1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "base/stringprintf.h"
17 #include "sea_ir/ir/instruction_tools.h"
18 #include "sea_ir/ir/sea.h"
19 #include "sea_ir/code_gen/code_gen.h"
20 #include "sea_ir/types/type_inference.h"
21
22 #define MAX_REACHING_DEF_ITERERATIONS (10)
23 // TODO: When development is done, this define should not
24 // be needed, it is currently used as a cutoff
25 // for cases where the iterative fixed point algorithm
26 // does not reach a fixed point because of a bug.
27
28 namespace sea_ir {
29
30 int SeaNode::current_max_node_id_ = 0;
31
Traverse(Region * region)32 void IRVisitor::Traverse(Region* region) {
33 std::vector<PhiInstructionNode*>* phis = region->GetPhiNodes();
34 for (std::vector<PhiInstructionNode*>::const_iterator cit = phis->begin();
35 cit != phis->end(); cit++) {
36 (*cit)->Accept(this);
37 }
38 std::vector<InstructionNode*>* instructions = region->GetInstructions();
39 for (std::vector<InstructionNode*>::const_iterator cit = instructions->begin();
40 cit != instructions->end(); cit++) {
41 (*cit)->Accept(this);
42 }
43 }
44
Traverse(SeaGraph * graph)45 void IRVisitor::Traverse(SeaGraph* graph) {
46 for (std::vector<Region*>::const_iterator cit = ordered_regions_.begin();
47 cit != ordered_regions_.end(); cit++ ) {
48 (*cit)->Accept(this);
49 }
50 }
51
GetGraph(const art::DexFile & dex_file)52 SeaGraph* SeaGraph::GetGraph(const art::DexFile& dex_file) {
53 return new SeaGraph(dex_file);
54 }
55
AddEdge(Region * src,Region * dst) const56 void SeaGraph::AddEdge(Region* src, Region* dst) const {
57 src->AddSuccessor(dst);
58 dst->AddPredecessor(src);
59 }
60
ComputeRPO(Region * current_region,int & current_rpo)61 void SeaGraph::ComputeRPO(Region* current_region, int& current_rpo) {
62 current_region->SetRPO(VISITING);
63 std::vector<sea_ir::Region*>* succs = current_region->GetSuccessors();
64 for (std::vector<sea_ir::Region*>::iterator succ_it = succs->begin();
65 succ_it != succs->end(); ++succ_it) {
66 if (NOT_VISITED == (*succ_it)->GetRPO()) {
67 SeaGraph::ComputeRPO(*succ_it, current_rpo);
68 }
69 }
70 current_region->SetRPO(current_rpo--);
71 }
72
ComputeIDominators()73 void SeaGraph::ComputeIDominators() {
74 bool changed = true;
75 while (changed) {
76 changed = false;
77 // Entry node has itself as IDOM.
78 std::vector<Region*>::iterator crt_it;
79 std::set<Region*> processedNodes;
80 // Find and mark the entry node(s).
81 for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
82 if ((*crt_it)->GetPredecessors()->size() == 0) {
83 processedNodes.insert(*crt_it);
84 (*crt_it)->SetIDominator(*crt_it);
85 }
86 }
87 for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
88 if ((*crt_it)->GetPredecessors()->size() == 0) {
89 continue;
90 }
91 // NewIDom = first (processed) predecessor of b.
92 Region* new_dom = NULL;
93 std::vector<Region*>* preds = (*crt_it)->GetPredecessors();
94 DCHECK(NULL != preds);
95 Region* root_pred = NULL;
96 for (std::vector<Region*>::iterator pred_it = preds->begin();
97 pred_it != preds->end(); ++pred_it) {
98 if (processedNodes.end() != processedNodes.find((*pred_it))) {
99 root_pred = *pred_it;
100 new_dom = root_pred;
101 break;
102 }
103 }
104 // For all other predecessors p of b, if idom is not set,
105 // then NewIdom = Intersect(p, NewIdom)
106 for (std::vector<Region*>::const_iterator pred_it = preds->begin();
107 pred_it != preds->end(); ++pred_it) {
108 DCHECK(NULL != *pred_it);
109 // if IDOMS[p] != UNDEFINED
110 if ((*pred_it != root_pred) && (*pred_it)->GetIDominator() != NULL) {
111 DCHECK(NULL != new_dom);
112 new_dom = SeaGraph::Intersect(*pred_it, new_dom);
113 }
114 }
115 DCHECK(NULL != *crt_it);
116 if ((*crt_it)->GetIDominator() != new_dom) {
117 (*crt_it)->SetIDominator(new_dom);
118 changed = true;
119 }
120 processedNodes.insert(*crt_it);
121 }
122 }
123
124 // For easily ordering of regions we need edges dominator->dominated.
125 for (std::vector<Region*>::iterator region_it = regions_.begin();
126 region_it != regions_.end(); region_it++) {
127 Region* idom = (*region_it)->GetIDominator();
128 if (idom != *region_it) {
129 idom->AddToIDominatedSet(*region_it);
130 }
131 }
132 }
133
Intersect(Region * i,Region * j)134 Region* SeaGraph::Intersect(Region* i, Region* j) {
135 Region* finger1 = i;
136 Region* finger2 = j;
137 while (finger1 != finger2) {
138 while (finger1->GetRPO() > finger2->GetRPO()) {
139 DCHECK(NULL != finger1);
140 finger1 = finger1->GetIDominator(); // should have: finger1 != NULL
141 DCHECK(NULL != finger1);
142 }
143 while (finger1->GetRPO() < finger2->GetRPO()) {
144 DCHECK(NULL != finger2);
145 finger2 = finger2->GetIDominator(); // should have: finger1 != NULL
146 DCHECK(NULL != finger2);
147 }
148 }
149 return finger1; // finger1 should be equal to finger2 at this point.
150 }
151
ComputeDownExposedDefs()152 void SeaGraph::ComputeDownExposedDefs() {
153 for (std::vector<Region*>::iterator region_it = regions_.begin();
154 region_it != regions_.end(); region_it++) {
155 (*region_it)->ComputeDownExposedDefs();
156 }
157 }
158
ComputeReachingDefs()159 void SeaGraph::ComputeReachingDefs() {
160 // Iterate until the reaching definitions set doesn't change anymore.
161 // (See Cooper & Torczon, "Engineering a Compiler", second edition, page 487)
162 bool changed = true;
163 int iteration = 0;
164 while (changed && (iteration < MAX_REACHING_DEF_ITERERATIONS)) {
165 iteration++;
166 changed = false;
167 // TODO: optimize the ordering if this becomes performance bottleneck.
168 for (std::vector<Region*>::iterator regions_it = regions_.begin();
169 regions_it != regions_.end();
170 regions_it++) {
171 changed |= (*regions_it)->UpdateReachingDefs();
172 }
173 }
174 DCHECK(!changed) << "Reaching definitions computation did not reach a fixed point.";
175 }
176
InsertSignatureNodes(const art::DexFile::CodeItem * code_item,Region * r)177 void SeaGraph::InsertSignatureNodes(const art::DexFile::CodeItem* code_item, Region* r) {
178 // Insert a fake SignatureNode for the first parameter.
179 // TODO: Provide a register enum value for the fake parameter.
180 SignatureNode* parameter_def_node = new sea_ir::SignatureNode(0, 0);
181 AddParameterNode(parameter_def_node);
182 r->AddChild(parameter_def_node);
183 // Insert SignatureNodes for each Dalvik register parameter.
184 for (unsigned int crt_offset = 0; crt_offset < code_item->ins_size_; crt_offset++) {
185 int register_no = code_item->registers_size_ - crt_offset - 1;
186 int position = crt_offset + 1;
187 SignatureNode* parameter_def_node = new sea_ir::SignatureNode(register_no, position);
188 AddParameterNode(parameter_def_node);
189 r->AddChild(parameter_def_node);
190 }
191 }
192
BuildMethodSeaGraph(const art::DexFile::CodeItem * code_item,const art::DexFile & dex_file,uint16_t class_def_idx,uint32_t method_idx,uint32_t method_access_flags)193 void SeaGraph::BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item,
194 const art::DexFile& dex_file, uint16_t class_def_idx,
195 uint32_t method_idx, uint32_t method_access_flags) {
196 code_item_ = code_item;
197 class_def_idx_ = class_def_idx;
198 method_idx_ = method_idx;
199 method_access_flags_ = method_access_flags;
200 const uint16_t* code = code_item->insns_;
201 const size_t size_in_code_units = code_item->insns_size_in_code_units_;
202 // This maps target instruction pointers to their corresponding region objects.
203 std::map<const uint16_t*, Region*> target_regions;
204 size_t i = 0;
205 // Pass: Find the start instruction of basic blocks
206 // by locating targets and flow-though instructions of branches.
207 while (i < size_in_code_units) {
208 const art::Instruction* inst = art::Instruction::At(&code[i]);
209 if (inst->IsBranch() || inst->IsUnconditional()) {
210 int32_t offset = inst->GetTargetOffset();
211 if (target_regions.end() == target_regions.find(&code[i + offset])) {
212 Region* region = GetNewRegion();
213 target_regions.insert(std::pair<const uint16_t*, Region*>(&code[i + offset], region));
214 }
215 if (inst->CanFlowThrough()
216 && (target_regions.end() == target_regions.find(&code[i + inst->SizeInCodeUnits()]))) {
217 Region* region = GetNewRegion();
218 target_regions.insert(
219 std::pair<const uint16_t*, Region*>(&code[i + inst->SizeInCodeUnits()], region));
220 }
221 }
222 i += inst->SizeInCodeUnits();
223 }
224
225
226 Region* r = GetNewRegion();
227
228 InsertSignatureNodes(code_item, r);
229 // Pass: Assign instructions to region nodes and
230 // assign branches their control flow successors.
231 i = 0;
232 sea_ir::InstructionNode* last_node = NULL;
233 sea_ir::InstructionNode* node = NULL;
234 while (i < size_in_code_units) {
235 const art::Instruction* inst = art::Instruction::At(&code[i]);
236 std::vector<InstructionNode*> sea_instructions_for_dalvik =
237 sea_ir::InstructionNode::Create(inst);
238 for (std::vector<InstructionNode*>::const_iterator cit = sea_instructions_for_dalvik.begin();
239 sea_instructions_for_dalvik.end() != cit; ++cit) {
240 last_node = node;
241 node = *cit;
242
243 if (inst->IsBranch() || inst->IsUnconditional()) {
244 int32_t offset = inst->GetTargetOffset();
245 std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i + offset]);
246 DCHECK(it != target_regions.end());
247 AddEdge(r, it->second); // Add edge to branch target.
248 }
249 std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i]);
250 if (target_regions.end() != it) {
251 // Get the already created region because this is a branch target.
252 Region* nextRegion = it->second;
253 if (last_node->GetInstruction()->IsBranch()
254 && last_node->GetInstruction()->CanFlowThrough()) {
255 AddEdge(r, it->second); // Add flow-through edge.
256 }
257 r = nextRegion;
258 }
259 r->AddChild(node);
260 }
261 i += inst->SizeInCodeUnits();
262 }
263 }
264
ComputeRPO()265 void SeaGraph::ComputeRPO() {
266 int rpo_id = regions_.size() - 1;
267 for (std::vector<Region*>::const_iterator crt_it = regions_.begin(); crt_it != regions_.end();
268 ++crt_it) {
269 if ((*crt_it)->GetPredecessors()->size() == 0) {
270 ComputeRPO(*crt_it, rpo_id);
271 }
272 }
273 }
274
275 // Performs the renaming phase in traditional SSA transformations.
276 // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
RenameAsSSA()277 void SeaGraph::RenameAsSSA() {
278 utils::ScopedHashtable<int, InstructionNode*> scoped_table;
279 scoped_table.OpenScope();
280 for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
281 region_it++) {
282 if ((*region_it)->GetIDominator() == *region_it) {
283 RenameAsSSA(*region_it, &scoped_table);
284 }
285 }
286 scoped_table.CloseScope();
287 }
288
ConvertToSSA()289 void SeaGraph::ConvertToSSA() {
290 // Pass: find global names.
291 // The map @block maps registers to the blocks in which they are defined.
292 std::map<int, std::set<Region*> > blocks;
293 // The set @globals records registers whose use
294 // is in a different block than the corresponding definition.
295 std::set<int> globals;
296 for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
297 region_it++) {
298 std::set<int> var_kill;
299 std::vector<InstructionNode*>* instructions = (*region_it)->GetInstructions();
300 for (std::vector<InstructionNode*>::iterator inst_it = instructions->begin();
301 inst_it != instructions->end(); inst_it++) {
302 std::vector<int> used_regs = (*inst_it)->GetUses();
303 for (std::size_t i = 0; i < used_regs.size(); i++) {
304 int used_reg = used_regs[i];
305 if (var_kill.find(used_reg) == var_kill.end()) {
306 globals.insert(used_reg);
307 }
308 }
309 const int reg_def = (*inst_it)->GetResultRegister();
310 if (reg_def != NO_REGISTER) {
311 var_kill.insert(reg_def);
312 }
313
314 blocks.insert(std::pair<int, std::set<Region*> >(reg_def, std::set<Region*>()));
315 std::set<Region*>* reg_def_blocks = &(blocks.find(reg_def)->second);
316 reg_def_blocks->insert(*region_it);
317 }
318 }
319
320 // Pass: Actually add phi-nodes to regions.
321 for (std::set<int>::const_iterator globals_it = globals.begin();
322 globals_it != globals.end(); globals_it++) {
323 int global = *globals_it;
324 // Copy the set, because we will modify the worklist as we go.
325 std::set<Region*> worklist((*(blocks.find(global))).second);
326 for (std::set<Region*>::const_iterator b_it = worklist.begin();
327 b_it != worklist.end(); b_it++) {
328 std::set<Region*>* df = (*b_it)->GetDominanceFrontier();
329 for (std::set<Region*>::const_iterator df_it = df->begin(); df_it != df->end(); df_it++) {
330 if ((*df_it)->InsertPhiFor(global)) {
331 // Check that the dominance frontier element is in the worklist already
332 // because we only want to break if the element is actually not there yet.
333 if (worklist.find(*df_it) == worklist.end()) {
334 worklist.insert(*df_it);
335 b_it = worklist.begin();
336 break;
337 }
338 }
339 }
340 }
341 }
342 // Pass: Build edges to the definition corresponding to each use.
343 // (This corresponds to the renaming phase in traditional SSA transformations.
344 // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
345 RenameAsSSA();
346 }
347
RenameAsSSA(Region * crt_region,utils::ScopedHashtable<int,InstructionNode * > * scoped_table)348 void SeaGraph::RenameAsSSA(Region* crt_region,
349 utils::ScopedHashtable<int, InstructionNode*>* scoped_table) {
350 scoped_table->OpenScope();
351 // Rename phi nodes defined in the current region.
352 std::vector<PhiInstructionNode*>* phis = crt_region->GetPhiNodes();
353 for (std::vector<PhiInstructionNode*>::iterator phi_it = phis->begin();
354 phi_it != phis->end(); phi_it++) {
355 int reg_no = (*phi_it)->GetRegisterNumber();
356 scoped_table->Add(reg_no, (*phi_it));
357 }
358 // Rename operands of instructions from the current region.
359 std::vector<InstructionNode*>* instructions = crt_region->GetInstructions();
360 for (std::vector<InstructionNode*>::const_iterator instructions_it = instructions->begin();
361 instructions_it != instructions->end(); instructions_it++) {
362 InstructionNode* current_instruction = (*instructions_it);
363 // Rename uses.
364 std::vector<int> used_regs = current_instruction->GetUses();
365 for (std::vector<int>::const_iterator reg_it = used_regs.begin();
366 reg_it != used_regs.end(); reg_it++) {
367 int current_used_reg = (*reg_it);
368 InstructionNode* definition = scoped_table->Lookup(current_used_reg);
369 current_instruction->RenameToSSA(current_used_reg, definition);
370 }
371 // Update scope table with latest definitions.
372 std::vector<int> def_regs = current_instruction->GetDefinitions();
373 for (std::vector<int>::const_iterator reg_it = def_regs.begin();
374 reg_it != def_regs.end(); reg_it++) {
375 int current_defined_reg = (*reg_it);
376 scoped_table->Add(current_defined_reg, current_instruction);
377 }
378 }
379 // Fill in uses of phi functions in CFG successor regions.
380 const std::vector<Region*>* successors = crt_region->GetSuccessors();
381 for (std::vector<Region*>::const_iterator successors_it = successors->begin();
382 successors_it != successors->end(); successors_it++) {
383 Region* successor = (*successors_it);
384 successor->SetPhiDefinitionsForUses(scoped_table, crt_region);
385 }
386
387 // Rename all successors in the dominators tree.
388 const std::set<Region*>* dominated_nodes = crt_region->GetIDominatedSet();
389 for (std::set<Region*>::const_iterator dominated_nodes_it = dominated_nodes->begin();
390 dominated_nodes_it != dominated_nodes->end(); dominated_nodes_it++) {
391 Region* dominated_node = (*dominated_nodes_it);
392 RenameAsSSA(dominated_node, scoped_table);
393 }
394 scoped_table->CloseScope();
395 }
396
GenerateLLVM(const std::string & function_name,const art::DexFile & dex_file)397 CodeGenData* SeaGraph::GenerateLLVM(const std::string& function_name,
398 const art::DexFile& dex_file) {
399 // Pass: Generate LLVM IR.
400 CodeGenPrepassVisitor code_gen_prepass_visitor(function_name);
401 std::cout << "Generating code..." << std::endl;
402 Accept(&code_gen_prepass_visitor);
403 CodeGenVisitor code_gen_visitor(code_gen_prepass_visitor.GetData(), dex_file);
404 Accept(&code_gen_visitor);
405 CodeGenPostpassVisitor code_gen_postpass_visitor(code_gen_visitor.GetData());
406 Accept(&code_gen_postpass_visitor);
407 return code_gen_postpass_visitor.GetData();
408 }
409
CompileMethod(const std::string & function_name,const art::DexFile::CodeItem * code_item,uint16_t class_def_idx,uint32_t method_idx,uint32_t method_access_flags,const art::DexFile & dex_file)410 CodeGenData* SeaGraph::CompileMethod(
411 const std::string& function_name,
412 const art::DexFile::CodeItem* code_item, uint16_t class_def_idx,
413 uint32_t method_idx, uint32_t method_access_flags, const art::DexFile& dex_file) {
414 // Two passes: Builds the intermediate structure (non-SSA) of the sea-ir for the function.
415 BuildMethodSeaGraph(code_item, dex_file, class_def_idx, method_idx, method_access_flags);
416 // Pass: Compute reverse post-order of regions.
417 ComputeRPO();
418 // Multiple passes: compute immediate dominators.
419 ComputeIDominators();
420 // Pass: compute downward-exposed definitions.
421 ComputeDownExposedDefs();
422 // Multiple Passes (iterative fixed-point algorithm): Compute reaching definitions
423 ComputeReachingDefs();
424 // Pass (O(nlogN)): Compute the dominance frontier for region nodes.
425 ComputeDominanceFrontier();
426 // Two Passes: Phi node insertion.
427 ConvertToSSA();
428 // Pass: type inference
429 ti_->ComputeTypes(this);
430 // Pass: Generate LLVM IR.
431 CodeGenData* cgd = GenerateLLVM(function_name, dex_file);
432 return cgd;
433 }
434
ComputeDominanceFrontier()435 void SeaGraph::ComputeDominanceFrontier() {
436 for (std::vector<Region*>::iterator region_it = regions_.begin();
437 region_it != regions_.end(); region_it++) {
438 std::vector<Region*>* preds = (*region_it)->GetPredecessors();
439 if (preds->size() > 1) {
440 for (std::vector<Region*>::iterator pred_it = preds->begin();
441 pred_it != preds->end(); pred_it++) {
442 Region* runner = *pred_it;
443 while (runner != (*region_it)->GetIDominator()) {
444 runner->AddToDominanceFrontier(*region_it);
445 runner = runner->GetIDominator();
446 }
447 }
448 }
449 }
450 }
451
GetNewRegion()452 Region* SeaGraph::GetNewRegion() {
453 Region* new_region = new Region();
454 AddRegion(new_region);
455 return new_region;
456 }
457
AddRegion(Region * r)458 void SeaGraph::AddRegion(Region* r) {
459 DCHECK(r) << "Tried to add NULL region to SEA graph.";
460 regions_.push_back(r);
461 }
462
SeaGraph(const art::DexFile & df)463 SeaGraph::SeaGraph(const art::DexFile& df)
464 :ti_(new TypeInference()), class_def_idx_(0), method_idx_(0), method_access_flags_(),
465 regions_(), parameters_(), dex_file_(df), code_item_(NULL) { }
466
AddChild(sea_ir::InstructionNode * instruction)467 void Region::AddChild(sea_ir::InstructionNode* instruction) {
468 DCHECK(instruction) << "Tried to add NULL instruction to region node.";
469 instructions_.push_back(instruction);
470 instruction->SetRegion(this);
471 }
472
GetLastChild() const473 SeaNode* Region::GetLastChild() const {
474 if (instructions_.size() > 0) {
475 return instructions_.back();
476 }
477 return NULL;
478 }
479
ComputeDownExposedDefs()480 void Region::ComputeDownExposedDefs() {
481 for (std::vector<InstructionNode*>::const_iterator inst_it = instructions_.begin();
482 inst_it != instructions_.end(); inst_it++) {
483 int reg_no = (*inst_it)->GetResultRegister();
484 std::map<int, InstructionNode*>::iterator res = de_defs_.find(reg_no);
485 if ((reg_no != NO_REGISTER) && (res == de_defs_.end())) {
486 de_defs_.insert(std::pair<int, InstructionNode*>(reg_no, *inst_it));
487 } else {
488 res->second = *inst_it;
489 }
490 }
491 for (std::map<int, sea_ir::InstructionNode*>::const_iterator cit = de_defs_.begin();
492 cit != de_defs_.end(); cit++) {
493 (*cit).second->MarkAsDEDef();
494 }
495 }
496
GetDownExposedDefs() const497 const std::map<int, sea_ir::InstructionNode*>* Region::GetDownExposedDefs() const {
498 return &de_defs_;
499 }
500
GetReachingDefs()501 std::map<int, std::set<sea_ir::InstructionNode*>* >* Region::GetReachingDefs() {
502 return &reaching_defs_;
503 }
504
UpdateReachingDefs()505 bool Region::UpdateReachingDefs() {
506 std::map<int, std::set<sea_ir::InstructionNode*>* > new_reaching;
507 for (std::vector<Region*>::const_iterator pred_it = predecessors_.begin();
508 pred_it != predecessors_.end(); pred_it++) {
509 // The reaching_defs variable will contain reaching defs __for current predecessor only__
510 std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs;
511 std::map<int, std::set<sea_ir::InstructionNode*>* >* pred_reaching =
512 (*pred_it)->GetReachingDefs();
513 const std::map<int, InstructionNode*>* de_defs = (*pred_it)->GetDownExposedDefs();
514
515 // The definitions from the reaching set of the predecessor
516 // may be shadowed by downward exposed definitions from the predecessor,
517 // otherwise the defs from the reaching set are still good.
518 for (std::map<int, InstructionNode*>::const_iterator de_def = de_defs->begin();
519 de_def != de_defs->end(); de_def++) {
520 std::set<InstructionNode*>* solo_def;
521 solo_def = new std::set<InstructionNode*>();
522 solo_def->insert(de_def->second);
523 reaching_defs.insert(
524 std::pair<int const, std::set<InstructionNode*>*>(de_def->first, solo_def));
525 }
526 reaching_defs.insert(pred_reaching->begin(), pred_reaching->end());
527
528 // Now we combine the reaching map coming from the current predecessor (reaching_defs)
529 // with the accumulated set from all predecessors so far (from new_reaching).
530 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it =
531 reaching_defs.begin();
532 for (; reaching_it != reaching_defs.end(); reaching_it++) {
533 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator crt_entry =
534 new_reaching.find(reaching_it->first);
535 if (new_reaching.end() != crt_entry) {
536 crt_entry->second->insert(reaching_it->second->begin(), reaching_it->second->end());
537 } else {
538 new_reaching.insert(
539 std::pair<int, std::set<sea_ir::InstructionNode*>*>(
540 reaching_it->first,
541 reaching_it->second) );
542 }
543 }
544 }
545 bool changed = false;
546 // Because the sets are monotonically increasing,
547 // we can compare sizes instead of using set comparison.
548 // TODO: Find formal proof.
549 int old_size = 0;
550 if (-1 == reaching_defs_size_) {
551 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it =
552 reaching_defs_.begin();
553 for (; reaching_it != reaching_defs_.end(); reaching_it++) {
554 old_size += (*reaching_it).second->size();
555 }
556 } else {
557 old_size = reaching_defs_size_;
558 }
559 int new_size = 0;
560 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = new_reaching.begin();
561 for (; reaching_it != new_reaching.end(); reaching_it++) {
562 new_size += (*reaching_it).second->size();
563 }
564 if (old_size != new_size) {
565 changed = true;
566 }
567 if (changed) {
568 reaching_defs_ = new_reaching;
569 reaching_defs_size_ = new_size;
570 }
571 return changed;
572 }
573
InsertPhiFor(int reg_no)574 bool Region::InsertPhiFor(int reg_no) {
575 if (!ContainsPhiFor(reg_no)) {
576 phi_set_.insert(reg_no);
577 PhiInstructionNode* new_phi = new PhiInstructionNode(reg_no);
578 new_phi->SetRegion(this);
579 phi_instructions_.push_back(new_phi);
580 return true;
581 }
582 return false;
583 }
584
SetPhiDefinitionsForUses(const utils::ScopedHashtable<int,InstructionNode * > * scoped_table,Region * predecessor)585 void Region::SetPhiDefinitionsForUses(
586 const utils::ScopedHashtable<int, InstructionNode*>* scoped_table, Region* predecessor) {
587 int predecessor_id = -1;
588 for (unsigned int crt_pred_id = 0; crt_pred_id < predecessors_.size(); crt_pred_id++) {
589 if (predecessors_.at(crt_pred_id) == predecessor) {
590 predecessor_id = crt_pred_id;
591 }
592 }
593 DCHECK_NE(-1, predecessor_id);
594 for (std::vector<PhiInstructionNode*>::iterator phi_it = phi_instructions_.begin();
595 phi_it != phi_instructions_.end(); phi_it++) {
596 PhiInstructionNode* phi = (*phi_it);
597 int reg_no = phi->GetRegisterNumber();
598 InstructionNode* definition = scoped_table->Lookup(reg_no);
599 phi->RenameToSSA(reg_no, definition, predecessor_id);
600 }
601 }
602
Create(const art::Instruction * in)603 std::vector<InstructionNode*> InstructionNode::Create(const art::Instruction* in) {
604 std::vector<InstructionNode*> sea_instructions;
605 switch (in->Opcode()) {
606 case art::Instruction::CONST_4:
607 sea_instructions.push_back(new ConstInstructionNode(in));
608 break;
609 case art::Instruction::RETURN:
610 sea_instructions.push_back(new ReturnInstructionNode(in));
611 break;
612 case art::Instruction::IF_NE:
613 sea_instructions.push_back(new IfNeInstructionNode(in));
614 break;
615 case art::Instruction::ADD_INT_LIT8:
616 sea_instructions.push_back(new UnnamedConstInstructionNode(in, in->VRegC_22b()));
617 sea_instructions.push_back(new AddIntLitInstructionNode(in));
618 break;
619 case art::Instruction::MOVE_RESULT:
620 sea_instructions.push_back(new MoveResultInstructionNode(in));
621 break;
622 case art::Instruction::INVOKE_STATIC:
623 sea_instructions.push_back(new InvokeStaticInstructionNode(in));
624 break;
625 case art::Instruction::ADD_INT:
626 sea_instructions.push_back(new AddIntInstructionNode(in));
627 break;
628 case art::Instruction::GOTO:
629 sea_instructions.push_back(new GotoInstructionNode(in));
630 break;
631 case art::Instruction::IF_EQZ:
632 sea_instructions.push_back(new IfEqzInstructionNode(in));
633 break;
634 default:
635 // Default, generic IR instruction node; default case should never be reached
636 // when support for all instructions ahs been added.
637 sea_instructions.push_back(new InstructionNode(in));
638 }
639 return sea_instructions;
640 }
641
MarkAsDEDef()642 void InstructionNode::MarkAsDEDef() {
643 de_def_ = true;
644 }
645
GetResultRegister() const646 int InstructionNode::GetResultRegister() const {
647 if (instruction_->HasVRegA() && InstructionTools::IsDefinition(instruction_)) {
648 return instruction_->VRegA();
649 }
650 return NO_REGISTER;
651 }
652
GetDefinitions() const653 std::vector<int> InstructionNode::GetDefinitions() const {
654 // TODO: Extend this to handle instructions defining more than one register (if any)
655 // The return value should be changed to pointer to field then; for now it is an object
656 // so that we avoid possible memory leaks from allocating objects dynamically.
657 std::vector<int> definitions;
658 int result = GetResultRegister();
659 if (NO_REGISTER != result) {
660 definitions.push_back(result);
661 }
662 return definitions;
663 }
664
GetUses() const665 std::vector<int> InstructionNode::GetUses() const {
666 std::vector<int> uses; // Using vector<> instead of set<> because order matters.
667 if (!InstructionTools::IsDefinition(instruction_) && (instruction_->HasVRegA())) {
668 int vA = instruction_->VRegA();
669 uses.push_back(vA);
670 }
671 if (instruction_->HasVRegB()) {
672 int vB = instruction_->VRegB();
673 uses.push_back(vB);
674 }
675 if (instruction_->HasVRegC()) {
676 int vC = instruction_->VRegC();
677 uses.push_back(vC);
678 }
679 return uses;
680 }
681 } // namespace sea_ir
682