1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "compiler_internals.h"
18 #include "local_value_numbering.h"
19 #include "dataflow_iterator-inl.h"
20
21 namespace art {
22
Predecessors(BasicBlock * bb)23 static unsigned int Predecessors(BasicBlock* bb) {
24 return bb->predecessors->Size();
25 }
26
27 /* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
SetConstant(int32_t ssa_reg,int value)28 void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
29 is_constant_v_->SetBit(ssa_reg);
30 constant_values_[ssa_reg] = value;
31 }
32
SetConstantWide(int ssa_reg,int64_t value)33 void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
34 is_constant_v_->SetBit(ssa_reg);
35 constant_values_[ssa_reg] = Low32Bits(value);
36 constant_values_[ssa_reg + 1] = High32Bits(value);
37 }
38
DoConstantPropogation(BasicBlock * bb)39 void MIRGraph::DoConstantPropogation(BasicBlock* bb) {
40 MIR* mir;
41
42 for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
43 int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
44
45 DecodedInstruction *d_insn = &mir->dalvikInsn;
46
47 if (!(df_attributes & DF_HAS_DEFS)) continue;
48
49 /* Handle instructions that set up constants directly */
50 if (df_attributes & DF_SETS_CONST) {
51 if (df_attributes & DF_DA) {
52 int32_t vB = static_cast<int32_t>(d_insn->vB);
53 switch (d_insn->opcode) {
54 case Instruction::CONST_4:
55 case Instruction::CONST_16:
56 case Instruction::CONST:
57 SetConstant(mir->ssa_rep->defs[0], vB);
58 break;
59 case Instruction::CONST_HIGH16:
60 SetConstant(mir->ssa_rep->defs[0], vB << 16);
61 break;
62 case Instruction::CONST_WIDE_16:
63 case Instruction::CONST_WIDE_32:
64 SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
65 break;
66 case Instruction::CONST_WIDE:
67 SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
68 break;
69 case Instruction::CONST_WIDE_HIGH16:
70 SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
71 break;
72 default:
73 break;
74 }
75 }
76 /* Handle instructions that set up constants directly */
77 } else if (df_attributes & DF_IS_MOVE) {
78 int i;
79
80 for (i = 0; i < mir->ssa_rep->num_uses; i++) {
81 if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
82 }
83 /* Move a register holding a constant to another register */
84 if (i == mir->ssa_rep->num_uses) {
85 SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
86 if (df_attributes & DF_A_WIDE) {
87 SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
88 }
89 }
90 }
91 }
92 /* TODO: implement code to handle arithmetic operations */
93 }
94
PropagateConstants()95 void MIRGraph::PropagateConstants() {
96 is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
97 constant_values_ = static_cast<int*>(arena_->Alloc(sizeof(int) * GetNumSSARegs(),
98 ArenaAllocator::kAllocDFInfo));
99 AllNodesIterator iter(this, false /* not iterative */);
100 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
101 DoConstantPropogation(bb);
102 }
103 }
104
105 /* Advance to next strictly dominated MIR node in an extended basic block */
AdvanceMIR(BasicBlock ** p_bb,MIR * mir)106 static MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
107 BasicBlock* bb = *p_bb;
108 if (mir != NULL) {
109 mir = mir->next;
110 if (mir == NULL) {
111 bb = bb->fall_through;
112 if ((bb == NULL) || Predecessors(bb) != 1) {
113 mir = NULL;
114 } else {
115 *p_bb = bb;
116 mir = bb->first_mir_insn;
117 }
118 }
119 }
120 return mir;
121 }
122
123 /*
124 * To be used at an invoke mir. If the logically next mir node represents
125 * a move-result, return it. Else, return NULL. If a move-result exists,
126 * it is required to immediately follow the invoke with no intervening
127 * opcodes or incoming arcs. However, if the result of the invoke is not
128 * used, a move-result may not be present.
129 */
FindMoveResult(BasicBlock * bb,MIR * mir)130 MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
131 BasicBlock* tbb = bb;
132 mir = AdvanceMIR(&tbb, mir);
133 while (mir != NULL) {
134 int opcode = mir->dalvikInsn.opcode;
135 if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
136 (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
137 (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
138 break;
139 }
140 // Keep going if pseudo op, otherwise terminate
141 if (opcode < kNumPackedOpcodes) {
142 mir = NULL;
143 } else {
144 mir = AdvanceMIR(&tbb, mir);
145 }
146 }
147 return mir;
148 }
149
NextDominatedBlock(BasicBlock * bb)150 static BasicBlock* NextDominatedBlock(BasicBlock* bb) {
151 if (bb->block_type == kDead) {
152 return NULL;
153 }
154 DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
155 || (bb->block_type == kExitBlock));
156 if (((bb->taken != NULL) && (bb->fall_through == NULL)) &&
157 ((bb->taken->block_type == kDalvikByteCode) || (bb->taken->block_type == kExitBlock))) {
158 // Follow simple unconditional branches.
159 bb = bb->taken;
160 } else {
161 // Follow simple fallthrough
162 bb = (bb->taken != NULL) ? NULL : bb->fall_through;
163 }
164 if (bb == NULL || (Predecessors(bb) != 1)) {
165 return NULL;
166 }
167 DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
168 return bb;
169 }
170
FindPhi(BasicBlock * bb,int ssa_name)171 static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
172 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
173 if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
174 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
175 if (mir->ssa_rep->uses[i] == ssa_name) {
176 return mir;
177 }
178 }
179 }
180 }
181 return NULL;
182 }
183
SelectKind(MIR * mir)184 static SelectInstructionKind SelectKind(MIR* mir) {
185 switch (mir->dalvikInsn.opcode) {
186 case Instruction::MOVE:
187 case Instruction::MOVE_OBJECT:
188 case Instruction::MOVE_16:
189 case Instruction::MOVE_OBJECT_16:
190 case Instruction::MOVE_FROM16:
191 case Instruction::MOVE_OBJECT_FROM16:
192 return kSelectMove;
193 case Instruction::CONST:
194 case Instruction::CONST_4:
195 case Instruction::CONST_16:
196 return kSelectConst;
197 case Instruction::GOTO:
198 case Instruction::GOTO_16:
199 case Instruction::GOTO_32:
200 return kSelectGoto;
201 default:
202 return kSelectNone;
203 }
204 }
205
GetSSAUseCount(int s_reg)206 int MIRGraph::GetSSAUseCount(int s_reg) {
207 return raw_use_counts_.Get(s_reg);
208 }
209
210
211 /* Do some MIR-level extended basic block optimizations */
BasicBlockOpt(BasicBlock * bb)212 bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
213 if (bb->block_type == kDead) {
214 return true;
215 }
216 int num_temps = 0;
217 LocalValueNumbering local_valnum(cu_);
218 while (bb != NULL) {
219 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
220 // TUNING: use the returned value number for CSE.
221 local_valnum.GetValueNumber(mir);
222 // Look for interesting opcodes, skip otherwise
223 Instruction::Code opcode = mir->dalvikInsn.opcode;
224 switch (opcode) {
225 case Instruction::CMPL_FLOAT:
226 case Instruction::CMPL_DOUBLE:
227 case Instruction::CMPG_FLOAT:
228 case Instruction::CMPG_DOUBLE:
229 case Instruction::CMP_LONG:
230 if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
231 // Bitcode doesn't allow this optimization.
232 break;
233 }
234 if (mir->next != NULL) {
235 MIR* mir_next = mir->next;
236 Instruction::Code br_opcode = mir_next->dalvikInsn.opcode;
237 ConditionCode ccode = kCondNv;
238 switch (br_opcode) {
239 case Instruction::IF_EQZ:
240 ccode = kCondEq;
241 break;
242 case Instruction::IF_NEZ:
243 ccode = kCondNe;
244 break;
245 case Instruction::IF_LTZ:
246 ccode = kCondLt;
247 break;
248 case Instruction::IF_GEZ:
249 ccode = kCondGe;
250 break;
251 case Instruction::IF_GTZ:
252 ccode = kCondGt;
253 break;
254 case Instruction::IF_LEZ:
255 ccode = kCondLe;
256 break;
257 default:
258 break;
259 }
260 // Make sure result of cmp is used by next insn and nowhere else
261 if ((ccode != kCondNv) &&
262 (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
263 (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
264 mir_next->dalvikInsn.arg[0] = ccode;
265 switch (opcode) {
266 case Instruction::CMPL_FLOAT:
267 mir_next->dalvikInsn.opcode =
268 static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
269 break;
270 case Instruction::CMPL_DOUBLE:
271 mir_next->dalvikInsn.opcode =
272 static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
273 break;
274 case Instruction::CMPG_FLOAT:
275 mir_next->dalvikInsn.opcode =
276 static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
277 break;
278 case Instruction::CMPG_DOUBLE:
279 mir_next->dalvikInsn.opcode =
280 static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
281 break;
282 case Instruction::CMP_LONG:
283 mir_next->dalvikInsn.opcode =
284 static_cast<Instruction::Code>(kMirOpFusedCmpLong);
285 break;
286 default: LOG(ERROR) << "Unexpected opcode: " << opcode;
287 }
288 mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
289 mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
290 mir_next->ssa_rep->uses = mir->ssa_rep->uses;
291 mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
292 mir_next->ssa_rep->num_defs = 0;
293 mir->ssa_rep->num_uses = 0;
294 mir->ssa_rep->num_defs = 0;
295 }
296 }
297 break;
298 case Instruction::GOTO:
299 case Instruction::GOTO_16:
300 case Instruction::GOTO_32:
301 case Instruction::IF_EQ:
302 case Instruction::IF_NE:
303 case Instruction::IF_LT:
304 case Instruction::IF_GE:
305 case Instruction::IF_GT:
306 case Instruction::IF_LE:
307 case Instruction::IF_EQZ:
308 case Instruction::IF_NEZ:
309 case Instruction::IF_LTZ:
310 case Instruction::IF_GEZ:
311 case Instruction::IF_GTZ:
312 case Instruction::IF_LEZ:
313 // If we've got a backwards branch to return, no need to suspend check.
314 if ((IsBackedge(bb, bb->taken) && bb->taken->dominates_return) ||
315 (IsBackedge(bb, bb->fall_through) && bb->fall_through->dominates_return)) {
316 mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
317 if (cu_->verbose) {
318 LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex << mir->offset;
319 }
320 }
321 break;
322 default:
323 break;
324 }
325 // Is this the select pattern?
326 // TODO: flesh out support for Mips and X86. NOTE: llvm's select op doesn't quite work here.
327 // TUNING: expand to support IF_xx compare & branches
328 if (!(cu_->compiler_backend == kPortable) && (cu_->instruction_set == kThumb2) &&
329 ((mir->dalvikInsn.opcode == Instruction::IF_EQZ) ||
330 (mir->dalvikInsn.opcode == Instruction::IF_NEZ))) {
331 BasicBlock* ft = bb->fall_through;
332 DCHECK(ft != NULL);
333 BasicBlock* ft_ft = ft->fall_through;
334 BasicBlock* ft_tk = ft->taken;
335
336 BasicBlock* tk = bb->taken;
337 DCHECK(tk != NULL);
338 BasicBlock* tk_ft = tk->fall_through;
339 BasicBlock* tk_tk = tk->taken;
340
341 /*
342 * In the select pattern, the taken edge goes to a block that unconditionally
343 * transfers to the rejoin block and the fall_though edge goes to a block that
344 * unconditionally falls through to the rejoin block.
345 */
346 if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
347 (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
348 /*
349 * Okay - we have the basic diamond shape. At the very least, we can eliminate the
350 * suspend check on the taken-taken branch back to the join point.
351 */
352 if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
353 tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
354 }
355 // Are the block bodies something we can handle?
356 if ((ft->first_mir_insn == ft->last_mir_insn) &&
357 (tk->first_mir_insn != tk->last_mir_insn) &&
358 (tk->first_mir_insn->next == tk->last_mir_insn) &&
359 ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
360 (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
361 (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
362 (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
363 // Almost there. Are the instructions targeting the same vreg?
364 MIR* if_true = tk->first_mir_insn;
365 MIR* if_false = ft->first_mir_insn;
366 // It's possible that the target of the select isn't used - skip those (rare) cases.
367 MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
368 if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
369 /*
370 * We'll convert the IF_EQZ/IF_NEZ to a SELECT. We need to find the
371 * Phi node in the merge block and delete it (while using the SSA name
372 * of the merge as the target of the SELECT. Delete both taken and
373 * fallthrough blocks, and set fallthrough to merge block.
374 * NOTE: not updating other dataflow info (no longer used at this point).
375 * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
376 */
377 if (opcode == Instruction::IF_NEZ) {
378 // Normalize.
379 MIR* tmp_mir = if_true;
380 if_true = if_false;
381 if_false = tmp_mir;
382 }
383 mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
384 bool const_form = (SelectKind(if_true) == kSelectConst);
385 if ((SelectKind(if_true) == kSelectMove)) {
386 if (IsConst(if_true->ssa_rep->uses[0]) &&
387 IsConst(if_false->ssa_rep->uses[0])) {
388 const_form = true;
389 if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
390 if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
391 }
392 }
393 if (const_form) {
394 // "true" set val in vB
395 mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
396 // "false" set val in vC
397 mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
398 } else {
399 DCHECK_EQ(SelectKind(if_true), kSelectMove);
400 DCHECK_EQ(SelectKind(if_false), kSelectMove);
401 int* src_ssa =
402 static_cast<int*>(arena_->Alloc(sizeof(int) * 3, ArenaAllocator::kAllocDFInfo));
403 src_ssa[0] = mir->ssa_rep->uses[0];
404 src_ssa[1] = if_true->ssa_rep->uses[0];
405 src_ssa[2] = if_false->ssa_rep->uses[0];
406 mir->ssa_rep->uses = src_ssa;
407 mir->ssa_rep->num_uses = 3;
408 }
409 mir->ssa_rep->num_defs = 1;
410 mir->ssa_rep->defs =
411 static_cast<int*>(arena_->Alloc(sizeof(int) * 1, ArenaAllocator::kAllocDFInfo));
412 mir->ssa_rep->fp_def =
413 static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, ArenaAllocator::kAllocDFInfo));
414 mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
415 // Match type of uses to def.
416 mir->ssa_rep->fp_use =
417 static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
418 ArenaAllocator::kAllocDFInfo));
419 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
420 mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
421 }
422 /*
423 * There is usually a Phi node in the join block for our two cases. If the
424 * Phi node only contains our two cases as input, we will use the result
425 * SSA name of the Phi node as our select result and delete the Phi. If
426 * the Phi node has more than two operands, we will arbitrarily use the SSA
427 * name of the "true" path, delete the SSA name of the "false" path from the
428 * Phi node (and fix up the incoming arc list).
429 */
430 if (phi->ssa_rep->num_uses == 2) {
431 mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
432 phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
433 } else {
434 int dead_def = if_false->ssa_rep->defs[0];
435 int live_def = if_true->ssa_rep->defs[0];
436 mir->ssa_rep->defs[0] = live_def;
437 int* incoming = reinterpret_cast<int*>(phi->dalvikInsn.vB);
438 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
439 if (phi->ssa_rep->uses[i] == live_def) {
440 incoming[i] = bb->id;
441 }
442 }
443 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
444 if (phi->ssa_rep->uses[i] == dead_def) {
445 int last_slot = phi->ssa_rep->num_uses - 1;
446 phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
447 incoming[i] = incoming[last_slot];
448 }
449 }
450 }
451 phi->ssa_rep->num_uses--;
452 bb->taken = NULL;
453 tk->block_type = kDead;
454 for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
455 tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
456 }
457 }
458 }
459 }
460 }
461 }
462 bb = NextDominatedBlock(bb);
463 }
464
465 if (num_temps > cu_->num_compiler_temps) {
466 cu_->num_compiler_temps = num_temps;
467 }
468 return true;
469 }
470
NullCheckEliminationInit(struct BasicBlock * bb)471 void MIRGraph::NullCheckEliminationInit(struct BasicBlock* bb) {
472 if (bb->data_flow_info != NULL) {
473 bb->data_flow_info->ending_null_check_v =
474 new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false, kBitMapNullCheck);
475 }
476 }
477
478 /* Collect stats on number of checks removed */
CountChecks(struct BasicBlock * bb)479 void MIRGraph::CountChecks(struct BasicBlock* bb) {
480 if (bb->data_flow_info != NULL) {
481 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
482 if (mir->ssa_rep == NULL) {
483 continue;
484 }
485 int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
486 if (df_attributes & DF_HAS_NULL_CHKS) {
487 checkstats_->null_checks++;
488 if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
489 checkstats_->null_checks_eliminated++;
490 }
491 }
492 if (df_attributes & DF_HAS_RANGE_CHKS) {
493 checkstats_->range_checks++;
494 if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
495 checkstats_->range_checks_eliminated++;
496 }
497 }
498 }
499 }
500 }
501
502 /* Try to make common case the fallthrough path */
LayoutBlocks(struct BasicBlock * bb)503 static bool LayoutBlocks(struct BasicBlock* bb) {
504 // TODO: For now, just looking for direct throws. Consider generalizing for profile feedback
505 if (!bb->explicit_throw) {
506 return false;
507 }
508 BasicBlock* walker = bb;
509 while (true) {
510 // Check termination conditions
511 if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
512 break;
513 }
514 BasicBlock* prev = walker->predecessors->Get(0);
515 if (prev->conditional_branch) {
516 if (prev->fall_through == walker) {
517 // Already done - return
518 break;
519 }
520 DCHECK_EQ(walker, prev->taken);
521 // Got one. Flip it and exit
522 Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
523 switch (opcode) {
524 case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
525 case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
526 case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
527 case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
528 case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
529 case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
530 case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
531 case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
532 case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
533 case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
534 case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
535 case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
536 default: LOG(FATAL) << "Unexpected opcode " << opcode;
537 }
538 prev->last_mir_insn->dalvikInsn.opcode = opcode;
539 BasicBlock* t_bb = prev->taken;
540 prev->taken = prev->fall_through;
541 prev->fall_through = t_bb;
542 break;
543 }
544 walker = prev;
545 }
546 return false;
547 }
548
549 /* Combine any basic blocks terminated by instructions that we now know can't throw */
CombineBlocks(struct BasicBlock * bb)550 bool MIRGraph::CombineBlocks(struct BasicBlock* bb) {
551 // Loop here to allow combining a sequence of blocks
552 while (true) {
553 // Check termination conditions
554 if ((bb->first_mir_insn == NULL)
555 || (bb->data_flow_info == NULL)
556 || (bb->block_type == kExceptionHandling)
557 || (bb->block_type == kExitBlock)
558 || (bb->block_type == kDead)
559 || ((bb->taken == NULL) || (bb->taken->block_type != kExceptionHandling))
560 || (bb->successor_block_list.block_list_type != kNotUsed)
561 || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
562 break;
563 }
564
565 // Test the kMirOpCheck instruction
566 MIR* mir = bb->last_mir_insn;
567 // Grab the attributes from the paired opcode
568 MIR* throw_insn = mir->meta.throw_insn;
569 int df_attributes = oat_data_flow_attributes_[throw_insn->dalvikInsn.opcode];
570 bool can_combine = true;
571 if (df_attributes & DF_HAS_NULL_CHKS) {
572 can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
573 }
574 if (df_attributes & DF_HAS_RANGE_CHKS) {
575 can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
576 }
577 if (!can_combine) {
578 break;
579 }
580 // OK - got one. Combine
581 BasicBlock* bb_next = bb->fall_through;
582 DCHECK(!bb_next->catch_entry);
583 DCHECK_EQ(Predecessors(bb_next), 1U);
584 MIR* t_mir = bb->last_mir_insn->prev;
585 // Overwrite the kOpCheck insn with the paired opcode
586 DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
587 *bb->last_mir_insn = *throw_insn;
588 bb->last_mir_insn->prev = t_mir;
589 // Use the successor info from the next block
590 bb->successor_block_list = bb_next->successor_block_list;
591 // Use the ending block linkage from the next block
592 bb->fall_through = bb_next->fall_through;
593 bb->taken->block_type = kDead; // Kill the unused exception block
594 bb->taken = bb_next->taken;
595 // Include the rest of the instructions
596 bb->last_mir_insn = bb_next->last_mir_insn;
597 /*
598 * If lower-half of pair of blocks to combine contained a return, move the flag
599 * to the newly combined block.
600 */
601 bb->terminated_by_return = bb_next->terminated_by_return;
602
603 /*
604 * NOTE: we aren't updating all dataflow info here. Should either make sure this pass
605 * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
606 */
607
608 // Kill bb_next and remap now-dead id to parent
609 bb_next->block_type = kDead;
610 block_id_map_.Overwrite(bb_next->id, bb->id);
611
612 // Now, loop back and see if we can keep going
613 }
614 return false;
615 }
616
617 /* Eliminate unnecessary null checks for a basic block. */
EliminateNullChecks(struct BasicBlock * bb)618 bool MIRGraph::EliminateNullChecks(struct BasicBlock* bb) {
619 if (bb->data_flow_info == NULL) return false;
620
621 /*
622 * Set initial state. Be conservative with catch
623 * blocks and start with no assumptions about null check
624 * status (except for "this").
625 */
626 if ((bb->block_type == kEntryBlock) | bb->catch_entry) {
627 temp_ssa_register_v_->ClearAllBits();
628 if ((cu_->access_flags & kAccStatic) == 0) {
629 // If non-static method, mark "this" as non-null
630 int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
631 temp_ssa_register_v_->SetBit(this_reg);
632 }
633 } else if (bb->predecessors->Size() == 1) {
634 BasicBlock* pred_bb = bb->predecessors->Get(0);
635 temp_ssa_register_v_->Copy(pred_bb->data_flow_info->ending_null_check_v);
636 if (pred_bb->block_type == kDalvikByteCode) {
637 // Check to see if predecessor had an explicit null-check.
638 MIR* last_insn = pred_bb->last_mir_insn;
639 Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
640 if (last_opcode == Instruction::IF_EQZ) {
641 if (pred_bb->fall_through == bb) {
642 // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
643 // it can't be null.
644 temp_ssa_register_v_->SetBit(last_insn->ssa_rep->uses[0]);
645 }
646 } else if (last_opcode == Instruction::IF_NEZ) {
647 if (pred_bb->taken == bb) {
648 // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
649 // null.
650 temp_ssa_register_v_->SetBit(last_insn->ssa_rep->uses[0]);
651 }
652 }
653 }
654 } else {
655 // Starting state is intersection of all incoming arcs
656 GrowableArray<BasicBlock*>::Iterator iter(bb->predecessors);
657 BasicBlock* pred_bb = iter.Next();
658 DCHECK(pred_bb != NULL);
659 temp_ssa_register_v_->Copy(pred_bb->data_flow_info->ending_null_check_v);
660 while (true) {
661 pred_bb = iter.Next();
662 if (!pred_bb) break;
663 if ((pred_bb->data_flow_info == NULL) ||
664 (pred_bb->data_flow_info->ending_null_check_v == NULL)) {
665 continue;
666 }
667 temp_ssa_register_v_->Intersect(pred_bb->data_flow_info->ending_null_check_v);
668 }
669 }
670
671 // Walk through the instruction in the block, updating as necessary
672 for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
673 if (mir->ssa_rep == NULL) {
674 continue;
675 }
676 int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
677
678 // Mark target of NEW* as non-null
679 if (df_attributes & DF_NON_NULL_DST) {
680 temp_ssa_register_v_->SetBit(mir->ssa_rep->defs[0]);
681 }
682
683 // Mark non-null returns from invoke-style NEW*
684 if (df_attributes & DF_NON_NULL_RET) {
685 MIR* next_mir = mir->next;
686 // Next should be an MOVE_RESULT_OBJECT
687 if (next_mir &&
688 next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
689 // Mark as null checked
690 temp_ssa_register_v_->SetBit(next_mir->ssa_rep->defs[0]);
691 } else {
692 if (next_mir) {
693 LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
694 } else if (bb->fall_through) {
695 // Look in next basic block
696 struct BasicBlock* next_bb = bb->fall_through;
697 for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
698 tmir =tmir->next) {
699 if (static_cast<int>(tmir->dalvikInsn.opcode) >= static_cast<int>(kMirOpFirst)) {
700 continue;
701 }
702 // First non-pseudo should be MOVE_RESULT_OBJECT
703 if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
704 // Mark as null checked
705 temp_ssa_register_v_->SetBit(tmir->ssa_rep->defs[0]);
706 } else {
707 LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
708 }
709 break;
710 }
711 }
712 }
713 }
714
715 /*
716 * Propagate nullcheck state on register copies (including
717 * Phi pseudo copies. For the latter, nullcheck state is
718 * the "and" of all the Phi's operands.
719 */
720 if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
721 int tgt_sreg = mir->ssa_rep->defs[0];
722 int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
723 mir->ssa_rep->num_uses;
724 bool null_checked = true;
725 for (int i = 0; i < operands; i++) {
726 null_checked &= temp_ssa_register_v_->IsBitSet(mir->ssa_rep->uses[i]);
727 }
728 if (null_checked) {
729 temp_ssa_register_v_->SetBit(tgt_sreg);
730 }
731 }
732
733 // Already nullchecked?
734 if ((df_attributes & DF_HAS_NULL_CHKS) && !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
735 int src_idx;
736 if (df_attributes & DF_NULL_CHK_1) {
737 src_idx = 1;
738 } else if (df_attributes & DF_NULL_CHK_2) {
739 src_idx = 2;
740 } else {
741 src_idx = 0;
742 }
743 int src_sreg = mir->ssa_rep->uses[src_idx];
744 if (temp_ssa_register_v_->IsBitSet(src_sreg)) {
745 // Eliminate the null check
746 mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
747 } else {
748 // Mark s_reg as null-checked
749 temp_ssa_register_v_->SetBit(src_sreg);
750 }
751 }
752 }
753
754 // Did anything change?
755 bool changed = !temp_ssa_register_v_->Equal(bb->data_flow_info->ending_null_check_v);
756 if (changed) {
757 bb->data_flow_info->ending_null_check_v->Copy(temp_ssa_register_v_);
758 }
759 return changed;
760 }
761
NullCheckElimination()762 void MIRGraph::NullCheckElimination() {
763 if (!(cu_->disable_opt & (1 << kNullCheckElimination))) {
764 DCHECK(temp_ssa_register_v_ != NULL);
765 AllNodesIterator iter(this, false /* not iterative */);
766 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
767 NullCheckEliminationInit(bb);
768 }
769 PreOrderDfsIterator iter2(this, true /* iterative */);
770 bool change = false;
771 for (BasicBlock* bb = iter2.Next(change); bb != NULL; bb = iter2.Next(change)) {
772 change = EliminateNullChecks(bb);
773 }
774 }
775 if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
776 DumpCFG("/sdcard/4_post_nce_cfg/", false);
777 }
778 }
779
BasicBlockCombine()780 void MIRGraph::BasicBlockCombine() {
781 PreOrderDfsIterator iter(this, false /* not iterative */);
782 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
783 CombineBlocks(bb);
784 }
785 if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
786 DumpCFG("/sdcard/5_post_bbcombine_cfg/", false);
787 }
788 }
789
CodeLayout()790 void MIRGraph::CodeLayout() {
791 if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
792 VerifyDataflow();
793 }
794 AllNodesIterator iter(this, false /* not iterative */);
795 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
796 LayoutBlocks(bb);
797 }
798 if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
799 DumpCFG("/sdcard/2_post_layout_cfg/", true);
800 }
801 }
802
DumpCheckStats()803 void MIRGraph::DumpCheckStats() {
804 Checkstats* stats =
805 static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), ArenaAllocator::kAllocDFInfo));
806 checkstats_ = stats;
807 AllNodesIterator iter(this, false /* not iterative */);
808 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
809 CountChecks(bb);
810 }
811 if (stats->null_checks > 0) {
812 float eliminated = static_cast<float>(stats->null_checks_eliminated);
813 float checks = static_cast<float>(stats->null_checks);
814 LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
815 << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
816 << (eliminated/checks) * 100.0 << "%";
817 }
818 if (stats->range_checks > 0) {
819 float eliminated = static_cast<float>(stats->range_checks_eliminated);
820 float checks = static_cast<float>(stats->range_checks);
821 LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
822 << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
823 << (eliminated/checks) * 100.0 << "%";
824 }
825 }
826
BuildExtendedBBList(struct BasicBlock * bb)827 bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
828 if (bb->visited) return false;
829 if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
830 || (bb->block_type == kExitBlock))) {
831 // Ignore special blocks
832 bb->visited = true;
833 return false;
834 }
835 // Must be head of extended basic block.
836 BasicBlock* start_bb = bb;
837 extended_basic_blocks_.push_back(bb);
838 bool terminated_by_return = false;
839 // Visit blocks strictly dominated by this head.
840 while (bb != NULL) {
841 bb->visited = true;
842 terminated_by_return |= bb->terminated_by_return;
843 bb = NextDominatedBlock(bb);
844 }
845 if (terminated_by_return) {
846 // This extended basic block contains a return, so mark all members.
847 bb = start_bb;
848 while (bb != NULL) {
849 bb->dominates_return = true;
850 bb = NextDominatedBlock(bb);
851 }
852 }
853 return false; // Not iterative - return value will be ignored
854 }
855
856
BasicBlockOptimization()857 void MIRGraph::BasicBlockOptimization() {
858 if (!(cu_->disable_opt & (1 << kBBOpt))) {
859 DCHECK_EQ(cu_->num_compiler_temps, 0);
860 ClearAllVisitedFlags();
861 PreOrderDfsIterator iter2(this, false /* not iterative */);
862 for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
863 BuildExtendedBBList(bb);
864 }
865 // Perform extended basic block optimizations.
866 for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
867 BasicBlockOpt(extended_basic_blocks_[i]);
868 }
869 }
870 if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
871 DumpCFG("/sdcard/6_post_bbo_cfg/", false);
872 }
873 }
874
875 } // namespace art
876