106   }
5107 
5108   // Set the lexical context. If the declarator has a C++ scope specifier, the
5109   // lexical context will be different from the semantic context.
5110   NewVD->setLexicalDeclContext(CurContext);
5111 
5112   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5113     if (NewVD->hasLocalStorage()) {
5114       // C++11 [dcl.stc]p4:
5115       //   When thread_local is applied to a variable of block scope the
5116       //   storage-class-specifier static is implied if it does not appear
5117       //   explicitly.
5118       // Core issue: 'static' is not implied if the variable is declared
5119       //   'extern'.
5120       if (SCSpec == DeclSpec::SCS_unspecified &&
5121           TSCS == DeclSpec::TSCS_thread_local &&
5122           DC->isFunctionOrMethod())
5123         NewVD->setTSCSpec(TSCS);
5124       else
5125         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5126              diag::err_thread_non_global)
5127           << DeclSpec::getSpecifierName(TSCS);
5128     } else if (!Context.getTargetInfo().isTLSSupported())
5129       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5130            diag::err_thread_unsupported);
5131     else
5132       NewVD->setTSCSpec(TSCS);
5133   }
5134 
5135   // C99 6.7.4p3
5136   //   An inline definition of a function with external linkage shall
5137   //   not contain a definition of a modifiable object with static or
5138   //   thread storage duration...
5139   // We only apply this when the function is required to be defined
5140   // elsewhere, i.e. when the function is not 'extern inline'.  Note
5141   // that a local variable with thread storage duration still has to
5142   // be marked 'static'.  Also note that it's possible to get these
5143   // semantics in C++ using __attribute__((gnu_inline)).
5144   if (SC == SC_Static && S->getFnParent() != 0 &&
5145       !NewVD->getType().isConstQualified()) {
5146     FunctionDecl *CurFD = getCurFunctionDecl();
5147     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5148       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5149            diag::warn_static_local_in_extern_inline);
5150       MaybeSuggestAddingStaticToDecl(CurFD);
5151     }
5152   }
5153 
5154   if (D.getDeclSpec().isModulePrivateSpecified()) {
5155     if (IsVariableTemplateSpecialization)
5156       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5157           << (IsPartialSpecialization ? 1 : 0)
5158           << FixItHint::CreateRemoval(
5159                  D.getDeclSpec().getModulePrivateSpecLoc());
5160     else if (IsExplicitSpecialization)
5161       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5162         << 2
5163         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5164     else if (NewVD->hasLocalStorage())
5165       Diag(NewVD->getLocation(), diag::err_module_private_local)
5166         << 0 << NewVD->getDeclName()
5167         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5168         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5169     else
5170       NewVD->setModulePrivate();
5171   }
5172 
5173   // Handle attributes prior to checking for duplicates in MergeVarDecl
5174   ProcessDeclAttributes(S, NewVD, D);
5175 
5176   if (NewVD->hasAttrs())
5177     CheckAlignasUnderalignment(NewVD);
5178 
5179   if (getLangOpts().CUDA) {
5180     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5181     // storage [duration]."
5182     if (SC == SC_None && S->getFnParent() != 0 &&
5183         (NewVD->hasAttr<CUDASharedAttr>() ||
5184          NewVD->hasAttr<CUDAConstantAttr>())) {
5185       NewVD->setStorageClass(SC_Static);
5186     }
5187   }
5188 
5189   // In auto-retain/release, infer strong retension for variables of
5190   // retainable type.
5191   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5192     NewVD->setInvalidDecl();
5193 
5194   // Handle GNU asm-label extension (encoded as an attribute).
5195   if (Expr *E = (Expr*)D.getAsmLabel()) {
5196     // The parser guarantees this is a string.
5197     StringLiteral *SE = cast<StringLiteral>(E);
5198     StringRef Label = SE->getString();
5199     if (S->getFnParent() != 0) {
5200       switch (SC) {
5201       case SC_None:
5202       case SC_Auto:
5203         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5204         break;
5205       case SC_Register:
5206         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5207           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5208         break;
5209       case SC_Static:
5210       case SC_Extern:
5211       case SC_PrivateExtern:
5212       case SC_OpenCLWorkGroupLocal:
5213         break;
5214       }
5215     }
5216 
5217     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5218                                                 Context, Label));
5219   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5220     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5221       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5222     if (I != ExtnameUndeclaredIdentifiers.end()) {
5223       NewVD->addAttr(I->second);
5224       ExtnameUndeclaredIdentifiers.erase(I);
5225     }
5226   }
5227 
5228   // Diagnose shadowed variables before filtering for scope.
5229   // FIXME: Special treatment for static variable template members (?).
5230   if (!D.getCXXScopeSpec().isSet())
5231     CheckShadow(S, NewVD, Previous);
5232 
5233   // Don't consider existing declarations that are in a different
5234   // scope and are out-of-semantic-context declarations (if the new
5235   // declaration has linkage).
5236   FilterLookupForScope(
5237       Previous, DC, S, shouldConsiderLinkage(NewVD),
5238       IsExplicitSpecialization || IsVariableTemplateSpecialization);
5239 
5240   if (!getLangOpts().CPlusPlus) {
5241     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5242   } else {
5243     // Merge the decl with the existing one if appropriate.
5244     if (!Previous.empty()) {
5245       if (Previous.isSingleResult() &&
5246           isa<FieldDecl>(Previous.getFoundDecl()) &&
5247           D.getCXXScopeSpec().isSet()) {
5248         // The user tried to define a non-static data member
5249         // out-of-line (C++ [dcl.meaning]p1).
5250         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5251           << D.getCXXScopeSpec().getRange();
5252         Previous.clear();
5253         NewVD->setInvalidDecl();
5254       }
5255     } else if (D.getCXXScopeSpec().isSet()) {
5256       // No previous declaration in the qualifying scope.
5257       Diag(D.getIdentifierLoc(), diag::err_no_member)
5258         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5259         << D.getCXXScopeSpec().getRange();
5260       NewVD->setInvalidDecl();
5261     }
5262 
5263     if (!IsVariableTemplateSpecialization) {
5264       if (PrevVarTemplate) {
5265         LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5266                               LookupOrdinaryName, ForRedeclaration);
5267         PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5268         D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5269       } else
5270         D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5271     }
5272 
5273     // This is an explicit specialization of a static data member. Check it.
5274     // FIXME: Special treatment for static variable template members (?).
5275     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5276         CheckMemberSpecialization(NewVD, Previous))
5277       NewVD->setInvalidDecl();
5278   }
5279 
5280   ProcessPragmaWeak(S, NewVD);
5281   checkAttributesAfterMerging(*this, *NewVD);
5282 
5283   // If this is the first declaration of an extern C variable, update
5284   // the map of such variables.
5285   if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5286       isIncompleteDeclExternC(*this, NewVD))
5287     RegisterLocallyScopedExternCDecl(NewVD, S);
5288 
5289   if (NewVD->isStaticLocal()) {
5290     Decl *ManglingContextDecl;
5291     if (MangleNumberingContext *MCtx =
5292             getCurrentMangleNumberContext(NewVD->getDeclContext(),
5293                                           ManglingContextDecl)) {
5294       Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5295     }
5296   }
5297 
5298   // If this is not a variable template, return it now
5299   if (!TemplateParams || IsVariableTemplateSpecialization)
5300     return NewVD;
5301 
5302   // If this is supposed to be a variable template, create it as such.
5303   VarTemplateDecl *NewTemplate =
5304       VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5305                               TemplateParams, NewVD, PrevVarTemplate);
5306   NewVD->setDescribedVarTemplate(NewTemplate);
5307 
5308   if (D.getDeclSpec().isModulePrivateSpecified())
5309     NewTemplate->setModulePrivate();
5310 
5311   // If we are providing an explicit specialization of a static variable
5312   // template, make a note of that.
5313   if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5314     NewTemplate->setMemberSpecialization();
5315 
5316   // Set the lexical context of this template
5317   NewTemplate->setLexicalDeclContext(CurContext);
5318   if (NewVD->isStaticDataMember() && NewVD->isOutOfLine())
5319     NewTemplate->setAccess(NewVD->getAccess());
5320 
5321   if (PrevVarTemplate)
5322     mergeDeclAttributes(NewVD, PrevVarTemplate->getTemplatedDecl());
5323 
5324   AddPushedVisibilityAttribute(NewVD);
5325 
5326   PushOnScopeChains(NewTemplate, S);
5327   AddToScope = false;
5328 
5329   if (Invalid) {
5330     NewTemplate->setInvalidDecl();
5331     NewVD->setInvalidDecl();
5332   }
5333 
5334   ActOnDocumentableDecl(NewTemplate);
5335 
5336   return NewTemplate;
5337 }
5338 
5339 /// \brief Diagnose variable or built-in function shadowing.  Implements
5340 /// -Wshadow.
5341 ///
5342 /// This method is called whenever a VarDecl is added to a "useful"
5343 /// scope.
5344 ///
5345 /// \param S the scope in which the shadowing name is being declared
5346 /// \param R the lookup of the name
5347 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)5348 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5349   // Return if warning is ignored.
5350   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5351         DiagnosticsEngine::Ignored)
5352     return;
5353 
5354   // Don't diagnose declarations at file scope.
5355   if (D->hasGlobalStorage())
5356     return;
5357 
5358   DeclContext *NewDC = D->getDeclContext();
5359 
5360   // Only diagnose if we're shadowing an unambiguous field or variable.
5361   if (R.getResultKind() != LookupResult::Found)
5362     return;
5363 
5364   NamedDecl* ShadowedDecl = R.getFoundDecl();
5365   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5366     return;
5367 
5368   // Fields are not shadowed by variables in C++ static methods.
5369   if (isa<FieldDecl>(ShadowedDecl))
5370     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5371       if (MD->isStatic())
5372         return;
5373 
5374   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5375     if (shadowedVar->isExternC()) {
5376       // For shadowing external vars, make sure that we point to the global
5377       // declaration, not a locally scoped extern declaration.
5378       for (VarDecl::redecl_iterator
5379              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5380            I != E; ++I)
5381         if (I->isFileVarDecl()) {
5382           ShadowedDecl = *I;
5383           break;
5384         }
5385     }
5386 
5387   DeclContext *OldDC = ShadowedDecl->getDeclContext();
5388 
5389   // Only warn about certain kinds of shadowing for class members.
5390   if (NewDC && NewDC->isRecord()) {
5391     // In particular, don't warn about shadowing non-class members.
5392     if (!OldDC->isRecord())
5393       return;
5394 
5395     // TODO: should we warn about static data members shadowing
5396     // static data members from base classes?
5397 
5398     // TODO: don't diagnose for inaccessible shadowed members.
5399     // This is hard to do perfectly because we might friend the
5400     // shadowing context, but that's just a false negative.
5401   }
5402 
5403   // Determine what kind of declaration we're shadowing.
5404   unsigned Kind;
5405   if (isa<RecordDecl>(OldDC)) {
5406     if (isa<FieldDecl>(ShadowedDecl))
5407       Kind = 3; // field
5408     else
5409       Kind = 2; // static data member
5410   } else if (OldDC->isFileContext())
5411     Kind = 1; // global
5412   else
5413     Kind = 0; // local
5414 
5415   DeclarationName Name = R.getLookupName();
5416 
5417   // Emit warning and note.
5418   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5419   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5420 }
5421 
5422 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)5423 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5424   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5425         DiagnosticsEngine::Ignored)
5426     return;
5427 
5428   LookupResult R(*this, D->getDeclName(), D->getLocation(),
5429                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5430   LookupName(R, S);
5431   CheckShadow(S, D, R);
5432 }
5433 
5434 /// Check for conflict between this global or extern "C" declaration and
5435 /// previous global or extern "C" declarations. This is only used in C++.
5436 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)5437 static bool checkGlobalOrExternCConflict(
5438     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5439   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5440   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5441 
5442   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5443     // The common case: this global doesn't conflict with any extern "C"
5444     // declaration.
5445     return false;
5446   }
5447 
5448   if (Prev) {
5449     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5450       // Both the old and new declarations have C language linkage. This is a
5451       // redeclaration.
5452       Previous.clear();
5453       Previous.addDecl(Prev);
5454       return true;
5455     }
5456 
5457     // This is a global, non-extern "C" declaration, and there is a previous
5458     // non-global extern "C" declaration. Diagnose if this is a variable
5459     // declaration.
5460     if (!isa<VarDecl>(ND))
5461       return false;
5462   } else {
5463     // The declaration is extern "C". Check for any declaration in the
5464     // translation unit which might conflict.
5465     if (IsGlobal) {
5466       // We have already performed the lookup into the translation unit.
5467       IsGlobal = false;
5468       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5469            I != E; ++I) {
5470         if (isa<VarDecl>(*I)) {
5471           Prev = *I;
5472           break;
5473         }
5474       }
5475     } else {
5476       DeclContext::lookup_result R =
5477           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5478       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5479            I != E; ++I) {
5480         if (isa<VarDecl>(*I)) {
5481           Prev = *I;
5482           break;
5483         }
5484         // FIXME: If we have any other entity with this name in global scope,
5485         // the declaration is ill-formed, but that is a defect: it breaks the
5486         // 'stat' hack, for instance. Only variables can have mangled name
5487         // clashes with extern "C" declarations, so only they deserve a
5488         // diagnostic.
5489       }
5490     }
5491 
5492     if (!Prev)
5493       return false;
5494   }
5495 
5496   // Use the first declaration's location to ensure we point at something which
5497   // is lexically inside an extern "C" linkage-spec.
5498   assert(Prev && "should have found a previous declaration to diagnose");
5499   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5500     Prev = FD->getFirstDeclaration();
5501   else
5502     Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5503 
5504   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5505     << IsGlobal << ND;
5506   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5507     << IsGlobal;
5508   return false;
5509 }
5510 
5511 /// Apply special rules for handling extern "C" declarations. Returns \c true
5512 /// if we have found that this is a redeclaration of some prior entity.
5513 ///
5514 /// Per C++ [dcl.link]p6:
5515 ///   Two declarations [for a function or variable] with C language linkage
5516 ///   with the same name that appear in different scopes refer to the same
5517 ///   [entity]. An entity with C language linkage shall not be declared with
5518 ///   the same name as an entity in global scope.
5519 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)5520 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5521                                                   LookupResult &Previous) {
5522   if (!S.getLangOpts().CPlusPlus) {
5523     // In C, when declaring a global variable, look for a corresponding 'extern'
5524     // variable declared in function scope.
5525     //
5526     // FIXME: The corresponding case in C++ does not work.  We should instead
5527     // set the semantic DC for an extern local variable to be the innermost
5528     // enclosing namespace, and ensure they are only found by redeclaration
5529     // lookup.
5530     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5531       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5532         Previous.clear();
5533         Previous.addDecl(Prev);
5534         return true;
5535       }
5536     }
5537     return false;
5538   }
5539 
5540   // A declaration in the translation unit can conflict with an extern "C"
5541   // declaration.
5542   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5543     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5544 
5545   // An extern "C" declaration can conflict with a declaration in the
5546   // translation unit or can be a redeclaration of an extern "C" declaration
5547   // in another scope.
5548   if (isIncompleteDeclExternC(S,ND))
5549     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5550 
5551   // Neither global nor extern "C": nothing to do.
5552   return false;
5553 }
5554 
CheckVariableDeclarationType(VarDecl * NewVD)5555 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5556   // If the decl is already known invalid, don't check it.
5557   if (NewVD->isInvalidDecl())
5558     return;
5559 
5560   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5561   QualType T = TInfo->getType();
5562 
5563   // Defer checking an 'auto' type until its initializer is attached.
5564   if (T->isUndeducedType())
5565     return;
5566 
5567   if (T->isObjCObjectType()) {
5568     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5569       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5570     T = Context.getObjCObjectPointerType(T);
5571     NewVD->setType(T);
5572   }
5573 
5574   // Emit an error if an address space was applied to decl with local storage.
5575   // This includes arrays of objects with address space qualifiers, but not
5576   // automatic variables that point to other address spaces.
5577   // ISO/IEC TR 18037 S5.1.2
5578   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5579     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5580     NewVD->setInvalidDecl();
5581     return;
5582   }
5583 
5584   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5585   // __constant address space.
5586   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5587       && T.getAddressSpace() != LangAS::opencl_constant
5588       && !T->isSamplerT()){
5589     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5590     NewVD->setInvalidDecl();
5591     return;
5592   }
5593 
5594   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5595   // scope.
5596   if ((getLangOpts().OpenCLVersion >= 120)
5597       && NewVD->isStaticLocal()) {
5598     Diag(NewVD->getLocation(), diag::err_static_function_scope);
5599     NewVD->setInvalidDecl();
5600     return;
5601   }
5602 
5603   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5604       && !NewVD->hasAttr<BlocksAttr>()) {
5605     if (getLangOpts().getGC() != LangOptions::NonGC)
5606       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5607     else {
5608       assert(!getLangOpts().ObjCAutoRefCount);
5609       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5610     }
5611   }
5612 
5613   bool isVM = T->isVariablyModifiedType();
5614   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5615       NewVD->hasAttr<BlocksAttr>())
5616     getCurFunction()->setHasBranchProtectedScope();
5617 
5618   if ((isVM && NewVD->hasLinkage()) ||
5619       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5620     bool SizeIsNegative;
5621     llvm::APSInt Oversized;
5622     TypeSourceInfo *FixedTInfo =
5623       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5624                                                     SizeIsNegative, Oversized);
5625     if (FixedTInfo == 0 && T->isVariableArrayType()) {
5626       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5627       // FIXME: This won't give the correct result for
5628       // int a[10][n];
5629       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5630 
5631       if (NewVD->isFileVarDecl())
5632         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5633         << SizeRange;
5634       else if (NewVD->isStaticLocal())
5635         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5636         << SizeRange;
5637       else
5638         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5639         << SizeRange;
5640       NewVD->setInvalidDecl();
5641       return;
5642     }
5643 
5644     if (FixedTInfo == 0) {
5645       if (NewVD->isFileVarDecl())
5646         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5647       else
5648         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5649       NewVD->setInvalidDecl();
5650       return;
5651     }
5652 
5653     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5654     NewVD->setType(FixedTInfo->getType());
5655     NewVD->setTypeSourceInfo(FixedTInfo);
5656   }
5657 
5658   if (T->isVoidType()) {
5659     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5660     //                    of objects and functions.
5661     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5662       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5663         << T;
5664       NewVD->setInvalidDecl();
5665       return;
5666     }
5667   }
5668 
5669   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5670     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5671     NewVD->setInvalidDecl();
5672     return;
5673   }
5674 
5675   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5676     Diag(NewVD->getLocation(), diag::err_block_on_vm);
5677     NewVD->setInvalidDecl();
5678     return;
5679   }
5680 
5681   if (NewVD->isConstexpr() && !T->isDependentType() &&
5682       RequireLiteralType(NewVD->getLocation(), T,
5683                          diag::err_constexpr_var_non_literal)) {
5684     // Can't perform this check until the type is deduced.
5685     NewVD->setInvalidDecl();
5686     return;
5687   }
5688 }
5689 
5690 /// \brief Perform semantic checking on a newly-created variable
5691 /// declaration.
5692 ///
5693 /// This routine performs all of the type-checking required for a
5694 /// variable declaration once it has been built. It is used both to
5695 /// check variables after they have been parsed and their declarators
5696 /// have been translated into a declaration, and to check variables
5697 /// that have been instantiated from a template.
5698 ///
5699 /// Sets NewVD->isInvalidDecl() if an error was encountered.
5700 ///
5701 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)5702 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5703                                     LookupResult &Previous) {
5704   CheckVariableDeclarationType(NewVD);
5705 
5706   // If the decl is already known invalid, don't check it.
5707   if (NewVD->isInvalidDecl())
5708     return false;
5709 
5710   // If we did not find anything by this name, look for a non-visible
5711   // extern "C" declaration with the same name.
5712   //
5713   // Clang has a lot of problems with extern local declarations.
5714   // The actual standards text here is:
5715   //
5716   // C++11 [basic.link]p6:
5717   //   The name of a function declared in block scope and the name
5718   //   of a variable declared by a block scope extern declaration
5719   //   have linkage. If there is a visible declaration of an entity
5720   //   with linkage having the same name and type, ignoring entities
5721   //   declared outside the innermost enclosing namespace scope, the
5722   //   block scope declaration declares that same entity and
5723   //   receives the linkage of the previous declaration.
5724   //
5725   // C11 6.2.7p4:
5726   //   For an identifier with internal or external linkage declared
5727   //   in a scope in which a prior declaration of that identifier is
5728   //   visible, if the prior declaration specifies internal or
5729   //   external linkage, the type of the identifier at the later
5730   //   declaration becomes the composite type.
5731   //
5732   // The most important point here is that we're not allowed to
5733   // update our understanding of the type according to declarations
5734   // not in scope.
5735   bool PreviousWasHidden =
5736       Previous.empty() &&
5737       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
5738 
5739   // Filter out any non-conflicting previous declarations.
5740   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5741 
5742   if (!Previous.empty()) {
5743     MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5744     return true;
5745   }
5746   return false;
5747 }
5748 
5749 /// \brief Data used with FindOverriddenMethod
5750 struct FindOverriddenMethodData {
5751   Sema *S;
5752   CXXMethodDecl *Method;
5753 };
5754 
5755 /// \brief Member lookup function that determines whether a given C++
5756 /// method overrides a method in a base class, to be used with
5757 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)5758 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5759                                  CXXBasePath &Path,
5760                                  void *UserData) {
5761   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5762 
5763   FindOverriddenMethodData *Data
5764     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5765 
5766   DeclarationName Name = Data->Method->getDeclName();
5767 
5768   // FIXME: Do we care about other names here too?
5769   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5770     // We really want to find the base class destructor here.
5771     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5772     CanQualType CT = Data->S->Context.getCanonicalType(T);
5773 
5774     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5775   }
5776 
5777   for (Path.Decls = BaseRecord->lookup(Name);
5778        !Path.Decls.empty();
5779        Path.Decls = Path.Decls.slice(1)) {
5780     NamedDecl *D = Path.Decls.front();
5781     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5782       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5783         return true;
5784     }
5785   }
5786 
5787   return false;
5788 }
5789 
5790 namespace {
5791   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5792 }
5793 /// \brief Report an error regarding overriding, along with any relevant
5794 /// overriden methods.
5795 ///
5796 /// \param DiagID the primary error to report.
5797 /// \param MD the overriding method.
5798 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)5799 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5800                             OverrideErrorKind OEK = OEK_All) {
5801   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5802   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5803                                       E = MD->end_overridden_methods();
5804        I != E; ++I) {
5805     // This check (& the OEK parameter) could be replaced by a predicate, but
5806     // without lambdas that would be overkill. This is still nicer than writing
5807     // out the diag loop 3 times.
5808     if ((OEK == OEK_All) ||
5809         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5810         (OEK == OEK_Deleted && (*I)->isDeleted()))
5811       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5812   }
5813 }
5814 
5815 /// AddOverriddenMethods - See if a method overrides any in the base classes,
5816 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)5817 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5818   // Look for virtual methods in base classes that this method might override.
5819   CXXBasePaths Paths;
5820   FindOverriddenMethodData Data;
5821   Data.Method = MD;
5822   Data.S = this;
5823   bool hasDeletedOverridenMethods = false;
5824   bool hasNonDeletedOverridenMethods = false;
5825   bool AddedAny = false;
5826   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5827     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5828          E = Paths.found_decls_end(); I != E; ++I) {
5829       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5830         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5831         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5832             !CheckOverridingFunctionAttributes(MD, OldMD) &&
5833             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5834             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5835           hasDeletedOverridenMethods |= OldMD->isDeleted();
5836           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5837           AddedAny = true;
5838         }
5839       }
5840     }
5841   }
5842 
5843   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5844     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5845   }
5846   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5847     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5848   }
5849 
5850   return AddedAny;
5851 }
5852 
5853 namespace {
5854   // Struct for holding all of the extra arguments needed by
5855   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5856   struct ActOnFDArgs {
5857     Scope *S;
5858     Declarator &D;
5859     MultiTemplateParamsArg TemplateParamLists;
5860     bool AddToScope;
5861   };
5862 }
5863 
5864 namespace {
5865 
5866 // Callback to only accept typo corrections that have a non-zero edit distance.
5867 // Also only accept corrections that have the same parent decl.
5868 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5869  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)5870   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5871                             CXXRecordDecl *Parent)
5872       : Context(Context), OriginalFD(TypoFD),
5873         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5874 
ValidateCandidate(const TypoCorrection & candidate)5875   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5876     if (candidate.getEditDistance() == 0)
5877       return false;
5878 
5879     SmallVector<unsigned, 1> MismatchedParams;
5880     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5881                                           CDeclEnd = candidate.end();
5882          CDecl != CDeclEnd; ++CDecl) {
5883       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5884 
5885       if (FD && !FD->hasBody() &&
5886           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5887         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5888           CXXRecordDecl *Parent = MD->getParent();
5889           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5890             return true;
5891         } else if (!ExpectedParent) {
5892           return true;
5893         }
5894       }
5895     }
5896 
5897     return false;
5898   }
5899 
5900  private:
5901   ASTContext &Context;
5902   FunctionDecl *OriginalFD;
5903   CXXRecordDecl *ExpectedParent;
5904 };
5905 
5906 }
5907 
5908 /// \brief Generate diagnostics for an invalid function redeclaration.
5909 ///
5910 /// This routine handles generating the diagnostic messages for an invalid
5911 /// function redeclaration, including finding possible similar declarations
5912 /// or performing typo correction if there are no previous declarations with
5913 /// the same name.
5914 ///
5915 /// Returns a NamedDecl iff typo correction was performed and substituting in
5916 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs)5917 static NamedDecl* DiagnoseInvalidRedeclaration(
5918     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5919     ActOnFDArgs &ExtraArgs) {
5920   NamedDecl *Result = NULL;
5921   DeclarationName Name = NewFD->getDeclName();
5922   DeclContext *NewDC = NewFD->getDeclContext();
5923   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5924                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5925   SmallVector<unsigned, 1> MismatchedParams;
5926   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5927   TypoCorrection Correction;
5928   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5929                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
5930   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5931                                   : diag::err_member_def_does_not_match;
5932 
5933   NewFD->setInvalidDecl();
5934   SemaRef.LookupQualifiedName(Prev, NewDC);
5935   assert(!Prev.isAmbiguous() &&
5936          "Cannot have an ambiguity in previous-declaration lookup");
5937   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5938   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5939                                       MD ? MD->getParent() : 0);
5940   if (!Prev.empty()) {
5941     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5942          Func != FuncEnd; ++Func) {
5943       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5944       if (FD &&
5945           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5946         // Add 1 to the index so that 0 can mean the mismatch didn't
5947         // involve a parameter
5948         unsigned ParamNum =
5949             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5950         NearMatches.push_back(std::make_pair(FD, ParamNum));
5951       }
5952     }
5953   // If the qualified name lookup yielded nothing, try typo correction
5954   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5955                                          Prev.getLookupKind(), 0, 0,
5956                                          Validator, NewDC))) {
5957     // Trap errors.
5958     Sema::SFINAETrap Trap(SemaRef);
5959 
5960     // Set up everything for the call to ActOnFunctionDeclarator
5961     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5962                               ExtraArgs.D.getIdentifierLoc());
5963     Previous.clear();
5964     Previous.setLookupName(Correction.getCorrection());
5965     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5966                                     CDeclEnd = Correction.end();
5967          CDecl != CDeclEnd; ++CDecl) {
5968       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5969       if (FD && !FD->hasBody() &&
5970           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5971         Previous.addDecl(FD);
5972       }
5973     }
5974     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5975     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5976     // pieces need to verify the typo-corrected C++ declaraction and hopefully
5977     // eliminate the need for the parameter pack ExtraArgs.
5978     Result = SemaRef.ActOnFunctionDeclarator(
5979         ExtraArgs.S, ExtraArgs.D,
5980         Correction.getCorrectionDecl()->getDeclContext(),
5981         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5982         ExtraArgs.AddToScope);
5983     if (Trap.hasErrorOccurred()) {
5984       // Pretend the typo correction never occurred
5985       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5986                                 ExtraArgs.D.getIdentifierLoc());
5987       ExtraArgs.D.setRedeclaration(wasRedeclaration);
5988       Previous.clear();
5989       Previous.setLookupName(Name);
5990       Result = NULL;
5991     } else {
5992       for (LookupResult::iterator Func = Previous.begin(),
5993                                FuncEnd = Previous.end();
5994            Func != FuncEnd; ++Func) {
5995         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5996           NearMatches.push_back(std::make_pair(FD, 0));
5997       }
5998     }
5999     if (NearMatches.empty()) {
6000       // Ignore the correction if it didn't yield any close FunctionDecl matches
6001       Correction = TypoCorrection();
6002     } else {
6003       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
6004                              : diag::err_member_def_does_not_match_suggest;
6005     }
6006   }
6007 
6008   if (Correction) {
6009     // FIXME: use Correction.getCorrectionRange() instead of computing the range
6010     // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
6011     // turn causes the correction to fully qualify the name. If we fix
6012     // CorrectTypo to minimally qualify then this change should be good.
6013     SourceRange FixItLoc(NewFD->getLocation());
6014     CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
6015     if (Correction.getCorrectionSpecifier() && SS.isValid())
6016       FixItLoc.setBegin(SS.getBeginLoc());
6017     SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
6018         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
6019         << FixItHint::CreateReplacement(
6020             FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
6021   } else {
6022     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6023         << Name << NewDC << NewFD->getLocation();
6024   }
6025 
6026   bool NewFDisConst = false;
6027   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6028     NewFDisConst = NewMD->isConst();
6029 
6030   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6031        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6032        NearMatch != NearMatchEnd; ++NearMatch) {
6033     FunctionDecl *FD = NearMatch->first;
6034     bool FDisConst = false;
6035     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
6036       FDisConst = MD->isConst();
6037 
6038     if (unsigned Idx = NearMatch->second) {
6039       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6040       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6041       if (Loc.isInvalid()) Loc = FD->getLocation();
6042       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
6043           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
6044     } else if (Correction) {
6045       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
6046           << Correction.getQuoted(SemaRef.getLangOpts());
6047     } else if (FDisConst != NewFDisConst) {
6048       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6049           << NewFDisConst << FD->getSourceRange().getEnd();
6050     } else
6051       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
6052   }
6053   return Result;
6054 }
6055 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6056 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6057                                                           Declarator &D) {
6058   switch (D.getDeclSpec().getStorageClassSpec()) {
6059   default: llvm_unreachable("Unknown storage class!");
6060   case DeclSpec::SCS_auto:
6061   case DeclSpec::SCS_register:
6062   case DeclSpec::SCS_mutable:
6063     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6064                  diag::err_typecheck_sclass_func);
6065     D.setInvalidType();
6066     break;
6067   case DeclSpec::SCS_unspecified: break;
6068   case DeclSpec::SCS_extern:
6069     if (D.getDeclSpec().isExternInLinkageSpec())
6070       return SC_None;
6071     return SC_Extern;
6072   case DeclSpec::SCS_static: {
6073     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6074       // C99 6.7.1p5:
6075       //   The declaration of an identifier for a function that has
6076       //   block scope shall have no explicit storage-class specifier
6077       //   other than extern
6078       // See also (C++ [dcl.stc]p4).
6079       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6080                    diag::err_static_block_func);
6081       break;
6082     } else
6083       return SC_Static;
6084   }
6085   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6086   }
6087 
6088   // No explicit storage class has already been returned
6089   return SC_None;
6090 }
6091 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)6092 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6093                                            DeclContext *DC, QualType &R,
6094                                            TypeSourceInfo *TInfo,
6095                                            FunctionDecl::StorageClass SC,
6096                                            bool &IsVirtualOkay) {
6097   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6098   DeclarationName Name = NameInfo.getName();
6099 
6100   FunctionDecl *NewFD = 0;
6101   bool isInline = D.getDeclSpec().isInlineSpecified();
6102 
6103   if (!SemaRef.getLangOpts().CPlusPlus) {
6104     // Determine whether the function was written with a
6105     // prototype. This true when:
6106     //   - there is a prototype in the declarator, or
6107     //   - the type R of the function is some kind of typedef or other reference
6108     //     to a type name (which eventually refers to a function type).
6109     bool HasPrototype =
6110       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6111       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6112 
6113     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6114                                  D.getLocStart(), NameInfo, R,
6115                                  TInfo, SC, isInline,
6116                                  HasPrototype, false);
6117     if (D.isInvalidType())
6118       NewFD->setInvalidDecl();
6119 
6120     // Set the lexical context.
6121     NewFD->setLexicalDeclContext(SemaRef.CurContext);
6122 
6123     return NewFD;
6124   }
6125 
6126   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6127   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6128 
6129   // Check that the return type is not an abstract class type.
6130   // For record types, this is done by the AbstractClassUsageDiagnoser once
6131   // the class has been completely parsed.
6132   if (!DC->isRecord() &&
6133       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6134                                      R->getAs<FunctionType>()->getResultType(),
6135                                      diag::err_abstract_type_in_decl,
6136                                      SemaRef.AbstractReturnType))
6137     D.setInvalidType();
6138 
6139   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6140     // This is a C++ constructor declaration.
6141     assert(DC->isRecord() &&
6142            "Constructors can only be declared in a member context");
6143 
6144     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6145     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6146                                       D.getLocStart(), NameInfo,
6147                                       R, TInfo, isExplicit, isInline,
6148                                       /*isImplicitlyDeclared=*/false,
6149                                       isConstexpr);
6150 
6151   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6152     // This is a C++ destructor declaration.
6153     if (DC->isRecord()) {
6154       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6155       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6156       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6157                                         SemaRef.Context, Record,
6158                                         D.getLocStart(),
6159                                         NameInfo, R, TInfo, isInline,
6160                                         /*isImplicitlyDeclared=*/false);
6161 
6162       // If the class is complete, then we now create the implicit exception
6163       // specification. If the class is incomplete or dependent, we can't do
6164       // it yet.
6165       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6166           Record->getDefinition() && !Record->isBeingDefined() &&
6167           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6168         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6169       }
6170 
6171       // The Microsoft ABI requires that we perform the destructor body
6172       // checks (i.e. operator delete() lookup) at every declaration, as
6173       // any translation unit may need to emit a deleting destructor.
6174       if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6175           !Record->isDependentType() && Record->getDefinition() &&
6176           !Record->isBeingDefined()) {
6177         SemaRef.CheckDestructor(NewDD);
6178       }
6179 
6180       IsVirtualOkay = true;
6181       return NewDD;
6182 
6183     } else {
6184       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6185       D.setInvalidType();
6186 
6187       // Create a FunctionDecl to satisfy the function definition parsing
6188       // code path.
6189       return FunctionDecl::Create(SemaRef.Context, DC,
6190                                   D.getLocStart(),
6191                                   D.getIdentifierLoc(), Name, R, TInfo,
6192                                   SC, isInline,
6193                                   /*hasPrototype=*/true, isConstexpr);
6194     }
6195 
6196   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6197     if (!DC->isRecord()) {
6198       SemaRef.Diag(D.getIdentifierLoc(),
6199            diag::err_conv_function_not_member);
6200       return 0;
6201     }
6202 
6203     SemaRef.CheckConversionDeclarator(D, R, SC);
6204     IsVirtualOkay = true;
6205     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6206                                      D.getLocStart(), NameInfo,
6207                                      R, TInfo, isInline, isExplicit,
6208                                      isConstexpr, SourceLocation());
6209 
6210   } else if (DC->isRecord()) {
6211     // If the name of the function is the same as the name of the record,
6212     // then this must be an invalid constructor that has a return type.
6213     // (The parser checks for a return type and makes the declarator a
6214     // constructor if it has no return type).
6215     if (Name.getAsIdentifierInfo() &&
6216         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6217       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6218         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6219         << SourceRange(D.getIdentifierLoc());
6220       return 0;
6221     }
6222 
6223     // This is a C++ method declaration.
6224     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6225                                                cast<CXXRecordDecl>(DC),
6226                                                D.getLocStart(), NameInfo, R,
6227                                                TInfo, SC, isInline,
6228                                                isConstexpr, SourceLocation());
6229     IsVirtualOkay = !Ret->isStatic();
6230     return Ret;
6231   } else {
6232     // Determine whether the function was written with a
6233     // prototype. This true when:
6234     //   - we're in C++ (where every function has a prototype),
6235     return FunctionDecl::Create(SemaRef.Context, DC,
6236                                 D.getLocStart(),
6237                                 NameInfo, R, TInfo, SC, isInline,
6238                                 true/*HasPrototype*/, isConstexpr);
6239   }
6240 }
6241 
checkVoidParamDecl(ParmVarDecl * Param)6242 void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6243   // In C++, the empty parameter-type-list must be spelled "void"; a
6244   // typedef of void is not permitted.
6245   if (getLangOpts().CPlusPlus &&
6246       Param->getType().getUnqualifiedType() != Context.VoidTy) {
6247     bool IsTypeAlias = false;
6248     if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6249       IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6250     else if (const TemplateSpecializationType *TST =
6251                Param->getType()->getAs<TemplateSpecializationType>())
6252       IsTypeAlias = TST->isTypeAlias();
6253     Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6254       << IsTypeAlias;
6255   }
6256 }
6257 
6258 enum OpenCLParamType {
6259   ValidKernelParam,
6260   PtrPtrKernelParam,
6261   PtrKernelParam,
6262   InvalidKernelParam,
6263   RecordKernelParam
6264 };
6265 
getOpenCLKernelParameterType(QualType PT)6266 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6267   if (PT->isPointerType()) {
6268     QualType PointeeType = PT->getPointeeType();
6269     return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6270   }
6271 
6272   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6273   // be used as builtin types.
6274 
6275   if (PT->isImageType())
6276     return PtrKernelParam;
6277 
6278   if (PT->isBooleanType())
6279     return InvalidKernelParam;
6280 
6281   if (PT->isEventT())
6282     return InvalidKernelParam;
6283 
6284   if (PT->isHalfType())
6285     return InvalidKernelParam;
6286 
6287   if (PT->isRecordType())
6288     return RecordKernelParam;
6289 
6290   return ValidKernelParam;
6291 }
6292 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSet<const Type *,16> & ValidTypes)6293 static void checkIsValidOpenCLKernelParameter(
6294   Sema &S,
6295   Declarator &D,
6296   ParmVarDecl *Param,
6297   llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6298   QualType PT = Param->getType();
6299 
6300   // Cache the valid types we encounter to avoid rechecking structs that are
6301   // used again
6302   if (ValidTypes.count(PT.getTypePtr()))
6303     return;
6304 
6305   switch (getOpenCLKernelParameterType(PT)) {
6306   case PtrPtrKernelParam:
6307     // OpenCL v1.2 s6.9.a:
6308     // A kernel function argument cannot be declared as a
6309     // pointer to a pointer type.
6310     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6311     D.setInvalidType();
6312     return;
6313 
6314     // OpenCL v1.2 s6.9.k:
6315     // Arguments to kernel functions in a program cannot be declared with the
6316     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6317     // uintptr_t or a struct and/or union that contain fields declared to be
6318     // one of these built-in scalar types.
6319 
6320   case InvalidKernelParam:
6321     // OpenCL v1.2 s6.8 n:
6322     // A kernel function argument cannot be declared
6323     // of event_t type.
6324     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6325     D.setInvalidType();
6326     return;
6327 
6328   case PtrKernelParam:
6329   case ValidKernelParam:
6330     ValidTypes.insert(PT.getTypePtr());
6331     return;
6332 
6333   case RecordKernelParam:
6334     break;
6335   }
6336 
6337   // Track nested structs we will inspect
6338   SmallVector<const Decl *, 4> VisitStack;
6339 
6340   // Track where we are in the nested structs. Items will migrate from
6341   // VisitStack to HistoryStack as we do the DFS for bad field.
6342   SmallVector<const FieldDecl *, 4> HistoryStack;
6343   HistoryStack.push_back((const FieldDecl *) 0);
6344 
6345   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6346   VisitStack.push_back(PD);
6347 
6348   assert(VisitStack.back() && "First decl null?");
6349 
6350   do {
6351     const Decl *Next = VisitStack.pop_back_val();
6352     if (!Next) {
6353       assert(!HistoryStack.empty());
6354       // Found a marker, we have gone up a level
6355       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6356         ValidTypes.insert(Hist->getType().getTypePtr());
6357 
6358       continue;
6359     }
6360 
6361     // Adds everything except the original parameter declaration (which is not a
6362     // field itself) to the history stack.
6363     const RecordDecl *RD;
6364     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6365       HistoryStack.push_back(Field);
6366       RD = Field->getType()->castAs<RecordType>()->getDecl();
6367     } else {
6368       RD = cast<RecordDecl>(Next);
6369     }
6370 
6371     // Add a null marker so we know when we've gone back up a level
6372     VisitStack.push_back((const Decl *) 0);
6373 
6374     for (RecordDecl::field_iterator I = RD->field_begin(),
6375            E = RD->field_end(); I != E; ++I) {
6376       const FieldDecl *FD = *I;
6377       QualType QT = FD->getType();
6378 
6379       if (ValidTypes.count(QT.getTypePtr()))
6380         continue;
6381 
6382       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6383       if (ParamType == ValidKernelParam)
6384         continue;
6385 
6386       if (ParamType == RecordKernelParam) {
6387         VisitStack.push_back(FD);
6388         continue;
6389       }
6390 
6391       // OpenCL v1.2 s6.9.p:
6392       // Arguments to kernel functions that are declared to be a struct or union
6393       // do not allow OpenCL objects to be passed as elements of the struct or
6394       // union.
6395       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6396         S.Diag(Param->getLocation(),
6397                diag::err_record_with_pointers_kernel_param)
6398           << PT->isUnionType()
6399           << PT;
6400       } else {
6401         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6402       }
6403 
6404       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6405         << PD->getDeclName();
6406 
6407       // We have an error, now let's go back up through history and show where
6408       // the offending field came from
6409       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6410              E = HistoryStack.end(); I != E; ++I) {
6411         const FieldDecl *OuterField = *I;
6412         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6413           << OuterField->getType();
6414       }
6415 
6416       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6417         << QT->isPointerType()
6418         << QT;
6419       D.setInvalidType();
6420       return;
6421     }
6422   } while (!VisitStack.empty());
6423 }
6424 
6425 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)6426 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6427                               TypeSourceInfo *TInfo, LookupResult &Previous,
6428                               MultiTemplateParamsArg TemplateParamLists,
6429                               bool &AddToScope) {
6430   QualType R = TInfo->getType();
6431 
6432   assert(R.getTypePtr()->isFunctionType());
6433 
6434   // TODO: consider using NameInfo for diagnostic.
6435   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6436   DeclarationName Name = NameInfo.getName();
6437   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6438 
6439   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6440     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6441          diag::err_invalid_thread)
6442       << DeclSpec::getSpecifierName(TSCS);
6443 
6444   bool isFriend = false;
6445   FunctionTemplateDecl *FunctionTemplate = 0;
6446   bool isExplicitSpecialization = false;
6447   bool isFunctionTemplateSpecialization = false;
6448 
6449   bool isDependentClassScopeExplicitSpecialization = false;
6450   bool HasExplicitTemplateArgs = false;
6451   TemplateArgumentListInfo TemplateArgs;
6452 
6453   bool isVirtualOkay = false;
6454 
6455   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6456                                               isVirtualOkay);
6457   if (!NewFD) return 0;
6458 
6459   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6460     NewFD->setTopLevelDeclInObjCContainer();
6461 
6462   if (getLangOpts().CPlusPlus) {
6463     bool isInline = D.getDeclSpec().isInlineSpecified();
6464     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6465     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6466     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6467     isFriend = D.getDeclSpec().isFriendSpecified();
6468     if (isFriend && !isInline && D.isFunctionDefinition()) {
6469       // C++ [class.friend]p5
6470       //   A function can be defined in a friend declaration of a
6471       //   class . . . . Such a function is implicitly inline.
6472       NewFD->setImplicitlyInline();
6473     }
6474 
6475     // If this is a method defined in an __interface, and is not a constructor
6476     // or an overloaded operator, then set the pure flag (isVirtual will already
6477     // return true).
6478     if (const CXXRecordDecl *Parent =
6479           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6480       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6481         NewFD->setPure(true);
6482     }
6483 
6484     SetNestedNameSpecifier(NewFD, D);
6485     isExplicitSpecialization = false;
6486     isFunctionTemplateSpecialization = false;
6487     if (D.isInvalidType())
6488       NewFD->setInvalidDecl();
6489 
6490     // Set the lexical context. If the declarator has a C++
6491     // scope specifier, or is the object of a friend declaration, the
6492     // lexical context will be different from the semantic context.
6493     NewFD->setLexicalDeclContext(CurContext);
6494 
6495     // Match up the template parameter lists with the scope specifier, then
6496     // determine whether we have a template or a template specialization.
6497     bool Invalid = false;
6498     if (TemplateParameterList *TemplateParams =
6499             MatchTemplateParametersToScopeSpecifier(
6500                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6501                 D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6502                 isExplicitSpecialization, Invalid)) {
6503       if (TemplateParams->size() > 0) {
6504         // This is a function template
6505 
6506         // Check that we can declare a template here.
6507         if (CheckTemplateDeclScope(S, TemplateParams))
6508           return 0;
6509 
6510         // A destructor cannot be a template.
6511         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6512           Diag(NewFD->getLocation(), diag::err_destructor_template);
6513           return 0;
6514         }
6515 
6516         // If we're adding a template to a dependent context, we may need to
6517         // rebuilding some of the types used within the template parameter list,
6518         // now that we know what the current instantiation is.
6519         if (DC->isDependentContext()) {
6520           ContextRAII SavedContext(*this, DC);
6521           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6522             Invalid = true;
6523         }
6524 
6525 
6526         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6527                                                         NewFD->getLocation(),
6528                                                         Name, TemplateParams,
6529                                                         NewFD);
6530         FunctionTemplate->setLexicalDeclContext(CurContext);
6531         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6532 
6533         // For source fidelity, store the other template param lists.
6534         if (TemplateParamLists.size() > 1) {
6535           NewFD->setTemplateParameterListsInfo(Context,
6536                                                TemplateParamLists.size() - 1,
6537                                                TemplateParamLists.data());
6538         }
6539       } else {
6540         // This is a function template specialization.
6541         isFunctionTemplateSpecialization = true;
6542         // For source fidelity, store all the template param lists.
6543         NewFD->setTemplateParameterListsInfo(Context,
6544                                              TemplateParamLists.size(),
6545                                              TemplateParamLists.data());
6546 
6547         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6548         if (isFriend) {
6549           // We want to remove the "template<>", found here.
6550           SourceRange RemoveRange = TemplateParams->getSourceRange();
6551 
6552           // If we remove the template<> and the name is not a
6553           // template-id, we're actually silently creating a problem:
6554           // the friend declaration will refer to an untemplated decl,
6555           // and clearly the user wants a template specialization.  So
6556           // we need to insert '<>' after the name.
6557           SourceLocation InsertLoc;
6558           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6559             InsertLoc = D.getName().getSourceRange().getEnd();
6560             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6561           }
6562 
6563           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6564             << Name << RemoveRange
6565             << FixItHint::CreateRemoval(RemoveRange)
6566             << FixItHint::CreateInsertion(InsertLoc, "<>");
6567         }
6568       }
6569     }
6570     else {
6571       // All template param lists were matched against the scope specifier:
6572       // this is NOT (an explicit specialization of) a template.
6573       if (TemplateParamLists.size() > 0)
6574         // For source fidelity, store all the template param lists.
6575         NewFD->setTemplateParameterListsInfo(Context,
6576                                              TemplateParamLists.size(),
6577                                              TemplateParamLists.data());
6578     }
6579 
6580     if (Invalid) {
6581       NewFD->setInvalidDecl();
6582       if (FunctionTemplate)
6583         FunctionTemplate->setInvalidDecl();
6584     }
6585 
6586     // C++ [dcl.fct.spec]p5:
6587     //   The virtual specifier shall only be used in declarations of
6588     //   nonstatic class member functions that appear within a
6589     //   member-specification of a class declaration; see 10.3.
6590     //
6591     if (isVirtual && !NewFD->isInvalidDecl()) {
6592       if (!isVirtualOkay) {
6593         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6594              diag::err_virtual_non_function);
6595       } else if (!CurContext->isRecord()) {
6596         // 'virtual' was specified outside of the class.
6597         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6598              diag::err_virtual_out_of_class)
6599           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6600       } else if (NewFD->getDescribedFunctionTemplate()) {
6601         // C++ [temp.mem]p3:
6602         //  A member function template shall not be virtual.
6603         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6604              diag::err_virtual_member_function_template)
6605           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6606       } else {
6607         // Okay: Add virtual to the method.
6608         NewFD->setVirtualAsWritten(true);
6609       }
6610 
6611       if (getLangOpts().CPlusPlus1y &&
6612           NewFD->getResultType()->isUndeducedType())
6613         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6614     }
6615 
6616     // C++ [dcl.fct.spec]p3:
6617     //  The inline specifier shall not appear on a block scope function
6618     //  declaration.
6619     if (isInline && !NewFD->isInvalidDecl()) {
6620       if (CurContext->isFunctionOrMethod()) {
6621         // 'inline' is not allowed on block scope function declaration.
6622         Diag(D.getDeclSpec().getInlineSpecLoc(),
6623              diag::err_inline_declaration_block_scope) << Name
6624           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6625       }
6626     }
6627 
6628     // C++ [dcl.fct.spec]p6:
6629     //  The explicit specifier shall be used only in the declaration of a
6630     //  constructor or conversion function within its class definition;
6631     //  see 12.3.1 and 12.3.2.
6632     if (isExplicit && !NewFD->isInvalidDecl()) {
6633       if (!CurContext->isRecord()) {
6634         // 'explicit' was specified outside of the class.
6635         Diag(D.getDeclSpec().getExplicitSpecLoc(),
6636              diag::err_explicit_out_of_class)
6637           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6638       } else if (!isa<CXXConstructorDecl>(NewFD) &&
6639                  !isa<CXXConversionDecl>(NewFD)) {
6640         // 'explicit' was specified on a function that wasn't a constructor
6641         // or conversion function.
6642         Diag(D.getDeclSpec().getExplicitSpecLoc(),
6643              diag::err_explicit_non_ctor_or_conv_function)
6644           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6645       }
6646     }
6647 
6648     if (isConstexpr) {
6649       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6650       // are implicitly inline.
6651       NewFD->setImplicitlyInline();
6652 
6653       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6654       // be either constructors or to return a literal type. Therefore,
6655       // destructors cannot be declared constexpr.
6656       if (isa<CXXDestructorDecl>(NewFD))
6657         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6658     }
6659 
6660     // If __module_private__ was specified, mark the function accordingly.
6661     if (D.getDeclSpec().isModulePrivateSpecified()) {
6662       if (isFunctionTemplateSpecialization) {
6663         SourceLocation ModulePrivateLoc
6664           = D.getDeclSpec().getModulePrivateSpecLoc();
6665         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6666           << 0
6667           << FixItHint::CreateRemoval(ModulePrivateLoc);
6668       } else {
6669         NewFD->setModulePrivate();
6670         if (FunctionTemplate)
6671           FunctionTemplate->setModulePrivate();
6672       }
6673     }
6674 
6675     if (isFriend) {
6676       if (FunctionTemplate) {
6677         FunctionTemplate->setObjectOfFriendDecl();
6678         FunctionTemplate->setAccess(AS_public);
6679       }
6680       NewFD->setObjectOfFriendDecl();
6681       NewFD->setAccess(AS_public);
6682     }
6683 
6684     // If a function is defined as defaulted or deleted, mark it as such now.
6685     switch (D.getFunctionDefinitionKind()) {
6686       case FDK_Declaration:
6687       case FDK_Definition:
6688         break;
6689 
6690       case FDK_Defaulted:
6691         NewFD->setDefaulted();
6692         break;
6693 
6694       case FDK_Deleted:
6695         NewFD->setDeletedAsWritten();
6696         break;
6697     }
6698 
6699     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6700         D.isFunctionDefinition()) {
6701       // C++ [class.mfct]p2:
6702       //   A member function may be defined (8.4) in its class definition, in
6703       //   which case it is an inline member function (7.1.2)
6704       NewFD->setImplicitlyInline();
6705     }
6706 
6707     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6708         !CurContext->isRecord()) {
6709       // C++ [class.static]p1:
6710       //   A data or function member of a class may be declared static
6711       //   in a class definition, in which case it is a static member of
6712       //   the class.
6713 
6714       // Complain about the 'static' specifier if it's on an out-of-line
6715       // member function definition.
6716       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6717            diag::err_static_out_of_line)
6718         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6719     }
6720 
6721     // C++11 [except.spec]p15:
6722     //   A deallocation function with no exception-specification is treated
6723     //   as if it were specified with noexcept(true).
6724     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6725     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6726          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6727         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6728       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6729       EPI.ExceptionSpecType = EST_BasicNoexcept;
6730       NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6731                                              FPT->getArgTypes(), EPI));
6732     }
6733   }
6734 
6735   // Filter out previous declarations that don't match the scope.
6736   FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6737                        isExplicitSpecialization ||
6738                        isFunctionTemplateSpecialization);
6739 
6740   // Handle GNU asm-label extension (encoded as an attribute).
6741   if (Expr *E = (Expr*) D.getAsmLabel()) {
6742     // The parser guarantees this is a string.
6743     StringLiteral *SE = cast<StringLiteral>(E);
6744     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6745                                                 SE->getString()));
6746   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6747     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6748       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6749     if (I != ExtnameUndeclaredIdentifiers.end()) {
6750       NewFD->addAttr(I->second);
6751       ExtnameUndeclaredIdentifiers.erase(I);
6752     }
6753   }
6754 
6755   // Copy the parameter declarations from the declarator D to the function
6756   // declaration NewFD, if they are available.  First scavenge them into Params.
6757   SmallVector<ParmVarDecl*, 16> Params;
6758   if (D.isFunctionDeclarator()) {
6759     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6760 
6761     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6762     // function that takes no arguments, not a function that takes a
6763     // single void argument.
6764     // We let through "const void" here because Sema::GetTypeForDeclarator
6765     // already checks for that case.
6766     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6767         FTI.ArgInfo[0].Param &&
6768         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6769       // Empty arg list, don't push any params.
6770       checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6771     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6772       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6773         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6774         assert(Param->getDeclContext() != NewFD && "Was set before ?");
6775         Param->setDeclContext(NewFD);
6776         Params.push_back(Param);
6777 
6778         if (Param->isInvalidDecl())
6779           NewFD->setInvalidDecl();
6780       }
6781     }
6782 
6783   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6784     // When we're declaring a function with a typedef, typeof, etc as in the
6785     // following example, we'll need to synthesize (unnamed)
6786     // parameters for use in the declaration.
6787     //
6788     // @code
6789     // typedef void fn(int);
6790     // fn f;
6791     // @endcode
6792 
6793     // Synthesize a parameter for each argument type.
6794     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6795          AE = FT->arg_type_end(); AI != AE; ++AI) {
6796       ParmVarDecl *Param =
6797         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6798       Param->setScopeInfo(0, Params.size());
6799       Params.push_back(Param);
6800     }
6801   } else {
6802     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6803            "Should not need args for typedef of non-prototype fn");
6804   }
6805 
6806   // Finally, we know we have the right number of parameters, install them.
6807   NewFD->setParams(Params);
6808 
6809   // Find all anonymous symbols defined during the declaration of this function
6810   // and add to NewFD. This lets us track decls such 'enum Y' in:
6811   //
6812   //   void f(enum Y {AA} x) {}
6813   //
6814   // which would otherwise incorrectly end up in the translation unit scope.
6815   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6816   DeclsInPrototypeScope.clear();
6817 
6818   if (D.getDeclSpec().isNoreturnSpecified())
6819     NewFD->addAttr(
6820         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6821                                        Context));
6822 
6823   // Process the non-inheritable attributes on this declaration.
6824   ProcessDeclAttributes(S, NewFD, D,
6825                         /*NonInheritable=*/true, /*Inheritable=*/false);
6826 
6827   // Functions returning a variably modified type violate C99 6.7.5.2p2
6828   // because all functions have linkage.
6829   if (!NewFD->isInvalidDecl() &&
6830       NewFD->getResultType()->isVariablyModifiedType()) {
6831     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6832     NewFD->setInvalidDecl();
6833   }
6834 
6835   // Handle attributes.
6836   ProcessDeclAttributes(S, NewFD, D,
6837                         /*NonInheritable=*/false, /*Inheritable=*/true);
6838 
6839   QualType RetType = NewFD->getResultType();
6840   const CXXRecordDecl *Ret = RetType->isRecordType() ?
6841       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6842   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6843       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6844     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6845     if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6846       NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6847                                                         Context));
6848     }
6849   }
6850 
6851   if (!getLangOpts().CPlusPlus) {
6852     // Perform semantic checking on the function declaration.
6853     bool isExplicitSpecialization=false;
6854     if (!NewFD->isInvalidDecl() && NewFD->isMain())
6855       CheckMain(NewFD, D.getDeclSpec());
6856 
6857     if (!NewFD->isInvalidDecl())
6858       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6859                                                   isExplicitSpecialization));
6860     // Make graceful recovery from an invalid redeclaration.
6861     else if (!Previous.empty())
6862            D.setRedeclaration(true);
6863     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6864             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6865            "previous declaration set still overloaded");
6866   } else {
6867     // If the declarator is a template-id, translate the parser's template
6868     // argument list into our AST format.
6869     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6870       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6871       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6872       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6873       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6874                                          TemplateId->NumArgs);
6875       translateTemplateArguments(TemplateArgsPtr,
6876                                  TemplateArgs);
6877 
6878       HasExplicitTemplateArgs = true;
6879 
6880       if (NewFD->isInvalidDecl()) {
6881         HasExplicitTemplateArgs = false;
6882       } else if (FunctionTemplate) {
6883         // Function template with explicit template arguments.
6884         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6885           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6886 
6887         HasExplicitTemplateArgs = false;
6888       } else if (!isFunctionTemplateSpecialization &&
6889                  !D.getDeclSpec().isFriendSpecified()) {
6890         // We have encountered something that the user meant to be a
6891         // specialization (because it has explicitly-specified template
6892         // arguments) but that was not introduced with a "template<>" (or had
6893         // too few of them).
6894         // FIXME: Differentiate between attempts for explicit instantiations
6895         // (starting with "template") and the rest.
6896         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6897           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6898           << FixItHint::CreateInsertion(
6899                                     D.getDeclSpec().getLocStart(),
6900                                         "template<> ");
6901         isFunctionTemplateSpecialization = true;
6902       } else {
6903         // "friend void foo<>(int);" is an implicit specialization decl.
6904         isFunctionTemplateSpecialization = true;
6905       }
6906     } else if (isFriend && isFunctionTemplateSpecialization) {
6907       // This combination is only possible in a recovery case;  the user
6908       // wrote something like:
6909       //   template <> friend void foo(int);
6910       // which we're recovering from as if the user had written:
6911       //   friend void foo<>(int);
6912       // Go ahead and fake up a template id.
6913       HasExplicitTemplateArgs = true;
6914         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6915       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6916     }
6917 
6918     // If it's a friend (and only if it's a friend), it's possible
6919     // that either the specialized function type or the specialized
6920     // template is dependent, and therefore matching will fail.  In
6921     // this case, don't check the specialization yet.
6922     bool InstantiationDependent = false;
6923     if (isFunctionTemplateSpecialization && isFriend &&
6924         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6925          TemplateSpecializationType::anyDependentTemplateArguments(
6926             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6927             InstantiationDependent))) {
6928       assert(HasExplicitTemplateArgs &&
6929              "friend function specialization without template args");
6930       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6931                                                        Previous))
6932         NewFD->setInvalidDecl();
6933     } else if (isFunctionTemplateSpecialization) {
6934       if (CurContext->isDependentContext() && CurContext->isRecord()
6935           && !isFriend) {
6936         isDependentClassScopeExplicitSpecialization = true;
6937         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6938           diag::ext_function_specialization_in_class :
6939           diag::err_function_specialization_in_class)
6940           << NewFD->getDeclName();
6941       } else if (CheckFunctionTemplateSpecialization(NewFD,
6942                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6943                                                      Previous))
6944         NewFD->setInvalidDecl();
6945 
6946       // C++ [dcl.stc]p1:
6947       //   A storage-class-specifier shall not be specified in an explicit
6948       //   specialization (14.7.3)
6949       FunctionTemplateSpecializationInfo *Info =
6950           NewFD->getTemplateSpecializationInfo();
6951       if (Info && SC != SC_None) {
6952         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
6953           Diag(NewFD->getLocation(),
6954                diag::err_explicit_specialization_inconsistent_storage_class)
6955             << SC
6956             << FixItHint::CreateRemoval(
6957                                       D.getDeclSpec().getStorageClassSpecLoc());
6958 
6959         else
6960           Diag(NewFD->getLocation(),
6961                diag::ext_explicit_specialization_storage_class)
6962             << FixItHint::CreateRemoval(
6963                                       D.getDeclSpec().getStorageClassSpecLoc());
6964       }
6965 
6966     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6967       if (CheckMemberSpecialization(NewFD, Previous))
6968           NewFD->setInvalidDecl();
6969     }
6970 
6971     // Perform semantic checking on the function declaration.
6972     if (!isDependentClassScopeExplicitSpecialization) {
6973       if (!NewFD->isInvalidDecl() && NewFD->isMain())
6974         CheckMain(NewFD, D.getDeclSpec());
6975 
6976       if (NewFD->isInvalidDecl()) {
6977         // If this is a class member, mark the class invalid immediately.
6978         // This avoids some consistency errors later.
6979         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6980           methodDecl->getParent()->setInvalidDecl();
6981       } else
6982         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6983                                                     isExplicitSpecialization));
6984     }
6985 
6986     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6987             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6988            "previous declaration set still overloaded");
6989 
6990     NamedDecl *PrincipalDecl = (FunctionTemplate
6991                                 ? cast<NamedDecl>(FunctionTemplate)
6992                                 : NewFD);
6993 
6994     if (isFriend && D.isRedeclaration()) {
6995       AccessSpecifier Access = AS_public;
6996       if (!NewFD->isInvalidDecl())
6997         Access = NewFD->getPreviousDecl()->getAccess();
6998 
6999       NewFD->setAccess(Access);
7000       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7001     }
7002 
7003     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7004         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7005       PrincipalDecl->setNonMemberOperator();
7006 
7007     // If we have a function template, check the template parameter
7008     // list. This will check and merge default template arguments.
7009     if (FunctionTemplate) {
7010       FunctionTemplateDecl *PrevTemplate =
7011                                      FunctionTemplate->getPreviousDecl();
7012       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7013                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7014                             D.getDeclSpec().isFriendSpecified()
7015                               ? (D.isFunctionDefinition()
7016                                    ? TPC_FriendFunctionTemplateDefinition
7017                                    : TPC_FriendFunctionTemplate)
7018                               : (D.getCXXScopeSpec().isSet() &&
7019                                  DC && DC->isRecord() &&
7020                                  DC->isDependentContext())
7021                                   ? TPC_ClassTemplateMember
7022                                   : TPC_FunctionTemplate);
7023     }
7024 
7025     if (NewFD->isInvalidDecl()) {
7026       // Ignore all the rest of this.
7027     } else if (!D.isRedeclaration()) {
7028       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7029                                        AddToScope };
7030       // Fake up an access specifier if it's supposed to be a class member.
7031       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7032         NewFD->setAccess(AS_public);
7033 
7034       // Qualified decls generally require a previous declaration.
7035       if (D.getCXXScopeSpec().isSet()) {
7036         // ...with the major exception of templated-scope or
7037         // dependent-scope friend declarations.
7038 
7039         // TODO: we currently also suppress this check in dependent
7040         // contexts because (1) the parameter depth will be off when
7041         // matching friend templates and (2) we might actually be
7042         // selecting a friend based on a dependent factor.  But there
7043         // are situations where these conditions don't apply and we
7044         // can actually do this check immediately.
7045         if (isFriend &&
7046             (TemplateParamLists.size() ||
7047              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7048              CurContext->isDependentContext())) {
7049           // ignore these
7050         } else {
7051           // The user tried to provide an out-of-line definition for a
7052           // function that is a member of a class or namespace, but there
7053           // was no such member function declared (C++ [class.mfct]p2,
7054           // C++ [namespace.memdef]p2). For example:
7055           //
7056           // class X {
7057           //   void f() const;
7058           // };
7059           //
7060           // void X::f() { } // ill-formed
7061           //
7062           // Complain about this problem, and attempt to suggest close
7063           // matches (e.g., those that differ only in cv-qualifiers and
7064           // whether the parameter types are references).
7065 
7066           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
7067                                                                NewFD,
7068                                                                ExtraArgs)) {
7069             AddToScope = ExtraArgs.AddToScope;
7070             return Result;
7071           }
7072         }
7073 
7074         // Unqualified local friend declarations are required to resolve
7075         // to something.
7076       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7077         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
7078                                                              NewFD,
7079                                                              ExtraArgs)) {
7080           AddToScope = ExtraArgs.AddToScope;
7081           return Result;
7082         }
7083       }
7084 
7085     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7086                !isFriend && !isFunctionTemplateSpecialization &&
7087                !isExplicitSpecialization) {
7088       // An out-of-line member function declaration must also be a
7089       // definition (C++ [dcl.meaning]p1).
7090       // Note that this is not the case for explicit specializations of
7091       // function templates or member functions of class templates, per
7092       // C++ [temp.expl.spec]p2. We also allow these declarations as an
7093       // extension for compatibility with old SWIG code which likes to
7094       // generate them.
7095       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7096         << D.getCXXScopeSpec().getRange();
7097     }
7098   }
7099 
7100   ProcessPragmaWeak(S, NewFD);
7101   checkAttributesAfterMerging(*this, *NewFD);
7102 
7103   AddKnownFunctionAttributes(NewFD);
7104 
7105   if (NewFD->hasAttr<OverloadableAttr>() &&
7106       !NewFD->getType()->getAs<FunctionProtoType>()) {
7107     Diag(NewFD->getLocation(),
7108          diag::err_attribute_overloadable_no_prototype)
7109       << NewFD;
7110 
7111     // Turn this into a variadic function with no parameters.
7112     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7113     FunctionProtoType::ExtProtoInfo EPI;
7114     EPI.Variadic = true;
7115     EPI.ExtInfo = FT->getExtInfo();
7116 
7117     QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7118     NewFD->setType(R);
7119   }
7120 
7121   // If there's a #pragma GCC visibility in scope, and this isn't a class
7122   // member, set the visibility of this function.
7123   if (!DC->isRecord() && NewFD->isExternallyVisible())
7124     AddPushedVisibilityAttribute(NewFD);
7125 
7126   // If there's a #pragma clang arc_cf_code_audited in scope, consider
7127   // marking the function.
7128   AddCFAuditedAttribute(NewFD);
7129 
7130   // If this is the first declaration of an extern C variable, update
7131   // the map of such variables.
7132   if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
7133       isIncompleteDeclExternC(*this, NewFD))
7134     RegisterLocallyScopedExternCDecl(NewFD, S);
7135 
7136   // Set this FunctionDecl's range up to the right paren.
7137   NewFD->setRangeEnd(D.getSourceRange().getEnd());
7138 
7139   if (getLangOpts().CPlusPlus) {
7140     if (FunctionTemplate) {
7141       if (NewFD->isInvalidDecl())
7142         FunctionTemplate->setInvalidDecl();
7143       return FunctionTemplate;
7144     }
7145   }
7146 
7147   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7148     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7149     if ((getLangOpts().OpenCLVersion >= 120)
7150         && (SC == SC_Static)) {
7151       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7152       D.setInvalidType();
7153     }
7154 
7155     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7156     if (!NewFD->getResultType()->isVoidType()) {
7157       Diag(D.getIdentifierLoc(),
7158            diag::err_expected_kernel_void_return_type);
7159       D.setInvalidType();
7160     }
7161 
7162     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7163     for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7164          PE = NewFD->param_end(); PI != PE; ++PI) {
7165       ParmVarDecl *Param = *PI;
7166       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7167     }
7168   }
7169 
7170   MarkUnusedFileScopedDecl(NewFD);
7171 
7172   if (getLangOpts().CUDA)
7173     if (IdentifierInfo *II = NewFD->getIdentifier())
7174       if (!NewFD->isInvalidDecl() &&
7175           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7176         if (II->isStr("cudaConfigureCall")) {
7177           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7178             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7179 
7180           Context.setcudaConfigureCallDecl(NewFD);
7181         }
7182       }
7183 
7184   // Here we have an function template explicit specialization at class scope.
7185   // The actually specialization will be postponed to template instatiation
7186   // time via the ClassScopeFunctionSpecializationDecl node.
7187   if (isDependentClassScopeExplicitSpecialization) {
7188     ClassScopeFunctionSpecializationDecl *NewSpec =
7189                          ClassScopeFunctionSpecializationDecl::Create(
7190                                 Context, CurContext, SourceLocation(),
7191                                 cast<CXXMethodDecl>(NewFD),
7192                                 HasExplicitTemplateArgs, TemplateArgs);
7193     CurContext->addDecl(NewSpec);
7194     AddToScope = false;
7195   }
7196 
7197   return NewFD;
7198 }
7199 
7200 /// \brief Perform semantic checking of a new function declaration.
7201 ///
7202 /// Performs semantic analysis of the new function declaration
7203 /// NewFD. This routine performs all semantic checking that does not
7204 /// require the actual declarator involved in the declaration, and is
7205 /// used both for the declaration of functions as they are parsed
7206 /// (called via ActOnDeclarator) and for the declaration of functions
7207 /// that have been instantiated via C++ template instantiation (called
7208 /// via InstantiateDecl).
7209 ///
7210 /// \param IsExplicitSpecialization whether this new function declaration is
7211 /// an explicit specialization of the previous declaration.
7212 ///
7213 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7214 ///
7215 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7216 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7217                                     LookupResult &Previous,
7218                                     bool IsExplicitSpecialization) {
7219   assert(!NewFD->getResultType()->isVariablyModifiedType()
7220          && "Variably modified return types are not handled here");
7221 
7222   // Filter out any non-conflicting previous declarations.
7223   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7224 
7225   bool Redeclaration = false;
7226   NamedDecl *OldDecl = 0;
7227 
7228   // Merge or overload the declaration with an existing declaration of
7229   // the same name, if appropriate.
7230   if (!Previous.empty()) {
7231     // Determine whether NewFD is an overload of PrevDecl or
7232     // a declaration that requires merging. If it's an overload,
7233     // there's no more work to do here; we'll just add the new
7234     // function to the scope.
7235     if (!AllowOverloadingOfFunction(Previous, Context)) {
7236       NamedDecl *Candidate = Previous.getFoundDecl();
7237       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7238         Redeclaration = true;
7239         OldDecl = Candidate;
7240       }
7241     } else {
7242       switch (CheckOverload(S, NewFD, Previous, OldDecl,
7243                             /*NewIsUsingDecl*/ false)) {
7244       case Ovl_Match:
7245         Redeclaration = true;
7246         break;
7247 
7248       case Ovl_NonFunction:
7249         Redeclaration = true;
7250         break;
7251 
7252       case Ovl_Overload:
7253         Redeclaration = false;
7254         break;
7255       }
7256 
7257       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7258         // If a function name is overloadable in C, then every function
7259         // with that name must be marked "overloadable".
7260         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7261           << Redeclaration << NewFD;
7262         NamedDecl *OverloadedDecl = 0;
7263         if (Redeclaration)
7264           OverloadedDecl = OldDecl;
7265         else if (!Previous.empty())
7266           OverloadedDecl = Previous.getRepresentativeDecl();
7267         if (OverloadedDecl)
7268           Diag(OverloadedDecl->getLocation(),
7269                diag::note_attribute_overloadable_prev_overload);
7270         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7271                                                         Context));
7272       }
7273     }
7274   }
7275 
7276   // Check for a previous extern "C" declaration with this name.
7277   if (!Redeclaration &&
7278       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7279     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7280     if (!Previous.empty()) {
7281       // This is an extern "C" declaration with the same name as a previous
7282       // declaration, and thus redeclares that entity...
7283       Redeclaration = true;
7284       OldDecl = Previous.getFoundDecl();
7285 
7286       // ... except in the presence of __attribute__((overloadable)).
7287       if (OldDecl->hasAttr<OverloadableAttr>()) {
7288         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7289           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7290             << Redeclaration << NewFD;
7291           Diag(Previous.getFoundDecl()->getLocation(),
7292                diag::note_attribute_overloadable_prev_overload);
7293           NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7294                                                           Context));
7295         }
7296         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7297           Redeclaration = false;
7298           OldDecl = 0;
7299         }
7300       }
7301     }
7302   }
7303 
7304   // C++11 [dcl.constexpr]p8:
7305   //   A constexpr specifier for a non-static member function that is not
7306   //   a constructor declares that member function to be const.
7307   //
7308   // This needs to be delayed until we know whether this is an out-of-line
7309   // definition of a static member function.
7310   //
7311   // This rule is not present in C++1y, so we produce a backwards
7312   // compatibility warning whenever it happens in C++11.
7313   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7314   if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7315       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7316       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7317     CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7318     if (FunctionTemplateDecl *OldTD =
7319           dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7320       OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7321     if (!OldMD || !OldMD->isStatic()) {
7322       const FunctionProtoType *FPT =
7323         MD->getType()->castAs<FunctionProtoType>();
7324       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7325       EPI.TypeQuals |= Qualifiers::Const;
7326       MD->setType(Context.getFunctionType(FPT->getResultType(),
7327                                           FPT->getArgTypes(), EPI));
7328 
7329       // Warn that we did this, if we're not performing template instantiation.
7330       // In that case, we'll have warned already when the template was defined.
7331       if (ActiveTemplateInstantiations.empty()) {
7332         SourceLocation AddConstLoc;
7333         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7334                 .IgnoreParens().getAs<FunctionTypeLoc>())
7335           AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7336 
7337         Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7338           << FixItHint::CreateInsertion(AddConstLoc, " const");
7339       }
7340     }
7341   }
7342 
7343   if (Redeclaration) {
7344     // NewFD and OldDecl represent declarations that need to be
7345     // merged.
7346     if (MergeFunctionDecl(NewFD, OldDecl, S)) {
7347       NewFD->setInvalidDecl();
7348       return Redeclaration;
7349     }
7350 
7351     Previous.clear();
7352     Previous.addDecl(OldDecl);
7353 
7354     if (FunctionTemplateDecl *OldTemplateDecl
7355                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7356       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7357       FunctionTemplateDecl *NewTemplateDecl
7358         = NewFD->getDescribedFunctionTemplate();
7359       assert(NewTemplateDecl && "Template/non-template mismatch");
7360       if (CXXMethodDecl *Method
7361             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7362         Method->setAccess(OldTemplateDecl->getAccess());
7363         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7364       }
7365 
7366       // If this is an explicit specialization of a member that is a function
7367       // template, mark it as a member specialization.
7368       if (IsExplicitSpecialization &&
7369           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7370         NewTemplateDecl->setMemberSpecialization();
7371         assert(OldTemplateDecl->isMemberSpecialization());
7372       }
7373 
7374     } else {
7375       // This needs to happen first so that 'inline' propagates.
7376       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7377 
7378       if (isa<CXXMethodDecl>(NewFD)) {
7379         // A valid redeclaration of a C++ method must be out-of-line,
7380         // but (unfortunately) it's not necessarily a definition
7381         // because of templates, which means that the previous
7382         // declaration is not necessarily from the class definition.
7383 
7384         // For just setting the access, that doesn't matter.
7385         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7386         NewFD->setAccess(oldMethod->getAccess());
7387 
7388         // Update the key-function state if necessary for this ABI.
7389         if (NewFD->isInlined() &&
7390             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7391           // setNonKeyFunction needs to work with the original
7392           // declaration from the class definition, and isVirtual() is
7393           // just faster in that case, so map back to that now.
7394           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7395           if (oldMethod->isVirtual()) {
7396             Context.setNonKeyFunction(oldMethod);
7397           }
7398         }
7399       }
7400     }
7401   }
7402 
7403   // Semantic checking for this function declaration (in isolation).
7404   if (getLangOpts().CPlusPlus) {
7405     // C++-specific checks.
7406     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7407       CheckConstructor(Constructor);
7408     } else if (CXXDestructorDecl *Destructor =
7409                 dyn_cast<CXXDestructorDecl>(NewFD)) {
7410       CXXRecordDecl *Record = Destructor->getParent();
7411       QualType ClassType = Context.getTypeDeclType(Record);
7412 
7413       // FIXME: Shouldn't we be able to perform this check even when the class
7414       // type is dependent? Both gcc and edg can handle that.
7415       if (!ClassType->isDependentType()) {
7416         DeclarationName Name
7417           = Context.DeclarationNames.getCXXDestructorName(
7418                                         Context.getCanonicalType(ClassType));
7419         if (NewFD->getDeclName() != Name) {
7420           Diag(NewFD->getLocation(), diag::err_destructor_name);
7421           NewFD->setInvalidDecl();
7422           return Redeclaration;
7423         }
7424       }
7425     } else if (CXXConversionDecl *Conversion
7426                = dyn_cast<CXXConversionDecl>(NewFD)) {
7427       ActOnConversionDeclarator(Conversion);
7428     }
7429 
7430     // Find any virtual functions that this function overrides.
7431     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7432       if (!Method->isFunctionTemplateSpecialization() &&
7433           !Method->getDescribedFunctionTemplate() &&
7434           Method->isCanonicalDecl()) {
7435         if (AddOverriddenMethods(Method->getParent(), Method)) {
7436           // If the function was marked as "static", we have a problem.
7437           if (NewFD->getStorageClass() == SC_Static) {
7438             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7439           }
7440         }
7441       }
7442 
7443       if (Method->isStatic())
7444         checkThisInStaticMemberFunctionType(Method);
7445     }
7446 
7447     // Extra checking for C++ overloaded operators (C++ [over.oper]).
7448     if (NewFD->isOverloadedOperator() &&
7449         CheckOverloadedOperatorDeclaration(NewFD)) {
7450       NewFD->setInvalidDecl();
7451       return Redeclaration;
7452     }
7453 
7454     // Extra checking for C++0x literal operators (C++0x [over.literal]).
7455     if (NewFD->getLiteralIdentifier() &&
7456         CheckLiteralOperatorDeclaration(NewFD)) {
7457       NewFD->setInvalidDecl();
7458       return Redeclaration;
7459     }
7460 
7461     // In C++, check default arguments now that we have merged decls. Unless
7462     // the lexical context is the class, because in this case this is done
7463     // during delayed parsing anyway.
7464     if (!CurContext->isRecord())
7465       CheckCXXDefaultArguments(NewFD);
7466 
7467     // If this function declares a builtin function, check the type of this
7468     // declaration against the expected type for the builtin.
7469     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7470       ASTContext::GetBuiltinTypeError Error;
7471       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7472       QualType T = Context.GetBuiltinType(BuiltinID, Error);
7473       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7474         // The type of this function differs from the type of the builtin,
7475         // so forget about the builtin entirely.
7476         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7477       }
7478     }
7479 
7480     // If this function is declared as being extern "C", then check to see if
7481     // the function returns a UDT (class, struct, or union type) that is not C
7482     // compatible, and if it does, warn the user.
7483     // But, issue any diagnostic on the first declaration only.
7484     if (NewFD->isExternC() && Previous.empty()) {
7485       QualType R = NewFD->getResultType();
7486       if (R->isIncompleteType() && !R->isVoidType())
7487         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7488             << NewFD << R;
7489       else if (!R.isPODType(Context) && !R->isVoidType() &&
7490                !R->isObjCObjectPointerType())
7491         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7492     }
7493   }
7494   return Redeclaration;
7495 }
7496 
getResultSourceRange(const FunctionDecl * FD)7497 static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7498   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7499   if (!TSI)
7500     return SourceRange();
7501 
7502   TypeLoc TL = TSI->getTypeLoc();
7503   FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7504   if (!FunctionTL)
7505     return SourceRange();
7506 
7507   TypeLoc ResultTL = FunctionTL.getResultLoc();
7508   if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7509     return ResultTL.getSourceRange();
7510 
7511   return SourceRange();
7512 }
7513 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)7514 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7515   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7516   //   static or constexpr is ill-formed.
7517   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7518   //   appear in a declaration of main.
7519   // static main is not an error under C99, but we should warn about it.
7520   // We accept _Noreturn main as an extension.
7521   if (FD->getStorageClass() == SC_Static)
7522     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7523          ? diag::err_static_main : diag::warn_static_main)
7524       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7525   if (FD->isInlineSpecified())
7526     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7527       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7528   if (DS.isNoreturnSpecified()) {
7529     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7530     SourceRange NoreturnRange(NoreturnLoc,
7531                               PP.getLocForEndOfToken(NoreturnLoc));
7532     Diag(NoreturnLoc, diag::ext_noreturn_main);
7533     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7534       << FixItHint::CreateRemoval(NoreturnRange);
7535   }
7536   if (FD->isConstexpr()) {
7537     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7538       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7539     FD->setConstexpr(false);
7540   }
7541 
7542   QualType T = FD->getType();
7543   assert(T->isFunctionType() && "function decl is not of function type");
7544   const FunctionType* FT = T->castAs<FunctionType>();
7545 
7546   // All the standards say that main() should should return 'int'.
7547   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7548     // In C and C++, main magically returns 0 if you fall off the end;
7549     // set the flag which tells us that.
7550     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7551     FD->setHasImplicitReturnZero(true);
7552 
7553   // In C with GNU extensions we allow main() to have non-integer return
7554   // type, but we should warn about the extension, and we disable the
7555   // implicit-return-zero rule.
7556   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7557     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7558 
7559     SourceRange ResultRange = getResultSourceRange(FD);
7560     if (ResultRange.isValid())
7561       Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7562           << FixItHint::CreateReplacement(ResultRange, "int");
7563 
7564   // Otherwise, this is just a flat-out error.
7565   } else {
7566     SourceRange ResultRange = getResultSourceRange(FD);
7567     if (ResultRange.isValid())
7568       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7569           << FixItHint::CreateReplacement(ResultRange, "int");
7570     else
7571       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7572 
7573     FD->setInvalidDecl(true);
7574   }
7575 
7576   // Treat protoless main() as nullary.
7577   if (isa<FunctionNoProtoType>(FT)) return;
7578 
7579   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7580   unsigned nparams = FTP->getNumArgs();
7581   assert(FD->getNumParams() == nparams);
7582 
7583   bool HasExtraParameters = (nparams > 3);
7584 
7585   // Darwin passes an undocumented fourth argument of type char**.  If
7586   // other platforms start sprouting these, the logic below will start
7587   // getting shifty.
7588   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7589     HasExtraParameters = false;
7590 
7591   if (HasExtraParameters) {
7592     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7593     FD->setInvalidDecl(true);
7594     nparams = 3;
7595   }
7596 
7597   // FIXME: a lot of the following diagnostics would be improved
7598   // if we had some location information about types.
7599 
7600   QualType CharPP =
7601     Context.getPointerType(Context.getPointerType(Context.CharTy));
7602   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7603 
7604   for (unsigned i = 0; i < nparams; ++i) {
7605     QualType AT = FTP->getArgType(i);
7606 
7607     bool mismatch = true;
7608 
7609     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7610       mismatch = false;
7611     else if (Expected[i] == CharPP) {
7612       // As an extension, the following forms are okay:
7613       //   char const **
7614       //   char const * const *
7615       //   char * const *
7616 
7617       QualifierCollector qs;
7618       const PointerType* PT;
7619       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7620           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7621           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7622                               Context.CharTy)) {
7623         qs.removeConst();
7624         mismatch = !qs.empty();
7625       }
7626     }
7627 
7628     if (mismatch) {
7629       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7630       // TODO: suggest replacing given type with expected type
7631       FD->setInvalidDecl(true);
7632     }
7633   }
7634 
7635   if (nparams == 1 && !FD->isInvalidDecl()) {
7636     Diag(FD->getLocation(), diag::warn_main_one_arg);
7637   }
7638 
7639   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7640     Diag(FD->getLocation(), diag::err_main_template_decl);
7641     FD->setInvalidDecl();
7642   }
7643 }
7644 
CheckForConstantInitializer(Expr * Init,QualType DclT)7645 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7646   // FIXME: Need strict checking.  In C89, we need to check for
7647   // any assignment, increment, decrement, function-calls, or
7648   // commas outside of a sizeof.  In C99, it's the same list,
7649   // except that the aforementioned are allowed in unevaluated
7650   // expressions.  Everything else falls under the
7651   // "may accept other forms of constant expressions" exception.
7652   // (We never end up here for C++, so the constant expression
7653   // rules there don't matter.)
7654   if (Init->isConstantInitializer(Context, false))
7655     return false;
7656   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7657     << Init->getSourceRange();
7658   return true;
7659 }
7660 
7661 namespace {
7662   // Visits an initialization expression to see if OrigDecl is evaluated in
7663   // its own initialization and throws a warning if it does.
7664   class SelfReferenceChecker
7665       : public EvaluatedExprVisitor<SelfReferenceChecker> {
7666     Sema &S;
7667     Decl *OrigDecl;
7668     bool isRecordType;
7669     bool isPODType;
7670     bool isReferenceType;
7671 
7672   public:
7673     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7674 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)7675     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7676                                                     S(S), OrigDecl(OrigDecl) {
7677       isPODType = false;
7678       isRecordType = false;
7679       isReferenceType = false;
7680       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7681         isPODType = VD->getType().isPODType(S.Context);
7682         isRecordType = VD->getType()->isRecordType();
7683         isReferenceType = VD->getType()->isReferenceType();
7684       }
7685     }
7686 
7687     // For most expressions, the cast is directly above the DeclRefExpr.
7688     // For conditional operators, the cast can be outside the conditional
7689     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)7690     void HandleValue(Expr *E) {
7691       if (isReferenceType)
7692         return;
7693       E = E->IgnoreParenImpCasts();
7694       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7695         HandleDeclRefExpr(DRE);
7696         return;
7697       }
7698 
7699       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7700         HandleValue(CO->getTrueExpr());
7701         HandleValue(CO->getFalseExpr());
7702         return;
7703       }
7704 
7705       if (isa<MemberExpr>(E)) {
7706         Expr *Base = E->IgnoreParenImpCasts();
7707         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7708           // Check for static member variables and don't warn on them.
7709           if (!isa<FieldDecl>(ME->getMemberDecl()))
7710             return;
7711           Base = ME->getBase()->IgnoreParenImpCasts();
7712         }
7713         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7714           HandleDeclRefExpr(DRE);
7715         return;
7716       }
7717     }
7718 
7719     // Reference types are handled here since all uses of references are
7720     // bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)7721     void VisitDeclRefExpr(DeclRefExpr *E) {
7722       if (isReferenceType)
7723         HandleDeclRefExpr(E);
7724     }
7725 
VisitImplicitCastExpr(ImplicitCastExpr * E)7726     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7727       if (E->getCastKind() == CK_LValueToRValue ||
7728           (isRecordType && E->getCastKind() == CK_NoOp))
7729         HandleValue(E->getSubExpr());
7730 
7731       Inherited::VisitImplicitCastExpr(E);
7732     }
7733 
VisitMemberExpr(MemberExpr * E)7734     void VisitMemberExpr(MemberExpr *E) {
7735       // Don't warn on arrays since they can be treated as pointers.
7736       if (E->getType()->canDecayToPointerType()) return;
7737 
7738       // Warn when a non-static method call is followed by non-static member
7739       // field accesses, which is followed by a DeclRefExpr.
7740       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7741       bool Warn = (MD && !MD->isStatic());
7742       Expr *Base = E->getBase()->IgnoreParenImpCasts();
7743       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7744         if (!isa<FieldDecl>(ME->getMemberDecl()))
7745           Warn = false;
7746         Base = ME->getBase()->IgnoreParenImpCasts();
7747       }
7748 
7749       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7750         if (Warn)
7751           HandleDeclRefExpr(DRE);
7752         return;
7753       }
7754 
7755       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7756       // Visit that expression.
7757       Visit(Base);
7758     }
7759 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)7760     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7761       if (E->getNumArgs() > 0)
7762         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7763           HandleDeclRefExpr(DRE);
7764 
7765       Inherited::VisitCXXOperatorCallExpr(E);
7766     }
7767 
VisitUnaryOperator(UnaryOperator * E)7768     void VisitUnaryOperator(UnaryOperator *E) {
7769       // For POD record types, addresses of its own members are well-defined.
7770       if (E->getOpcode() == UO_AddrOf && isRecordType &&
7771           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7772         if (!isPODType)
7773           HandleValue(E->getSubExpr());
7774         return;
7775       }
7776       Inherited::VisitUnaryOperator(E);
7777     }
7778 
VisitObjCMessageExpr(ObjCMessageExpr * E)7779     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7780 
HandleDeclRefExpr(DeclRefExpr * DRE)7781     void HandleDeclRefExpr(DeclRefExpr *DRE) {
7782       Decl* ReferenceDecl = DRE->getDecl();
7783       if (OrigDecl != ReferenceDecl) return;
7784       unsigned diag;
7785       if (isReferenceType) {
7786         diag = diag::warn_uninit_self_reference_in_reference_init;
7787       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7788         diag = diag::warn_static_self_reference_in_init;
7789       } else {
7790         diag = diag::warn_uninit_self_reference_in_init;
7791       }
7792 
7793       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7794                             S.PDiag(diag)
7795                               << DRE->getNameInfo().getName()
7796                               << OrigDecl->getLocation()
7797                               << DRE->getSourceRange());
7798     }
7799   };
7800 
7801   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)7802   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7803                                  bool DirectInit) {
7804     // Parameters arguments are occassionially constructed with itself,
7805     // for instance, in recursive functions.  Skip them.
7806     if (isa<ParmVarDecl>(OrigDecl))
7807       return;
7808 
7809     E = E->IgnoreParens();
7810 
7811     // Skip checking T a = a where T is not a record or reference type.
7812     // Doing so is a way to silence uninitialized warnings.
7813     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7814       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7815         if (ICE->getCastKind() == CK_LValueToRValue)
7816           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7817             if (DRE->getDecl() == OrigDecl)
7818               return;
7819 
7820     SelfReferenceChecker(S, OrigDecl).Visit(E);
7821   }
7822 }
7823 
7824 /// AddInitializerToDecl - Adds the initializer Init to the
7825 /// declaration dcl. If DirectInit is true, this is C++ direct
7826 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)7827 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7828                                 bool DirectInit, bool TypeMayContainAuto) {
7829   // If there is no declaration, there was an error parsing it.  Just ignore
7830   // the initializer.
7831   if (RealDecl == 0 || RealDecl->isInvalidDecl())
7832     return;
7833 
7834   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7835     // With declarators parsed the way they are, the parser cannot
7836     // distinguish between a normal initializer and a pure-specifier.
7837     // Thus this grotesque test.
7838     IntegerLiteral *IL;
7839     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7840         Context.getCanonicalType(IL->getType()) == Context.IntTy)
7841       CheckPureMethod(Method, Init->getSourceRange());
7842     else {
7843       Diag(Method->getLocation(), diag::err_member_function_initialization)
7844         << Method->getDeclName() << Init->getSourceRange();
7845       Method->setInvalidDecl();
7846     }
7847     return;
7848   }
7849 
7850   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7851   if (!VDecl) {
7852     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7853     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7854     RealDecl->setInvalidDecl();
7855     return;
7856   }
7857   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7858 
7859   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7860   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7861     Expr *DeduceInit = Init;
7862     // Initializer could be a C++ direct-initializer. Deduction only works if it
7863     // contains exactly one expression.
7864     if (CXXDirectInit) {
7865       if (CXXDirectInit->getNumExprs() == 0) {
7866         // It isn't possible to write this directly, but it is possible to
7867         // end up in this situation with "auto x(some_pack...);"
7868         Diag(CXXDirectInit->getLocStart(),
7869              diag::err_auto_var_init_no_expression)
7870           << VDecl->getDeclName() << VDecl->getType()
7871           << VDecl->getSourceRange();
7872         RealDecl->setInvalidDecl();
7873         return;
7874       } else if (CXXDirectInit->getNumExprs() > 1) {
7875         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7876              diag::err_auto_var_init_multiple_expressions)
7877           << VDecl->getDeclName() << VDecl->getType()
7878           << VDecl->getSourceRange();
7879         RealDecl->setInvalidDecl();
7880         return;
7881       } else {
7882         DeduceInit = CXXDirectInit->getExpr(0);
7883       }
7884     }
7885 
7886     // Expressions default to 'id' when we're in a debugger.
7887     bool DefaultedToAuto = false;
7888     if (getLangOpts().DebuggerCastResultToId &&
7889         Init->getType() == Context.UnknownAnyTy) {
7890       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7891       if (Result.isInvalid()) {
7892         VDecl->setInvalidDecl();
7893         return;
7894       }
7895       Init = Result.take();
7896       DefaultedToAuto = true;
7897     }
7898 
7899     QualType DeducedType;
7900     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7901             DAR_Failed)
7902       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7903     if (DeducedType.isNull()) {
7904       RealDecl->setInvalidDecl();
7905       return;
7906     }
7907     VDecl->setType(DeducedType);
7908     assert(VDecl->isLinkageValid());
7909 
7910     // In ARC, infer lifetime.
7911     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7912       VDecl->setInvalidDecl();
7913 
7914     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7915     // 'id' instead of a specific object type prevents most of our usual checks.
7916     // We only want to warn outside of template instantiations, though:
7917     // inside a template, the 'id' could have come from a parameter.
7918     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7919         DeducedType->isObjCIdType()) {
7920       SourceLocation Loc =
7921           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7922       Diag(Loc, diag::warn_auto_var_is_id)
7923         << VDecl->getDeclName() << DeduceInit->getSourceRange();
7924     }
7925 
7926     // If this is a redeclaration, check that the type we just deduced matches
7927     // the previously declared type.
7928     if (VarDecl *Old = VDecl->getPreviousDecl())
7929       MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7930 
7931     // Check the deduced type is valid for a variable declaration.
7932     CheckVariableDeclarationType(VDecl);
7933     if (VDecl->isInvalidDecl())
7934       return;
7935   }
7936 
7937   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7938     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7939     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7940     VDecl->setInvalidDecl();
7941     return;
7942   }
7943 
7944   if (!VDecl->getType()->isDependentType()) {
7945     // A definition must end up with a complete type, which means it must be
7946     // complete with the restriction that an array type might be completed by
7947     // the initializer; note that later code assumes this restriction.
7948     QualType BaseDeclType = VDecl->getType();
7949     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7950       BaseDeclType = Array->getElementType();
7951     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7952                             diag::err_typecheck_decl_incomplete_type)) {
7953       RealDecl->setInvalidDecl();
7954       return;
7955     }
7956 
7957     // The variable can not have an abstract class type.
7958     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7959                                diag::err_abstract_type_in_decl,
7960                                AbstractVariableType))
7961       VDecl->setInvalidDecl();
7962   }
7963 
7964   const VarDecl *Def;
7965   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7966     Diag(VDecl->getLocation(), diag::err_redefinition)
7967       << VDecl->getDeclName();
7968     Diag(Def->getLocation(), diag::note_previous_definition);
7969     VDecl->setInvalidDecl();
7970     return;
7971   }
7972 
7973   const VarDecl* PrevInit = 0;
7974   if (getLangOpts().CPlusPlus) {
7975     // C++ [class.static.data]p4
7976     //   If a static data member is of const integral or const
7977     //   enumeration type, its declaration in the class definition can
7978     //   specify a constant-initializer which shall be an integral
7979     //   constant expression (5.19). In that case, the member can appear
7980     //   in integral constant expressions. The member shall still be
7981     //   defined in a namespace scope if it is used in the program and the
7982     //   namespace scope definition shall not contain an initializer.
7983     //
7984     // We already performed a redefinition check above, but for static
7985     // data members we also need to check whether there was an in-class
7986     // declaration with an initializer.
7987     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7988       Diag(VDecl->getLocation(), diag::err_redefinition)
7989         << VDecl->getDeclName();
7990       Diag(PrevInit->getLocation(), diag::note_previous_definition);
7991       return;
7992     }
7993 
7994     if (VDecl->hasLocalStorage())
7995       getCurFunction()->setHasBranchProtectedScope();
7996 
7997     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7998       VDecl->setInvalidDecl();
7999       return;
8000     }
8001   }
8002 
8003   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8004   // a kernel function cannot be initialized."
8005   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8006     Diag(VDecl->getLocation(), diag::err_local_cant_init);
8007     VDecl->setInvalidDecl();
8008     return;
8009   }
8010 
8011   // Get the decls type and save a reference for later, since
8012   // CheckInitializerTypes may change it.
8013   QualType DclT = VDecl->getType(), SavT = DclT;
8014 
8015   // Expressions default to 'id' when we're in a debugger
8016   // and we are assigning it to a variable of Objective-C pointer type.
8017   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8018       Init->getType() == Context.UnknownAnyTy) {
8019     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8020     if (Result.isInvalid()) {
8021       VDecl->setInvalidDecl();
8022       return;
8023     }
8024     Init = Result.take();
8025   }
8026 
8027   // Perform the initialization.
8028   if (!VDecl->isInvalidDecl()) {
8029     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8030     InitializationKind Kind
8031       = DirectInit ?
8032           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8033                                                            Init->getLocStart(),
8034                                                            Init->getLocEnd())
8035                         : InitializationKind::CreateDirectList(
8036                                                           VDecl->getLocation())
8037                    : InitializationKind::CreateCopy(VDecl->getLocation(),
8038                                                     Init->getLocStart());
8039 
8040     MultiExprArg Args = Init;
8041     if (CXXDirectInit)
8042       Args = MultiExprArg(CXXDirectInit->getExprs(),
8043                           CXXDirectInit->getNumExprs());
8044 
8045     InitializationSequence InitSeq(*this, Entity, Kind, Args);
8046     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8047     if (Result.isInvalid()) {
8048       VDecl->setInvalidDecl();
8049       return;
8050     }
8051 
8052     Init = Result.takeAs<Expr>();
8053   }
8054 
8055   // Check for self-references within variable initializers.
8056   // Variables declared within a function/method body (except for references)
8057   // are handled by a dataflow analysis.
8058   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8059       VDecl->getType()->isReferenceType()) {
8060     CheckSelfReference(*this, RealDecl, Init, DirectInit);
8061   }
8062 
8063   // If the type changed, it means we had an incomplete type that was
8064   // completed by the initializer. For example:
8065   //   int ary[] = { 1, 3, 5 };
8066   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8067   if (!VDecl->isInvalidDecl() && (DclT != SavT))
8068     VDecl->setType(DclT);
8069 
8070   if (!VDecl->isInvalidDecl()) {
8071     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8072 
8073     if (VDecl->hasAttr<BlocksAttr>())
8074       checkRetainCycles(VDecl, Init);
8075 
8076     // It is safe to assign a weak reference into a strong variable.
8077     // Although this code can still have problems:
8078     //   id x = self.weakProp;
8079     //   id y = self.weakProp;
8080     // we do not warn to warn spuriously when 'x' and 'y' are on separate
8081     // paths through the function. This should be revisited if
8082     // -Wrepeated-use-of-weak is made flow-sensitive.
8083     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8084       DiagnosticsEngine::Level Level =
8085         Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8086                                  Init->getLocStart());
8087       if (Level != DiagnosticsEngine::Ignored)
8088         getCurFunction()->markSafeWeakUse(Init);
8089     }
8090   }
8091 
8092   // The initialization is usually a full-expression.
8093   //
8094   // FIXME: If this is a braced initialization of an aggregate, it is not
8095   // an expression, and each individual field initializer is a separate
8096   // full-expression. For instance, in:
8097   //
8098   //   struct Temp { ~Temp(); };
8099   //   struct S { S(Temp); };
8100   //   struct T { S a, b; } t = { Temp(), Temp() }
8101   //
8102   // we should destroy the first Temp before constructing the second.
8103   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8104                                           false,
8105                                           VDecl->isConstexpr());
8106   if (Result.isInvalid()) {
8107     VDecl->setInvalidDecl();
8108     return;
8109   }
8110   Init = Result.take();
8111 
8112   // Attach the initializer to the decl.
8113   VDecl->setInit(Init);
8114 
8115   if (VDecl->isLocalVarDecl()) {
8116     // C99 6.7.8p4: All the expressions in an initializer for an object that has
8117     // static storage duration shall be constant expressions or string literals.
8118     // C++ does not have this restriction.
8119     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8120       if (VDecl->getStorageClass() == SC_Static)
8121         CheckForConstantInitializer(Init, DclT);
8122       // C89 is stricter than C99 for non-static aggregate types.
8123       // C89 6.5.7p3: All the expressions [...] in an initializer list
8124       // for an object that has aggregate or union type shall be
8125       // constant expressions.
8126       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8127                isa<InitListExpr>(Init) &&
8128                !Init->isConstantInitializer(Context, false))
8129         Diag(Init->getExprLoc(),
8130              diag::ext_aggregate_init_not_constant)
8131           << Init->getSourceRange();
8132     }
8133   } else if (VDecl->isStaticDataMember() &&
8134              VDecl->getLexicalDeclContext()->isRecord()) {
8135     // This is an in-class initialization for a static data member, e.g.,
8136     //
8137     // struct S {
8138     //   static const int value = 17;
8139     // };
8140 
8141     // C++ [class.mem]p4:
8142     //   A member-declarator can contain a constant-initializer only
8143     //   if it declares a static member (9.4) of const integral or
8144     //   const enumeration type, see 9.4.2.
8145     //
8146     // C++11 [class.static.data]p3:
8147     //   If a non-volatile const static data member is of integral or
8148     //   enumeration type, its declaration in the class definition can
8149     //   specify a brace-or-equal-initializer in which every initalizer-clause
8150     //   that is an assignment-expression is a constant expression. A static
8151     //   data member of literal type can be declared in the class definition
8152     //   with the constexpr specifier; if so, its declaration shall specify a
8153     //   brace-or-equal-initializer in which every initializer-clause that is
8154     //   an assignment-expression is a constant expression.
8155 
8156     // Do nothing on dependent types.
8157     if (DclT->isDependentType()) {
8158 
8159     // Allow any 'static constexpr' members, whether or not they are of literal
8160     // type. We separately check that every constexpr variable is of literal
8161     // type.
8162     } else if (VDecl->isConstexpr()) {
8163 
8164     // Require constness.
8165     } else if (!DclT.isConstQualified()) {
8166       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8167         << Init->getSourceRange();
8168       VDecl->setInvalidDecl();
8169 
8170     // We allow integer constant expressions in all cases.
8171     } else if (DclT->isIntegralOrEnumerationType()) {
8172       // Check whether the expression is a constant expression.
8173       SourceLocation Loc;
8174       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8175         // In C++11, a non-constexpr const static data member with an
8176         // in-class initializer cannot be volatile.
8177         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8178       else if (Init->isValueDependent())
8179         ; // Nothing to check.
8180       else if (Init->isIntegerConstantExpr(Context, &Loc))
8181         ; // Ok, it's an ICE!
8182       else if (Init->isEvaluatable(Context)) {
8183         // If we can constant fold the initializer through heroics, accept it,
8184         // but report this as a use of an extension for -pedantic.
8185         Diag(Loc, diag::ext_in_class_initializer_non_constant)
8186           << Init->getSourceRange();
8187       } else {
8188         // Otherwise, this is some crazy unknown case.  Report the issue at the
8189         // location provided by the isIntegerConstantExpr failed check.
8190         Diag(Loc, diag::err_in_class_initializer_non_constant)
8191           << Init->getSourceRange();
8192         VDecl->setInvalidDecl();
8193       }
8194 
8195     // We allow foldable floating-point constants as an extension.
8196     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8197       // In C++98, this is a GNU extension. In C++11, it is not, but we support
8198       // it anyway and provide a fixit to add the 'constexpr'.
8199       if (getLangOpts().CPlusPlus11) {
8200         Diag(VDecl->getLocation(),
8201              diag::ext_in_class_initializer_float_type_cxx11)
8202             << DclT << Init->getSourceRange();
8203         Diag(VDecl->getLocStart(),
8204              diag::note_in_class_initializer_float_type_cxx11)
8205             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8206       } else {
8207         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8208           << DclT << Init->getSourceRange();
8209 
8210         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8211           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8212             << Init->getSourceRange();
8213           VDecl->setInvalidDecl();
8214         }
8215       }
8216 
8217     // Suggest adding 'constexpr' in C++11 for literal types.
8218     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8219       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8220         << DclT << Init->getSourceRange()
8221         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8222       VDecl->setConstexpr(true);
8223 
8224     } else {
8225       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8226         << DclT << Init->getSourceRange();
8227       VDecl->setInvalidDecl();
8228     }
8229   } else if (VDecl->isFileVarDecl()) {
8230     if (VDecl->getStorageClass() == SC_Extern &&
8231         (!getLangOpts().CPlusPlus ||
8232          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8233            VDecl->isExternC())))
8234       Diag(VDecl->getLocation(), diag::warn_extern_init);
8235 
8236     // C99 6.7.8p4. All file scoped initializers need to be constant.
8237     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8238       CheckForConstantInitializer(Init, DclT);
8239     else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8240              !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8241              !Init->isValueDependent() && !VDecl->isConstexpr() &&
8242              !Init->isConstantInitializer(
8243                  Context, VDecl->getType()->isReferenceType())) {
8244       // GNU C++98 edits for __thread, [basic.start.init]p4:
8245       //   An object of thread storage duration shall not require dynamic
8246       //   initialization.
8247       // FIXME: Need strict checking here.
8248       Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8249       if (getLangOpts().CPlusPlus11)
8250         Diag(VDecl->getLocation(), diag::note_use_thread_local);
8251     }
8252   }
8253 
8254   // We will represent direct-initialization similarly to copy-initialization:
8255   //    int x(1);  -as-> int x = 1;
8256   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8257   //
8258   // Clients that want to distinguish between the two forms, can check for
8259   // direct initializer using VarDecl::getInitStyle().
8260   // A major benefit is that clients that don't particularly care about which
8261   // exactly form was it (like the CodeGen) can handle both cases without
8262   // special case code.
8263 
8264   // C++ 8.5p11:
8265   // The form of initialization (using parentheses or '=') is generally
8266   // insignificant, but does matter when the entity being initialized has a
8267   // class type.
8268   if (CXXDirectInit) {
8269     assert(DirectInit && "Call-style initializer must be direct init.");
8270     VDecl->setInitStyle(VarDecl::CallInit);
8271   } else if (DirectInit) {
8272     // This must be list-initialization. No other way is direct-initialization.
8273     VDecl->setInitStyle(VarDecl::ListInit);
8274   }
8275 
8276   CheckCompleteVariableDeclaration(VDecl);
8277 }
8278 
8279 /// ActOnInitializerError - Given that there was an error parsing an
8280 /// initializer for the given declaration, try to return to some form
8281 /// of sanity.
ActOnInitializerError(Decl * D)8282 void Sema::ActOnInitializerError(Decl *D) {
8283   // Our main concern here is re-establishing invariants like "a
8284   // variable's type is either dependent or complete".
8285   if (!D || D->isInvalidDecl()) return;
8286 
8287   VarDecl *VD = dyn_cast<VarDecl>(D);
8288   if (!VD) return;
8289 
8290   // Auto types are meaningless if we can't make sense of the initializer.
8291   if (ParsingInitForAutoVars.count(D)) {
8292     D->setInvalidDecl();
8293     return;
8294   }
8295 
8296   QualType Ty = VD->getType();
8297   if (Ty->isDependentType()) return;
8298 
8299   // Require a complete type.
8300   if (RequireCompleteType(VD->getLocation(),
8301                           Context.getBaseElementType(Ty),
8302                           diag::err_typecheck_decl_incomplete_type)) {
8303     VD->setInvalidDecl();
8304     return;
8305   }
8306 
8307   // Require an abstract type.
8308   if (RequireNonAbstractType(VD->getLocation(), Ty,
8309                              diag::err_abstract_type_in_decl,
8310                              AbstractVariableType)) {
8311     VD->setInvalidDecl();
8312     return;
8313   }
8314 
8315   // Don't bother complaining about constructors or destructors,
8316   // though.
8317 }
8318 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)8319 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8320                                   bool TypeMayContainAuto) {
8321   // If there is no declaration, there was an error parsing it. Just ignore it.
8322   if (RealDecl == 0)
8323     return;
8324 
8325   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8326     QualType Type = Var->getType();
8327 
8328     // C++11 [dcl.spec.auto]p3
8329     if (TypeMayContainAuto && Type->getContainedAutoType()) {
8330       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8331         << Var->getDeclName() << Type;
8332       Var->setInvalidDecl();
8333       return;
8334     }
8335 
8336     // C++11 [class.static.data]p3: A static data member can be declared with
8337     // the constexpr specifier; if so, its declaration shall specify
8338     // a brace-or-equal-initializer.
8339     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8340     // the definition of a variable [...] or the declaration of a static data
8341     // member.
8342     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8343       if (Var->isStaticDataMember())
8344         Diag(Var->getLocation(),
8345              diag::err_constexpr_static_mem_var_requires_init)
8346           << Var->getDeclName();
8347       else
8348         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8349       Var->setInvalidDecl();
8350       return;
8351     }
8352 
8353     switch (Var->isThisDeclarationADefinition()) {
8354     case VarDecl::Definition:
8355       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8356         break;
8357 
8358       // We have an out-of-line definition of a static data member
8359       // that has an in-class initializer, so we type-check this like
8360       // a declaration.
8361       //
8362       // Fall through
8363 
8364     case VarDecl::DeclarationOnly:
8365       // It's only a declaration.
8366 
8367       // Block scope. C99 6.7p7: If an identifier for an object is
8368       // declared with no linkage (C99 6.2.2p6), the type for the
8369       // object shall be complete.
8370       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8371           !Var->hasLinkage() && !Var->isInvalidDecl() &&
8372           RequireCompleteType(Var->getLocation(), Type,
8373                               diag::err_typecheck_decl_incomplete_type))
8374         Var->setInvalidDecl();
8375 
8376       // Make sure that the type is not abstract.
8377       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8378           RequireNonAbstractType(Var->getLocation(), Type,
8379                                  diag::err_abstract_type_in_decl,
8380                                  AbstractVariableType))
8381         Var->setInvalidDecl();
8382       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8383           Var->getStorageClass() == SC_PrivateExtern) {
8384         Diag(Var->getLocation(), diag::warn_private_extern);
8385         Diag(Var->getLocation(), diag::note_private_extern);
8386       }
8387 
8388       return;
8389 
8390     case VarDecl::TentativeDefinition:
8391       // File scope. C99 6.9.2p2: A declaration of an identifier for an
8392       // object that has file scope without an initializer, and without a
8393       // storage-class specifier or with the storage-class specifier "static",
8394       // constitutes a tentative definition. Note: A tentative definition with
8395       // external linkage is valid (C99 6.2.2p5).
8396       if (!Var->isInvalidDecl()) {
8397         if (const IncompleteArrayType *ArrayT
8398                                     = Context.getAsIncompleteArrayType(Type)) {
8399           if (RequireCompleteType(Var->getLocation(),
8400                                   ArrayT->getElementType(),
8401                                   diag::err_illegal_decl_array_incomplete_type))
8402             Var->setInvalidDecl();
8403         } else if (Var->getStorageClass() == SC_Static) {
8404           // C99 6.9.2p3: If the declaration of an identifier for an object is
8405           // a tentative definition and has internal linkage (C99 6.2.2p3), the
8406           // declared type shall not be an incomplete type.
8407           // NOTE: code such as the following
8408           //     static struct s;
8409           //     struct s { int a; };
8410           // is accepted by gcc. Hence here we issue a warning instead of
8411           // an error and we do not invalidate the static declaration.
8412           // NOTE: to avoid multiple warnings, only check the first declaration.
8413           if (Var->getPreviousDecl() == 0)
8414             RequireCompleteType(Var->getLocation(), Type,
8415                                 diag::ext_typecheck_decl_incomplete_type);
8416         }
8417       }
8418 
8419       // Record the tentative definition; we're done.
8420       if (!Var->isInvalidDecl())
8421         TentativeDefinitions.push_back(Var);
8422       return;
8423     }
8424 
8425     // Provide a specific diagnostic for uninitialized variable
8426     // definitions with incomplete array type.
8427     if (Type->isIncompleteArrayType()) {
8428       Diag(Var->getLocation(),
8429            diag::err_typecheck_incomplete_array_needs_initializer);
8430       Var->setInvalidDecl();
8431       return;
8432     }
8433 
8434     // Provide a specific diagnostic for uninitialized variable
8435     // definitions with reference type.
8436     if (Type->isReferenceType()) {
8437       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8438         << Var->getDeclName()
8439         << SourceRange(Var->getLocation(), Var->getLocation());
8440       Var->setInvalidDecl();
8441       return;
8442     }
8443 
8444     // Do not attempt to type-check the default initializer for a
8445     // variable with dependent type.
8446     if (Type->isDependentType())
8447       return;
8448 
8449     if (Var->isInvalidDecl())
8450       return;
8451 
8452     if (RequireCompleteType(Var->getLocation(),
8453                             Context.getBaseElementType(Type),
8454                             diag::err_typecheck_decl_incomplete_type)) {
8455       Var->setInvalidDecl();
8456       return;
8457     }
8458 
8459     // The variable can not have an abstract class type.
8460     if (RequireNonAbstractType(Var->getLocation(), Type,
8461                                diag::err_abstract_type_in_decl,
8462                                AbstractVariableType)) {
8463       Var->setInvalidDecl();
8464       return;
8465     }
8466 
8467     // Check for jumps past the implicit initializer.  C++0x
8468     // clarifies that this applies to a "variable with automatic
8469     // storage duration", not a "local variable".
8470     // C++11 [stmt.dcl]p3
8471     //   A program that jumps from a point where a variable with automatic
8472     //   storage duration is not in scope to a point where it is in scope is
8473     //   ill-formed unless the variable has scalar type, class type with a
8474     //   trivial default constructor and a trivial destructor, a cv-qualified
8475     //   version of one of these types, or an array of one of the preceding
8476     //   types and is declared without an initializer.
8477     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8478       if (const RecordType *Record
8479             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8480         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8481         // Mark the function for further checking even if the looser rules of
8482         // C++11 do not require such checks, so that we can diagnose
8483         // incompatibilities with C++98.
8484         if (!CXXRecord->isPOD())
8485           getCurFunction()->setHasBranchProtectedScope();
8486       }
8487     }
8488 
8489     // C++03 [dcl.init]p9:
8490     //   If no initializer is specified for an object, and the
8491     //   object is of (possibly cv-qualified) non-POD class type (or
8492     //   array thereof), the object shall be default-initialized; if
8493     //   the object is of const-qualified type, the underlying class
8494     //   type shall have a user-declared default
8495     //   constructor. Otherwise, if no initializer is specified for
8496     //   a non- static object, the object and its subobjects, if
8497     //   any, have an indeterminate initial value); if the object
8498     //   or any of its subobjects are of const-qualified type, the
8499     //   program is ill-formed.
8500     // C++0x [dcl.init]p11:
8501     //   If no initializer is specified for an object, the object is
8502     //   default-initialized; [...].
8503     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8504     InitializationKind Kind
8505       = InitializationKind::CreateDefault(Var->getLocation());
8506 
8507     InitializationSequence InitSeq(*this, Entity, Kind, None);
8508     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8509     if (Init.isInvalid())
8510       Var->setInvalidDecl();
8511     else if (Init.get()) {
8512       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8513       // This is important for template substitution.
8514       Var->setInitStyle(VarDecl::CallInit);
8515     }
8516 
8517     CheckCompleteVariableDeclaration(Var);
8518   }
8519 }
8520 
ActOnCXXForRangeDecl(Decl * D)8521 void Sema::ActOnCXXForRangeDecl(Decl *D) {
8522   VarDecl *VD = dyn_cast<VarDecl>(D);
8523   if (!VD) {
8524     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8525     D->setInvalidDecl();
8526     return;
8527   }
8528 
8529   VD->setCXXForRangeDecl(true);
8530 
8531   // for-range-declaration cannot be given a storage class specifier.
8532   int Error = -1;
8533   switch (VD->getStorageClass()) {
8534   case SC_None:
8535     break;
8536   case SC_Extern:
8537     Error = 0;
8538     break;
8539   case SC_Static:
8540     Error = 1;
8541     break;
8542   case SC_PrivateExtern:
8543     Error = 2;
8544     break;
8545   case SC_Auto:
8546     Error = 3;
8547     break;
8548   case SC_Register:
8549     Error = 4;
8550     break;
8551   case SC_OpenCLWorkGroupLocal:
8552     llvm_unreachable("Unexpected storage class");
8553   }
8554   if (VD->isConstexpr())
8555     Error = 5;
8556   if (Error != -1) {
8557     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8558       << VD->getDeclName() << Error;
8559     D->setInvalidDecl();
8560   }
8561 }
8562 
CheckCompleteVariableDeclaration(VarDecl * var)8563 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8564   if (var->isInvalidDecl()) return;
8565 
8566   // In ARC, don't allow jumps past the implicit initialization of a
8567   // local retaining variable.
8568   if (getLangOpts().ObjCAutoRefCount &&
8569       var->hasLocalStorage()) {
8570     switch (var->getType().getObjCLifetime()) {
8571     case Qualifiers::OCL_None:
8572     case Qualifiers::OCL_ExplicitNone:
8573     case Qualifiers::OCL_Autoreleasing:
8574       break;
8575 
8576     case Qualifiers::OCL_Weak:
8577     case Qualifiers::OCL_Strong:
8578       getCurFunction()->setHasBranchProtectedScope();
8579       break;
8580     }
8581   }
8582 
8583   if (var->isThisDeclarationADefinition() &&
8584       var->isExternallyVisible() &&
8585       getDiagnostics().getDiagnosticLevel(
8586                        diag::warn_missing_variable_declarations,
8587                        var->getLocation())) {
8588     // Find a previous declaration that's not a definition.
8589     VarDecl *prev = var->getPreviousDecl();
8590     while (prev && prev->isThisDeclarationADefinition())
8591       prev = prev->getPreviousDecl();
8592 
8593     if (!prev)
8594       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8595   }
8596 
8597   if (var->getTLSKind() == VarDecl::TLS_Static &&
8598       var->getType().isDestructedType()) {
8599     // GNU C++98 edits for __thread, [basic.start.term]p3:
8600     //   The type of an object with thread storage duration shall not
8601     //   have a non-trivial destructor.
8602     Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8603     if (getLangOpts().CPlusPlus11)
8604       Diag(var->getLocation(), diag::note_use_thread_local);
8605   }
8606 
8607   // All the following checks are C++ only.
8608   if (!getLangOpts().CPlusPlus) return;
8609 
8610   QualType type = var->getType();
8611   if (type->isDependentType()) return;
8612 
8613   // __block variables might require us to capture a copy-initializer.
8614   if (var->hasAttr<BlocksAttr>()) {
8615     // It's currently invalid to ever have a __block variable with an
8616     // array type; should we diagnose that here?
8617 
8618     // Regardless, we don't want to ignore array nesting when
8619     // constructing this copy.
8620     if (type->isStructureOrClassType()) {
8621       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8622       SourceLocation poi = var->getLocation();
8623       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8624       ExprResult result
8625         = PerformMoveOrCopyInitialization(
8626             InitializedEntity::InitializeBlock(poi, type, false),
8627             var, var->getType(), varRef, /*AllowNRVO=*/true);
8628       if (!result.isInvalid()) {
8629         result = MaybeCreateExprWithCleanups(result);
8630         Expr *init = result.takeAs<Expr>();
8631         Context.setBlockVarCopyInits(var, init);
8632       }
8633     }
8634   }
8635 
8636   Expr *Init = var->getInit();
8637   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8638   QualType baseType = Context.getBaseElementType(type);
8639 
8640   if (!var->getDeclContext()->isDependentContext() &&
8641       Init && !Init->isValueDependent()) {
8642     if (IsGlobal && !var->isConstexpr() &&
8643         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8644                                             var->getLocation())
8645           != DiagnosticsEngine::Ignored) {
8646       // Warn about globals which don't have a constant initializer.  Don't
8647       // warn about globals with a non-trivial destructor because we already
8648       // warned about them.
8649       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8650       if (!(RD && !RD->hasTrivialDestructor()) &&
8651           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8652         Diag(var->getLocation(), diag::warn_global_constructor)
8653           << Init->getSourceRange();
8654     }
8655 
8656     if (var->isConstexpr()) {
8657       SmallVector<PartialDiagnosticAt, 8> Notes;
8658       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8659         SourceLocation DiagLoc = var->getLocation();
8660         // If the note doesn't add any useful information other than a source
8661         // location, fold it into the primary diagnostic.
8662         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8663               diag::note_invalid_subexpr_in_const_expr) {
8664           DiagLoc = Notes[0].first;
8665           Notes.clear();
8666         }
8667         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8668           << var << Init->getSourceRange();
8669         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8670           Diag(Notes[I].first, Notes[I].second);
8671       }
8672     } else if (var->isUsableInConstantExpressions(Context)) {
8673       // Check whether the initializer of a const variable of integral or
8674       // enumeration type is an ICE now, since we can't tell whether it was
8675       // initialized by a constant expression if we check later.
8676       var->checkInitIsICE();
8677     }
8678   }
8679 
8680   // Require the destructor.
8681   if (const RecordType *recordType = baseType->getAs<RecordType>())
8682     FinalizeVarWithDestructor(var, recordType);
8683 }
8684 
8685 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8686 /// any semantic actions necessary after any initializer has been attached.
8687 void
FinalizeDeclaration(Decl * ThisDecl)8688 Sema::FinalizeDeclaration(Decl *ThisDecl) {
8689   // Note that we are no longer parsing the initializer for this declaration.
8690   ParsingInitForAutoVars.erase(ThisDecl);
8691 
8692   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8693   if (!VD)
8694     return;
8695 
8696   const DeclContext *DC = VD->getDeclContext();
8697   // If there's a #pragma GCC visibility in scope, and this isn't a class
8698   // member, set the visibility of this variable.
8699   if (!DC->isRecord() && VD->isExternallyVisible())
8700     AddPushedVisibilityAttribute(VD);
8701 
8702   if (VD->isFileVarDecl())
8703     MarkUnusedFileScopedDecl(VD);
8704 
8705   // Now we have parsed the initializer and can update the table of magic
8706   // tag values.
8707   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8708       !VD->getType()->isIntegralOrEnumerationType())
8709     return;
8710 
8711   for (specific_attr_iterator<TypeTagForDatatypeAttr>
8712          I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8713          E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8714        I != E; ++I) {
8715     const Expr *MagicValueExpr = VD->getInit();
8716     if (!MagicValueExpr) {
8717       continue;
8718     }
8719     llvm::APSInt MagicValueInt;
8720     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8721       Diag(I->getRange().getBegin(),
8722            diag::err_type_tag_for_datatype_not_ice)
8723         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8724       continue;
8725     }
8726     if (MagicValueInt.getActiveBits() > 64) {
8727       Diag(I->getRange().getBegin(),
8728            diag::err_type_tag_for_datatype_too_large)
8729         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8730       continue;
8731     }
8732     uint64_t MagicValue = MagicValueInt.getZExtValue();
8733     RegisterTypeTagForDatatype(I->getArgumentKind(),
8734                                MagicValue,
8735                                I->getMatchingCType(),
8736                                I->getLayoutCompatible(),
8737                                I->getMustBeNull());
8738   }
8739 }
8740 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)8741 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8742                                                    ArrayRef<Decl *> Group) {
8743   SmallVector<Decl*, 8> Decls;
8744 
8745   if (DS.isTypeSpecOwned())
8746     Decls.push_back(DS.getRepAsDecl());
8747 
8748   for (unsigned i = 0, e = Group.size(); i != e; ++i)
8749     if (Decl *D = Group[i])
8750       Decls.push_back(D);
8751 
8752   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8753     if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8754       HandleTagNumbering(*this, Tag);
8755   }
8756 
8757   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8758 }
8759 
8760 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
8761 /// group, performing any necessary semantic checking.
8762 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(llvm::MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)8763 Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8764                            bool TypeMayContainAuto) {
8765   // C++0x [dcl.spec.auto]p7:
8766   //   If the type deduced for the template parameter U is not the same in each
8767   //   deduction, the program is ill-formed.
8768   // FIXME: When initializer-list support is added, a distinction is needed
8769   // between the deduced type U and the deduced type which 'auto' stands for.
8770   //   auto a = 0, b = { 1, 2, 3 };
8771   // is legal because the deduced type U is 'int' in both cases.
8772   if (TypeMayContainAuto && Group.size() > 1) {
8773     QualType Deduced;
8774     CanQualType DeducedCanon;
8775     VarDecl *DeducedDecl = 0;
8776     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
8777       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8778         AutoType *AT = D->getType()->getContainedAutoType();
8779         // Don't reissue diagnostics when instantiating a template.
8780         if (AT && D->isInvalidDecl())
8781           break;
8782         QualType U = AT ? AT->getDeducedType() : QualType();
8783         if (!U.isNull()) {
8784           CanQualType UCanon = Context.getCanonicalType(U);
8785           if (Deduced.isNull()) {
8786             Deduced = U;
8787             DeducedCanon = UCanon;
8788             DeducedDecl = D;
8789           } else if (DeducedCanon != UCanon) {
8790             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8791                  diag::err_auto_different_deductions)
8792               << (AT->isDecltypeAuto() ? 1 : 0)
8793               << Deduced << DeducedDecl->getDeclName()
8794               << U << D->getDeclName()
8795               << DeducedDecl->getInit()->getSourceRange()
8796               << D->getInit()->getSourceRange();
8797             D->setInvalidDecl();
8798             break;
8799           }
8800         }
8801       }
8802     }
8803   }
8804 
8805   ActOnDocumentableDecls(Group);
8806 
8807   return DeclGroupPtrTy::make(
8808       DeclGroupRef::Create(Context, Group.data(), Group.size()));
8809 }
8810 
ActOnDocumentableDecl(Decl * D)8811 void Sema::ActOnDocumentableDecl(Decl *D) {
8812   ActOnDocumentableDecls(D);
8813 }
8814 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)8815 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
8816   // Don't parse the comment if Doxygen diagnostics are ignored.
8817   if (Group.empty() || !Group[0])
8818    return;
8819 
8820   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8821                                Group[0]->getLocation())
8822         == DiagnosticsEngine::Ignored)
8823     return;
8824 
8825   if (Group.size() >= 2) {
8826     // This is a decl group.  Normally it will contain only declarations
8827     // produced from declarator list.  But in case we have any definitions or
8828     // additional declaration references:
8829     //   'typedef struct S {} S;'
8830     //   'typedef struct S *S;'
8831     //   'struct S *pS;'
8832     // FinalizeDeclaratorGroup adds these as separate declarations.
8833     Decl *MaybeTagDecl = Group[0];
8834     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8835       Group = Group.slice(1);
8836     }
8837   }
8838 
8839   // See if there are any new comments that are not attached to a decl.
8840   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8841   if (!Comments.empty() &&
8842       !Comments.back()->isAttached()) {
8843     // There is at least one comment that not attached to a decl.
8844     // Maybe it should be attached to one of these decls?
8845     //
8846     // Note that this way we pick up not only comments that precede the
8847     // declaration, but also comments that *follow* the declaration -- thanks to
8848     // the lookahead in the lexer: we've consumed the semicolon and looked
8849     // ahead through comments.
8850     for (unsigned i = 0, e = Group.size(); i != e; ++i)
8851       Context.getCommentForDecl(Group[i], &PP);
8852   }
8853 }
8854 
8855 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8856 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)8857 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8858   const DeclSpec &DS = D.getDeclSpec();
8859 
8860   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8861   // C++03 [dcl.stc]p2 also permits 'auto'.
8862   VarDecl::StorageClass StorageClass = SC_None;
8863   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8864     StorageClass = SC_Register;
8865   } else if (getLangOpts().CPlusPlus &&
8866              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8867     StorageClass = SC_Auto;
8868   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8869     Diag(DS.getStorageClassSpecLoc(),
8870          diag::err_invalid_storage_class_in_func_decl);
8871     D.getMutableDeclSpec().ClearStorageClassSpecs();
8872   }
8873 
8874   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8875     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8876       << DeclSpec::getSpecifierName(TSCS);
8877   if (DS.isConstexprSpecified())
8878     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8879       << 0;
8880 
8881   DiagnoseFunctionSpecifiers(DS);
8882 
8883   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8884   QualType parmDeclType = TInfo->getType();
8885 
8886   if (getLangOpts().CPlusPlus) {
8887     // Check that there are no default arguments inside the type of this
8888     // parameter.
8889     CheckExtraCXXDefaultArguments(D);
8890 
8891     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8892     if (D.getCXXScopeSpec().isSet()) {
8893       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8894         << D.getCXXScopeSpec().getRange();
8895       D.getCXXScopeSpec().clear();
8896     }
8897   }
8898 
8899   // Ensure we have a valid name
8900   IdentifierInfo *II = 0;
8901   if (D.hasName()) {
8902     II = D.getIdentifier();
8903     if (!II) {
8904       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8905         << GetNameForDeclarator(D).getName().getAsString();
8906       D.setInvalidType(true);
8907     }
8908   }
8909 
8910   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8911   if (II) {
8912     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8913                    ForRedeclaration);
8914     LookupName(R, S);
8915     if (R.isSingleResult()) {
8916       NamedDecl *PrevDecl = R.getFoundDecl();
8917       if (PrevDecl->isTemplateParameter()) {
8918         // Maybe we will complain about the shadowed template parameter.
8919         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8920         // Just pretend that we didn't see the previous declaration.
8921         PrevDecl = 0;
8922       } else if (S->isDeclScope(PrevDecl)) {
8923         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8924         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8925 
8926         // Recover by removing the name
8927         II = 0;
8928         D.SetIdentifier(0, D.getIdentifierLoc());
8929         D.setInvalidType(true);
8930       }
8931     }
8932   }
8933 
8934   // Temporarily put parameter variables in the translation unit, not
8935   // the enclosing context.  This prevents them from accidentally
8936   // looking like class members in C++.
8937   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8938                                     D.getLocStart(),
8939                                     D.getIdentifierLoc(), II,
8940                                     parmDeclType, TInfo,
8941                                     StorageClass);
8942 
8943   if (D.isInvalidType())
8944     New->setInvalidDecl();
8945 
8946   assert(S->isFunctionPrototypeScope());
8947   assert(S->getFunctionPrototypeDepth() >= 1);
8948   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8949                     S->getNextFunctionPrototypeIndex());
8950 
8951   // Add the parameter declaration into this scope.
8952   S->AddDecl(New);
8953   if (II)
8954     IdResolver.AddDecl(New);
8955 
8956   ProcessDeclAttributes(S, New, D);
8957 
8958   if (D.getDeclSpec().isModulePrivateSpecified())
8959     Diag(New->getLocation(), diag::err_module_private_local)
8960       << 1 << New->getDeclName()
8961       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8962       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8963 
8964   if (New->hasAttr<BlocksAttr>()) {
8965     Diag(New->getLocation(), diag::err_block_on_nonlocal);
8966   }
8967   return New;
8968 }
8969 
8970 /// \brief Synthesizes a variable for a parameter arising from a
8971 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)8972 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8973                                               SourceLocation Loc,
8974                                               QualType T) {
8975   /* FIXME: setting StartLoc == Loc.
8976      Would it be worth to modify callers so as to provide proper source
8977      location for the unnamed parameters, embedding the parameter's type? */
8978   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8979                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
8980                                            SC_None, 0);
8981   Param->setImplicit();
8982   return Param;
8983 }
8984 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)8985 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8986                                     ParmVarDecl * const *ParamEnd) {
8987   // Don't diagnose unused-parameter errors in template instantiations; we
8988   // will already have done so in the template itself.
8989   if (!ActiveTemplateInstantiations.empty())
8990     return;
8991 
8992   for (; Param != ParamEnd; ++Param) {
8993     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8994         !(*Param)->hasAttr<UnusedAttr>()) {
8995       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8996         << (*Param)->getDeclName();
8997     }
8998   }
8999 }
9000 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)9001 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9002                                                   ParmVarDecl * const *ParamEnd,
9003                                                   QualType ReturnTy,
9004                                                   NamedDecl *D) {
9005   if (LangOpts.NumLargeByValueCopy == 0) // No check.
9006     return;
9007 
9008   // Warn if the return value is pass-by-value and larger than the specified
9009   // threshold.
9010   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9011     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9012     if (Size > LangOpts.NumLargeByValueCopy)
9013       Diag(D->getLocation(), diag::warn_return_value_size)
9014           << D->getDeclName() << Size;
9015   }
9016 
9017   // Warn if any parameter is pass-by-value and larger than the specified
9018   // threshold.
9019   for (; Param != ParamEnd; ++Param) {
9020     QualType T = (*Param)->getType();
9021     if (T->isDependentType() || !T.isPODType(Context))
9022       continue;
9023     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9024     if (Size > LangOpts.NumLargeByValueCopy)
9025       Diag((*Param)->getLocation(), diag::warn_parameter_size)
9026           << (*Param)->getDeclName() << Size;
9027   }
9028 }
9029 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass)9030 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9031                                   SourceLocation NameLoc, IdentifierInfo *Name,
9032                                   QualType T, TypeSourceInfo *TSInfo,
9033                                   VarDecl::StorageClass StorageClass) {
9034   // In ARC, infer a lifetime qualifier for appropriate parameter types.
9035   if (getLangOpts().ObjCAutoRefCount &&
9036       T.getObjCLifetime() == Qualifiers::OCL_None &&
9037       T->isObjCLifetimeType()) {
9038 
9039     Qualifiers::ObjCLifetime lifetime;
9040 
9041     // Special cases for arrays:
9042     //   - if it's const, use __unsafe_unretained
9043     //   - otherwise, it's an error
9044     if (T->isArrayType()) {
9045       if (!T.isConstQualified()) {
9046         DelayedDiagnostics.add(
9047             sema::DelayedDiagnostic::makeForbiddenType(
9048             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9049       }
9050       lifetime = Qualifiers::OCL_ExplicitNone;
9051     } else {
9052       lifetime = T->getObjCARCImplicitLifetime();
9053     }
9054     T = Context.getLifetimeQualifiedType(T, lifetime);
9055   }
9056 
9057   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9058                                          Context.getAdjustedParameterType(T),
9059                                          TSInfo,
9060                                          StorageClass, 0);
9061 
9062   // Parameters can not be abstract class types.
9063   // For record types, this is done by the AbstractClassUsageDiagnoser once
9064   // the class has been completely parsed.
9065   if (!CurContext->isRecord() &&
9066       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9067                              AbstractParamType))
9068     New->setInvalidDecl();
9069 
9070   // Parameter declarators cannot be interface types. All ObjC objects are
9071   // passed by reference.
9072   if (T->isObjCObjectType()) {
9073     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9074     Diag(NameLoc,
9075          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9076       << FixItHint::CreateInsertion(TypeEndLoc, "*");
9077     T = Context.getObjCObjectPointerType(T);
9078     New->setType(T);
9079   }
9080 
9081   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9082   // duration shall not be qualified by an address-space qualifier."
9083   // Since all parameters have automatic store duration, they can not have
9084   // an address space.
9085   if (T.getAddressSpace() != 0) {
9086     Diag(NameLoc, diag::err_arg_with_address_space);
9087     New->setInvalidDecl();
9088   }
9089 
9090   return New;
9091 }
9092 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)9093 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9094                                            SourceLocation LocAfterDecls) {
9095   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9096 
9097   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9098   // for a K&R function.
9099   if (!FTI.hasPrototype) {
9100     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9101       --i;
9102       if (FTI.ArgInfo[i].Param == 0) {
9103         SmallString<256> Code;
9104         llvm::raw_svector_ostream(Code) << "  int "
9105                                         << FTI.ArgInfo[i].Ident->getName()
9106                                         << ";\n";
9107         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9108           << FTI.ArgInfo[i].Ident
9109           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9110 
9111         // Implicitly declare the argument as type 'int' for lack of a better
9112         // type.
9113         AttributeFactory attrs;
9114         DeclSpec DS(attrs);
9115         const char* PrevSpec; // unused
9116         unsigned DiagID; // unused
9117         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9118                            PrevSpec, DiagID);
9119         // Use the identifier location for the type source range.
9120         DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9121         DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9122         Declarator ParamD(DS, Declarator::KNRTypeListContext);
9123         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9124         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9125       }
9126     }
9127   }
9128 }
9129 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)9130 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9131   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9132   assert(D.isFunctionDeclarator() && "Not a function declarator!");
9133   Scope *ParentScope = FnBodyScope->getParent();
9134 
9135   D.setFunctionDefinitionKind(FDK_Definition);
9136   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9137   return ActOnStartOfFunctionDef(FnBodyScope, DP);
9138 }
9139 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)9140 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9141                              const FunctionDecl*& PossibleZeroParamPrototype) {
9142   // Don't warn about invalid declarations.
9143   if (FD->isInvalidDecl())
9144     return false;
9145 
9146   // Or declarations that aren't global.
9147   if (!FD->isGlobal())
9148     return false;
9149 
9150   // Don't warn about C++ member functions.
9151   if (isa<CXXMethodDecl>(FD))
9152     return false;
9153 
9154   // Don't warn about 'main'.
9155   if (FD->isMain())
9156     return false;
9157 
9158   // Don't warn about inline functions.
9159   if (FD->isInlined())
9160     return false;
9161 
9162   // Don't warn about function templates.
9163   if (FD->getDescribedFunctionTemplate())
9164     return false;
9165 
9166   // Don't warn about function template specializations.
9167   if (FD->isFunctionTemplateSpecialization())
9168     return false;
9169 
9170   // Don't warn for OpenCL kernels.
9171   if (FD->hasAttr<OpenCLKernelAttr>())
9172     return false;
9173 
9174   bool MissingPrototype = true;
9175   for (const FunctionDecl *Prev = FD->getPreviousDecl();
9176        Prev; Prev = Prev->getPreviousDecl()) {
9177     // Ignore any declarations that occur in function or method
9178     // scope, because they aren't visible from the header.
9179     if (Prev->getDeclContext()->isFunctionOrMethod())
9180       continue;
9181 
9182     MissingPrototype = !Prev->getType()->isFunctionProtoType();
9183     if (FD->getNumParams() == 0)
9184       PossibleZeroParamPrototype = Prev;
9185     break;
9186   }
9187 
9188   return MissingPrototype;
9189 }
9190 
CheckForFunctionRedefinition(FunctionDecl * FD)9191 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
9192   // Don't complain if we're in GNU89 mode and the previous definition
9193   // was an extern inline function.
9194   const FunctionDecl *Definition;
9195   if (FD->isDefined(Definition) &&
9196       !canRedefineFunction(Definition, getLangOpts())) {
9197     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9198         Definition->getStorageClass() == SC_Extern)
9199       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9200         << FD->getDeclName() << getLangOpts().CPlusPlus;
9201     else
9202       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9203     Diag(Definition->getLocation(), diag::note_previous_definition);
9204     FD->setInvalidDecl();
9205   }
9206 }
9207 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)9208 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9209   // Clear the last template instantiation error context.
9210   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9211 
9212   if (!D)
9213     return D;
9214   FunctionDecl *FD = 0;
9215 
9216   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9217     FD = FunTmpl->getTemplatedDecl();
9218   else
9219     FD = cast<FunctionDecl>(D);
9220 
9221   // Enter a new function scope
9222   PushFunctionScope();
9223 
9224   // See if this is a redefinition.
9225   if (!FD->isLateTemplateParsed())
9226     CheckForFunctionRedefinition(FD);
9227 
9228   // Builtin functions cannot be defined.
9229   if (unsigned BuiltinID = FD->getBuiltinID()) {
9230     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9231         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9232       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9233       FD->setInvalidDecl();
9234     }
9235   }
9236 
9237   // The return type of a function definition must be complete
9238   // (C99 6.9.1p3, C++ [dcl.fct]p6).
9239   QualType ResultType = FD->getResultType();
9240   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9241       !FD->isInvalidDecl() &&
9242       RequireCompleteType(FD->getLocation(), ResultType,
9243                           diag::err_func_def_incomplete_result))
9244     FD->setInvalidDecl();
9245 
9246   // GNU warning -Wmissing-prototypes:
9247   //   Warn if a global function is defined without a previous
9248   //   prototype declaration. This warning is issued even if the
9249   //   definition itself provides a prototype. The aim is to detect
9250   //   global functions that fail to be declared in header files.
9251   const FunctionDecl *PossibleZeroParamPrototype = 0;
9252   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9253     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9254 
9255     if (PossibleZeroParamPrototype) {
9256       // We found a declaration that is not a prototype,
9257       // but that could be a zero-parameter prototype
9258       if (TypeSourceInfo *TI =
9259               PossibleZeroParamPrototype->getTypeSourceInfo()) {
9260         TypeLoc TL = TI->getTypeLoc();
9261         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9262           Diag(PossibleZeroParamPrototype->getLocation(),
9263                diag::note_declaration_not_a_prototype)
9264             << PossibleZeroParamPrototype
9265             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9266       }
9267     }
9268   }
9269 
9270   if (FnBodyScope)
9271     PushDeclContext(FnBodyScope, FD);
9272 
9273   // Check the validity of our function parameters
9274   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9275                            /*CheckParameterNames=*/true);
9276 
9277   // Introduce our parameters into the function scope
9278   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9279     ParmVarDecl *Param = FD->getParamDecl(p);
9280     Param->setOwningFunction(FD);
9281 
9282     // If this has an identifier, add it to the scope stack.
9283     if (Param->getIdentifier() && FnBodyScope) {
9284       CheckShadow(FnBodyScope, Param);
9285 
9286       PushOnScopeChains(Param, FnBodyScope);
9287     }
9288   }
9289 
9290   // If we had any tags defined in the function prototype,
9291   // introduce them into the function scope.
9292   if (FnBodyScope) {
9293     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
9294            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
9295       NamedDecl *D = *I;
9296 
9297       // Some of these decls (like enums) may have been pinned to the translation unit
9298       // for lack of a real context earlier. If so, remove from the translation unit
9299       // and reattach to the current context.
9300       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9301         // Is the decl actually in the context?
9302         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9303                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9304           if (*DI == D) {
9305             Context.getTranslationUnitDecl()->removeDecl(D);
9306             break;
9307           }
9308         }
9309         // Either way, reassign the lexical decl context to our FunctionDecl.
9310         D->setLexicalDeclContext(CurContext);
9311       }
9312 
9313       // If the decl has a non-null name, make accessible in the current scope.
9314       if (!D->getName().empty())
9315         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9316 
9317       // Similarly, dive into enums and fish their constants out, making them
9318       // accessible in this scope.
9319       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9320         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9321                EE = ED->enumerator_end(); EI != EE; ++EI)
9322           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9323       }
9324     }
9325   }
9326 
9327   // Ensure that the function's exception specification is instantiated.
9328   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9329     ResolveExceptionSpec(D->getLocation(), FPT);
9330 
9331   // Checking attributes of current function definition
9332   // dllimport attribute.
9333   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9334   if (DA && (!FD->getAttr<DLLExportAttr>())) {
9335     // dllimport attribute cannot be directly applied to definition.
9336     // Microsoft accepts dllimport for functions defined within class scope.
9337     if (!DA->isInherited() &&
9338         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9339       Diag(FD->getLocation(),
9340            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9341         << "dllimport";
9342       FD->setInvalidDecl();
9343       return D;
9344     }
9345 
9346     // Visual C++ appears to not think this is an issue, so only issue
9347     // a warning when Microsoft extensions are disabled.
9348     if (!LangOpts.MicrosoftExt) {
9349       // If a symbol previously declared dllimport is later defined, the
9350       // attribute is ignored in subsequent references, and a warning is
9351       // emitted.
9352       Diag(FD->getLocation(),
9353            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9354         << FD->getName() << "dllimport";
9355     }
9356   }
9357   // We want to attach documentation to original Decl (which might be
9358   // a function template).
9359   ActOnDocumentableDecl(D);
9360   return D;
9361 }
9362 
9363 /// \brief Given the set of return statements within a function body,
9364 /// compute the variables that are subject to the named return value
9365 /// optimization.
9366 ///
9367 /// Each of the variables that is subject to the named return value
9368 /// optimization will be marked as NRVO variables in the AST, and any
9369 /// return statement that has a marked NRVO variable as its NRVO candidate can
9370 /// use the named return value optimization.
9371 ///
9372 /// This function applies a very simplistic algorithm for NRVO: if every return
9373 /// statement in the function has the same NRVO candidate, that candidate is
9374 /// the NRVO variable.
9375 ///
9376 /// FIXME: Employ a smarter algorithm that accounts for multiple return
9377 /// statements and the lifetimes of the NRVO candidates. We should be able to
9378 /// find a maximal set of NRVO variables.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)9379 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9380   ReturnStmt **Returns = Scope->Returns.data();
9381 
9382   const VarDecl *NRVOCandidate = 0;
9383   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9384     if (!Returns[I]->getNRVOCandidate())
9385       return;
9386 
9387     if (!NRVOCandidate)
9388       NRVOCandidate = Returns[I]->getNRVOCandidate();
9389     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9390       return;
9391   }
9392 
9393   if (NRVOCandidate)
9394     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9395 }
9396 
canSkipFunctionBody(Decl * D)9397 bool Sema::canSkipFunctionBody(Decl *D) {
9398   if (!Consumer.shouldSkipFunctionBody(D))
9399     return false;
9400 
9401   if (isa<ObjCMethodDecl>(D))
9402     return true;
9403 
9404   FunctionDecl *FD = 0;
9405   if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9406     FD = FTD->getTemplatedDecl();
9407   else
9408     FD = cast<FunctionDecl>(D);
9409 
9410   // We cannot skip the body of a function (or function template) which is
9411   // constexpr, since we may need to evaluate its body in order to parse the
9412   // rest of the file.
9413   // We cannot skip the body of a function with an undeduced return type,
9414   // because any callers of that function need to know the type.
9415   return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9416 }
9417 
ActOnSkippedFunctionBody(Decl * Decl)9418 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9419   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9420     FD->setHasSkippedBody();
9421   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9422     MD->setHasSkippedBody();
9423   return ActOnFinishFunctionBody(Decl, 0);
9424 }
9425 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)9426 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9427   return ActOnFinishFunctionBody(D, BodyArg, false);
9428 }
9429 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)9430 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9431                                     bool IsInstantiation) {
9432   FunctionDecl *FD = 0;
9433   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9434   if (FunTmpl)
9435     FD = FunTmpl->getTemplatedDecl();
9436   else
9437     FD = dyn_cast_or_null<FunctionDecl>(dcl);
9438 
9439   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9440   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9441 
9442   if (FD) {
9443     FD->setBody(Body);
9444 
9445     if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9446         !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9447       // If the function has a deduced result type but contains no 'return'
9448       // statements, the result type as written must be exactly 'auto', and
9449       // the deduced result type is 'void'.
9450       if (!FD->getResultType()->getAs<AutoType>()) {
9451         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9452           << FD->getResultType();
9453         FD->setInvalidDecl();
9454       } else {
9455         // Substitute 'void' for the 'auto' in the type.
9456         TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9457             IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9458         Context.adjustDeducedFunctionResultType(
9459             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9460       }
9461     }
9462 
9463     // The only way to be included in UndefinedButUsed is if there is an
9464     // ODR use before the definition. Avoid the expensive map lookup if this
9465     // is the first declaration.
9466     if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9467       if (!FD->isExternallyVisible())
9468         UndefinedButUsed.erase(FD);
9469       else if (FD->isInlined() &&
9470                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9471                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9472         UndefinedButUsed.erase(FD);
9473     }
9474 
9475     // If the function implicitly returns zero (like 'main') or is naked,
9476     // don't complain about missing return statements.
9477     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9478       WP.disableCheckFallThrough();
9479 
9480     // MSVC permits the use of pure specifier (=0) on function definition,
9481     // defined at class scope, warn about this non standard construct.
9482     if (getLangOpts().MicrosoftExt && FD->isPure())
9483       Diag(FD->getLocation(), diag::warn_pure_function_definition);
9484 
9485     if (!FD->isInvalidDecl()) {
9486       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9487       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9488                                              FD->getResultType(), FD);
9489 
9490       // If this is a constructor, we need a vtable.
9491       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9492         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9493 
9494       // Try to apply the named return value optimization. We have to check
9495       // if we can do this here because lambdas keep return statements around
9496       // to deduce an implicit return type.
9497       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9498           !FD->isDependentContext())
9499         computeNRVO(Body, getCurFunction());
9500     }
9501 
9502     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9503            "Function parsing confused");
9504   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9505     assert(MD == getCurMethodDecl() && "Method parsing confused");
9506     MD->setBody(Body);
9507     if (!MD->isInvalidDecl()) {
9508       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9509       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9510                                              MD->getResultType(), MD);
9511 
9512       if (Body)
9513         computeNRVO(Body, getCurFunction());
9514     }
9515     if (getCurFunction()->ObjCShouldCallSuper) {
9516       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9517         << MD->getSelector().getAsString();
9518       getCurFunction()->ObjCShouldCallSuper = false;
9519     }
9520   } else {
9521     return 0;
9522   }
9523 
9524   assert(!getCurFunction()->ObjCShouldCallSuper &&
9525          "This should only be set for ObjC methods, which should have been "
9526          "handled in the block above.");
9527 
9528   // Verify and clean out per-function state.
9529   if (Body) {
9530     // C++ constructors that have function-try-blocks can't have return
9531     // statements in the handlers of that block. (C++ [except.handle]p14)
9532     // Verify this.
9533     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9534       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9535 
9536     // Verify that gotos and switch cases don't jump into scopes illegally.
9537     if (getCurFunction()->NeedsScopeChecking() &&
9538         !dcl->isInvalidDecl() &&
9539         !hasAnyUnrecoverableErrorsInThisFunction() &&
9540         !PP.isCodeCompletionEnabled())
9541       DiagnoseInvalidJumps(Body);
9542 
9543     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9544       if (!Destructor->getParent()->isDependentType())
9545         CheckDestructor(Destructor);
9546 
9547       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9548                                              Destructor->getParent());
9549     }
9550 
9551     // If any errors have occurred, clear out any temporaries that may have
9552     // been leftover. This ensures that these temporaries won't be picked up for
9553     // deletion in some later function.
9554     if (PP.getDiagnostics().hasErrorOccurred() ||
9555         PP.getDiagnostics().getSuppressAllDiagnostics()) {
9556       DiscardCleanupsInEvaluationContext();
9557     }
9558     if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9559         !isa<FunctionTemplateDecl>(dcl)) {
9560       // Since the body is valid, issue any analysis-based warnings that are
9561       // enabled.
9562       ActivePolicy = &WP;
9563     }
9564 
9565     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9566         (!CheckConstexprFunctionDecl(FD) ||
9567          !CheckConstexprFunctionBody(FD, Body)))
9568       FD->setInvalidDecl();
9569 
9570     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9571     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9572     assert(MaybeODRUseExprs.empty() &&
9573            "Leftover expressions for odr-use checking");
9574   }
9575 
9576   if (!IsInstantiation)
9577     PopDeclContext();
9578 
9579   PopFunctionScopeInfo(ActivePolicy, dcl);
9580 
9581   // If any errors have occurred, clear out any temporaries that may have
9582   // been leftover. This ensures that these temporaries won't be picked up for
9583   // deletion in some later function.
9584   if (getDiagnostics().hasErrorOccurred()) {
9585     DiscardCleanupsInEvaluationContext();
9586   }
9587 
9588   return dcl;
9589 }
9590 
9591 
9592 /// When we finish delayed parsing of an attribute, we must attach it to the
9593 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)9594 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9595                                        ParsedAttributes &Attrs) {
9596   // Always attach attributes to the underlying decl.
9597   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9598     D = TD->getTemplatedDecl();
9599   ProcessDeclAttributeList(S, D, Attrs.getList());
9600 
9601   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9602     if (Method->isStatic())
9603       checkThisInStaticMemberFunctionAttributes(Method);
9604 }
9605 
9606 
9607 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9608 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)9609 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9610                                           IdentifierInfo &II, Scope *S) {
9611   // Before we produce a declaration for an implicitly defined
9612   // function, see whether there was a locally-scoped declaration of
9613   // this name as a function or variable. If so, use that
9614   // (non-visible) declaration, and complain about it.
9615   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9616     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9617     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9618     return ExternCPrev;
9619   }
9620 
9621   // Extension in C99.  Legal in C90, but warn about it.
9622   unsigned diag_id;
9623   if (II.getName().startswith("__builtin_"))
9624     diag_id = diag::warn_builtin_unknown;
9625   else if (getLangOpts().C99)
9626     diag_id = diag::ext_implicit_function_decl;
9627   else
9628     diag_id = diag::warn_implicit_function_decl;
9629   Diag(Loc, diag_id) << &II;
9630 
9631   // Because typo correction is expensive, only do it if the implicit
9632   // function declaration is going to be treated as an error.
9633   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9634     TypoCorrection Corrected;
9635     DeclFilterCCC<FunctionDecl> Validator;
9636     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9637                                       LookupOrdinaryName, S, 0, Validator))) {
9638       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9639       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9640       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9641 
9642       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9643           << FixItHint::CreateReplacement(Loc, CorrectedStr);
9644 
9645       if (Func->getLocation().isValid()
9646           && !II.getName().startswith("__builtin_"))
9647         Diag(Func->getLocation(), diag::note_previous_decl)
9648             << CorrectedQuotedStr;
9649     }
9650   }
9651 
9652   // Set a Declarator for the implicit definition: int foo();
9653   const char *Dummy;
9654   AttributeFactory attrFactory;
9655   DeclSpec DS(attrFactory);
9656   unsigned DiagID;
9657   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9658   (void)Error; // Silence warning.
9659   assert(!Error && "Error setting up implicit decl!");
9660   SourceLocation NoLoc;
9661   Declarator D(DS, Declarator::BlockContext);
9662   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9663                                              /*IsAmbiguous=*/false,
9664                                              /*RParenLoc=*/NoLoc,
9665                                              /*ArgInfo=*/0,
9666                                              /*NumArgs=*/0,
9667                                              /*EllipsisLoc=*/NoLoc,
9668                                              /*RParenLoc=*/NoLoc,
9669                                              /*TypeQuals=*/0,
9670                                              /*RefQualifierIsLvalueRef=*/true,
9671                                              /*RefQualifierLoc=*/NoLoc,
9672                                              /*ConstQualifierLoc=*/NoLoc,
9673                                              /*VolatileQualifierLoc=*/NoLoc,
9674                                              /*MutableLoc=*/NoLoc,
9675                                              EST_None,
9676                                              /*ESpecLoc=*/NoLoc,
9677                                              /*Exceptions=*/0,
9678                                              /*ExceptionRanges=*/0,
9679                                              /*NumExceptions=*/0,
9680                                              /*NoexceptExpr=*/0,
9681                                              Loc, Loc, D),
9682                 DS.getAttributes(),
9683                 SourceLocation());
9684   D.SetIdentifier(&II, Loc);
9685 
9686   // Insert this function into translation-unit scope.
9687 
9688   DeclContext *PrevDC = CurContext;
9689   CurContext = Context.getTranslationUnitDecl();
9690 
9691   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9692   FD->setImplicit();
9693 
9694   CurContext = PrevDC;
9695 
9696   AddKnownFunctionAttributes(FD);
9697 
9698   return FD;
9699 }
9700 
9701 /// \brief Adds any function attributes that we know a priori based on
9702 /// the declaration of this function.
9703 ///
9704 /// These attributes can apply both to implicitly-declared builtins
9705 /// (like __builtin___printf_chk) or to library-declared functions
9706 /// like NSLog or printf.
9707 ///
9708 /// We need to check for duplicate attributes both here and where user-written
9709 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)9710 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9711   if (FD->isInvalidDecl())
9712     return;
9713 
9714   // If this is a built-in function, map its builtin attributes to
9715   // actual attributes.
9716   if (unsigned BuiltinID = FD->getBuiltinID()) {
9717     // Handle printf-formatting attributes.
9718     unsigned FormatIdx;
9719     bool HasVAListArg;
9720     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9721       if (!FD->getAttr<FormatAttr>()) {
9722         const char *fmt = "printf";
9723         unsigned int NumParams = FD->getNumParams();
9724         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9725             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9726           fmt = "NSString";
9727         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9728                                                fmt, FormatIdx+1,
9729                                                HasVAListArg ? 0 : FormatIdx+2));
9730       }
9731     }
9732     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9733                                              HasVAListArg)) {
9734      if (!FD->getAttr<FormatAttr>())
9735        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9736                                               "scanf", FormatIdx+1,
9737                                               HasVAListArg ? 0 : FormatIdx+2));
9738     }
9739 
9740     // Mark const if we don't care about errno and that is the only
9741     // thing preventing the function from being const. This allows
9742     // IRgen to use LLVM intrinsics for such functions.
9743     if (!getLangOpts().MathErrno &&
9744         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9745       if (!FD->getAttr<ConstAttr>())
9746         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9747     }
9748 
9749     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9750         !FD->getAttr<ReturnsTwiceAttr>())
9751       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9752     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9753       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9754     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9755       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9756   }
9757 
9758   IdentifierInfo *Name = FD->getIdentifier();
9759   if (!Name)
9760     return;
9761   if ((!getLangOpts().CPlusPlus &&
9762        FD->getDeclContext()->isTranslationUnit()) ||
9763       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9764        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9765        LinkageSpecDecl::lang_c)) {
9766     // Okay: this could be a libc/libm/Objective-C function we know
9767     // about.
9768   } else
9769     return;
9770 
9771   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9772     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9773     // target-specific builtins, perhaps?
9774     if (!FD->getAttr<FormatAttr>())
9775       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9776                                              "printf", 2,
9777                                              Name->isStr("vasprintf") ? 0 : 3));
9778   }
9779 
9780   if (Name->isStr("__CFStringMakeConstantString")) {
9781     // We already have a __builtin___CFStringMakeConstantString,
9782     // but builds that use -fno-constant-cfstrings don't go through that.
9783     if (!FD->getAttr<FormatArgAttr>())
9784       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9785   }
9786 }
9787 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)9788 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9789                                     TypeSourceInfo *TInfo) {
9790   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9791   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9792 
9793   if (!TInfo) {
9794     assert(D.isInvalidType() && "no declarator info for valid type");
9795     TInfo = Context.getTrivialTypeSourceInfo(T);
9796   }
9797 
9798   // Scope manipulation handled by caller.
9799   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9800                                            D.getLocStart(),
9801                                            D.getIdentifierLoc(),
9802                                            D.getIdentifier(),
9803                                            TInfo);
9804 
9805   // Bail out immediately if we have an invalid declaration.
9806   if (D.isInvalidType()) {
9807     NewTD->setInvalidDecl();
9808     return NewTD;
9809   }
9810 
9811   if (D.getDeclSpec().isModulePrivateSpecified()) {
9812     if (CurContext->isFunctionOrMethod())
9813       Diag(NewTD->getLocation(), diag::err_module_private_local)
9814         << 2 << NewTD->getDeclName()
9815         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9816         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9817     else
9818       NewTD->setModulePrivate();
9819   }
9820 
9821   // C++ [dcl.typedef]p8:
9822   //   If the typedef declaration defines an unnamed class (or
9823   //   enum), the first typedef-name declared by the declaration
9824   //   to be that class type (or enum type) is used to denote the
9825   //   class type (or enum type) for linkage purposes only.
9826   // We need to check whether the type was declared in the declaration.
9827   switch (D.getDeclSpec().getTypeSpecType()) {
9828   case TST_enum:
9829   case TST_struct:
9830   case TST_interface:
9831   case TST_union:
9832   case TST_class: {
9833     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9834 
9835     // Do nothing if the tag is not anonymous or already has an
9836     // associated typedef (from an earlier typedef in this decl group).
9837     if (tagFromDeclSpec->getIdentifier()) break;
9838     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9839 
9840     // A well-formed anonymous tag must always be a TUK_Definition.
9841     assert(tagFromDeclSpec->isThisDeclarationADefinition());
9842 
9843     // The type must match the tag exactly;  no qualifiers allowed.
9844     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9845       break;
9846 
9847     // Otherwise, set this is the anon-decl typedef for the tag.
9848     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9849     break;
9850   }
9851 
9852   default:
9853     break;
9854   }
9855 
9856   return NewTD;
9857 }
9858 
9859 
9860 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)9861 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9862   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9863   QualType T = TI->getType();
9864 
9865   if (T->isDependentType())
9866     return false;
9867 
9868   if (const BuiltinType *BT = T->getAs<BuiltinType>())
9869     if (BT->isInteger())
9870       return false;
9871 
9872   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9873   return true;
9874 }
9875 
9876 /// Check whether this is a valid redeclaration of a previous enumeration.
9877 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)9878 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9879                                   QualType EnumUnderlyingTy,
9880                                   const EnumDecl *Prev) {
9881   bool IsFixed = !EnumUnderlyingTy.isNull();
9882 
9883   if (IsScoped != Prev->isScoped()) {
9884     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9885       << Prev->isScoped();
9886     Diag(Prev->getLocation(), diag::note_previous_use);
9887     return true;
9888   }
9889 
9890   if (IsFixed && Prev->isFixed()) {
9891     if (!EnumUnderlyingTy->isDependentType() &&
9892         !Prev->getIntegerType()->isDependentType() &&
9893         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9894                                         Prev->getIntegerType())) {
9895       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9896         << EnumUnderlyingTy << Prev->getIntegerType();
9897       Diag(Prev->getLocation(), diag::note_previous_use);
9898       return true;
9899     }
9900   } else if (IsFixed != Prev->isFixed()) {
9901     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9902       << Prev->isFixed();
9903     Diag(Prev->getLocation(), diag::note_previous_use);
9904     return true;
9905   }
9906 
9907   return false;
9908 }
9909 
9910 /// \brief Get diagnostic %select index for tag kind for
9911 /// redeclaration diagnostic message.
9912 /// WARNING: Indexes apply to particular diagnostics only!
9913 ///
9914 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)9915 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9916   switch (Tag) {
9917   case TTK_Struct: return 0;
9918   case TTK_Interface: return 1;
9919   case TTK_Class:  return 2;
9920   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9921   }
9922 }
9923 
9924 /// \brief Determine if tag kind is a class-key compatible with
9925 /// class for redeclaration (class, struct, or __interface).
9926 ///
9927 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)9928 static bool isClassCompatTagKind(TagTypeKind Tag)
9929 {
9930   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9931 }
9932 
9933 /// \brief Determine whether a tag with a given kind is acceptable
9934 /// as a redeclaration of the given tag declaration.
9935 ///
9936 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)9937 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9938                                         TagTypeKind NewTag, bool isDefinition,
9939                                         SourceLocation NewTagLoc,
9940                                         const IdentifierInfo &Name) {
9941   // C++ [dcl.type.elab]p3:
9942   //   The class-key or enum keyword present in the
9943   //   elaborated-type-specifier shall agree in kind with the
9944   //   declaration to which the name in the elaborated-type-specifier
9945   //   refers. This rule also applies to the form of
9946   //   elaborated-type-specifier that declares a class-name or
9947   //   friend class since it can be construed as referring to the
9948   //   definition of the class. Thus, in any
9949   //   elaborated-type-specifier, the enum keyword shall be used to
9950   //   refer to an enumeration (7.2), the union class-key shall be
9951   //   used to refer to a union (clause 9), and either the class or
9952   //   struct class-key shall be used to refer to a class (clause 9)
9953   //   declared using the class or struct class-key.
9954   TagTypeKind OldTag = Previous->getTagKind();
9955   if (!isDefinition || !isClassCompatTagKind(NewTag))
9956     if (OldTag == NewTag)
9957       return true;
9958 
9959   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9960     // Warn about the struct/class tag mismatch.
9961     bool isTemplate = false;
9962     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9963       isTemplate = Record->getDescribedClassTemplate();
9964 
9965     if (!ActiveTemplateInstantiations.empty()) {
9966       // In a template instantiation, do not offer fix-its for tag mismatches
9967       // since they usually mess up the template instead of fixing the problem.
9968       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9969         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9970         << getRedeclDiagFromTagKind(OldTag);
9971       return true;
9972     }
9973 
9974     if (isDefinition) {
9975       // On definitions, check previous tags and issue a fix-it for each
9976       // one that doesn't match the current tag.
9977       if (Previous->getDefinition()) {
9978         // Don't suggest fix-its for redefinitions.
9979         return true;
9980       }
9981 
9982       bool previousMismatch = false;
9983       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9984            E(Previous->redecls_end()); I != E; ++I) {
9985         if (I->getTagKind() != NewTag) {
9986           if (!previousMismatch) {
9987             previousMismatch = true;
9988             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9989               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9990               << getRedeclDiagFromTagKind(I->getTagKind());
9991           }
9992           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9993             << getRedeclDiagFromTagKind(NewTag)
9994             << FixItHint::CreateReplacement(I->getInnerLocStart(),
9995                  TypeWithKeyword::getTagTypeKindName(NewTag));
9996         }
9997       }
9998       return true;
9999     }
10000 
10001     // Check for a previous definition.  If current tag and definition
10002     // are same type, do nothing.  If no definition, but disagree with
10003     // with previous tag type, give a warning, but no fix-it.
10004     const TagDecl *Redecl = Previous->getDefinition() ?
10005                             Previous->getDefinition() : Previous;
10006     if (Redecl->getTagKind() == NewTag) {
10007       return true;
10008     }
10009 
10010     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10011       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10012       << getRedeclDiagFromTagKind(OldTag);
10013     Diag(Redecl->getLocation(), diag::note_previous_use);
10014 
10015     // If there is a previous defintion, suggest a fix-it.
10016     if (Previous->getDefinition()) {
10017         Diag(NewTagLoc, diag::note_struct_class_suggestion)
10018           << getRedeclDiagFromTagKind(Redecl->getTagKind())
10019           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10020                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10021     }
10022 
10023     return true;
10024   }
10025   return false;
10026 }
10027 
10028 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10029 /// former case, Name will be non-null.  In the later case, Name will be null.
10030 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10031 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)10032 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10033                      SourceLocation KWLoc, CXXScopeSpec &SS,
10034                      IdentifierInfo *Name, SourceLocation NameLoc,
10035                      AttributeList *Attr, AccessSpecifier AS,
10036                      SourceLocation ModulePrivateLoc,
10037                      MultiTemplateParamsArg TemplateParameterLists,
10038                      bool &OwnedDecl, bool &IsDependent,
10039                      SourceLocation ScopedEnumKWLoc,
10040                      bool ScopedEnumUsesClassTag,
10041                      TypeResult UnderlyingType) {
10042   // If this is not a definition, it must have a name.
10043   IdentifierInfo *OrigName = Name;
10044   assert((Name != 0 || TUK == TUK_Definition) &&
10045          "Nameless record must be a definition!");
10046   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10047 
10048   OwnedDecl = false;
10049   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10050   bool ScopedEnum = ScopedEnumKWLoc.isValid();
10051 
10052   // FIXME: Check explicit specializations more carefully.
10053   bool isExplicitSpecialization = false;
10054   bool Invalid = false;
10055 
10056   // We only need to do this matching if we have template parameters
10057   // or a scope specifier, which also conveniently avoids this work
10058   // for non-C++ cases.
10059   if (TemplateParameterLists.size() > 0 ||
10060       (SS.isNotEmpty() && TUK != TUK_Reference)) {
10061     if (TemplateParameterList *TemplateParams =
10062             MatchTemplateParametersToScopeSpecifier(
10063                 KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10064                 isExplicitSpecialization, Invalid)) {
10065       if (Kind == TTK_Enum) {
10066         Diag(KWLoc, diag::err_enum_template);
10067         return 0;
10068       }
10069 
10070       if (TemplateParams->size() > 0) {
10071         // This is a declaration or definition of a class template (which may
10072         // be a member of another template).
10073 
10074         if (Invalid)
10075           return 0;
10076 
10077         OwnedDecl = false;
10078         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10079                                                SS, Name, NameLoc, Attr,
10080                                                TemplateParams, AS,
10081                                                ModulePrivateLoc,
10082                                                TemplateParameterLists.size()-1,
10083                                                TemplateParameterLists.data());
10084         return Result.get();
10085       } else {
10086         // The "template<>" header is extraneous.
10087         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10088           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10089         isExplicitSpecialization = true;
10090       }
10091     }
10092   }
10093 
10094   // Figure out the underlying type if this a enum declaration. We need to do
10095   // this early, because it's needed to detect if this is an incompatible
10096   // redeclaration.
10097   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10098 
10099   if (Kind == TTK_Enum) {
10100     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10101       // No underlying type explicitly specified, or we failed to parse the
10102       // type, default to int.
10103       EnumUnderlying = Context.IntTy.getTypePtr();
10104     else if (UnderlyingType.get()) {
10105       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10106       // integral type; any cv-qualification is ignored.
10107       TypeSourceInfo *TI = 0;
10108       GetTypeFromParser(UnderlyingType.get(), &TI);
10109       EnumUnderlying = TI;
10110 
10111       if (CheckEnumUnderlyingType(TI))
10112         // Recover by falling back to int.
10113         EnumUnderlying = Context.IntTy.getTypePtr();
10114 
10115       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10116                                           UPPC_FixedUnderlyingType))
10117         EnumUnderlying = Context.IntTy.getTypePtr();
10118 
10119     } else if (getLangOpts().MicrosoftMode)
10120       // Microsoft enums are always of int type.
10121       EnumUnderlying = Context.IntTy.getTypePtr();
10122   }
10123 
10124   DeclContext *SearchDC = CurContext;
10125   DeclContext *DC = CurContext;
10126   bool isStdBadAlloc = false;
10127 
10128   RedeclarationKind Redecl = ForRedeclaration;
10129   if (TUK == TUK_Friend || TUK == TUK_Reference)
10130     Redecl = NotForRedeclaration;
10131 
10132   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10133   bool FriendSawTagOutsideEnclosingNamespace = false;
10134   if (Name && SS.isNotEmpty()) {
10135     // We have a nested-name tag ('struct foo::bar').
10136 
10137     // Check for invalid 'foo::'.
10138     if (SS.isInvalid()) {
10139       Name = 0;
10140       goto CreateNewDecl;
10141     }
10142 
10143     // If this is a friend or a reference to a class in a dependent
10144     // context, don't try to make a decl for it.
10145     if (TUK == TUK_Friend || TUK == TUK_Reference) {
10146       DC = computeDeclContext(SS, false);
10147       if (!DC) {
10148         IsDependent = true;
10149         return 0;
10150       }
10151     } else {
10152       DC = computeDeclContext(SS, true);
10153       if (!DC) {
10154         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10155           << SS.getRange();
10156         return 0;
10157       }
10158     }
10159 
10160     if (RequireCompleteDeclContext(SS, DC))
10161       return 0;
10162 
10163     SearchDC = DC;
10164     // Look-up name inside 'foo::'.
10165     LookupQualifiedName(Previous, DC);
10166 
10167     if (Previous.isAmbiguous())
10168       return 0;
10169 
10170     if (Previous.empty()) {
10171       // Name lookup did not find anything. However, if the
10172       // nested-name-specifier refers to the current instantiation,
10173       // and that current instantiation has any dependent base
10174       // classes, we might find something at instantiation time: treat
10175       // this as a dependent elaborated-type-specifier.
10176       // But this only makes any sense for reference-like lookups.
10177       if (Previous.wasNotFoundInCurrentInstantiation() &&
10178           (TUK == TUK_Reference || TUK == TUK_Friend)) {
10179         IsDependent = true;
10180         return 0;
10181       }
10182 
10183       // A tag 'foo::bar' must already exist.
10184       Diag(NameLoc, diag::err_not_tag_in_scope)
10185         << Kind << Name << DC << SS.getRange();
10186       Name = 0;
10187       Invalid = true;
10188       goto CreateNewDecl;
10189     }
10190   } else if (Name) {
10191     // If this is a named struct, check to see if there was a previous forward
10192     // declaration or definition.
10193     // FIXME: We're looking into outer scopes here, even when we
10194     // shouldn't be. Doing so can result in ambiguities that we
10195     // shouldn't be diagnosing.
10196     LookupName(Previous, S);
10197 
10198     // When declaring or defining a tag, ignore ambiguities introduced
10199     // by types using'ed into this scope.
10200     if (Previous.isAmbiguous() &&
10201         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10202       LookupResult::Filter F = Previous.makeFilter();
10203       while (F.hasNext()) {
10204         NamedDecl *ND = F.next();
10205         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10206           F.erase();
10207       }
10208       F.done();
10209     }
10210 
10211     // C++11 [namespace.memdef]p3:
10212     //   If the name in a friend declaration is neither qualified nor
10213     //   a template-id and the declaration is a function or an
10214     //   elaborated-type-specifier, the lookup to determine whether
10215     //   the entity has been previously declared shall not consider
10216     //   any scopes outside the innermost enclosing namespace.
10217     //
10218     // Does it matter that this should be by scope instead of by
10219     // semantic context?
10220     if (!Previous.empty() && TUK == TUK_Friend) {
10221       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10222       LookupResult::Filter F = Previous.makeFilter();
10223       while (F.hasNext()) {
10224         NamedDecl *ND = F.next();
10225         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10226         if (DC->isFileContext() &&
10227             !EnclosingNS->Encloses(ND->getDeclContext())) {
10228           F.erase();
10229           FriendSawTagOutsideEnclosingNamespace = true;
10230         }
10231       }
10232       F.done();
10233     }
10234 
10235     // Note:  there used to be some attempt at recovery here.
10236     if (Previous.isAmbiguous())
10237       return 0;
10238 
10239     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10240       // FIXME: This makes sure that we ignore the contexts associated
10241       // with C structs, unions, and enums when looking for a matching
10242       // tag declaration or definition. See the similar lookup tweak
10243       // in Sema::LookupName; is there a better way to deal with this?
10244       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10245         SearchDC = SearchDC->getParent();
10246     }
10247   } else if (S->isFunctionPrototypeScope()) {
10248     // If this is an enum declaration in function prototype scope, set its
10249     // initial context to the translation unit.
10250     // FIXME: [citation needed]
10251     SearchDC = Context.getTranslationUnitDecl();
10252   }
10253 
10254   if (Previous.isSingleResult() &&
10255       Previous.getFoundDecl()->isTemplateParameter()) {
10256     // Maybe we will complain about the shadowed template parameter.
10257     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10258     // Just pretend that we didn't see the previous declaration.
10259     Previous.clear();
10260   }
10261 
10262   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10263       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10264     // This is a declaration of or a reference to "std::bad_alloc".
10265     isStdBadAlloc = true;
10266 
10267     if (Previous.empty() && StdBadAlloc) {
10268       // std::bad_alloc has been implicitly declared (but made invisible to
10269       // name lookup). Fill in this implicit declaration as the previous
10270       // declaration, so that the declarations get chained appropriately.
10271       Previous.addDecl(getStdBadAlloc());
10272     }
10273   }
10274 
10275   // If we didn't find a previous declaration, and this is a reference
10276   // (or friend reference), move to the correct scope.  In C++, we
10277   // also need to do a redeclaration lookup there, just in case
10278   // there's a shadow friend decl.
10279   if (Name && Previous.empty() &&
10280       (TUK == TUK_Reference || TUK == TUK_Friend)) {
10281     if (Invalid) goto CreateNewDecl;
10282     assert(SS.isEmpty());
10283 
10284     if (TUK == TUK_Reference) {
10285       // C++ [basic.scope.pdecl]p5:
10286       //   -- for an elaborated-type-specifier of the form
10287       //
10288       //          class-key identifier
10289       //
10290       //      if the elaborated-type-specifier is used in the
10291       //      decl-specifier-seq or parameter-declaration-clause of a
10292       //      function defined in namespace scope, the identifier is
10293       //      declared as a class-name in the namespace that contains
10294       //      the declaration; otherwise, except as a friend
10295       //      declaration, the identifier is declared in the smallest
10296       //      non-class, non-function-prototype scope that contains the
10297       //      declaration.
10298       //
10299       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10300       // C structs and unions.
10301       //
10302       // It is an error in C++ to declare (rather than define) an enum
10303       // type, including via an elaborated type specifier.  We'll
10304       // diagnose that later; for now, declare the enum in the same
10305       // scope as we would have picked for any other tag type.
10306       //
10307       // GNU C also supports this behavior as part of its incomplete
10308       // enum types extension, while GNU C++ does not.
10309       //
10310       // Find the context where we'll be declaring the tag.
10311       // FIXME: We would like to maintain the current DeclContext as the
10312       // lexical context,
10313       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10314         SearchDC = SearchDC->getParent();
10315 
10316       // Find the scope where we'll be declaring the tag.
10317       while (S->isClassScope() ||
10318              (getLangOpts().CPlusPlus &&
10319               S->isFunctionPrototypeScope()) ||
10320              ((S->getFlags() & Scope::DeclScope) == 0) ||
10321              (S->getEntity() &&
10322               ((DeclContext *)S->getEntity())->isTransparentContext()))
10323         S = S->getParent();
10324     } else {
10325       assert(TUK == TUK_Friend);
10326       // C++ [namespace.memdef]p3:
10327       //   If a friend declaration in a non-local class first declares a
10328       //   class or function, the friend class or function is a member of
10329       //   the innermost enclosing namespace.
10330       SearchDC = SearchDC->getEnclosingNamespaceContext();
10331     }
10332 
10333     // In C++, we need to do a redeclaration lookup to properly
10334     // diagnose some problems.
10335     if (getLangOpts().CPlusPlus) {
10336       Previous.setRedeclarationKind(ForRedeclaration);
10337       LookupQualifiedName(Previous, SearchDC);
10338     }
10339   }
10340 
10341   if (!Previous.empty()) {
10342     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10343 
10344     // It's okay to have a tag decl in the same scope as a typedef
10345     // which hides a tag decl in the same scope.  Finding this
10346     // insanity with a redeclaration lookup can only actually happen
10347     // in C++.
10348     //
10349     // This is also okay for elaborated-type-specifiers, which is
10350     // technically forbidden by the current standard but which is
10351     // okay according to the likely resolution of an open issue;
10352     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10353     if (getLangOpts().CPlusPlus) {
10354       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10355         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10356           TagDecl *Tag = TT->getDecl();
10357           if (Tag->getDeclName() == Name &&
10358               Tag->getDeclContext()->getRedeclContext()
10359                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
10360             PrevDecl = Tag;
10361             Previous.clear();
10362             Previous.addDecl(Tag);
10363             Previous.resolveKind();
10364           }
10365         }
10366       }
10367     }
10368 
10369     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10370       // If this is a use of a previous tag, or if the tag is already declared
10371       // in the same scope (so that the definition/declaration completes or
10372       // rementions the tag), reuse the decl.
10373       if (TUK == TUK_Reference || TUK == TUK_Friend ||
10374           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10375         // Make sure that this wasn't declared as an enum and now used as a
10376         // struct or something similar.
10377         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10378                                           TUK == TUK_Definition, KWLoc,
10379                                           *Name)) {
10380           bool SafeToContinue
10381             = (PrevTagDecl->getTagKind() != TTK_Enum &&
10382                Kind != TTK_Enum);
10383           if (SafeToContinue)
10384             Diag(KWLoc, diag::err_use_with_wrong_tag)
10385               << Name
10386               << FixItHint::CreateReplacement(SourceRange(KWLoc),
10387                                               PrevTagDecl->getKindName());
10388           else
10389             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10390           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10391 
10392           if (SafeToContinue)
10393             Kind = PrevTagDecl->getTagKind();
10394           else {
10395             // Recover by making this an anonymous redefinition.
10396             Name = 0;
10397             Previous.clear();
10398             Invalid = true;
10399           }
10400         }
10401 
10402         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10403           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10404 
10405           // If this is an elaborated-type-specifier for a scoped enumeration,
10406           // the 'class' keyword is not necessary and not permitted.
10407           if (TUK == TUK_Reference || TUK == TUK_Friend) {
10408             if (ScopedEnum)
10409               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10410                 << PrevEnum->isScoped()
10411                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10412             return PrevTagDecl;
10413           }
10414 
10415           QualType EnumUnderlyingTy;
10416           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10417             EnumUnderlyingTy = TI->getType();
10418           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10419             EnumUnderlyingTy = QualType(T, 0);
10420 
10421           // All conflicts with previous declarations are recovered by
10422           // returning the previous declaration, unless this is a definition,
10423           // in which case we want the caller to bail out.
10424           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10425                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
10426             return TUK == TUK_Declaration ? PrevTagDecl : 0;
10427         }
10428 
10429         // C++11 [class.mem]p1:
10430         //   A member shall not be declared twice in the member-specification,
10431         //   except that a nested class or member class template can be declared
10432         //   and then later defined.
10433         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10434             S->isDeclScope(PrevDecl)) {
10435           Diag(NameLoc, diag::ext_member_redeclared);
10436           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10437         }
10438 
10439         if (!Invalid) {
10440           // If this is a use, just return the declaration we found.
10441 
10442           // FIXME: In the future, return a variant or some other clue
10443           // for the consumer of this Decl to know it doesn't own it.
10444           // For our current ASTs this shouldn't be a problem, but will
10445           // need to be changed with DeclGroups.
10446           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10447                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10448             return PrevTagDecl;
10449 
10450           // Diagnose attempts to redefine a tag.
10451           if (TUK == TUK_Definition) {
10452             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10453               // If we're defining a specialization and the previous definition
10454               // is from an implicit instantiation, don't emit an error
10455               // here; we'll catch this in the general case below.
10456               bool IsExplicitSpecializationAfterInstantiation = false;
10457               if (isExplicitSpecialization) {
10458                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10459                   IsExplicitSpecializationAfterInstantiation =
10460                     RD->getTemplateSpecializationKind() !=
10461                     TSK_ExplicitSpecialization;
10462                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10463                   IsExplicitSpecializationAfterInstantiation =
10464                     ED->getTemplateSpecializationKind() !=
10465                     TSK_ExplicitSpecialization;
10466               }
10467 
10468               if (!IsExplicitSpecializationAfterInstantiation) {
10469                 // A redeclaration in function prototype scope in C isn't
10470                 // visible elsewhere, so merely issue a warning.
10471                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10472                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10473                 else
10474                   Diag(NameLoc, diag::err_redefinition) << Name;
10475                 Diag(Def->getLocation(), diag::note_previous_definition);
10476                 // If this is a redefinition, recover by making this
10477                 // struct be anonymous, which will make any later
10478                 // references get the previous definition.
10479                 Name = 0;
10480                 Previous.clear();
10481                 Invalid = true;
10482               }
10483             } else {
10484               // If the type is currently being defined, complain
10485               // about a nested redefinition.
10486               const TagType *Tag
10487                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10488               if (Tag->isBeingDefined()) {
10489                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
10490                 Diag(PrevTagDecl->getLocation(),
10491                      diag::note_previous_definition);
10492                 Name = 0;
10493                 Previous.clear();
10494                 Invalid = true;
10495               }
10496             }
10497 
10498             // Okay, this is definition of a previously declared or referenced
10499             // tag PrevDecl. We're going to create a new Decl for it.
10500           }
10501         }
10502         // If we get here we have (another) forward declaration or we
10503         // have a definition.  Just create a new decl.
10504 
10505       } else {
10506         // If we get here, this is a definition of a new tag type in a nested
10507         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10508         // new decl/type.  We set PrevDecl to NULL so that the entities
10509         // have distinct types.
10510         Previous.clear();
10511       }
10512       // If we get here, we're going to create a new Decl. If PrevDecl
10513       // is non-NULL, it's a definition of the tag declared by
10514       // PrevDecl. If it's NULL, we have a new definition.
10515 
10516 
10517     // Otherwise, PrevDecl is not a tag, but was found with tag
10518     // lookup.  This is only actually possible in C++, where a few
10519     // things like templates still live in the tag namespace.
10520     } else {
10521       // Use a better diagnostic if an elaborated-type-specifier
10522       // found the wrong kind of type on the first
10523       // (non-redeclaration) lookup.
10524       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10525           !Previous.isForRedeclaration()) {
10526         unsigned Kind = 0;
10527         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10528         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10529         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10530         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10531         Diag(PrevDecl->getLocation(), diag::note_declared_at);
10532         Invalid = true;
10533 
10534       // Otherwise, only diagnose if the declaration is in scope.
10535       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10536                                 isExplicitSpecialization)) {
10537         // do nothing
10538 
10539       // Diagnose implicit declarations introduced by elaborated types.
10540       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10541         unsigned Kind = 0;
10542         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10543         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10544         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10545         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10546         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10547         Invalid = true;
10548 
10549       // Otherwise it's a declaration.  Call out a particularly common
10550       // case here.
10551       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10552         unsigned Kind = 0;
10553         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10554         Diag(NameLoc, diag::err_tag_definition_of_typedef)
10555           << Name << Kind << TND->getUnderlyingType();
10556         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10557         Invalid = true;
10558 
10559       // Otherwise, diagnose.
10560       } else {
10561         // The tag name clashes with something else in the target scope,
10562         // issue an error and recover by making this tag be anonymous.
10563         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10564         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10565         Name = 0;
10566         Invalid = true;
10567       }
10568 
10569       // The existing declaration isn't relevant to us; we're in a
10570       // new scope, so clear out the previous declaration.
10571       Previous.clear();
10572     }
10573   }
10574 
10575 CreateNewDecl:
10576 
10577   TagDecl *PrevDecl = 0;
10578   if (Previous.isSingleResult())
10579     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10580 
10581   // If there is an identifier, use the location of the identifier as the
10582   // location of the decl, otherwise use the location of the struct/union
10583   // keyword.
10584   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10585 
10586   // Otherwise, create a new declaration. If there is a previous
10587   // declaration of the same entity, the two will be linked via
10588   // PrevDecl.
10589   TagDecl *New;
10590 
10591   bool IsForwardReference = false;
10592   if (Kind == TTK_Enum) {
10593     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10594     // enum X { A, B, C } D;    D should chain to X.
10595     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10596                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10597                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10598     // If this is an undefined enum, warn.
10599     if (TUK != TUK_Definition && !Invalid) {
10600       TagDecl *Def;
10601       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10602           cast<EnumDecl>(New)->isFixed()) {
10603         // C++0x: 7.2p2: opaque-enum-declaration.
10604         // Conflicts are diagnosed above. Do nothing.
10605       }
10606       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10607         Diag(Loc, diag::ext_forward_ref_enum_def)
10608           << New;
10609         Diag(Def->getLocation(), diag::note_previous_definition);
10610       } else {
10611         unsigned DiagID = diag::ext_forward_ref_enum;
10612         if (getLangOpts().MicrosoftMode)
10613           DiagID = diag::ext_ms_forward_ref_enum;
10614         else if (getLangOpts().CPlusPlus)
10615           DiagID = diag::err_forward_ref_enum;
10616         Diag(Loc, DiagID);
10617 
10618         // If this is a forward-declared reference to an enumeration, make a
10619         // note of it; we won't actually be introducing the declaration into
10620         // the declaration context.
10621         if (TUK == TUK_Reference)
10622           IsForwardReference = true;
10623       }
10624     }
10625 
10626     if (EnumUnderlying) {
10627       EnumDecl *ED = cast<EnumDecl>(New);
10628       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10629         ED->setIntegerTypeSourceInfo(TI);
10630       else
10631         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10632       ED->setPromotionType(ED->getIntegerType());
10633     }
10634 
10635   } else {
10636     // struct/union/class
10637 
10638     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10639     // struct X { int A; } D;    D should chain to X.
10640     if (getLangOpts().CPlusPlus) {
10641       // FIXME: Look for a way to use RecordDecl for simple structs.
10642       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10643                                   cast_or_null<CXXRecordDecl>(PrevDecl));
10644 
10645       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10646         StdBadAlloc = cast<CXXRecordDecl>(New);
10647     } else
10648       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10649                                cast_or_null<RecordDecl>(PrevDecl));
10650   }
10651 
10652   // Maybe add qualifier info.
10653   if (SS.isNotEmpty()) {
10654     if (SS.isSet()) {
10655       // If this is either a declaration or a definition, check the
10656       // nested-name-specifier against the current context. We don't do this
10657       // for explicit specializations, because they have similar checking
10658       // (with more specific diagnostics) in the call to
10659       // CheckMemberSpecialization, below.
10660       if (!isExplicitSpecialization &&
10661           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10662           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10663         Invalid = true;
10664 
10665       New->setQualifierInfo(SS.getWithLocInContext(Context));
10666       if (TemplateParameterLists.size() > 0) {
10667         New->setTemplateParameterListsInfo(Context,
10668                                            TemplateParameterLists.size(),
10669                                            TemplateParameterLists.data());
10670       }
10671     }
10672     else
10673       Invalid = true;
10674   }
10675 
10676   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10677     // Add alignment attributes if necessary; these attributes are checked when
10678     // the ASTContext lays out the structure.
10679     //
10680     // It is important for implementing the correct semantics that this
10681     // happen here (in act on tag decl). The #pragma pack stack is
10682     // maintained as a result of parser callbacks which can occur at
10683     // many points during the parsing of a struct declaration (because
10684     // the #pragma tokens are effectively skipped over during the
10685     // parsing of the struct).
10686     if (TUK == TUK_Definition) {
10687       AddAlignmentAttributesForRecord(RD);
10688       AddMsStructLayoutForRecord(RD);
10689     }
10690   }
10691 
10692   if (ModulePrivateLoc.isValid()) {
10693     if (isExplicitSpecialization)
10694       Diag(New->getLocation(), diag::err_module_private_specialization)
10695         << 2
10696         << FixItHint::CreateRemoval(ModulePrivateLoc);
10697     // __module_private__ does not apply to local classes. However, we only
10698     // diagnose this as an error when the declaration specifiers are
10699     // freestanding. Here, we just ignore the __module_private__.
10700     else if (!SearchDC->isFunctionOrMethod())
10701       New->setModulePrivate();
10702   }
10703 
10704   // If this is a specialization of a member class (of a class template),
10705   // check the specialization.
10706   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10707     Invalid = true;
10708 
10709   if (Invalid)
10710     New->setInvalidDecl();
10711 
10712   if (Attr)
10713     ProcessDeclAttributeList(S, New, Attr);
10714 
10715   // If we're declaring or defining a tag in function prototype scope
10716   // in C, note that this type can only be used within the function.
10717   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10718     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10719 
10720   // Set the lexical context. If the tag has a C++ scope specifier, the
10721   // lexical context will be different from the semantic context.
10722   New->setLexicalDeclContext(CurContext);
10723 
10724   // Mark this as a friend decl if applicable.
10725   // In Microsoft mode, a friend declaration also acts as a forward
10726   // declaration so we always pass true to setObjectOfFriendDecl to make
10727   // the tag name visible.
10728   if (TUK == TUK_Friend)
10729     New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
10730                                getLangOpts().MicrosoftExt);
10731 
10732   // Set the access specifier.
10733   if (!Invalid && SearchDC->isRecord())
10734     SetMemberAccessSpecifier(New, PrevDecl, AS);
10735 
10736   if (TUK == TUK_Definition)
10737     New->startDefinition();
10738 
10739   // If this has an identifier, add it to the scope stack.
10740   if (TUK == TUK_Friend) {
10741     // We might be replacing an existing declaration in the lookup tables;
10742     // if so, borrow its access specifier.
10743     if (PrevDecl)
10744       New->setAccess(PrevDecl->getAccess());
10745 
10746     DeclContext *DC = New->getDeclContext()->getRedeclContext();
10747     DC->makeDeclVisibleInContext(New);
10748     if (Name) // can be null along some error paths
10749       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10750         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10751   } else if (Name) {
10752     S = getNonFieldDeclScope(S);
10753     PushOnScopeChains(New, S, !IsForwardReference);
10754     if (IsForwardReference)
10755       SearchDC->makeDeclVisibleInContext(New);
10756 
10757   } else {
10758     CurContext->addDecl(New);
10759   }
10760 
10761   // If this is the C FILE type, notify the AST context.
10762   if (IdentifierInfo *II = New->getIdentifier())
10763     if (!New->isInvalidDecl() &&
10764         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10765         II->isStr("FILE"))
10766       Context.setFILEDecl(New);
10767 
10768   // If we were in function prototype scope (and not in C++ mode), add this
10769   // tag to the list of decls to inject into the function definition scope.
10770   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10771       InFunctionDeclarator && Name)
10772     DeclsInPrototypeScope.push_back(New);
10773 
10774   if (PrevDecl)
10775     mergeDeclAttributes(New, PrevDecl);
10776 
10777   // If there's a #pragma GCC visibility in scope, set the visibility of this
10778   // record.
10779   AddPushedVisibilityAttribute(New);
10780 
10781   OwnedDecl = true;
10782   // In C++, don't return an invalid declaration. We can't recover well from
10783   // the cases where we make the type anonymous.
10784   return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10785 }
10786 
ActOnTagStartDefinition(Scope * S,Decl * TagD)10787 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10788   AdjustDeclIfTemplate(TagD);
10789   TagDecl *Tag = cast<TagDecl>(TagD);
10790 
10791   // Enter the tag context.
10792   PushDeclContext(S, Tag);
10793 
10794   ActOnDocumentableDecl(TagD);
10795 
10796   // If there's a #pragma GCC visibility in scope, set the visibility of this
10797   // record.
10798   AddPushedVisibilityAttribute(Tag);
10799 }
10800 
ActOnObjCContainerStartDefinition(Decl * IDecl)10801 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10802   assert(isa<ObjCContainerDecl>(IDecl) &&
10803          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10804   DeclContext *OCD = cast<DeclContext>(IDecl);
10805   assert(getContainingDC(OCD) == CurContext &&
10806       "The next DeclContext should be lexically contained in the current one.");
10807   CurContext = OCD;
10808   return IDecl;
10809 }
10810 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)10811 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10812                                            SourceLocation FinalLoc,
10813                                            SourceLocation LBraceLoc) {
10814   AdjustDeclIfTemplate(TagD);
10815   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10816 
10817   FieldCollector->StartClass();
10818 
10819   if (!Record->getIdentifier())
10820     return;
10821 
10822   if (FinalLoc.isValid())
10823     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10824 
10825   // C++ [class]p2:
10826   //   [...] The class-name is also inserted into the scope of the
10827   //   class itself; this is known as the injected-class-name. For
10828   //   purposes of access checking, the injected-class-name is treated
10829   //   as if it were a public member name.
10830   CXXRecordDecl *InjectedClassName
10831     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10832                             Record->getLocStart(), Record->getLocation(),
10833                             Record->getIdentifier(),
10834                             /*PrevDecl=*/0,
10835                             /*DelayTypeCreation=*/true);
10836   Context.getTypeDeclType(InjectedClassName, Record);
10837   InjectedClassName->setImplicit();
10838   InjectedClassName->setAccess(AS_public);
10839   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10840       InjectedClassName->setDescribedClassTemplate(Template);
10841   PushOnScopeChains(InjectedClassName, S);
10842   assert(InjectedClassName->isInjectedClassName() &&
10843          "Broken injected-class-name");
10844 }
10845 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)10846 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10847                                     SourceLocation RBraceLoc) {
10848   AdjustDeclIfTemplate(TagD);
10849   TagDecl *Tag = cast<TagDecl>(TagD);
10850   Tag->setRBraceLoc(RBraceLoc);
10851 
10852   // Make sure we "complete" the definition even it is invalid.
10853   if (Tag->isBeingDefined()) {
10854     assert(Tag->isInvalidDecl() && "We should already have completed it");
10855     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10856       RD->completeDefinition();
10857   }
10858 
10859   if (isa<CXXRecordDecl>(Tag))
10860     FieldCollector->FinishClass();
10861 
10862   // Exit this scope of this tag's definition.
10863   PopDeclContext();
10864 
10865   if (getCurLexicalContext()->isObjCContainer() &&
10866       Tag->getDeclContext()->isFileContext())
10867     Tag->setTopLevelDeclInObjCContainer();
10868 
10869   // Notify the consumer that we've defined a tag.
10870   if (!Tag->isInvalidDecl())
10871     Consumer.HandleTagDeclDefinition(Tag);
10872 }
10873 
ActOnObjCContainerFinishDefinition()10874 void Sema::ActOnObjCContainerFinishDefinition() {
10875   // Exit this scope of this interface definition.
10876   PopDeclContext();
10877 }
10878 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)10879 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10880   assert(DC == CurContext && "Mismatch of container contexts");
10881   OriginalLexicalContext = DC;
10882   ActOnObjCContainerFinishDefinition();
10883 }
10884 
ActOnObjCReenterContainerContext(DeclContext * DC)10885 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10886   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10887   OriginalLexicalContext = 0;
10888 }
10889 
ActOnTagDefinitionError(Scope * S,Decl * TagD)10890 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10891   AdjustDeclIfTemplate(TagD);
10892   TagDecl *Tag = cast<TagDecl>(TagD);
10893   Tag->setInvalidDecl();
10894 
10895   // Make sure we "complete" the definition even it is invalid.
10896   if (Tag->isBeingDefined()) {
10897     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10898       RD->completeDefinition();
10899   }
10900 
10901   // We're undoing ActOnTagStartDefinition here, not
10902   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10903   // the FieldCollector.
10904 
10905   PopDeclContext();
10906 }
10907 
10908 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)10909 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10910                                 IdentifierInfo *FieldName,
10911                                 QualType FieldTy, bool IsMsStruct,
10912                                 Expr *BitWidth, bool *ZeroWidth) {
10913   // Default to true; that shouldn't confuse checks for emptiness
10914   if (ZeroWidth)
10915     *ZeroWidth = true;
10916 
10917   // C99 6.7.2.1p4 - verify the field type.
10918   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10919   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10920     // Handle incomplete types with specific error.
10921     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10922       return ExprError();
10923     if (FieldName)
10924       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10925         << FieldName << FieldTy << BitWidth->getSourceRange();
10926     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10927       << FieldTy << BitWidth->getSourceRange();
10928   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10929                                              UPPC_BitFieldWidth))
10930     return ExprError();
10931 
10932   // If the bit-width is type- or value-dependent, don't try to check
10933   // it now.
10934   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10935     return Owned(BitWidth);
10936 
10937   llvm::APSInt Value;
10938   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10939   if (ICE.isInvalid())
10940     return ICE;
10941   BitWidth = ICE.take();
10942 
10943   if (Value != 0 && ZeroWidth)
10944     *ZeroWidth = false;
10945 
10946   // Zero-width bitfield is ok for anonymous field.
10947   if (Value == 0 && FieldName)
10948     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10949 
10950   if (Value.isSigned() && Value.isNegative()) {
10951     if (FieldName)
10952       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10953                << FieldName << Value.toString(10);
10954     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10955       << Value.toString(10);
10956   }
10957 
10958   if (!FieldTy->isDependentType()) {
10959     uint64_t TypeSize = Context.getTypeSize(FieldTy);
10960     if (Value.getZExtValue() > TypeSize) {
10961       if (!getLangOpts().CPlusPlus || IsMsStruct) {
10962         if (FieldName)
10963           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10964             << FieldName << (unsigned)Value.getZExtValue()
10965             << (unsigned)TypeSize;
10966 
10967         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10968           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10969       }
10970 
10971       if (FieldName)
10972         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10973           << FieldName << (unsigned)Value.getZExtValue()
10974           << (unsigned)TypeSize;
10975       else
10976         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10977           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10978     }
10979   }
10980 
10981   return Owned(BitWidth);
10982 }
10983 
10984 /// ActOnField - Each field of a C struct/union is passed into this in order
10985 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)10986 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10987                        Declarator &D, Expr *BitfieldWidth) {
10988   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10989                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10990                                /*InitStyle=*/ICIS_NoInit, AS_public);
10991   return Res;
10992 }
10993 
10994 /// HandleField - Analyze a field of a C struct or a C++ data member.
10995 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)10996 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10997                              SourceLocation DeclStart,
10998                              Declarator &D, Expr *BitWidth,
10999                              InClassInitStyle InitStyle,
11000                              AccessSpecifier AS) {
11001   IdentifierInfo *II = D.getIdentifier();
11002   SourceLocation Loc = DeclStart;
11003   if (II) Loc = D.getIdentifierLoc();
11004 
11005   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11006   QualType T = TInfo->getType();
11007   if (getLangOpts().CPlusPlus) {
11008     CheckExtraCXXDefaultArguments(D);
11009 
11010     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11011                                         UPPC_DataMemberType)) {
11012       D.setInvalidType();
11013       T = Context.IntTy;
11014       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11015     }
11016   }
11017 
11018   // TR 18037 does not allow fields to be declared with address spaces.
11019   if (T.getQualifiers().hasAddressSpace()) {
11020     Diag(Loc, diag::err_field_with_address_space);
11021     D.setInvalidType();
11022   }
11023 
11024   // OpenCL 1.2 spec, s6.9 r:
11025   // The event type cannot be used to declare a structure or union field.
11026   if (LangOpts.OpenCL && T->isEventT()) {
11027     Diag(Loc, diag::err_event_t_struct_field);
11028     D.setInvalidType();
11029   }
11030 
11031   DiagnoseFunctionSpecifiers(D.getDeclSpec());
11032 
11033   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11034     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11035          diag::err_invalid_thread)
11036       << DeclSpec::getSpecifierName(TSCS);
11037 
11038   // Check to see if this name was declared as a member previously
11039   NamedDecl *PrevDecl = 0;
11040   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11041   LookupName(Previous, S);
11042   switch (Previous.getResultKind()) {
11043     case LookupResult::Found:
11044     case LookupResult::FoundUnresolvedValue:
11045       PrevDecl = Previous.getAsSingle<NamedDecl>();
11046       break;
11047 
11048     case LookupResult::FoundOverloaded:
11049       PrevDecl = Previous.getRepresentativeDecl();
11050       break;
11051 
11052     case LookupResult::NotFound:
11053     case LookupResult::NotFoundInCurrentInstantiation:
11054     case LookupResult::Ambiguous:
11055       break;
11056   }
11057   Previous.suppressDiagnostics();
11058 
11059   if (PrevDecl && PrevDecl->isTemplateParameter()) {
11060     // Maybe we will complain about the shadowed template parameter.
11061     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11062     // Just pretend that we didn't see the previous declaration.
11063     PrevDecl = 0;
11064   }
11065 
11066   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11067     PrevDecl = 0;
11068 
11069   bool Mutable
11070     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11071   SourceLocation TSSL = D.getLocStart();
11072   FieldDecl *NewFD
11073     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11074                      TSSL, AS, PrevDecl, &D);
11075 
11076   if (NewFD->isInvalidDecl())
11077     Record->setInvalidDecl();
11078 
11079   if (D.getDeclSpec().isModulePrivateSpecified())
11080     NewFD->setModulePrivate();
11081 
11082   if (NewFD->isInvalidDecl() && PrevDecl) {
11083     // Don't introduce NewFD into scope; there's already something
11084     // with the same name in the same scope.
11085   } else if (II) {
11086     PushOnScopeChains(NewFD, S);
11087   } else
11088     Record->addDecl(NewFD);
11089 
11090   return NewFD;
11091 }
11092 
11093 /// \brief Build a new FieldDecl and check its well-formedness.
11094 ///
11095 /// This routine builds a new FieldDecl given the fields name, type,
11096 /// record, etc. \p PrevDecl should refer to any previous declaration
11097 /// with the same name and in the same scope as the field to be
11098 /// created.
11099 ///
11100 /// \returns a new FieldDecl.
11101 ///
11102 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)11103 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11104                                 TypeSourceInfo *TInfo,
11105                                 RecordDecl *Record, SourceLocation Loc,
11106                                 bool Mutable, Expr *BitWidth,
11107                                 InClassInitStyle InitStyle,
11108                                 SourceLocation TSSL,
11109                                 AccessSpecifier AS, NamedDecl *PrevDecl,
11110                                 Declarator *D) {
11111   IdentifierInfo *II = Name.getAsIdentifierInfo();
11112   bool InvalidDecl = false;
11113   if (D) InvalidDecl = D->isInvalidType();
11114 
11115   // If we receive a broken type, recover by assuming 'int' and
11116   // marking this declaration as invalid.
11117   if (T.isNull()) {
11118     InvalidDecl = true;
11119     T = Context.IntTy;
11120   }
11121 
11122   QualType EltTy = Context.getBaseElementType(T);
11123   if (!EltTy->isDependentType()) {
11124     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11125       // Fields of incomplete type force their record to be invalid.
11126       Record->setInvalidDecl();
11127       InvalidDecl = true;
11128     } else {
11129       NamedDecl *Def;
11130       EltTy->isIncompleteType(&Def);
11131       if (Def && Def->isInvalidDecl()) {
11132         Record->setInvalidDecl();
11133         InvalidDecl = true;
11134       }
11135     }
11136   }
11137 
11138   // OpenCL v1.2 s6.9.c: bitfields are not supported.
11139   if (BitWidth && getLangOpts().OpenCL) {
11140     Diag(Loc, diag::err_opencl_bitfields);
11141     InvalidDecl = true;
11142   }
11143 
11144   // C99 6.7.2.1p8: A member of a structure or union may have any type other
11145   // than a variably modified type.
11146   if (!InvalidDecl && T->isVariablyModifiedType()) {
11147     bool SizeIsNegative;
11148     llvm::APSInt Oversized;
11149 
11150     TypeSourceInfo *FixedTInfo =
11151       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11152                                                     SizeIsNegative,
11153                                                     Oversized);
11154     if (FixedTInfo) {
11155       Diag(Loc, diag::warn_illegal_constant_array_size);
11156       TInfo = FixedTInfo;
11157       T = FixedTInfo->getType();
11158     } else {
11159       if (SizeIsNegative)
11160         Diag(Loc, diag::err_typecheck_negative_array_size);
11161       else if (Oversized.getBoolValue())
11162         Diag(Loc, diag::err_array_too_large)
11163           << Oversized.toString(10);
11164       else
11165         Diag(Loc, diag::err_typecheck_field_variable_size);
11166       InvalidDecl = true;
11167     }
11168   }
11169 
11170   // Fields can not have abstract class types
11171   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11172                                              diag::err_abstract_type_in_decl,
11173                                              AbstractFieldType))
11174     InvalidDecl = true;
11175 
11176   bool ZeroWidth = false;
11177   // If this is declared as a bit-field, check the bit-field.
11178   if (!InvalidDecl && BitWidth) {
11179     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11180                               &ZeroWidth).take();
11181     if (!BitWidth) {
11182       InvalidDecl = true;
11183       BitWidth = 0;
11184       ZeroWidth = false;
11185     }
11186   }
11187 
11188   // Check that 'mutable' is consistent with the type of the declaration.
11189   if (!InvalidDecl && Mutable) {
11190     unsigned DiagID = 0;
11191     if (T->isReferenceType())
11192       DiagID = diag::err_mutable_reference;
11193     else if (T.isConstQualified())
11194       DiagID = diag::err_mutable_const;
11195 
11196     if (DiagID) {
11197       SourceLocation ErrLoc = Loc;
11198       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11199         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11200       Diag(ErrLoc, DiagID);
11201       Mutable = false;
11202       InvalidDecl = true;
11203     }
11204   }
11205 
11206   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11207                                        BitWidth, Mutable, InitStyle);
11208   if (InvalidDecl)
11209     NewFD->setInvalidDecl();
11210 
11211   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11212     Diag(Loc, diag::err_duplicate_member) << II;
11213     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11214     NewFD->setInvalidDecl();
11215   }
11216 
11217   if (!InvalidDecl && getLangOpts().CPlusPlus) {
11218     if (Record->isUnion()) {
11219       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11220         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11221         if (RDecl->getDefinition()) {
11222           // C++ [class.union]p1: An object of a class with a non-trivial
11223           // constructor, a non-trivial copy constructor, a non-trivial
11224           // destructor, or a non-trivial copy assignment operator
11225           // cannot be a member of a union, nor can an array of such
11226           // objects.
11227           if (CheckNontrivialField(NewFD))
11228             NewFD->setInvalidDecl();
11229         }
11230       }
11231 
11232       // C++ [class.union]p1: If a union contains a member of reference type,
11233       // the program is ill-formed, except when compiling with MSVC extensions
11234       // enabled.
11235       if (EltTy->isReferenceType()) {
11236         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11237                                     diag::ext_union_member_of_reference_type :
11238                                     diag::err_union_member_of_reference_type)
11239           << NewFD->getDeclName() << EltTy;
11240         if (!getLangOpts().MicrosoftExt)
11241           NewFD->setInvalidDecl();
11242       }
11243     }
11244   }
11245 
11246   // FIXME: We need to pass in the attributes given an AST
11247   // representation, not a parser representation.
11248   if (D) {
11249     // FIXME: The current scope is almost... but not entirely... correct here.
11250     ProcessDeclAttributes(getCurScope(), NewFD, *D);
11251 
11252     if (NewFD->hasAttrs())
11253       CheckAlignasUnderalignment(NewFD);
11254   }
11255 
11256   // In auto-retain/release, infer strong retension for fields of
11257   // retainable type.
11258   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11259     NewFD->setInvalidDecl();
11260 
11261   if (T.isObjCGCWeak())
11262     Diag(Loc, diag::warn_attribute_weak_on_field);
11263 
11264   NewFD->setAccess(AS);
11265   return NewFD;
11266 }
11267 
CheckNontrivialField(FieldDecl * FD)11268 bool Sema::CheckNontrivialField(FieldDecl *FD) {
11269   assert(FD);
11270   assert(getLangOpts().CPlusPlus && "valid check only for C++");
11271 
11272   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11273     return false;
11274 
11275   QualType EltTy = Context.getBaseElementType(FD->getType());
11276   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11277     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11278     if (RDecl->getDefinition()) {
11279       // We check for copy constructors before constructors
11280       // because otherwise we'll never get complaints about
11281       // copy constructors.
11282 
11283       CXXSpecialMember member = CXXInvalid;
11284       // We're required to check for any non-trivial constructors. Since the
11285       // implicit default constructor is suppressed if there are any
11286       // user-declared constructors, we just need to check that there is a
11287       // trivial default constructor and a trivial copy constructor. (We don't
11288       // worry about move constructors here, since this is a C++98 check.)
11289       if (RDecl->hasNonTrivialCopyConstructor())
11290         member = CXXCopyConstructor;
11291       else if (!RDecl->hasTrivialDefaultConstructor())
11292         member = CXXDefaultConstructor;
11293       else if (RDecl->hasNonTrivialCopyAssignment())
11294         member = CXXCopyAssignment;
11295       else if (RDecl->hasNonTrivialDestructor())
11296         member = CXXDestructor;
11297 
11298       if (member != CXXInvalid) {
11299         if (!getLangOpts().CPlusPlus11 &&
11300             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11301           // Objective-C++ ARC: it is an error to have a non-trivial field of
11302           // a union. However, system headers in Objective-C programs
11303           // occasionally have Objective-C lifetime objects within unions,
11304           // and rather than cause the program to fail, we make those
11305           // members unavailable.
11306           SourceLocation Loc = FD->getLocation();
11307           if (getSourceManager().isInSystemHeader(Loc)) {
11308             if (!FD->hasAttr<UnavailableAttr>())
11309               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11310                                   "this system field has retaining ownership"));
11311             return false;
11312           }
11313         }
11314 
11315         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11316                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11317                diag::err_illegal_union_or_anon_struct_member)
11318           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11319         DiagnoseNontrivial(RDecl, member);
11320         return !getLangOpts().CPlusPlus11;
11321       }
11322     }
11323   }
11324 
11325   return false;
11326 }
11327 
11328 /// TranslateIvarVisibility - Translate visibility from a token ID to an
11329 ///  AST enum value.
11330 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)11331 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11332   switch (ivarVisibility) {
11333   default: llvm_unreachable("Unknown visitibility kind");
11334   case tok::objc_private: return ObjCIvarDecl::Private;
11335   case tok::objc_public: return ObjCIvarDecl::Public;
11336   case tok::objc_protected: return ObjCIvarDecl::Protected;
11337   case tok::objc_package: return ObjCIvarDecl::Package;
11338   }
11339 }
11340 
11341 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
11342 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)11343 Decl *Sema::ActOnIvar(Scope *S,
11344                                 SourceLocation DeclStart,
11345                                 Declarator &D, Expr *BitfieldWidth,
11346                                 tok::ObjCKeywordKind Visibility) {
11347 
11348   IdentifierInfo *II = D.getIdentifier();
11349   Expr *BitWidth = (Expr*)BitfieldWidth;
11350   SourceLocation Loc = DeclStart;
11351   if (II) Loc = D.getIdentifierLoc();
11352 
11353   // FIXME: Unnamed fields can be handled in various different ways, for
11354   // example, unnamed unions inject all members into the struct namespace!
11355 
11356   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11357   QualType T = TInfo->getType();
11358 
11359   if (BitWidth) {
11360     // 6.7.2.1p3, 6.7.2.1p4
11361     BitWidth =
11362         VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
11363     if (!BitWidth)
11364       D.setInvalidType();
11365   } else {
11366     // Not a bitfield.
11367 
11368     // validate II.
11369 
11370   }
11371   if (T->isReferenceType()) {
11372     Diag(Loc, diag::err_ivar_reference_type);
11373     D.setInvalidType();
11374   }
11375   // C99 6.7.2.1p8: A member of a structure or union may have any type other
11376   // than a variably modified type.
11377   else if (T->isVariablyModifiedType()) {
11378     Diag(Loc, diag::err_typecheck_ivar_variable_size);
11379     D.setInvalidType();
11380   }
11381 
11382   // Get the visibility (access control) for this ivar.
11383   ObjCIvarDecl::AccessControl ac =
11384     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11385                                         : ObjCIvarDecl::None;
11386   // Must set ivar's DeclContext to its enclosing interface.
11387   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11388   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11389     return 0;
11390   ObjCContainerDecl *EnclosingContext;
11391   if (ObjCImplementationDecl *IMPDecl =
11392       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11393     if (LangOpts.ObjCRuntime.isFragile()) {
11394     // Case of ivar declared in an implementation. Context is that of its class.
11395       EnclosingContext = IMPDecl->getClassInterface();
11396       assert(EnclosingContext && "Implementation has no class interface!");
11397     }
11398     else
11399       EnclosingContext = EnclosingDecl;
11400   } else {
11401     if (ObjCCategoryDecl *CDecl =
11402         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11403       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11404         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11405         return 0;
11406       }
11407     }
11408     EnclosingContext = EnclosingDecl;
11409   }
11410 
11411   // Construct the decl.
11412   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11413                                              DeclStart, Loc, II, T,
11414                                              TInfo, ac, (Expr *)BitfieldWidth);
11415 
11416   if (II) {
11417     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11418                                            ForRedeclaration);
11419     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11420         && !isa<TagDecl>(PrevDecl)) {
11421       Diag(Loc, diag::err_duplicate_member) << II;
11422       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11423       NewID->setInvalidDecl();
11424     }
11425   }
11426 
11427   // Process attributes attached to the ivar.
11428   ProcessDeclAttributes(S, NewID, D);
11429 
11430   if (D.isInvalidType())
11431     NewID->setInvalidDecl();
11432 
11433   // In ARC, infer 'retaining' for ivars of retainable type.
11434   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11435     NewID->setInvalidDecl();
11436 
11437   if (D.getDeclSpec().isModulePrivateSpecified())
11438     NewID->setModulePrivate();
11439 
11440   if (II) {
11441     // FIXME: When interfaces are DeclContexts, we'll need to add
11442     // these to the interface.
11443     S->AddDecl(NewID);
11444     IdResolver.AddDecl(NewID);
11445   }
11446 
11447   if (LangOpts.ObjCRuntime.isNonFragile() &&
11448       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11449     Diag(Loc, diag::warn_ivars_in_interface);
11450 
11451   return NewID;
11452 }
11453 
11454 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11455 /// class and class extensions. For every class \@interface and class
11456 /// extension \@interface, if the last ivar is a bitfield of any type,
11457 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)11458 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11459                              SmallVectorImpl<Decl *> &AllIvarDecls) {
11460   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11461     return;
11462 
11463   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11464   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11465 
11466   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11467     return;
11468   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11469   if (!ID) {
11470     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11471       if (!CD->IsClassExtension())
11472         return;
11473     }
11474     // No need to add this to end of @implementation.
11475     else
11476       return;
11477   }
11478   // All conditions are met. Add a new bitfield to the tail end of ivars.
11479   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11480   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11481 
11482   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11483                               DeclLoc, DeclLoc, 0,
11484                               Context.CharTy,
11485                               Context.getTrivialTypeSourceInfo(Context.CharTy,
11486                                                                DeclLoc),
11487                               ObjCIvarDecl::Private, BW,
11488                               true);
11489   AllIvarDecls.push_back(Ivar);
11490 }
11491 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,llvm::ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)11492 void Sema::ActOnFields(Scope* S,
11493                        SourceLocation RecLoc, Decl *EnclosingDecl,
11494                        llvm::ArrayRef<Decl *> Fields,
11495                        SourceLocation LBrac, SourceLocation RBrac,
11496                        AttributeList *Attr) {
11497   assert(EnclosingDecl && "missing record or interface decl");
11498 
11499   // If this is an Objective-C @implementation or category and we have
11500   // new fields here we should reset the layout of the interface since
11501   // it will now change.
11502   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11503     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11504     switch (DC->getKind()) {
11505     default: break;
11506     case Decl::ObjCCategory:
11507       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11508       break;
11509     case Decl::ObjCImplementation:
11510       Context.
11511         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11512       break;
11513     }
11514   }
11515 
11516   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11517 
11518   // Start counting up the number of named members; make sure to include
11519   // members of anonymous structs and unions in the total.
11520   unsigned NumNamedMembers = 0;
11521   if (Record) {
11522     for (RecordDecl::decl_iterator i = Record->decls_begin(),
11523                                    e = Record->decls_end(); i != e; i++) {
11524       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11525         if (IFD->getDeclName())
11526           ++NumNamedMembers;
11527     }
11528   }
11529 
11530   // Verify that all the fields are okay.
11531   SmallVector<FieldDecl*, 32> RecFields;
11532 
11533   bool ARCErrReported = false;
11534   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11535        i != end; ++i) {
11536     FieldDecl *FD = cast<FieldDecl>(*i);
11537 
11538     // Get the type for the field.
11539     const Type *FDTy = FD->getType().getTypePtr();
11540 
11541     if (!FD->isAnonymousStructOrUnion()) {
11542       // Remember all fields written by the user.
11543       RecFields.push_back(FD);
11544     }
11545 
11546     // If the field is already invalid for some reason, don't emit more
11547     // diagnostics about it.
11548     if (FD->isInvalidDecl()) {
11549       EnclosingDecl->setInvalidDecl();
11550       continue;
11551     }
11552 
11553     // C99 6.7.2.1p2:
11554     //   A structure or union shall not contain a member with
11555     //   incomplete or function type (hence, a structure shall not
11556     //   contain an instance of itself, but may contain a pointer to
11557     //   an instance of itself), except that the last member of a
11558     //   structure with more than one named member may have incomplete
11559     //   array type; such a structure (and any union containing,
11560     //   possibly recursively, a member that is such a structure)
11561     //   shall not be a member of a structure or an element of an
11562     //   array.
11563     if (FDTy->isFunctionType()) {
11564       // Field declared as a function.
11565       Diag(FD->getLocation(), diag::err_field_declared_as_function)
11566         << FD->getDeclName();
11567       FD->setInvalidDecl();
11568       EnclosingDecl->setInvalidDecl();
11569       continue;
11570     } else if (FDTy->isIncompleteArrayType() && Record &&
11571                ((i + 1 == Fields.end() && !Record->isUnion()) ||
11572                 ((getLangOpts().MicrosoftExt ||
11573                   getLangOpts().CPlusPlus) &&
11574                  (i + 1 == Fields.end() || Record->isUnion())))) {
11575       // Flexible array member.
11576       // Microsoft and g++ is more permissive regarding flexible array.
11577       // It will accept flexible array in union and also
11578       // as the sole element of a struct/class.
11579       if (getLangOpts().MicrosoftExt) {
11580         if (Record->isUnion())
11581           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11582             << FD->getDeclName();
11583         else if (Fields.size() == 1)
11584           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11585             << FD->getDeclName() << Record->getTagKind();
11586       } else if (getLangOpts().CPlusPlus) {
11587         if (Record->isUnion())
11588           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11589             << FD->getDeclName();
11590         else if (Fields.size() == 1)
11591           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11592             << FD->getDeclName() << Record->getTagKind();
11593       } else if (!getLangOpts().C99) {
11594       if (Record->isUnion())
11595         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11596           << FD->getDeclName();
11597       else
11598         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11599           << FD->getDeclName() << Record->getTagKind();
11600       } else if (NumNamedMembers < 1) {
11601         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11602           << FD->getDeclName();
11603         FD->setInvalidDecl();
11604         EnclosingDecl->setInvalidDecl();
11605         continue;
11606       }
11607       if (!FD->getType()->isDependentType() &&
11608           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11609         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11610           << FD->getDeclName() << FD->getType();
11611         FD->setInvalidDecl();
11612         EnclosingDecl->setInvalidDecl();
11613         continue;
11614       }
11615       // Okay, we have a legal flexible array member at the end of the struct.
11616       if (Record)
11617         Record->setHasFlexibleArrayMember(true);
11618     } else if (!FDTy->isDependentType() &&
11619                RequireCompleteType(FD->getLocation(), FD->getType(),
11620                                    diag::err_field_incomplete)) {
11621       // Incomplete type
11622       FD->setInvalidDecl();
11623       EnclosingDecl->setInvalidDecl();
11624       continue;
11625     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11626       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11627         // If this is a member of a union, then entire union becomes "flexible".
11628         if (Record && Record->isUnion()) {
11629           Record->setHasFlexibleArrayMember(true);
11630         } else {
11631           // If this is a struct/class and this is not the last element, reject
11632           // it.  Note that GCC supports variable sized arrays in the middle of
11633           // structures.
11634           if (i + 1 != Fields.end())
11635             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11636               << FD->getDeclName() << FD->getType();
11637           else {
11638             // We support flexible arrays at the end of structs in
11639             // other structs as an extension.
11640             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11641               << FD->getDeclName();
11642             if (Record)
11643               Record->setHasFlexibleArrayMember(true);
11644           }
11645         }
11646       }
11647       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11648           RequireNonAbstractType(FD->getLocation(), FD->getType(),
11649                                  diag::err_abstract_type_in_decl,
11650                                  AbstractIvarType)) {
11651         // Ivars can not have abstract class types
11652         FD->setInvalidDecl();
11653       }
11654       if (Record && FDTTy->getDecl()->hasObjectMember())
11655         Record->setHasObjectMember(true);
11656       if (Record && FDTTy->getDecl()->hasVolatileMember())
11657         Record->setHasVolatileMember(true);
11658     } else if (FDTy->isObjCObjectType()) {
11659       /// A field cannot be an Objective-c object
11660       Diag(FD->getLocation(), diag::err_statically_allocated_object)
11661         << FixItHint::CreateInsertion(FD->getLocation(), "*");
11662       QualType T = Context.getObjCObjectPointerType(FD->getType());
11663       FD->setType(T);
11664     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11665                (!getLangOpts().CPlusPlus || Record->isUnion())) {
11666       // It's an error in ARC if a field has lifetime.
11667       // We don't want to report this in a system header, though,
11668       // so we just make the field unavailable.
11669       // FIXME: that's really not sufficient; we need to make the type
11670       // itself invalid to, say, initialize or copy.
11671       QualType T = FD->getType();
11672       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11673       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11674         SourceLocation loc = FD->getLocation();
11675         if (getSourceManager().isInSystemHeader(loc)) {
11676           if (!FD->hasAttr<UnavailableAttr>()) {
11677             FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11678                               "this system field has retaining ownership"));
11679           }
11680         } else {
11681           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11682             << T->isBlockPointerType() << Record->getTagKind();
11683         }
11684         ARCErrReported = true;
11685       }
11686     } else if (getLangOpts().ObjC1 &&
11687                getLangOpts().getGC() != LangOptions::NonGC &&
11688                Record && !Record->hasObjectMember()) {
11689       if (FD->getType()->isObjCObjectPointerType() ||
11690           FD->getType().isObjCGCStrong())
11691         Record->setHasObjectMember(true);
11692       else if (Context.getAsArrayType(FD->getType())) {
11693         QualType BaseType = Context.getBaseElementType(FD->getType());
11694         if (BaseType->isRecordType() &&
11695             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11696           Record->setHasObjectMember(true);
11697         else if (BaseType->isObjCObjectPointerType() ||
11698                  BaseType.isObjCGCStrong())
11699                Record->setHasObjectMember(true);
11700       }
11701     }
11702     if (Record && FD->getType().isVolatileQualified())
11703       Record->setHasVolatileMember(true);
11704     // Keep track of the number of named members.
11705     if (FD->getIdentifier())
11706       ++NumNamedMembers;
11707   }
11708 
11709   // Okay, we successfully defined 'Record'.
11710   if (Record) {
11711     bool Completed = false;
11712     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11713       if (!CXXRecord->isInvalidDecl()) {
11714         // Set access bits correctly on the directly-declared conversions.
11715         for (CXXRecordDecl::conversion_iterator
11716                I = CXXRecord->conversion_begin(),
11717                E = CXXRecord->conversion_end(); I != E; ++I)
11718           I.setAccess((*I)->getAccess());
11719 
11720         if (!CXXRecord->isDependentType()) {
11721           if (CXXRecord->hasUserDeclaredDestructor()) {
11722             // Adjust user-defined destructor exception spec.
11723             if (getLangOpts().CPlusPlus11)
11724               AdjustDestructorExceptionSpec(CXXRecord,
11725                                             CXXRecord->getDestructor());
11726 
11727             // The Microsoft ABI requires that we perform the destructor body
11728             // checks (i.e. operator delete() lookup) at every declaration, as
11729             // any translation unit may need to emit a deleting destructor.
11730             if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11731               CheckDestructor(CXXRecord->getDestructor());
11732           }
11733 
11734           // Add any implicitly-declared members to this class.
11735           AddImplicitlyDeclaredMembersToClass(CXXRecord);
11736 
11737           // If we have virtual base classes, we may end up finding multiple
11738           // final overriders for a given virtual function. Check for this
11739           // problem now.
11740           if (CXXRecord->getNumVBases()) {
11741             CXXFinalOverriderMap FinalOverriders;
11742             CXXRecord->getFinalOverriders(FinalOverriders);
11743 
11744             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11745                                              MEnd = FinalOverriders.end();
11746                  M != MEnd; ++M) {
11747               for (OverridingMethods::iterator SO = M->second.begin(),
11748                                             SOEnd = M->second.end();
11749                    SO != SOEnd; ++SO) {
11750                 assert(SO->second.size() > 0 &&
11751                        "Virtual function without overridding functions?");
11752                 if (SO->second.size() == 1)
11753                   continue;
11754 
11755                 // C++ [class.virtual]p2:
11756                 //   In a derived class, if a virtual member function of a base
11757                 //   class subobject has more than one final overrider the
11758                 //   program is ill-formed.
11759                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11760                   << (const NamedDecl *)M->first << Record;
11761                 Diag(M->first->getLocation(),
11762                      diag::note_overridden_virtual_function);
11763                 for (OverridingMethods::overriding_iterator
11764                           OM = SO->second.begin(),
11765                        OMEnd = SO->second.end();
11766                      OM != OMEnd; ++OM)
11767                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
11768                     << (const NamedDecl *)M->first << OM->Method->getParent();
11769 
11770                 Record->setInvalidDecl();
11771               }
11772             }
11773             CXXRecord->completeDefinition(&FinalOverriders);
11774             Completed = true;
11775           }
11776         }
11777       }
11778     }
11779 
11780     if (!Completed)
11781       Record->completeDefinition();
11782 
11783     if (Record->hasAttrs())
11784       CheckAlignasUnderalignment(Record);
11785 
11786     // Check if the structure/union declaration is a language extension.
11787     if (!getLangOpts().CPlusPlus) {
11788       bool ZeroSize = true;
11789       bool IsEmpty = true;
11790       unsigned NonBitFields = 0;
11791       for (RecordDecl::field_iterator I = Record->field_begin(),
11792                                       E = Record->field_end();
11793            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11794         IsEmpty = false;
11795         if (I->isUnnamedBitfield()) {
11796           if (I->getBitWidthValue(Context) > 0)
11797             ZeroSize = false;
11798         } else {
11799           ++NonBitFields;
11800           QualType FieldType = I->getType();
11801           if (FieldType->isIncompleteType() ||
11802               !Context.getTypeSizeInChars(FieldType).isZero())
11803             ZeroSize = false;
11804         }
11805       }
11806 
11807       // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11808       // C++.
11809       if (ZeroSize)
11810         Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11811             << Record->isUnion() << (NonBitFields > 1);
11812 
11813       // Structs without named members are extension in C (C99 6.7.2.1p7), but
11814       // are accepted by GCC.
11815       if (NonBitFields == 0) {
11816         if (IsEmpty)
11817           Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11818         else
11819           Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11820       }
11821     }
11822   } else {
11823     ObjCIvarDecl **ClsFields =
11824       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11825     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11826       ID->setEndOfDefinitionLoc(RBrac);
11827       // Add ivar's to class's DeclContext.
11828       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11829         ClsFields[i]->setLexicalDeclContext(ID);
11830         ID->addDecl(ClsFields[i]);
11831       }
11832       // Must enforce the rule that ivars in the base classes may not be
11833       // duplicates.
11834       if (ID->getSuperClass())
11835         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11836     } else if (ObjCImplementationDecl *IMPDecl =
11837                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11838       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11839       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11840         // Ivar declared in @implementation never belongs to the implementation.
11841         // Only it is in implementation's lexical context.
11842         ClsFields[I]->setLexicalDeclContext(IMPDecl);
11843       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11844       IMPDecl->setIvarLBraceLoc(LBrac);
11845       IMPDecl->setIvarRBraceLoc(RBrac);
11846     } else if (ObjCCategoryDecl *CDecl =
11847                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11848       // case of ivars in class extension; all other cases have been
11849       // reported as errors elsewhere.
11850       // FIXME. Class extension does not have a LocEnd field.
11851       // CDecl->setLocEnd(RBrac);
11852       // Add ivar's to class extension's DeclContext.
11853       // Diagnose redeclaration of private ivars.
11854       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11855       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11856         if (IDecl) {
11857           if (const ObjCIvarDecl *ClsIvar =
11858               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11859             Diag(ClsFields[i]->getLocation(),
11860                  diag::err_duplicate_ivar_declaration);
11861             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11862             continue;
11863           }
11864           for (ObjCInterfaceDecl::known_extensions_iterator
11865                  Ext = IDecl->known_extensions_begin(),
11866                  ExtEnd = IDecl->known_extensions_end();
11867                Ext != ExtEnd; ++Ext) {
11868             if (const ObjCIvarDecl *ClsExtIvar
11869                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11870               Diag(ClsFields[i]->getLocation(),
11871                    diag::err_duplicate_ivar_declaration);
11872               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11873               continue;
11874             }
11875           }
11876         }
11877         ClsFields[i]->setLexicalDeclContext(CDecl);
11878         CDecl->addDecl(ClsFields[i]);
11879       }
11880       CDecl->setIvarLBraceLoc(LBrac);
11881       CDecl->setIvarRBraceLoc(RBrac);
11882     }
11883   }
11884 
11885   if (Attr)
11886     ProcessDeclAttributeList(S, Record, Attr);
11887 }
11888 
11889 /// \brief Determine whether the given integral value is representable within
11890 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)11891 static bool isRepresentableIntegerValue(ASTContext &Context,
11892                                         llvm::APSInt &Value,
11893                                         QualType T) {
11894   assert(T->isIntegralType(Context) && "Integral type required!");
11895   unsigned BitWidth = Context.getIntWidth(T);
11896 
11897   if (Value.isUnsigned() || Value.isNonNegative()) {
11898     if (T->isSignedIntegerOrEnumerationType())
11899       --BitWidth;
11900     return Value.getActiveBits() <= BitWidth;
11901   }
11902   return Value.getMinSignedBits() <= BitWidth;
11903 }
11904 
11905 // \brief Given an integral type, return the next larger integral type
11906 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)11907 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11908   // FIXME: Int128/UInt128 support, which also needs to be introduced into
11909   // enum checking below.
11910   assert(T->isIntegralType(Context) && "Integral type required!");
11911   const unsigned NumTypes = 4;
11912   QualType SignedIntegralTypes[NumTypes] = {
11913     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11914   };
11915   QualType UnsignedIntegralTypes[NumTypes] = {
11916     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11917     Context.UnsignedLongLongTy
11918   };
11919 
11920   unsigned BitWidth = Context.getTypeSize(T);
11921   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11922                                                         : UnsignedIntegralTypes;
11923   for (unsigned I = 0; I != NumTypes; ++I)
11924     if (Context.getTypeSize(Types[I]) > BitWidth)
11925       return Types[I];
11926 
11927   return QualType();
11928 }
11929 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)11930 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11931                                           EnumConstantDecl *LastEnumConst,
11932                                           SourceLocation IdLoc,
11933                                           IdentifierInfo *Id,
11934                                           Expr *Val) {
11935   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11936   llvm::APSInt EnumVal(IntWidth);
11937   QualType EltTy;
11938 
11939   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11940     Val = 0;
11941 
11942   if (Val)
11943     Val = DefaultLvalueConversion(Val).take();
11944 
11945   if (Val) {
11946     if (Enum->isDependentType() || Val->isTypeDependent())
11947       EltTy = Context.DependentTy;
11948     else {
11949       SourceLocation ExpLoc;
11950       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11951           !getLangOpts().MicrosoftMode) {
11952         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11953         // constant-expression in the enumerator-definition shall be a converted
11954         // constant expression of the underlying type.
11955         EltTy = Enum->getIntegerType();
11956         ExprResult Converted =
11957           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11958                                            CCEK_Enumerator);
11959         if (Converted.isInvalid())
11960           Val = 0;
11961         else
11962           Val = Converted.take();
11963       } else if (!Val->isValueDependent() &&
11964                  !(Val = VerifyIntegerConstantExpression(Val,
11965                                                          &EnumVal).take())) {
11966         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11967       } else {
11968         if (Enum->isFixed()) {
11969           EltTy = Enum->getIntegerType();
11970 
11971           // In Obj-C and Microsoft mode, require the enumeration value to be
11972           // representable in the underlying type of the enumeration. In C++11,
11973           // we perform a non-narrowing conversion as part of converted constant
11974           // expression checking.
11975           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11976             if (getLangOpts().MicrosoftMode) {
11977               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11978               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11979             } else
11980               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11981           } else
11982             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11983         } else if (getLangOpts().CPlusPlus) {
11984           // C++11 [dcl.enum]p5:
11985           //   If the underlying type is not fixed, the type of each enumerator
11986           //   is the type of its initializing value:
11987           //     - If an initializer is specified for an enumerator, the
11988           //       initializing value has the same type as the expression.
11989           EltTy = Val->getType();
11990         } else {
11991           // C99 6.7.2.2p2:
11992           //   The expression that defines the value of an enumeration constant
11993           //   shall be an integer constant expression that has a value
11994           //   representable as an int.
11995 
11996           // Complain if the value is not representable in an int.
11997           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11998             Diag(IdLoc, diag::ext_enum_value_not_int)
11999               << EnumVal.toString(10) << Val->getSourceRange()
12000               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12001           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12002             // Force the type of the expression to 'int'.
12003             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12004           }
12005           EltTy = Val->getType();
12006         }
12007       }
12008     }
12009   }
12010 
12011   if (!Val) {
12012     if (Enum->isDependentType())
12013       EltTy = Context.DependentTy;
12014     else if (!LastEnumConst) {
12015       // C++0x [dcl.enum]p5:
12016       //   If the underlying type is not fixed, the type of each enumerator
12017       //   is the type of its initializing value:
12018       //     - If no initializer is specified for the first enumerator, the
12019       //       initializing value has an unspecified integral type.
12020       //
12021       // GCC uses 'int' for its unspecified integral type, as does
12022       // C99 6.7.2.2p3.
12023       if (Enum->isFixed()) {
12024         EltTy = Enum->getIntegerType();
12025       }
12026       else {
12027         EltTy = Context.IntTy;
12028       }
12029     } else {
12030       // Assign the last value + 1.
12031       EnumVal = LastEnumConst->getInitVal();
12032       ++EnumVal;
12033       EltTy = LastEnumConst->getType();
12034 
12035       // Check for overflow on increment.
12036       if (EnumVal < LastEnumConst->getInitVal()) {
12037         // C++0x [dcl.enum]p5:
12038         //   If the underlying type is not fixed, the type of each enumerator
12039         //   is the type of its initializing value:
12040         //
12041         //     - Otherwise the type of the initializing value is the same as
12042         //       the type of the initializing value of the preceding enumerator
12043         //       unless the incremented value is not representable in that type,
12044         //       in which case the type is an unspecified integral type
12045         //       sufficient to contain the incremented value. If no such type
12046         //       exists, the program is ill-formed.
12047         QualType T = getNextLargerIntegralType(Context, EltTy);
12048         if (T.isNull() || Enum->isFixed()) {
12049           // There is no integral type larger enough to represent this
12050           // value. Complain, then allow the value to wrap around.
12051           EnumVal = LastEnumConst->getInitVal();
12052           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12053           ++EnumVal;
12054           if (Enum->isFixed())
12055             // When the underlying type is fixed, this is ill-formed.
12056             Diag(IdLoc, diag::err_enumerator_wrapped)
12057               << EnumVal.toString(10)
12058               << EltTy;
12059           else
12060             Diag(IdLoc, diag::warn_enumerator_too_large)
12061               << EnumVal.toString(10);
12062         } else {
12063           EltTy = T;
12064         }
12065 
12066         // Retrieve the last enumerator's value, extent that type to the
12067         // type that is supposed to be large enough to represent the incremented
12068         // value, then increment.
12069         EnumVal = LastEnumConst->getInitVal();
12070         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12071         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12072         ++EnumVal;
12073 
12074         // If we're not in C++, diagnose the overflow of enumerator values,
12075         // which in C99 means that the enumerator value is not representable in
12076         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12077         // permits enumerator values that are representable in some larger
12078         // integral type.
12079         if (!getLangOpts().CPlusPlus && !T.isNull())
12080           Diag(IdLoc, diag::warn_enum_value_overflow);
12081       } else if (!getLangOpts().CPlusPlus &&
12082                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12083         // Enforce C99 6.7.2.2p2 even when we compute the next value.
12084         Diag(IdLoc, diag::ext_enum_value_not_int)
12085           << EnumVal.toString(10) << 1;
12086       }
12087     }
12088   }
12089 
12090   if (!EltTy->isDependentType()) {
12091     // Make the enumerator value match the signedness and size of the
12092     // enumerator's type.
12093     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12094     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12095   }
12096 
12097   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12098                                   Val, EnumVal);
12099 }
12100 
12101 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)12102 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12103                               SourceLocation IdLoc, IdentifierInfo *Id,
12104                               AttributeList *Attr,
12105                               SourceLocation EqualLoc, Expr *Val) {
12106   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12107   EnumConstantDecl *LastEnumConst =
12108     cast_or_null<EnumConstantDecl>(lastEnumConst);
12109 
12110   // The scope passed in may not be a decl scope.  Zip up the scope tree until
12111   // we find one that is.
12112   S = getNonFieldDeclScope(S);
12113 
12114   // Verify that there isn't already something declared with this name in this
12115   // scope.
12116   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12117                                          ForRedeclaration);
12118   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12119     // Maybe we will complain about the shadowed template parameter.
12120     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12121     // Just pretend that we didn't see the previous declaration.
12122     PrevDecl = 0;
12123   }
12124 
12125   if (PrevDecl) {
12126     // When in C++, we may get a TagDecl with the same name; in this case the
12127     // enum constant will 'hide' the tag.
12128     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12129            "Received TagDecl when not in C++!");
12130     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12131       if (isa<EnumConstantDecl>(PrevDecl))
12132         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12133       else
12134         Diag(IdLoc, diag::err_redefinition) << Id;
12135       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12136       return 0;
12137     }
12138   }
12139 
12140   // C++ [class.mem]p15:
12141   // If T is the name of a class, then each of the following shall have a name
12142   // different from T:
12143   // - every enumerator of every member of class T that is an unscoped
12144   // enumerated type
12145   if (CXXRecordDecl *Record
12146                       = dyn_cast<CXXRecordDecl>(
12147                              TheEnumDecl->getDeclContext()->getRedeclContext()))
12148     if (!TheEnumDecl->isScoped() &&
12149         Record->getIdentifier() && Record->getIdentifier() == Id)
12150       Diag(IdLoc, diag::err_member_name_of_class) << Id;
12151 
12152   EnumConstantDecl *New =
12153     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12154 
12155   if (New) {
12156     // Process attributes.
12157     if (Attr) ProcessDeclAttributeList(S, New, Attr);
12158 
12159     // Register this decl in the current scope stack.
12160     New->setAccess(TheEnumDecl->getAccess());
12161     PushOnScopeChains(New, S);
12162   }
12163 
12164   ActOnDocumentableDecl(New);
12165 
12166   return New;
12167 }
12168 
12169 // Returns true when the enum initial expression does not trigger the
12170 // duplicate enum warning.  A few common cases are exempted as follows:
12171 // Element2 = Element1
12172 // Element2 = Element1 + 1
12173 // Element2 = Element1 - 1
12174 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)12175 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12176   Expr *InitExpr = ECD->getInitExpr();
12177   if (!InitExpr)
12178     return true;
12179   InitExpr = InitExpr->IgnoreImpCasts();
12180 
12181   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12182     if (!BO->isAdditiveOp())
12183       return true;
12184     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12185     if (!IL)
12186       return true;
12187     if (IL->getValue() != 1)
12188       return true;
12189 
12190     InitExpr = BO->getLHS();
12191   }
12192 
12193   // This checks if the elements are from the same enum.
12194   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12195   if (!DRE)
12196     return true;
12197 
12198   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12199   if (!EnumConstant)
12200     return true;
12201 
12202   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12203       Enum)
12204     return true;
12205 
12206   return false;
12207 }
12208 
12209 struct DupKey {
12210   int64_t val;
12211   bool isTombstoneOrEmptyKey;
DupKeyDupKey12212   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12213     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12214 };
12215 
GetDupKey(const llvm::APSInt & Val)12216 static DupKey GetDupKey(const llvm::APSInt& Val) {
12217   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12218                 false);
12219 }
12220 
12221 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey12222   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey12223   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey12224   static unsigned getHashValue(const DupKey Key) {
12225     return (unsigned)(Key.val * 37);
12226   }
isEqualDenseMapInfoDupKey12227   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12228     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12229            LHS.val == RHS.val;
12230   }
12231 };
12232 
12233 // Emits a warning when an element is implicitly set a value that
12234 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)12235 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12236                                         EnumDecl *Enum,
12237                                         QualType EnumType) {
12238   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12239                                  Enum->getLocation()) ==
12240       DiagnosticsEngine::Ignored)
12241     return;
12242   // Avoid anonymous enums
12243   if (!Enum->getIdentifier())
12244     return;
12245 
12246   // Only check for small enums.
12247   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12248     return;
12249 
12250   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12251   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12252 
12253   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12254   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12255           ValueToVectorMap;
12256 
12257   DuplicatesVector DupVector;
12258   ValueToVectorMap EnumMap;
12259 
12260   // Populate the EnumMap with all values represented by enum constants without
12261   // an initialier.
12262   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12263     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12264 
12265     // Null EnumConstantDecl means a previous diagnostic has been emitted for
12266     // this constant.  Skip this enum since it may be ill-formed.
12267     if (!ECD) {
12268       return;
12269     }
12270 
12271     if (ECD->getInitExpr())
12272       continue;
12273 
12274     DupKey Key = GetDupKey(ECD->getInitVal());
12275     DeclOrVector &Entry = EnumMap[Key];
12276 
12277     // First time encountering this value.
12278     if (Entry.isNull())
12279       Entry = ECD;
12280   }
12281 
12282   // Create vectors for any values that has duplicates.
12283   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12284     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12285     if (!ValidDuplicateEnum(ECD, Enum))
12286       continue;
12287 
12288     DupKey Key = GetDupKey(ECD->getInitVal());
12289 
12290     DeclOrVector& Entry = EnumMap[Key];
12291     if (Entry.isNull())
12292       continue;
12293 
12294     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12295       // Ensure constants are different.
12296       if (D == ECD)
12297         continue;
12298 
12299       // Create new vector and push values onto it.
12300       ECDVector *Vec = new ECDVector();
12301       Vec->push_back(D);
12302       Vec->push_back(ECD);
12303 
12304       // Update entry to point to the duplicates vector.
12305       Entry = Vec;
12306 
12307       // Store the vector somewhere we can consult later for quick emission of
12308       // diagnostics.
12309       DupVector.push_back(Vec);
12310       continue;
12311     }
12312 
12313     ECDVector *Vec = Entry.get<ECDVector*>();
12314     // Make sure constants are not added more than once.
12315     if (*Vec->begin() == ECD)
12316       continue;
12317 
12318     Vec->push_back(ECD);
12319   }
12320 
12321   // Emit diagnostics.
12322   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12323                                   DupVectorEnd = DupVector.end();
12324        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12325     ECDVector *Vec = *DupVectorIter;
12326     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12327 
12328     // Emit warning for one enum constant.
12329     ECDVector::iterator I = Vec->begin();
12330     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12331       << (*I)->getName() << (*I)->getInitVal().toString(10)
12332       << (*I)->getSourceRange();
12333     ++I;
12334 
12335     // Emit one note for each of the remaining enum constants with
12336     // the same value.
12337     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12338       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12339         << (*I)->getName() << (*I)->getInitVal().toString(10)
12340         << (*I)->getSourceRange();
12341     delete Vec;
12342   }
12343 }
12344 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)12345 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12346                          SourceLocation RBraceLoc, Decl *EnumDeclX,
12347                          ArrayRef<Decl *> Elements,
12348                          Scope *S, AttributeList *Attr) {
12349   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12350   QualType EnumType = Context.getTypeDeclType(Enum);
12351 
12352   if (Attr)
12353     ProcessDeclAttributeList(S, Enum, Attr);
12354 
12355   if (Enum->isDependentType()) {
12356     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12357       EnumConstantDecl *ECD =
12358         cast_or_null<EnumConstantDecl>(Elements[i]);
12359       if (!ECD) continue;
12360 
12361       ECD->setType(EnumType);
12362     }
12363 
12364     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12365     return;
12366   }
12367 
12368   // TODO: If the result value doesn't fit in an int, it must be a long or long
12369   // long value.  ISO C does not support this, but GCC does as an extension,
12370   // emit a warning.
12371   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12372   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12373   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12374 
12375   // Verify that all the values are okay, compute the size of the values, and
12376   // reverse the list.
12377   unsigned NumNegativeBits = 0;
12378   unsigned NumPositiveBits = 0;
12379 
12380   // Keep track of whether all elements have type int.
12381   bool AllElementsInt = true;
12382 
12383   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12384     EnumConstantDecl *ECD =
12385       cast_or_null<EnumConstantDecl>(Elements[i]);
12386     if (!ECD) continue;  // Already issued a diagnostic.
12387 
12388     const llvm::APSInt &InitVal = ECD->getInitVal();
12389 
12390     // Keep track of the size of positive and negative values.
12391     if (InitVal.isUnsigned() || InitVal.isNonNegative())
12392       NumPositiveBits = std::max(NumPositiveBits,
12393                                  (unsigned)InitVal.getActiveBits());
12394     else
12395       NumNegativeBits = std::max(NumNegativeBits,
12396                                  (unsigned)InitVal.getMinSignedBits());
12397 
12398     // Keep track of whether every enum element has type int (very commmon).
12399     if (AllElementsInt)
12400       AllElementsInt = ECD->getType() == Context.IntTy;
12401   }
12402 
12403   // Figure out the type that should be used for this enum.
12404   QualType BestType;
12405   unsigned BestWidth;
12406 
12407   // C++0x N3000 [conv.prom]p3:
12408   //   An rvalue of an unscoped enumeration type whose underlying
12409   //   type is not fixed can be converted to an rvalue of the first
12410   //   of the following types that can represent all the values of
12411   //   the enumeration: int, unsigned int, long int, unsigned long
12412   //   int, long long int, or unsigned long long int.
12413   // C99 6.4.4.3p2:
12414   //   An identifier declared as an enumeration constant has type int.
12415   // The C99 rule is modified by a gcc extension
12416   QualType BestPromotionType;
12417 
12418   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12419   // -fshort-enums is the equivalent to specifying the packed attribute on all
12420   // enum definitions.
12421   if (LangOpts.ShortEnums)
12422     Packed = true;
12423 
12424   if (Enum->isFixed()) {
12425     BestType = Enum->getIntegerType();
12426     if (BestType->isPromotableIntegerType())
12427       BestPromotionType = Context.getPromotedIntegerType(BestType);
12428     else
12429       BestPromotionType = BestType;
12430     // We don't need to set BestWidth, because BestType is going to be the type
12431     // of the enumerators, but we do anyway because otherwise some compilers
12432     // warn that it might be used uninitialized.
12433     BestWidth = CharWidth;
12434   }
12435   else if (NumNegativeBits) {
12436     // If there is a negative value, figure out the smallest integer type (of
12437     // int/long/longlong) that fits.
12438     // If it's packed, check also if it fits a char or a short.
12439     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12440       BestType = Context.SignedCharTy;
12441       BestWidth = CharWidth;
12442     } else if (Packed && NumNegativeBits <= ShortWidth &&
12443                NumPositiveBits < ShortWidth) {
12444       BestType = Context.ShortTy;
12445       BestWidth = ShortWidth;
12446     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12447       BestType = Context.IntTy;
12448       BestWidth = IntWidth;
12449     } else {
12450       BestWidth = Context.getTargetInfo().getLongWidth();
12451 
12452       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12453         BestType = Context.LongTy;
12454       } else {
12455         BestWidth = Context.getTargetInfo().getLongLongWidth();
12456 
12457         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12458           Diag(Enum->getLocation(), diag::warn_enum_too_large);
12459         BestType = Context.LongLongTy;
12460       }
12461     }
12462     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12463   } else {
12464     // If there is no negative value, figure out the smallest type that fits
12465     // all of the enumerator values.
12466     // If it's packed, check also if it fits a char or a short.
12467     if (Packed && NumPositiveBits <= CharWidth) {
12468       BestType = Context.UnsignedCharTy;
12469       BestPromotionType = Context.IntTy;
12470       BestWidth = CharWidth;
12471     } else if (Packed && NumPositiveBits <= ShortWidth) {
12472       BestType = Context.UnsignedShortTy;
12473       BestPromotionType = Context.IntTy;
12474       BestWidth = ShortWidth;
12475     } else if (NumPositiveBits <= IntWidth) {
12476       BestType = Context.UnsignedIntTy;
12477       BestWidth = IntWidth;
12478       BestPromotionType
12479         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12480                            ? Context.UnsignedIntTy : Context.IntTy;
12481     } else if (NumPositiveBits <=
12482                (BestWidth = Context.getTargetInfo().getLongWidth())) {
12483       BestType = Context.UnsignedLongTy;
12484       BestPromotionType
12485         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12486                            ? Context.UnsignedLongTy : Context.LongTy;
12487     } else {
12488       BestWidth = Context.getTargetInfo().getLongLongWidth();
12489       assert(NumPositiveBits <= BestWidth &&
12490              "How could an initializer get larger than ULL?");
12491       BestType = Context.UnsignedLongLongTy;
12492       BestPromotionType
12493         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12494                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
12495     }
12496   }
12497 
12498   // Loop over all of the enumerator constants, changing their types to match
12499   // the type of the enum if needed.
12500   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12501     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12502     if (!ECD) continue;  // Already issued a diagnostic.
12503 
12504     // Standard C says the enumerators have int type, but we allow, as an
12505     // extension, the enumerators to be larger than int size.  If each
12506     // enumerator value fits in an int, type it as an int, otherwise type it the
12507     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12508     // that X has type 'int', not 'unsigned'.
12509 
12510     // Determine whether the value fits into an int.
12511     llvm::APSInt InitVal = ECD->getInitVal();
12512 
12513     // If it fits into an integer type, force it.  Otherwise force it to match
12514     // the enum decl type.
12515     QualType NewTy;
12516     unsigned NewWidth;
12517     bool NewSign;
12518     if (!getLangOpts().CPlusPlus &&
12519         !Enum->isFixed() &&
12520         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12521       NewTy = Context.IntTy;
12522       NewWidth = IntWidth;
12523       NewSign = true;
12524     } else if (ECD->getType() == BestType) {
12525       // Already the right type!
12526       if (getLangOpts().CPlusPlus)
12527         // C++ [dcl.enum]p4: Following the closing brace of an
12528         // enum-specifier, each enumerator has the type of its
12529         // enumeration.
12530         ECD->setType(EnumType);
12531       continue;
12532     } else {
12533       NewTy = BestType;
12534       NewWidth = BestWidth;
12535       NewSign = BestType->isSignedIntegerOrEnumerationType();
12536     }
12537 
12538     // Adjust the APSInt value.
12539     InitVal = InitVal.extOrTrunc(NewWidth);
12540     InitVal.setIsSigned(NewSign);
12541     ECD->setInitVal(InitVal);
12542 
12543     // Adjust the Expr initializer and type.
12544     if (ECD->getInitExpr() &&
12545         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12546       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12547                                                 CK_IntegralCast,
12548                                                 ECD->getInitExpr(),
12549                                                 /*base paths*/ 0,
12550                                                 VK_RValue));
12551     if (getLangOpts().CPlusPlus)
12552       // C++ [dcl.enum]p4: Following the closing brace of an
12553       // enum-specifier, each enumerator has the type of its
12554       // enumeration.
12555       ECD->setType(EnumType);
12556     else
12557       ECD->setType(NewTy);
12558   }
12559 
12560   Enum->completeDefinition(BestType, BestPromotionType,
12561                            NumPositiveBits, NumNegativeBits);
12562 
12563   // If we're declaring a function, ensure this decl isn't forgotten about -
12564   // it needs to go into the function scope.
12565   if (InFunctionDeclarator)
12566     DeclsInPrototypeScope.push_back(Enum);
12567 
12568   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12569 
12570   // Now that the enum type is defined, ensure it's not been underaligned.
12571   if (Enum->hasAttrs())
12572     CheckAlignasUnderalignment(Enum);
12573 }
12574 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)12575 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12576                                   SourceLocation StartLoc,
12577                                   SourceLocation EndLoc) {
12578   StringLiteral *AsmString = cast<StringLiteral>(expr);
12579 
12580   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12581                                                    AsmString, StartLoc,
12582                                                    EndLoc);
12583   CurContext->addDecl(New);
12584   return New;
12585 }
12586 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)12587 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12588                                    SourceLocation ImportLoc,
12589                                    ModuleIdPath Path) {
12590   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12591                                                 Module::AllVisible,
12592                                                 /*IsIncludeDirective=*/false);
12593   if (!Mod)
12594     return true;
12595 
12596   SmallVector<SourceLocation, 2> IdentifierLocs;
12597   Module *ModCheck = Mod;
12598   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12599     // If we've run out of module parents, just drop the remaining identifiers.
12600     // We need the length to be consistent.
12601     if (!ModCheck)
12602       break;
12603     ModCheck = ModCheck->Parent;
12604 
12605     IdentifierLocs.push_back(Path[I].second);
12606   }
12607 
12608   ImportDecl *Import = ImportDecl::Create(Context,
12609                                           Context.getTranslationUnitDecl(),
12610                                           AtLoc.isValid()? AtLoc : ImportLoc,
12611                                           Mod, IdentifierLocs);
12612   Context.getTranslationUnitDecl()->addDecl(Import);
12613   return Import;
12614 }
12615 
createImplicitModuleImport(SourceLocation Loc,Module * Mod)12616 void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12617   // Create the implicit import declaration.
12618   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12619   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12620                                                    Loc, Mod, Loc);
12621   TU->addDecl(ImportD);
12622   Consumer.HandleImplicitImportDecl(ImportD);
12623 
12624   // Make the module visible.
12625   PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12626                                          /*Complain=*/false);
12627 }
12628 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)12629 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12630                                       IdentifierInfo* AliasName,
12631                                       SourceLocation PragmaLoc,
12632                                       SourceLocation NameLoc,
12633                                       SourceLocation AliasNameLoc) {
12634   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12635                                     LookupOrdinaryName);
12636   AsmLabelAttr *Attr =
12637      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12638 
12639   if (PrevDecl)
12640     PrevDecl->addAttr(Attr);
12641   else
12642     (void)ExtnameUndeclaredIdentifiers.insert(
12643       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12644 }
12645 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)12646 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12647                              SourceLocation PragmaLoc,
12648                              SourceLocation NameLoc) {
12649   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12650 
12651   if (PrevDecl) {
12652     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12653   } else {
12654     (void)WeakUndeclaredIdentifiers.insert(
12655       std::pair<IdentifierInfo*,WeakInfo>
12656         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12657   }
12658 }
12659 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)12660 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12661                                 IdentifierInfo* AliasName,
12662                                 SourceLocation PragmaLoc,
12663                                 SourceLocation NameLoc,
12664                                 SourceLocation AliasNameLoc) {
12665   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12666                                     LookupOrdinaryName);
12667   WeakInfo W = WeakInfo(Name, NameLoc);
12668 
12669   if (PrevDecl) {
12670     if (!PrevDecl->hasAttr<AliasAttr>())
12671       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12672         DeclApplyPragmaWeak(TUScope, ND, W);
12673   } else {
12674     (void)WeakUndeclaredIdentifiers.insert(
12675       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12676   }
12677 }
12678 
getObjCDeclContext() const12679 Decl *Sema::getObjCDeclContext() const {
12680   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12681 }
12682 
getCurContextAvailability() const12683 AvailabilityResult Sema::getCurContextAvailability() const {
12684   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12685   return D->getAvailability();
12686 }
12687