1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Lex/Preprocessor.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/ScopeInfo.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/SmallVector.h"
35 using namespace clang;
36 using namespace sema;
37
ActOnExprStmt(ExprResult FE)38 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
39 if (FE.isInvalid())
40 return StmtError();
41
42 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
43 /*DiscardedValue*/ true);
44 if (FE.isInvalid())
45 return StmtError();
46
47 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
48 // void expression for its side effects. Conversion to void allows any
49 // operand, even incomplete types.
50
51 // Same thing in for stmt first clause (when expr) and third clause.
52 return Owned(static_cast<Stmt*>(FE.take()));
53 }
54
55
ActOnExprStmtError()56 StmtResult Sema::ActOnExprStmtError() {
57 DiscardCleanupsInEvaluationContext();
58 return StmtError();
59 }
60
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)61 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
62 bool HasLeadingEmptyMacro) {
63 return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
64 }
65
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)66 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
67 SourceLocation EndLoc) {
68 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70 // If we have an invalid decl, just return an error.
71 if (DG.isNull()) return StmtError();
72
73 return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
74 }
75
ActOnForEachDeclStmt(DeclGroupPtrTy dg)76 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
77 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
78
79 // If we don't have a declaration, or we have an invalid declaration,
80 // just return.
81 if (DG.isNull() || !DG.isSingleDecl())
82 return;
83
84 Decl *decl = DG.getSingleDecl();
85 if (!decl || decl->isInvalidDecl())
86 return;
87
88 // Only variable declarations are permitted.
89 VarDecl *var = dyn_cast<VarDecl>(decl);
90 if (!var) {
91 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
92 decl->setInvalidDecl();
93 return;
94 }
95
96 // foreach variables are never actually initialized in the way that
97 // the parser came up with.
98 var->setInit(0);
99
100 // In ARC, we don't need to retain the iteration variable of a fast
101 // enumeration loop. Rather than actually trying to catch that
102 // during declaration processing, we remove the consequences here.
103 if (getLangOpts().ObjCAutoRefCount) {
104 QualType type = var->getType();
105
106 // Only do this if we inferred the lifetime. Inferred lifetime
107 // will show up as a local qualifier because explicit lifetime
108 // should have shown up as an AttributedType instead.
109 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
110 // Add 'const' and mark the variable as pseudo-strong.
111 var->setType(type.withConst());
112 var->setARCPseudoStrong(true);
113 }
114 }
115 }
116
117 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
118 ///
119 /// Adding a cast to void (or other expression wrappers) will prevent the
120 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)121 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
122 SourceLocation Loc;
123 bool IsNotEqual, CanAssign;
124
125 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
126 if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
127 return false;
128
129 Loc = Op->getOperatorLoc();
130 IsNotEqual = Op->getOpcode() == BO_NE;
131 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
132 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
133 if (Op->getOperator() != OO_EqualEqual &&
134 Op->getOperator() != OO_ExclaimEqual)
135 return false;
136
137 Loc = Op->getOperatorLoc();
138 IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
139 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
140 } else {
141 // Not a typo-prone comparison.
142 return false;
143 }
144
145 // Suppress warnings when the operator, suspicious as it may be, comes from
146 // a macro expansion.
147 if (S.SourceMgr.isMacroBodyExpansion(Loc))
148 return false;
149
150 S.Diag(Loc, diag::warn_unused_comparison)
151 << (unsigned)IsNotEqual << E->getSourceRange();
152
153 // If the LHS is a plausible entity to assign to, provide a fixit hint to
154 // correct common typos.
155 if (CanAssign) {
156 if (IsNotEqual)
157 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
158 << FixItHint::CreateReplacement(Loc, "|=");
159 else
160 S.Diag(Loc, diag::note_equality_comparison_to_assign)
161 << FixItHint::CreateReplacement(Loc, "=");
162 }
163
164 return true;
165 }
166
DiagnoseUnusedExprResult(const Stmt * S)167 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
168 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
169 return DiagnoseUnusedExprResult(Label->getSubStmt());
170
171 const Expr *E = dyn_cast_or_null<Expr>(S);
172 if (!E)
173 return;
174 SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
175 // In most cases, we don't want to warn if the expression is written in a
176 // macro body, or if the macro comes from a system header. If the offending
177 // expression is a call to a function with the warn_unused_result attribute,
178 // we warn no matter the location. Because of the order in which the various
179 // checks need to happen, we factor out the macro-related test here.
180 bool ShouldSuppress =
181 SourceMgr.isMacroBodyExpansion(ExprLoc) ||
182 SourceMgr.isInSystemMacro(ExprLoc);
183
184 const Expr *WarnExpr;
185 SourceLocation Loc;
186 SourceRange R1, R2;
187 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
188 return;
189
190 // If this is a GNU statement expression expanded from a macro, it is probably
191 // unused because it is a function-like macro that can be used as either an
192 // expression or statement. Don't warn, because it is almost certainly a
193 // false positive.
194 if (isa<StmtExpr>(E) && Loc.isMacroID())
195 return;
196
197 // Okay, we have an unused result. Depending on what the base expression is,
198 // we might want to make a more specific diagnostic. Check for one of these
199 // cases now.
200 unsigned DiagID = diag::warn_unused_expr;
201 if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
202 E = Temps->getSubExpr();
203 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
204 E = TempExpr->getSubExpr();
205
206 if (DiagnoseUnusedComparison(*this, E))
207 return;
208
209 E = WarnExpr;
210 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
211 if (E->getType()->isVoidType())
212 return;
213
214 // If the callee has attribute pure, const, or warn_unused_result, warn with
215 // a more specific message to make it clear what is happening. If the call
216 // is written in a macro body, only warn if it has the warn_unused_result
217 // attribute.
218 if (const Decl *FD = CE->getCalleeDecl()) {
219 if (FD->getAttr<WarnUnusedResultAttr>()) {
220 Diag(Loc, diag::warn_unused_result) << R1 << R2;
221 return;
222 }
223 if (ShouldSuppress)
224 return;
225 if (FD->getAttr<PureAttr>()) {
226 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
227 return;
228 }
229 if (FD->getAttr<ConstAttr>()) {
230 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
231 return;
232 }
233 }
234 } else if (ShouldSuppress)
235 return;
236
237 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
238 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
239 Diag(Loc, diag::err_arc_unused_init_message) << R1;
240 return;
241 }
242 const ObjCMethodDecl *MD = ME->getMethodDecl();
243 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
244 Diag(Loc, diag::warn_unused_result) << R1 << R2;
245 return;
246 }
247 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
248 const Expr *Source = POE->getSyntacticForm();
249 if (isa<ObjCSubscriptRefExpr>(Source))
250 DiagID = diag::warn_unused_container_subscript_expr;
251 else
252 DiagID = diag::warn_unused_property_expr;
253 } else if (const CXXFunctionalCastExpr *FC
254 = dyn_cast<CXXFunctionalCastExpr>(E)) {
255 if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
256 isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
257 return;
258 }
259 // Diagnose "(void*) blah" as a typo for "(void) blah".
260 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
261 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
262 QualType T = TI->getType();
263
264 // We really do want to use the non-canonical type here.
265 if (T == Context.VoidPtrTy) {
266 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
267
268 Diag(Loc, diag::warn_unused_voidptr)
269 << FixItHint::CreateRemoval(TL.getStarLoc());
270 return;
271 }
272 }
273
274 if (E->isGLValue() && E->getType().isVolatileQualified()) {
275 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
276 return;
277 }
278
279 DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
280 }
281
ActOnStartOfCompoundStmt()282 void Sema::ActOnStartOfCompoundStmt() {
283 PushCompoundScope();
284 }
285
ActOnFinishOfCompoundStmt()286 void Sema::ActOnFinishOfCompoundStmt() {
287 PopCompoundScope();
288 }
289
getCurCompoundScope() const290 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
291 return getCurFunction()->CompoundScopes.back();
292 }
293
294 StmtResult
ActOnCompoundStmt(SourceLocation L,SourceLocation R,MultiStmtArg elts,bool isStmtExpr)295 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
296 MultiStmtArg elts, bool isStmtExpr) {
297 unsigned NumElts = elts.size();
298 Stmt **Elts = elts.data();
299 // If we're in C89 mode, check that we don't have any decls after stmts. If
300 // so, emit an extension diagnostic.
301 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
302 // Note that __extension__ can be around a decl.
303 unsigned i = 0;
304 // Skip over all declarations.
305 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
306 /*empty*/;
307
308 // We found the end of the list or a statement. Scan for another declstmt.
309 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
310 /*empty*/;
311
312 if (i != NumElts) {
313 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
314 Diag(D->getLocation(), diag::ext_mixed_decls_code);
315 }
316 }
317 // Warn about unused expressions in statements.
318 for (unsigned i = 0; i != NumElts; ++i) {
319 // Ignore statements that are last in a statement expression.
320 if (isStmtExpr && i == NumElts - 1)
321 continue;
322
323 DiagnoseUnusedExprResult(Elts[i]);
324 }
325
326 // Check for suspicious empty body (null statement) in `for' and `while'
327 // statements. Don't do anything for template instantiations, this just adds
328 // noise.
329 if (NumElts != 0 && !CurrentInstantiationScope &&
330 getCurCompoundScope().HasEmptyLoopBodies) {
331 for (unsigned i = 0; i != NumElts - 1; ++i)
332 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
333 }
334
335 return Owned(new (Context) CompoundStmt(Context,
336 llvm::makeArrayRef(Elts, NumElts),
337 L, R));
338 }
339
340 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)341 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
342 SourceLocation DotDotDotLoc, Expr *RHSVal,
343 SourceLocation ColonLoc) {
344 assert((LHSVal != 0) && "missing expression in case statement");
345
346 if (getCurFunction()->SwitchStack.empty()) {
347 Diag(CaseLoc, diag::err_case_not_in_switch);
348 return StmtError();
349 }
350
351 if (!getLangOpts().CPlusPlus11) {
352 // C99 6.8.4.2p3: The expression shall be an integer constant.
353 // However, GCC allows any evaluatable integer expression.
354 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
355 LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
356 if (!LHSVal)
357 return StmtError();
358 }
359
360 // GCC extension: The expression shall be an integer constant.
361
362 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
363 RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
364 // Recover from an error by just forgetting about it.
365 }
366 }
367
368 LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
369 getLangOpts().CPlusPlus11).take();
370 if (RHSVal)
371 RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
372 getLangOpts().CPlusPlus11).take();
373
374 CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
375 ColonLoc);
376 getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
377 return Owned(CS);
378 }
379
380 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)381 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
382 DiagnoseUnusedExprResult(SubStmt);
383
384 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
385 CS->setSubStmt(SubStmt);
386 }
387
388 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)389 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
390 Stmt *SubStmt, Scope *CurScope) {
391 DiagnoseUnusedExprResult(SubStmt);
392
393 if (getCurFunction()->SwitchStack.empty()) {
394 Diag(DefaultLoc, diag::err_default_not_in_switch);
395 return Owned(SubStmt);
396 }
397
398 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
399 getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
400 return Owned(DS);
401 }
402
403 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)404 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
405 SourceLocation ColonLoc, Stmt *SubStmt) {
406 // If the label was multiply defined, reject it now.
407 if (TheDecl->getStmt()) {
408 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
409 Diag(TheDecl->getLocation(), diag::note_previous_definition);
410 return Owned(SubStmt);
411 }
412
413 // Otherwise, things are good. Fill in the declaration and return it.
414 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
415 TheDecl->setStmt(LS);
416 if (!TheDecl->isGnuLocal()) {
417 TheDecl->setLocStart(IdentLoc);
418 TheDecl->setLocation(IdentLoc);
419 }
420 return Owned(LS);
421 }
422
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)423 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
424 ArrayRef<const Attr*> Attrs,
425 Stmt *SubStmt) {
426 // Fill in the declaration and return it.
427 AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
428 return Owned(LS);
429 }
430
431 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)432 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
433 Stmt *thenStmt, SourceLocation ElseLoc,
434 Stmt *elseStmt) {
435 // If the condition was invalid, discard the if statement. We could recover
436 // better by replacing it with a valid expr, but don't do that yet.
437 if (!CondVal.get() && !CondVar) {
438 getCurFunction()->setHasDroppedStmt();
439 return StmtError();
440 }
441
442 ExprResult CondResult(CondVal.release());
443
444 VarDecl *ConditionVar = 0;
445 if (CondVar) {
446 ConditionVar = cast<VarDecl>(CondVar);
447 CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
448 if (CondResult.isInvalid())
449 return StmtError();
450 }
451 Expr *ConditionExpr = CondResult.takeAs<Expr>();
452 if (!ConditionExpr)
453 return StmtError();
454
455 DiagnoseUnusedExprResult(thenStmt);
456
457 if (!elseStmt) {
458 DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
459 diag::warn_empty_if_body);
460 }
461
462 DiagnoseUnusedExprResult(elseStmt);
463
464 return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
465 thenStmt, ElseLoc, elseStmt));
466 }
467
468 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
469 /// the specified width and sign. If an overflow occurs, detect it and emit
470 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)471 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
472 unsigned NewWidth, bool NewSign,
473 SourceLocation Loc,
474 unsigned DiagID) {
475 // Perform a conversion to the promoted condition type if needed.
476 if (NewWidth > Val.getBitWidth()) {
477 // If this is an extension, just do it.
478 Val = Val.extend(NewWidth);
479 Val.setIsSigned(NewSign);
480
481 // If the input was signed and negative and the output is
482 // unsigned, don't bother to warn: this is implementation-defined
483 // behavior.
484 // FIXME: Introduce a second, default-ignored warning for this case?
485 } else if (NewWidth < Val.getBitWidth()) {
486 // If this is a truncation, check for overflow.
487 llvm::APSInt ConvVal(Val);
488 ConvVal = ConvVal.trunc(NewWidth);
489 ConvVal.setIsSigned(NewSign);
490 ConvVal = ConvVal.extend(Val.getBitWidth());
491 ConvVal.setIsSigned(Val.isSigned());
492 if (ConvVal != Val)
493 Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
494
495 // Regardless of whether a diagnostic was emitted, really do the
496 // truncation.
497 Val = Val.trunc(NewWidth);
498 Val.setIsSigned(NewSign);
499 } else if (NewSign != Val.isSigned()) {
500 // Convert the sign to match the sign of the condition. This can cause
501 // overflow as well: unsigned(INTMIN)
502 // We don't diagnose this overflow, because it is implementation-defined
503 // behavior.
504 // FIXME: Introduce a second, default-ignored warning for this case?
505 llvm::APSInt OldVal(Val);
506 Val.setIsSigned(NewSign);
507 }
508 }
509
510 namespace {
511 struct CaseCompareFunctor {
operator ()__anonad4c17490111::CaseCompareFunctor512 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
513 const llvm::APSInt &RHS) {
514 return LHS.first < RHS;
515 }
operator ()__anonad4c17490111::CaseCompareFunctor516 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
517 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
518 return LHS.first < RHS.first;
519 }
operator ()__anonad4c17490111::CaseCompareFunctor520 bool operator()(const llvm::APSInt &LHS,
521 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
522 return LHS < RHS.first;
523 }
524 };
525 }
526
527 /// CmpCaseVals - Comparison predicate for sorting case values.
528 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)529 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
530 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
531 if (lhs.first < rhs.first)
532 return true;
533
534 if (lhs.first == rhs.first &&
535 lhs.second->getCaseLoc().getRawEncoding()
536 < rhs.second->getCaseLoc().getRawEncoding())
537 return true;
538 return false;
539 }
540
541 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
542 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)543 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
544 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
545 {
546 return lhs.first < rhs.first;
547 }
548
549 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
550 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)551 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
552 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
553 {
554 return lhs.first == rhs.first;
555 }
556
557 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
558 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)559 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
560 if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
561 expr = cleanups->getSubExpr();
562 while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
563 if (impcast->getCastKind() != CK_IntegralCast) break;
564 expr = impcast->getSubExpr();
565 }
566 return expr->getType();
567 }
568
569 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)570 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
571 Decl *CondVar) {
572 ExprResult CondResult;
573
574 VarDecl *ConditionVar = 0;
575 if (CondVar) {
576 ConditionVar = cast<VarDecl>(CondVar);
577 CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
578 if (CondResult.isInvalid())
579 return StmtError();
580
581 Cond = CondResult.release();
582 }
583
584 if (!Cond)
585 return StmtError();
586
587 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
588 Expr *Cond;
589
590 public:
591 SwitchConvertDiagnoser(Expr *Cond)
592 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
593 Cond(Cond) {}
594
595 virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
596 QualType T) {
597 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
598 }
599
600 virtual SemaDiagnosticBuilder diagnoseIncomplete(
601 Sema &S, SourceLocation Loc, QualType T) {
602 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
603 << T << Cond->getSourceRange();
604 }
605
606 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
607 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
608 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
609 }
610
611 virtual SemaDiagnosticBuilder noteExplicitConv(
612 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
613 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
614 << ConvTy->isEnumeralType() << ConvTy;
615 }
616
617 virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
618 QualType T) {
619 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
620 }
621
622 virtual SemaDiagnosticBuilder noteAmbiguous(
623 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
624 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
625 << ConvTy->isEnumeralType() << ConvTy;
626 }
627
628 virtual SemaDiagnosticBuilder diagnoseConversion(
629 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
630 llvm_unreachable("conversion functions are permitted");
631 }
632 } SwitchDiagnoser(Cond);
633
634 CondResult =
635 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
636 if (CondResult.isInvalid()) return StmtError();
637 Cond = CondResult.take();
638
639 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
640 CondResult = UsualUnaryConversions(Cond);
641 if (CondResult.isInvalid()) return StmtError();
642 Cond = CondResult.take();
643
644 if (!CondVar) {
645 CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
646 if (CondResult.isInvalid())
647 return StmtError();
648 Cond = CondResult.take();
649 }
650
651 getCurFunction()->setHasBranchIntoScope();
652
653 SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
654 getCurFunction()->SwitchStack.push_back(SS);
655 return Owned(SS);
656 }
657
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)658 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
659 if (Val.getBitWidth() < BitWidth)
660 Val = Val.extend(BitWidth);
661 else if (Val.getBitWidth() > BitWidth)
662 Val = Val.trunc(BitWidth);
663 Val.setIsSigned(IsSigned);
664 }
665
666 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)667 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
668 Stmt *BodyStmt) {
669 SwitchStmt *SS = cast<SwitchStmt>(Switch);
670 assert(SS == getCurFunction()->SwitchStack.back() &&
671 "switch stack missing push/pop!");
672
673 SS->setBody(BodyStmt, SwitchLoc);
674 getCurFunction()->SwitchStack.pop_back();
675
676 Expr *CondExpr = SS->getCond();
677 if (!CondExpr) return StmtError();
678
679 QualType CondType = CondExpr->getType();
680
681 Expr *CondExprBeforePromotion = CondExpr;
682 QualType CondTypeBeforePromotion =
683 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
684
685 // C++ 6.4.2.p2:
686 // Integral promotions are performed (on the switch condition).
687 //
688 // A case value unrepresentable by the original switch condition
689 // type (before the promotion) doesn't make sense, even when it can
690 // be represented by the promoted type. Therefore we need to find
691 // the pre-promotion type of the switch condition.
692 if (!CondExpr->isTypeDependent()) {
693 // We have already converted the expression to an integral or enumeration
694 // type, when we started the switch statement. If we don't have an
695 // appropriate type now, just return an error.
696 if (!CondType->isIntegralOrEnumerationType())
697 return StmtError();
698
699 if (CondExpr->isKnownToHaveBooleanValue()) {
700 // switch(bool_expr) {...} is often a programmer error, e.g.
701 // switch(n && mask) { ... } // Doh - should be "n & mask".
702 // One can always use an if statement instead of switch(bool_expr).
703 Diag(SwitchLoc, diag::warn_bool_switch_condition)
704 << CondExpr->getSourceRange();
705 }
706 }
707
708 // Get the bitwidth of the switched-on value before promotions. We must
709 // convert the integer case values to this width before comparison.
710 bool HasDependentValue
711 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
712 unsigned CondWidth
713 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
714 bool CondIsSigned
715 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
716
717 // Accumulate all of the case values in a vector so that we can sort them
718 // and detect duplicates. This vector contains the APInt for the case after
719 // it has been converted to the condition type.
720 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
721 CaseValsTy CaseVals;
722
723 // Keep track of any GNU case ranges we see. The APSInt is the low value.
724 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
725 CaseRangesTy CaseRanges;
726
727 DefaultStmt *TheDefaultStmt = 0;
728
729 bool CaseListIsErroneous = false;
730
731 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
732 SC = SC->getNextSwitchCase()) {
733
734 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
735 if (TheDefaultStmt) {
736 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
737 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
738
739 // FIXME: Remove the default statement from the switch block so that
740 // we'll return a valid AST. This requires recursing down the AST and
741 // finding it, not something we are set up to do right now. For now,
742 // just lop the entire switch stmt out of the AST.
743 CaseListIsErroneous = true;
744 }
745 TheDefaultStmt = DS;
746
747 } else {
748 CaseStmt *CS = cast<CaseStmt>(SC);
749
750 Expr *Lo = CS->getLHS();
751
752 if (Lo->isTypeDependent() || Lo->isValueDependent()) {
753 HasDependentValue = true;
754 break;
755 }
756
757 llvm::APSInt LoVal;
758
759 if (getLangOpts().CPlusPlus11) {
760 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
761 // constant expression of the promoted type of the switch condition.
762 ExprResult ConvLo =
763 CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
764 if (ConvLo.isInvalid()) {
765 CaseListIsErroneous = true;
766 continue;
767 }
768 Lo = ConvLo.take();
769 } else {
770 // We already verified that the expression has a i-c-e value (C99
771 // 6.8.4.2p3) - get that value now.
772 LoVal = Lo->EvaluateKnownConstInt(Context);
773
774 // If the LHS is not the same type as the condition, insert an implicit
775 // cast.
776 Lo = DefaultLvalueConversion(Lo).take();
777 Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
778 }
779
780 // Convert the value to the same width/sign as the condition had prior to
781 // integral promotions.
782 //
783 // FIXME: This causes us to reject valid code:
784 // switch ((char)c) { case 256: case 0: return 0; }
785 // Here we claim there is a duplicated condition value, but there is not.
786 ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
787 Lo->getLocStart(),
788 diag::warn_case_value_overflow);
789
790 CS->setLHS(Lo);
791
792 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
793 if (CS->getRHS()) {
794 if (CS->getRHS()->isTypeDependent() ||
795 CS->getRHS()->isValueDependent()) {
796 HasDependentValue = true;
797 break;
798 }
799 CaseRanges.push_back(std::make_pair(LoVal, CS));
800 } else
801 CaseVals.push_back(std::make_pair(LoVal, CS));
802 }
803 }
804
805 if (!HasDependentValue) {
806 // If we don't have a default statement, check whether the
807 // condition is constant.
808 llvm::APSInt ConstantCondValue;
809 bool HasConstantCond = false;
810 if (!HasDependentValue && !TheDefaultStmt) {
811 HasConstantCond
812 = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
813 Expr::SE_AllowSideEffects);
814 assert(!HasConstantCond ||
815 (ConstantCondValue.getBitWidth() == CondWidth &&
816 ConstantCondValue.isSigned() == CondIsSigned));
817 }
818 bool ShouldCheckConstantCond = HasConstantCond;
819
820 // Sort all the scalar case values so we can easily detect duplicates.
821 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
822
823 if (!CaseVals.empty()) {
824 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
825 if (ShouldCheckConstantCond &&
826 CaseVals[i].first == ConstantCondValue)
827 ShouldCheckConstantCond = false;
828
829 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
830 // If we have a duplicate, report it.
831 // First, determine if either case value has a name
832 StringRef PrevString, CurrString;
833 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
834 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
835 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
836 PrevString = DeclRef->getDecl()->getName();
837 }
838 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
839 CurrString = DeclRef->getDecl()->getName();
840 }
841 SmallString<16> CaseValStr;
842 CaseVals[i-1].first.toString(CaseValStr);
843
844 if (PrevString == CurrString)
845 Diag(CaseVals[i].second->getLHS()->getLocStart(),
846 diag::err_duplicate_case) <<
847 (PrevString.empty() ? CaseValStr.str() : PrevString);
848 else
849 Diag(CaseVals[i].second->getLHS()->getLocStart(),
850 diag::err_duplicate_case_differing_expr) <<
851 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
852 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
853 CaseValStr;
854
855 Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
856 diag::note_duplicate_case_prev);
857 // FIXME: We really want to remove the bogus case stmt from the
858 // substmt, but we have no way to do this right now.
859 CaseListIsErroneous = true;
860 }
861 }
862 }
863
864 // Detect duplicate case ranges, which usually don't exist at all in
865 // the first place.
866 if (!CaseRanges.empty()) {
867 // Sort all the case ranges by their low value so we can easily detect
868 // overlaps between ranges.
869 std::stable_sort(CaseRanges.begin(), CaseRanges.end());
870
871 // Scan the ranges, computing the high values and removing empty ranges.
872 std::vector<llvm::APSInt> HiVals;
873 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
874 llvm::APSInt &LoVal = CaseRanges[i].first;
875 CaseStmt *CR = CaseRanges[i].second;
876 Expr *Hi = CR->getRHS();
877 llvm::APSInt HiVal;
878
879 if (getLangOpts().CPlusPlus11) {
880 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
881 // constant expression of the promoted type of the switch condition.
882 ExprResult ConvHi =
883 CheckConvertedConstantExpression(Hi, CondType, HiVal,
884 CCEK_CaseValue);
885 if (ConvHi.isInvalid()) {
886 CaseListIsErroneous = true;
887 continue;
888 }
889 Hi = ConvHi.take();
890 } else {
891 HiVal = Hi->EvaluateKnownConstInt(Context);
892
893 // If the RHS is not the same type as the condition, insert an
894 // implicit cast.
895 Hi = DefaultLvalueConversion(Hi).take();
896 Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
897 }
898
899 // Convert the value to the same width/sign as the condition.
900 ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
901 Hi->getLocStart(),
902 diag::warn_case_value_overflow);
903
904 CR->setRHS(Hi);
905
906 // If the low value is bigger than the high value, the case is empty.
907 if (LoVal > HiVal) {
908 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
909 << SourceRange(CR->getLHS()->getLocStart(),
910 Hi->getLocEnd());
911 CaseRanges.erase(CaseRanges.begin()+i);
912 --i, --e;
913 continue;
914 }
915
916 if (ShouldCheckConstantCond &&
917 LoVal <= ConstantCondValue &&
918 ConstantCondValue <= HiVal)
919 ShouldCheckConstantCond = false;
920
921 HiVals.push_back(HiVal);
922 }
923
924 // Rescan the ranges, looking for overlap with singleton values and other
925 // ranges. Since the range list is sorted, we only need to compare case
926 // ranges with their neighbors.
927 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
928 llvm::APSInt &CRLo = CaseRanges[i].first;
929 llvm::APSInt &CRHi = HiVals[i];
930 CaseStmt *CR = CaseRanges[i].second;
931
932 // Check to see whether the case range overlaps with any
933 // singleton cases.
934 CaseStmt *OverlapStmt = 0;
935 llvm::APSInt OverlapVal(32);
936
937 // Find the smallest value >= the lower bound. If I is in the
938 // case range, then we have overlap.
939 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
940 CaseVals.end(), CRLo,
941 CaseCompareFunctor());
942 if (I != CaseVals.end() && I->first < CRHi) {
943 OverlapVal = I->first; // Found overlap with scalar.
944 OverlapStmt = I->second;
945 }
946
947 // Find the smallest value bigger than the upper bound.
948 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
949 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
950 OverlapVal = (I-1)->first; // Found overlap with scalar.
951 OverlapStmt = (I-1)->second;
952 }
953
954 // Check to see if this case stmt overlaps with the subsequent
955 // case range.
956 if (i && CRLo <= HiVals[i-1]) {
957 OverlapVal = HiVals[i-1]; // Found overlap with range.
958 OverlapStmt = CaseRanges[i-1].second;
959 }
960
961 if (OverlapStmt) {
962 // If we have a duplicate, report it.
963 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
964 << OverlapVal.toString(10);
965 Diag(OverlapStmt->getLHS()->getLocStart(),
966 diag::note_duplicate_case_prev);
967 // FIXME: We really want to remove the bogus case stmt from the
968 // substmt, but we have no way to do this right now.
969 CaseListIsErroneous = true;
970 }
971 }
972 }
973
974 // Complain if we have a constant condition and we didn't find a match.
975 if (!CaseListIsErroneous && ShouldCheckConstantCond) {
976 // TODO: it would be nice if we printed enums as enums, chars as
977 // chars, etc.
978 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
979 << ConstantCondValue.toString(10)
980 << CondExpr->getSourceRange();
981 }
982
983 // Check to see if switch is over an Enum and handles all of its
984 // values. We only issue a warning if there is not 'default:', but
985 // we still do the analysis to preserve this information in the AST
986 // (which can be used by flow-based analyes).
987 //
988 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
989
990 // If switch has default case, then ignore it.
991 if (!CaseListIsErroneous && !HasConstantCond && ET) {
992 const EnumDecl *ED = ET->getDecl();
993 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
994 EnumValsTy;
995 EnumValsTy EnumVals;
996
997 // Gather all enum values, set their type and sort them,
998 // allowing easier comparison with CaseVals.
999 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1000 EDI != ED->enumerator_end(); ++EDI) {
1001 llvm::APSInt Val = EDI->getInitVal();
1002 AdjustAPSInt(Val, CondWidth, CondIsSigned);
1003 EnumVals.push_back(std::make_pair(Val, *EDI));
1004 }
1005 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1006 EnumValsTy::iterator EIend =
1007 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1008
1009 // See which case values aren't in enum.
1010 EnumValsTy::const_iterator EI = EnumVals.begin();
1011 for (CaseValsTy::const_iterator CI = CaseVals.begin();
1012 CI != CaseVals.end(); CI++) {
1013 while (EI != EIend && EI->first < CI->first)
1014 EI++;
1015 if (EI == EIend || EI->first > CI->first)
1016 Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1017 << CondTypeBeforePromotion;
1018 }
1019 // See which of case ranges aren't in enum
1020 EI = EnumVals.begin();
1021 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1022 RI != CaseRanges.end() && EI != EIend; RI++) {
1023 while (EI != EIend && EI->first < RI->first)
1024 EI++;
1025
1026 if (EI == EIend || EI->first != RI->first) {
1027 Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1028 << CondTypeBeforePromotion;
1029 }
1030
1031 llvm::APSInt Hi =
1032 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1033 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1034 while (EI != EIend && EI->first < Hi)
1035 EI++;
1036 if (EI == EIend || EI->first != Hi)
1037 Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1038 << CondTypeBeforePromotion;
1039 }
1040
1041 // Check which enum vals aren't in switch
1042 CaseValsTy::const_iterator CI = CaseVals.begin();
1043 CaseRangesTy::const_iterator RI = CaseRanges.begin();
1044 bool hasCasesNotInSwitch = false;
1045
1046 SmallVector<DeclarationName,8> UnhandledNames;
1047
1048 for (EI = EnumVals.begin(); EI != EIend; EI++){
1049 // Drop unneeded case values
1050 llvm::APSInt CIVal;
1051 while (CI != CaseVals.end() && CI->first < EI->first)
1052 CI++;
1053
1054 if (CI != CaseVals.end() && CI->first == EI->first)
1055 continue;
1056
1057 // Drop unneeded case ranges
1058 for (; RI != CaseRanges.end(); RI++) {
1059 llvm::APSInt Hi =
1060 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1061 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1062 if (EI->first <= Hi)
1063 break;
1064 }
1065
1066 if (RI == CaseRanges.end() || EI->first < RI->first) {
1067 hasCasesNotInSwitch = true;
1068 UnhandledNames.push_back(EI->second->getDeclName());
1069 }
1070 }
1071
1072 if (TheDefaultStmt && UnhandledNames.empty())
1073 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1074
1075 // Produce a nice diagnostic if multiple values aren't handled.
1076 switch (UnhandledNames.size()) {
1077 case 0: break;
1078 case 1:
1079 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1080 ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1081 << UnhandledNames[0];
1082 break;
1083 case 2:
1084 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1085 ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1086 << UnhandledNames[0] << UnhandledNames[1];
1087 break;
1088 case 3:
1089 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1090 ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1091 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1092 break;
1093 default:
1094 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1095 ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1096 << (unsigned)UnhandledNames.size()
1097 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1098 break;
1099 }
1100
1101 if (!hasCasesNotInSwitch)
1102 SS->setAllEnumCasesCovered();
1103 }
1104 }
1105
1106 DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1107 diag::warn_empty_switch_body);
1108
1109 // FIXME: If the case list was broken is some way, we don't have a good system
1110 // to patch it up. Instead, just return the whole substmt as broken.
1111 if (CaseListIsErroneous)
1112 return StmtError();
1113
1114 return Owned(SS);
1115 }
1116
1117 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1118 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1119 Expr *SrcExpr) {
1120 if (Diags.getDiagnosticLevel(diag::warn_not_in_enum_assignment,
1121 SrcExpr->getExprLoc()) ==
1122 DiagnosticsEngine::Ignored)
1123 return;
1124
1125 if (const EnumType *ET = DstType->getAs<EnumType>())
1126 if (!Context.hasSameType(SrcType, DstType) &&
1127 SrcType->isIntegerType()) {
1128 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1129 SrcExpr->isIntegerConstantExpr(Context)) {
1130 // Get the bitwidth of the enum value before promotions.
1131 unsigned DstWidth = Context.getIntWidth(DstType);
1132 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1133
1134 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1135 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1136 const EnumDecl *ED = ET->getDecl();
1137 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1138 EnumValsTy;
1139 EnumValsTy EnumVals;
1140
1141 // Gather all enum values, set their type and sort them,
1142 // allowing easier comparison with rhs constant.
1143 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1144 EDI != ED->enumerator_end(); ++EDI) {
1145 llvm::APSInt Val = EDI->getInitVal();
1146 AdjustAPSInt(Val, DstWidth, DstIsSigned);
1147 EnumVals.push_back(std::make_pair(Val, *EDI));
1148 }
1149 if (EnumVals.empty())
1150 return;
1151 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1152 EnumValsTy::iterator EIend =
1153 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1154
1155 // See which values aren't in the enum.
1156 EnumValsTy::const_iterator EI = EnumVals.begin();
1157 while (EI != EIend && EI->first < RhsVal)
1158 EI++;
1159 if (EI == EIend || EI->first != RhsVal) {
1160 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1161 << DstType;
1162 }
1163 }
1164 }
1165 }
1166
1167 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1168 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1169 Decl *CondVar, Stmt *Body) {
1170 ExprResult CondResult(Cond.release());
1171
1172 VarDecl *ConditionVar = 0;
1173 if (CondVar) {
1174 ConditionVar = cast<VarDecl>(CondVar);
1175 CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1176 if (CondResult.isInvalid())
1177 return StmtError();
1178 }
1179 Expr *ConditionExpr = CondResult.take();
1180 if (!ConditionExpr)
1181 return StmtError();
1182
1183 DiagnoseUnusedExprResult(Body);
1184
1185 if (isa<NullStmt>(Body))
1186 getCurCompoundScope().setHasEmptyLoopBodies();
1187
1188 return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1189 Body, WhileLoc));
1190 }
1191
1192 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1193 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1194 SourceLocation WhileLoc, SourceLocation CondLParen,
1195 Expr *Cond, SourceLocation CondRParen) {
1196 assert(Cond && "ActOnDoStmt(): missing expression");
1197
1198 ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1199 if (CondResult.isInvalid())
1200 return StmtError();
1201 Cond = CondResult.take();
1202
1203 CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1204 if (CondResult.isInvalid())
1205 return StmtError();
1206 Cond = CondResult.take();
1207
1208 DiagnoseUnusedExprResult(Body);
1209
1210 return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1211 }
1212
1213 namespace {
1214 // This visitor will traverse a conditional statement and store all
1215 // the evaluated decls into a vector. Simple is set to true if none
1216 // of the excluded constructs are used.
1217 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1218 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1219 SmallVectorImpl<SourceRange> &Ranges;
1220 bool Simple;
1221 public:
1222 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1223
DeclExtractor(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,SmallVectorImpl<SourceRange> & Ranges)1224 DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1225 SmallVectorImpl<SourceRange> &Ranges) :
1226 Inherited(S.Context),
1227 Decls(Decls),
1228 Ranges(Ranges),
1229 Simple(true) {}
1230
isSimple()1231 bool isSimple() { return Simple; }
1232
1233 // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1234 void VisitMemberExpr(MemberExpr* E) {
1235 Simple = false;
1236 }
1237
1238 // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1239 void VisitStmt(Stmt *S) {
1240 Simple = false;
1241 }
1242
VisitBinaryOperator(BinaryOperator * E)1243 void VisitBinaryOperator(BinaryOperator *E) {
1244 Visit(E->getLHS());
1245 Visit(E->getRHS());
1246 }
1247
VisitCastExpr(CastExpr * E)1248 void VisitCastExpr(CastExpr *E) {
1249 Visit(E->getSubExpr());
1250 }
1251
VisitUnaryOperator(UnaryOperator * E)1252 void VisitUnaryOperator(UnaryOperator *E) {
1253 // Skip checking conditionals with derefernces.
1254 if (E->getOpcode() == UO_Deref)
1255 Simple = false;
1256 else
1257 Visit(E->getSubExpr());
1258 }
1259
VisitConditionalOperator(ConditionalOperator * E)1260 void VisitConditionalOperator(ConditionalOperator *E) {
1261 Visit(E->getCond());
1262 Visit(E->getTrueExpr());
1263 Visit(E->getFalseExpr());
1264 }
1265
VisitParenExpr(ParenExpr * E)1266 void VisitParenExpr(ParenExpr *E) {
1267 Visit(E->getSubExpr());
1268 }
1269
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1270 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1271 Visit(E->getOpaqueValue()->getSourceExpr());
1272 Visit(E->getFalseExpr());
1273 }
1274
VisitIntegerLiteral(IntegerLiteral * E)1275 void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1276 void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1277 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1278 void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1279 void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1280 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1281
VisitDeclRefExpr(DeclRefExpr * E)1282 void VisitDeclRefExpr(DeclRefExpr *E) {
1283 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1284 if (!VD) return;
1285
1286 Ranges.push_back(E->getSourceRange());
1287
1288 Decls.insert(VD);
1289 }
1290
1291 }; // end class DeclExtractor
1292
1293 // DeclMatcher checks to see if the decls are used in a non-evauluated
1294 // context.
1295 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1296 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1297 bool FoundDecl;
1298
1299 public:
1300 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1301
DeclMatcher(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,Stmt * Statement)1302 DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1303 Stmt *Statement) :
1304 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1305 if (!Statement) return;
1306
1307 Visit(Statement);
1308 }
1309
VisitReturnStmt(ReturnStmt * S)1310 void VisitReturnStmt(ReturnStmt *S) {
1311 FoundDecl = true;
1312 }
1313
VisitBreakStmt(BreakStmt * S)1314 void VisitBreakStmt(BreakStmt *S) {
1315 FoundDecl = true;
1316 }
1317
VisitGotoStmt(GotoStmt * S)1318 void VisitGotoStmt(GotoStmt *S) {
1319 FoundDecl = true;
1320 }
1321
VisitCastExpr(CastExpr * E)1322 void VisitCastExpr(CastExpr *E) {
1323 if (E->getCastKind() == CK_LValueToRValue)
1324 CheckLValueToRValueCast(E->getSubExpr());
1325 else
1326 Visit(E->getSubExpr());
1327 }
1328
CheckLValueToRValueCast(Expr * E)1329 void CheckLValueToRValueCast(Expr *E) {
1330 E = E->IgnoreParenImpCasts();
1331
1332 if (isa<DeclRefExpr>(E)) {
1333 return;
1334 }
1335
1336 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1337 Visit(CO->getCond());
1338 CheckLValueToRValueCast(CO->getTrueExpr());
1339 CheckLValueToRValueCast(CO->getFalseExpr());
1340 return;
1341 }
1342
1343 if (BinaryConditionalOperator *BCO =
1344 dyn_cast<BinaryConditionalOperator>(E)) {
1345 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1346 CheckLValueToRValueCast(BCO->getFalseExpr());
1347 return;
1348 }
1349
1350 Visit(E);
1351 }
1352
VisitDeclRefExpr(DeclRefExpr * E)1353 void VisitDeclRefExpr(DeclRefExpr *E) {
1354 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1355 if (Decls.count(VD))
1356 FoundDecl = true;
1357 }
1358
FoundDeclInUse()1359 bool FoundDeclInUse() { return FoundDecl; }
1360
1361 }; // end class DeclMatcher
1362
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1363 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1364 Expr *Third, Stmt *Body) {
1365 // Condition is empty
1366 if (!Second) return;
1367
1368 if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1369 Second->getLocStart())
1370 == DiagnosticsEngine::Ignored)
1371 return;
1372
1373 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1374 llvm::SmallPtrSet<VarDecl*, 8> Decls;
1375 SmallVector<SourceRange, 10> Ranges;
1376 DeclExtractor DE(S, Decls, Ranges);
1377 DE.Visit(Second);
1378
1379 // Don't analyze complex conditionals.
1380 if (!DE.isSimple()) return;
1381
1382 // No decls found.
1383 if (Decls.size() == 0) return;
1384
1385 // Don't warn on volatile, static, or global variables.
1386 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1387 E = Decls.end();
1388 I != E; ++I)
1389 if ((*I)->getType().isVolatileQualified() ||
1390 (*I)->hasGlobalStorage()) return;
1391
1392 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1393 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1394 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1395 return;
1396
1397 // Load decl names into diagnostic.
1398 if (Decls.size() > 4)
1399 PDiag << 0;
1400 else {
1401 PDiag << Decls.size();
1402 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1403 E = Decls.end();
1404 I != E; ++I)
1405 PDiag << (*I)->getDeclName();
1406 }
1407
1408 // Load SourceRanges into diagnostic if there is room.
1409 // Otherwise, load the SourceRange of the conditional expression.
1410 if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1411 for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1412 E = Ranges.end();
1413 I != E; ++I)
1414 PDiag << *I;
1415 else
1416 PDiag << Second->getSourceRange();
1417
1418 S.Diag(Ranges.begin()->getBegin(), PDiag);
1419 }
1420
1421 // If Statement is an incemement or decrement, return true and sets the
1422 // variables Increment and DRE.
ProcessIterationStmt(Sema & S,Stmt * Statement,bool & Increment,DeclRefExpr * & DRE)1423 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1424 DeclRefExpr *&DRE) {
1425 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1426 switch (UO->getOpcode()) {
1427 default: return false;
1428 case UO_PostInc:
1429 case UO_PreInc:
1430 Increment = true;
1431 break;
1432 case UO_PostDec:
1433 case UO_PreDec:
1434 Increment = false;
1435 break;
1436 }
1437 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1438 return DRE;
1439 }
1440
1441 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1442 FunctionDecl *FD = Call->getDirectCallee();
1443 if (!FD || !FD->isOverloadedOperator()) return false;
1444 switch (FD->getOverloadedOperator()) {
1445 default: return false;
1446 case OO_PlusPlus:
1447 Increment = true;
1448 break;
1449 case OO_MinusMinus:
1450 Increment = false;
1451 break;
1452 }
1453 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1454 return DRE;
1455 }
1456
1457 return false;
1458 }
1459
1460 // A visitor to determine if a continue statement is a subexpression.
1461 class ContinueFinder : public EvaluatedExprVisitor<ContinueFinder> {
1462 bool Found;
1463 public:
ContinueFinder(Sema & S,Stmt * Body)1464 ContinueFinder(Sema &S, Stmt* Body) :
1465 Inherited(S.Context),
1466 Found(false) {
1467 Visit(Body);
1468 }
1469
1470 typedef EvaluatedExprVisitor<ContinueFinder> Inherited;
1471
VisitContinueStmt(ContinueStmt * E)1472 void VisitContinueStmt(ContinueStmt* E) {
1473 Found = true;
1474 }
1475
ContinueFound()1476 bool ContinueFound() { return Found; }
1477
1478 }; // end class ContinueFinder
1479
1480 // Emit a warning when a loop increment/decrement appears twice per loop
1481 // iteration. The conditions which trigger this warning are:
1482 // 1) The last statement in the loop body and the third expression in the
1483 // for loop are both increment or both decrement of the same variable
1484 // 2) No continue statements in the loop body.
CheckForRedundantIteration(Sema & S,Expr * Third,Stmt * Body)1485 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1486 // Return when there is nothing to check.
1487 if (!Body || !Third) return;
1488
1489 if (S.Diags.getDiagnosticLevel(diag::warn_redundant_loop_iteration,
1490 Third->getLocStart())
1491 == DiagnosticsEngine::Ignored)
1492 return;
1493
1494 // Get the last statement from the loop body.
1495 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1496 if (!CS || CS->body_empty()) return;
1497 Stmt *LastStmt = CS->body_back();
1498 if (!LastStmt) return;
1499
1500 bool LoopIncrement, LastIncrement;
1501 DeclRefExpr *LoopDRE, *LastDRE;
1502
1503 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1504 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1505
1506 // Check that the two statements are both increments or both decrements
1507 // on the same varaible.
1508 if (LoopIncrement != LastIncrement ||
1509 LoopDRE->getDecl() != LastDRE->getDecl()) return;
1510
1511 if (ContinueFinder(S, Body).ContinueFound()) return;
1512
1513 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1514 << LastDRE->getDecl() << LastIncrement;
1515 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1516 << LoopIncrement;
1517 }
1518
1519 } // end namespace
1520
1521 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1522 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1523 Stmt *First, FullExprArg second, Decl *secondVar,
1524 FullExprArg third,
1525 SourceLocation RParenLoc, Stmt *Body) {
1526 if (!getLangOpts().CPlusPlus) {
1527 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1528 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1529 // declare identifiers for objects having storage class 'auto' or
1530 // 'register'.
1531 for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1532 DI!=DE; ++DI) {
1533 VarDecl *VD = dyn_cast<VarDecl>(*DI);
1534 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1535 VD = 0;
1536 if (VD == 0) {
1537 Diag((*DI)->getLocation(), diag::err_non_local_variable_decl_in_for);
1538 (*DI)->setInvalidDecl();
1539 }
1540 }
1541 }
1542 }
1543
1544 CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1545 CheckForRedundantIteration(*this, third.get(), Body);
1546
1547 ExprResult SecondResult(second.release());
1548 VarDecl *ConditionVar = 0;
1549 if (secondVar) {
1550 ConditionVar = cast<VarDecl>(secondVar);
1551 SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1552 if (SecondResult.isInvalid())
1553 return StmtError();
1554 }
1555
1556 Expr *Third = third.release().takeAs<Expr>();
1557
1558 DiagnoseUnusedExprResult(First);
1559 DiagnoseUnusedExprResult(Third);
1560 DiagnoseUnusedExprResult(Body);
1561
1562 if (isa<NullStmt>(Body))
1563 getCurCompoundScope().setHasEmptyLoopBodies();
1564
1565 return Owned(new (Context) ForStmt(Context, First,
1566 SecondResult.take(), ConditionVar,
1567 Third, Body, ForLoc, LParenLoc,
1568 RParenLoc));
1569 }
1570
1571 /// In an Objective C collection iteration statement:
1572 /// for (x in y)
1573 /// x can be an arbitrary l-value expression. Bind it up as a
1574 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1575 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1576 // Reduce placeholder expressions here. Note that this rejects the
1577 // use of pseudo-object l-values in this position.
1578 ExprResult result = CheckPlaceholderExpr(E);
1579 if (result.isInvalid()) return StmtError();
1580 E = result.take();
1581
1582 ExprResult FullExpr = ActOnFinishFullExpr(E);
1583 if (FullExpr.isInvalid())
1584 return StmtError();
1585 return StmtResult(static_cast<Stmt*>(FullExpr.take()));
1586 }
1587
1588 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1589 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1590 if (!collection)
1591 return ExprError();
1592
1593 // Bail out early if we've got a type-dependent expression.
1594 if (collection->isTypeDependent()) return Owned(collection);
1595
1596 // Perform normal l-value conversion.
1597 ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1598 if (result.isInvalid())
1599 return ExprError();
1600 collection = result.take();
1601
1602 // The operand needs to have object-pointer type.
1603 // TODO: should we do a contextual conversion?
1604 const ObjCObjectPointerType *pointerType =
1605 collection->getType()->getAs<ObjCObjectPointerType>();
1606 if (!pointerType)
1607 return Diag(forLoc, diag::err_collection_expr_type)
1608 << collection->getType() << collection->getSourceRange();
1609
1610 // Check that the operand provides
1611 // - countByEnumeratingWithState:objects:count:
1612 const ObjCObjectType *objectType = pointerType->getObjectType();
1613 ObjCInterfaceDecl *iface = objectType->getInterface();
1614
1615 // If we have a forward-declared type, we can't do this check.
1616 // Under ARC, it is an error not to have a forward-declared class.
1617 if (iface &&
1618 RequireCompleteType(forLoc, QualType(objectType, 0),
1619 getLangOpts().ObjCAutoRefCount
1620 ? diag::err_arc_collection_forward
1621 : 0,
1622 collection)) {
1623 // Otherwise, if we have any useful type information, check that
1624 // the type declares the appropriate method.
1625 } else if (iface || !objectType->qual_empty()) {
1626 IdentifierInfo *selectorIdents[] = {
1627 &Context.Idents.get("countByEnumeratingWithState"),
1628 &Context.Idents.get("objects"),
1629 &Context.Idents.get("count")
1630 };
1631 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1632
1633 ObjCMethodDecl *method = 0;
1634
1635 // If there's an interface, look in both the public and private APIs.
1636 if (iface) {
1637 method = iface->lookupInstanceMethod(selector);
1638 if (!method) method = iface->lookupPrivateMethod(selector);
1639 }
1640
1641 // Also check protocol qualifiers.
1642 if (!method)
1643 method = LookupMethodInQualifiedType(selector, pointerType,
1644 /*instance*/ true);
1645
1646 // If we didn't find it anywhere, give up.
1647 if (!method) {
1648 Diag(forLoc, diag::warn_collection_expr_type)
1649 << collection->getType() << selector << collection->getSourceRange();
1650 }
1651
1652 // TODO: check for an incompatible signature?
1653 }
1654
1655 // Wrap up any cleanups in the expression.
1656 return Owned(collection);
1657 }
1658
1659 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1660 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1661 Stmt *First, Expr *collection,
1662 SourceLocation RParenLoc) {
1663
1664 ExprResult CollectionExprResult =
1665 CheckObjCForCollectionOperand(ForLoc, collection);
1666
1667 if (First) {
1668 QualType FirstType;
1669 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1670 if (!DS->isSingleDecl())
1671 return StmtError(Diag((*DS->decl_begin())->getLocation(),
1672 diag::err_toomany_element_decls));
1673
1674 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1675 if (!D || D->isInvalidDecl())
1676 return StmtError();
1677
1678 FirstType = D->getType();
1679 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1680 // declare identifiers for objects having storage class 'auto' or
1681 // 'register'.
1682 if (!D->hasLocalStorage())
1683 return StmtError(Diag(D->getLocation(),
1684 diag::err_non_local_variable_decl_in_for));
1685
1686 // If the type contained 'auto', deduce the 'auto' to 'id'.
1687 if (FirstType->getContainedAutoType()) {
1688 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1689 VK_RValue);
1690 Expr *DeducedInit = &OpaqueId;
1691 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1692 DAR_Failed)
1693 DiagnoseAutoDeductionFailure(D, DeducedInit);
1694 if (FirstType.isNull()) {
1695 D->setInvalidDecl();
1696 return StmtError();
1697 }
1698
1699 D->setType(FirstType);
1700
1701 if (ActiveTemplateInstantiations.empty()) {
1702 SourceLocation Loc =
1703 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1704 Diag(Loc, diag::warn_auto_var_is_id)
1705 << D->getDeclName();
1706 }
1707 }
1708
1709 } else {
1710 Expr *FirstE = cast<Expr>(First);
1711 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1712 return StmtError(Diag(First->getLocStart(),
1713 diag::err_selector_element_not_lvalue)
1714 << First->getSourceRange());
1715
1716 FirstType = static_cast<Expr*>(First)->getType();
1717 }
1718 if (!FirstType->isDependentType() &&
1719 !FirstType->isObjCObjectPointerType() &&
1720 !FirstType->isBlockPointerType())
1721 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1722 << FirstType << First->getSourceRange());
1723 }
1724
1725 if (CollectionExprResult.isInvalid())
1726 return StmtError();
1727
1728 CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take());
1729 if (CollectionExprResult.isInvalid())
1730 return StmtError();
1731
1732 return Owned(new (Context) ObjCForCollectionStmt(First,
1733 CollectionExprResult.take(), 0,
1734 ForLoc, RParenLoc));
1735 }
1736
1737 /// Finish building a variable declaration for a for-range statement.
1738 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int DiagID)1739 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1740 SourceLocation Loc, int DiagID) {
1741 // Deduce the type for the iterator variable now rather than leaving it to
1742 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1743 QualType InitType;
1744 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1745 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1746 Sema::DAR_Failed)
1747 SemaRef.Diag(Loc, DiagID) << Init->getType();
1748 if (InitType.isNull()) {
1749 Decl->setInvalidDecl();
1750 return true;
1751 }
1752 Decl->setType(InitType);
1753
1754 // In ARC, infer lifetime.
1755 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1756 // we're doing the equivalent of fast iteration.
1757 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1758 SemaRef.inferObjCARCLifetime(Decl))
1759 Decl->setInvalidDecl();
1760
1761 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1762 /*TypeMayContainAuto=*/false);
1763 SemaRef.FinalizeDeclaration(Decl);
1764 SemaRef.CurContext->addHiddenDecl(Decl);
1765 return false;
1766 }
1767
1768 namespace {
1769
1770 /// Produce a note indicating which begin/end function was implicitly called
1771 /// by a C++11 for-range statement. This is often not obvious from the code,
1772 /// nor from the diagnostics produced when analysing the implicit expressions
1773 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,Sema::BeginEndFunction BEF)1774 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1775 Sema::BeginEndFunction BEF) {
1776 CallExpr *CE = dyn_cast<CallExpr>(E);
1777 if (!CE)
1778 return;
1779 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1780 if (!D)
1781 return;
1782 SourceLocation Loc = D->getLocation();
1783
1784 std::string Description;
1785 bool IsTemplate = false;
1786 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1787 Description = SemaRef.getTemplateArgumentBindingsText(
1788 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1789 IsTemplate = true;
1790 }
1791
1792 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1793 << BEF << IsTemplate << Description << E->getType();
1794 }
1795
1796 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1797 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1798 QualType Type, const char *Name) {
1799 DeclContext *DC = SemaRef.CurContext;
1800 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1801 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1802 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1803 TInfo, SC_None);
1804 Decl->setImplicit();
1805 return Decl;
1806 }
1807
1808 }
1809
ObjCEnumerationCollection(Expr * Collection)1810 static bool ObjCEnumerationCollection(Expr *Collection) {
1811 return !Collection->isTypeDependent()
1812 && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1813 }
1814
1815 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1816 ///
1817 /// C++11 [stmt.ranged]:
1818 /// A range-based for statement is equivalent to
1819 ///
1820 /// {
1821 /// auto && __range = range-init;
1822 /// for ( auto __begin = begin-expr,
1823 /// __end = end-expr;
1824 /// __begin != __end;
1825 /// ++__begin ) {
1826 /// for-range-declaration = *__begin;
1827 /// statement
1828 /// }
1829 /// }
1830 ///
1831 /// The body of the loop is not available yet, since it cannot be analysed until
1832 /// we have determined the type of the for-range-declaration.
1833 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)1834 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1835 Stmt *First, SourceLocation ColonLoc, Expr *Range,
1836 SourceLocation RParenLoc, BuildForRangeKind Kind) {
1837 if (!First || !Range)
1838 return StmtError();
1839
1840 if (ObjCEnumerationCollection(Range))
1841 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1842
1843 DeclStmt *DS = dyn_cast<DeclStmt>(First);
1844 assert(DS && "first part of for range not a decl stmt");
1845
1846 if (!DS->isSingleDecl()) {
1847 Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1848 return StmtError();
1849 }
1850 if (DS->getSingleDecl()->isInvalidDecl())
1851 return StmtError();
1852
1853 if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1854 return StmtError();
1855
1856 // Build auto && __range = range-init
1857 SourceLocation RangeLoc = Range->getLocStart();
1858 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1859 Context.getAutoRRefDeductType(),
1860 "__range");
1861 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1862 diag::err_for_range_deduction_failure))
1863 return StmtError();
1864
1865 // Claim the type doesn't contain auto: we've already done the checking.
1866 DeclGroupPtrTy RangeGroup =
1867 BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1868 /*TypeMayContainAuto=*/ false);
1869 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1870 if (RangeDecl.isInvalid())
1871 return StmtError();
1872
1873 return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1874 /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1875 RParenLoc, Kind);
1876 }
1877
1878 /// \brief Create the initialization, compare, and increment steps for
1879 /// the range-based for loop expression.
1880 /// This function does not handle array-based for loops,
1881 /// which are created in Sema::BuildCXXForRangeStmt.
1882 ///
1883 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1884 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1885 /// CandidateSet and BEF are set and some non-success value is returned on
1886 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Scope * S,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,Sema::BeginEndFunction * BEF)1887 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1888 Expr *BeginRange, Expr *EndRange,
1889 QualType RangeType,
1890 VarDecl *BeginVar,
1891 VarDecl *EndVar,
1892 SourceLocation ColonLoc,
1893 OverloadCandidateSet *CandidateSet,
1894 ExprResult *BeginExpr,
1895 ExprResult *EndExpr,
1896 Sema::BeginEndFunction *BEF) {
1897 DeclarationNameInfo BeginNameInfo(
1898 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1899 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1900 ColonLoc);
1901
1902 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1903 Sema::LookupMemberName);
1904 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1905
1906 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1907 // - if _RangeT is a class type, the unqualified-ids begin and end are
1908 // looked up in the scope of class _RangeT as if by class member access
1909 // lookup (3.4.5), and if either (or both) finds at least one
1910 // declaration, begin-expr and end-expr are __range.begin() and
1911 // __range.end(), respectively;
1912 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1913 SemaRef.LookupQualifiedName(EndMemberLookup, D);
1914
1915 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1916 SourceLocation RangeLoc = BeginVar->getLocation();
1917 *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1918
1919 SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1920 << RangeLoc << BeginRange->getType() << *BEF;
1921 return Sema::FRS_DiagnosticIssued;
1922 }
1923 } else {
1924 // - otherwise, begin-expr and end-expr are begin(__range) and
1925 // end(__range), respectively, where begin and end are looked up with
1926 // argument-dependent lookup (3.4.2). For the purposes of this name
1927 // lookup, namespace std is an associated namespace.
1928
1929 }
1930
1931 *BEF = Sema::BEF_begin;
1932 Sema::ForRangeStatus RangeStatus =
1933 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1934 Sema::BEF_begin, BeginNameInfo,
1935 BeginMemberLookup, CandidateSet,
1936 BeginRange, BeginExpr);
1937
1938 if (RangeStatus != Sema::FRS_Success)
1939 return RangeStatus;
1940 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1941 diag::err_for_range_iter_deduction_failure)) {
1942 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1943 return Sema::FRS_DiagnosticIssued;
1944 }
1945
1946 *BEF = Sema::BEF_end;
1947 RangeStatus =
1948 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1949 Sema::BEF_end, EndNameInfo,
1950 EndMemberLookup, CandidateSet,
1951 EndRange, EndExpr);
1952 if (RangeStatus != Sema::FRS_Success)
1953 return RangeStatus;
1954 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1955 diag::err_for_range_iter_deduction_failure)) {
1956 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1957 return Sema::FRS_DiagnosticIssued;
1958 }
1959 return Sema::FRS_Success;
1960 }
1961
1962 /// Speculatively attempt to dereference an invalid range expression.
1963 /// If the attempt fails, this function will return a valid, null StmtResult
1964 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)1965 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1966 SourceLocation ForLoc,
1967 Stmt *LoopVarDecl,
1968 SourceLocation ColonLoc,
1969 Expr *Range,
1970 SourceLocation RangeLoc,
1971 SourceLocation RParenLoc) {
1972 // Determine whether we can rebuild the for-range statement with a
1973 // dereferenced range expression.
1974 ExprResult AdjustedRange;
1975 {
1976 Sema::SFINAETrap Trap(SemaRef);
1977
1978 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1979 if (AdjustedRange.isInvalid())
1980 return StmtResult();
1981
1982 StmtResult SR =
1983 SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1984 AdjustedRange.get(), RParenLoc,
1985 Sema::BFRK_Check);
1986 if (SR.isInvalid())
1987 return StmtResult();
1988 }
1989
1990 // The attempt to dereference worked well enough that it could produce a valid
1991 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
1992 // case there are any other (non-fatal) problems with it.
1993 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
1994 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
1995 return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1996 AdjustedRange.get(), RParenLoc,
1997 Sema::BFRK_Rebuild);
1998 }
1999
2000 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2001 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)2002 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
2003 Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2004 Expr *Inc, Stmt *LoopVarDecl,
2005 SourceLocation RParenLoc, BuildForRangeKind Kind) {
2006 Scope *S = getCurScope();
2007
2008 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2009 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2010 QualType RangeVarType = RangeVar->getType();
2011
2012 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2013 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2014
2015 StmtResult BeginEndDecl = BeginEnd;
2016 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2017
2018 if (RangeVarType->isDependentType()) {
2019 // The range is implicitly used as a placeholder when it is dependent.
2020 RangeVar->setUsed();
2021
2022 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2023 // them in properly when we instantiate the loop.
2024 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2025 LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2026 } else if (!BeginEndDecl.get()) {
2027 SourceLocation RangeLoc = RangeVar->getLocation();
2028
2029 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2030
2031 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2032 VK_LValue, ColonLoc);
2033 if (BeginRangeRef.isInvalid())
2034 return StmtError();
2035
2036 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2037 VK_LValue, ColonLoc);
2038 if (EndRangeRef.isInvalid())
2039 return StmtError();
2040
2041 QualType AutoType = Context.getAutoDeductType();
2042 Expr *Range = RangeVar->getInit();
2043 if (!Range)
2044 return StmtError();
2045 QualType RangeType = Range->getType();
2046
2047 if (RequireCompleteType(RangeLoc, RangeType,
2048 diag::err_for_range_incomplete_type))
2049 return StmtError();
2050
2051 // Build auto __begin = begin-expr, __end = end-expr.
2052 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2053 "__begin");
2054 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2055 "__end");
2056
2057 // Build begin-expr and end-expr and attach to __begin and __end variables.
2058 ExprResult BeginExpr, EndExpr;
2059 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2060 // - if _RangeT is an array type, begin-expr and end-expr are __range and
2061 // __range + __bound, respectively, where __bound is the array bound. If
2062 // _RangeT is an array of unknown size or an array of incomplete type,
2063 // the program is ill-formed;
2064
2065 // begin-expr is __range.
2066 BeginExpr = BeginRangeRef;
2067 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2068 diag::err_for_range_iter_deduction_failure)) {
2069 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2070 return StmtError();
2071 }
2072
2073 // Find the array bound.
2074 ExprResult BoundExpr;
2075 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2076 BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
2077 Context.getPointerDiffType(),
2078 RangeLoc));
2079 else if (const VariableArrayType *VAT =
2080 dyn_cast<VariableArrayType>(UnqAT))
2081 // FIXME: Need to build an OpaqueValueExpr for this rather than
2082 // recomputing it!
2083 BoundExpr = VAT->getSizeExpr();
2084 else {
2085 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2086 // UnqAT is not incomplete and Range is not type-dependent.
2087 llvm_unreachable("Unexpected array type in for-range");
2088 }
2089
2090 // end-expr is __range + __bound.
2091 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2092 BoundExpr.get());
2093 if (EndExpr.isInvalid())
2094 return StmtError();
2095 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2096 diag::err_for_range_iter_deduction_failure)) {
2097 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2098 return StmtError();
2099 }
2100 } else {
2101 OverloadCandidateSet CandidateSet(RangeLoc);
2102 Sema::BeginEndFunction BEFFailure;
2103 ForRangeStatus RangeStatus =
2104 BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
2105 EndRangeRef.get(), RangeType,
2106 BeginVar, EndVar, ColonLoc, &CandidateSet,
2107 &BeginExpr, &EndExpr, &BEFFailure);
2108
2109 // If building the range failed, try dereferencing the range expression
2110 // unless a diagnostic was issued or the end function is problematic.
2111 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2112 BEFFailure == BEF_begin) {
2113 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2114 LoopVarDecl, ColonLoc,
2115 Range, RangeLoc,
2116 RParenLoc);
2117 if (SR.isInvalid() || SR.isUsable())
2118 return SR;
2119 }
2120
2121 // Otherwise, emit diagnostics if we haven't already.
2122 if (RangeStatus == FRS_NoViableFunction) {
2123 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2124 Diag(Range->getLocStart(), diag::err_for_range_invalid)
2125 << RangeLoc << Range->getType() << BEFFailure;
2126 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2127 }
2128 // Return an error if no fix was discovered.
2129 if (RangeStatus != FRS_Success)
2130 return StmtError();
2131 }
2132
2133 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2134 "invalid range expression in for loop");
2135
2136 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2137 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2138 if (!Context.hasSameType(BeginType, EndType)) {
2139 Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2140 << BeginType << EndType;
2141 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2142 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2143 }
2144
2145 Decl *BeginEndDecls[] = { BeginVar, EndVar };
2146 // Claim the type doesn't contain auto: we've already done the checking.
2147 DeclGroupPtrTy BeginEndGroup =
2148 BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *>(BeginEndDecls, 2),
2149 /*TypeMayContainAuto=*/ false);
2150 BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2151
2152 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2153 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2154 VK_LValue, ColonLoc);
2155 if (BeginRef.isInvalid())
2156 return StmtError();
2157
2158 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2159 VK_LValue, ColonLoc);
2160 if (EndRef.isInvalid())
2161 return StmtError();
2162
2163 // Build and check __begin != __end expression.
2164 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2165 BeginRef.get(), EndRef.get());
2166 NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2167 NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2168 if (NotEqExpr.isInvalid()) {
2169 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2170 << RangeLoc << 0 << BeginRangeRef.get()->getType();
2171 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2172 if (!Context.hasSameType(BeginType, EndType))
2173 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2174 return StmtError();
2175 }
2176
2177 // Build and check ++__begin expression.
2178 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2179 VK_LValue, ColonLoc);
2180 if (BeginRef.isInvalid())
2181 return StmtError();
2182
2183 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2184 IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2185 if (IncrExpr.isInvalid()) {
2186 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2187 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2188 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2189 return StmtError();
2190 }
2191
2192 // Build and check *__begin expression.
2193 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2194 VK_LValue, ColonLoc);
2195 if (BeginRef.isInvalid())
2196 return StmtError();
2197
2198 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2199 if (DerefExpr.isInvalid()) {
2200 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2201 << RangeLoc << 1 << BeginRangeRef.get()->getType();
2202 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2203 return StmtError();
2204 }
2205
2206 // Attach *__begin as initializer for VD. Don't touch it if we're just
2207 // trying to determine whether this would be a valid range.
2208 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2209 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2210 /*TypeMayContainAuto=*/true);
2211 if (LoopVar->isInvalidDecl())
2212 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2213 }
2214 }
2215
2216 // Don't bother to actually allocate the result if we're just trying to
2217 // determine whether it would be valid.
2218 if (Kind == BFRK_Check)
2219 return StmtResult();
2220
2221 return Owned(new (Context) CXXForRangeStmt(RangeDS,
2222 cast_or_null<DeclStmt>(BeginEndDecl.get()),
2223 NotEqExpr.take(), IncrExpr.take(),
2224 LoopVarDS, /*Body=*/0, ForLoc,
2225 ColonLoc, RParenLoc));
2226 }
2227
2228 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2229 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2230 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2231 if (!S || !B)
2232 return StmtError();
2233 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2234
2235 ForStmt->setBody(B);
2236 return S;
2237 }
2238
2239 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2240 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2241 /// body cannot be performed until after the type of the range variable is
2242 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2243 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2244 if (!S || !B)
2245 return StmtError();
2246
2247 if (isa<ObjCForCollectionStmt>(S))
2248 return FinishObjCForCollectionStmt(S, B);
2249
2250 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2251 ForStmt->setBody(B);
2252
2253 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2254 diag::warn_empty_range_based_for_body);
2255
2256 return S;
2257 }
2258
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2259 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2260 SourceLocation LabelLoc,
2261 LabelDecl *TheDecl) {
2262 getCurFunction()->setHasBranchIntoScope();
2263 TheDecl->setUsed();
2264 return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2265 }
2266
2267 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2268 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2269 Expr *E) {
2270 // Convert operand to void*
2271 if (!E->isTypeDependent()) {
2272 QualType ETy = E->getType();
2273 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2274 ExprResult ExprRes = Owned(E);
2275 AssignConvertType ConvTy =
2276 CheckSingleAssignmentConstraints(DestTy, ExprRes);
2277 if (ExprRes.isInvalid())
2278 return StmtError();
2279 E = ExprRes.take();
2280 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2281 return StmtError();
2282 }
2283
2284 ExprResult ExprRes = ActOnFinishFullExpr(E);
2285 if (ExprRes.isInvalid())
2286 return StmtError();
2287 E = ExprRes.take();
2288
2289 getCurFunction()->setHasIndirectGoto();
2290
2291 return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2292 }
2293
2294 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2295 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2296 Scope *S = CurScope->getContinueParent();
2297 if (!S) {
2298 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2299 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2300 }
2301
2302 return Owned(new (Context) ContinueStmt(ContinueLoc));
2303 }
2304
2305 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2306 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2307 Scope *S = CurScope->getBreakParent();
2308 if (!S) {
2309 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2310 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2311 }
2312
2313 return Owned(new (Context) BreakStmt(BreakLoc));
2314 }
2315
2316 /// \brief Determine whether the given expression is a candidate for
2317 /// copy elision in either a return statement or a throw expression.
2318 ///
2319 /// \param ReturnType If we're determining the copy elision candidate for
2320 /// a return statement, this is the return type of the function. If we're
2321 /// determining the copy elision candidate for a throw expression, this will
2322 /// be a NULL type.
2323 ///
2324 /// \param E The expression being returned from the function or block, or
2325 /// being thrown.
2326 ///
2327 /// \param AllowFunctionParameter Whether we allow function parameters to
2328 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2329 /// we re-use this logic to determine whether we should try to move as part of
2330 /// a return or throw (which does allow function parameters).
2331 ///
2332 /// \returns The NRVO candidate variable, if the return statement may use the
2333 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2334 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2335 Expr *E,
2336 bool AllowFunctionParameter) {
2337 QualType ExprType = E->getType();
2338 // - in a return statement in a function with ...
2339 // ... a class return type ...
2340 if (!ReturnType.isNull()) {
2341 if (!ReturnType->isRecordType())
2342 return 0;
2343 // ... the same cv-unqualified type as the function return type ...
2344 if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2345 return 0;
2346 }
2347
2348 // ... the expression is the name of a non-volatile automatic object
2349 // (other than a function or catch-clause parameter)) ...
2350 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2351 if (!DR || DR->refersToEnclosingLocal())
2352 return 0;
2353 const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2354 if (!VD)
2355 return 0;
2356
2357 // ...object (other than a function or catch-clause parameter)...
2358 if (VD->getKind() != Decl::Var &&
2359 !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2360 return 0;
2361 if (VD->isExceptionVariable()) return 0;
2362
2363 // ...automatic...
2364 if (!VD->hasLocalStorage()) return 0;
2365
2366 // ...non-volatile...
2367 if (VD->getType().isVolatileQualified()) return 0;
2368 if (VD->getType()->isReferenceType()) return 0;
2369
2370 // __block variables can't be allocated in a way that permits NRVO.
2371 if (VD->hasAttr<BlocksAttr>()) return 0;
2372
2373 // Variables with higher required alignment than their type's ABI
2374 // alignment cannot use NRVO.
2375 if (VD->hasAttr<AlignedAttr>() &&
2376 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2377 return 0;
2378
2379 return VD;
2380 }
2381
2382 /// \brief Perform the initialization of a potentially-movable value, which
2383 /// is the result of return value.
2384 ///
2385 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2386 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2387 /// then falls back to treating them as lvalues if that failed.
2388 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2389 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2390 const VarDecl *NRVOCandidate,
2391 QualType ResultType,
2392 Expr *Value,
2393 bool AllowNRVO) {
2394 // C++0x [class.copy]p33:
2395 // When the criteria for elision of a copy operation are met or would
2396 // be met save for the fact that the source object is a function
2397 // parameter, and the object to be copied is designated by an lvalue,
2398 // overload resolution to select the constructor for the copy is first
2399 // performed as if the object were designated by an rvalue.
2400 ExprResult Res = ExprError();
2401 if (AllowNRVO &&
2402 (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2403 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2404 Value->getType(), CK_NoOp, Value, VK_XValue);
2405
2406 Expr *InitExpr = &AsRvalue;
2407 InitializationKind Kind
2408 = InitializationKind::CreateCopy(Value->getLocStart(),
2409 Value->getLocStart());
2410 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2411
2412 // [...] If overload resolution fails, or if the type of the first
2413 // parameter of the selected constructor is not an rvalue reference
2414 // to the object's type (possibly cv-qualified), overload resolution
2415 // is performed again, considering the object as an lvalue.
2416 if (Seq) {
2417 for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2418 StepEnd = Seq.step_end();
2419 Step != StepEnd; ++Step) {
2420 if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2421 continue;
2422
2423 CXXConstructorDecl *Constructor
2424 = cast<CXXConstructorDecl>(Step->Function.Function);
2425
2426 const RValueReferenceType *RRefType
2427 = Constructor->getParamDecl(0)->getType()
2428 ->getAs<RValueReferenceType>();
2429
2430 // If we don't meet the criteria, break out now.
2431 if (!RRefType ||
2432 !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2433 Context.getTypeDeclType(Constructor->getParent())))
2434 break;
2435
2436 // Promote "AsRvalue" to the heap, since we now need this
2437 // expression node to persist.
2438 Value = ImplicitCastExpr::Create(Context, Value->getType(),
2439 CK_NoOp, Value, 0, VK_XValue);
2440
2441 // Complete type-checking the initialization of the return type
2442 // using the constructor we found.
2443 Res = Seq.Perform(*this, Entity, Kind, Value);
2444 }
2445 }
2446 }
2447
2448 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2449 // above, or overload resolution failed. Either way, we need to try
2450 // (again) now with the return value expression as written.
2451 if (Res.isInvalid())
2452 Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2453
2454 return Res;
2455 }
2456
2457 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2458 /// for capturing scopes.
2459 ///
2460 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2461 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2462 // If this is the first return we've seen, infer the return type.
2463 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2464 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2465 QualType FnRetType = CurCap->ReturnType;
2466
2467 // For blocks/lambdas with implicit return types, we check each return
2468 // statement individually, and deduce the common return type when the block
2469 // or lambda is completed.
2470 if (CurCap->HasImplicitReturnType) {
2471 // FIXME: Fold this into the 'auto' codepath below.
2472 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2473 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2474 if (Result.isInvalid())
2475 return StmtError();
2476 RetValExp = Result.take();
2477
2478 if (!CurContext->isDependentContext()) {
2479 FnRetType = RetValExp->getType();
2480 // In C++11, we take the type of the expression after decay and
2481 // lvalue-to-rvalue conversion, so a class type can be cv-qualified.
2482 // In C++1y, we perform template argument deduction as if the return
2483 // type were 'auto', so an implicit return type is never cv-qualified.
2484 if (getLangOpts().CPlusPlus1y && FnRetType.hasQualifiers())
2485 FnRetType = FnRetType.getUnqualifiedType();
2486 } else
2487 FnRetType = CurCap->ReturnType = Context.DependentTy;
2488 } else {
2489 if (RetValExp) {
2490 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2491 // initializer list, because it is not an expression (even
2492 // though we represent it as one). We still deduce 'void'.
2493 Diag(ReturnLoc, diag::err_lambda_return_init_list)
2494 << RetValExp->getSourceRange();
2495 }
2496
2497 FnRetType = Context.VoidTy;
2498 }
2499
2500 // Although we'll properly infer the type of the block once it's completed,
2501 // make sure we provide a return type now for better error recovery.
2502 if (CurCap->ReturnType.isNull())
2503 CurCap->ReturnType = FnRetType;
2504 } else if (AutoType *AT =
2505 FnRetType.isNull() ? 0 : FnRetType->getContainedAutoType()) {
2506 // In C++1y, the return type may involve 'auto'.
2507 FunctionDecl *FD = cast<LambdaScopeInfo>(CurCap)->CallOperator;
2508 if (CurContext->isDependentContext()) {
2509 // C++1y [dcl.spec.auto]p12:
2510 // Return type deduction [...] occurs when the definition is
2511 // instantiated even if the function body contains a return
2512 // statement with a non-type-dependent operand.
2513 CurCap->ReturnType = FnRetType = Context.DependentTy;
2514 } else if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2515 FD->setInvalidDecl();
2516 return StmtError();
2517 } else
2518 CurCap->ReturnType = FnRetType = FD->getResultType();
2519 }
2520 assert(!FnRetType.isNull());
2521
2522 if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2523 if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2524 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2525 return StmtError();
2526 }
2527 } else if (CapturedRegionScopeInfo *CurRegion =
2528 dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2529 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2530 return StmtError();
2531 } else {
2532 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2533 if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2534 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2535 return StmtError();
2536 }
2537 }
2538
2539 // Otherwise, verify that this result type matches the previous one. We are
2540 // pickier with blocks than for normal functions because we don't have GCC
2541 // compatibility to worry about here.
2542 const VarDecl *NRVOCandidate = 0;
2543 if (FnRetType->isDependentType()) {
2544 // Delay processing for now. TODO: there are lots of dependent
2545 // types we can conclusively prove aren't void.
2546 } else if (FnRetType->isVoidType()) {
2547 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2548 !(getLangOpts().CPlusPlus &&
2549 (RetValExp->isTypeDependent() ||
2550 RetValExp->getType()->isVoidType()))) {
2551 if (!getLangOpts().CPlusPlus &&
2552 RetValExp->getType()->isVoidType())
2553 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2554 else {
2555 Diag(ReturnLoc, diag::err_return_block_has_expr);
2556 RetValExp = 0;
2557 }
2558 }
2559 } else if (!RetValExp) {
2560 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2561 } else if (!RetValExp->isTypeDependent()) {
2562 // we have a non-void block with an expression, continue checking
2563
2564 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2565 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2566 // function return.
2567
2568 // In C++ the return statement is handled via a copy initialization.
2569 // the C version of which boils down to CheckSingleAssignmentConstraints.
2570 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2571 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2572 FnRetType,
2573 NRVOCandidate != 0);
2574 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2575 FnRetType, RetValExp);
2576 if (Res.isInvalid()) {
2577 // FIXME: Cleanup temporaries here, anyway?
2578 return StmtError();
2579 }
2580 RetValExp = Res.take();
2581 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2582 }
2583
2584 if (RetValExp) {
2585 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2586 if (ER.isInvalid())
2587 return StmtError();
2588 RetValExp = ER.take();
2589 }
2590 ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2591 NRVOCandidate);
2592
2593 // If we need to check for the named return value optimization,
2594 // or if we need to infer the return type,
2595 // save the return statement in our scope for later processing.
2596 if (CurCap->HasImplicitReturnType ||
2597 (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2598 !CurContext->isDependentContext()))
2599 FunctionScopes.back()->Returns.push_back(Result);
2600
2601 return Owned(Result);
2602 }
2603
2604 /// Deduce the return type for a function from a returned expression, per
2605 /// C++1y [dcl.spec.auto]p6.
DeduceFunctionTypeFromReturnExpr(FunctionDecl * FD,SourceLocation ReturnLoc,Expr * & RetExpr,AutoType * AT)2606 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
2607 SourceLocation ReturnLoc,
2608 Expr *&RetExpr,
2609 AutoType *AT) {
2610 TypeLoc OrigResultType = FD->getTypeSourceInfo()->getTypeLoc().
2611 IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
2612 QualType Deduced;
2613
2614 if (RetExpr) {
2615 // If the deduction is for a return statement and the initializer is
2616 // a braced-init-list, the program is ill-formed.
2617 if (isa<InitListExpr>(RetExpr)) {
2618 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
2619 return true;
2620 }
2621
2622 // Otherwise, [...] deduce a value for U using the rules of template
2623 // argument deduction.
2624 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
2625
2626 if (DAR == DAR_Failed && !FD->isInvalidDecl())
2627 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
2628 << OrigResultType.getType() << RetExpr->getType();
2629
2630 if (DAR != DAR_Succeeded)
2631 return true;
2632 } else {
2633 // In the case of a return with no operand, the initializer is considered
2634 // to be void().
2635 //
2636 // Deduction here can only succeed if the return type is exactly 'cv auto'
2637 // or 'decltype(auto)', so just check for that case directly.
2638 if (!OrigResultType.getType()->getAs<AutoType>()) {
2639 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
2640 << OrigResultType.getType();
2641 return true;
2642 }
2643 // We always deduce U = void in this case.
2644 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
2645 if (Deduced.isNull())
2646 return true;
2647 }
2648
2649 // If a function with a declared return type that contains a placeholder type
2650 // has multiple return statements, the return type is deduced for each return
2651 // statement. [...] if the type deduced is not the same in each deduction,
2652 // the program is ill-formed.
2653 if (AT->isDeduced() && !FD->isInvalidDecl()) {
2654 AutoType *NewAT = Deduced->getContainedAutoType();
2655 if (!Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
2656 Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
2657 << (AT->isDecltypeAuto() ? 1 : 0)
2658 << NewAT->getDeducedType() << AT->getDeducedType();
2659 return true;
2660 }
2661 } else if (!FD->isInvalidDecl()) {
2662 // Update all declarations of the function to have the deduced return type.
2663 Context.adjustDeducedFunctionResultType(FD, Deduced);
2664 }
2665
2666 return false;
2667 }
2668
2669 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2670 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2671 // Check for unexpanded parameter packs.
2672 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2673 return StmtError();
2674
2675 if (isa<CapturingScopeInfo>(getCurFunction()))
2676 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2677
2678 QualType FnRetType;
2679 QualType RelatedRetType;
2680 if (const FunctionDecl *FD = getCurFunctionDecl()) {
2681 FnRetType = FD->getResultType();
2682 if (FD->isNoReturn())
2683 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2684 << FD->getDeclName();
2685 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2686 FnRetType = MD->getResultType();
2687 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2688 // In the implementation of a method with a related return type, the
2689 // type used to type-check the validity of return statements within the
2690 // method body is a pointer to the type of the class being implemented.
2691 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2692 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2693 }
2694 } else // If we don't have a function/method context, bail.
2695 return StmtError();
2696
2697 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
2698 // deduction.
2699 bool HasDependentReturnType = FnRetType->isDependentType();
2700 if (getLangOpts().CPlusPlus1y) {
2701 if (AutoType *AT = FnRetType->getContainedAutoType()) {
2702 FunctionDecl *FD = cast<FunctionDecl>(CurContext);
2703 if (CurContext->isDependentContext())
2704 HasDependentReturnType = true;
2705 else if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2706 FD->setInvalidDecl();
2707 return StmtError();
2708 } else {
2709 FnRetType = FD->getResultType();
2710 }
2711 }
2712 }
2713
2714 ReturnStmt *Result = 0;
2715 if (FnRetType->isVoidType()) {
2716 if (RetValExp) {
2717 if (isa<InitListExpr>(RetValExp)) {
2718 // We simply never allow init lists as the return value of void
2719 // functions. This is compatible because this was never allowed before,
2720 // so there's no legacy code to deal with.
2721 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2722 int FunctionKind = 0;
2723 if (isa<ObjCMethodDecl>(CurDecl))
2724 FunctionKind = 1;
2725 else if (isa<CXXConstructorDecl>(CurDecl))
2726 FunctionKind = 2;
2727 else if (isa<CXXDestructorDecl>(CurDecl))
2728 FunctionKind = 3;
2729
2730 Diag(ReturnLoc, diag::err_return_init_list)
2731 << CurDecl->getDeclName() << FunctionKind
2732 << RetValExp->getSourceRange();
2733
2734 // Drop the expression.
2735 RetValExp = 0;
2736 } else if (!RetValExp->isTypeDependent()) {
2737 // C99 6.8.6.4p1 (ext_ since GCC warns)
2738 unsigned D = diag::ext_return_has_expr;
2739 if (RetValExp->getType()->isVoidType())
2740 D = diag::ext_return_has_void_expr;
2741 else {
2742 ExprResult Result = Owned(RetValExp);
2743 Result = IgnoredValueConversions(Result.take());
2744 if (Result.isInvalid())
2745 return StmtError();
2746 RetValExp = Result.take();
2747 RetValExp = ImpCastExprToType(RetValExp,
2748 Context.VoidTy, CK_ToVoid).take();
2749 }
2750
2751 // return (some void expression); is legal in C++.
2752 if (D != diag::ext_return_has_void_expr ||
2753 !getLangOpts().CPlusPlus) {
2754 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2755
2756 int FunctionKind = 0;
2757 if (isa<ObjCMethodDecl>(CurDecl))
2758 FunctionKind = 1;
2759 else if (isa<CXXConstructorDecl>(CurDecl))
2760 FunctionKind = 2;
2761 else if (isa<CXXDestructorDecl>(CurDecl))
2762 FunctionKind = 3;
2763
2764 Diag(ReturnLoc, D)
2765 << CurDecl->getDeclName() << FunctionKind
2766 << RetValExp->getSourceRange();
2767 }
2768 }
2769
2770 if (RetValExp) {
2771 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2772 if (ER.isInvalid())
2773 return StmtError();
2774 RetValExp = ER.take();
2775 }
2776 }
2777
2778 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2779 } else if (!RetValExp && !HasDependentReturnType) {
2780 unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
2781 // C99 6.8.6.4p1 (ext_ since GCC warns)
2782 if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2783
2784 if (FunctionDecl *FD = getCurFunctionDecl())
2785 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2786 else
2787 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2788 Result = new (Context) ReturnStmt(ReturnLoc);
2789 } else {
2790 assert(RetValExp || HasDependentReturnType);
2791 const VarDecl *NRVOCandidate = 0;
2792 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
2793 // we have a non-void function with an expression, continue checking
2794
2795 QualType RetType = (RelatedRetType.isNull() ? FnRetType : RelatedRetType);
2796
2797 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2798 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2799 // function return.
2800
2801 // In C++ the return statement is handled via a copy initialization,
2802 // the C version of which boils down to CheckSingleAssignmentConstraints.
2803 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2804 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2805 RetType,
2806 NRVOCandidate != 0);
2807 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2808 RetType, RetValExp);
2809 if (Res.isInvalid()) {
2810 // FIXME: Clean up temporaries here anyway?
2811 return StmtError();
2812 }
2813 RetValExp = Res.takeAs<Expr>();
2814
2815 // If we have a related result type, we need to implicitly
2816 // convert back to the formal result type. We can't pretend to
2817 // initialize the result again --- we might end double-retaining
2818 // --- so instead we initialize a notional temporary.
2819 if (!RelatedRetType.isNull()) {
2820 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
2821 FnRetType);
2822 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
2823 if (Res.isInvalid()) {
2824 // FIXME: Clean up temporaries here anyway?
2825 return StmtError();
2826 }
2827 RetValExp = Res.takeAs<Expr>();
2828 }
2829
2830 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2831 }
2832
2833 if (RetValExp) {
2834 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2835 if (ER.isInvalid())
2836 return StmtError();
2837 RetValExp = ER.take();
2838 }
2839 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2840 }
2841
2842 // If we need to check for the named return value optimization, save the
2843 // return statement in our scope for later processing.
2844 if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2845 !CurContext->isDependentContext())
2846 FunctionScopes.back()->Returns.push_back(Result);
2847
2848 return Owned(Result);
2849 }
2850
2851 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)2852 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2853 SourceLocation RParen, Decl *Parm,
2854 Stmt *Body) {
2855 VarDecl *Var = cast_or_null<VarDecl>(Parm);
2856 if (Var && Var->isInvalidDecl())
2857 return StmtError();
2858
2859 return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2860 }
2861
2862 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)2863 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2864 return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2865 }
2866
2867 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)2868 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2869 MultiStmtArg CatchStmts, Stmt *Finally) {
2870 if (!getLangOpts().ObjCExceptions)
2871 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2872
2873 getCurFunction()->setHasBranchProtectedScope();
2874 unsigned NumCatchStmts = CatchStmts.size();
2875 return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2876 CatchStmts.data(),
2877 NumCatchStmts,
2878 Finally));
2879 }
2880
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)2881 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2882 if (Throw) {
2883 ExprResult Result = DefaultLvalueConversion(Throw);
2884 if (Result.isInvalid())
2885 return StmtError();
2886
2887 Result = ActOnFinishFullExpr(Result.take());
2888 if (Result.isInvalid())
2889 return StmtError();
2890 Throw = Result.take();
2891
2892 QualType ThrowType = Throw->getType();
2893 // Make sure the expression type is an ObjC pointer or "void *".
2894 if (!ThrowType->isDependentType() &&
2895 !ThrowType->isObjCObjectPointerType()) {
2896 const PointerType *PT = ThrowType->getAs<PointerType>();
2897 if (!PT || !PT->getPointeeType()->isVoidType())
2898 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2899 << Throw->getType() << Throw->getSourceRange());
2900 }
2901 }
2902
2903 return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2904 }
2905
2906 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)2907 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2908 Scope *CurScope) {
2909 if (!getLangOpts().ObjCExceptions)
2910 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2911
2912 if (!Throw) {
2913 // @throw without an expression designates a rethrow (which much occur
2914 // in the context of an @catch clause).
2915 Scope *AtCatchParent = CurScope;
2916 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2917 AtCatchParent = AtCatchParent->getParent();
2918 if (!AtCatchParent)
2919 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2920 }
2921 return BuildObjCAtThrowStmt(AtLoc, Throw);
2922 }
2923
2924 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)2925 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2926 ExprResult result = DefaultLvalueConversion(operand);
2927 if (result.isInvalid())
2928 return ExprError();
2929 operand = result.take();
2930
2931 // Make sure the expression type is an ObjC pointer or "void *".
2932 QualType type = operand->getType();
2933 if (!type->isDependentType() &&
2934 !type->isObjCObjectPointerType()) {
2935 const PointerType *pointerType = type->getAs<PointerType>();
2936 if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2937 return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2938 << type << operand->getSourceRange();
2939 }
2940
2941 // The operand to @synchronized is a full-expression.
2942 return ActOnFinishFullExpr(operand);
2943 }
2944
2945 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)2946 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2947 Stmt *SyncBody) {
2948 // We can't jump into or indirect-jump out of a @synchronized block.
2949 getCurFunction()->setHasBranchProtectedScope();
2950 return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2951 }
2952
2953 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2954 /// and creates a proper catch handler from them.
2955 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)2956 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2957 Stmt *HandlerBlock) {
2958 // There's nothing to test that ActOnExceptionDecl didn't already test.
2959 return Owned(new (Context) CXXCatchStmt(CatchLoc,
2960 cast_or_null<VarDecl>(ExDecl),
2961 HandlerBlock));
2962 }
2963
2964 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2965 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2966 getCurFunction()->setHasBranchProtectedScope();
2967 return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2968 }
2969
2970 namespace {
2971
2972 class TypeWithHandler {
2973 QualType t;
2974 CXXCatchStmt *stmt;
2975 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)2976 TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2977 : t(type), stmt(statement) {}
2978
2979 // An arbitrary order is fine as long as it places identical
2980 // types next to each other.
operator <(const TypeWithHandler & y) const2981 bool operator<(const TypeWithHandler &y) const {
2982 if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2983 return true;
2984 if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2985 return false;
2986 else
2987 return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2988 }
2989
operator ==(const TypeWithHandler & other) const2990 bool operator==(const TypeWithHandler& other) const {
2991 return t == other.t;
2992 }
2993
getCatchStmt() const2994 CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const2995 SourceLocation getTypeSpecStartLoc() const {
2996 return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2997 }
2998 };
2999
3000 }
3001
3002 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3003 /// handlers and creates a try statement from them.
3004 StmtResult
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg RawHandlers)3005 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3006 MultiStmtArg RawHandlers) {
3007 // Don't report an error if 'try' is used in system headers.
3008 if (!getLangOpts().CXXExceptions &&
3009 !getSourceManager().isInSystemHeader(TryLoc))
3010 Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3011
3012 unsigned NumHandlers = RawHandlers.size();
3013 assert(NumHandlers > 0 &&
3014 "The parser shouldn't call this if there are no handlers.");
3015 Stmt **Handlers = RawHandlers.data();
3016
3017 SmallVector<TypeWithHandler, 8> TypesWithHandlers;
3018
3019 for (unsigned i = 0; i < NumHandlers; ++i) {
3020 CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
3021 if (!Handler->getExceptionDecl()) {
3022 if (i < NumHandlers - 1)
3023 return StmtError(Diag(Handler->getLocStart(),
3024 diag::err_early_catch_all));
3025
3026 continue;
3027 }
3028
3029 const QualType CaughtType = Handler->getCaughtType();
3030 const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
3031 TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
3032 }
3033
3034 // Detect handlers for the same type as an earlier one.
3035 if (NumHandlers > 1) {
3036 llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
3037
3038 TypeWithHandler prev = TypesWithHandlers[0];
3039 for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
3040 TypeWithHandler curr = TypesWithHandlers[i];
3041
3042 if (curr == prev) {
3043 Diag(curr.getTypeSpecStartLoc(),
3044 diag::warn_exception_caught_by_earlier_handler)
3045 << curr.getCatchStmt()->getCaughtType().getAsString();
3046 Diag(prev.getTypeSpecStartLoc(),
3047 diag::note_previous_exception_handler)
3048 << prev.getCatchStmt()->getCaughtType().getAsString();
3049 }
3050
3051 prev = curr;
3052 }
3053 }
3054
3055 getCurFunction()->setHasBranchProtectedScope();
3056
3057 // FIXME: We should detect handlers that cannot catch anything because an
3058 // earlier handler catches a superclass. Need to find a method that is not
3059 // quadratic for this.
3060 // Neither of these are explicitly forbidden, but every compiler detects them
3061 // and warns.
3062
3063 return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
3064 llvm::makeArrayRef(Handlers, NumHandlers)));
3065 }
3066
3067 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)3068 Sema::ActOnSEHTryBlock(bool IsCXXTry,
3069 SourceLocation TryLoc,
3070 Stmt *TryBlock,
3071 Stmt *Handler) {
3072 assert(TryBlock && Handler);
3073
3074 getCurFunction()->setHasBranchProtectedScope();
3075
3076 return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
3077 }
3078
3079 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)3080 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3081 Expr *FilterExpr,
3082 Stmt *Block) {
3083 assert(FilterExpr && Block);
3084
3085 if(!FilterExpr->getType()->isIntegerType()) {
3086 return StmtError(Diag(FilterExpr->getExprLoc(),
3087 diag::err_filter_expression_integral)
3088 << FilterExpr->getType());
3089 }
3090
3091 return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
3092 }
3093
3094 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)3095 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
3096 Stmt *Block) {
3097 assert(Block);
3098 return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
3099 }
3100
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)3101 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3102 bool IsIfExists,
3103 NestedNameSpecifierLoc QualifierLoc,
3104 DeclarationNameInfo NameInfo,
3105 Stmt *Nested)
3106 {
3107 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3108 QualifierLoc, NameInfo,
3109 cast<CompoundStmt>(Nested));
3110 }
3111
3112
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)3113 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3114 bool IsIfExists,
3115 CXXScopeSpec &SS,
3116 UnqualifiedId &Name,
3117 Stmt *Nested) {
3118 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3119 SS.getWithLocInContext(Context),
3120 GetNameFromUnqualifiedId(Name),
3121 Nested);
3122 }
3123
3124 RecordDecl*
CreateCapturedStmtRecordDecl(CapturedDecl * & CD,SourceLocation Loc,unsigned NumParams)3125 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3126 unsigned NumParams) {
3127 DeclContext *DC = CurContext;
3128 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3129 DC = DC->getParent();
3130
3131 RecordDecl *RD = 0;
3132 if (getLangOpts().CPlusPlus)
3133 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0);
3134 else
3135 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0);
3136
3137 DC->addDecl(RD);
3138 RD->setImplicit();
3139 RD->startDefinition();
3140
3141 CD = CapturedDecl::Create(Context, CurContext, NumParams);
3142 DC->addDecl(CD);
3143
3144 // Build the context parameter
3145 assert(NumParams > 0 && "CapturedStmt requires context parameter");
3146 DC = CapturedDecl::castToDeclContext(CD);
3147 IdentifierInfo *VarName = &Context.Idents.get("__context");
3148 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3149 ImplicitParamDecl *Param
3150 = ImplicitParamDecl::Create(Context, DC, Loc, VarName, ParamType);
3151 DC->addDecl(Param);
3152
3153 CD->setContextParam(Param);
3154
3155 return RD;
3156 }
3157
buildCapturedStmtCaptureList(SmallVectorImpl<CapturedStmt::Capture> & Captures,SmallVectorImpl<Expr * > & CaptureInits,ArrayRef<CapturingScopeInfo::Capture> Candidates)3158 static void buildCapturedStmtCaptureList(
3159 SmallVectorImpl<CapturedStmt::Capture> &Captures,
3160 SmallVectorImpl<Expr *> &CaptureInits,
3161 ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3162
3163 typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3164 for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3165
3166 if (Cap->isThisCapture()) {
3167 Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3168 CapturedStmt::VCK_This));
3169 CaptureInits.push_back(Cap->getInitExpr());
3170 continue;
3171 }
3172
3173 assert(Cap->isReferenceCapture() &&
3174 "non-reference capture not yet implemented");
3175
3176 Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3177 CapturedStmt::VCK_ByRef,
3178 Cap->getVariable()));
3179 CaptureInits.push_back(Cap->getInitExpr());
3180 }
3181 }
3182
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,unsigned NumParams)3183 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3184 CapturedRegionKind Kind,
3185 unsigned NumParams) {
3186 CapturedDecl *CD = 0;
3187 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3188
3189 // Enter the capturing scope for this captured region.
3190 PushCapturedRegionScope(CurScope, CD, RD, Kind);
3191
3192 if (CurScope)
3193 PushDeclContext(CurScope, CD);
3194 else
3195 CurContext = CD;
3196
3197 PushExpressionEvaluationContext(PotentiallyEvaluated);
3198 }
3199
ActOnCapturedRegionError()3200 void Sema::ActOnCapturedRegionError() {
3201 DiscardCleanupsInEvaluationContext();
3202 PopExpressionEvaluationContext();
3203
3204 CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3205 RecordDecl *Record = RSI->TheRecordDecl;
3206 Record->setInvalidDecl();
3207
3208 SmallVector<Decl*, 4> Fields;
3209 for (RecordDecl::field_iterator I = Record->field_begin(),
3210 E = Record->field_end(); I != E; ++I)
3211 Fields.push_back(*I);
3212 ActOnFields(/*Scope=*/0, Record->getLocation(), Record, Fields,
3213 SourceLocation(), SourceLocation(), /*AttributeList=*/0);
3214
3215 PopDeclContext();
3216 PopFunctionScopeInfo();
3217 }
3218
ActOnCapturedRegionEnd(Stmt * S)3219 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3220 CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3221
3222 SmallVector<CapturedStmt::Capture, 4> Captures;
3223 SmallVector<Expr *, 4> CaptureInits;
3224 buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3225
3226 CapturedDecl *CD = RSI->TheCapturedDecl;
3227 RecordDecl *RD = RSI->TheRecordDecl;
3228
3229 CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3230 RSI->CapRegionKind, Captures,
3231 CaptureInits, CD, RD);
3232
3233 CD->setBody(Res->getCapturedStmt());
3234 RD->completeDefinition();
3235
3236 DiscardCleanupsInEvaluationContext();
3237 PopExpressionEvaluationContext();
3238
3239 PopDeclContext();
3240 PopFunctionScopeInfo();
3241
3242 return Owned(Res);
3243 }
3244