1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "content/browser/storage_partition_impl_map.h"
6
7 #include "base/bind.h"
8 #include "base/callback.h"
9 #include "base/file_util.h"
10 #include "base/files/file_enumerator.h"
11 #include "base/files/file_path.h"
12 #include "base/stl_util.h"
13 #include "base/strings/string_number_conversions.h"
14 #include "base/strings/string_util.h"
15 #include "base/strings/stringprintf.h"
16 #include "base/threading/sequenced_worker_pool.h"
17 #include "content/browser/appcache/chrome_appcache_service.h"
18 #include "content/browser/fileapi/browser_file_system_helper.h"
19 #include "content/browser/fileapi/chrome_blob_storage_context.h"
20 #include "content/browser/loader/resource_request_info_impl.h"
21 #include "content/browser/resource_context_impl.h"
22 #include "content/browser/storage_partition_impl.h"
23 #include "content/browser/streams/stream.h"
24 #include "content/browser/streams/stream_context.h"
25 #include "content/browser/streams/stream_registry.h"
26 #include "content/browser/streams/stream_url_request_job.h"
27 #include "content/browser/webui/url_data_manager_backend.h"
28 #include "content/public/browser/browser_context.h"
29 #include "content/public/browser/browser_thread.h"
30 #include "content/public/browser/content_browser_client.h"
31 #include "content/public/browser/storage_partition.h"
32 #include "content/public/common/content_constants.h"
33 #include "content/public/common/url_constants.h"
34 #include "crypto/sha2.h"
35 #include "net/url_request/url_request_context.h"
36 #include "net/url_request/url_request_context_getter.h"
37 #include "webkit/browser/blob/blob_storage_context.h"
38 #include "webkit/browser/blob/blob_url_request_job_factory.h"
39 #include "webkit/browser/fileapi/file_system_url_request_job_factory.h"
40 #include "webkit/common/blob/blob_data.h"
41
42 using appcache::AppCacheService;
43 using fileapi::FileSystemContext;
44 using webkit_blob::BlobStorageContext;
45
46 namespace content {
47
48 namespace {
49
50 // A derivative that knows about Streams too.
51 class BlobProtocolHandler : public net::URLRequestJobFactory::ProtocolHandler {
52 public:
BlobProtocolHandler(ChromeBlobStorageContext * blob_storage_context,StreamContext * stream_context,fileapi::FileSystemContext * file_system_context)53 BlobProtocolHandler(ChromeBlobStorageContext* blob_storage_context,
54 StreamContext* stream_context,
55 fileapi::FileSystemContext* file_system_context)
56 : blob_storage_context_(blob_storage_context),
57 stream_context_(stream_context),
58 file_system_context_(file_system_context) {
59 }
60
~BlobProtocolHandler()61 virtual ~BlobProtocolHandler() {
62 }
63
MaybeCreateJob(net::URLRequest * request,net::NetworkDelegate * network_delegate) const64 virtual net::URLRequestJob* MaybeCreateJob(
65 net::URLRequest* request,
66 net::NetworkDelegate* network_delegate) const OVERRIDE {
67 scoped_refptr<Stream> stream =
68 stream_context_->registry()->GetStream(request->url());
69 if (stream.get())
70 return new StreamURLRequestJob(request, network_delegate, stream);
71
72 if (!blob_protocol_handler_) {
73 // Construction is deferred because 'this' is constructed on
74 // the main thread but we want blob_protocol_handler_ constructed
75 // on the IO thread.
76 blob_protocol_handler_.reset(
77 new webkit_blob::BlobProtocolHandler(
78 blob_storage_context_->context(),
79 file_system_context_,
80 BrowserThread::GetMessageLoopProxyForThread(
81 BrowserThread::FILE).get()));
82 }
83 return blob_protocol_handler_->MaybeCreateJob(request, network_delegate);
84 }
85
86 private:
87 const scoped_refptr<ChromeBlobStorageContext> blob_storage_context_;
88 const scoped_refptr<StreamContext> stream_context_;
89 const scoped_refptr<fileapi::FileSystemContext> file_system_context_;
90 mutable scoped_ptr<webkit_blob::BlobProtocolHandler> blob_protocol_handler_;
91 DISALLOW_COPY_AND_ASSIGN(BlobProtocolHandler);
92 };
93
94 // These constants are used to create the directory structure under the profile
95 // where renderers with a non-default storage partition keep their persistent
96 // state. This will contain a set of directories that partially mirror the
97 // directory structure of BrowserContext::GetPath().
98 //
99 // The kStoragePartitionDirname contains an extensions directory which is
100 // further partitioned by extension id, followed by another level of directories
101 // for the "default" extension storage partition and one directory for each
102 // persistent partition used by a webview tag. Example:
103 //
104 // Storage/ext/ABCDEF/def
105 // Storage/ext/ABCDEF/hash(partition name)
106 //
107 // The code in GetStoragePartitionPath() constructs these path names.
108 //
109 // TODO(nasko): Move extension related path code out of content.
110 const base::FilePath::CharType kStoragePartitionDirname[] =
111 FILE_PATH_LITERAL("Storage");
112 const base::FilePath::CharType kExtensionsDirname[] =
113 FILE_PATH_LITERAL("ext");
114 const base::FilePath::CharType kDefaultPartitionDirname[] =
115 FILE_PATH_LITERAL("def");
116 const base::FilePath::CharType kTrashDirname[] =
117 FILE_PATH_LITERAL("trash");
118
119 // Because partition names are user specified, they can be arbitrarily long
120 // which makes them unsuitable for paths names. We use a truncation of a
121 // SHA256 hash to perform a deterministic shortening of the string. The
122 // kPartitionNameHashBytes constant controls the length of the truncation.
123 // We use 6 bytes, which gives us 99.999% reliability against collisions over
124 // 1 million partition domains.
125 //
126 // Analysis:
127 // We assume that all partition names within one partition domain are
128 // controlled by the the same entity. Thus there is no chance for adverserial
129 // attack and all we care about is accidental collision. To get 5 9s over
130 // 1 million domains, we need the probability of a collision in any one domain
131 // to be
132 //
133 // p < nroot(1000000, .99999) ~= 10^-11
134 //
135 // We use the following birthday attack approximation to calculate the max
136 // number of unique names for this probability:
137 //
138 // n(p,H) = sqrt(2*H * ln(1/(1-p)))
139 //
140 // For a 6-byte hash, H = 2^(6*8). n(10^-11, H) ~= 75
141 //
142 // An average partition domain is likely to have less than 10 unique
143 // partition names which is far lower than 75.
144 //
145 // Note, that for 4 9s of reliability, the limit is 237 partition names per
146 // partition domain.
147 const int kPartitionNameHashBytes = 6;
148
149 // Needed for selecting all files in ObliterateOneDirectory() below.
150 #if defined(OS_POSIX)
151 const int kAllFileTypes = base::FileEnumerator::FILES |
152 base::FileEnumerator::DIRECTORIES |
153 base::FileEnumerator::SHOW_SYM_LINKS;
154 #else
155 const int kAllFileTypes = base::FileEnumerator::FILES |
156 base::FileEnumerator::DIRECTORIES;
157 #endif
158
GetStoragePartitionDomainPath(const std::string & partition_domain)159 base::FilePath GetStoragePartitionDomainPath(
160 const std::string& partition_domain) {
161 CHECK(IsStringUTF8(partition_domain));
162
163 return base::FilePath(kStoragePartitionDirname).Append(kExtensionsDirname)
164 .Append(base::FilePath::FromUTF8Unsafe(partition_domain));
165 }
166
167 // Helper function for doing a depth-first deletion of the data on disk.
168 // Examines paths directly in |current_dir| (no recursion) and tries to
169 // delete from disk anything that is in, or isn't a parent of something in
170 // |paths_to_keep|. Paths that need further expansion are added to
171 // |paths_to_consider|.
ObliterateOneDirectory(const base::FilePath & current_dir,const std::vector<base::FilePath> & paths_to_keep,std::vector<base::FilePath> * paths_to_consider)172 void ObliterateOneDirectory(const base::FilePath& current_dir,
173 const std::vector<base::FilePath>& paths_to_keep,
174 std::vector<base::FilePath>* paths_to_consider) {
175 CHECK(current_dir.IsAbsolute());
176
177 base::FileEnumerator enumerator(current_dir, false, kAllFileTypes);
178 for (base::FilePath to_delete = enumerator.Next(); !to_delete.empty();
179 to_delete = enumerator.Next()) {
180 // Enum tracking which of the 3 possible actions to take for |to_delete|.
181 enum { kSkip, kEnqueue, kDelete } action = kDelete;
182
183 for (std::vector<base::FilePath>::const_iterator to_keep =
184 paths_to_keep.begin();
185 to_keep != paths_to_keep.end();
186 ++to_keep) {
187 if (to_delete == *to_keep) {
188 action = kSkip;
189 break;
190 } else if (to_delete.IsParent(*to_keep)) {
191 // |to_delete| contains a path to keep. Add to stack for further
192 // processing.
193 action = kEnqueue;
194 break;
195 }
196 }
197
198 switch (action) {
199 case kDelete:
200 base::DeleteFile(to_delete, true);
201 break;
202
203 case kEnqueue:
204 paths_to_consider->push_back(to_delete);
205 break;
206
207 case kSkip:
208 break;
209 }
210 }
211 }
212
213 // Synchronously attempts to delete |unnormalized_root|, preserving only
214 // entries in |paths_to_keep|. If there are no entries in |paths_to_keep| on
215 // disk, then it completely removes |unnormalized_root|. All paths must be
216 // absolute paths.
BlockingObliteratePath(const base::FilePath & unnormalized_browser_context_root,const base::FilePath & unnormalized_root,const std::vector<base::FilePath> & paths_to_keep,const scoped_refptr<base::TaskRunner> & closure_runner,const base::Closure & on_gc_required)217 void BlockingObliteratePath(
218 const base::FilePath& unnormalized_browser_context_root,
219 const base::FilePath& unnormalized_root,
220 const std::vector<base::FilePath>& paths_to_keep,
221 const scoped_refptr<base::TaskRunner>& closure_runner,
222 const base::Closure& on_gc_required) {
223 // Early exit required because MakeAbsoluteFilePath() will fail on POSIX
224 // if |unnormalized_root| does not exist. This is safe because there is
225 // nothing to do in this situation anwyays.
226 if (!base::PathExists(unnormalized_root)) {
227 return;
228 }
229
230 // Never try to obliterate things outside of the browser context root or the
231 // browser context root itself. Die hard.
232 base::FilePath root = base::MakeAbsoluteFilePath(unnormalized_root);
233 base::FilePath browser_context_root =
234 base::MakeAbsoluteFilePath(unnormalized_browser_context_root);
235 CHECK(!root.empty());
236 CHECK(!browser_context_root.empty());
237 CHECK(browser_context_root.IsParent(root) && browser_context_root != root);
238
239 // Reduce |paths_to_keep| set to those under the root and actually on disk.
240 std::vector<base::FilePath> valid_paths_to_keep;
241 for (std::vector<base::FilePath>::const_iterator it = paths_to_keep.begin();
242 it != paths_to_keep.end();
243 ++it) {
244 if (root.IsParent(*it) && base::PathExists(*it))
245 valid_paths_to_keep.push_back(*it);
246 }
247
248 // If none of the |paths_to_keep| are valid anymore then we just whack the
249 // root and be done with it. Otherwise, signal garbage collection and do
250 // a best-effort delete of the on-disk structures.
251 if (valid_paths_to_keep.empty()) {
252 base::DeleteFile(root, true);
253 return;
254 }
255 closure_runner->PostTask(FROM_HERE, on_gc_required);
256
257 // Otherwise, start at the root and delete everything that is not in
258 // |valid_paths_to_keep|.
259 std::vector<base::FilePath> paths_to_consider;
260 paths_to_consider.push_back(root);
261 while(!paths_to_consider.empty()) {
262 base::FilePath path = paths_to_consider.back();
263 paths_to_consider.pop_back();
264 ObliterateOneDirectory(path, valid_paths_to_keep, &paths_to_consider);
265 }
266 }
267
268 // Deletes all entries inside the |storage_root| that are not in the
269 // |active_paths|. Deletion is done in 2 steps:
270 //
271 // (1) Moving all garbage collected paths into a trash directory.
272 // (2) Asynchronously deleting the trash directory.
273 //
274 // The deletion is asynchronous because after (1) completes, calling code can
275 // safely continue to use the paths that had just been garbage collected
276 // without fear of race conditions.
277 //
278 // This code also ignores failed moves rather than attempting a smarter retry.
279 // Moves shouldn't fail here unless there is some out-of-band error (eg.,
280 // FS corruption). Retry logic is dangerous in the general case because
281 // there is not necessarily a guaranteed case where the logic may succeed.
282 //
283 // This function is still named BlockingGarbageCollect() because it does
284 // execute a few filesystem operations synchronously.
BlockingGarbageCollect(const base::FilePath & storage_root,const scoped_refptr<base::TaskRunner> & file_access_runner,scoped_ptr<base::hash_set<base::FilePath>> active_paths)285 void BlockingGarbageCollect(
286 const base::FilePath& storage_root,
287 const scoped_refptr<base::TaskRunner>& file_access_runner,
288 scoped_ptr<base::hash_set<base::FilePath> > active_paths) {
289 CHECK(storage_root.IsAbsolute());
290
291 base::FileEnumerator enumerator(storage_root, false, kAllFileTypes);
292 base::FilePath trash_directory;
293 if (!base::CreateTemporaryDirInDir(storage_root, kTrashDirname,
294 &trash_directory)) {
295 // Unable to continue without creating the trash directory so give up.
296 return;
297 }
298 for (base::FilePath path = enumerator.Next(); !path.empty();
299 path = enumerator.Next()) {
300 if (active_paths->find(path) == active_paths->end() &&
301 path != trash_directory) {
302 // Since |trash_directory| is unique for each run of this function there
303 // can be no colllisions on the move.
304 base::Move(path, trash_directory.Append(path.BaseName()));
305 }
306 }
307
308 file_access_runner->PostTask(
309 FROM_HERE,
310 base::Bind(base::IgnoreResult(&base::DeleteFile), trash_directory, true));
311 }
312
313 } // namespace
314
315 // static
GetStoragePartitionPath(const std::string & partition_domain,const std::string & partition_name)316 base::FilePath StoragePartitionImplMap::GetStoragePartitionPath(
317 const std::string& partition_domain,
318 const std::string& partition_name) {
319 if (partition_domain.empty())
320 return base::FilePath();
321
322 base::FilePath path = GetStoragePartitionDomainPath(partition_domain);
323
324 // TODO(ajwong): Mangle in-memory into this somehow, either by putting
325 // it into the partition_name, or by manually adding another path component
326 // here. Otherwise, it's possible to have an in-memory StoragePartition and
327 // a persistent one that return the same FilePath for GetPath().
328 if (!partition_name.empty()) {
329 // For analysis of why we can ignore collisions, see the comment above
330 // kPartitionNameHashBytes.
331 char buffer[kPartitionNameHashBytes];
332 crypto::SHA256HashString(partition_name, &buffer[0],
333 sizeof(buffer));
334 return path.AppendASCII(base::HexEncode(buffer, sizeof(buffer)));
335 }
336
337 return path.Append(kDefaultPartitionDirname);
338 }
339
StoragePartitionImplMap(BrowserContext * browser_context)340 StoragePartitionImplMap::StoragePartitionImplMap(
341 BrowserContext* browser_context)
342 : browser_context_(browser_context),
343 resource_context_initialized_(false) {
344 // Doing here instead of initializer list cause it's just too ugly to read.
345 base::SequencedWorkerPool* blocking_pool = BrowserThread::GetBlockingPool();
346 file_access_runner_ =
347 blocking_pool->GetSequencedTaskRunner(blocking_pool->GetSequenceToken());
348 }
349
~StoragePartitionImplMap()350 StoragePartitionImplMap::~StoragePartitionImplMap() {
351 STLDeleteContainerPairSecondPointers(partitions_.begin(),
352 partitions_.end());
353 }
354
Get(const std::string & partition_domain,const std::string & partition_name,bool in_memory)355 StoragePartitionImpl* StoragePartitionImplMap::Get(
356 const std::string& partition_domain,
357 const std::string& partition_name,
358 bool in_memory) {
359 // Find the previously created partition if it's available.
360 StoragePartitionConfig partition_config(
361 partition_domain, partition_name, in_memory);
362
363 PartitionMap::const_iterator it = partitions_.find(partition_config);
364 if (it != partitions_.end())
365 return it->second;
366
367 base::FilePath partition_path =
368 browser_context_->GetPath().Append(
369 GetStoragePartitionPath(partition_domain, partition_name));
370 StoragePartitionImpl* partition =
371 StoragePartitionImpl::Create(browser_context_, in_memory,
372 partition_path);
373 partitions_[partition_config] = partition;
374
375 ChromeBlobStorageContext* blob_storage_context =
376 ChromeBlobStorageContext::GetFor(browser_context_);
377 StreamContext* stream_context = StreamContext::GetFor(browser_context_);
378 ProtocolHandlerMap protocol_handlers;
379 protocol_handlers[chrome::kBlobScheme] =
380 linked_ptr<net::URLRequestJobFactory::ProtocolHandler>(
381 new BlobProtocolHandler(blob_storage_context,
382 stream_context,
383 partition->GetFileSystemContext()));
384 protocol_handlers[chrome::kFileSystemScheme] =
385 linked_ptr<net::URLRequestJobFactory::ProtocolHandler>(
386 CreateFileSystemProtocolHandler(partition->GetFileSystemContext()));
387 protocol_handlers[chrome::kChromeUIScheme] =
388 linked_ptr<net::URLRequestJobFactory::ProtocolHandler>(
389 URLDataManagerBackend::CreateProtocolHandler(
390 browser_context_->GetResourceContext(),
391 browser_context_->IsOffTheRecord(),
392 partition->GetAppCacheService(),
393 blob_storage_context));
394 std::vector<std::string> additional_webui_schemes;
395 GetContentClient()->browser()->GetAdditionalWebUISchemes(
396 &additional_webui_schemes);
397 for (std::vector<std::string>::const_iterator it =
398 additional_webui_schemes.begin();
399 it != additional_webui_schemes.end();
400 ++it) {
401 protocol_handlers[*it] =
402 linked_ptr<net::URLRequestJobFactory::ProtocolHandler>(
403 URLDataManagerBackend::CreateProtocolHandler(
404 browser_context_->GetResourceContext(),
405 browser_context_->IsOffTheRecord(),
406 partition->GetAppCacheService(),
407 blob_storage_context));
408 }
409 protocol_handlers[chrome::kChromeDevToolsScheme] =
410 linked_ptr<net::URLRequestJobFactory::ProtocolHandler>(
411 CreateDevToolsProtocolHandler(browser_context_->GetResourceContext(),
412 browser_context_->IsOffTheRecord()));
413
414 // These calls must happen after StoragePartitionImpl::Create().
415 if (partition_domain.empty()) {
416 partition->SetURLRequestContext(
417 GetContentClient()->browser()->CreateRequestContext(
418 browser_context_,
419 &protocol_handlers));
420 } else {
421 partition->SetURLRequestContext(
422 GetContentClient()->browser()->CreateRequestContextForStoragePartition(
423 browser_context_, partition->GetPath(), in_memory,
424 &protocol_handlers));
425 }
426 partition->SetMediaURLRequestContext(
427 partition_domain.empty() ?
428 browser_context_->GetMediaRequestContext() :
429 browser_context_->GetMediaRequestContextForStoragePartition(
430 partition->GetPath(), in_memory));
431
432 PostCreateInitialization(partition, in_memory);
433
434 return partition;
435 }
436
AsyncObliterate(const GURL & site,const base::Closure & on_gc_required)437 void StoragePartitionImplMap::AsyncObliterate(
438 const GURL& site,
439 const base::Closure& on_gc_required) {
440 // This method should avoid creating any StoragePartition (which would
441 // create more open file handles) so that it can delete as much of the
442 // data off disk as possible.
443 std::string partition_domain;
444 std::string partition_name;
445 bool in_memory = false;
446 GetContentClient()->browser()->GetStoragePartitionConfigForSite(
447 browser_context_, site, false, &partition_domain,
448 &partition_name, &in_memory);
449
450 // Find the active partitions for the domain. Because these partitions are
451 // active, it is not possible to just delete the directories that contain
452 // the backing data structures without causing the browser to crash. Instead,
453 // of deleteing the directory, we tell each storage context later to
454 // remove any data they have saved. This will leave the directory structure
455 // intact but it will only contain empty databases.
456 std::vector<StoragePartitionImpl*> active_partitions;
457 std::vector<base::FilePath> paths_to_keep;
458 for (PartitionMap::const_iterator it = partitions_.begin();
459 it != partitions_.end();
460 ++it) {
461 const StoragePartitionConfig& config = it->first;
462 if (config.partition_domain == partition_domain) {
463 it->second->ClearData(
464 // All except shader cache.
465 StoragePartition::REMOVE_DATA_MASK_ALL &
466 (~StoragePartition::REMOVE_DATA_MASK_SHADER_CACHE),
467 StoragePartition::QUOTA_MANAGED_STORAGE_MASK_ALL,
468 NULL,
469 StoragePartition::OriginMatcherFunction(),
470 base::Time(), base::Time::Max(),
471 base::Bind(&base::DoNothing));
472 if (!config.in_memory) {
473 paths_to_keep.push_back(it->second->GetPath());
474 }
475 }
476 }
477
478 // Start a best-effort delete of the on-disk storage excluding paths that are
479 // known to still be in use. This is to delete any previously created
480 // StoragePartition state that just happens to not have been used during this
481 // run of the browser.
482 base::FilePath domain_root = browser_context_->GetPath().Append(
483 GetStoragePartitionDomainPath(partition_domain));
484
485 BrowserThread::PostBlockingPoolTask(
486 FROM_HERE,
487 base::Bind(&BlockingObliteratePath, browser_context_->GetPath(),
488 domain_root, paths_to_keep,
489 base::MessageLoopProxy::current(), on_gc_required));
490 }
491
GarbageCollect(scoped_ptr<base::hash_set<base::FilePath>> active_paths,const base::Closure & done)492 void StoragePartitionImplMap::GarbageCollect(
493 scoped_ptr<base::hash_set<base::FilePath> > active_paths,
494 const base::Closure& done) {
495 // Include all paths for current StoragePartitions in the active_paths since
496 // they cannot be deleted safely.
497 for (PartitionMap::const_iterator it = partitions_.begin();
498 it != partitions_.end();
499 ++it) {
500 const StoragePartitionConfig& config = it->first;
501 if (!config.in_memory)
502 active_paths->insert(it->second->GetPath());
503 }
504
505 // Find the directory holding the StoragePartitions and delete everything in
506 // there that isn't considered active.
507 base::FilePath storage_root = browser_context_->GetPath().Append(
508 GetStoragePartitionDomainPath(std::string()));
509 file_access_runner_->PostTaskAndReply(
510 FROM_HERE,
511 base::Bind(&BlockingGarbageCollect, storage_root,
512 file_access_runner_,
513 base::Passed(&active_paths)),
514 done);
515 }
516
ForEach(const BrowserContext::StoragePartitionCallback & callback)517 void StoragePartitionImplMap::ForEach(
518 const BrowserContext::StoragePartitionCallback& callback) {
519 for (PartitionMap::const_iterator it = partitions_.begin();
520 it != partitions_.end();
521 ++it) {
522 callback.Run(it->second);
523 }
524 }
525
PostCreateInitialization(StoragePartitionImpl * partition,bool in_memory)526 void StoragePartitionImplMap::PostCreateInitialization(
527 StoragePartitionImpl* partition,
528 bool in_memory) {
529 // TODO(ajwong): ResourceContexts no longer have any storage related state.
530 // We should move this into a place where it is called once per
531 // BrowserContext creation rather than piggybacking off the default context
532 // creation.
533 // Note: moving this into Get() before partitions_[] is set causes reentrency.
534 if (!resource_context_initialized_) {
535 resource_context_initialized_ = true;
536 InitializeResourceContext(browser_context_);
537 }
538
539 // Check first to avoid memory leak in unittests.
540 if (BrowserThread::IsMessageLoopValid(BrowserThread::IO)) {
541 BrowserThread::PostTask(
542 BrowserThread::IO, FROM_HERE,
543 base::Bind(&ChromeAppCacheService::InitializeOnIOThread,
544 partition->GetAppCacheService(),
545 in_memory ? base::FilePath() :
546 partition->GetPath().Append(kAppCacheDirname),
547 browser_context_->GetResourceContext(),
548 make_scoped_refptr(partition->GetURLRequestContext()),
549 make_scoped_refptr(
550 browser_context_->GetSpecialStoragePolicy())));
551
552 // We do not call InitializeURLRequestContext() for media contexts because,
553 // other than the HTTP cache, the media contexts share the same backing
554 // objects as their associated "normal" request context. Thus, the previous
555 // call serves to initialize the media request context for this storage
556 // partition as well.
557 }
558 }
559
560 } // namespace content
561