1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/ExternalSemaSource.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseSet.h"
29
30 using namespace clang;
31
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 /// if non-null, check this as if making a call to it with the given
37 /// receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42 QualType receiverTypeIfCall) {
43 if (method->isInvalidDecl()) return true;
44
45 // This castAs is safe: methods that don't return an object
46 // pointer won't be inferred as inits and will reject an explicit
47 // objc_method_family(init).
48
49 // We ignore protocols here. Should we? What about Class?
50
51 const ObjCObjectType *result = method->getResultType()
52 ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54 if (result->isObjCId()) {
55 return false;
56 } else if (result->isObjCClass()) {
57 // fall through: always an error
58 } else {
59 ObjCInterfaceDecl *resultClass = result->getInterface();
60 assert(resultClass && "unexpected object type!");
61
62 // It's okay for the result type to still be a forward declaration
63 // if we're checking an interface declaration.
64 if (!resultClass->hasDefinition()) {
65 if (receiverTypeIfCall.isNull() &&
66 !isa<ObjCImplementationDecl>(method->getDeclContext()))
67 return false;
68
69 // Otherwise, we try to compare class types.
70 } else {
71 // If this method was declared in a protocol, we can't check
72 // anything unless we have a receiver type that's an interface.
73 const ObjCInterfaceDecl *receiverClass = 0;
74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75 if (receiverTypeIfCall.isNull())
76 return false;
77
78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79 ->getInterfaceDecl();
80
81 // This can be null for calls to e.g. id<Foo>.
82 if (!receiverClass) return false;
83 } else {
84 receiverClass = method->getClassInterface();
85 assert(receiverClass && "method not associated with a class!");
86 }
87
88 // If either class is a subclass of the other, it's fine.
89 if (receiverClass->isSuperClassOf(resultClass) ||
90 resultClass->isSuperClassOf(receiverClass))
91 return false;
92 }
93 }
94
95 SourceLocation loc = method->getLocation();
96
97 // If we're in a system header, and this is not a call, just make
98 // the method unusable.
99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100 method->addAttr(new (Context) UnavailableAttr(loc, Context,
101 "init method returns a type unrelated to its receiver type"));
102 return true;
103 }
104
105 // Otherwise, it's an error.
106 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107 method->setInvalidDecl();
108 return true;
109 }
110
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112 const ObjCMethodDecl *Overridden) {
113 if (Overridden->hasRelatedResultType() &&
114 !NewMethod->hasRelatedResultType()) {
115 // This can only happen when the method follows a naming convention that
116 // implies a related result type, and the original (overridden) method has
117 // a suitable return type, but the new (overriding) method does not have
118 // a suitable return type.
119 QualType ResultType = NewMethod->getResultType();
120 SourceRange ResultTypeRange;
121 if (const TypeSourceInfo *ResultTypeInfo
122 = NewMethod->getResultTypeSourceInfo())
123 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125 // Figure out which class this method is part of, if any.
126 ObjCInterfaceDecl *CurrentClass
127 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128 if (!CurrentClass) {
129 DeclContext *DC = NewMethod->getDeclContext();
130 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131 CurrentClass = Cat->getClassInterface();
132 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133 CurrentClass = Impl->getClassInterface();
134 else if (ObjCCategoryImplDecl *CatImpl
135 = dyn_cast<ObjCCategoryImplDecl>(DC))
136 CurrentClass = CatImpl->getClassInterface();
137 }
138
139 if (CurrentClass) {
140 Diag(NewMethod->getLocation(),
141 diag::warn_related_result_type_compatibility_class)
142 << Context.getObjCInterfaceType(CurrentClass)
143 << ResultType
144 << ResultTypeRange;
145 } else {
146 Diag(NewMethod->getLocation(),
147 diag::warn_related_result_type_compatibility_protocol)
148 << ResultType
149 << ResultTypeRange;
150 }
151
152 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153 Diag(Overridden->getLocation(),
154 diag::note_related_result_type_family)
155 << /*overridden method*/ 0
156 << Family;
157 else
158 Diag(Overridden->getLocation(),
159 diag::note_related_result_type_overridden);
160 }
161 if (getLangOpts().ObjCAutoRefCount) {
162 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164 Diag(NewMethod->getLocation(),
165 diag::err_nsreturns_retained_attribute_mismatch) << 1;
166 Diag(Overridden->getLocation(), diag::note_previous_decl)
167 << "method";
168 }
169 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171 Diag(NewMethod->getLocation(),
172 diag::err_nsreturns_retained_attribute_mismatch) << 0;
173 Diag(Overridden->getLocation(), diag::note_previous_decl)
174 << "method";
175 }
176 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177 oe = Overridden->param_end();
178 for (ObjCMethodDecl::param_iterator
179 ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180 ni != ne && oi != oe; ++ni, ++oi) {
181 const ParmVarDecl *oldDecl = (*oi);
182 ParmVarDecl *newDecl = (*ni);
183 if (newDecl->hasAttr<NSConsumedAttr>() !=
184 oldDecl->hasAttr<NSConsumedAttr>()) {
185 Diag(newDecl->getLocation(),
186 diag::err_nsconsumed_attribute_mismatch);
187 Diag(oldDecl->getLocation(), diag::note_previous_decl)
188 << "parameter";
189 }
190 }
191 }
192 }
193
194 /// \brief Check a method declaration for compatibility with the Objective-C
195 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)196 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
197 ObjCMethodFamily family = method->getMethodFamily();
198 switch (family) {
199 case OMF_None:
200 case OMF_finalize:
201 case OMF_retain:
202 case OMF_release:
203 case OMF_autorelease:
204 case OMF_retainCount:
205 case OMF_self:
206 case OMF_performSelector:
207 return false;
208
209 case OMF_dealloc:
210 if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
211 SourceRange ResultTypeRange;
212 if (const TypeSourceInfo *ResultTypeInfo
213 = method->getResultTypeSourceInfo())
214 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215 if (ResultTypeRange.isInvalid())
216 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217 << method->getResultType()
218 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219 else
220 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221 << method->getResultType()
222 << FixItHint::CreateReplacement(ResultTypeRange, "void");
223 return true;
224 }
225 return false;
226
227 case OMF_init:
228 // If the method doesn't obey the init rules, don't bother annotating it.
229 if (checkInitMethod(method, QualType()))
230 return true;
231
232 method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
233 Context));
234
235 // Don't add a second copy of this attribute, but otherwise don't
236 // let it be suppressed.
237 if (method->hasAttr<NSReturnsRetainedAttr>())
238 return false;
239 break;
240
241 case OMF_alloc:
242 case OMF_copy:
243 case OMF_mutableCopy:
244 case OMF_new:
245 if (method->hasAttr<NSReturnsRetainedAttr>() ||
246 method->hasAttr<NSReturnsNotRetainedAttr>() ||
247 method->hasAttr<NSReturnsAutoreleasedAttr>())
248 return false;
249 break;
250 }
251
252 method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
253 Context));
254 return false;
255 }
256
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)257 static void DiagnoseObjCImplementedDeprecations(Sema &S,
258 NamedDecl *ND,
259 SourceLocation ImplLoc,
260 int select) {
261 if (ND && ND->isDeprecated()) {
262 S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263 if (select == 0)
264 S.Diag(ND->getLocation(), diag::note_method_declared_at)
265 << ND->getDeclName();
266 else
267 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268 }
269 }
270
271 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272 /// pool.
AddAnyMethodToGlobalPool(Decl * D)273 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276 // If we don't have a valid method decl, simply return.
277 if (!MDecl)
278 return;
279 if (MDecl->isInstanceMethod())
280 AddInstanceMethodToGlobalPool(MDecl, true);
281 else
282 AddFactoryMethodToGlobalPool(MDecl, true);
283 }
284
285 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286 /// has explicit ownership attribute; false otherwise.
287 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)288 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289 QualType T = Param->getType();
290
291 if (const PointerType *PT = T->getAs<PointerType>()) {
292 T = PT->getPointeeType();
293 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294 T = RT->getPointeeType();
295 } else {
296 return true;
297 }
298
299 // If we have a lifetime qualifier, but it's local, we must have
300 // inferred it. So, it is implicit.
301 return !T.getLocalQualifiers().hasObjCLifetime();
302 }
303
304 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)306 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307 assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309
310 // If we don't have a valid method decl, simply return.
311 if (!MDecl)
312 return;
313
314 // Allow all of Sema to see that we are entering a method definition.
315 PushDeclContext(FnBodyScope, MDecl);
316 PushFunctionScope();
317
318 // Create Decl objects for each parameter, entrring them in the scope for
319 // binding to their use.
320
321 // Insert the invisible arguments, self and _cmd!
322 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323
324 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326
327 // The ObjC parser requires parameter names so there's no need to check.
328 CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
329 /*CheckParameterNames=*/false);
330
331 // Introduce all of the other parameters into this scope.
332 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
333 E = MDecl->param_end(); PI != E; ++PI) {
334 ParmVarDecl *Param = (*PI);
335 if (!Param->isInvalidDecl() &&
336 getLangOpts().ObjCAutoRefCount &&
337 !HasExplicitOwnershipAttr(*this, Param))
338 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339 Param->getType();
340
341 if ((*PI)->getIdentifier())
342 PushOnScopeChains(*PI, FnBodyScope);
343 }
344
345 // In ARC, disallow definition of retain/release/autorelease/retainCount
346 if (getLangOpts().ObjCAutoRefCount) {
347 switch (MDecl->getMethodFamily()) {
348 case OMF_retain:
349 case OMF_retainCount:
350 case OMF_release:
351 case OMF_autorelease:
352 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353 << 0 << MDecl->getSelector();
354 break;
355
356 case OMF_None:
357 case OMF_dealloc:
358 case OMF_finalize:
359 case OMF_alloc:
360 case OMF_init:
361 case OMF_mutableCopy:
362 case OMF_copy:
363 case OMF_new:
364 case OMF_self:
365 case OMF_performSelector:
366 break;
367 }
368 }
369
370 // Warn on deprecated methods under -Wdeprecated-implementations,
371 // and prepare for warning on missing super calls.
372 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373 ObjCMethodDecl *IMD =
374 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375
376 if (IMD) {
377 ObjCImplDecl *ImplDeclOfMethodDef =
378 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
379 ObjCContainerDecl *ContDeclOfMethodDecl =
380 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
381 ObjCImplDecl *ImplDeclOfMethodDecl = 0;
382 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
383 ImplDeclOfMethodDecl = OID->getImplementation();
384 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
385 ImplDeclOfMethodDecl = CD->getImplementation();
386 // No need to issue deprecated warning if deprecated mehod in class/category
387 // is being implemented in its own implementation (no overriding is involved).
388 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
389 DiagnoseObjCImplementedDeprecations(*this,
390 dyn_cast<NamedDecl>(IMD),
391 MDecl->getLocation(), 0);
392 }
393
394 // If this is "dealloc" or "finalize", set some bit here.
395 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
396 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
397 // Only do this if the current class actually has a superclass.
398 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
399 ObjCMethodFamily Family = MDecl->getMethodFamily();
400 if (Family == OMF_dealloc) {
401 if (!(getLangOpts().ObjCAutoRefCount ||
402 getLangOpts().getGC() == LangOptions::GCOnly))
403 getCurFunction()->ObjCShouldCallSuper = true;
404
405 } else if (Family == OMF_finalize) {
406 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
407 getCurFunction()->ObjCShouldCallSuper = true;
408
409 } else if (MDecl->hasAttr<ObjCRequiresSuperAttr>())
410 getCurFunction()->ObjCShouldCallSuper = true;
411 else {
412 const ObjCMethodDecl *SuperMethod =
413 SuperClass->lookupMethod(MDecl->getSelector(),
414 MDecl->isInstanceMethod());
415 getCurFunction()->ObjCShouldCallSuper =
416 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
417 }
418 }
419 }
420 }
421
422 namespace {
423
424 // Callback to only accept typo corrections that are Objective-C classes.
425 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
426 // function will reject corrections to that class.
427 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
428 public:
ObjCInterfaceValidatorCCC()429 ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)430 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
431 : CurrentIDecl(IDecl) {}
432
ValidateCandidate(const TypoCorrection & candidate)433 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
435 return ID && !declaresSameEntity(ID, CurrentIDecl);
436 }
437
438 private:
439 ObjCInterfaceDecl *CurrentIDecl;
440 };
441
442 }
443
444 Decl *Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)445 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
446 IdentifierInfo *ClassName, SourceLocation ClassLoc,
447 IdentifierInfo *SuperName, SourceLocation SuperLoc,
448 Decl * const *ProtoRefs, unsigned NumProtoRefs,
449 const SourceLocation *ProtoLocs,
450 SourceLocation EndProtoLoc, AttributeList *AttrList) {
451 assert(ClassName && "Missing class identifier");
452
453 // Check for another declaration kind with the same name.
454 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
455 LookupOrdinaryName, ForRedeclaration);
456
457 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
458 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
459 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
460 }
461
462 // Create a declaration to describe this @interface.
463 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
464
465 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
466 // A previous decl with a different name is because of
467 // @compatibility_alias, for example:
468 // \code
469 // @class NewImage;
470 // @compatibility_alias OldImage NewImage;
471 // \endcode
472 // A lookup for 'OldImage' will return the 'NewImage' decl.
473 //
474 // In such a case use the real declaration name, instead of the alias one,
475 // otherwise we will break IdentifierResolver and redecls-chain invariants.
476 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
477 // has been aliased.
478 ClassName = PrevIDecl->getIdentifier();
479 }
480
481 ObjCInterfaceDecl *IDecl
482 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
483 PrevIDecl, ClassLoc);
484
485 if (PrevIDecl) {
486 // Class already seen. Was it a definition?
487 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
488 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
489 << PrevIDecl->getDeclName();
490 Diag(Def->getLocation(), diag::note_previous_definition);
491 IDecl->setInvalidDecl();
492 }
493 }
494
495 if (AttrList)
496 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
497 PushOnScopeChains(IDecl, TUScope);
498
499 // Start the definition of this class. If we're in a redefinition case, there
500 // may already be a definition, so we'll end up adding to it.
501 if (!IDecl->hasDefinition())
502 IDecl->startDefinition();
503
504 if (SuperName) {
505 // Check if a different kind of symbol declared in this scope.
506 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
507 LookupOrdinaryName);
508
509 if (!PrevDecl) {
510 // Try to correct for a typo in the superclass name without correcting
511 // to the class we're defining.
512 ObjCInterfaceValidatorCCC Validator(IDecl);
513 if (TypoCorrection Corrected = CorrectTypo(
514 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
515 NULL, Validator)) {
516 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
517 Diag(SuperLoc, diag::err_undef_superclass_suggest)
518 << SuperName << ClassName << PrevDecl->getDeclName();
519 Diag(PrevDecl->getLocation(), diag::note_previous_decl)
520 << PrevDecl->getDeclName();
521 }
522 }
523
524 if (declaresSameEntity(PrevDecl, IDecl)) {
525 Diag(SuperLoc, diag::err_recursive_superclass)
526 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
527 IDecl->setEndOfDefinitionLoc(ClassLoc);
528 } else {
529 ObjCInterfaceDecl *SuperClassDecl =
530 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
531
532 // Diagnose classes that inherit from deprecated classes.
533 if (SuperClassDecl)
534 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
535
536 if (PrevDecl && SuperClassDecl == 0) {
537 // The previous declaration was not a class decl. Check if we have a
538 // typedef. If we do, get the underlying class type.
539 if (const TypedefNameDecl *TDecl =
540 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
541 QualType T = TDecl->getUnderlyingType();
542 if (T->isObjCObjectType()) {
543 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
544 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
545 // This handles the following case:
546 // @interface NewI @end
547 // typedef NewI DeprI __attribute__((deprecated("blah")))
548 // @interface SI : DeprI /* warn here */ @end
549 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
550 }
551 }
552 }
553
554 // This handles the following case:
555 //
556 // typedef int SuperClass;
557 // @interface MyClass : SuperClass {} @end
558 //
559 if (!SuperClassDecl) {
560 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
561 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
562 }
563 }
564
565 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
566 if (!SuperClassDecl)
567 Diag(SuperLoc, diag::err_undef_superclass)
568 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
569 else if (RequireCompleteType(SuperLoc,
570 Context.getObjCInterfaceType(SuperClassDecl),
571 diag::err_forward_superclass,
572 SuperClassDecl->getDeclName(),
573 ClassName,
574 SourceRange(AtInterfaceLoc, ClassLoc))) {
575 SuperClassDecl = 0;
576 }
577 }
578 IDecl->setSuperClass(SuperClassDecl);
579 IDecl->setSuperClassLoc(SuperLoc);
580 IDecl->setEndOfDefinitionLoc(SuperLoc);
581 }
582 } else { // we have a root class.
583 IDecl->setEndOfDefinitionLoc(ClassLoc);
584 }
585
586 // Check then save referenced protocols.
587 if (NumProtoRefs) {
588 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
589 ProtoLocs, Context);
590 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
591 }
592
593 CheckObjCDeclScope(IDecl);
594 return ActOnObjCContainerStartDefinition(IDecl);
595 }
596
597 /// ActOnCompatibilityAlias - this action is called after complete parsing of
598 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)599 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
600 IdentifierInfo *AliasName,
601 SourceLocation AliasLocation,
602 IdentifierInfo *ClassName,
603 SourceLocation ClassLocation) {
604 // Look for previous declaration of alias name
605 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
606 LookupOrdinaryName, ForRedeclaration);
607 if (ADecl) {
608 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
609 Diag(ADecl->getLocation(), diag::note_previous_declaration);
610 return 0;
611 }
612 // Check for class declaration
613 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
614 LookupOrdinaryName, ForRedeclaration);
615 if (const TypedefNameDecl *TDecl =
616 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
617 QualType T = TDecl->getUnderlyingType();
618 if (T->isObjCObjectType()) {
619 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
620 ClassName = IDecl->getIdentifier();
621 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
622 LookupOrdinaryName, ForRedeclaration);
623 }
624 }
625 }
626 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
627 if (CDecl == 0) {
628 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
629 if (CDeclU)
630 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
631 return 0;
632 }
633
634 // Everything checked out, instantiate a new alias declaration AST.
635 ObjCCompatibleAliasDecl *AliasDecl =
636 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
637
638 if (!CheckObjCDeclScope(AliasDecl))
639 PushOnScopeChains(AliasDecl, TUScope);
640
641 return AliasDecl;
642 }
643
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)644 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
645 IdentifierInfo *PName,
646 SourceLocation &Ploc, SourceLocation PrevLoc,
647 const ObjCList<ObjCProtocolDecl> &PList) {
648
649 bool res = false;
650 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
651 E = PList.end(); I != E; ++I) {
652 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
653 Ploc)) {
654 if (PDecl->getIdentifier() == PName) {
655 Diag(Ploc, diag::err_protocol_has_circular_dependency);
656 Diag(PrevLoc, diag::note_previous_definition);
657 res = true;
658 }
659
660 if (!PDecl->hasDefinition())
661 continue;
662
663 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
664 PDecl->getLocation(), PDecl->getReferencedProtocols()))
665 res = true;
666 }
667 }
668 return res;
669 }
670
671 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)672 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
673 IdentifierInfo *ProtocolName,
674 SourceLocation ProtocolLoc,
675 Decl * const *ProtoRefs,
676 unsigned NumProtoRefs,
677 const SourceLocation *ProtoLocs,
678 SourceLocation EndProtoLoc,
679 AttributeList *AttrList) {
680 bool err = false;
681 // FIXME: Deal with AttrList.
682 assert(ProtocolName && "Missing protocol identifier");
683 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
684 ForRedeclaration);
685 ObjCProtocolDecl *PDecl = 0;
686 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
687 // If we already have a definition, complain.
688 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
689 Diag(Def->getLocation(), diag::note_previous_definition);
690
691 // Create a new protocol that is completely distinct from previous
692 // declarations, and do not make this protocol available for name lookup.
693 // That way, we'll end up completely ignoring the duplicate.
694 // FIXME: Can we turn this into an error?
695 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
696 ProtocolLoc, AtProtoInterfaceLoc,
697 /*PrevDecl=*/0);
698 PDecl->startDefinition();
699 } else {
700 if (PrevDecl) {
701 // Check for circular dependencies among protocol declarations. This can
702 // only happen if this protocol was forward-declared.
703 ObjCList<ObjCProtocolDecl> PList;
704 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
705 err = CheckForwardProtocolDeclarationForCircularDependency(
706 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
707 }
708
709 // Create the new declaration.
710 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
711 ProtocolLoc, AtProtoInterfaceLoc,
712 /*PrevDecl=*/PrevDecl);
713
714 PushOnScopeChains(PDecl, TUScope);
715 PDecl->startDefinition();
716 }
717
718 if (AttrList)
719 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
720
721 // Merge attributes from previous declarations.
722 if (PrevDecl)
723 mergeDeclAttributes(PDecl, PrevDecl);
724
725 if (!err && NumProtoRefs ) {
726 /// Check then save referenced protocols.
727 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
728 ProtoLocs, Context);
729 }
730
731 CheckObjCDeclScope(PDecl);
732 return ActOnObjCContainerStartDefinition(PDecl);
733 }
734
735 /// FindProtocolDeclaration - This routine looks up protocols and
736 /// issues an error if they are not declared. It returns list of
737 /// protocol declarations in its 'Protocols' argument.
738 void
FindProtocolDeclaration(bool WarnOnDeclarations,const IdentifierLocPair * ProtocolId,unsigned NumProtocols,SmallVectorImpl<Decl * > & Protocols)739 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
740 const IdentifierLocPair *ProtocolId,
741 unsigned NumProtocols,
742 SmallVectorImpl<Decl *> &Protocols) {
743 for (unsigned i = 0; i != NumProtocols; ++i) {
744 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
745 ProtocolId[i].second);
746 if (!PDecl) {
747 DeclFilterCCC<ObjCProtocolDecl> Validator;
748 TypoCorrection Corrected = CorrectTypo(
749 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
750 LookupObjCProtocolName, TUScope, NULL, Validator);
751 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
752 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
753 << ProtocolId[i].first << Corrected.getCorrection();
754 Diag(PDecl->getLocation(), diag::note_previous_decl)
755 << PDecl->getDeclName();
756 }
757 }
758
759 if (!PDecl) {
760 Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
761 << ProtocolId[i].first;
762 continue;
763 }
764 // If this is a forward protocol declaration, get its definition.
765 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
766 PDecl = PDecl->getDefinition();
767
768 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
769
770 // If this is a forward declaration and we are supposed to warn in this
771 // case, do it.
772 // FIXME: Recover nicely in the hidden case.
773 if (WarnOnDeclarations &&
774 (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
775 Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
776 << ProtocolId[i].first;
777 Protocols.push_back(PDecl);
778 }
779 }
780
781 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
782 /// a class method in its extension.
783 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)784 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
785 ObjCInterfaceDecl *ID) {
786 if (!ID)
787 return; // Possibly due to previous error
788
789 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
790 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
791 e = ID->meth_end(); i != e; ++i) {
792 ObjCMethodDecl *MD = *i;
793 MethodMap[MD->getSelector()] = MD;
794 }
795
796 if (MethodMap.empty())
797 return;
798 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
799 e = CAT->meth_end(); i != e; ++i) {
800 ObjCMethodDecl *Method = *i;
801 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
802 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
803 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
804 << Method->getDeclName();
805 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
806 }
807 }
808 }
809
810 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
811 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,const IdentifierLocPair * IdentList,unsigned NumElts,AttributeList * attrList)812 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
813 const IdentifierLocPair *IdentList,
814 unsigned NumElts,
815 AttributeList *attrList) {
816 SmallVector<Decl *, 8> DeclsInGroup;
817 for (unsigned i = 0; i != NumElts; ++i) {
818 IdentifierInfo *Ident = IdentList[i].first;
819 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
820 ForRedeclaration);
821 ObjCProtocolDecl *PDecl
822 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
823 IdentList[i].second, AtProtocolLoc,
824 PrevDecl);
825
826 PushOnScopeChains(PDecl, TUScope);
827 CheckObjCDeclScope(PDecl);
828
829 if (attrList)
830 ProcessDeclAttributeList(TUScope, PDecl, attrList);
831
832 if (PrevDecl)
833 mergeDeclAttributes(PDecl, PrevDecl);
834
835 DeclsInGroup.push_back(PDecl);
836 }
837
838 return BuildDeclaratorGroup(DeclsInGroup, false);
839 }
840
841 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)842 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
843 IdentifierInfo *ClassName, SourceLocation ClassLoc,
844 IdentifierInfo *CategoryName,
845 SourceLocation CategoryLoc,
846 Decl * const *ProtoRefs,
847 unsigned NumProtoRefs,
848 const SourceLocation *ProtoLocs,
849 SourceLocation EndProtoLoc) {
850 ObjCCategoryDecl *CDecl;
851 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
852
853 /// Check that class of this category is already completely declared.
854
855 if (!IDecl
856 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
857 diag::err_category_forward_interface,
858 CategoryName == 0)) {
859 // Create an invalid ObjCCategoryDecl to serve as context for
860 // the enclosing method declarations. We mark the decl invalid
861 // to make it clear that this isn't a valid AST.
862 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
863 ClassLoc, CategoryLoc, CategoryName,IDecl);
864 CDecl->setInvalidDecl();
865 CurContext->addDecl(CDecl);
866
867 if (!IDecl)
868 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
869 return ActOnObjCContainerStartDefinition(CDecl);
870 }
871
872 if (!CategoryName && IDecl->getImplementation()) {
873 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
874 Diag(IDecl->getImplementation()->getLocation(),
875 diag::note_implementation_declared);
876 }
877
878 if (CategoryName) {
879 /// Check for duplicate interface declaration for this category
880 if (ObjCCategoryDecl *Previous
881 = IDecl->FindCategoryDeclaration(CategoryName)) {
882 // Class extensions can be declared multiple times, categories cannot.
883 Diag(CategoryLoc, diag::warn_dup_category_def)
884 << ClassName << CategoryName;
885 Diag(Previous->getLocation(), diag::note_previous_definition);
886 }
887 }
888
889 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
890 ClassLoc, CategoryLoc, CategoryName, IDecl);
891 // FIXME: PushOnScopeChains?
892 CurContext->addDecl(CDecl);
893
894 if (NumProtoRefs) {
895 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
896 ProtoLocs, Context);
897 // Protocols in the class extension belong to the class.
898 if (CDecl->IsClassExtension())
899 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
900 NumProtoRefs, Context);
901 }
902
903 CheckObjCDeclScope(CDecl);
904 return ActOnObjCContainerStartDefinition(CDecl);
905 }
906
907 /// ActOnStartCategoryImplementation - Perform semantic checks on the
908 /// category implementation declaration and build an ObjCCategoryImplDecl
909 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)910 Decl *Sema::ActOnStartCategoryImplementation(
911 SourceLocation AtCatImplLoc,
912 IdentifierInfo *ClassName, SourceLocation ClassLoc,
913 IdentifierInfo *CatName, SourceLocation CatLoc) {
914 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
915 ObjCCategoryDecl *CatIDecl = 0;
916 if (IDecl && IDecl->hasDefinition()) {
917 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
918 if (!CatIDecl) {
919 // Category @implementation with no corresponding @interface.
920 // Create and install one.
921 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
922 ClassLoc, CatLoc,
923 CatName, IDecl);
924 CatIDecl->setImplicit();
925 }
926 }
927
928 ObjCCategoryImplDecl *CDecl =
929 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
930 ClassLoc, AtCatImplLoc, CatLoc);
931 /// Check that class of this category is already completely declared.
932 if (!IDecl) {
933 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
934 CDecl->setInvalidDecl();
935 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
936 diag::err_undef_interface)) {
937 CDecl->setInvalidDecl();
938 }
939
940 // FIXME: PushOnScopeChains?
941 CurContext->addDecl(CDecl);
942
943 // If the interface is deprecated/unavailable, warn/error about it.
944 if (IDecl)
945 DiagnoseUseOfDecl(IDecl, ClassLoc);
946
947 /// Check that CatName, category name, is not used in another implementation.
948 if (CatIDecl) {
949 if (CatIDecl->getImplementation()) {
950 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
951 << CatName;
952 Diag(CatIDecl->getImplementation()->getLocation(),
953 diag::note_previous_definition);
954 CDecl->setInvalidDecl();
955 } else {
956 CatIDecl->setImplementation(CDecl);
957 // Warn on implementating category of deprecated class under
958 // -Wdeprecated-implementations flag.
959 DiagnoseObjCImplementedDeprecations(*this,
960 dyn_cast<NamedDecl>(IDecl),
961 CDecl->getLocation(), 2);
962 }
963 }
964
965 CheckObjCDeclScope(CDecl);
966 return ActOnObjCContainerStartDefinition(CDecl);
967 }
968
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)969 Decl *Sema::ActOnStartClassImplementation(
970 SourceLocation AtClassImplLoc,
971 IdentifierInfo *ClassName, SourceLocation ClassLoc,
972 IdentifierInfo *SuperClassname,
973 SourceLocation SuperClassLoc) {
974 ObjCInterfaceDecl* IDecl = 0;
975 // Check for another declaration kind with the same name.
976 NamedDecl *PrevDecl
977 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
978 ForRedeclaration);
979 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
980 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
981 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
982 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
983 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
984 diag::warn_undef_interface);
985 } else {
986 // We did not find anything with the name ClassName; try to correct for
987 // typos in the class name.
988 ObjCInterfaceValidatorCCC Validator;
989 if (TypoCorrection Corrected = CorrectTypo(
990 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
991 NULL, Validator)) {
992 // Suggest the (potentially) correct interface name. However, put the
993 // fix-it hint itself in a separate note, since changing the name in
994 // the warning would make the fix-it change semantics.However, don't
995 // provide a code-modification hint or use the typo name for recovery,
996 // because this is just a warning. The program may actually be correct.
997 IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
998 DeclarationName CorrectedName = Corrected.getCorrection();
999 Diag(ClassLoc, diag::warn_undef_interface_suggest)
1000 << ClassName << CorrectedName;
1001 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
1002 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
1003 IDecl = 0;
1004 } else {
1005 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1006 }
1007 }
1008
1009 // Check that super class name is valid class name
1010 ObjCInterfaceDecl* SDecl = 0;
1011 if (SuperClassname) {
1012 // Check if a different kind of symbol declared in this scope.
1013 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1014 LookupOrdinaryName);
1015 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1016 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1017 << SuperClassname;
1018 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1019 } else {
1020 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1021 if (SDecl && !SDecl->hasDefinition())
1022 SDecl = 0;
1023 if (!SDecl)
1024 Diag(SuperClassLoc, diag::err_undef_superclass)
1025 << SuperClassname << ClassName;
1026 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1027 // This implementation and its interface do not have the same
1028 // super class.
1029 Diag(SuperClassLoc, diag::err_conflicting_super_class)
1030 << SDecl->getDeclName();
1031 Diag(SDecl->getLocation(), diag::note_previous_definition);
1032 }
1033 }
1034 }
1035
1036 if (!IDecl) {
1037 // Legacy case of @implementation with no corresponding @interface.
1038 // Build, chain & install the interface decl into the identifier.
1039
1040 // FIXME: Do we support attributes on the @implementation? If so we should
1041 // copy them over.
1042 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1043 ClassName, /*PrevDecl=*/0, ClassLoc,
1044 true);
1045 IDecl->startDefinition();
1046 if (SDecl) {
1047 IDecl->setSuperClass(SDecl);
1048 IDecl->setSuperClassLoc(SuperClassLoc);
1049 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1050 } else {
1051 IDecl->setEndOfDefinitionLoc(ClassLoc);
1052 }
1053
1054 PushOnScopeChains(IDecl, TUScope);
1055 } else {
1056 // Mark the interface as being completed, even if it was just as
1057 // @class ....;
1058 // declaration; the user cannot reopen it.
1059 if (!IDecl->hasDefinition())
1060 IDecl->startDefinition();
1061 }
1062
1063 ObjCImplementationDecl* IMPDecl =
1064 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1065 ClassLoc, AtClassImplLoc, SuperClassLoc);
1066
1067 if (CheckObjCDeclScope(IMPDecl))
1068 return ActOnObjCContainerStartDefinition(IMPDecl);
1069
1070 // Check that there is no duplicate implementation of this class.
1071 if (IDecl->getImplementation()) {
1072 // FIXME: Don't leak everything!
1073 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1074 Diag(IDecl->getImplementation()->getLocation(),
1075 diag::note_previous_definition);
1076 IMPDecl->setInvalidDecl();
1077 } else { // add it to the list.
1078 IDecl->setImplementation(IMPDecl);
1079 PushOnScopeChains(IMPDecl, TUScope);
1080 // Warn on implementating deprecated class under
1081 // -Wdeprecated-implementations flag.
1082 DiagnoseObjCImplementedDeprecations(*this,
1083 dyn_cast<NamedDecl>(IDecl),
1084 IMPDecl->getLocation(), 1);
1085 }
1086 return ActOnObjCContainerStartDefinition(IMPDecl);
1087 }
1088
1089 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)1090 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1091 SmallVector<Decl *, 64> DeclsInGroup;
1092 DeclsInGroup.reserve(Decls.size() + 1);
1093
1094 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1095 Decl *Dcl = Decls[i];
1096 if (!Dcl)
1097 continue;
1098 if (Dcl->getDeclContext()->isFileContext())
1099 Dcl->setTopLevelDeclInObjCContainer();
1100 DeclsInGroup.push_back(Dcl);
1101 }
1102
1103 DeclsInGroup.push_back(ObjCImpDecl);
1104
1105 return BuildDeclaratorGroup(DeclsInGroup, false);
1106 }
1107
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)1108 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1109 ObjCIvarDecl **ivars, unsigned numIvars,
1110 SourceLocation RBrace) {
1111 assert(ImpDecl && "missing implementation decl");
1112 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1113 if (!IDecl)
1114 return;
1115 /// Check case of non-existing \@interface decl.
1116 /// (legacy objective-c \@implementation decl without an \@interface decl).
1117 /// Add implementations's ivar to the synthesize class's ivar list.
1118 if (IDecl->isImplicitInterfaceDecl()) {
1119 IDecl->setEndOfDefinitionLoc(RBrace);
1120 // Add ivar's to class's DeclContext.
1121 for (unsigned i = 0, e = numIvars; i != e; ++i) {
1122 ivars[i]->setLexicalDeclContext(ImpDecl);
1123 IDecl->makeDeclVisibleInContext(ivars[i]);
1124 ImpDecl->addDecl(ivars[i]);
1125 }
1126
1127 return;
1128 }
1129 // If implementation has empty ivar list, just return.
1130 if (numIvars == 0)
1131 return;
1132
1133 assert(ivars && "missing @implementation ivars");
1134 if (LangOpts.ObjCRuntime.isNonFragile()) {
1135 if (ImpDecl->getSuperClass())
1136 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1137 for (unsigned i = 0; i < numIvars; i++) {
1138 ObjCIvarDecl* ImplIvar = ivars[i];
1139 if (const ObjCIvarDecl *ClsIvar =
1140 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1141 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1142 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1143 continue;
1144 }
1145 // Check class extensions (unnamed categories) for duplicate ivars.
1146 for (ObjCInterfaceDecl::visible_extensions_iterator
1147 Ext = IDecl->visible_extensions_begin(),
1148 ExtEnd = IDecl->visible_extensions_end();
1149 Ext != ExtEnd; ++Ext) {
1150 ObjCCategoryDecl *CDecl = *Ext;
1151 if (const ObjCIvarDecl *ClsExtIvar =
1152 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1153 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1154 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1155 continue;
1156 }
1157 }
1158 // Instance ivar to Implementation's DeclContext.
1159 ImplIvar->setLexicalDeclContext(ImpDecl);
1160 IDecl->makeDeclVisibleInContext(ImplIvar);
1161 ImpDecl->addDecl(ImplIvar);
1162 }
1163 return;
1164 }
1165 // Check interface's Ivar list against those in the implementation.
1166 // names and types must match.
1167 //
1168 unsigned j = 0;
1169 ObjCInterfaceDecl::ivar_iterator
1170 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1171 for (; numIvars > 0 && IVI != IVE; ++IVI) {
1172 ObjCIvarDecl* ImplIvar = ivars[j++];
1173 ObjCIvarDecl* ClsIvar = *IVI;
1174 assert (ImplIvar && "missing implementation ivar");
1175 assert (ClsIvar && "missing class ivar");
1176
1177 // First, make sure the types match.
1178 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1179 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1180 << ImplIvar->getIdentifier()
1181 << ImplIvar->getType() << ClsIvar->getType();
1182 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1183 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1184 ImplIvar->getBitWidthValue(Context) !=
1185 ClsIvar->getBitWidthValue(Context)) {
1186 Diag(ImplIvar->getBitWidth()->getLocStart(),
1187 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1188 Diag(ClsIvar->getBitWidth()->getLocStart(),
1189 diag::note_previous_definition);
1190 }
1191 // Make sure the names are identical.
1192 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1193 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1194 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1195 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1196 }
1197 --numIvars;
1198 }
1199
1200 if (numIvars > 0)
1201 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1202 else if (IVI != IVE)
1203 Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1204 }
1205
WarnUndefinedMethod(SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID)1206 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1207 bool &IncompleteImpl, unsigned DiagID) {
1208 // No point warning no definition of method which is 'unavailable'.
1209 switch (method->getAvailability()) {
1210 case AR_Available:
1211 case AR_Deprecated:
1212 break;
1213
1214 // Don't warn about unavailable or not-yet-introduced methods.
1215 case AR_NotYetIntroduced:
1216 case AR_Unavailable:
1217 return;
1218 }
1219
1220 // FIXME: For now ignore 'IncompleteImpl'.
1221 // Previously we grouped all unimplemented methods under a single
1222 // warning, but some users strongly voiced that they would prefer
1223 // separate warnings. We will give that approach a try, as that
1224 // matches what we do with protocols.
1225
1226 Diag(ImpLoc, DiagID) << method->getDeclName();
1227
1228 // Issue a note to the original declaration.
1229 SourceLocation MethodLoc = method->getLocStart();
1230 if (MethodLoc.isValid())
1231 Diag(MethodLoc, diag::note_method_declared_at) << method;
1232 }
1233
1234 /// Determines if type B can be substituted for type A. Returns true if we can
1235 /// guarantee that anything that the user will do to an object of type A can
1236 /// also be done to an object of type B. This is trivially true if the two
1237 /// types are the same, or if B is a subclass of A. It becomes more complex
1238 /// in cases where protocols are involved.
1239 ///
1240 /// Object types in Objective-C describe the minimum requirements for an
1241 /// object, rather than providing a complete description of a type. For
1242 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1243 /// The principle of substitutability means that we may use an instance of A
1244 /// anywhere that we may use an instance of B - it will implement all of the
1245 /// ivars of B and all of the methods of B.
1246 ///
1247 /// This substitutability is important when type checking methods, because
1248 /// the implementation may have stricter type definitions than the interface.
1249 /// The interface specifies minimum requirements, but the implementation may
1250 /// have more accurate ones. For example, a method may privately accept
1251 /// instances of B, but only publish that it accepts instances of A. Any
1252 /// object passed to it will be type checked against B, and so will implicitly
1253 /// by a valid A*. Similarly, a method may return a subclass of the class that
1254 /// it is declared as returning.
1255 ///
1256 /// This is most important when considering subclassing. A method in a
1257 /// subclass must accept any object as an argument that its superclass's
1258 /// implementation accepts. It may, however, accept a more general type
1259 /// without breaking substitutability (i.e. you can still use the subclass
1260 /// anywhere that you can use the superclass, but not vice versa). The
1261 /// converse requirement applies to return types: the return type for a
1262 /// subclass method must be a valid object of the kind that the superclass
1263 /// advertises, but it may be specified more accurately. This avoids the need
1264 /// for explicit down-casting by callers.
1265 ///
1266 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)1267 static bool isObjCTypeSubstitutable(ASTContext &Context,
1268 const ObjCObjectPointerType *A,
1269 const ObjCObjectPointerType *B,
1270 bool rejectId) {
1271 // Reject a protocol-unqualified id.
1272 if (rejectId && B->isObjCIdType()) return false;
1273
1274 // If B is a qualified id, then A must also be a qualified id and it must
1275 // implement all of the protocols in B. It may not be a qualified class.
1276 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1277 // stricter definition so it is not substitutable for id<A>.
1278 if (B->isObjCQualifiedIdType()) {
1279 return A->isObjCQualifiedIdType() &&
1280 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1281 QualType(B,0),
1282 false);
1283 }
1284
1285 /*
1286 // id is a special type that bypasses type checking completely. We want a
1287 // warning when it is used in one place but not another.
1288 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1289
1290
1291 // If B is a qualified id, then A must also be a qualified id (which it isn't
1292 // if we've got this far)
1293 if (B->isObjCQualifiedIdType()) return false;
1294 */
1295
1296 // Now we know that A and B are (potentially-qualified) class types. The
1297 // normal rules for assignment apply.
1298 return Context.canAssignObjCInterfaces(A, B);
1299 }
1300
getTypeRange(TypeSourceInfo * TSI)1301 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1302 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1303 }
1304
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1305 static bool CheckMethodOverrideReturn(Sema &S,
1306 ObjCMethodDecl *MethodImpl,
1307 ObjCMethodDecl *MethodDecl,
1308 bool IsProtocolMethodDecl,
1309 bool IsOverridingMode,
1310 bool Warn) {
1311 if (IsProtocolMethodDecl &&
1312 (MethodDecl->getObjCDeclQualifier() !=
1313 MethodImpl->getObjCDeclQualifier())) {
1314 if (Warn) {
1315 S.Diag(MethodImpl->getLocation(),
1316 (IsOverridingMode ?
1317 diag::warn_conflicting_overriding_ret_type_modifiers
1318 : diag::warn_conflicting_ret_type_modifiers))
1319 << MethodImpl->getDeclName()
1320 << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1321 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1322 << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1323 }
1324 else
1325 return false;
1326 }
1327
1328 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1329 MethodDecl->getResultType()))
1330 return true;
1331 if (!Warn)
1332 return false;
1333
1334 unsigned DiagID =
1335 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1336 : diag::warn_conflicting_ret_types;
1337
1338 // Mismatches between ObjC pointers go into a different warning
1339 // category, and sometimes they're even completely whitelisted.
1340 if (const ObjCObjectPointerType *ImplPtrTy =
1341 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1342 if (const ObjCObjectPointerType *IfacePtrTy =
1343 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1344 // Allow non-matching return types as long as they don't violate
1345 // the principle of substitutability. Specifically, we permit
1346 // return types that are subclasses of the declared return type,
1347 // or that are more-qualified versions of the declared type.
1348 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1349 return false;
1350
1351 DiagID =
1352 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1353 : diag::warn_non_covariant_ret_types;
1354 }
1355 }
1356
1357 S.Diag(MethodImpl->getLocation(), DiagID)
1358 << MethodImpl->getDeclName()
1359 << MethodDecl->getResultType()
1360 << MethodImpl->getResultType()
1361 << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1362 S.Diag(MethodDecl->getLocation(),
1363 IsOverridingMode ? diag::note_previous_declaration
1364 : diag::note_previous_definition)
1365 << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1366 return false;
1367 }
1368
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1369 static bool CheckMethodOverrideParam(Sema &S,
1370 ObjCMethodDecl *MethodImpl,
1371 ObjCMethodDecl *MethodDecl,
1372 ParmVarDecl *ImplVar,
1373 ParmVarDecl *IfaceVar,
1374 bool IsProtocolMethodDecl,
1375 bool IsOverridingMode,
1376 bool Warn) {
1377 if (IsProtocolMethodDecl &&
1378 (ImplVar->getObjCDeclQualifier() !=
1379 IfaceVar->getObjCDeclQualifier())) {
1380 if (Warn) {
1381 if (IsOverridingMode)
1382 S.Diag(ImplVar->getLocation(),
1383 diag::warn_conflicting_overriding_param_modifiers)
1384 << getTypeRange(ImplVar->getTypeSourceInfo())
1385 << MethodImpl->getDeclName();
1386 else S.Diag(ImplVar->getLocation(),
1387 diag::warn_conflicting_param_modifiers)
1388 << getTypeRange(ImplVar->getTypeSourceInfo())
1389 << MethodImpl->getDeclName();
1390 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1391 << getTypeRange(IfaceVar->getTypeSourceInfo());
1392 }
1393 else
1394 return false;
1395 }
1396
1397 QualType ImplTy = ImplVar->getType();
1398 QualType IfaceTy = IfaceVar->getType();
1399
1400 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1401 return true;
1402
1403 if (!Warn)
1404 return false;
1405 unsigned DiagID =
1406 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1407 : diag::warn_conflicting_param_types;
1408
1409 // Mismatches between ObjC pointers go into a different warning
1410 // category, and sometimes they're even completely whitelisted.
1411 if (const ObjCObjectPointerType *ImplPtrTy =
1412 ImplTy->getAs<ObjCObjectPointerType>()) {
1413 if (const ObjCObjectPointerType *IfacePtrTy =
1414 IfaceTy->getAs<ObjCObjectPointerType>()) {
1415 // Allow non-matching argument types as long as they don't
1416 // violate the principle of substitutability. Specifically, the
1417 // implementation must accept any objects that the superclass
1418 // accepts, however it may also accept others.
1419 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1420 return false;
1421
1422 DiagID =
1423 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1424 : diag::warn_non_contravariant_param_types;
1425 }
1426 }
1427
1428 S.Diag(ImplVar->getLocation(), DiagID)
1429 << getTypeRange(ImplVar->getTypeSourceInfo())
1430 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1431 S.Diag(IfaceVar->getLocation(),
1432 (IsOverridingMode ? diag::note_previous_declaration
1433 : diag::note_previous_definition))
1434 << getTypeRange(IfaceVar->getTypeSourceInfo());
1435 return false;
1436 }
1437
1438 /// In ARC, check whether the conventional meanings of the two methods
1439 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)1440 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1441 ObjCMethodDecl *decl) {
1442 ObjCMethodFamily implFamily = impl->getMethodFamily();
1443 ObjCMethodFamily declFamily = decl->getMethodFamily();
1444 if (implFamily == declFamily) return false;
1445
1446 // Since conventions are sorted by selector, the only possibility is
1447 // that the types differ enough to cause one selector or the other
1448 // to fall out of the family.
1449 assert(implFamily == OMF_None || declFamily == OMF_None);
1450
1451 // No further diagnostics required on invalid declarations.
1452 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1453
1454 const ObjCMethodDecl *unmatched = impl;
1455 ObjCMethodFamily family = declFamily;
1456 unsigned errorID = diag::err_arc_lost_method_convention;
1457 unsigned noteID = diag::note_arc_lost_method_convention;
1458 if (declFamily == OMF_None) {
1459 unmatched = decl;
1460 family = implFamily;
1461 errorID = diag::err_arc_gained_method_convention;
1462 noteID = diag::note_arc_gained_method_convention;
1463 }
1464
1465 // Indexes into a %select clause in the diagnostic.
1466 enum FamilySelector {
1467 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1468 };
1469 FamilySelector familySelector = FamilySelector();
1470
1471 switch (family) {
1472 case OMF_None: llvm_unreachable("logic error, no method convention");
1473 case OMF_retain:
1474 case OMF_release:
1475 case OMF_autorelease:
1476 case OMF_dealloc:
1477 case OMF_finalize:
1478 case OMF_retainCount:
1479 case OMF_self:
1480 case OMF_performSelector:
1481 // Mismatches for these methods don't change ownership
1482 // conventions, so we don't care.
1483 return false;
1484
1485 case OMF_init: familySelector = F_init; break;
1486 case OMF_alloc: familySelector = F_alloc; break;
1487 case OMF_copy: familySelector = F_copy; break;
1488 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1489 case OMF_new: familySelector = F_new; break;
1490 }
1491
1492 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1493 ReasonSelector reasonSelector;
1494
1495 // The only reason these methods don't fall within their families is
1496 // due to unusual result types.
1497 if (unmatched->getResultType()->isObjCObjectPointerType()) {
1498 reasonSelector = R_UnrelatedReturn;
1499 } else {
1500 reasonSelector = R_NonObjectReturn;
1501 }
1502
1503 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1504 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1505
1506 return true;
1507 }
1508
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1509 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1510 ObjCMethodDecl *MethodDecl,
1511 bool IsProtocolMethodDecl) {
1512 if (getLangOpts().ObjCAutoRefCount &&
1513 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1514 return;
1515
1516 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1517 IsProtocolMethodDecl, false,
1518 true);
1519
1520 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1521 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1522 EF = MethodDecl->param_end();
1523 IM != EM && IF != EF; ++IM, ++IF) {
1524 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1525 IsProtocolMethodDecl, false, true);
1526 }
1527
1528 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1529 Diag(ImpMethodDecl->getLocation(),
1530 diag::warn_conflicting_variadic);
1531 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1532 }
1533 }
1534
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)1535 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1536 ObjCMethodDecl *Overridden,
1537 bool IsProtocolMethodDecl) {
1538
1539 CheckMethodOverrideReturn(*this, Method, Overridden,
1540 IsProtocolMethodDecl, true,
1541 true);
1542
1543 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1544 IF = Overridden->param_begin(), EM = Method->param_end(),
1545 EF = Overridden->param_end();
1546 IM != EM && IF != EF; ++IM, ++IF) {
1547 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1548 IsProtocolMethodDecl, true, true);
1549 }
1550
1551 if (Method->isVariadic() != Overridden->isVariadic()) {
1552 Diag(Method->getLocation(),
1553 diag::warn_conflicting_overriding_variadic);
1554 Diag(Overridden->getLocation(), diag::note_previous_declaration);
1555 }
1556 }
1557
1558 /// WarnExactTypedMethods - This routine issues a warning if method
1559 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1560 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1561 ObjCMethodDecl *MethodDecl,
1562 bool IsProtocolMethodDecl) {
1563 // don't issue warning when protocol method is optional because primary
1564 // class is not required to implement it and it is safe for protocol
1565 // to implement it.
1566 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1567 return;
1568 // don't issue warning when primary class's method is
1569 // depecated/unavailable.
1570 if (MethodDecl->hasAttr<UnavailableAttr>() ||
1571 MethodDecl->hasAttr<DeprecatedAttr>())
1572 return;
1573
1574 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1575 IsProtocolMethodDecl, false, false);
1576 if (match)
1577 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1578 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1579 EF = MethodDecl->param_end();
1580 IM != EM && IF != EF; ++IM, ++IF) {
1581 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1582 *IM, *IF,
1583 IsProtocolMethodDecl, false, false);
1584 if (!match)
1585 break;
1586 }
1587 if (match)
1588 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1589 if (match)
1590 match = !(MethodDecl->isClassMethod() &&
1591 MethodDecl->getSelector() == GetNullarySelector("load", Context));
1592
1593 if (match) {
1594 Diag(ImpMethodDecl->getLocation(),
1595 diag::warn_category_method_impl_match);
1596 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1597 << MethodDecl->getDeclName();
1598 }
1599 }
1600
1601 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1602 /// improve the efficiency of selector lookups and type checking by associating
1603 /// with each protocol / interface / category the flattened instance tables. If
1604 /// we used an immutable set to keep the table then it wouldn't add significant
1605 /// memory cost and it would be handy for lookups.
1606
1607 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1608 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const SelectorSet & InsMap,const SelectorSet & ClsMap,ObjCContainerDecl * CDecl)1609 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1610 ObjCProtocolDecl *PDecl,
1611 bool& IncompleteImpl,
1612 const SelectorSet &InsMap,
1613 const SelectorSet &ClsMap,
1614 ObjCContainerDecl *CDecl) {
1615 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1616 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1617 : dyn_cast<ObjCInterfaceDecl>(CDecl);
1618 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1619
1620 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1621 ObjCInterfaceDecl *NSIDecl = 0;
1622 if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1623 // check to see if class implements forwardInvocation method and objects
1624 // of this class are derived from 'NSProxy' so that to forward requests
1625 // from one object to another.
1626 // Under such conditions, which means that every method possible is
1627 // implemented in the class, we should not issue "Method definition not
1628 // found" warnings.
1629 // FIXME: Use a general GetUnarySelector method for this.
1630 IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1631 Selector fISelector = Context.Selectors.getSelector(1, &II);
1632 if (InsMap.count(fISelector))
1633 // Is IDecl derived from 'NSProxy'? If so, no instance methods
1634 // need be implemented in the implementation.
1635 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1636 }
1637
1638 // If this is a forward protocol declaration, get its definition.
1639 if (!PDecl->isThisDeclarationADefinition() &&
1640 PDecl->getDefinition())
1641 PDecl = PDecl->getDefinition();
1642
1643 // If a method lookup fails locally we still need to look and see if
1644 // the method was implemented by a base class or an inherited
1645 // protocol. This lookup is slow, but occurs rarely in correct code
1646 // and otherwise would terminate in a warning.
1647
1648 // check unimplemented instance methods.
1649 if (!NSIDecl)
1650 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1651 E = PDecl->instmeth_end(); I != E; ++I) {
1652 ObjCMethodDecl *method = *I;
1653 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1654 !method->isPropertyAccessor() &&
1655 !InsMap.count(method->getSelector()) &&
1656 (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1657 // If a method is not implemented in the category implementation but
1658 // has been declared in its primary class, superclass,
1659 // or in one of their protocols, no need to issue the warning.
1660 // This is because method will be implemented in the primary class
1661 // or one of its super class implementation.
1662
1663 // Ugly, but necessary. Method declared in protcol might have
1664 // have been synthesized due to a property declared in the class which
1665 // uses the protocol.
1666 if (ObjCMethodDecl *MethodInClass =
1667 IDecl->lookupInstanceMethod(method->getSelector(),
1668 true /*shallowCategoryLookup*/))
1669 if (C || MethodInClass->isPropertyAccessor())
1670 continue;
1671 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1672 if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1673 != DiagnosticsEngine::Ignored) {
1674 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1675 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1676 << PDecl->getDeclName();
1677 }
1678 }
1679 }
1680 // check unimplemented class methods
1681 for (ObjCProtocolDecl::classmeth_iterator
1682 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1683 I != E; ++I) {
1684 ObjCMethodDecl *method = *I;
1685 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1686 !ClsMap.count(method->getSelector()) &&
1687 (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1688 // See above comment for instance method lookups.
1689 if (C && IDecl->lookupClassMethod(method->getSelector(),
1690 true /*shallowCategoryLookup*/))
1691 continue;
1692 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1693 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1694 DiagnosticsEngine::Ignored) {
1695 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1696 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1697 PDecl->getDeclName();
1698 }
1699 }
1700 }
1701 // Check on this protocols's referenced protocols, recursively.
1702 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1703 E = PDecl->protocol_end(); PI != E; ++PI)
1704 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1705 }
1706
1707 /// MatchAllMethodDeclarations - Check methods declared in interface
1708 /// or protocol against those declared in their implementations.
1709 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)1710 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1711 const SelectorSet &ClsMap,
1712 SelectorSet &InsMapSeen,
1713 SelectorSet &ClsMapSeen,
1714 ObjCImplDecl* IMPDecl,
1715 ObjCContainerDecl* CDecl,
1716 bool &IncompleteImpl,
1717 bool ImmediateClass,
1718 bool WarnCategoryMethodImpl) {
1719 // Check and see if instance methods in class interface have been
1720 // implemented in the implementation class. If so, their types match.
1721 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1722 E = CDecl->instmeth_end(); I != E; ++I) {
1723 if (InsMapSeen.count((*I)->getSelector()))
1724 continue;
1725 InsMapSeen.insert((*I)->getSelector());
1726 if (!(*I)->isPropertyAccessor() &&
1727 !InsMap.count((*I)->getSelector())) {
1728 if (ImmediateClass)
1729 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1730 diag::warn_undef_method_impl);
1731 continue;
1732 } else {
1733 ObjCMethodDecl *ImpMethodDecl =
1734 IMPDecl->getInstanceMethod((*I)->getSelector());
1735 assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1736 "Expected to find the method through lookup as well");
1737 ObjCMethodDecl *MethodDecl = *I;
1738 // ImpMethodDecl may be null as in a @dynamic property.
1739 if (ImpMethodDecl) {
1740 if (!WarnCategoryMethodImpl)
1741 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1742 isa<ObjCProtocolDecl>(CDecl));
1743 else if (!MethodDecl->isPropertyAccessor())
1744 WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1745 isa<ObjCProtocolDecl>(CDecl));
1746 }
1747 }
1748 }
1749
1750 // Check and see if class methods in class interface have been
1751 // implemented in the implementation class. If so, their types match.
1752 for (ObjCInterfaceDecl::classmeth_iterator
1753 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1754 if (ClsMapSeen.count((*I)->getSelector()))
1755 continue;
1756 ClsMapSeen.insert((*I)->getSelector());
1757 if (!ClsMap.count((*I)->getSelector())) {
1758 if (ImmediateClass)
1759 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1760 diag::warn_undef_method_impl);
1761 } else {
1762 ObjCMethodDecl *ImpMethodDecl =
1763 IMPDecl->getClassMethod((*I)->getSelector());
1764 assert(CDecl->getClassMethod((*I)->getSelector()) &&
1765 "Expected to find the method through lookup as well");
1766 ObjCMethodDecl *MethodDecl = *I;
1767 if (!WarnCategoryMethodImpl)
1768 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1769 isa<ObjCProtocolDecl>(CDecl));
1770 else
1771 WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1772 isa<ObjCProtocolDecl>(CDecl));
1773 }
1774 }
1775
1776 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1777 // when checking that methods in implementation match their declaration,
1778 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1779 // extension; as well as those in categories.
1780 if (!WarnCategoryMethodImpl) {
1781 for (ObjCInterfaceDecl::visible_categories_iterator
1782 Cat = I->visible_categories_begin(),
1783 CatEnd = I->visible_categories_end();
1784 Cat != CatEnd; ++Cat) {
1785 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1786 IMPDecl, *Cat, IncompleteImpl, false,
1787 WarnCategoryMethodImpl);
1788 }
1789 } else {
1790 // Also methods in class extensions need be looked at next.
1791 for (ObjCInterfaceDecl::visible_extensions_iterator
1792 Ext = I->visible_extensions_begin(),
1793 ExtEnd = I->visible_extensions_end();
1794 Ext != ExtEnd; ++Ext) {
1795 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1796 IMPDecl, *Ext, IncompleteImpl, false,
1797 WarnCategoryMethodImpl);
1798 }
1799 }
1800
1801 // Check for any implementation of a methods declared in protocol.
1802 for (ObjCInterfaceDecl::all_protocol_iterator
1803 PI = I->all_referenced_protocol_begin(),
1804 E = I->all_referenced_protocol_end(); PI != E; ++PI)
1805 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1806 IMPDecl,
1807 (*PI), IncompleteImpl, false,
1808 WarnCategoryMethodImpl);
1809
1810 // FIXME. For now, we are not checking for extact match of methods
1811 // in category implementation and its primary class's super class.
1812 if (!WarnCategoryMethodImpl && I->getSuperClass())
1813 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1814 IMPDecl,
1815 I->getSuperClass(), IncompleteImpl, false);
1816 }
1817 }
1818
1819 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1820 /// category matches with those implemented in its primary class and
1821 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)1822 void Sema::CheckCategoryVsClassMethodMatches(
1823 ObjCCategoryImplDecl *CatIMPDecl) {
1824 SelectorSet InsMap, ClsMap;
1825
1826 for (ObjCImplementationDecl::instmeth_iterator
1827 I = CatIMPDecl->instmeth_begin(),
1828 E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1829 InsMap.insert((*I)->getSelector());
1830
1831 for (ObjCImplementationDecl::classmeth_iterator
1832 I = CatIMPDecl->classmeth_begin(),
1833 E = CatIMPDecl->classmeth_end(); I != E; ++I)
1834 ClsMap.insert((*I)->getSelector());
1835 if (InsMap.empty() && ClsMap.empty())
1836 return;
1837
1838 // Get category's primary class.
1839 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1840 if (!CatDecl)
1841 return;
1842 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1843 if (!IDecl)
1844 return;
1845 SelectorSet InsMapSeen, ClsMapSeen;
1846 bool IncompleteImpl = false;
1847 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1848 CatIMPDecl, IDecl,
1849 IncompleteImpl, false,
1850 true /*WarnCategoryMethodImpl*/);
1851 }
1852
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)1853 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1854 ObjCContainerDecl* CDecl,
1855 bool IncompleteImpl) {
1856 SelectorSet InsMap;
1857 // Check and see if instance methods in class interface have been
1858 // implemented in the implementation class.
1859 for (ObjCImplementationDecl::instmeth_iterator
1860 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1861 InsMap.insert((*I)->getSelector());
1862
1863 // Check and see if properties declared in the interface have either 1)
1864 // an implementation or 2) there is a @synthesize/@dynamic implementation
1865 // of the property in the @implementation.
1866 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1867 if (!(LangOpts.ObjCDefaultSynthProperties &&
1868 LangOpts.ObjCRuntime.isNonFragile()) ||
1869 IDecl->isObjCRequiresPropertyDefs())
1870 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1871
1872 SelectorSet ClsMap;
1873 for (ObjCImplementationDecl::classmeth_iterator
1874 I = IMPDecl->classmeth_begin(),
1875 E = IMPDecl->classmeth_end(); I != E; ++I)
1876 ClsMap.insert((*I)->getSelector());
1877
1878 // Check for type conflict of methods declared in a class/protocol and
1879 // its implementation; if any.
1880 SelectorSet InsMapSeen, ClsMapSeen;
1881 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1882 IMPDecl, CDecl,
1883 IncompleteImpl, true);
1884
1885 // check all methods implemented in category against those declared
1886 // in its primary class.
1887 if (ObjCCategoryImplDecl *CatDecl =
1888 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1889 CheckCategoryVsClassMethodMatches(CatDecl);
1890
1891 // Check the protocol list for unimplemented methods in the @implementation
1892 // class.
1893 // Check and see if class methods in class interface have been
1894 // implemented in the implementation class.
1895
1896 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1897 for (ObjCInterfaceDecl::all_protocol_iterator
1898 PI = I->all_referenced_protocol_begin(),
1899 E = I->all_referenced_protocol_end(); PI != E; ++PI)
1900 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1901 InsMap, ClsMap, I);
1902 // Check class extensions (unnamed categories)
1903 for (ObjCInterfaceDecl::visible_extensions_iterator
1904 Ext = I->visible_extensions_begin(),
1905 ExtEnd = I->visible_extensions_end();
1906 Ext != ExtEnd; ++Ext) {
1907 ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
1908 }
1909 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1910 // For extended class, unimplemented methods in its protocols will
1911 // be reported in the primary class.
1912 if (!C->IsClassExtension()) {
1913 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1914 E = C->protocol_end(); PI != E; ++PI)
1915 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1916 InsMap, ClsMap, CDecl);
1917 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1918 }
1919 } else
1920 llvm_unreachable("invalid ObjCContainerDecl type.");
1921 }
1922
1923 /// ActOnForwardClassDeclaration -
1924 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,unsigned NumElts)1925 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1926 IdentifierInfo **IdentList,
1927 SourceLocation *IdentLocs,
1928 unsigned NumElts) {
1929 SmallVector<Decl *, 8> DeclsInGroup;
1930 for (unsigned i = 0; i != NumElts; ++i) {
1931 // Check for another declaration kind with the same name.
1932 NamedDecl *PrevDecl
1933 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1934 LookupOrdinaryName, ForRedeclaration);
1935 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1936 // GCC apparently allows the following idiom:
1937 //
1938 // typedef NSObject < XCElementTogglerP > XCElementToggler;
1939 // @class XCElementToggler;
1940 //
1941 // Here we have chosen to ignore the forward class declaration
1942 // with a warning. Since this is the implied behavior.
1943 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1944 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1945 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1946 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1947 } else {
1948 // a forward class declaration matching a typedef name of a class refers
1949 // to the underlying class. Just ignore the forward class with a warning
1950 // as this will force the intended behavior which is to lookup the typedef
1951 // name.
1952 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1953 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1954 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1955 continue;
1956 }
1957 }
1958 }
1959
1960 // Create a declaration to describe this forward declaration.
1961 ObjCInterfaceDecl *PrevIDecl
1962 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1963
1964 IdentifierInfo *ClassName = IdentList[i];
1965 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
1966 // A previous decl with a different name is because of
1967 // @compatibility_alias, for example:
1968 // \code
1969 // @class NewImage;
1970 // @compatibility_alias OldImage NewImage;
1971 // \endcode
1972 // A lookup for 'OldImage' will return the 'NewImage' decl.
1973 //
1974 // In such a case use the real declaration name, instead of the alias one,
1975 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1976 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1977 // has been aliased.
1978 ClassName = PrevIDecl->getIdentifier();
1979 }
1980
1981 ObjCInterfaceDecl *IDecl
1982 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1983 ClassName, PrevIDecl, IdentLocs[i]);
1984 IDecl->setAtEndRange(IdentLocs[i]);
1985
1986 PushOnScopeChains(IDecl, TUScope);
1987 CheckObjCDeclScope(IDecl);
1988 DeclsInGroup.push_back(IDecl);
1989 }
1990
1991 return BuildDeclaratorGroup(DeclsInGroup, false);
1992 }
1993
1994 static bool tryMatchRecordTypes(ASTContext &Context,
1995 Sema::MethodMatchStrategy strategy,
1996 const Type *left, const Type *right);
1997
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)1998 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1999 QualType leftQT, QualType rightQT) {
2000 const Type *left =
2001 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2002 const Type *right =
2003 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2004
2005 if (left == right) return true;
2006
2007 // If we're doing a strict match, the types have to match exactly.
2008 if (strategy == Sema::MMS_strict) return false;
2009
2010 if (left->isIncompleteType() || right->isIncompleteType()) return false;
2011
2012 // Otherwise, use this absurdly complicated algorithm to try to
2013 // validate the basic, low-level compatibility of the two types.
2014
2015 // As a minimum, require the sizes and alignments to match.
2016 if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
2017 return false;
2018
2019 // Consider all the kinds of non-dependent canonical types:
2020 // - functions and arrays aren't possible as return and parameter types
2021
2022 // - vector types of equal size can be arbitrarily mixed
2023 if (isa<VectorType>(left)) return isa<VectorType>(right);
2024 if (isa<VectorType>(right)) return false;
2025
2026 // - references should only match references of identical type
2027 // - structs, unions, and Objective-C objects must match more-or-less
2028 // exactly
2029 // - everything else should be a scalar
2030 if (!left->isScalarType() || !right->isScalarType())
2031 return tryMatchRecordTypes(Context, strategy, left, right);
2032
2033 // Make scalars agree in kind, except count bools as chars, and group
2034 // all non-member pointers together.
2035 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2036 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2037 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2038 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2039 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2040 leftSK = Type::STK_ObjCObjectPointer;
2041 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2042 rightSK = Type::STK_ObjCObjectPointer;
2043
2044 // Note that data member pointers and function member pointers don't
2045 // intermix because of the size differences.
2046
2047 return (leftSK == rightSK);
2048 }
2049
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)2050 static bool tryMatchRecordTypes(ASTContext &Context,
2051 Sema::MethodMatchStrategy strategy,
2052 const Type *lt, const Type *rt) {
2053 assert(lt && rt && lt != rt);
2054
2055 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2056 RecordDecl *left = cast<RecordType>(lt)->getDecl();
2057 RecordDecl *right = cast<RecordType>(rt)->getDecl();
2058
2059 // Require union-hood to match.
2060 if (left->isUnion() != right->isUnion()) return false;
2061
2062 // Require an exact match if either is non-POD.
2063 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2064 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2065 return false;
2066
2067 // Require size and alignment to match.
2068 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2069
2070 // Require fields to match.
2071 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2072 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2073 for (; li != le && ri != re; ++li, ++ri) {
2074 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2075 return false;
2076 }
2077 return (li == le && ri == re);
2078 }
2079
2080 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2081 /// returns true, or false, accordingly.
2082 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)2083 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2084 const ObjCMethodDecl *right,
2085 MethodMatchStrategy strategy) {
2086 if (!matchTypes(Context, strategy,
2087 left->getResultType(), right->getResultType()))
2088 return false;
2089
2090 // If either is hidden, it is not considered to match.
2091 if (left->isHidden() || right->isHidden())
2092 return false;
2093
2094 if (getLangOpts().ObjCAutoRefCount &&
2095 (left->hasAttr<NSReturnsRetainedAttr>()
2096 != right->hasAttr<NSReturnsRetainedAttr>() ||
2097 left->hasAttr<NSConsumesSelfAttr>()
2098 != right->hasAttr<NSConsumesSelfAttr>()))
2099 return false;
2100
2101 ObjCMethodDecl::param_const_iterator
2102 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2103 re = right->param_end();
2104
2105 for (; li != le && ri != re; ++li, ++ri) {
2106 assert(ri != right->param_end() && "Param mismatch");
2107 const ParmVarDecl *lparm = *li, *rparm = *ri;
2108
2109 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2110 return false;
2111
2112 if (getLangOpts().ObjCAutoRefCount &&
2113 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2114 return false;
2115 }
2116 return true;
2117 }
2118
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)2119 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2120 // Record at the head of the list whether there were 0, 1, or >= 2 methods
2121 // inside categories.
2122 if (ObjCCategoryDecl *
2123 CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2124 if (!CD->IsClassExtension() && List->getBits() < 2)
2125 List->setBits(List->getBits()+1);
2126
2127 // If the list is empty, make it a singleton list.
2128 if (List->Method == 0) {
2129 List->Method = Method;
2130 List->setNext(0);
2131 return;
2132 }
2133
2134 // We've seen a method with this name, see if we have already seen this type
2135 // signature.
2136 ObjCMethodList *Previous = List;
2137 for (; List; Previous = List, List = List->getNext()) {
2138 // If we are building a module, keep all of the methods.
2139 if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2140 continue;
2141
2142 if (!MatchTwoMethodDeclarations(Method, List->Method))
2143 continue;
2144
2145 ObjCMethodDecl *PrevObjCMethod = List->Method;
2146
2147 // Propagate the 'defined' bit.
2148 if (Method->isDefined())
2149 PrevObjCMethod->setDefined(true);
2150
2151 // If a method is deprecated, push it in the global pool.
2152 // This is used for better diagnostics.
2153 if (Method->isDeprecated()) {
2154 if (!PrevObjCMethod->isDeprecated())
2155 List->Method = Method;
2156 }
2157 // If new method is unavailable, push it into global pool
2158 // unless previous one is deprecated.
2159 if (Method->isUnavailable()) {
2160 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2161 List->Method = Method;
2162 }
2163
2164 return;
2165 }
2166
2167 // We have a new signature for an existing method - add it.
2168 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2169 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2170 Previous->setNext(new (Mem) ObjCMethodList(Method, 0));
2171 }
2172
2173 /// \brief Read the contents of the method pool for a given selector from
2174 /// external storage.
ReadMethodPool(Selector Sel)2175 void Sema::ReadMethodPool(Selector Sel) {
2176 assert(ExternalSource && "We need an external AST source");
2177 ExternalSource->ReadMethodPool(Sel);
2178 }
2179
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)2180 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2181 bool instance) {
2182 // Ignore methods of invalid containers.
2183 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2184 return;
2185
2186 if (ExternalSource)
2187 ReadMethodPool(Method->getSelector());
2188
2189 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2190 if (Pos == MethodPool.end())
2191 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2192 GlobalMethods())).first;
2193
2194 Method->setDefined(impl);
2195
2196 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2197 addMethodToGlobalList(&Entry, Method);
2198 }
2199
2200 /// Determines if this is an "acceptable" loose mismatch in the global
2201 /// method pool. This exists mostly as a hack to get around certain
2202 /// global mismatches which we can't afford to make warnings / errors.
2203 /// Really, what we want is a way to take a method out of the global
2204 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)2205 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2206 ObjCMethodDecl *other) {
2207 if (!chosen->isInstanceMethod())
2208 return false;
2209
2210 Selector sel = chosen->getSelector();
2211 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2212 return false;
2213
2214 // Don't complain about mismatches for -length if the method we
2215 // chose has an integral result type.
2216 return (chosen->getResultType()->isIntegerType());
2217 }
2218
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool warn,bool instance)2219 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2220 bool receiverIdOrClass,
2221 bool warn, bool instance) {
2222 if (ExternalSource)
2223 ReadMethodPool(Sel);
2224
2225 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2226 if (Pos == MethodPool.end())
2227 return 0;
2228
2229 // Gather the non-hidden methods.
2230 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2231 llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
2232 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2233 if (M->Method && !M->Method->isHidden()) {
2234 // If we're not supposed to warn about mismatches, we're done.
2235 if (!warn)
2236 return M->Method;
2237
2238 Methods.push_back(M->Method);
2239 }
2240 }
2241
2242 // If there aren't any visible methods, we're done.
2243 // FIXME: Recover if there are any known-but-hidden methods?
2244 if (Methods.empty())
2245 return 0;
2246
2247 if (Methods.size() == 1)
2248 return Methods[0];
2249
2250 // We found multiple methods, so we may have to complain.
2251 bool issueDiagnostic = false, issueError = false;
2252
2253 // We support a warning which complains about *any* difference in
2254 // method signature.
2255 bool strictSelectorMatch =
2256 (receiverIdOrClass && warn &&
2257 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2258 R.getBegin())
2259 != DiagnosticsEngine::Ignored));
2260 if (strictSelectorMatch) {
2261 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2262 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2263 issueDiagnostic = true;
2264 break;
2265 }
2266 }
2267 }
2268
2269 // If we didn't see any strict differences, we won't see any loose
2270 // differences. In ARC, however, we also need to check for loose
2271 // mismatches, because most of them are errors.
2272 if (!strictSelectorMatch ||
2273 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2274 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2275 // This checks if the methods differ in type mismatch.
2276 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2277 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2278 issueDiagnostic = true;
2279 if (getLangOpts().ObjCAutoRefCount)
2280 issueError = true;
2281 break;
2282 }
2283 }
2284
2285 if (issueDiagnostic) {
2286 if (issueError)
2287 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2288 else if (strictSelectorMatch)
2289 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2290 else
2291 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2292
2293 Diag(Methods[0]->getLocStart(),
2294 issueError ? diag::note_possibility : diag::note_using)
2295 << Methods[0]->getSourceRange();
2296 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2297 Diag(Methods[I]->getLocStart(), diag::note_also_found)
2298 << Methods[I]->getSourceRange();
2299 }
2300 }
2301 return Methods[0];
2302 }
2303
LookupImplementedMethodInGlobalPool(Selector Sel)2304 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2305 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2306 if (Pos == MethodPool.end())
2307 return 0;
2308
2309 GlobalMethods &Methods = Pos->second;
2310
2311 if (Methods.first.Method && Methods.first.Method->isDefined())
2312 return Methods.first.Method;
2313 if (Methods.second.Method && Methods.second.Method->isDefined())
2314 return Methods.second.Method;
2315 return 0;
2316 }
2317
2318 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)2319 HelperSelectorsForTypoCorrection(
2320 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2321 StringRef Typo, const ObjCMethodDecl * Method) {
2322 const unsigned MaxEditDistance = 1;
2323 unsigned BestEditDistance = MaxEditDistance + 1;
2324 std::string MethodName = Method->getSelector().getAsString();
2325
2326 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2327 if (MinPossibleEditDistance > 0 &&
2328 Typo.size() / MinPossibleEditDistance < 1)
2329 return;
2330 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2331 if (EditDistance > MaxEditDistance)
2332 return;
2333 if (EditDistance == BestEditDistance)
2334 BestMethod.push_back(Method);
2335 else if (EditDistance < BestEditDistance) {
2336 BestMethod.clear();
2337 BestMethod.push_back(Method);
2338 }
2339 }
2340
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)2341 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2342 QualType ObjectType) {
2343 if (ObjectType.isNull())
2344 return true;
2345 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2346 return true;
2347 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 0;
2348 }
2349
2350 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)2351 Sema::SelectorsForTypoCorrection(Selector Sel,
2352 QualType ObjectType) {
2353 unsigned NumArgs = Sel.getNumArgs();
2354 SmallVector<const ObjCMethodDecl *, 8> Methods;
2355 bool ObjectIsId = true, ObjectIsClass = true;
2356 if (ObjectType.isNull())
2357 ObjectIsId = ObjectIsClass = false;
2358 else if (!ObjectType->isObjCObjectPointerType())
2359 return 0;
2360 else if (const ObjCObjectPointerType *ObjCPtr =
2361 ObjectType->getAsObjCInterfacePointerType()) {
2362 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2363 ObjectIsId = ObjectIsClass = false;
2364 }
2365 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2366 ObjectIsClass = false;
2367 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2368 ObjectIsId = false;
2369 else
2370 return 0;
2371
2372 for (GlobalMethodPool::iterator b = MethodPool.begin(),
2373 e = MethodPool.end(); b != e; b++) {
2374 // instance methods
2375 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2376 if (M->Method &&
2377 (M->Method->getSelector().getNumArgs() == NumArgs) &&
2378 (M->Method->getSelector() != Sel)) {
2379 if (ObjectIsId)
2380 Methods.push_back(M->Method);
2381 else if (!ObjectIsClass &&
2382 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2383 Methods.push_back(M->Method);
2384 }
2385 // class methods
2386 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2387 if (M->Method &&
2388 (M->Method->getSelector().getNumArgs() == NumArgs) &&
2389 (M->Method->getSelector() != Sel)) {
2390 if (ObjectIsClass)
2391 Methods.push_back(M->Method);
2392 else if (!ObjectIsId &&
2393 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2394 Methods.push_back(M->Method);
2395 }
2396 }
2397
2398 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2399 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2400 HelperSelectorsForTypoCorrection(SelectedMethods,
2401 Sel.getAsString(), Methods[i]);
2402 }
2403 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : NULL;
2404 }
2405
2406 static void
HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema & S,ObjCMethodList & MethList)2407 HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
2408 ObjCMethodList &MethList) {
2409 ObjCMethodList *M = &MethList;
2410 ObjCMethodDecl *TargetMethod = M->Method;
2411 while (TargetMethod &&
2412 isa<ObjCImplDecl>(TargetMethod->getDeclContext())) {
2413 M = M->getNext();
2414 TargetMethod = M ? M->Method : 0;
2415 }
2416 if (!TargetMethod)
2417 return;
2418 bool FirstTime = true;
2419 for (M = M->getNext(); M; M=M->getNext()) {
2420 ObjCMethodDecl *MatchingMethodDecl = M->Method;
2421 if (isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()))
2422 continue;
2423 if (!S.MatchTwoMethodDeclarations(TargetMethod,
2424 MatchingMethodDecl, Sema::MMS_loose)) {
2425 if (FirstTime) {
2426 FirstTime = false;
2427 S.Diag(TargetMethod->getLocation(), diag::warning_multiple_selectors)
2428 << TargetMethod->getSelector();
2429 }
2430 S.Diag(MatchingMethodDecl->getLocation(), diag::note_also_found);
2431 }
2432 }
2433 }
2434
DiagnoseMismatchedMethodsInGlobalPool()2435 void Sema::DiagnoseMismatchedMethodsInGlobalPool() {
2436 unsigned DIAG = diag::warning_multiple_selectors;
2437 if (Diags.getDiagnosticLevel(DIAG, SourceLocation())
2438 == DiagnosticsEngine::Ignored)
2439 return;
2440 for (GlobalMethodPool::iterator b = MethodPool.begin(),
2441 e = MethodPool.end(); b != e; b++) {
2442 // first, instance methods
2443 ObjCMethodList &InstMethList = b->second.first;
2444 HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, InstMethList);
2445 // second, class methods
2446 ObjCMethodList &ClsMethList = b->second.second;
2447 HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, ClsMethList);
2448 }
2449 }
2450
2451 /// DiagnoseDuplicateIvars -
2452 /// Check for duplicate ivars in the entire class at the start of
2453 /// \@implementation. This becomes necesssary because class extension can
2454 /// add ivars to a class in random order which will not be known until
2455 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)2456 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2457 ObjCInterfaceDecl *SID) {
2458 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2459 IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2460 ObjCIvarDecl* Ivar = *IVI;
2461 if (Ivar->isInvalidDecl())
2462 continue;
2463 if (IdentifierInfo *II = Ivar->getIdentifier()) {
2464 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2465 if (prevIvar) {
2466 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2467 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2468 Ivar->setInvalidDecl();
2469 }
2470 }
2471 }
2472 }
2473
getObjCContainerKind() const2474 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2475 switch (CurContext->getDeclKind()) {
2476 case Decl::ObjCInterface:
2477 return Sema::OCK_Interface;
2478 case Decl::ObjCProtocol:
2479 return Sema::OCK_Protocol;
2480 case Decl::ObjCCategory:
2481 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2482 return Sema::OCK_ClassExtension;
2483 else
2484 return Sema::OCK_Category;
2485 case Decl::ObjCImplementation:
2486 return Sema::OCK_Implementation;
2487 case Decl::ObjCCategoryImpl:
2488 return Sema::OCK_CategoryImplementation;
2489
2490 default:
2491 return Sema::OCK_None;
2492 }
2493 }
2494
2495 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)2496 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2497 ArrayRef<DeclGroupPtrTy> allTUVars) {
2498 if (getObjCContainerKind() == Sema::OCK_None)
2499 return 0;
2500
2501 assert(AtEnd.isValid() && "Invalid location for '@end'");
2502
2503 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2504 Decl *ClassDecl = cast<Decl>(OCD);
2505
2506 bool isInterfaceDeclKind =
2507 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2508 || isa<ObjCProtocolDecl>(ClassDecl);
2509 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2510
2511 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2512 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2513 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2514
2515 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2516 ObjCMethodDecl *Method =
2517 cast_or_null<ObjCMethodDecl>(allMethods[i]);
2518
2519 if (!Method) continue; // Already issued a diagnostic.
2520 if (Method->isInstanceMethod()) {
2521 /// Check for instance method of the same name with incompatible types
2522 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2523 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2524 : false;
2525 if ((isInterfaceDeclKind && PrevMethod && !match)
2526 || (checkIdenticalMethods && match)) {
2527 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2528 << Method->getDeclName();
2529 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2530 Method->setInvalidDecl();
2531 } else {
2532 if (PrevMethod) {
2533 Method->setAsRedeclaration(PrevMethod);
2534 if (!Context.getSourceManager().isInSystemHeader(
2535 Method->getLocation()))
2536 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2537 << Method->getDeclName();
2538 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2539 }
2540 InsMap[Method->getSelector()] = Method;
2541 /// The following allows us to typecheck messages to "id".
2542 AddInstanceMethodToGlobalPool(Method);
2543 }
2544 } else {
2545 /// Check for class method of the same name with incompatible types
2546 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2547 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2548 : false;
2549 if ((isInterfaceDeclKind && PrevMethod && !match)
2550 || (checkIdenticalMethods && match)) {
2551 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2552 << Method->getDeclName();
2553 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2554 Method->setInvalidDecl();
2555 } else {
2556 if (PrevMethod) {
2557 Method->setAsRedeclaration(PrevMethod);
2558 if (!Context.getSourceManager().isInSystemHeader(
2559 Method->getLocation()))
2560 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2561 << Method->getDeclName();
2562 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2563 }
2564 ClsMap[Method->getSelector()] = Method;
2565 AddFactoryMethodToGlobalPool(Method);
2566 }
2567 }
2568 }
2569 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2570 // Nothing to do here.
2571 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2572 // Categories are used to extend the class by declaring new methods.
2573 // By the same token, they are also used to add new properties. No
2574 // need to compare the added property to those in the class.
2575
2576 if (C->IsClassExtension()) {
2577 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2578 DiagnoseClassExtensionDupMethods(C, CCPrimary);
2579 }
2580 }
2581 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2582 if (CDecl->getIdentifier())
2583 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2584 // user-defined setter/getter. It also synthesizes setter/getter methods
2585 // and adds them to the DeclContext and global method pools.
2586 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2587 E = CDecl->prop_end();
2588 I != E; ++I)
2589 ProcessPropertyDecl(*I, CDecl);
2590 CDecl->setAtEndRange(AtEnd);
2591 }
2592 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2593 IC->setAtEndRange(AtEnd);
2594 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2595 // Any property declared in a class extension might have user
2596 // declared setter or getter in current class extension or one
2597 // of the other class extensions. Mark them as synthesized as
2598 // property will be synthesized when property with same name is
2599 // seen in the @implementation.
2600 for (ObjCInterfaceDecl::visible_extensions_iterator
2601 Ext = IDecl->visible_extensions_begin(),
2602 ExtEnd = IDecl->visible_extensions_end();
2603 Ext != ExtEnd; ++Ext) {
2604 for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
2605 E = Ext->prop_end(); I != E; ++I) {
2606 ObjCPropertyDecl *Property = *I;
2607 // Skip over properties declared @dynamic
2608 if (const ObjCPropertyImplDecl *PIDecl
2609 = IC->FindPropertyImplDecl(Property->getIdentifier()))
2610 if (PIDecl->getPropertyImplementation()
2611 == ObjCPropertyImplDecl::Dynamic)
2612 continue;
2613
2614 for (ObjCInterfaceDecl::visible_extensions_iterator
2615 Ext = IDecl->visible_extensions_begin(),
2616 ExtEnd = IDecl->visible_extensions_end();
2617 Ext != ExtEnd; ++Ext) {
2618 if (ObjCMethodDecl *GetterMethod
2619 = Ext->getInstanceMethod(Property->getGetterName()))
2620 GetterMethod->setPropertyAccessor(true);
2621 if (!Property->isReadOnly())
2622 if (ObjCMethodDecl *SetterMethod
2623 = Ext->getInstanceMethod(Property->getSetterName()))
2624 SetterMethod->setPropertyAccessor(true);
2625 }
2626 }
2627 }
2628 ImplMethodsVsClassMethods(S, IC, IDecl);
2629 AtomicPropertySetterGetterRules(IC, IDecl);
2630 DiagnoseOwningPropertyGetterSynthesis(IC);
2631
2632 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2633 if (IDecl->getSuperClass() == NULL) {
2634 // This class has no superclass, so check that it has been marked with
2635 // __attribute((objc_root_class)).
2636 if (!HasRootClassAttr) {
2637 SourceLocation DeclLoc(IDecl->getLocation());
2638 SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2639 Diag(DeclLoc, diag::warn_objc_root_class_missing)
2640 << IDecl->getIdentifier();
2641 // See if NSObject is in the current scope, and if it is, suggest
2642 // adding " : NSObject " to the class declaration.
2643 NamedDecl *IF = LookupSingleName(TUScope,
2644 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2645 DeclLoc, LookupOrdinaryName);
2646 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2647 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2648 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2649 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2650 } else {
2651 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2652 }
2653 }
2654 } else if (HasRootClassAttr) {
2655 // Complain that only root classes may have this attribute.
2656 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2657 }
2658
2659 if (LangOpts.ObjCRuntime.isNonFragile()) {
2660 while (IDecl->getSuperClass()) {
2661 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2662 IDecl = IDecl->getSuperClass();
2663 }
2664 }
2665 }
2666 SetIvarInitializers(IC);
2667 } else if (ObjCCategoryImplDecl* CatImplClass =
2668 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2669 CatImplClass->setAtEndRange(AtEnd);
2670
2671 // Find category interface decl and then check that all methods declared
2672 // in this interface are implemented in the category @implementation.
2673 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2674 if (ObjCCategoryDecl *Cat
2675 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2676 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2677 }
2678 }
2679 }
2680 if (isInterfaceDeclKind) {
2681 // Reject invalid vardecls.
2682 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2683 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2684 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2685 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2686 if (!VDecl->hasExternalStorage())
2687 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2688 }
2689 }
2690 }
2691 ActOnObjCContainerFinishDefinition();
2692
2693 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2694 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2695 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2696 (*I)->setTopLevelDeclInObjCContainer();
2697 Consumer.HandleTopLevelDeclInObjCContainer(DG);
2698 }
2699
2700 ActOnDocumentableDecl(ClassDecl);
2701 return ClassDecl;
2702 }
2703
2704
2705 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2706 /// objective-c's type qualifier from the parser version of the same info.
2707 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)2708 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2709 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2710 }
2711
2712 static inline
countAlignAttr(const AttrVec & A)2713 unsigned countAlignAttr(const AttrVec &A) {
2714 unsigned count=0;
2715 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2716 if ((*i)->getKind() == attr::Aligned)
2717 ++count;
2718 return count;
2719 }
2720
2721 static inline
containsInvalidMethodImplAttribute(ObjCMethodDecl * IMD,const AttrVec & A)2722 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2723 const AttrVec &A) {
2724 // If method is only declared in implementation (private method),
2725 // No need to issue any diagnostics on method definition with attributes.
2726 if (!IMD)
2727 return false;
2728
2729 // method declared in interface has no attribute.
2730 // But implementation has attributes. This is invalid.
2731 // Except when implementation has 'Align' attribute which is
2732 // immaterial to method declared in interface.
2733 if (!IMD->hasAttrs())
2734 return (A.size() > countAlignAttr(A));
2735
2736 const AttrVec &D = IMD->getAttrs();
2737
2738 unsigned countAlignOnImpl = countAlignAttr(A);
2739 if (!countAlignOnImpl && (A.size() != D.size()))
2740 return true;
2741 else if (countAlignOnImpl) {
2742 unsigned countAlignOnDecl = countAlignAttr(D);
2743 if (countAlignOnDecl && (A.size() != D.size()))
2744 return true;
2745 else if (!countAlignOnDecl &&
2746 ((A.size()-countAlignOnImpl) != D.size()))
2747 return true;
2748 }
2749
2750 // attributes on method declaration and definition must match exactly.
2751 // Note that we have at most a couple of attributes on methods, so this
2752 // n*n search is good enough.
2753 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2754 if ((*i)->getKind() == attr::Aligned)
2755 continue;
2756 bool match = false;
2757 for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2758 if ((*i)->getKind() == (*i1)->getKind()) {
2759 match = true;
2760 break;
2761 }
2762 }
2763 if (!match)
2764 return true;
2765 }
2766
2767 return false;
2768 }
2769
2770 /// \brief Check whether the declared result type of the given Objective-C
2771 /// method declaration is compatible with the method's class.
2772 ///
2773 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)2774 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2775 ObjCInterfaceDecl *CurrentClass) {
2776 QualType ResultType = Method->getResultType();
2777
2778 // If an Objective-C method inherits its related result type, then its
2779 // declared result type must be compatible with its own class type. The
2780 // declared result type is compatible if:
2781 if (const ObjCObjectPointerType *ResultObjectType
2782 = ResultType->getAs<ObjCObjectPointerType>()) {
2783 // - it is id or qualified id, or
2784 if (ResultObjectType->isObjCIdType() ||
2785 ResultObjectType->isObjCQualifiedIdType())
2786 return Sema::RTC_Compatible;
2787
2788 if (CurrentClass) {
2789 if (ObjCInterfaceDecl *ResultClass
2790 = ResultObjectType->getInterfaceDecl()) {
2791 // - it is the same as the method's class type, or
2792 if (declaresSameEntity(CurrentClass, ResultClass))
2793 return Sema::RTC_Compatible;
2794
2795 // - it is a superclass of the method's class type
2796 if (ResultClass->isSuperClassOf(CurrentClass))
2797 return Sema::RTC_Compatible;
2798 }
2799 } else {
2800 // Any Objective-C pointer type might be acceptable for a protocol
2801 // method; we just don't know.
2802 return Sema::RTC_Unknown;
2803 }
2804 }
2805
2806 return Sema::RTC_Incompatible;
2807 }
2808
2809 namespace {
2810 /// A helper class for searching for methods which a particular method
2811 /// overrides.
2812 class OverrideSearch {
2813 public:
2814 Sema &S;
2815 ObjCMethodDecl *Method;
2816 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2817 bool Recursive;
2818
2819 public:
OverrideSearch(Sema & S,ObjCMethodDecl * method)2820 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2821 Selector selector = method->getSelector();
2822
2823 // Bypass this search if we've never seen an instance/class method
2824 // with this selector before.
2825 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2826 if (it == S.MethodPool.end()) {
2827 if (!S.getExternalSource()) return;
2828 S.ReadMethodPool(selector);
2829
2830 it = S.MethodPool.find(selector);
2831 if (it == S.MethodPool.end())
2832 return;
2833 }
2834 ObjCMethodList &list =
2835 method->isInstanceMethod() ? it->second.first : it->second.second;
2836 if (!list.Method) return;
2837
2838 ObjCContainerDecl *container
2839 = cast<ObjCContainerDecl>(method->getDeclContext());
2840
2841 // Prevent the search from reaching this container again. This is
2842 // important with categories, which override methods from the
2843 // interface and each other.
2844 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2845 searchFromContainer(container);
2846 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2847 searchFromContainer(Interface);
2848 } else {
2849 searchFromContainer(container);
2850 }
2851 }
2852
2853 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
begin() const2854 iterator begin() const { return Overridden.begin(); }
end() const2855 iterator end() const { return Overridden.end(); }
2856
2857 private:
searchFromContainer(ObjCContainerDecl * container)2858 void searchFromContainer(ObjCContainerDecl *container) {
2859 if (container->isInvalidDecl()) return;
2860
2861 switch (container->getDeclKind()) {
2862 #define OBJCCONTAINER(type, base) \
2863 case Decl::type: \
2864 searchFrom(cast<type##Decl>(container)); \
2865 break;
2866 #define ABSTRACT_DECL(expansion)
2867 #define DECL(type, base) \
2868 case Decl::type:
2869 #include "clang/AST/DeclNodes.inc"
2870 llvm_unreachable("not an ObjC container!");
2871 }
2872 }
2873
searchFrom(ObjCProtocolDecl * protocol)2874 void searchFrom(ObjCProtocolDecl *protocol) {
2875 if (!protocol->hasDefinition())
2876 return;
2877
2878 // A method in a protocol declaration overrides declarations from
2879 // referenced ("parent") protocols.
2880 search(protocol->getReferencedProtocols());
2881 }
2882
searchFrom(ObjCCategoryDecl * category)2883 void searchFrom(ObjCCategoryDecl *category) {
2884 // A method in a category declaration overrides declarations from
2885 // the main class and from protocols the category references.
2886 // The main class is handled in the constructor.
2887 search(category->getReferencedProtocols());
2888 }
2889
searchFrom(ObjCCategoryImplDecl * impl)2890 void searchFrom(ObjCCategoryImplDecl *impl) {
2891 // A method in a category definition that has a category
2892 // declaration overrides declarations from the category
2893 // declaration.
2894 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2895 search(category);
2896 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2897 search(Interface);
2898
2899 // Otherwise it overrides declarations from the class.
2900 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2901 search(Interface);
2902 }
2903 }
2904
searchFrom(ObjCInterfaceDecl * iface)2905 void searchFrom(ObjCInterfaceDecl *iface) {
2906 // A method in a class declaration overrides declarations from
2907 if (!iface->hasDefinition())
2908 return;
2909
2910 // - categories,
2911 for (ObjCInterfaceDecl::known_categories_iterator
2912 cat = iface->known_categories_begin(),
2913 catEnd = iface->known_categories_end();
2914 cat != catEnd; ++cat) {
2915 search(*cat);
2916 }
2917
2918 // - the super class, and
2919 if (ObjCInterfaceDecl *super = iface->getSuperClass())
2920 search(super);
2921
2922 // - any referenced protocols.
2923 search(iface->getReferencedProtocols());
2924 }
2925
searchFrom(ObjCImplementationDecl * impl)2926 void searchFrom(ObjCImplementationDecl *impl) {
2927 // A method in a class implementation overrides declarations from
2928 // the class interface.
2929 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2930 search(Interface);
2931 }
2932
2933
search(const ObjCProtocolList & protocols)2934 void search(const ObjCProtocolList &protocols) {
2935 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2936 i != e; ++i)
2937 search(*i);
2938 }
2939
search(ObjCContainerDecl * container)2940 void search(ObjCContainerDecl *container) {
2941 // Check for a method in this container which matches this selector.
2942 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2943 Method->isInstanceMethod(),
2944 /*AllowHidden=*/true);
2945
2946 // If we find one, record it and bail out.
2947 if (meth) {
2948 Overridden.insert(meth);
2949 return;
2950 }
2951
2952 // Otherwise, search for methods that a hypothetical method here
2953 // would have overridden.
2954
2955 // Note that we're now in a recursive case.
2956 Recursive = true;
2957
2958 searchFromContainer(container);
2959 }
2960 };
2961 }
2962
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)2963 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2964 ObjCInterfaceDecl *CurrentClass,
2965 ResultTypeCompatibilityKind RTC) {
2966 // Search for overridden methods and merge information down from them.
2967 OverrideSearch overrides(*this, ObjCMethod);
2968 // Keep track if the method overrides any method in the class's base classes,
2969 // its protocols, or its categories' protocols; we will keep that info
2970 // in the ObjCMethodDecl.
2971 // For this info, a method in an implementation is not considered as
2972 // overriding the same method in the interface or its categories.
2973 bool hasOverriddenMethodsInBaseOrProtocol = false;
2974 for (OverrideSearch::iterator
2975 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2976 ObjCMethodDecl *overridden = *i;
2977
2978 if (!hasOverriddenMethodsInBaseOrProtocol) {
2979 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2980 CurrentClass != overridden->getClassInterface() ||
2981 overridden->isOverriding()) {
2982 hasOverriddenMethodsInBaseOrProtocol = true;
2983
2984 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
2985 // OverrideSearch will return as "overridden" the same method in the
2986 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
2987 // check whether a category of a base class introduced a method with the
2988 // same selector, after the interface method declaration.
2989 // To avoid unnecessary lookups in the majority of cases, we use the
2990 // extra info bits in GlobalMethodPool to check whether there were any
2991 // category methods with this selector.
2992 GlobalMethodPool::iterator It =
2993 MethodPool.find(ObjCMethod->getSelector());
2994 if (It != MethodPool.end()) {
2995 ObjCMethodList &List =
2996 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
2997 unsigned CategCount = List.getBits();
2998 if (CategCount > 0) {
2999 // If the method is in a category we'll do lookup if there were at
3000 // least 2 category methods recorded, otherwise only one will do.
3001 if (CategCount > 1 ||
3002 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3003 OverrideSearch overrides(*this, overridden);
3004 for (OverrideSearch::iterator
3005 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3006 ObjCMethodDecl *SuperOverridden = *OI;
3007 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3008 CurrentClass != SuperOverridden->getClassInterface()) {
3009 hasOverriddenMethodsInBaseOrProtocol = true;
3010 overridden->setOverriding(true);
3011 break;
3012 }
3013 }
3014 }
3015 }
3016 }
3017 }
3018 }
3019
3020 // Propagate down the 'related result type' bit from overridden methods.
3021 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3022 ObjCMethod->SetRelatedResultType();
3023
3024 // Then merge the declarations.
3025 mergeObjCMethodDecls(ObjCMethod, overridden);
3026
3027 if (ObjCMethod->isImplicit() && overridden->isImplicit())
3028 continue; // Conflicting properties are detected elsewhere.
3029
3030 // Check for overriding methods
3031 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3032 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3033 CheckConflictingOverridingMethod(ObjCMethod, overridden,
3034 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3035
3036 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3037 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3038 !overridden->isImplicit() /* not meant for properties */) {
3039 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3040 E = ObjCMethod->param_end();
3041 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3042 PrevE = overridden->param_end();
3043 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3044 assert(PrevI != overridden->param_end() && "Param mismatch");
3045 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3046 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3047 // If type of argument of method in this class does not match its
3048 // respective argument type in the super class method, issue warning;
3049 if (!Context.typesAreCompatible(T1, T2)) {
3050 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3051 << T1 << T2;
3052 Diag(overridden->getLocation(), diag::note_previous_declaration);
3053 break;
3054 }
3055 }
3056 }
3057 }
3058
3059 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3060 }
3061
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)3062 Decl *Sema::ActOnMethodDeclaration(
3063 Scope *S,
3064 SourceLocation MethodLoc, SourceLocation EndLoc,
3065 tok::TokenKind MethodType,
3066 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3067 ArrayRef<SourceLocation> SelectorLocs,
3068 Selector Sel,
3069 // optional arguments. The number of types/arguments is obtained
3070 // from the Sel.getNumArgs().
3071 ObjCArgInfo *ArgInfo,
3072 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3073 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3074 bool isVariadic, bool MethodDefinition) {
3075 // Make sure we can establish a context for the method.
3076 if (!CurContext->isObjCContainer()) {
3077 Diag(MethodLoc, diag::error_missing_method_context);
3078 return 0;
3079 }
3080 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3081 Decl *ClassDecl = cast<Decl>(OCD);
3082 QualType resultDeclType;
3083
3084 bool HasRelatedResultType = false;
3085 TypeSourceInfo *ResultTInfo = 0;
3086 if (ReturnType) {
3087 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
3088
3089 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3090 return 0;
3091
3092 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3093 } else { // get the type for "id".
3094 resultDeclType = Context.getObjCIdType();
3095 Diag(MethodLoc, diag::warn_missing_method_return_type)
3096 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3097 }
3098
3099 ObjCMethodDecl* ObjCMethod =
3100 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
3101 resultDeclType,
3102 ResultTInfo,
3103 CurContext,
3104 MethodType == tok::minus, isVariadic,
3105 /*isPropertyAccessor=*/false,
3106 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3107 MethodDeclKind == tok::objc_optional
3108 ? ObjCMethodDecl::Optional
3109 : ObjCMethodDecl::Required,
3110 HasRelatedResultType);
3111
3112 SmallVector<ParmVarDecl*, 16> Params;
3113
3114 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3115 QualType ArgType;
3116 TypeSourceInfo *DI;
3117
3118 if (!ArgInfo[i].Type) {
3119 ArgType = Context.getObjCIdType();
3120 DI = 0;
3121 } else {
3122 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3123 }
3124
3125 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3126 LookupOrdinaryName, ForRedeclaration);
3127 LookupName(R, S);
3128 if (R.isSingleResult()) {
3129 NamedDecl *PrevDecl = R.getFoundDecl();
3130 if (S->isDeclScope(PrevDecl)) {
3131 Diag(ArgInfo[i].NameLoc,
3132 (MethodDefinition ? diag::warn_method_param_redefinition
3133 : diag::warn_method_param_declaration))
3134 << ArgInfo[i].Name;
3135 Diag(PrevDecl->getLocation(),
3136 diag::note_previous_declaration);
3137 }
3138 }
3139
3140 SourceLocation StartLoc = DI
3141 ? DI->getTypeLoc().getBeginLoc()
3142 : ArgInfo[i].NameLoc;
3143
3144 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3145 ArgInfo[i].NameLoc, ArgInfo[i].Name,
3146 ArgType, DI, SC_None);
3147
3148 Param->setObjCMethodScopeInfo(i);
3149
3150 Param->setObjCDeclQualifier(
3151 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3152
3153 // Apply the attributes to the parameter.
3154 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3155
3156 if (Param->hasAttr<BlocksAttr>()) {
3157 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3158 Param->setInvalidDecl();
3159 }
3160 S->AddDecl(Param);
3161 IdResolver.AddDecl(Param);
3162
3163 Params.push_back(Param);
3164 }
3165
3166 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3167 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3168 QualType ArgType = Param->getType();
3169 if (ArgType.isNull())
3170 ArgType = Context.getObjCIdType();
3171 else
3172 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3173 ArgType = Context.getAdjustedParameterType(ArgType);
3174
3175 Param->setDeclContext(ObjCMethod);
3176 Params.push_back(Param);
3177 }
3178
3179 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3180 ObjCMethod->setObjCDeclQualifier(
3181 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3182
3183 if (AttrList)
3184 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3185
3186 // Add the method now.
3187 const ObjCMethodDecl *PrevMethod = 0;
3188 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3189 if (MethodType == tok::minus) {
3190 PrevMethod = ImpDecl->getInstanceMethod(Sel);
3191 ImpDecl->addInstanceMethod(ObjCMethod);
3192 } else {
3193 PrevMethod = ImpDecl->getClassMethod(Sel);
3194 ImpDecl->addClassMethod(ObjCMethod);
3195 }
3196
3197 ObjCMethodDecl *IMD = 0;
3198 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3199 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3200 ObjCMethod->isInstanceMethod());
3201 if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3202 !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3203 // merge the attribute into implementation.
3204 ObjCMethod->addAttr(
3205 new (Context) ObjCRequiresSuperAttr(ObjCMethod->getLocation(), Context));
3206 }
3207 if (ObjCMethod->hasAttrs() &&
3208 containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
3209 SourceLocation MethodLoc = IMD->getLocation();
3210 if (!getSourceManager().isInSystemHeader(MethodLoc)) {
3211 Diag(EndLoc, diag::warn_attribute_method_def);
3212 Diag(MethodLoc, diag::note_method_declared_at)
3213 << ObjCMethod->getDeclName();
3214 }
3215 }
3216 } else {
3217 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3218 }
3219
3220 if (PrevMethod) {
3221 // You can never have two method definitions with the same name.
3222 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3223 << ObjCMethod->getDeclName();
3224 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3225 ObjCMethod->setInvalidDecl();
3226 return ObjCMethod;
3227 }
3228
3229 // If this Objective-C method does not have a related result type, but we
3230 // are allowed to infer related result types, try to do so based on the
3231 // method family.
3232 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3233 if (!CurrentClass) {
3234 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3235 CurrentClass = Cat->getClassInterface();
3236 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3237 CurrentClass = Impl->getClassInterface();
3238 else if (ObjCCategoryImplDecl *CatImpl
3239 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3240 CurrentClass = CatImpl->getClassInterface();
3241 }
3242
3243 ResultTypeCompatibilityKind RTC
3244 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3245
3246 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3247
3248 bool ARCError = false;
3249 if (getLangOpts().ObjCAutoRefCount)
3250 ARCError = CheckARCMethodDecl(ObjCMethod);
3251
3252 // Infer the related result type when possible.
3253 if (!ARCError && RTC == Sema::RTC_Compatible &&
3254 !ObjCMethod->hasRelatedResultType() &&
3255 LangOpts.ObjCInferRelatedResultType) {
3256 bool InferRelatedResultType = false;
3257 switch (ObjCMethod->getMethodFamily()) {
3258 case OMF_None:
3259 case OMF_copy:
3260 case OMF_dealloc:
3261 case OMF_finalize:
3262 case OMF_mutableCopy:
3263 case OMF_release:
3264 case OMF_retainCount:
3265 case OMF_performSelector:
3266 break;
3267
3268 case OMF_alloc:
3269 case OMF_new:
3270 InferRelatedResultType = ObjCMethod->isClassMethod();
3271 break;
3272
3273 case OMF_init:
3274 case OMF_autorelease:
3275 case OMF_retain:
3276 case OMF_self:
3277 InferRelatedResultType = ObjCMethod->isInstanceMethod();
3278 break;
3279 }
3280
3281 if (InferRelatedResultType)
3282 ObjCMethod->SetRelatedResultType();
3283 }
3284
3285 ActOnDocumentableDecl(ObjCMethod);
3286
3287 return ObjCMethod;
3288 }
3289
CheckObjCDeclScope(Decl * D)3290 bool Sema::CheckObjCDeclScope(Decl *D) {
3291 // Following is also an error. But it is caused by a missing @end
3292 // and diagnostic is issued elsewhere.
3293 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3294 return false;
3295
3296 // If we switched context to translation unit while we are still lexically in
3297 // an objc container, it means the parser missed emitting an error.
3298 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3299 return false;
3300
3301 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3302 D->setInvalidDecl();
3303
3304 return true;
3305 }
3306
3307 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
3308 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)3309 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3310 IdentifierInfo *ClassName,
3311 SmallVectorImpl<Decl*> &Decls) {
3312 // Check that ClassName is a valid class
3313 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3314 if (!Class) {
3315 Diag(DeclStart, diag::err_undef_interface) << ClassName;
3316 return;
3317 }
3318 if (LangOpts.ObjCRuntime.isNonFragile()) {
3319 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3320 return;
3321 }
3322
3323 // Collect the instance variables
3324 SmallVector<const ObjCIvarDecl*, 32> Ivars;
3325 Context.DeepCollectObjCIvars(Class, true, Ivars);
3326 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3327 for (unsigned i = 0; i < Ivars.size(); i++) {
3328 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3329 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3330 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3331 /*FIXME: StartL=*/ID->getLocation(),
3332 ID->getLocation(),
3333 ID->getIdentifier(), ID->getType(),
3334 ID->getBitWidth());
3335 Decls.push_back(FD);
3336 }
3337
3338 // Introduce all of these fields into the appropriate scope.
3339 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3340 D != Decls.end(); ++D) {
3341 FieldDecl *FD = cast<FieldDecl>(*D);
3342 if (getLangOpts().CPlusPlus)
3343 PushOnScopeChains(cast<FieldDecl>(FD), S);
3344 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3345 Record->addDecl(FD);
3346 }
3347 }
3348
3349 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)3350 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3351 SourceLocation StartLoc,
3352 SourceLocation IdLoc,
3353 IdentifierInfo *Id,
3354 bool Invalid) {
3355 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3356 // duration shall not be qualified by an address-space qualifier."
3357 // Since all parameters have automatic store duration, they can not have
3358 // an address space.
3359 if (T.getAddressSpace() != 0) {
3360 Diag(IdLoc, diag::err_arg_with_address_space);
3361 Invalid = true;
3362 }
3363
3364 // An @catch parameter must be an unqualified object pointer type;
3365 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3366 if (Invalid) {
3367 // Don't do any further checking.
3368 } else if (T->isDependentType()) {
3369 // Okay: we don't know what this type will instantiate to.
3370 } else if (!T->isObjCObjectPointerType()) {
3371 Invalid = true;
3372 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3373 } else if (T->isObjCQualifiedIdType()) {
3374 Invalid = true;
3375 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3376 }
3377
3378 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3379 T, TInfo, SC_None);
3380 New->setExceptionVariable(true);
3381
3382 // In ARC, infer 'retaining' for variables of retainable type.
3383 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3384 Invalid = true;
3385
3386 if (Invalid)
3387 New->setInvalidDecl();
3388 return New;
3389 }
3390
ActOnObjCExceptionDecl(Scope * S,Declarator & D)3391 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3392 const DeclSpec &DS = D.getDeclSpec();
3393
3394 // We allow the "register" storage class on exception variables because
3395 // GCC did, but we drop it completely. Any other storage class is an error.
3396 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3397 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3398 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3399 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3400 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3401 << DeclSpec::getSpecifierName(SCS);
3402 }
3403 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3404 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3405 diag::err_invalid_thread)
3406 << DeclSpec::getSpecifierName(TSCS);
3407 D.getMutableDeclSpec().ClearStorageClassSpecs();
3408
3409 DiagnoseFunctionSpecifiers(D.getDeclSpec());
3410
3411 // Check that there are no default arguments inside the type of this
3412 // exception object (C++ only).
3413 if (getLangOpts().CPlusPlus)
3414 CheckExtraCXXDefaultArguments(D);
3415
3416 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3417 QualType ExceptionType = TInfo->getType();
3418
3419 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3420 D.getSourceRange().getBegin(),
3421 D.getIdentifierLoc(),
3422 D.getIdentifier(),
3423 D.isInvalidType());
3424
3425 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3426 if (D.getCXXScopeSpec().isSet()) {
3427 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3428 << D.getCXXScopeSpec().getRange();
3429 New->setInvalidDecl();
3430 }
3431
3432 // Add the parameter declaration into this scope.
3433 S->AddDecl(New);
3434 if (D.getIdentifier())
3435 IdResolver.AddDecl(New);
3436
3437 ProcessDeclAttributes(S, New, D);
3438
3439 if (New->hasAttr<BlocksAttr>())
3440 Diag(New->getLocation(), diag::err_block_on_nonlocal);
3441 return New;
3442 }
3443
3444 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3445 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)3446 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3447 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3448 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3449 Iv= Iv->getNextIvar()) {
3450 QualType QT = Context.getBaseElementType(Iv->getType());
3451 if (QT->isRecordType())
3452 Ivars.push_back(Iv);
3453 }
3454 }
3455
DiagnoseUseOfUnimplementedSelectors()3456 void Sema::DiagnoseUseOfUnimplementedSelectors() {
3457 // Load referenced selectors from the external source.
3458 if (ExternalSource) {
3459 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3460 ExternalSource->ReadReferencedSelectors(Sels);
3461 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3462 ReferencedSelectors[Sels[I].first] = Sels[I].second;
3463 }
3464
3465 DiagnoseMismatchedMethodsInGlobalPool();
3466
3467 // Warning will be issued only when selector table is
3468 // generated (which means there is at lease one implementation
3469 // in the TU). This is to match gcc's behavior.
3470 if (ReferencedSelectors.empty() ||
3471 !Context.AnyObjCImplementation())
3472 return;
3473 for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3474 ReferencedSelectors.begin(),
3475 E = ReferencedSelectors.end(); S != E; ++S) {
3476 Selector Sel = (*S).first;
3477 if (!LookupImplementedMethodInGlobalPool(Sel))
3478 Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3479 }
3480 return;
3481 }
3482