• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
createCXXABI(CodeGenModule & CGM)56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
CodeGenModule(ASTContext & C,const CodeGenOptions & CGO,llvm::Module & M,const llvm::DataLayout & TD,DiagnosticsEngine & diags)71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
~CodeGenModule()136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
createObjCRuntime()148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
createOpenCLRuntime()167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
createCUDARuntime()171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
Release()175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193   if (CodeGenOpts.DwarfVersion)
194     // We actually want the latest version when there are conflicts.
195     // We can change from Warning to Latest if such mode is supported.
196     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
197                               CodeGenOpts.DwarfVersion);
198 
199   SimplifyPersonality();
200 
201   if (getCodeGenOpts().EmitDeclMetadata)
202     EmitDeclMetadata();
203 
204   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
205     EmitCoverageFile();
206 
207   if (DebugInfo)
208     DebugInfo->finalize();
209 }
210 
UpdateCompletedType(const TagDecl * TD)211 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
212   // Make sure that this type is translated.
213   Types.UpdateCompletedType(TD);
214 }
215 
getTBAAInfo(QualType QTy)216 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
217   if (!TBAA)
218     return 0;
219   return TBAA->getTBAAInfo(QTy);
220 }
221 
getTBAAInfoForVTablePtr()222 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
223   if (!TBAA)
224     return 0;
225   return TBAA->getTBAAInfoForVTablePtr();
226 }
227 
getTBAAStructInfo(QualType QTy)228 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
229   if (!TBAA)
230     return 0;
231   return TBAA->getTBAAStructInfo(QTy);
232 }
233 
getTBAAStructTypeInfo(QualType QTy)234 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
235   if (!TBAA)
236     return 0;
237   return TBAA->getTBAAStructTypeInfo(QTy);
238 }
239 
getTBAAStructTagInfo(QualType BaseTy,llvm::MDNode * AccessN,uint64_t O)240 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
241                                                   llvm::MDNode *AccessN,
242                                                   uint64_t O) {
243   if (!TBAA)
244     return 0;
245   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
246 }
247 
248 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
249 /// is the same as the type. For struct-path aware TBAA, the tag
250 /// is different from the type: base type, access type and offset.
251 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
DecorateInstruction(llvm::Instruction * Inst,llvm::MDNode * TBAAInfo,bool ConvertTypeToTag)252 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
253                                         llvm::MDNode *TBAAInfo,
254                                         bool ConvertTypeToTag) {
255   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
256     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
257                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
258   else
259     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
260 }
261 
Error(SourceLocation loc,StringRef error)262 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
263   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
264   getDiags().Report(Context.getFullLoc(loc), diagID);
265 }
266 
267 /// ErrorUnsupported - Print out an error that codegen doesn't support the
268 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)269 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
270                                      bool OmitOnError) {
271   if (OmitOnError && getDiags().hasErrorOccurred())
272     return;
273   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
274                                                "cannot compile this %0 yet");
275   std::string Msg = Type;
276   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
277     << Msg << S->getSourceRange();
278 }
279 
280 /// ErrorUnsupported - Print out an error that codegen doesn't support the
281 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type,bool OmitOnError)282 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
283                                      bool OmitOnError) {
284   if (OmitOnError && getDiags().hasErrorOccurred())
285     return;
286   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
287                                                "cannot compile this %0 yet");
288   std::string Msg = Type;
289   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
290 }
291 
getSize(CharUnits size)292 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
293   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
294 }
295 
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const296 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
297                                         const NamedDecl *D) const {
298   // Internal definitions always have default visibility.
299   if (GV->hasLocalLinkage()) {
300     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
301     return;
302   }
303 
304   // Set visibility for definitions.
305   LinkageInfo LV = D->getLinkageAndVisibility();
306   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
307     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
308 }
309 
GetLLVMTLSModel(StringRef S)310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
311   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
312       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
313       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
314       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
315       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
316 }
317 
GetLLVMTLSModel(CodeGenOptions::TLSModel M)318 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
319     CodeGenOptions::TLSModel M) {
320   switch (M) {
321   case CodeGenOptions::GeneralDynamicTLSModel:
322     return llvm::GlobalVariable::GeneralDynamicTLSModel;
323   case CodeGenOptions::LocalDynamicTLSModel:
324     return llvm::GlobalVariable::LocalDynamicTLSModel;
325   case CodeGenOptions::InitialExecTLSModel:
326     return llvm::GlobalVariable::InitialExecTLSModel;
327   case CodeGenOptions::LocalExecTLSModel:
328     return llvm::GlobalVariable::LocalExecTLSModel;
329   }
330   llvm_unreachable("Invalid TLS model!");
331 }
332 
setTLSMode(llvm::GlobalVariable * GV,const VarDecl & D) const333 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
334                                const VarDecl &D) const {
335   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
336 
337   llvm::GlobalVariable::ThreadLocalMode TLM;
338   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
339 
340   // Override the TLS model if it is explicitly specified.
341   if (D.hasAttr<TLSModelAttr>()) {
342     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
343     TLM = GetLLVMTLSModel(Attr->getModel());
344   }
345 
346   GV->setThreadLocalMode(TLM);
347 }
348 
349 /// Set the symbol visibility of type information (vtable and RTTI)
350 /// associated with the given type.
setTypeVisibility(llvm::GlobalValue * GV,const CXXRecordDecl * RD,TypeVisibilityKind TVK) const351 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
352                                       const CXXRecordDecl *RD,
353                                       TypeVisibilityKind TVK) const {
354   setGlobalVisibility(GV, RD);
355 
356   if (!CodeGenOpts.HiddenWeakVTables)
357     return;
358 
359   // We never want to drop the visibility for RTTI names.
360   if (TVK == TVK_ForRTTIName)
361     return;
362 
363   // We want to drop the visibility to hidden for weak type symbols.
364   // This isn't possible if there might be unresolved references
365   // elsewhere that rely on this symbol being visible.
366 
367   // This should be kept roughly in sync with setThunkVisibility
368   // in CGVTables.cpp.
369 
370   // Preconditions.
371   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
372       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
373     return;
374 
375   // Don't override an explicit visibility attribute.
376   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
377     return;
378 
379   switch (RD->getTemplateSpecializationKind()) {
380   // We have to disable the optimization if this is an EI definition
381   // because there might be EI declarations in other shared objects.
382   case TSK_ExplicitInstantiationDefinition:
383   case TSK_ExplicitInstantiationDeclaration:
384     return;
385 
386   // Every use of a non-template class's type information has to emit it.
387   case TSK_Undeclared:
388     break;
389 
390   // In theory, implicit instantiations can ignore the possibility of
391   // an explicit instantiation declaration because there necessarily
392   // must be an EI definition somewhere with default visibility.  In
393   // practice, it's possible to have an explicit instantiation for
394   // an arbitrary template class, and linkers aren't necessarily able
395   // to deal with mixed-visibility symbols.
396   case TSK_ExplicitSpecialization:
397   case TSK_ImplicitInstantiation:
398     return;
399   }
400 
401   // If there's a key function, there may be translation units
402   // that don't have the key function's definition.  But ignore
403   // this if we're emitting RTTI under -fno-rtti.
404   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
405     // FIXME: what should we do if we "lose" the key function during
406     // the emission of the file?
407     if (Context.getCurrentKeyFunction(RD))
408       return;
409   }
410 
411   // Otherwise, drop the visibility to hidden.
412   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
413   GV->setUnnamedAddr(true);
414 }
415 
getMangledName(GlobalDecl GD)416 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
417   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
418 
419   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
420   if (!Str.empty())
421     return Str;
422 
423   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
424     IdentifierInfo *II = ND->getIdentifier();
425     assert(II && "Attempt to mangle unnamed decl.");
426 
427     Str = II->getName();
428     return Str;
429   }
430 
431   SmallString<256> Buffer;
432   llvm::raw_svector_ostream Out(Buffer);
433   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
435   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
436     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
437   else
438     getCXXABI().getMangleContext().mangleName(ND, Out);
439 
440   // Allocate space for the mangled name.
441   Out.flush();
442   size_t Length = Buffer.size();
443   char *Name = MangledNamesAllocator.Allocate<char>(Length);
444   std::copy(Buffer.begin(), Buffer.end(), Name);
445 
446   Str = StringRef(Name, Length);
447 
448   return Str;
449 }
450 
getBlockMangledName(GlobalDecl GD,MangleBuffer & Buffer,const BlockDecl * BD)451 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
452                                         const BlockDecl *BD) {
453   MangleContext &MangleCtx = getCXXABI().getMangleContext();
454   const Decl *D = GD.getDecl();
455   llvm::raw_svector_ostream Out(Buffer.getBuffer());
456   if (D == 0)
457     MangleCtx.mangleGlobalBlock(BD,
458       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
459   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
460     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
461   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
462     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
463   else
464     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
465 }
466 
GetGlobalValue(StringRef Name)467 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
468   return getModule().getNamedValue(Name);
469 }
470 
471 /// AddGlobalCtor - Add a function to the list that will be called before
472 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority)473 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
474   // FIXME: Type coercion of void()* types.
475   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
476 }
477 
478 /// AddGlobalDtor - Add a function to the list that will be called
479 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority)480 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
481   // FIXME: Type coercion of void()* types.
482   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
483 }
484 
EmitCtorList(const CtorList & Fns,const char * GlobalName)485 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
486   // Ctor function type is void()*.
487   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
488   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
489 
490   // Get the type of a ctor entry, { i32, void ()* }.
491   llvm::StructType *CtorStructTy =
492     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
493 
494   // Construct the constructor and destructor arrays.
495   SmallVector<llvm::Constant*, 8> Ctors;
496   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
497     llvm::Constant *S[] = {
498       llvm::ConstantInt::get(Int32Ty, I->second, false),
499       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
500     };
501     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
502   }
503 
504   if (!Ctors.empty()) {
505     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
506     new llvm::GlobalVariable(TheModule, AT, false,
507                              llvm::GlobalValue::AppendingLinkage,
508                              llvm::ConstantArray::get(AT, Ctors),
509                              GlobalName);
510   }
511 }
512 
513 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)514 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
515   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
516 
517   if (isa<CXXDestructorDecl>(D) &&
518       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
519                                          GD.getDtorType()))
520     return llvm::Function::LinkOnceODRLinkage;
521 
522   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
523 
524   if (Linkage == GVA_Internal)
525     return llvm::Function::InternalLinkage;
526 
527   if (D->hasAttr<DLLExportAttr>())
528     return llvm::Function::DLLExportLinkage;
529 
530   if (D->hasAttr<WeakAttr>())
531     return llvm::Function::WeakAnyLinkage;
532 
533   // In C99 mode, 'inline' functions are guaranteed to have a strong
534   // definition somewhere else, so we can use available_externally linkage.
535   if (Linkage == GVA_C99Inline)
536     return llvm::Function::AvailableExternallyLinkage;
537 
538   // Note that Apple's kernel linker doesn't support symbol
539   // coalescing, so we need to avoid linkonce and weak linkages there.
540   // Normally, this means we just map to internal, but for explicit
541   // instantiations we'll map to external.
542 
543   // In C++, the compiler has to emit a definition in every translation unit
544   // that references the function.  We should use linkonce_odr because
545   // a) if all references in this translation unit are optimized away, we
546   // don't need to codegen it.  b) if the function persists, it needs to be
547   // merged with other definitions. c) C++ has the ODR, so we know the
548   // definition is dependable.
549   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
550     return !Context.getLangOpts().AppleKext
551              ? llvm::Function::LinkOnceODRLinkage
552              : llvm::Function::InternalLinkage;
553 
554   // An explicit instantiation of a template has weak linkage, since
555   // explicit instantiations can occur in multiple translation units
556   // and must all be equivalent. However, we are not allowed to
557   // throw away these explicit instantiations.
558   if (Linkage == GVA_ExplicitTemplateInstantiation)
559     return !Context.getLangOpts().AppleKext
560              ? llvm::Function::WeakODRLinkage
561              : llvm::Function::ExternalLinkage;
562 
563   // Otherwise, we have strong external linkage.
564   assert(Linkage == GVA_StrongExternal);
565   return llvm::Function::ExternalLinkage;
566 }
567 
568 
569 /// SetFunctionDefinitionAttributes - Set attributes for a global.
570 ///
571 /// FIXME: This is currently only done for aliases and functions, but not for
572 /// variables (these details are set in EmitGlobalVarDefinition for variables).
SetFunctionDefinitionAttributes(const FunctionDecl * D,llvm::GlobalValue * GV)573 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
574                                                     llvm::GlobalValue *GV) {
575   SetCommonAttributes(D, GV);
576 }
577 
SetLLVMFunctionAttributes(const Decl * D,const CGFunctionInfo & Info,llvm::Function * F)578 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
579                                               const CGFunctionInfo &Info,
580                                               llvm::Function *F) {
581   unsigned CallingConv;
582   AttributeListType AttributeList;
583   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
584   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
585   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
586 }
587 
588 /// Determines whether the language options require us to model
589 /// unwind exceptions.  We treat -fexceptions as mandating this
590 /// except under the fragile ObjC ABI with only ObjC exceptions
591 /// enabled.  This means, for example, that C with -fexceptions
592 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)593 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
594   // If exceptions are completely disabled, obviously this is false.
595   if (!LangOpts.Exceptions) return false;
596 
597   // If C++ exceptions are enabled, this is true.
598   if (LangOpts.CXXExceptions) return true;
599 
600   // If ObjC exceptions are enabled, this depends on the ABI.
601   if (LangOpts.ObjCExceptions) {
602     return LangOpts.ObjCRuntime.hasUnwindExceptions();
603   }
604 
605   return true;
606 }
607 
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)608 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
609                                                            llvm::Function *F) {
610   llvm::AttrBuilder B;
611 
612   if (CodeGenOpts.UnwindTables)
613     B.addAttribute(llvm::Attribute::UWTable);
614 
615   if (!hasUnwindExceptions(LangOpts))
616     B.addAttribute(llvm::Attribute::NoUnwind);
617 
618   if (D->hasAttr<NakedAttr>()) {
619     // Naked implies noinline: we should not be inlining such functions.
620     B.addAttribute(llvm::Attribute::Naked);
621     B.addAttribute(llvm::Attribute::NoInline);
622   } else if (D->hasAttr<NoInlineAttr>()) {
623     B.addAttribute(llvm::Attribute::NoInline);
624   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
625               D->hasAttr<ForceInlineAttr>()) &&
626              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
627                                               llvm::Attribute::NoInline)) {
628     // (noinline wins over always_inline, and we can't specify both in IR)
629     B.addAttribute(llvm::Attribute::AlwaysInline);
630   }
631 
632   if (D->hasAttr<ColdAttr>()) {
633     B.addAttribute(llvm::Attribute::OptimizeForSize);
634     B.addAttribute(llvm::Attribute::Cold);
635   }
636 
637   if (D->hasAttr<MinSizeAttr>())
638     B.addAttribute(llvm::Attribute::MinSize);
639 
640   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
641     B.addAttribute(llvm::Attribute::StackProtect);
642   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
643     B.addAttribute(llvm::Attribute::StackProtectReq);
644 
645   // Add sanitizer attributes if function is not blacklisted.
646   if (!SanitizerBlacklist.isIn(*F)) {
647     // When AddressSanitizer is enabled, set SanitizeAddress attribute
648     // unless __attribute__((no_sanitize_address)) is used.
649     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
650       B.addAttribute(llvm::Attribute::SanitizeAddress);
651     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
652     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
653       B.addAttribute(llvm::Attribute::SanitizeThread);
654     }
655     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
656     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
657       B.addAttribute(llvm::Attribute::SanitizeMemory);
658   }
659 
660   F->addAttributes(llvm::AttributeSet::FunctionIndex,
661                    llvm::AttributeSet::get(
662                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
663 
664   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
665     F->setUnnamedAddr(true);
666   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
667     if (MD->isVirtual())
668       F->setUnnamedAddr(true);
669 
670   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
671   if (alignment)
672     F->setAlignment(alignment);
673 
674   // C++ ABI requires 2-byte alignment for member functions.
675   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
676     F->setAlignment(2);
677 }
678 
SetCommonAttributes(const Decl * D,llvm::GlobalValue * GV)679 void CodeGenModule::SetCommonAttributes(const Decl *D,
680                                         llvm::GlobalValue *GV) {
681   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
682     setGlobalVisibility(GV, ND);
683   else
684     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
685 
686   if (D->hasAttr<UsedAttr>())
687     AddUsedGlobal(GV);
688 
689   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
690     GV->setSection(SA->getName());
691 
692   // Alias cannot have attributes. Filter them here.
693   if (!isa<llvm::GlobalAlias>(GV))
694     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
695 }
696 
SetInternalFunctionAttributes(const Decl * D,llvm::Function * F,const CGFunctionInfo & FI)697 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
698                                                   llvm::Function *F,
699                                                   const CGFunctionInfo &FI) {
700   SetLLVMFunctionAttributes(D, FI, F);
701   SetLLVMFunctionAttributesForDefinition(D, F);
702 
703   F->setLinkage(llvm::Function::InternalLinkage);
704 
705   SetCommonAttributes(D, F);
706 }
707 
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction)708 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
709                                           llvm::Function *F,
710                                           bool IsIncompleteFunction) {
711   if (unsigned IID = F->getIntrinsicID()) {
712     // If this is an intrinsic function, set the function's attributes
713     // to the intrinsic's attributes.
714     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
715                                                     (llvm::Intrinsic::ID)IID));
716     return;
717   }
718 
719   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
720 
721   if (!IsIncompleteFunction)
722     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
723 
724   if (getCXXABI().HasThisReturn(GD)) {
725     assert(!F->arg_empty() &&
726            F->arg_begin()->getType()
727              ->canLosslesslyBitCastTo(F->getReturnType()) &&
728            "unexpected this return");
729     F->addAttribute(1, llvm::Attribute::Returned);
730   }
731 
732   // Only a few attributes are set on declarations; these may later be
733   // overridden by a definition.
734 
735   if (FD->hasAttr<DLLImportAttr>()) {
736     F->setLinkage(llvm::Function::DLLImportLinkage);
737   } else if (FD->hasAttr<WeakAttr>() ||
738              FD->isWeakImported()) {
739     // "extern_weak" is overloaded in LLVM; we probably should have
740     // separate linkage types for this.
741     F->setLinkage(llvm::Function::ExternalWeakLinkage);
742   } else {
743     F->setLinkage(llvm::Function::ExternalLinkage);
744 
745     LinkageInfo LV = FD->getLinkageAndVisibility();
746     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
747       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
748     }
749   }
750 
751   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
752     F->setSection(SA->getName());
753 
754   // A replaceable global allocation function does not act like a builtin by
755   // default, only if it is invoked by a new-expression or delete-expression.
756   if (FD->isReplaceableGlobalAllocationFunction())
757     F->addAttribute(llvm::AttributeSet::FunctionIndex,
758                     llvm::Attribute::NoBuiltin);
759 }
760 
AddUsedGlobal(llvm::GlobalValue * GV)761 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
762   assert(!GV->isDeclaration() &&
763          "Only globals with definition can force usage.");
764   LLVMUsed.push_back(GV);
765 }
766 
EmitLLVMUsed()767 void CodeGenModule::EmitLLVMUsed() {
768   // Don't create llvm.used if there is no need.
769   if (LLVMUsed.empty())
770     return;
771 
772   // Convert LLVMUsed to what ConstantArray needs.
773   SmallVector<llvm::Constant*, 8> UsedArray;
774   UsedArray.resize(LLVMUsed.size());
775   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
776     UsedArray[i] =
777      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
778                                     Int8PtrTy);
779   }
780 
781   if (UsedArray.empty())
782     return;
783   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
784 
785   llvm::GlobalVariable *GV =
786     new llvm::GlobalVariable(getModule(), ATy, false,
787                              llvm::GlobalValue::AppendingLinkage,
788                              llvm::ConstantArray::get(ATy, UsedArray),
789                              "llvm.used");
790 
791   GV->setSection("llvm.metadata");
792 }
793 
AppendLinkerOptions(StringRef Opts)794 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
795   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
796   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
797 }
798 
AddDetectMismatch(StringRef Name,StringRef Value)799 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
800   llvm::SmallString<32> Opt;
801   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
802   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
803   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
804 }
805 
AddDependentLib(StringRef Lib)806 void CodeGenModule::AddDependentLib(StringRef Lib) {
807   llvm::SmallString<24> Opt;
808   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
809   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
810   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
811 }
812 
813 /// \brief Add link options implied by the given module, including modules
814 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::Value * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)815 static void addLinkOptionsPostorder(CodeGenModule &CGM,
816                                     Module *Mod,
817                                     SmallVectorImpl<llvm::Value *> &Metadata,
818                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
819   // Import this module's parent.
820   if (Mod->Parent && Visited.insert(Mod->Parent)) {
821     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
822   }
823 
824   // Import this module's dependencies.
825   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
826     if (Visited.insert(Mod->Imports[I-1]))
827       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
828   }
829 
830   // Add linker options to link against the libraries/frameworks
831   // described by this module.
832   llvm::LLVMContext &Context = CGM.getLLVMContext();
833   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
834     // Link against a framework.  Frameworks are currently Darwin only, so we
835     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
836     if (Mod->LinkLibraries[I-1].IsFramework) {
837       llvm::Value *Args[2] = {
838         llvm::MDString::get(Context, "-framework"),
839         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
840       };
841 
842       Metadata.push_back(llvm::MDNode::get(Context, Args));
843       continue;
844     }
845 
846     // Link against a library.
847     llvm::SmallString<24> Opt;
848     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
849       Mod->LinkLibraries[I-1].Library, Opt);
850     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
851     Metadata.push_back(llvm::MDNode::get(Context, OptString));
852   }
853 }
854 
EmitModuleLinkOptions()855 void CodeGenModule::EmitModuleLinkOptions() {
856   // Collect the set of all of the modules we want to visit to emit link
857   // options, which is essentially the imported modules and all of their
858   // non-explicit child modules.
859   llvm::SetVector<clang::Module *> LinkModules;
860   llvm::SmallPtrSet<clang::Module *, 16> Visited;
861   SmallVector<clang::Module *, 16> Stack;
862 
863   // Seed the stack with imported modules.
864   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
865                                                MEnd = ImportedModules.end();
866        M != MEnd; ++M) {
867     if (Visited.insert(*M))
868       Stack.push_back(*M);
869   }
870 
871   // Find all of the modules to import, making a little effort to prune
872   // non-leaf modules.
873   while (!Stack.empty()) {
874     clang::Module *Mod = Stack.back();
875     Stack.pop_back();
876 
877     bool AnyChildren = false;
878 
879     // Visit the submodules of this module.
880     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
881                                         SubEnd = Mod->submodule_end();
882          Sub != SubEnd; ++Sub) {
883       // Skip explicit children; they need to be explicitly imported to be
884       // linked against.
885       if ((*Sub)->IsExplicit)
886         continue;
887 
888       if (Visited.insert(*Sub)) {
889         Stack.push_back(*Sub);
890         AnyChildren = true;
891       }
892     }
893 
894     // We didn't find any children, so add this module to the list of
895     // modules to link against.
896     if (!AnyChildren) {
897       LinkModules.insert(Mod);
898     }
899   }
900 
901   // Add link options for all of the imported modules in reverse topological
902   // order.  We don't do anything to try to order import link flags with respect
903   // to linker options inserted by things like #pragma comment().
904   SmallVector<llvm::Value *, 16> MetadataArgs;
905   Visited.clear();
906   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
907                                                MEnd = LinkModules.end();
908        M != MEnd; ++M) {
909     if (Visited.insert(*M))
910       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
911   }
912   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
913   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
914 
915   // Add the linker options metadata flag.
916   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
917                             llvm::MDNode::get(getLLVMContext(),
918                                               LinkerOptionsMetadata));
919 }
920 
EmitDeferred()921 void CodeGenModule::EmitDeferred() {
922   // Emit code for any potentially referenced deferred decls.  Since a
923   // previously unused static decl may become used during the generation of code
924   // for a static function, iterate until no changes are made.
925 
926   while (true) {
927     if (!DeferredVTables.empty()) {
928       EmitDeferredVTables();
929 
930       // Emitting a v-table doesn't directly cause more v-tables to
931       // become deferred, although it can cause functions to be
932       // emitted that then need those v-tables.
933       assert(DeferredVTables.empty());
934     }
935 
936     // Stop if we're out of both deferred v-tables and deferred declarations.
937     if (DeferredDeclsToEmit.empty()) break;
938 
939     GlobalDecl D = DeferredDeclsToEmit.back();
940     DeferredDeclsToEmit.pop_back();
941 
942     // Check to see if we've already emitted this.  This is necessary
943     // for a couple of reasons: first, decls can end up in the
944     // deferred-decls queue multiple times, and second, decls can end
945     // up with definitions in unusual ways (e.g. by an extern inline
946     // function acquiring a strong function redefinition).  Just
947     // ignore these cases.
948     //
949     // TODO: That said, looking this up multiple times is very wasteful.
950     StringRef Name = getMangledName(D);
951     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
952     assert(CGRef && "Deferred decl wasn't referenced?");
953 
954     if (!CGRef->isDeclaration())
955       continue;
956 
957     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
958     // purposes an alias counts as a definition.
959     if (isa<llvm::GlobalAlias>(CGRef))
960       continue;
961 
962     // Otherwise, emit the definition and move on to the next one.
963     EmitGlobalDefinition(D);
964   }
965 }
966 
EmitGlobalAnnotations()967 void CodeGenModule::EmitGlobalAnnotations() {
968   if (Annotations.empty())
969     return;
970 
971   // Create a new global variable for the ConstantStruct in the Module.
972   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
973     Annotations[0]->getType(), Annotations.size()), Annotations);
974   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
975     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
976     "llvm.global.annotations");
977   gv->setSection(AnnotationSection);
978 }
979 
EmitAnnotationString(StringRef Str)980 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
981   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
982   if (i != AnnotationStrings.end())
983     return i->second;
984 
985   // Not found yet, create a new global.
986   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
987   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
988     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
989   gv->setSection(AnnotationSection);
990   gv->setUnnamedAddr(true);
991   AnnotationStrings[Str] = gv;
992   return gv;
993 }
994 
EmitAnnotationUnit(SourceLocation Loc)995 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
996   SourceManager &SM = getContext().getSourceManager();
997   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
998   if (PLoc.isValid())
999     return EmitAnnotationString(PLoc.getFilename());
1000   return EmitAnnotationString(SM.getBufferName(Loc));
1001 }
1002 
EmitAnnotationLineNo(SourceLocation L)1003 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1004   SourceManager &SM = getContext().getSourceManager();
1005   PresumedLoc PLoc = SM.getPresumedLoc(L);
1006   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1007     SM.getExpansionLineNumber(L);
1008   return llvm::ConstantInt::get(Int32Ty, LineNo);
1009 }
1010 
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)1011 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1012                                                 const AnnotateAttr *AA,
1013                                                 SourceLocation L) {
1014   // Get the globals for file name, annotation, and the line number.
1015   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1016                  *UnitGV = EmitAnnotationUnit(L),
1017                  *LineNoCst = EmitAnnotationLineNo(L);
1018 
1019   // Create the ConstantStruct for the global annotation.
1020   llvm::Constant *Fields[4] = {
1021     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1022     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1023     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1024     LineNoCst
1025   };
1026   return llvm::ConstantStruct::getAnon(Fields);
1027 }
1028 
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)1029 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1030                                          llvm::GlobalValue *GV) {
1031   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1032   // Get the struct elements for these annotations.
1033   for (specific_attr_iterator<AnnotateAttr>
1034        ai = D->specific_attr_begin<AnnotateAttr>(),
1035        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1036     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1037 }
1038 
MayDeferGeneration(const ValueDecl * Global)1039 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1040   // Never defer when EmitAllDecls is specified.
1041   if (LangOpts.EmitAllDecls)
1042     return false;
1043 
1044   return !getContext().DeclMustBeEmitted(Global);
1045 }
1046 
GetAddrOfUuidDescriptor(const CXXUuidofExpr * E)1047 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1048     const CXXUuidofExpr* E) {
1049   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1050   // well-formed.
1051   StringRef Uuid;
1052   if (E->isTypeOperand())
1053     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1054   else {
1055     // Special case: __uuidof(0) means an all-zero GUID.
1056     Expr *Op = E->getExprOperand();
1057     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1058       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1059     else
1060       Uuid = "00000000-0000-0000-0000-000000000000";
1061   }
1062   std::string Name = "__uuid_" + Uuid.str();
1063 
1064   // Look for an existing global.
1065   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1066     return GV;
1067 
1068   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1069   assert(Init && "failed to initialize as constant");
1070 
1071   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1072   // first field is declared as "long", which for many targets is 8 bytes.
1073   // Those architectures are not supported. (With the MS abi, long is always 4
1074   // bytes.)
1075   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1076   if (Init->getType() != GuidType) {
1077     DiagnosticsEngine &Diags = getDiags();
1078     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1079         "__uuidof codegen is not supported on this architecture");
1080     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1081     Init = llvm::UndefValue::get(GuidType);
1082   }
1083 
1084   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1085       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1086   GV->setUnnamedAddr(true);
1087   return GV;
1088 }
1089 
GetWeakRefReference(const ValueDecl * VD)1090 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1091   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1092   assert(AA && "No alias?");
1093 
1094   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1095 
1096   // See if there is already something with the target's name in the module.
1097   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1098   if (Entry) {
1099     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1100     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1101   }
1102 
1103   llvm::Constant *Aliasee;
1104   if (isa<llvm::FunctionType>(DeclTy))
1105     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1106                                       GlobalDecl(cast<FunctionDecl>(VD)),
1107                                       /*ForVTable=*/false);
1108   else
1109     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1110                                     llvm::PointerType::getUnqual(DeclTy), 0);
1111 
1112   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1113   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1114   WeakRefReferences.insert(F);
1115 
1116   return Aliasee;
1117 }
1118 
EmitGlobal(GlobalDecl GD)1119 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1120   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1121 
1122   // Weak references don't produce any output by themselves.
1123   if (Global->hasAttr<WeakRefAttr>())
1124     return;
1125 
1126   // If this is an alias definition (which otherwise looks like a declaration)
1127   // emit it now.
1128   if (Global->hasAttr<AliasAttr>())
1129     return EmitAliasDefinition(GD);
1130 
1131   // If this is CUDA, be selective about which declarations we emit.
1132   if (LangOpts.CUDA) {
1133     if (CodeGenOpts.CUDAIsDevice) {
1134       if (!Global->hasAttr<CUDADeviceAttr>() &&
1135           !Global->hasAttr<CUDAGlobalAttr>() &&
1136           !Global->hasAttr<CUDAConstantAttr>() &&
1137           !Global->hasAttr<CUDASharedAttr>())
1138         return;
1139     } else {
1140       if (!Global->hasAttr<CUDAHostAttr>() && (
1141             Global->hasAttr<CUDADeviceAttr>() ||
1142             Global->hasAttr<CUDAConstantAttr>() ||
1143             Global->hasAttr<CUDASharedAttr>()))
1144         return;
1145     }
1146   }
1147 
1148   // Ignore declarations, they will be emitted on their first use.
1149   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1150     // Forward declarations are emitted lazily on first use.
1151     if (!FD->doesThisDeclarationHaveABody()) {
1152       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1153         return;
1154 
1155       const FunctionDecl *InlineDefinition = 0;
1156       FD->getBody(InlineDefinition);
1157 
1158       StringRef MangledName = getMangledName(GD);
1159       DeferredDecls.erase(MangledName);
1160       EmitGlobalDefinition(InlineDefinition);
1161       return;
1162     }
1163   } else {
1164     const VarDecl *VD = cast<VarDecl>(Global);
1165     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1166 
1167     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1168       return;
1169   }
1170 
1171   // Defer code generation when possible if this is a static definition, inline
1172   // function etc.  These we only want to emit if they are used.
1173   if (!MayDeferGeneration(Global)) {
1174     // Emit the definition if it can't be deferred.
1175     EmitGlobalDefinition(GD);
1176     return;
1177   }
1178 
1179   // If we're deferring emission of a C++ variable with an
1180   // initializer, remember the order in which it appeared in the file.
1181   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1182       cast<VarDecl>(Global)->hasInit()) {
1183     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1184     CXXGlobalInits.push_back(0);
1185   }
1186 
1187   // If the value has already been used, add it directly to the
1188   // DeferredDeclsToEmit list.
1189   StringRef MangledName = getMangledName(GD);
1190   if (GetGlobalValue(MangledName))
1191     DeferredDeclsToEmit.push_back(GD);
1192   else {
1193     // Otherwise, remember that we saw a deferred decl with this name.  The
1194     // first use of the mangled name will cause it to move into
1195     // DeferredDeclsToEmit.
1196     DeferredDecls[MangledName] = GD;
1197   }
1198 }
1199 
1200 namespace {
1201   struct FunctionIsDirectlyRecursive :
1202     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1203     const StringRef Name;
1204     const Builtin::Context &BI;
1205     bool Result;
FunctionIsDirectlyRecursive__anon0c52fb250111::FunctionIsDirectlyRecursive1206     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1207       Name(N), BI(C), Result(false) {
1208     }
1209     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1210 
TraverseCallExpr__anon0c52fb250111::FunctionIsDirectlyRecursive1211     bool TraverseCallExpr(CallExpr *E) {
1212       const FunctionDecl *FD = E->getDirectCallee();
1213       if (!FD)
1214         return true;
1215       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1216       if (Attr && Name == Attr->getLabel()) {
1217         Result = true;
1218         return false;
1219       }
1220       unsigned BuiltinID = FD->getBuiltinID();
1221       if (!BuiltinID)
1222         return true;
1223       StringRef BuiltinName = BI.GetName(BuiltinID);
1224       if (BuiltinName.startswith("__builtin_") &&
1225           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1226         Result = true;
1227         return false;
1228       }
1229       return true;
1230     }
1231   };
1232 }
1233 
1234 // isTriviallyRecursive - Check if this function calls another
1235 // decl that, because of the asm attribute or the other decl being a builtin,
1236 // ends up pointing to itself.
1237 bool
isTriviallyRecursive(const FunctionDecl * FD)1238 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1239   StringRef Name;
1240   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1241     // asm labels are a special kind of mangling we have to support.
1242     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1243     if (!Attr)
1244       return false;
1245     Name = Attr->getLabel();
1246   } else {
1247     Name = FD->getName();
1248   }
1249 
1250   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1251   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1252   return Walker.Result;
1253 }
1254 
1255 bool
shouldEmitFunction(GlobalDecl GD)1256 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1257   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1258     return true;
1259   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1260   if (CodeGenOpts.OptimizationLevel == 0 &&
1261       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1262     return false;
1263   // PR9614. Avoid cases where the source code is lying to us. An available
1264   // externally function should have an equivalent function somewhere else,
1265   // but a function that calls itself is clearly not equivalent to the real
1266   // implementation.
1267   // This happens in glibc's btowc and in some configure checks.
1268   return !isTriviallyRecursive(F);
1269 }
1270 
1271 /// If the type for the method's class was generated by
1272 /// CGDebugInfo::createContextChain(), the cache contains only a
1273 /// limited DIType without any declarations. Since EmitFunctionStart()
1274 /// needs to find the canonical declaration for each method, we need
1275 /// to construct the complete type prior to emitting the method.
CompleteDIClassType(const CXXMethodDecl * D)1276 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1277   if (!D->isInstance())
1278     return;
1279 
1280   if (CGDebugInfo *DI = getModuleDebugInfo())
1281     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1282       const PointerType *ThisPtr =
1283         cast<PointerType>(D->getThisType(getContext()));
1284       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1285     }
1286 }
1287 
EmitGlobalDefinition(GlobalDecl GD)1288 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1289   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1290 
1291   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1292                                  Context.getSourceManager(),
1293                                  "Generating code for declaration");
1294 
1295   if (isa<FunctionDecl>(D)) {
1296     // At -O0, don't generate IR for functions with available_externally
1297     // linkage.
1298     if (!shouldEmitFunction(GD))
1299       return;
1300 
1301     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1302       CompleteDIClassType(Method);
1303       // Make sure to emit the definition(s) before we emit the thunks.
1304       // This is necessary for the generation of certain thunks.
1305       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1306         EmitCXXConstructor(CD, GD.getCtorType());
1307       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1308         EmitCXXDestructor(DD, GD.getDtorType());
1309       else
1310         EmitGlobalFunctionDefinition(GD);
1311 
1312       if (Method->isVirtual())
1313         getVTables().EmitThunks(GD);
1314 
1315       return;
1316     }
1317 
1318     return EmitGlobalFunctionDefinition(GD);
1319   }
1320 
1321   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1322     return EmitGlobalVarDefinition(VD);
1323 
1324   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1325 }
1326 
1327 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1328 /// module, create and return an llvm Function with the specified type. If there
1329 /// is something in the module with the specified name, return it potentially
1330 /// bitcasted to the right type.
1331 ///
1332 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1333 /// to set the attributes on the function when it is first created.
1334 llvm::Constant *
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,llvm::AttributeSet ExtraAttrs)1335 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1336                                        llvm::Type *Ty,
1337                                        GlobalDecl GD, bool ForVTable,
1338                                        llvm::AttributeSet ExtraAttrs) {
1339   const Decl *D = GD.getDecl();
1340 
1341   // Lookup the entry, lazily creating it if necessary.
1342   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1343   if (Entry) {
1344     if (WeakRefReferences.erase(Entry)) {
1345       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1346       if (FD && !FD->hasAttr<WeakAttr>())
1347         Entry->setLinkage(llvm::Function::ExternalLinkage);
1348     }
1349 
1350     if (Entry->getType()->getElementType() == Ty)
1351       return Entry;
1352 
1353     // Make sure the result is of the correct type.
1354     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1355   }
1356 
1357   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1358   // each other bottoming out with the base dtor.  Therefore we emit non-base
1359   // dtors on usage, even if there is no dtor definition in the TU.
1360   if (D && isa<CXXDestructorDecl>(D) &&
1361       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1362                                          GD.getDtorType()))
1363     DeferredDeclsToEmit.push_back(GD);
1364 
1365   // This function doesn't have a complete type (for example, the return
1366   // type is an incomplete struct). Use a fake type instead, and make
1367   // sure not to try to set attributes.
1368   bool IsIncompleteFunction = false;
1369 
1370   llvm::FunctionType *FTy;
1371   if (isa<llvm::FunctionType>(Ty)) {
1372     FTy = cast<llvm::FunctionType>(Ty);
1373   } else {
1374     FTy = llvm::FunctionType::get(VoidTy, false);
1375     IsIncompleteFunction = true;
1376   }
1377 
1378   llvm::Function *F = llvm::Function::Create(FTy,
1379                                              llvm::Function::ExternalLinkage,
1380                                              MangledName, &getModule());
1381   assert(F->getName() == MangledName && "name was uniqued!");
1382   if (D)
1383     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1384   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1385     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1386     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1387                      llvm::AttributeSet::get(VMContext,
1388                                              llvm::AttributeSet::FunctionIndex,
1389                                              B));
1390   }
1391 
1392   // This is the first use or definition of a mangled name.  If there is a
1393   // deferred decl with this name, remember that we need to emit it at the end
1394   // of the file.
1395   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1396   if (DDI != DeferredDecls.end()) {
1397     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1398     // list, and remove it from DeferredDecls (since we don't need it anymore).
1399     DeferredDeclsToEmit.push_back(DDI->second);
1400     DeferredDecls.erase(DDI);
1401 
1402   // Otherwise, there are cases we have to worry about where we're
1403   // using a declaration for which we must emit a definition but where
1404   // we might not find a top-level definition:
1405   //   - member functions defined inline in their classes
1406   //   - friend functions defined inline in some class
1407   //   - special member functions with implicit definitions
1408   // If we ever change our AST traversal to walk into class methods,
1409   // this will be unnecessary.
1410   //
1411   // We also don't emit a definition for a function if it's going to be an entry
1412   // in a vtable, unless it's already marked as used.
1413   } else if (getLangOpts().CPlusPlus && D) {
1414     // Look for a declaration that's lexically in a record.
1415     const FunctionDecl *FD = cast<FunctionDecl>(D);
1416     FD = FD->getMostRecentDecl();
1417     do {
1418       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1419         if (FD->isImplicit() && !ForVTable) {
1420           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1421           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1422           break;
1423         } else if (FD->doesThisDeclarationHaveABody()) {
1424           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1425           break;
1426         }
1427       }
1428       FD = FD->getPreviousDecl();
1429     } while (FD);
1430   }
1431 
1432   // Make sure the result is of the requested type.
1433   if (!IsIncompleteFunction) {
1434     assert(F->getType()->getElementType() == Ty);
1435     return F;
1436   }
1437 
1438   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1439   return llvm::ConstantExpr::getBitCast(F, PTy);
1440 }
1441 
1442 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1443 /// non-null, then this function will use the specified type if it has to
1444 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable)1445 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1446                                                  llvm::Type *Ty,
1447                                                  bool ForVTable) {
1448   // If there was no specific requested type, just convert it now.
1449   if (!Ty)
1450     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1451 
1452   StringRef MangledName = getMangledName(GD);
1453   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1454 }
1455 
1456 /// CreateRuntimeFunction - Create a new runtime function with the specified
1457 /// type and name.
1458 llvm::Constant *
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeSet ExtraAttrs)1459 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1460                                      StringRef Name,
1461                                      llvm::AttributeSet ExtraAttrs) {
1462   llvm::Constant *C
1463     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1464                               ExtraAttrs);
1465   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1466     if (F->empty())
1467       F->setCallingConv(getRuntimeCC());
1468   return C;
1469 }
1470 
1471 /// isTypeConstant - Determine whether an object of this type can be emitted
1472 /// as a constant.
1473 ///
1474 /// If ExcludeCtor is true, the duration when the object's constructor runs
1475 /// will not be considered. The caller will need to verify that the object is
1476 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)1477 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1478   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1479     return false;
1480 
1481   if (Context.getLangOpts().CPlusPlus) {
1482     if (const CXXRecordDecl *Record
1483           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1484       return ExcludeCtor && !Record->hasMutableFields() &&
1485              Record->hasTrivialDestructor();
1486   }
1487 
1488   return true;
1489 }
1490 
1491 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1492 /// create and return an llvm GlobalVariable with the specified type.  If there
1493 /// is something in the module with the specified name, return it potentially
1494 /// bitcasted to the right type.
1495 ///
1496 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1497 /// to set the attributes on the global when it is first created.
1498 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,bool UnnamedAddr)1499 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1500                                      llvm::PointerType *Ty,
1501                                      const VarDecl *D,
1502                                      bool UnnamedAddr) {
1503   // Lookup the entry, lazily creating it if necessary.
1504   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1505   if (Entry) {
1506     if (WeakRefReferences.erase(Entry)) {
1507       if (D && !D->hasAttr<WeakAttr>())
1508         Entry->setLinkage(llvm::Function::ExternalLinkage);
1509     }
1510 
1511     if (UnnamedAddr)
1512       Entry->setUnnamedAddr(true);
1513 
1514     if (Entry->getType() == Ty)
1515       return Entry;
1516 
1517     // Make sure the result is of the correct type.
1518     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1519   }
1520 
1521   // This is the first use or definition of a mangled name.  If there is a
1522   // deferred decl with this name, remember that we need to emit it at the end
1523   // of the file.
1524   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1525   if (DDI != DeferredDecls.end()) {
1526     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1527     // list, and remove it from DeferredDecls (since we don't need it anymore).
1528     DeferredDeclsToEmit.push_back(DDI->second);
1529     DeferredDecls.erase(DDI);
1530   }
1531 
1532   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1533   llvm::GlobalVariable *GV =
1534     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1535                              llvm::GlobalValue::ExternalLinkage,
1536                              0, MangledName, 0,
1537                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1538 
1539   // Handle things which are present even on external declarations.
1540   if (D) {
1541     // FIXME: This code is overly simple and should be merged with other global
1542     // handling.
1543     GV->setConstant(isTypeConstant(D->getType(), false));
1544 
1545     // Set linkage and visibility in case we never see a definition.
1546     LinkageInfo LV = D->getLinkageAndVisibility();
1547     if (LV.getLinkage() != ExternalLinkage) {
1548       // Don't set internal linkage on declarations.
1549     } else {
1550       if (D->hasAttr<DLLImportAttr>())
1551         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1552       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1553         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1554 
1555       // Set visibility on a declaration only if it's explicit.
1556       if (LV.isVisibilityExplicit())
1557         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1558     }
1559 
1560     if (D->getTLSKind()) {
1561       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1562         CXXThreadLocals.push_back(std::make_pair(D, GV));
1563       setTLSMode(GV, *D);
1564     }
1565   }
1566 
1567   if (AddrSpace != Ty->getAddressSpace())
1568     return llvm::ConstantExpr::getBitCast(GV, Ty);
1569   else
1570     return GV;
1571 }
1572 
1573 
1574 llvm::GlobalVariable *
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage)1575 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1576                                       llvm::Type *Ty,
1577                                       llvm::GlobalValue::LinkageTypes Linkage) {
1578   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1579   llvm::GlobalVariable *OldGV = 0;
1580 
1581 
1582   if (GV) {
1583     // Check if the variable has the right type.
1584     if (GV->getType()->getElementType() == Ty)
1585       return GV;
1586 
1587     // Because C++ name mangling, the only way we can end up with an already
1588     // existing global with the same name is if it has been declared extern "C".
1589     assert(GV->isDeclaration() && "Declaration has wrong type!");
1590     OldGV = GV;
1591   }
1592 
1593   // Create a new variable.
1594   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1595                                 Linkage, 0, Name);
1596 
1597   if (OldGV) {
1598     // Replace occurrences of the old variable if needed.
1599     GV->takeName(OldGV);
1600 
1601     if (!OldGV->use_empty()) {
1602       llvm::Constant *NewPtrForOldDecl =
1603       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1604       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1605     }
1606 
1607     OldGV->eraseFromParent();
1608   }
1609 
1610   return GV;
1611 }
1612 
1613 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1614 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1615 /// then it will be created with the specified type instead of whatever the
1616 /// normal requested type would be.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty)1617 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1618                                                   llvm::Type *Ty) {
1619   assert(D->hasGlobalStorage() && "Not a global variable");
1620   QualType ASTTy = D->getType();
1621   if (Ty == 0)
1622     Ty = getTypes().ConvertTypeForMem(ASTTy);
1623 
1624   llvm::PointerType *PTy =
1625     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1626 
1627   StringRef MangledName = getMangledName(D);
1628   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1629 }
1630 
1631 /// CreateRuntimeVariable - Create a new runtime global variable with the
1632 /// specified type and name.
1633 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)1634 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1635                                      StringRef Name) {
1636   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1637                                true);
1638 }
1639 
EmitTentativeDefinition(const VarDecl * D)1640 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1641   assert(!D->getInit() && "Cannot emit definite definitions here!");
1642 
1643   if (MayDeferGeneration(D)) {
1644     // If we have not seen a reference to this variable yet, place it
1645     // into the deferred declarations table to be emitted if needed
1646     // later.
1647     StringRef MangledName = getMangledName(D);
1648     if (!GetGlobalValue(MangledName)) {
1649       DeferredDecls[MangledName] = D;
1650       return;
1651     }
1652   }
1653 
1654   // The tentative definition is the only definition.
1655   EmitGlobalVarDefinition(D);
1656 }
1657 
GetTargetTypeStoreSize(llvm::Type * Ty) const1658 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1659     return Context.toCharUnitsFromBits(
1660       TheDataLayout.getTypeStoreSizeInBits(Ty));
1661 }
1662 
GetGlobalVarAddressSpace(const VarDecl * D,unsigned AddrSpace)1663 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1664                                                  unsigned AddrSpace) {
1665   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1666     if (D->hasAttr<CUDAConstantAttr>())
1667       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1668     else if (D->hasAttr<CUDASharedAttr>())
1669       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1670     else
1671       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1672   }
1673 
1674   return AddrSpace;
1675 }
1676 
1677 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)1678 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1679                                                llvm::GlobalValue *GV) {
1680   if (!getLangOpts().CPlusPlus)
1681     return;
1682 
1683   // Must have 'used' attribute, or else inline assembly can't rely on
1684   // the name existing.
1685   if (!D->template hasAttr<UsedAttr>())
1686     return;
1687 
1688   // Must have internal linkage and an ordinary name.
1689   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1690     return;
1691 
1692   // Must be in an extern "C" context. Entities declared directly within
1693   // a record are not extern "C" even if the record is in such a context.
1694   const SomeDecl *First = D->getFirstDeclaration();
1695   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1696     return;
1697 
1698   // OK, this is an internal linkage entity inside an extern "C" linkage
1699   // specification. Make a note of that so we can give it the "expected"
1700   // mangled name if nothing else is using that name.
1701   std::pair<StaticExternCMap::iterator, bool> R =
1702       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1703 
1704   // If we have multiple internal linkage entities with the same name
1705   // in extern "C" regions, none of them gets that name.
1706   if (!R.second)
1707     R.first->second = 0;
1708 }
1709 
EmitGlobalVarDefinition(const VarDecl * D)1710 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1711   llvm::Constant *Init = 0;
1712   QualType ASTTy = D->getType();
1713   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1714   bool NeedsGlobalCtor = false;
1715   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1716 
1717   const VarDecl *InitDecl;
1718   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1719 
1720   if (!InitExpr) {
1721     // This is a tentative definition; tentative definitions are
1722     // implicitly initialized with { 0 }.
1723     //
1724     // Note that tentative definitions are only emitted at the end of
1725     // a translation unit, so they should never have incomplete
1726     // type. In addition, EmitTentativeDefinition makes sure that we
1727     // never attempt to emit a tentative definition if a real one
1728     // exists. A use may still exists, however, so we still may need
1729     // to do a RAUW.
1730     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1731     Init = EmitNullConstant(D->getType());
1732   } else {
1733     initializedGlobalDecl = GlobalDecl(D);
1734     Init = EmitConstantInit(*InitDecl);
1735 
1736     if (!Init) {
1737       QualType T = InitExpr->getType();
1738       if (D->getType()->isReferenceType())
1739         T = D->getType();
1740 
1741       if (getLangOpts().CPlusPlus) {
1742         Init = EmitNullConstant(T);
1743         NeedsGlobalCtor = true;
1744       } else {
1745         ErrorUnsupported(D, "static initializer");
1746         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1747       }
1748     } else {
1749       // We don't need an initializer, so remove the entry for the delayed
1750       // initializer position (just in case this entry was delayed) if we
1751       // also don't need to register a destructor.
1752       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1753         DelayedCXXInitPosition.erase(D);
1754     }
1755   }
1756 
1757   llvm::Type* InitType = Init->getType();
1758   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1759 
1760   // Strip off a bitcast if we got one back.
1761   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1762     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1763            // all zero index gep.
1764            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1765     Entry = CE->getOperand(0);
1766   }
1767 
1768   // Entry is now either a Function or GlobalVariable.
1769   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1770 
1771   // We have a definition after a declaration with the wrong type.
1772   // We must make a new GlobalVariable* and update everything that used OldGV
1773   // (a declaration or tentative definition) with the new GlobalVariable*
1774   // (which will be a definition).
1775   //
1776   // This happens if there is a prototype for a global (e.g.
1777   // "extern int x[];") and then a definition of a different type (e.g.
1778   // "int x[10];"). This also happens when an initializer has a different type
1779   // from the type of the global (this happens with unions).
1780   if (GV == 0 ||
1781       GV->getType()->getElementType() != InitType ||
1782       GV->getType()->getAddressSpace() !=
1783        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1784 
1785     // Move the old entry aside so that we'll create a new one.
1786     Entry->setName(StringRef());
1787 
1788     // Make a new global with the correct type, this is now guaranteed to work.
1789     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1790 
1791     // Replace all uses of the old global with the new global
1792     llvm::Constant *NewPtrForOldDecl =
1793         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1794     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1795 
1796     // Erase the old global, since it is no longer used.
1797     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1798   }
1799 
1800   MaybeHandleStaticInExternC(D, GV);
1801 
1802   if (D->hasAttr<AnnotateAttr>())
1803     AddGlobalAnnotations(D, GV);
1804 
1805   GV->setInitializer(Init);
1806 
1807   // If it is safe to mark the global 'constant', do so now.
1808   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1809                   isTypeConstant(D->getType(), true));
1810 
1811   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1812 
1813   // Set the llvm linkage type as appropriate.
1814   llvm::GlobalValue::LinkageTypes Linkage =
1815     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1816   GV->setLinkage(Linkage);
1817   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1818     // common vars aren't constant even if declared const.
1819     GV->setConstant(false);
1820 
1821   SetCommonAttributes(D, GV);
1822 
1823   // Emit the initializer function if necessary.
1824   if (NeedsGlobalCtor || NeedsGlobalDtor)
1825     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1826 
1827   // If we are compiling with ASan, add metadata indicating dynamically
1828   // initialized globals.
1829   if (SanOpts.Address && NeedsGlobalCtor) {
1830     llvm::Module &M = getModule();
1831 
1832     llvm::NamedMDNode *DynamicInitializers =
1833         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1834     llvm::Value *GlobalToAdd[] = { GV };
1835     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1836     DynamicInitializers->addOperand(ThisGlobal);
1837   }
1838 
1839   // Emit global variable debug information.
1840   if (CGDebugInfo *DI = getModuleDebugInfo())
1841     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1842       DI->EmitGlobalVariable(GV, D);
1843 }
1844 
1845 llvm::GlobalValue::LinkageTypes
GetLLVMLinkageVarDefinition(const VarDecl * D,bool isConstant)1846 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1847   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1848   if (Linkage == GVA_Internal)
1849     return llvm::Function::InternalLinkage;
1850   else if (D->hasAttr<DLLImportAttr>())
1851     return llvm::Function::DLLImportLinkage;
1852   else if (D->hasAttr<DLLExportAttr>())
1853     return llvm::Function::DLLExportLinkage;
1854   else if (D->hasAttr<SelectAnyAttr>()) {
1855     // selectany symbols are externally visible, so use weak instead of
1856     // linkonce.  MSVC optimizes away references to const selectany globals, so
1857     // all definitions should be the same and ODR linkage should be used.
1858     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1859     return llvm::GlobalVariable::WeakODRLinkage;
1860   } else if (D->hasAttr<WeakAttr>()) {
1861     if (isConstant)
1862       return llvm::GlobalVariable::WeakODRLinkage;
1863     else
1864       return llvm::GlobalVariable::WeakAnyLinkage;
1865   } else if (Linkage == GVA_TemplateInstantiation ||
1866              Linkage == GVA_ExplicitTemplateInstantiation)
1867     return llvm::GlobalVariable::WeakODRLinkage;
1868   else if (!getLangOpts().CPlusPlus &&
1869            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1870              D->getAttr<CommonAttr>()) &&
1871            !D->hasExternalStorage() && !D->getInit() &&
1872            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1873            !D->getAttr<WeakImportAttr>()) {
1874     // Thread local vars aren't considered common linkage.
1875     return llvm::GlobalVariable::CommonLinkage;
1876   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1877              getTarget().getTriple().isMacOSX())
1878     // On Darwin, the backing variable for a C++11 thread_local variable always
1879     // has internal linkage; all accesses should just be calls to the
1880     // Itanium-specified entry point, which has the normal linkage of the
1881     // variable.
1882     return llvm::GlobalValue::InternalLinkage;
1883   return llvm::GlobalVariable::ExternalLinkage;
1884 }
1885 
1886 /// Replace the uses of a function that was declared with a non-proto type.
1887 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)1888 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1889                                           llvm::Function *newFn) {
1890   // Fast path.
1891   if (old->use_empty()) return;
1892 
1893   llvm::Type *newRetTy = newFn->getReturnType();
1894   SmallVector<llvm::Value*, 4> newArgs;
1895 
1896   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1897          ui != ue; ) {
1898     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1899     llvm::User *user = *use;
1900 
1901     // Recognize and replace uses of bitcasts.  Most calls to
1902     // unprototyped functions will use bitcasts.
1903     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1904       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1905         replaceUsesOfNonProtoConstant(bitcast, newFn);
1906       continue;
1907     }
1908 
1909     // Recognize calls to the function.
1910     llvm::CallSite callSite(user);
1911     if (!callSite) continue;
1912     if (!callSite.isCallee(use)) continue;
1913 
1914     // If the return types don't match exactly, then we can't
1915     // transform this call unless it's dead.
1916     if (callSite->getType() != newRetTy && !callSite->use_empty())
1917       continue;
1918 
1919     // Get the call site's attribute list.
1920     SmallVector<llvm::AttributeSet, 8> newAttrs;
1921     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1922 
1923     // Collect any return attributes from the call.
1924     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1925       newAttrs.push_back(
1926         llvm::AttributeSet::get(newFn->getContext(),
1927                                 oldAttrs.getRetAttributes()));
1928 
1929     // If the function was passed too few arguments, don't transform.
1930     unsigned newNumArgs = newFn->arg_size();
1931     if (callSite.arg_size() < newNumArgs) continue;
1932 
1933     // If extra arguments were passed, we silently drop them.
1934     // If any of the types mismatch, we don't transform.
1935     unsigned argNo = 0;
1936     bool dontTransform = false;
1937     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1938            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1939       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1940         dontTransform = true;
1941         break;
1942       }
1943 
1944       // Add any parameter attributes.
1945       if (oldAttrs.hasAttributes(argNo + 1))
1946         newAttrs.
1947           push_back(llvm::
1948                     AttributeSet::get(newFn->getContext(),
1949                                       oldAttrs.getParamAttributes(argNo + 1)));
1950     }
1951     if (dontTransform)
1952       continue;
1953 
1954     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1955       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1956                                                  oldAttrs.getFnAttributes()));
1957 
1958     // Okay, we can transform this.  Create the new call instruction and copy
1959     // over the required information.
1960     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1961 
1962     llvm::CallSite newCall;
1963     if (callSite.isCall()) {
1964       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1965                                        callSite.getInstruction());
1966     } else {
1967       llvm::InvokeInst *oldInvoke =
1968         cast<llvm::InvokeInst>(callSite.getInstruction());
1969       newCall = llvm::InvokeInst::Create(newFn,
1970                                          oldInvoke->getNormalDest(),
1971                                          oldInvoke->getUnwindDest(),
1972                                          newArgs, "",
1973                                          callSite.getInstruction());
1974     }
1975     newArgs.clear(); // for the next iteration
1976 
1977     if (!newCall->getType()->isVoidTy())
1978       newCall->takeName(callSite.getInstruction());
1979     newCall.setAttributes(
1980                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1981     newCall.setCallingConv(callSite.getCallingConv());
1982 
1983     // Finally, remove the old call, replacing any uses with the new one.
1984     if (!callSite->use_empty())
1985       callSite->replaceAllUsesWith(newCall.getInstruction());
1986 
1987     // Copy debug location attached to CI.
1988     if (!callSite->getDebugLoc().isUnknown())
1989       newCall->setDebugLoc(callSite->getDebugLoc());
1990     callSite->eraseFromParent();
1991   }
1992 }
1993 
1994 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1995 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1996 /// existing call uses of the old function in the module, this adjusts them to
1997 /// call the new function directly.
1998 ///
1999 /// This is not just a cleanup: the always_inline pass requires direct calls to
2000 /// functions to be able to inline them.  If there is a bitcast in the way, it
2001 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2002 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)2003 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2004                                                       llvm::Function *NewFn) {
2005   // If we're redefining a global as a function, don't transform it.
2006   if (!isa<llvm::Function>(Old)) return;
2007 
2008   replaceUsesOfNonProtoConstant(Old, NewFn);
2009 }
2010 
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)2011 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2012   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2013   // If we have a definition, this might be a deferred decl. If the
2014   // instantiation is explicit, make sure we emit it at the end.
2015   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2016     GetAddrOfGlobalVar(VD);
2017 
2018   EmitTopLevelDecl(VD);
2019 }
2020 
EmitGlobalFunctionDefinition(GlobalDecl GD)2021 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2022   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2023 
2024   // Compute the function info and LLVM type.
2025   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2026   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2027 
2028   // Get or create the prototype for the function.
2029   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2030 
2031   // Strip off a bitcast if we got one back.
2032   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2033     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2034     Entry = CE->getOperand(0);
2035   }
2036 
2037 
2038   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2039     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2040 
2041     // If the types mismatch then we have to rewrite the definition.
2042     assert(OldFn->isDeclaration() &&
2043            "Shouldn't replace non-declaration");
2044 
2045     // F is the Function* for the one with the wrong type, we must make a new
2046     // Function* and update everything that used F (a declaration) with the new
2047     // Function* (which will be a definition).
2048     //
2049     // This happens if there is a prototype for a function
2050     // (e.g. "int f()") and then a definition of a different type
2051     // (e.g. "int f(int x)").  Move the old function aside so that it
2052     // doesn't interfere with GetAddrOfFunction.
2053     OldFn->setName(StringRef());
2054     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2055 
2056     // This might be an implementation of a function without a
2057     // prototype, in which case, try to do special replacement of
2058     // calls which match the new prototype.  The really key thing here
2059     // is that we also potentially drop arguments from the call site
2060     // so as to make a direct call, which makes the inliner happier
2061     // and suppresses a number of optimizer warnings (!) about
2062     // dropping arguments.
2063     if (!OldFn->use_empty()) {
2064       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2065       OldFn->removeDeadConstantUsers();
2066     }
2067 
2068     // Replace uses of F with the Function we will endow with a body.
2069     if (!Entry->use_empty()) {
2070       llvm::Constant *NewPtrForOldDecl =
2071         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2072       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2073     }
2074 
2075     // Ok, delete the old function now, which is dead.
2076     OldFn->eraseFromParent();
2077 
2078     Entry = NewFn;
2079   }
2080 
2081   // We need to set linkage and visibility on the function before
2082   // generating code for it because various parts of IR generation
2083   // want to propagate this information down (e.g. to local static
2084   // declarations).
2085   llvm::Function *Fn = cast<llvm::Function>(Entry);
2086   setFunctionLinkage(GD, Fn);
2087 
2088   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2089   setGlobalVisibility(Fn, D);
2090 
2091   MaybeHandleStaticInExternC(D, Fn);
2092 
2093   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2094 
2095   SetFunctionDefinitionAttributes(D, Fn);
2096   SetLLVMFunctionAttributesForDefinition(D, Fn);
2097 
2098   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2099     AddGlobalCtor(Fn, CA->getPriority());
2100   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2101     AddGlobalDtor(Fn, DA->getPriority());
2102   if (D->hasAttr<AnnotateAttr>())
2103     AddGlobalAnnotations(D, Fn);
2104 }
2105 
EmitAliasDefinition(GlobalDecl GD)2106 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2107   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2108   const AliasAttr *AA = D->getAttr<AliasAttr>();
2109   assert(AA && "Not an alias?");
2110 
2111   StringRef MangledName = getMangledName(GD);
2112 
2113   // If there is a definition in the module, then it wins over the alias.
2114   // This is dubious, but allow it to be safe.  Just ignore the alias.
2115   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2116   if (Entry && !Entry->isDeclaration())
2117     return;
2118 
2119   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2120 
2121   // Create a reference to the named value.  This ensures that it is emitted
2122   // if a deferred decl.
2123   llvm::Constant *Aliasee;
2124   if (isa<llvm::FunctionType>(DeclTy))
2125     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2126                                       /*ForVTable=*/false);
2127   else
2128     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2129                                     llvm::PointerType::getUnqual(DeclTy), 0);
2130 
2131   // Create the new alias itself, but don't set a name yet.
2132   llvm::GlobalValue *GA =
2133     new llvm::GlobalAlias(Aliasee->getType(),
2134                           llvm::Function::ExternalLinkage,
2135                           "", Aliasee, &getModule());
2136 
2137   if (Entry) {
2138     assert(Entry->isDeclaration());
2139 
2140     // If there is a declaration in the module, then we had an extern followed
2141     // by the alias, as in:
2142     //   extern int test6();
2143     //   ...
2144     //   int test6() __attribute__((alias("test7")));
2145     //
2146     // Remove it and replace uses of it with the alias.
2147     GA->takeName(Entry);
2148 
2149     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2150                                                           Entry->getType()));
2151     Entry->eraseFromParent();
2152   } else {
2153     GA->setName(MangledName);
2154   }
2155 
2156   // Set attributes which are particular to an alias; this is a
2157   // specialization of the attributes which may be set on a global
2158   // variable/function.
2159   if (D->hasAttr<DLLExportAttr>()) {
2160     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2161       // The dllexport attribute is ignored for undefined symbols.
2162       if (FD->hasBody())
2163         GA->setLinkage(llvm::Function::DLLExportLinkage);
2164     } else {
2165       GA->setLinkage(llvm::Function::DLLExportLinkage);
2166     }
2167   } else if (D->hasAttr<WeakAttr>() ||
2168              D->hasAttr<WeakRefAttr>() ||
2169              D->isWeakImported()) {
2170     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2171   }
2172 
2173   SetCommonAttributes(D, GA);
2174 }
2175 
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)2176 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2177                                             ArrayRef<llvm::Type*> Tys) {
2178   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2179                                          Tys);
2180 }
2181 
2182 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)2183 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2184                          const StringLiteral *Literal,
2185                          bool TargetIsLSB,
2186                          bool &IsUTF16,
2187                          unsigned &StringLength) {
2188   StringRef String = Literal->getString();
2189   unsigned NumBytes = String.size();
2190 
2191   // Check for simple case.
2192   if (!Literal->containsNonAsciiOrNull()) {
2193     StringLength = NumBytes;
2194     return Map.GetOrCreateValue(String);
2195   }
2196 
2197   // Otherwise, convert the UTF8 literals into a string of shorts.
2198   IsUTF16 = true;
2199 
2200   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2201   const UTF8 *FromPtr = (const UTF8 *)String.data();
2202   UTF16 *ToPtr = &ToBuf[0];
2203 
2204   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2205                            &ToPtr, ToPtr + NumBytes,
2206                            strictConversion);
2207 
2208   // ConvertUTF8toUTF16 returns the length in ToPtr.
2209   StringLength = ToPtr - &ToBuf[0];
2210 
2211   // Add an explicit null.
2212   *ToPtr = 0;
2213   return Map.
2214     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2215                                (StringLength + 1) * 2));
2216 }
2217 
2218 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,unsigned & StringLength)2219 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2220                        const StringLiteral *Literal,
2221                        unsigned &StringLength) {
2222   StringRef String = Literal->getString();
2223   StringLength = String.size();
2224   return Map.GetOrCreateValue(String);
2225 }
2226 
2227 llvm::Constant *
GetAddrOfConstantCFString(const StringLiteral * Literal)2228 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2229   unsigned StringLength = 0;
2230   bool isUTF16 = false;
2231   llvm::StringMapEntry<llvm::Constant*> &Entry =
2232     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2233                              getDataLayout().isLittleEndian(),
2234                              isUTF16, StringLength);
2235 
2236   if (llvm::Constant *C = Entry.getValue())
2237     return C;
2238 
2239   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2240   llvm::Constant *Zeros[] = { Zero, Zero };
2241   llvm::Value *V;
2242 
2243   // If we don't already have it, get __CFConstantStringClassReference.
2244   if (!CFConstantStringClassRef) {
2245     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2246     Ty = llvm::ArrayType::get(Ty, 0);
2247     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2248                                            "__CFConstantStringClassReference");
2249     // Decay array -> ptr
2250     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2251     CFConstantStringClassRef = V;
2252   }
2253   else
2254     V = CFConstantStringClassRef;
2255 
2256   QualType CFTy = getContext().getCFConstantStringType();
2257 
2258   llvm::StructType *STy =
2259     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2260 
2261   llvm::Constant *Fields[4];
2262 
2263   // Class pointer.
2264   Fields[0] = cast<llvm::ConstantExpr>(V);
2265 
2266   // Flags.
2267   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2268   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2269     llvm::ConstantInt::get(Ty, 0x07C8);
2270 
2271   // String pointer.
2272   llvm::Constant *C = 0;
2273   if (isUTF16) {
2274     ArrayRef<uint16_t> Arr =
2275       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2276                                      const_cast<char *>(Entry.getKey().data())),
2277                                    Entry.getKey().size() / 2);
2278     C = llvm::ConstantDataArray::get(VMContext, Arr);
2279   } else {
2280     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2281   }
2282 
2283   llvm::GlobalValue::LinkageTypes Linkage;
2284   if (isUTF16)
2285     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2286     Linkage = llvm::GlobalValue::InternalLinkage;
2287   else
2288     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2289     // when using private linkage. It is not clear if this is a bug in ld
2290     // or a reasonable new restriction.
2291     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2292 
2293   // Note: -fwritable-strings doesn't make the backing store strings of
2294   // CFStrings writable. (See <rdar://problem/10657500>)
2295   llvm::GlobalVariable *GV =
2296     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2297                              Linkage, C, ".str");
2298   GV->setUnnamedAddr(true);
2299   // Don't enforce the target's minimum global alignment, since the only use
2300   // of the string is via this class initializer.
2301   if (isUTF16) {
2302     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2303     GV->setAlignment(Align.getQuantity());
2304   } else {
2305     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2306     GV->setAlignment(Align.getQuantity());
2307   }
2308 
2309   // String.
2310   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2311 
2312   if (isUTF16)
2313     // Cast the UTF16 string to the correct type.
2314     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2315 
2316   // String length.
2317   Ty = getTypes().ConvertType(getContext().LongTy);
2318   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2319 
2320   // The struct.
2321   C = llvm::ConstantStruct::get(STy, Fields);
2322   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2323                                 llvm::GlobalVariable::PrivateLinkage, C,
2324                                 "_unnamed_cfstring_");
2325   if (const char *Sect = getTarget().getCFStringSection())
2326     GV->setSection(Sect);
2327   Entry.setValue(GV);
2328 
2329   return GV;
2330 }
2331 
2332 static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)2333 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2334                  DeclContext *DC, IdentifierInfo *Id) {
2335   SourceLocation Loc;
2336   if (Ctx.getLangOpts().CPlusPlus)
2337     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2338   else
2339     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2340 }
2341 
2342 llvm::Constant *
GetAddrOfConstantString(const StringLiteral * Literal)2343 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2344   unsigned StringLength = 0;
2345   llvm::StringMapEntry<llvm::Constant*> &Entry =
2346     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2347 
2348   if (llvm::Constant *C = Entry.getValue())
2349     return C;
2350 
2351   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2352   llvm::Constant *Zeros[] = { Zero, Zero };
2353   llvm::Value *V;
2354   // If we don't already have it, get _NSConstantStringClassReference.
2355   if (!ConstantStringClassRef) {
2356     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2357     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2358     llvm::Constant *GV;
2359     if (LangOpts.ObjCRuntime.isNonFragile()) {
2360       std::string str =
2361         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2362                             : "OBJC_CLASS_$_" + StringClass;
2363       GV = getObjCRuntime().GetClassGlobal(str);
2364       // Make sure the result is of the correct type.
2365       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2366       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2367       ConstantStringClassRef = V;
2368     } else {
2369       std::string str =
2370         StringClass.empty() ? "_NSConstantStringClassReference"
2371                             : "_" + StringClass + "ClassReference";
2372       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2373       GV = CreateRuntimeVariable(PTy, str);
2374       // Decay array -> ptr
2375       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2376       ConstantStringClassRef = V;
2377     }
2378   }
2379   else
2380     V = ConstantStringClassRef;
2381 
2382   if (!NSConstantStringType) {
2383     // Construct the type for a constant NSString.
2384     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2385                                      Context.getTranslationUnitDecl(),
2386                                    &Context.Idents.get("__builtin_NSString"));
2387     D->startDefinition();
2388 
2389     QualType FieldTypes[3];
2390 
2391     // const int *isa;
2392     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2393     // const char *str;
2394     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2395     // unsigned int length;
2396     FieldTypes[2] = Context.UnsignedIntTy;
2397 
2398     // Create fields
2399     for (unsigned i = 0; i < 3; ++i) {
2400       FieldDecl *Field = FieldDecl::Create(Context, D,
2401                                            SourceLocation(),
2402                                            SourceLocation(), 0,
2403                                            FieldTypes[i], /*TInfo=*/0,
2404                                            /*BitWidth=*/0,
2405                                            /*Mutable=*/false,
2406                                            ICIS_NoInit);
2407       Field->setAccess(AS_public);
2408       D->addDecl(Field);
2409     }
2410 
2411     D->completeDefinition();
2412     QualType NSTy = Context.getTagDeclType(D);
2413     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2414   }
2415 
2416   llvm::Constant *Fields[3];
2417 
2418   // Class pointer.
2419   Fields[0] = cast<llvm::ConstantExpr>(V);
2420 
2421   // String pointer.
2422   llvm::Constant *C =
2423     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2424 
2425   llvm::GlobalValue::LinkageTypes Linkage;
2426   bool isConstant;
2427   Linkage = llvm::GlobalValue::PrivateLinkage;
2428   isConstant = !LangOpts.WritableStrings;
2429 
2430   llvm::GlobalVariable *GV =
2431   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2432                            ".str");
2433   GV->setUnnamedAddr(true);
2434   // Don't enforce the target's minimum global alignment, since the only use
2435   // of the string is via this class initializer.
2436   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2437   GV->setAlignment(Align.getQuantity());
2438   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2439 
2440   // String length.
2441   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2442   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2443 
2444   // The struct.
2445   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2446   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2447                                 llvm::GlobalVariable::PrivateLinkage, C,
2448                                 "_unnamed_nsstring_");
2449   // FIXME. Fix section.
2450   if (const char *Sect =
2451         LangOpts.ObjCRuntime.isNonFragile()
2452           ? getTarget().getNSStringNonFragileABISection()
2453           : getTarget().getNSStringSection())
2454     GV->setSection(Sect);
2455   Entry.setValue(GV);
2456 
2457   return GV;
2458 }
2459 
getObjCFastEnumerationStateType()2460 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2461   if (ObjCFastEnumerationStateType.isNull()) {
2462     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2463                                      Context.getTranslationUnitDecl(),
2464                       &Context.Idents.get("__objcFastEnumerationState"));
2465     D->startDefinition();
2466 
2467     QualType FieldTypes[] = {
2468       Context.UnsignedLongTy,
2469       Context.getPointerType(Context.getObjCIdType()),
2470       Context.getPointerType(Context.UnsignedLongTy),
2471       Context.getConstantArrayType(Context.UnsignedLongTy,
2472                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2473     };
2474 
2475     for (size_t i = 0; i < 4; ++i) {
2476       FieldDecl *Field = FieldDecl::Create(Context,
2477                                            D,
2478                                            SourceLocation(),
2479                                            SourceLocation(), 0,
2480                                            FieldTypes[i], /*TInfo=*/0,
2481                                            /*BitWidth=*/0,
2482                                            /*Mutable=*/false,
2483                                            ICIS_NoInit);
2484       Field->setAccess(AS_public);
2485       D->addDecl(Field);
2486     }
2487 
2488     D->completeDefinition();
2489     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2490   }
2491 
2492   return ObjCFastEnumerationStateType;
2493 }
2494 
2495 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)2496 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2497   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2498 
2499   // Don't emit it as the address of the string, emit the string data itself
2500   // as an inline array.
2501   if (E->getCharByteWidth() == 1) {
2502     SmallString<64> Str(E->getString());
2503 
2504     // Resize the string to the right size, which is indicated by its type.
2505     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2506     Str.resize(CAT->getSize().getZExtValue());
2507     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2508   }
2509 
2510   llvm::ArrayType *AType =
2511     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2512   llvm::Type *ElemTy = AType->getElementType();
2513   unsigned NumElements = AType->getNumElements();
2514 
2515   // Wide strings have either 2-byte or 4-byte elements.
2516   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2517     SmallVector<uint16_t, 32> Elements;
2518     Elements.reserve(NumElements);
2519 
2520     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2521       Elements.push_back(E->getCodeUnit(i));
2522     Elements.resize(NumElements);
2523     return llvm::ConstantDataArray::get(VMContext, Elements);
2524   }
2525 
2526   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2527   SmallVector<uint32_t, 32> Elements;
2528   Elements.reserve(NumElements);
2529 
2530   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2531     Elements.push_back(E->getCodeUnit(i));
2532   Elements.resize(NumElements);
2533   return llvm::ConstantDataArray::get(VMContext, Elements);
2534 }
2535 
2536 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2537 /// constant array for the given string literal.
2538 llvm::Constant *
GetAddrOfConstantStringFromLiteral(const StringLiteral * S)2539 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2540   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2541   if (S->isAscii() || S->isUTF8()) {
2542     SmallString<64> Str(S->getString());
2543 
2544     // Resize the string to the right size, which is indicated by its type.
2545     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2546     Str.resize(CAT->getSize().getZExtValue());
2547     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2548   }
2549 
2550   // FIXME: the following does not memoize wide strings.
2551   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2552   llvm::GlobalVariable *GV =
2553     new llvm::GlobalVariable(getModule(),C->getType(),
2554                              !LangOpts.WritableStrings,
2555                              llvm::GlobalValue::PrivateLinkage,
2556                              C,".str");
2557 
2558   GV->setAlignment(Align.getQuantity());
2559   GV->setUnnamedAddr(true);
2560   return GV;
2561 }
2562 
2563 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2564 /// array for the given ObjCEncodeExpr node.
2565 llvm::Constant *
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)2566 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2567   std::string Str;
2568   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2569 
2570   return GetAddrOfConstantCString(Str);
2571 }
2572 
2573 
2574 /// GenerateWritableString -- Creates storage for a string literal.
GenerateStringLiteral(StringRef str,bool constant,CodeGenModule & CGM,const char * GlobalName,unsigned Alignment)2575 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2576                                              bool constant,
2577                                              CodeGenModule &CGM,
2578                                              const char *GlobalName,
2579                                              unsigned Alignment) {
2580   // Create Constant for this string literal. Don't add a '\0'.
2581   llvm::Constant *C =
2582       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2583 
2584   // Create a global variable for this string
2585   llvm::GlobalVariable *GV =
2586     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2587                              llvm::GlobalValue::PrivateLinkage,
2588                              C, GlobalName);
2589   GV->setAlignment(Alignment);
2590   GV->setUnnamedAddr(true);
2591   return GV;
2592 }
2593 
2594 /// GetAddrOfConstantString - Returns a pointer to a character array
2595 /// containing the literal. This contents are exactly that of the
2596 /// given string, i.e. it will not be null terminated automatically;
2597 /// see GetAddrOfConstantCString. Note that whether the result is
2598 /// actually a pointer to an LLVM constant depends on
2599 /// Feature.WriteableStrings.
2600 ///
2601 /// The result has pointer to array type.
GetAddrOfConstantString(StringRef Str,const char * GlobalName,unsigned Alignment)2602 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2603                                                        const char *GlobalName,
2604                                                        unsigned Alignment) {
2605   // Get the default prefix if a name wasn't specified.
2606   if (!GlobalName)
2607     GlobalName = ".str";
2608 
2609   if (Alignment == 0)
2610     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2611       .getQuantity();
2612 
2613   // Don't share any string literals if strings aren't constant.
2614   if (LangOpts.WritableStrings)
2615     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2616 
2617   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2618     ConstantStringMap.GetOrCreateValue(Str);
2619 
2620   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2621     if (Alignment > GV->getAlignment()) {
2622       GV->setAlignment(Alignment);
2623     }
2624     return GV;
2625   }
2626 
2627   // Create a global variable for this.
2628   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2629                                                    Alignment);
2630   Entry.setValue(GV);
2631   return GV;
2632 }
2633 
2634 /// GetAddrOfConstantCString - Returns a pointer to a character
2635 /// array containing the literal and a terminating '\0'
2636 /// character. The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName,unsigned Alignment)2637 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2638                                                         const char *GlobalName,
2639                                                         unsigned Alignment) {
2640   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2641   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2642 }
2643 
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)2644 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2645     const MaterializeTemporaryExpr *E, const Expr *Init) {
2646   assert((E->getStorageDuration() == SD_Static ||
2647           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2648   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2649 
2650   // If we're not materializing a subobject of the temporary, keep the
2651   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2652   QualType MaterializedType = Init->getType();
2653   if (Init == E->GetTemporaryExpr())
2654     MaterializedType = E->getType();
2655 
2656   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2657   if (Slot)
2658     return Slot;
2659 
2660   // FIXME: If an externally-visible declaration extends multiple temporaries,
2661   // we need to give each temporary the same name in every translation unit (and
2662   // we also need to make the temporaries externally-visible).
2663   SmallString<256> Name;
2664   llvm::raw_svector_ostream Out(Name);
2665   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2666   Out.flush();
2667 
2668   APValue *Value = 0;
2669   if (E->getStorageDuration() == SD_Static) {
2670     // We might have a cached constant initializer for this temporary. Note
2671     // that this might have a different value from the value computed by
2672     // evaluating the initializer if the surrounding constant expression
2673     // modifies the temporary.
2674     Value = getContext().getMaterializedTemporaryValue(E, false);
2675     if (Value && Value->isUninit())
2676       Value = 0;
2677   }
2678 
2679   // Try evaluating it now, it might have a constant initializer.
2680   Expr::EvalResult EvalResult;
2681   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2682       !EvalResult.hasSideEffects())
2683     Value = &EvalResult.Val;
2684 
2685   llvm::Constant *InitialValue = 0;
2686   bool Constant = false;
2687   llvm::Type *Type;
2688   if (Value) {
2689     // The temporary has a constant initializer, use it.
2690     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2691     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2692     Type = InitialValue->getType();
2693   } else {
2694     // No initializer, the initialization will be provided when we
2695     // initialize the declaration which performed lifetime extension.
2696     Type = getTypes().ConvertTypeForMem(MaterializedType);
2697   }
2698 
2699   // Create a global variable for this lifetime-extended temporary.
2700   llvm::GlobalVariable *GV =
2701     new llvm::GlobalVariable(getModule(), Type, Constant,
2702                              llvm::GlobalValue::PrivateLinkage,
2703                              InitialValue, Name.c_str());
2704   GV->setAlignment(
2705       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2706   if (VD->getTLSKind())
2707     setTLSMode(GV, *VD);
2708   Slot = GV;
2709   return GV;
2710 }
2711 
2712 /// EmitObjCPropertyImplementations - Emit information for synthesized
2713 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)2714 void CodeGenModule::EmitObjCPropertyImplementations(const
2715                                                     ObjCImplementationDecl *D) {
2716   for (ObjCImplementationDecl::propimpl_iterator
2717          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2718     ObjCPropertyImplDecl *PID = *i;
2719 
2720     // Dynamic is just for type-checking.
2721     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2722       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2723 
2724       // Determine which methods need to be implemented, some may have
2725       // been overridden. Note that ::isPropertyAccessor is not the method
2726       // we want, that just indicates if the decl came from a
2727       // property. What we want to know is if the method is defined in
2728       // this implementation.
2729       if (!D->getInstanceMethod(PD->getGetterName()))
2730         CodeGenFunction(*this).GenerateObjCGetter(
2731                                  const_cast<ObjCImplementationDecl *>(D), PID);
2732       if (!PD->isReadOnly() &&
2733           !D->getInstanceMethod(PD->getSetterName()))
2734         CodeGenFunction(*this).GenerateObjCSetter(
2735                                  const_cast<ObjCImplementationDecl *>(D), PID);
2736     }
2737   }
2738 }
2739 
needsDestructMethod(ObjCImplementationDecl * impl)2740 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2741   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2742   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2743        ivar; ivar = ivar->getNextIvar())
2744     if (ivar->getType().isDestructedType())
2745       return true;
2746 
2747   return false;
2748 }
2749 
2750 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2751 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)2752 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2753   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2754   if (needsDestructMethod(D)) {
2755     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2756     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2757     ObjCMethodDecl *DTORMethod =
2758       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2759                              cxxSelector, getContext().VoidTy, 0, D,
2760                              /*isInstance=*/true, /*isVariadic=*/false,
2761                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2762                              /*isDefined=*/false, ObjCMethodDecl::Required);
2763     D->addInstanceMethod(DTORMethod);
2764     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2765     D->setHasDestructors(true);
2766   }
2767 
2768   // If the implementation doesn't have any ivar initializers, we don't need
2769   // a .cxx_construct.
2770   if (D->getNumIvarInitializers() == 0)
2771     return;
2772 
2773   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2774   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2775   // The constructor returns 'self'.
2776   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2777                                                 D->getLocation(),
2778                                                 D->getLocation(),
2779                                                 cxxSelector,
2780                                                 getContext().getObjCIdType(), 0,
2781                                                 D, /*isInstance=*/true,
2782                                                 /*isVariadic=*/false,
2783                                                 /*isPropertyAccessor=*/true,
2784                                                 /*isImplicitlyDeclared=*/true,
2785                                                 /*isDefined=*/false,
2786                                                 ObjCMethodDecl::Required);
2787   D->addInstanceMethod(CTORMethod);
2788   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2789   D->setHasNonZeroConstructors(true);
2790 }
2791 
2792 /// EmitNamespace - Emit all declarations in a namespace.
EmitNamespace(const NamespaceDecl * ND)2793 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2794   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2795        I != E; ++I)
2796     EmitTopLevelDecl(*I);
2797 }
2798 
2799 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)2800 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2801   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2802       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2803     ErrorUnsupported(LSD, "linkage spec");
2804     return;
2805   }
2806 
2807   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2808        I != E; ++I) {
2809     // Meta-data for ObjC class includes references to implemented methods.
2810     // Generate class's method definitions first.
2811     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2812       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2813            MEnd = OID->meth_end();
2814            M != MEnd; ++M)
2815         EmitTopLevelDecl(*M);
2816     }
2817     EmitTopLevelDecl(*I);
2818   }
2819 }
2820 
2821 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)2822 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2823   // If an error has occurred, stop code generation, but continue
2824   // parsing and semantic analysis (to ensure all warnings and errors
2825   // are emitted).
2826   if (Diags.hasErrorOccurred())
2827     return;
2828 
2829   // Ignore dependent declarations.
2830   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2831     return;
2832 
2833   switch (D->getKind()) {
2834   case Decl::CXXConversion:
2835   case Decl::CXXMethod:
2836   case Decl::Function:
2837     // Skip function templates
2838     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2839         cast<FunctionDecl>(D)->isLateTemplateParsed())
2840       return;
2841 
2842     EmitGlobal(cast<FunctionDecl>(D));
2843     break;
2844 
2845   case Decl::Var:
2846     // Skip variable templates
2847     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2848       return;
2849   case Decl::VarTemplateSpecialization:
2850     EmitGlobal(cast<VarDecl>(D));
2851     break;
2852 
2853   // Indirect fields from global anonymous structs and unions can be
2854   // ignored; only the actual variable requires IR gen support.
2855   case Decl::IndirectField:
2856     break;
2857 
2858   // C++ Decls
2859   case Decl::Namespace:
2860     EmitNamespace(cast<NamespaceDecl>(D));
2861     break;
2862     // No code generation needed.
2863   case Decl::UsingShadow:
2864   case Decl::Using:
2865   case Decl::ClassTemplate:
2866   case Decl::VarTemplate:
2867   case Decl::VarTemplatePartialSpecialization:
2868   case Decl::FunctionTemplate:
2869   case Decl::TypeAliasTemplate:
2870   case Decl::Block:
2871   case Decl::Empty:
2872     break;
2873   case Decl::NamespaceAlias:
2874     if (CGDebugInfo *DI = getModuleDebugInfo())
2875         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2876     return;
2877   case Decl::UsingDirective: // using namespace X; [C++]
2878     if (CGDebugInfo *DI = getModuleDebugInfo())
2879       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2880     return;
2881   case Decl::CXXConstructor:
2882     // Skip function templates
2883     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2884         cast<FunctionDecl>(D)->isLateTemplateParsed())
2885       return;
2886 
2887     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2888     break;
2889   case Decl::CXXDestructor:
2890     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2891       return;
2892     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2893     break;
2894 
2895   case Decl::StaticAssert:
2896     // Nothing to do.
2897     break;
2898 
2899   // Objective-C Decls
2900 
2901   // Forward declarations, no (immediate) code generation.
2902   case Decl::ObjCInterface:
2903   case Decl::ObjCCategory:
2904     break;
2905 
2906   case Decl::ObjCProtocol: {
2907     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2908     if (Proto->isThisDeclarationADefinition())
2909       ObjCRuntime->GenerateProtocol(Proto);
2910     break;
2911   }
2912 
2913   case Decl::ObjCCategoryImpl:
2914     // Categories have properties but don't support synthesize so we
2915     // can ignore them here.
2916     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2917     break;
2918 
2919   case Decl::ObjCImplementation: {
2920     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2921     EmitObjCPropertyImplementations(OMD);
2922     EmitObjCIvarInitializations(OMD);
2923     ObjCRuntime->GenerateClass(OMD);
2924     // Emit global variable debug information.
2925     if (CGDebugInfo *DI = getModuleDebugInfo())
2926       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2927         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2928             OMD->getClassInterface()), OMD->getLocation());
2929     break;
2930   }
2931   case Decl::ObjCMethod: {
2932     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2933     // If this is not a prototype, emit the body.
2934     if (OMD->getBody())
2935       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2936     break;
2937   }
2938   case Decl::ObjCCompatibleAlias:
2939     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2940     break;
2941 
2942   case Decl::LinkageSpec:
2943     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2944     break;
2945 
2946   case Decl::FileScopeAsm: {
2947     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2948     StringRef AsmString = AD->getAsmString()->getString();
2949 
2950     const std::string &S = getModule().getModuleInlineAsm();
2951     if (S.empty())
2952       getModule().setModuleInlineAsm(AsmString);
2953     else if (S.end()[-1] == '\n')
2954       getModule().setModuleInlineAsm(S + AsmString.str());
2955     else
2956       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2957     break;
2958   }
2959 
2960   case Decl::Import: {
2961     ImportDecl *Import = cast<ImportDecl>(D);
2962 
2963     // Ignore import declarations that come from imported modules.
2964     if (clang::Module *Owner = Import->getOwningModule()) {
2965       if (getLangOpts().CurrentModule.empty() ||
2966           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2967         break;
2968     }
2969 
2970     ImportedModules.insert(Import->getImportedModule());
2971     break;
2972  }
2973 
2974   default:
2975     // Make sure we handled everything we should, every other kind is a
2976     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2977     // function. Need to recode Decl::Kind to do that easily.
2978     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2979   }
2980 }
2981 
2982 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)2983 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2984                                           const void *Ptr) {
2985   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2986   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2987   return llvm::ConstantInt::get(i64, PtrInt);
2988 }
2989 
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)2990 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2991                                    llvm::NamedMDNode *&GlobalMetadata,
2992                                    GlobalDecl D,
2993                                    llvm::GlobalValue *Addr) {
2994   if (!GlobalMetadata)
2995     GlobalMetadata =
2996       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2997 
2998   // TODO: should we report variant information for ctors/dtors?
2999   llvm::Value *Ops[] = {
3000     Addr,
3001     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3002   };
3003   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3004 }
3005 
3006 /// For each function which is declared within an extern "C" region and marked
3007 /// as 'used', but has internal linkage, create an alias from the unmangled
3008 /// name to the mangled name if possible. People expect to be able to refer
3009 /// to such functions with an unmangled name from inline assembly within the
3010 /// same translation unit.
EmitStaticExternCAliases()3011 void CodeGenModule::EmitStaticExternCAliases() {
3012   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3013                                   E = StaticExternCValues.end();
3014        I != E; ++I) {
3015     IdentifierInfo *Name = I->first;
3016     llvm::GlobalValue *Val = I->second;
3017     if (Val && !getModule().getNamedValue(Name->getName()))
3018       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3019                                           Name->getName(), Val, &getModule()));
3020   }
3021 }
3022 
3023 /// Emits metadata nodes associating all the global values in the
3024 /// current module with the Decls they came from.  This is useful for
3025 /// projects using IR gen as a subroutine.
3026 ///
3027 /// Since there's currently no way to associate an MDNode directly
3028 /// with an llvm::GlobalValue, we create a global named metadata
3029 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()3030 void CodeGenModule::EmitDeclMetadata() {
3031   llvm::NamedMDNode *GlobalMetadata = 0;
3032 
3033   // StaticLocalDeclMap
3034   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3035          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3036        I != E; ++I) {
3037     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3038     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3039   }
3040 }
3041 
3042 /// Emits metadata nodes for all the local variables in the current
3043 /// function.
EmitDeclMetadata()3044 void CodeGenFunction::EmitDeclMetadata() {
3045   if (LocalDeclMap.empty()) return;
3046 
3047   llvm::LLVMContext &Context = getLLVMContext();
3048 
3049   // Find the unique metadata ID for this name.
3050   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3051 
3052   llvm::NamedMDNode *GlobalMetadata = 0;
3053 
3054   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3055          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3056     const Decl *D = I->first;
3057     llvm::Value *Addr = I->second;
3058 
3059     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3060       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3061       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3062     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3063       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3064       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3065     }
3066   }
3067 }
3068 
EmitCoverageFile()3069 void CodeGenModule::EmitCoverageFile() {
3070   if (!getCodeGenOpts().CoverageFile.empty()) {
3071     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3072       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3073       llvm::LLVMContext &Ctx = TheModule.getContext();
3074       llvm::MDString *CoverageFile =
3075           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3076       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3077         llvm::MDNode *CU = CUNode->getOperand(i);
3078         llvm::Value *node[] = { CoverageFile, CU };
3079         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3080         GCov->addOperand(N);
3081       }
3082     }
3083   }
3084 }
3085 
EmitUuidofInitializer(StringRef Uuid,QualType GuidType)3086 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3087                                                      QualType GuidType) {
3088   // Sema has checked that all uuid strings are of the form
3089   // "12345678-1234-1234-1234-1234567890ab".
3090   assert(Uuid.size() == 36);
3091   const char *Uuidstr = Uuid.data();
3092   for (int i = 0; i < 36; ++i) {
3093     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3094     else                                         assert(isHexDigit(Uuidstr[i]));
3095   }
3096 
3097   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3098   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3099   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3100   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3101 
3102   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3103   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3104   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3105   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3106   APValue& Arr = InitStruct.getStructField(3);
3107   Arr = APValue(APValue::UninitArray(), 8, 8);
3108   for (int t = 0; t < 8; ++t)
3109     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3110           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3111 
3112   return EmitConstantValue(InitStruct, GuidType);
3113 }
3114