• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Lex/Preprocessor.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/ScopeInfo.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/SmallVector.h"
35 using namespace clang;
36 using namespace sema;
37 
ActOnExprStmt(ExprResult FE)38 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
39   if (FE.isInvalid())
40     return StmtError();
41 
42   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
43                            /*DiscardedValue*/ true);
44   if (FE.isInvalid())
45     return StmtError();
46 
47   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
48   // void expression for its side effects.  Conversion to void allows any
49   // operand, even incomplete types.
50 
51   // Same thing in for stmt first clause (when expr) and third clause.
52   return Owned(static_cast<Stmt*>(FE.take()));
53 }
54 
55 
ActOnExprStmtError()56 StmtResult Sema::ActOnExprStmtError() {
57   DiscardCleanupsInEvaluationContext();
58   return StmtError();
59 }
60 
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)61 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
62                                bool HasLeadingEmptyMacro) {
63   return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
64 }
65 
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)66 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
67                                SourceLocation EndLoc) {
68   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69 
70   // If we have an invalid decl, just return an error.
71   if (DG.isNull()) return StmtError();
72 
73   return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
74 }
75 
ActOnForEachDeclStmt(DeclGroupPtrTy dg)76 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
77   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
78 
79   // If we don't have a declaration, or we have an invalid declaration,
80   // just return.
81   if (DG.isNull() || !DG.isSingleDecl())
82     return;
83 
84   Decl *decl = DG.getSingleDecl();
85   if (!decl || decl->isInvalidDecl())
86     return;
87 
88   // Only variable declarations are permitted.
89   VarDecl *var = dyn_cast<VarDecl>(decl);
90   if (!var) {
91     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
92     decl->setInvalidDecl();
93     return;
94   }
95 
96   // foreach variables are never actually initialized in the way that
97   // the parser came up with.
98   var->setInit(0);
99 
100   // In ARC, we don't need to retain the iteration variable of a fast
101   // enumeration loop.  Rather than actually trying to catch that
102   // during declaration processing, we remove the consequences here.
103   if (getLangOpts().ObjCAutoRefCount) {
104     QualType type = var->getType();
105 
106     // Only do this if we inferred the lifetime.  Inferred lifetime
107     // will show up as a local qualifier because explicit lifetime
108     // should have shown up as an AttributedType instead.
109     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
110       // Add 'const' and mark the variable as pseudo-strong.
111       var->setType(type.withConst());
112       var->setARCPseudoStrong(true);
113     }
114   }
115 }
116 
117 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
118 ///
119 /// Adding a cast to void (or other expression wrappers) will prevent the
120 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)121 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
122   SourceLocation Loc;
123   bool IsNotEqual, CanAssign;
124 
125   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
126     if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
127       return false;
128 
129     Loc = Op->getOperatorLoc();
130     IsNotEqual = Op->getOpcode() == BO_NE;
131     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
132   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
133     if (Op->getOperator() != OO_EqualEqual &&
134         Op->getOperator() != OO_ExclaimEqual)
135       return false;
136 
137     Loc = Op->getOperatorLoc();
138     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
139     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
140   } else {
141     // Not a typo-prone comparison.
142     return false;
143   }
144 
145   // Suppress warnings when the operator, suspicious as it may be, comes from
146   // a macro expansion.
147   if (S.SourceMgr.isMacroBodyExpansion(Loc))
148     return false;
149 
150   S.Diag(Loc, diag::warn_unused_comparison)
151     << (unsigned)IsNotEqual << E->getSourceRange();
152 
153   // If the LHS is a plausible entity to assign to, provide a fixit hint to
154   // correct common typos.
155   if (CanAssign) {
156     if (IsNotEqual)
157       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
158         << FixItHint::CreateReplacement(Loc, "|=");
159     else
160       S.Diag(Loc, diag::note_equality_comparison_to_assign)
161         << FixItHint::CreateReplacement(Loc, "=");
162   }
163 
164   return true;
165 }
166 
DiagnoseUnusedExprResult(const Stmt * S)167 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
168   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
169     return DiagnoseUnusedExprResult(Label->getSubStmt());
170 
171   const Expr *E = dyn_cast_or_null<Expr>(S);
172   if (!E)
173     return;
174   SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
175   // In most cases, we don't want to warn if the expression is written in a
176   // macro body, or if the macro comes from a system header. If the offending
177   // expression is a call to a function with the warn_unused_result attribute,
178   // we warn no matter the location. Because of the order in which the various
179   // checks need to happen, we factor out the macro-related test here.
180   bool ShouldSuppress =
181       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
182       SourceMgr.isInSystemMacro(ExprLoc);
183 
184   const Expr *WarnExpr;
185   SourceLocation Loc;
186   SourceRange R1, R2;
187   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
188     return;
189 
190   // If this is a GNU statement expression expanded from a macro, it is probably
191   // unused because it is a function-like macro that can be used as either an
192   // expression or statement.  Don't warn, because it is almost certainly a
193   // false positive.
194   if (isa<StmtExpr>(E) && Loc.isMacroID())
195     return;
196 
197   // Okay, we have an unused result.  Depending on what the base expression is,
198   // we might want to make a more specific diagnostic.  Check for one of these
199   // cases now.
200   unsigned DiagID = diag::warn_unused_expr;
201   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
202     E = Temps->getSubExpr();
203   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
204     E = TempExpr->getSubExpr();
205 
206   if (DiagnoseUnusedComparison(*this, E))
207     return;
208 
209   E = WarnExpr;
210   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
211     if (E->getType()->isVoidType())
212       return;
213 
214     // If the callee has attribute pure, const, or warn_unused_result, warn with
215     // a more specific message to make it clear what is happening. If the call
216     // is written in a macro body, only warn if it has the warn_unused_result
217     // attribute.
218     if (const Decl *FD = CE->getCalleeDecl()) {
219       if (FD->getAttr<WarnUnusedResultAttr>()) {
220         Diag(Loc, diag::warn_unused_result) << R1 << R2;
221         return;
222       }
223       if (ShouldSuppress)
224         return;
225       if (FD->getAttr<PureAttr>()) {
226         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
227         return;
228       }
229       if (FD->getAttr<ConstAttr>()) {
230         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
231         return;
232       }
233     }
234   } else if (ShouldSuppress)
235     return;
236 
237   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
238     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
239       Diag(Loc, diag::err_arc_unused_init_message) << R1;
240       return;
241     }
242     const ObjCMethodDecl *MD = ME->getMethodDecl();
243     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
244       Diag(Loc, diag::warn_unused_result) << R1 << R2;
245       return;
246     }
247   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
248     const Expr *Source = POE->getSyntacticForm();
249     if (isa<ObjCSubscriptRefExpr>(Source))
250       DiagID = diag::warn_unused_container_subscript_expr;
251     else
252       DiagID = diag::warn_unused_property_expr;
253   } else if (const CXXFunctionalCastExpr *FC
254                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
255     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
256         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
257       return;
258   }
259   // Diagnose "(void*) blah" as a typo for "(void) blah".
260   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
261     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
262     QualType T = TI->getType();
263 
264     // We really do want to use the non-canonical type here.
265     if (T == Context.VoidPtrTy) {
266       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
267 
268       Diag(Loc, diag::warn_unused_voidptr)
269         << FixItHint::CreateRemoval(TL.getStarLoc());
270       return;
271     }
272   }
273 
274   if (E->isGLValue() && E->getType().isVolatileQualified()) {
275     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
276     return;
277   }
278 
279   DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
280 }
281 
ActOnStartOfCompoundStmt()282 void Sema::ActOnStartOfCompoundStmt() {
283   PushCompoundScope();
284 }
285 
ActOnFinishOfCompoundStmt()286 void Sema::ActOnFinishOfCompoundStmt() {
287   PopCompoundScope();
288 }
289 
getCurCompoundScope() const290 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
291   return getCurFunction()->CompoundScopes.back();
292 }
293 
294 StmtResult
ActOnCompoundStmt(SourceLocation L,SourceLocation R,MultiStmtArg elts,bool isStmtExpr)295 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
296                         MultiStmtArg elts, bool isStmtExpr) {
297   unsigned NumElts = elts.size();
298   Stmt **Elts = elts.data();
299   // If we're in C89 mode, check that we don't have any decls after stmts.  If
300   // so, emit an extension diagnostic.
301   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
302     // Note that __extension__ can be around a decl.
303     unsigned i = 0;
304     // Skip over all declarations.
305     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
306       /*empty*/;
307 
308     // We found the end of the list or a statement.  Scan for another declstmt.
309     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
310       /*empty*/;
311 
312     if (i != NumElts) {
313       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
314       Diag(D->getLocation(), diag::ext_mixed_decls_code);
315     }
316   }
317   // Warn about unused expressions in statements.
318   for (unsigned i = 0; i != NumElts; ++i) {
319     // Ignore statements that are last in a statement expression.
320     if (isStmtExpr && i == NumElts - 1)
321       continue;
322 
323     DiagnoseUnusedExprResult(Elts[i]);
324   }
325 
326   // Check for suspicious empty body (null statement) in `for' and `while'
327   // statements.  Don't do anything for template instantiations, this just adds
328   // noise.
329   if (NumElts != 0 && !CurrentInstantiationScope &&
330       getCurCompoundScope().HasEmptyLoopBodies) {
331     for (unsigned i = 0; i != NumElts - 1; ++i)
332       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
333   }
334 
335   return Owned(new (Context) CompoundStmt(Context,
336                                           llvm::makeArrayRef(Elts, NumElts),
337                                           L, R));
338 }
339 
340 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)341 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
342                     SourceLocation DotDotDotLoc, Expr *RHSVal,
343                     SourceLocation ColonLoc) {
344   assert((LHSVal != 0) && "missing expression in case statement");
345 
346   if (getCurFunction()->SwitchStack.empty()) {
347     Diag(CaseLoc, diag::err_case_not_in_switch);
348     return StmtError();
349   }
350 
351   if (!getLangOpts().CPlusPlus11) {
352     // C99 6.8.4.2p3: The expression shall be an integer constant.
353     // However, GCC allows any evaluatable integer expression.
354     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
355       LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
356       if (!LHSVal)
357         return StmtError();
358     }
359 
360     // GCC extension: The expression shall be an integer constant.
361 
362     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
363       RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
364       // Recover from an error by just forgetting about it.
365     }
366   }
367 
368   LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
369                                getLangOpts().CPlusPlus11).take();
370   if (RHSVal)
371     RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
372                                  getLangOpts().CPlusPlus11).take();
373 
374   CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
375                                         ColonLoc);
376   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
377   return Owned(CS);
378 }
379 
380 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)381 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
382   DiagnoseUnusedExprResult(SubStmt);
383 
384   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
385   CS->setSubStmt(SubStmt);
386 }
387 
388 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)389 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
390                        Stmt *SubStmt, Scope *CurScope) {
391   DiagnoseUnusedExprResult(SubStmt);
392 
393   if (getCurFunction()->SwitchStack.empty()) {
394     Diag(DefaultLoc, diag::err_default_not_in_switch);
395     return Owned(SubStmt);
396   }
397 
398   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
399   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
400   return Owned(DS);
401 }
402 
403 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)404 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
405                      SourceLocation ColonLoc, Stmt *SubStmt) {
406   // If the label was multiply defined, reject it now.
407   if (TheDecl->getStmt()) {
408     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
409     Diag(TheDecl->getLocation(), diag::note_previous_definition);
410     return Owned(SubStmt);
411   }
412 
413   // Otherwise, things are good.  Fill in the declaration and return it.
414   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
415   TheDecl->setStmt(LS);
416   if (!TheDecl->isGnuLocal()) {
417     TheDecl->setLocStart(IdentLoc);
418     TheDecl->setLocation(IdentLoc);
419   }
420   return Owned(LS);
421 }
422 
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)423 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
424                                      ArrayRef<const Attr*> Attrs,
425                                      Stmt *SubStmt) {
426   // Fill in the declaration and return it.
427   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
428   return Owned(LS);
429 }
430 
431 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)432 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
433                   Stmt *thenStmt, SourceLocation ElseLoc,
434                   Stmt *elseStmt) {
435   // If the condition was invalid, discard the if statement.  We could recover
436   // better by replacing it with a valid expr, but don't do that yet.
437   if (!CondVal.get() && !CondVar) {
438     getCurFunction()->setHasDroppedStmt();
439     return StmtError();
440   }
441 
442   ExprResult CondResult(CondVal.release());
443 
444   VarDecl *ConditionVar = 0;
445   if (CondVar) {
446     ConditionVar = cast<VarDecl>(CondVar);
447     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
448     if (CondResult.isInvalid())
449       return StmtError();
450   }
451   Expr *ConditionExpr = CondResult.takeAs<Expr>();
452   if (!ConditionExpr)
453     return StmtError();
454 
455   DiagnoseUnusedExprResult(thenStmt);
456 
457   if (!elseStmt) {
458     DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
459                           diag::warn_empty_if_body);
460   }
461 
462   DiagnoseUnusedExprResult(elseStmt);
463 
464   return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
465                                     thenStmt, ElseLoc, elseStmt));
466 }
467 
468 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
469 /// the specified width and sign.  If an overflow occurs, detect it and emit
470 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)471 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
472                                               unsigned NewWidth, bool NewSign,
473                                               SourceLocation Loc,
474                                               unsigned DiagID) {
475   // Perform a conversion to the promoted condition type if needed.
476   if (NewWidth > Val.getBitWidth()) {
477     // If this is an extension, just do it.
478     Val = Val.extend(NewWidth);
479     Val.setIsSigned(NewSign);
480 
481     // If the input was signed and negative and the output is
482     // unsigned, don't bother to warn: this is implementation-defined
483     // behavior.
484     // FIXME: Introduce a second, default-ignored warning for this case?
485   } else if (NewWidth < Val.getBitWidth()) {
486     // If this is a truncation, check for overflow.
487     llvm::APSInt ConvVal(Val);
488     ConvVal = ConvVal.trunc(NewWidth);
489     ConvVal.setIsSigned(NewSign);
490     ConvVal = ConvVal.extend(Val.getBitWidth());
491     ConvVal.setIsSigned(Val.isSigned());
492     if (ConvVal != Val)
493       Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
494 
495     // Regardless of whether a diagnostic was emitted, really do the
496     // truncation.
497     Val = Val.trunc(NewWidth);
498     Val.setIsSigned(NewSign);
499   } else if (NewSign != Val.isSigned()) {
500     // Convert the sign to match the sign of the condition.  This can cause
501     // overflow as well: unsigned(INTMIN)
502     // We don't diagnose this overflow, because it is implementation-defined
503     // behavior.
504     // FIXME: Introduce a second, default-ignored warning for this case?
505     llvm::APSInt OldVal(Val);
506     Val.setIsSigned(NewSign);
507   }
508 }
509 
510 namespace {
511   struct CaseCompareFunctor {
operator ()__anonad4c17490111::CaseCompareFunctor512     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
513                     const llvm::APSInt &RHS) {
514       return LHS.first < RHS;
515     }
operator ()__anonad4c17490111::CaseCompareFunctor516     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
517                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
518       return LHS.first < RHS.first;
519     }
operator ()__anonad4c17490111::CaseCompareFunctor520     bool operator()(const llvm::APSInt &LHS,
521                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
522       return LHS < RHS.first;
523     }
524   };
525 }
526 
527 /// CmpCaseVals - Comparison predicate for sorting case values.
528 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)529 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
530                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
531   if (lhs.first < rhs.first)
532     return true;
533 
534   if (lhs.first == rhs.first &&
535       lhs.second->getCaseLoc().getRawEncoding()
536        < rhs.second->getCaseLoc().getRawEncoding())
537     return true;
538   return false;
539 }
540 
541 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
542 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)543 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
544                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
545 {
546   return lhs.first < rhs.first;
547 }
548 
549 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
550 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)551 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
552                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
553 {
554   return lhs.first == rhs.first;
555 }
556 
557 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
558 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)559 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
560   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
561     expr = cleanups->getSubExpr();
562   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
563     if (impcast->getCastKind() != CK_IntegralCast) break;
564     expr = impcast->getSubExpr();
565   }
566   return expr->getType();
567 }
568 
569 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)570 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
571                              Decl *CondVar) {
572   ExprResult CondResult;
573 
574   VarDecl *ConditionVar = 0;
575   if (CondVar) {
576     ConditionVar = cast<VarDecl>(CondVar);
577     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
578     if (CondResult.isInvalid())
579       return StmtError();
580 
581     Cond = CondResult.release();
582   }
583 
584   if (!Cond)
585     return StmtError();
586 
587   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
588     Expr *Cond;
589 
590   public:
591     SwitchConvertDiagnoser(Expr *Cond)
592         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
593           Cond(Cond) {}
594 
595     virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
596                                                  QualType T) {
597       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
598     }
599 
600     virtual SemaDiagnosticBuilder diagnoseIncomplete(
601         Sema &S, SourceLocation Loc, QualType T) {
602       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
603                << T << Cond->getSourceRange();
604     }
605 
606     virtual SemaDiagnosticBuilder diagnoseExplicitConv(
607         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
608       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
609     }
610 
611     virtual SemaDiagnosticBuilder noteExplicitConv(
612         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
613       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
614         << ConvTy->isEnumeralType() << ConvTy;
615     }
616 
617     virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
618                                                     QualType T) {
619       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
620     }
621 
622     virtual SemaDiagnosticBuilder noteAmbiguous(
623         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
624       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
625       << ConvTy->isEnumeralType() << ConvTy;
626     }
627 
628     virtual SemaDiagnosticBuilder diagnoseConversion(
629         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
630       llvm_unreachable("conversion functions are permitted");
631     }
632   } SwitchDiagnoser(Cond);
633 
634   CondResult =
635       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
636   if (CondResult.isInvalid()) return StmtError();
637   Cond = CondResult.take();
638 
639   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
640   CondResult = UsualUnaryConversions(Cond);
641   if (CondResult.isInvalid()) return StmtError();
642   Cond = CondResult.take();
643 
644   if (!CondVar) {
645     CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
646     if (CondResult.isInvalid())
647       return StmtError();
648     Cond = CondResult.take();
649   }
650 
651   getCurFunction()->setHasBranchIntoScope();
652 
653   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
654   getCurFunction()->SwitchStack.push_back(SS);
655   return Owned(SS);
656 }
657 
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)658 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
659   if (Val.getBitWidth() < BitWidth)
660     Val = Val.extend(BitWidth);
661   else if (Val.getBitWidth() > BitWidth)
662     Val = Val.trunc(BitWidth);
663   Val.setIsSigned(IsSigned);
664 }
665 
666 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)667 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
668                             Stmt *BodyStmt) {
669   SwitchStmt *SS = cast<SwitchStmt>(Switch);
670   assert(SS == getCurFunction()->SwitchStack.back() &&
671          "switch stack missing push/pop!");
672 
673   SS->setBody(BodyStmt, SwitchLoc);
674   getCurFunction()->SwitchStack.pop_back();
675 
676   Expr *CondExpr = SS->getCond();
677   if (!CondExpr) return StmtError();
678 
679   QualType CondType = CondExpr->getType();
680 
681   Expr *CondExprBeforePromotion = CondExpr;
682   QualType CondTypeBeforePromotion =
683       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
684 
685   // C++ 6.4.2.p2:
686   // Integral promotions are performed (on the switch condition).
687   //
688   // A case value unrepresentable by the original switch condition
689   // type (before the promotion) doesn't make sense, even when it can
690   // be represented by the promoted type.  Therefore we need to find
691   // the pre-promotion type of the switch condition.
692   if (!CondExpr->isTypeDependent()) {
693     // We have already converted the expression to an integral or enumeration
694     // type, when we started the switch statement. If we don't have an
695     // appropriate type now, just return an error.
696     if (!CondType->isIntegralOrEnumerationType())
697       return StmtError();
698 
699     if (CondExpr->isKnownToHaveBooleanValue()) {
700       // switch(bool_expr) {...} is often a programmer error, e.g.
701       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
702       // One can always use an if statement instead of switch(bool_expr).
703       Diag(SwitchLoc, diag::warn_bool_switch_condition)
704           << CondExpr->getSourceRange();
705     }
706   }
707 
708   // Get the bitwidth of the switched-on value before promotions.  We must
709   // convert the integer case values to this width before comparison.
710   bool HasDependentValue
711     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
712   unsigned CondWidth
713     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
714   bool CondIsSigned
715     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
716 
717   // Accumulate all of the case values in a vector so that we can sort them
718   // and detect duplicates.  This vector contains the APInt for the case after
719   // it has been converted to the condition type.
720   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
721   CaseValsTy CaseVals;
722 
723   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
724   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
725   CaseRangesTy CaseRanges;
726 
727   DefaultStmt *TheDefaultStmt = 0;
728 
729   bool CaseListIsErroneous = false;
730 
731   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
732        SC = SC->getNextSwitchCase()) {
733 
734     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
735       if (TheDefaultStmt) {
736         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
737         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
738 
739         // FIXME: Remove the default statement from the switch block so that
740         // we'll return a valid AST.  This requires recursing down the AST and
741         // finding it, not something we are set up to do right now.  For now,
742         // just lop the entire switch stmt out of the AST.
743         CaseListIsErroneous = true;
744       }
745       TheDefaultStmt = DS;
746 
747     } else {
748       CaseStmt *CS = cast<CaseStmt>(SC);
749 
750       Expr *Lo = CS->getLHS();
751 
752       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
753         HasDependentValue = true;
754         break;
755       }
756 
757       llvm::APSInt LoVal;
758 
759       if (getLangOpts().CPlusPlus11) {
760         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
761         // constant expression of the promoted type of the switch condition.
762         ExprResult ConvLo =
763           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
764         if (ConvLo.isInvalid()) {
765           CaseListIsErroneous = true;
766           continue;
767         }
768         Lo = ConvLo.take();
769       } else {
770         // We already verified that the expression has a i-c-e value (C99
771         // 6.8.4.2p3) - get that value now.
772         LoVal = Lo->EvaluateKnownConstInt(Context);
773 
774         // If the LHS is not the same type as the condition, insert an implicit
775         // cast.
776         Lo = DefaultLvalueConversion(Lo).take();
777         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
778       }
779 
780       // Convert the value to the same width/sign as the condition had prior to
781       // integral promotions.
782       //
783       // FIXME: This causes us to reject valid code:
784       //   switch ((char)c) { case 256: case 0: return 0; }
785       // Here we claim there is a duplicated condition value, but there is not.
786       ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
787                                          Lo->getLocStart(),
788                                          diag::warn_case_value_overflow);
789 
790       CS->setLHS(Lo);
791 
792       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
793       if (CS->getRHS()) {
794         if (CS->getRHS()->isTypeDependent() ||
795             CS->getRHS()->isValueDependent()) {
796           HasDependentValue = true;
797           break;
798         }
799         CaseRanges.push_back(std::make_pair(LoVal, CS));
800       } else
801         CaseVals.push_back(std::make_pair(LoVal, CS));
802     }
803   }
804 
805   if (!HasDependentValue) {
806     // If we don't have a default statement, check whether the
807     // condition is constant.
808     llvm::APSInt ConstantCondValue;
809     bool HasConstantCond = false;
810     if (!HasDependentValue && !TheDefaultStmt) {
811       HasConstantCond
812         = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
813                                                  Expr::SE_AllowSideEffects);
814       assert(!HasConstantCond ||
815              (ConstantCondValue.getBitWidth() == CondWidth &&
816               ConstantCondValue.isSigned() == CondIsSigned));
817     }
818     bool ShouldCheckConstantCond = HasConstantCond;
819 
820     // Sort all the scalar case values so we can easily detect duplicates.
821     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
822 
823     if (!CaseVals.empty()) {
824       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
825         if (ShouldCheckConstantCond &&
826             CaseVals[i].first == ConstantCondValue)
827           ShouldCheckConstantCond = false;
828 
829         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
830           // If we have a duplicate, report it.
831           // First, determine if either case value has a name
832           StringRef PrevString, CurrString;
833           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
834           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
835           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
836             PrevString = DeclRef->getDecl()->getName();
837           }
838           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
839             CurrString = DeclRef->getDecl()->getName();
840           }
841           SmallString<16> CaseValStr;
842           CaseVals[i-1].first.toString(CaseValStr);
843 
844           if (PrevString == CurrString)
845             Diag(CaseVals[i].second->getLHS()->getLocStart(),
846                  diag::err_duplicate_case) <<
847                  (PrevString.empty() ? CaseValStr.str() : PrevString);
848           else
849             Diag(CaseVals[i].second->getLHS()->getLocStart(),
850                  diag::err_duplicate_case_differing_expr) <<
851                  (PrevString.empty() ? CaseValStr.str() : PrevString) <<
852                  (CurrString.empty() ? CaseValStr.str() : CurrString) <<
853                  CaseValStr;
854 
855           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
856                diag::note_duplicate_case_prev);
857           // FIXME: We really want to remove the bogus case stmt from the
858           // substmt, but we have no way to do this right now.
859           CaseListIsErroneous = true;
860         }
861       }
862     }
863 
864     // Detect duplicate case ranges, which usually don't exist at all in
865     // the first place.
866     if (!CaseRanges.empty()) {
867       // Sort all the case ranges by their low value so we can easily detect
868       // overlaps between ranges.
869       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
870 
871       // Scan the ranges, computing the high values and removing empty ranges.
872       std::vector<llvm::APSInt> HiVals;
873       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
874         llvm::APSInt &LoVal = CaseRanges[i].first;
875         CaseStmt *CR = CaseRanges[i].second;
876         Expr *Hi = CR->getRHS();
877         llvm::APSInt HiVal;
878 
879         if (getLangOpts().CPlusPlus11) {
880           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
881           // constant expression of the promoted type of the switch condition.
882           ExprResult ConvHi =
883             CheckConvertedConstantExpression(Hi, CondType, HiVal,
884                                              CCEK_CaseValue);
885           if (ConvHi.isInvalid()) {
886             CaseListIsErroneous = true;
887             continue;
888           }
889           Hi = ConvHi.take();
890         } else {
891           HiVal = Hi->EvaluateKnownConstInt(Context);
892 
893           // If the RHS is not the same type as the condition, insert an
894           // implicit cast.
895           Hi = DefaultLvalueConversion(Hi).take();
896           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
897         }
898 
899         // Convert the value to the same width/sign as the condition.
900         ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
901                                            Hi->getLocStart(),
902                                            diag::warn_case_value_overflow);
903 
904         CR->setRHS(Hi);
905 
906         // If the low value is bigger than the high value, the case is empty.
907         if (LoVal > HiVal) {
908           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
909             << SourceRange(CR->getLHS()->getLocStart(),
910                            Hi->getLocEnd());
911           CaseRanges.erase(CaseRanges.begin()+i);
912           --i, --e;
913           continue;
914         }
915 
916         if (ShouldCheckConstantCond &&
917             LoVal <= ConstantCondValue &&
918             ConstantCondValue <= HiVal)
919           ShouldCheckConstantCond = false;
920 
921         HiVals.push_back(HiVal);
922       }
923 
924       // Rescan the ranges, looking for overlap with singleton values and other
925       // ranges.  Since the range list is sorted, we only need to compare case
926       // ranges with their neighbors.
927       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
928         llvm::APSInt &CRLo = CaseRanges[i].first;
929         llvm::APSInt &CRHi = HiVals[i];
930         CaseStmt *CR = CaseRanges[i].second;
931 
932         // Check to see whether the case range overlaps with any
933         // singleton cases.
934         CaseStmt *OverlapStmt = 0;
935         llvm::APSInt OverlapVal(32);
936 
937         // Find the smallest value >= the lower bound.  If I is in the
938         // case range, then we have overlap.
939         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
940                                                   CaseVals.end(), CRLo,
941                                                   CaseCompareFunctor());
942         if (I != CaseVals.end() && I->first < CRHi) {
943           OverlapVal  = I->first;   // Found overlap with scalar.
944           OverlapStmt = I->second;
945         }
946 
947         // Find the smallest value bigger than the upper bound.
948         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
949         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
950           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
951           OverlapStmt = (I-1)->second;
952         }
953 
954         // Check to see if this case stmt overlaps with the subsequent
955         // case range.
956         if (i && CRLo <= HiVals[i-1]) {
957           OverlapVal  = HiVals[i-1];       // Found overlap with range.
958           OverlapStmt = CaseRanges[i-1].second;
959         }
960 
961         if (OverlapStmt) {
962           // If we have a duplicate, report it.
963           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
964             << OverlapVal.toString(10);
965           Diag(OverlapStmt->getLHS()->getLocStart(),
966                diag::note_duplicate_case_prev);
967           // FIXME: We really want to remove the bogus case stmt from the
968           // substmt, but we have no way to do this right now.
969           CaseListIsErroneous = true;
970         }
971       }
972     }
973 
974     // Complain if we have a constant condition and we didn't find a match.
975     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
976       // TODO: it would be nice if we printed enums as enums, chars as
977       // chars, etc.
978       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
979         << ConstantCondValue.toString(10)
980         << CondExpr->getSourceRange();
981     }
982 
983     // Check to see if switch is over an Enum and handles all of its
984     // values.  We only issue a warning if there is not 'default:', but
985     // we still do the analysis to preserve this information in the AST
986     // (which can be used by flow-based analyes).
987     //
988     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
989 
990     // If switch has default case, then ignore it.
991     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
992       const EnumDecl *ED = ET->getDecl();
993       typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
994         EnumValsTy;
995       EnumValsTy EnumVals;
996 
997       // Gather all enum values, set their type and sort them,
998       // allowing easier comparison with CaseVals.
999       for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1000            EDI != ED->enumerator_end(); ++EDI) {
1001         llvm::APSInt Val = EDI->getInitVal();
1002         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1003         EnumVals.push_back(std::make_pair(Val, *EDI));
1004       }
1005       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1006       EnumValsTy::iterator EIend =
1007         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1008 
1009       // See which case values aren't in enum.
1010       EnumValsTy::const_iterator EI = EnumVals.begin();
1011       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1012            CI != CaseVals.end(); CI++) {
1013         while (EI != EIend && EI->first < CI->first)
1014           EI++;
1015         if (EI == EIend || EI->first > CI->first)
1016           Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1017             << CondTypeBeforePromotion;
1018       }
1019       // See which of case ranges aren't in enum
1020       EI = EnumVals.begin();
1021       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1022            RI != CaseRanges.end() && EI != EIend; RI++) {
1023         while (EI != EIend && EI->first < RI->first)
1024           EI++;
1025 
1026         if (EI == EIend || EI->first != RI->first) {
1027           Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1028             << CondTypeBeforePromotion;
1029         }
1030 
1031         llvm::APSInt Hi =
1032           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1033         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1034         while (EI != EIend && EI->first < Hi)
1035           EI++;
1036         if (EI == EIend || EI->first != Hi)
1037           Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1038             << CondTypeBeforePromotion;
1039       }
1040 
1041       // Check which enum vals aren't in switch
1042       CaseValsTy::const_iterator CI = CaseVals.begin();
1043       CaseRangesTy::const_iterator RI = CaseRanges.begin();
1044       bool hasCasesNotInSwitch = false;
1045 
1046       SmallVector<DeclarationName,8> UnhandledNames;
1047 
1048       for (EI = EnumVals.begin(); EI != EIend; EI++){
1049         // Drop unneeded case values
1050         llvm::APSInt CIVal;
1051         while (CI != CaseVals.end() && CI->first < EI->first)
1052           CI++;
1053 
1054         if (CI != CaseVals.end() && CI->first == EI->first)
1055           continue;
1056 
1057         // Drop unneeded case ranges
1058         for (; RI != CaseRanges.end(); RI++) {
1059           llvm::APSInt Hi =
1060             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1061           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1062           if (EI->first <= Hi)
1063             break;
1064         }
1065 
1066         if (RI == CaseRanges.end() || EI->first < RI->first) {
1067           hasCasesNotInSwitch = true;
1068           UnhandledNames.push_back(EI->second->getDeclName());
1069         }
1070       }
1071 
1072       if (TheDefaultStmt && UnhandledNames.empty())
1073         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1074 
1075       // Produce a nice diagnostic if multiple values aren't handled.
1076       switch (UnhandledNames.size()) {
1077       case 0: break;
1078       case 1:
1079         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1080           ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1081           << UnhandledNames[0];
1082         break;
1083       case 2:
1084         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1085           ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1086           << UnhandledNames[0] << UnhandledNames[1];
1087         break;
1088       case 3:
1089         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1090           ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1091           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1092         break;
1093       default:
1094         Diag(CondExpr->getExprLoc(), TheDefaultStmt
1095           ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1096           << (unsigned)UnhandledNames.size()
1097           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1098         break;
1099       }
1100 
1101       if (!hasCasesNotInSwitch)
1102         SS->setAllEnumCasesCovered();
1103     }
1104   }
1105 
1106   DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1107                         diag::warn_empty_switch_body);
1108 
1109   // FIXME: If the case list was broken is some way, we don't have a good system
1110   // to patch it up.  Instead, just return the whole substmt as broken.
1111   if (CaseListIsErroneous)
1112     return StmtError();
1113 
1114   return Owned(SS);
1115 }
1116 
1117 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1118 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1119                              Expr *SrcExpr) {
1120   if (Diags.getDiagnosticLevel(diag::warn_not_in_enum_assignment,
1121                                SrcExpr->getExprLoc()) ==
1122       DiagnosticsEngine::Ignored)
1123     return;
1124 
1125   if (const EnumType *ET = DstType->getAs<EnumType>())
1126     if (!Context.hasSameType(SrcType, DstType) &&
1127         SrcType->isIntegerType()) {
1128       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1129           SrcExpr->isIntegerConstantExpr(Context)) {
1130         // Get the bitwidth of the enum value before promotions.
1131         unsigned DstWidth = Context.getIntWidth(DstType);
1132         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1133 
1134         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1135         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1136         const EnumDecl *ED = ET->getDecl();
1137         typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1138             EnumValsTy;
1139         EnumValsTy EnumVals;
1140 
1141         // Gather all enum values, set their type and sort them,
1142         // allowing easier comparison with rhs constant.
1143         for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1144              EDI != ED->enumerator_end(); ++EDI) {
1145           llvm::APSInt Val = EDI->getInitVal();
1146           AdjustAPSInt(Val, DstWidth, DstIsSigned);
1147           EnumVals.push_back(std::make_pair(Val, *EDI));
1148         }
1149         if (EnumVals.empty())
1150           return;
1151         std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1152         EnumValsTy::iterator EIend =
1153             std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1154 
1155         // See which values aren't in the enum.
1156         EnumValsTy::const_iterator EI = EnumVals.begin();
1157         while (EI != EIend && EI->first < RhsVal)
1158           EI++;
1159         if (EI == EIend || EI->first != RhsVal) {
1160           Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1161           << DstType;
1162         }
1163       }
1164     }
1165 }
1166 
1167 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1168 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1169                      Decl *CondVar, Stmt *Body) {
1170   ExprResult CondResult(Cond.release());
1171 
1172   VarDecl *ConditionVar = 0;
1173   if (CondVar) {
1174     ConditionVar = cast<VarDecl>(CondVar);
1175     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1176     if (CondResult.isInvalid())
1177       return StmtError();
1178   }
1179   Expr *ConditionExpr = CondResult.take();
1180   if (!ConditionExpr)
1181     return StmtError();
1182 
1183   DiagnoseUnusedExprResult(Body);
1184 
1185   if (isa<NullStmt>(Body))
1186     getCurCompoundScope().setHasEmptyLoopBodies();
1187 
1188   return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1189                                        Body, WhileLoc));
1190 }
1191 
1192 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1193 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1194                   SourceLocation WhileLoc, SourceLocation CondLParen,
1195                   Expr *Cond, SourceLocation CondRParen) {
1196   assert(Cond && "ActOnDoStmt(): missing expression");
1197 
1198   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1199   if (CondResult.isInvalid())
1200     return StmtError();
1201   Cond = CondResult.take();
1202 
1203   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1204   if (CondResult.isInvalid())
1205     return StmtError();
1206   Cond = CondResult.take();
1207 
1208   DiagnoseUnusedExprResult(Body);
1209 
1210   return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1211 }
1212 
1213 namespace {
1214   // This visitor will traverse a conditional statement and store all
1215   // the evaluated decls into a vector.  Simple is set to true if none
1216   // of the excluded constructs are used.
1217   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1218     llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1219     SmallVectorImpl<SourceRange> &Ranges;
1220     bool Simple;
1221   public:
1222     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1223 
DeclExtractor(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,SmallVectorImpl<SourceRange> & Ranges)1224     DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1225                   SmallVectorImpl<SourceRange> &Ranges) :
1226         Inherited(S.Context),
1227         Decls(Decls),
1228         Ranges(Ranges),
1229         Simple(true) {}
1230 
isSimple()1231     bool isSimple() { return Simple; }
1232 
1233     // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1234     void VisitMemberExpr(MemberExpr* E) {
1235       Simple = false;
1236     }
1237 
1238     // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1239     void VisitStmt(Stmt *S) {
1240       Simple = false;
1241     }
1242 
VisitBinaryOperator(BinaryOperator * E)1243     void VisitBinaryOperator(BinaryOperator *E) {
1244       Visit(E->getLHS());
1245       Visit(E->getRHS());
1246     }
1247 
VisitCastExpr(CastExpr * E)1248     void VisitCastExpr(CastExpr *E) {
1249       Visit(E->getSubExpr());
1250     }
1251 
VisitUnaryOperator(UnaryOperator * E)1252     void VisitUnaryOperator(UnaryOperator *E) {
1253       // Skip checking conditionals with derefernces.
1254       if (E->getOpcode() == UO_Deref)
1255         Simple = false;
1256       else
1257         Visit(E->getSubExpr());
1258     }
1259 
VisitConditionalOperator(ConditionalOperator * E)1260     void VisitConditionalOperator(ConditionalOperator *E) {
1261       Visit(E->getCond());
1262       Visit(E->getTrueExpr());
1263       Visit(E->getFalseExpr());
1264     }
1265 
VisitParenExpr(ParenExpr * E)1266     void VisitParenExpr(ParenExpr *E) {
1267       Visit(E->getSubExpr());
1268     }
1269 
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1270     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1271       Visit(E->getOpaqueValue()->getSourceExpr());
1272       Visit(E->getFalseExpr());
1273     }
1274 
VisitIntegerLiteral(IntegerLiteral * E)1275     void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1276     void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1277     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1278     void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1279     void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1280     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1281 
VisitDeclRefExpr(DeclRefExpr * E)1282     void VisitDeclRefExpr(DeclRefExpr *E) {
1283       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1284       if (!VD) return;
1285 
1286       Ranges.push_back(E->getSourceRange());
1287 
1288       Decls.insert(VD);
1289     }
1290 
1291   }; // end class DeclExtractor
1292 
1293   // DeclMatcher checks to see if the decls are used in a non-evauluated
1294   // context.
1295   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1296     llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1297     bool FoundDecl;
1298 
1299   public:
1300     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1301 
DeclMatcher(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,Stmt * Statement)1302     DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1303                 Stmt *Statement) :
1304         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1305       if (!Statement) return;
1306 
1307       Visit(Statement);
1308     }
1309 
VisitReturnStmt(ReturnStmt * S)1310     void VisitReturnStmt(ReturnStmt *S) {
1311       FoundDecl = true;
1312     }
1313 
VisitBreakStmt(BreakStmt * S)1314     void VisitBreakStmt(BreakStmt *S) {
1315       FoundDecl = true;
1316     }
1317 
VisitGotoStmt(GotoStmt * S)1318     void VisitGotoStmt(GotoStmt *S) {
1319       FoundDecl = true;
1320     }
1321 
VisitCastExpr(CastExpr * E)1322     void VisitCastExpr(CastExpr *E) {
1323       if (E->getCastKind() == CK_LValueToRValue)
1324         CheckLValueToRValueCast(E->getSubExpr());
1325       else
1326         Visit(E->getSubExpr());
1327     }
1328 
CheckLValueToRValueCast(Expr * E)1329     void CheckLValueToRValueCast(Expr *E) {
1330       E = E->IgnoreParenImpCasts();
1331 
1332       if (isa<DeclRefExpr>(E)) {
1333         return;
1334       }
1335 
1336       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1337         Visit(CO->getCond());
1338         CheckLValueToRValueCast(CO->getTrueExpr());
1339         CheckLValueToRValueCast(CO->getFalseExpr());
1340         return;
1341       }
1342 
1343       if (BinaryConditionalOperator *BCO =
1344               dyn_cast<BinaryConditionalOperator>(E)) {
1345         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1346         CheckLValueToRValueCast(BCO->getFalseExpr());
1347         return;
1348       }
1349 
1350       Visit(E);
1351     }
1352 
VisitDeclRefExpr(DeclRefExpr * E)1353     void VisitDeclRefExpr(DeclRefExpr *E) {
1354       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1355         if (Decls.count(VD))
1356           FoundDecl = true;
1357     }
1358 
FoundDeclInUse()1359     bool FoundDeclInUse() { return FoundDecl; }
1360 
1361   };  // end class DeclMatcher
1362 
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1363   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1364                                         Expr *Third, Stmt *Body) {
1365     // Condition is empty
1366     if (!Second) return;
1367 
1368     if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1369                                    Second->getLocStart())
1370         == DiagnosticsEngine::Ignored)
1371       return;
1372 
1373     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1374     llvm::SmallPtrSet<VarDecl*, 8> Decls;
1375     SmallVector<SourceRange, 10> Ranges;
1376     DeclExtractor DE(S, Decls, Ranges);
1377     DE.Visit(Second);
1378 
1379     // Don't analyze complex conditionals.
1380     if (!DE.isSimple()) return;
1381 
1382     // No decls found.
1383     if (Decls.size() == 0) return;
1384 
1385     // Don't warn on volatile, static, or global variables.
1386     for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1387                                                   E = Decls.end();
1388          I != E; ++I)
1389       if ((*I)->getType().isVolatileQualified() ||
1390           (*I)->hasGlobalStorage()) return;
1391 
1392     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1393         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1394         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1395       return;
1396 
1397     // Load decl names into diagnostic.
1398     if (Decls.size() > 4)
1399       PDiag << 0;
1400     else {
1401       PDiag << Decls.size();
1402       for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1403                                                     E = Decls.end();
1404            I != E; ++I)
1405         PDiag << (*I)->getDeclName();
1406     }
1407 
1408     // Load SourceRanges into diagnostic if there is room.
1409     // Otherwise, load the SourceRange of the conditional expression.
1410     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1411       for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1412                                                   E = Ranges.end();
1413            I != E; ++I)
1414         PDiag << *I;
1415     else
1416       PDiag << Second->getSourceRange();
1417 
1418     S.Diag(Ranges.begin()->getBegin(), PDiag);
1419   }
1420 
1421   // If Statement is an incemement or decrement, return true and sets the
1422   // variables Increment and DRE.
ProcessIterationStmt(Sema & S,Stmt * Statement,bool & Increment,DeclRefExpr * & DRE)1423   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1424                             DeclRefExpr *&DRE) {
1425     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1426       switch (UO->getOpcode()) {
1427         default: return false;
1428         case UO_PostInc:
1429         case UO_PreInc:
1430           Increment = true;
1431           break;
1432         case UO_PostDec:
1433         case UO_PreDec:
1434           Increment = false;
1435           break;
1436       }
1437       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1438       return DRE;
1439     }
1440 
1441     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1442       FunctionDecl *FD = Call->getDirectCallee();
1443       if (!FD || !FD->isOverloadedOperator()) return false;
1444       switch (FD->getOverloadedOperator()) {
1445         default: return false;
1446         case OO_PlusPlus:
1447           Increment = true;
1448           break;
1449         case OO_MinusMinus:
1450           Increment = false;
1451           break;
1452       }
1453       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1454       return DRE;
1455     }
1456 
1457     return false;
1458   }
1459 
1460   // A visitor to determine if a continue statement is a subexpression.
1461   class ContinueFinder : public EvaluatedExprVisitor<ContinueFinder> {
1462     bool Found;
1463   public:
ContinueFinder(Sema & S,Stmt * Body)1464     ContinueFinder(Sema &S, Stmt* Body) :
1465         Inherited(S.Context),
1466         Found(false) {
1467       Visit(Body);
1468     }
1469 
1470     typedef EvaluatedExprVisitor<ContinueFinder> Inherited;
1471 
VisitContinueStmt(ContinueStmt * E)1472     void VisitContinueStmt(ContinueStmt* E) {
1473       Found = true;
1474     }
1475 
ContinueFound()1476     bool ContinueFound() { return Found; }
1477 
1478   };  // end class ContinueFinder
1479 
1480   // Emit a warning when a loop increment/decrement appears twice per loop
1481   // iteration.  The conditions which trigger this warning are:
1482   // 1) The last statement in the loop body and the third expression in the
1483   //    for loop are both increment or both decrement of the same variable
1484   // 2) No continue statements in the loop body.
CheckForRedundantIteration(Sema & S,Expr * Third,Stmt * Body)1485   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1486     // Return when there is nothing to check.
1487     if (!Body || !Third) return;
1488 
1489     if (S.Diags.getDiagnosticLevel(diag::warn_redundant_loop_iteration,
1490                                    Third->getLocStart())
1491         == DiagnosticsEngine::Ignored)
1492       return;
1493 
1494     // Get the last statement from the loop body.
1495     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1496     if (!CS || CS->body_empty()) return;
1497     Stmt *LastStmt = CS->body_back();
1498     if (!LastStmt) return;
1499 
1500     bool LoopIncrement, LastIncrement;
1501     DeclRefExpr *LoopDRE, *LastDRE;
1502 
1503     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1504     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1505 
1506     // Check that the two statements are both increments or both decrements
1507     // on the same varaible.
1508     if (LoopIncrement != LastIncrement ||
1509         LoopDRE->getDecl() != LastDRE->getDecl()) return;
1510 
1511     if (ContinueFinder(S, Body).ContinueFound()) return;
1512 
1513     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1514          << LastDRE->getDecl() << LastIncrement;
1515     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1516          << LoopIncrement;
1517   }
1518 
1519 } // end namespace
1520 
1521 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1522 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1523                    Stmt *First, FullExprArg second, Decl *secondVar,
1524                    FullExprArg third,
1525                    SourceLocation RParenLoc, Stmt *Body) {
1526   if (!getLangOpts().CPlusPlus) {
1527     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1528       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1529       // declare identifiers for objects having storage class 'auto' or
1530       // 'register'.
1531       for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1532            DI!=DE; ++DI) {
1533         VarDecl *VD = dyn_cast<VarDecl>(*DI);
1534         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1535           VD = 0;
1536         if (VD == 0) {
1537           Diag((*DI)->getLocation(), diag::err_non_local_variable_decl_in_for);
1538           (*DI)->setInvalidDecl();
1539         }
1540       }
1541     }
1542   }
1543 
1544   CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1545   CheckForRedundantIteration(*this, third.get(), Body);
1546 
1547   ExprResult SecondResult(second.release());
1548   VarDecl *ConditionVar = 0;
1549   if (secondVar) {
1550     ConditionVar = cast<VarDecl>(secondVar);
1551     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1552     if (SecondResult.isInvalid())
1553       return StmtError();
1554   }
1555 
1556   Expr *Third  = third.release().takeAs<Expr>();
1557 
1558   DiagnoseUnusedExprResult(First);
1559   DiagnoseUnusedExprResult(Third);
1560   DiagnoseUnusedExprResult(Body);
1561 
1562   if (isa<NullStmt>(Body))
1563     getCurCompoundScope().setHasEmptyLoopBodies();
1564 
1565   return Owned(new (Context) ForStmt(Context, First,
1566                                      SecondResult.take(), ConditionVar,
1567                                      Third, Body, ForLoc, LParenLoc,
1568                                      RParenLoc));
1569 }
1570 
1571 /// In an Objective C collection iteration statement:
1572 ///   for (x in y)
1573 /// x can be an arbitrary l-value expression.  Bind it up as a
1574 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1575 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1576   // Reduce placeholder expressions here.  Note that this rejects the
1577   // use of pseudo-object l-values in this position.
1578   ExprResult result = CheckPlaceholderExpr(E);
1579   if (result.isInvalid()) return StmtError();
1580   E = result.take();
1581 
1582   ExprResult FullExpr = ActOnFinishFullExpr(E);
1583   if (FullExpr.isInvalid())
1584     return StmtError();
1585   return StmtResult(static_cast<Stmt*>(FullExpr.take()));
1586 }
1587 
1588 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1589 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1590   if (!collection)
1591     return ExprError();
1592 
1593   // Bail out early if we've got a type-dependent expression.
1594   if (collection->isTypeDependent()) return Owned(collection);
1595 
1596   // Perform normal l-value conversion.
1597   ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1598   if (result.isInvalid())
1599     return ExprError();
1600   collection = result.take();
1601 
1602   // The operand needs to have object-pointer type.
1603   // TODO: should we do a contextual conversion?
1604   const ObjCObjectPointerType *pointerType =
1605     collection->getType()->getAs<ObjCObjectPointerType>();
1606   if (!pointerType)
1607     return Diag(forLoc, diag::err_collection_expr_type)
1608              << collection->getType() << collection->getSourceRange();
1609 
1610   // Check that the operand provides
1611   //   - countByEnumeratingWithState:objects:count:
1612   const ObjCObjectType *objectType = pointerType->getObjectType();
1613   ObjCInterfaceDecl *iface = objectType->getInterface();
1614 
1615   // If we have a forward-declared type, we can't do this check.
1616   // Under ARC, it is an error not to have a forward-declared class.
1617   if (iface &&
1618       RequireCompleteType(forLoc, QualType(objectType, 0),
1619                           getLangOpts().ObjCAutoRefCount
1620                             ? diag::err_arc_collection_forward
1621                             : 0,
1622                           collection)) {
1623     // Otherwise, if we have any useful type information, check that
1624     // the type declares the appropriate method.
1625   } else if (iface || !objectType->qual_empty()) {
1626     IdentifierInfo *selectorIdents[] = {
1627       &Context.Idents.get("countByEnumeratingWithState"),
1628       &Context.Idents.get("objects"),
1629       &Context.Idents.get("count")
1630     };
1631     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1632 
1633     ObjCMethodDecl *method = 0;
1634 
1635     // If there's an interface, look in both the public and private APIs.
1636     if (iface) {
1637       method = iface->lookupInstanceMethod(selector);
1638       if (!method) method = iface->lookupPrivateMethod(selector);
1639     }
1640 
1641     // Also check protocol qualifiers.
1642     if (!method)
1643       method = LookupMethodInQualifiedType(selector, pointerType,
1644                                            /*instance*/ true);
1645 
1646     // If we didn't find it anywhere, give up.
1647     if (!method) {
1648       Diag(forLoc, diag::warn_collection_expr_type)
1649         << collection->getType() << selector << collection->getSourceRange();
1650     }
1651 
1652     // TODO: check for an incompatible signature?
1653   }
1654 
1655   // Wrap up any cleanups in the expression.
1656   return Owned(collection);
1657 }
1658 
1659 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1660 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1661                                  Stmt *First, Expr *collection,
1662                                  SourceLocation RParenLoc) {
1663 
1664   ExprResult CollectionExprResult =
1665     CheckObjCForCollectionOperand(ForLoc, collection);
1666 
1667   if (First) {
1668     QualType FirstType;
1669     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1670       if (!DS->isSingleDecl())
1671         return StmtError(Diag((*DS->decl_begin())->getLocation(),
1672                          diag::err_toomany_element_decls));
1673 
1674       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1675       if (!D || D->isInvalidDecl())
1676         return StmtError();
1677 
1678       FirstType = D->getType();
1679       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1680       // declare identifiers for objects having storage class 'auto' or
1681       // 'register'.
1682       if (!D->hasLocalStorage())
1683         return StmtError(Diag(D->getLocation(),
1684                               diag::err_non_local_variable_decl_in_for));
1685 
1686       // If the type contained 'auto', deduce the 'auto' to 'id'.
1687       if (FirstType->getContainedAutoType()) {
1688         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1689                                  VK_RValue);
1690         Expr *DeducedInit = &OpaqueId;
1691         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1692                 DAR_Failed)
1693           DiagnoseAutoDeductionFailure(D, DeducedInit);
1694         if (FirstType.isNull()) {
1695           D->setInvalidDecl();
1696           return StmtError();
1697         }
1698 
1699         D->setType(FirstType);
1700 
1701         if (ActiveTemplateInstantiations.empty()) {
1702           SourceLocation Loc =
1703               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1704           Diag(Loc, diag::warn_auto_var_is_id)
1705             << D->getDeclName();
1706         }
1707       }
1708 
1709     } else {
1710       Expr *FirstE = cast<Expr>(First);
1711       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1712         return StmtError(Diag(First->getLocStart(),
1713                    diag::err_selector_element_not_lvalue)
1714           << First->getSourceRange());
1715 
1716       FirstType = static_cast<Expr*>(First)->getType();
1717     }
1718     if (!FirstType->isDependentType() &&
1719         !FirstType->isObjCObjectPointerType() &&
1720         !FirstType->isBlockPointerType())
1721         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1722                            << FirstType << First->getSourceRange());
1723   }
1724 
1725   if (CollectionExprResult.isInvalid())
1726     return StmtError();
1727 
1728   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take());
1729   if (CollectionExprResult.isInvalid())
1730     return StmtError();
1731 
1732   return Owned(new (Context) ObjCForCollectionStmt(First,
1733                                                    CollectionExprResult.take(), 0,
1734                                                    ForLoc, RParenLoc));
1735 }
1736 
1737 /// Finish building a variable declaration for a for-range statement.
1738 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int DiagID)1739 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1740                                   SourceLocation Loc, int DiagID) {
1741   // Deduce the type for the iterator variable now rather than leaving it to
1742   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1743   QualType InitType;
1744   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1745       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1746           Sema::DAR_Failed)
1747     SemaRef.Diag(Loc, DiagID) << Init->getType();
1748   if (InitType.isNull()) {
1749     Decl->setInvalidDecl();
1750     return true;
1751   }
1752   Decl->setType(InitType);
1753 
1754   // In ARC, infer lifetime.
1755   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1756   // we're doing the equivalent of fast iteration.
1757   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1758       SemaRef.inferObjCARCLifetime(Decl))
1759     Decl->setInvalidDecl();
1760 
1761   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1762                                /*TypeMayContainAuto=*/false);
1763   SemaRef.FinalizeDeclaration(Decl);
1764   SemaRef.CurContext->addHiddenDecl(Decl);
1765   return false;
1766 }
1767 
1768 namespace {
1769 
1770 /// Produce a note indicating which begin/end function was implicitly called
1771 /// by a C++11 for-range statement. This is often not obvious from the code,
1772 /// nor from the diagnostics produced when analysing the implicit expressions
1773 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,Sema::BeginEndFunction BEF)1774 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1775                                   Sema::BeginEndFunction BEF) {
1776   CallExpr *CE = dyn_cast<CallExpr>(E);
1777   if (!CE)
1778     return;
1779   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1780   if (!D)
1781     return;
1782   SourceLocation Loc = D->getLocation();
1783 
1784   std::string Description;
1785   bool IsTemplate = false;
1786   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1787     Description = SemaRef.getTemplateArgumentBindingsText(
1788       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1789     IsTemplate = true;
1790   }
1791 
1792   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1793     << BEF << IsTemplate << Description << E->getType();
1794 }
1795 
1796 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1797 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1798                               QualType Type, const char *Name) {
1799   DeclContext *DC = SemaRef.CurContext;
1800   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1801   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1802   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1803                                   TInfo, SC_None);
1804   Decl->setImplicit();
1805   return Decl;
1806 }
1807 
1808 }
1809 
ObjCEnumerationCollection(Expr * Collection)1810 static bool ObjCEnumerationCollection(Expr *Collection) {
1811   return !Collection->isTypeDependent()
1812           && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1813 }
1814 
1815 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1816 ///
1817 /// C++11 [stmt.ranged]:
1818 ///   A range-based for statement is equivalent to
1819 ///
1820 ///   {
1821 ///     auto && __range = range-init;
1822 ///     for ( auto __begin = begin-expr,
1823 ///           __end = end-expr;
1824 ///           __begin != __end;
1825 ///           ++__begin ) {
1826 ///       for-range-declaration = *__begin;
1827 ///       statement
1828 ///     }
1829 ///   }
1830 ///
1831 /// The body of the loop is not available yet, since it cannot be analysed until
1832 /// we have determined the type of the for-range-declaration.
1833 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)1834 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1835                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
1836                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
1837   if (!First || !Range)
1838     return StmtError();
1839 
1840   if (ObjCEnumerationCollection(Range))
1841     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1842 
1843   DeclStmt *DS = dyn_cast<DeclStmt>(First);
1844   assert(DS && "first part of for range not a decl stmt");
1845 
1846   if (!DS->isSingleDecl()) {
1847     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1848     return StmtError();
1849   }
1850   if (DS->getSingleDecl()->isInvalidDecl())
1851     return StmtError();
1852 
1853   if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1854     return StmtError();
1855 
1856   // Build  auto && __range = range-init
1857   SourceLocation RangeLoc = Range->getLocStart();
1858   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1859                                            Context.getAutoRRefDeductType(),
1860                                            "__range");
1861   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1862                             diag::err_for_range_deduction_failure))
1863     return StmtError();
1864 
1865   // Claim the type doesn't contain auto: we've already done the checking.
1866   DeclGroupPtrTy RangeGroup =
1867       BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1868                            /*TypeMayContainAuto=*/ false);
1869   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1870   if (RangeDecl.isInvalid())
1871     return StmtError();
1872 
1873   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1874                               /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1875                               RParenLoc, Kind);
1876 }
1877 
1878 /// \brief Create the initialization, compare, and increment steps for
1879 /// the range-based for loop expression.
1880 /// This function does not handle array-based for loops,
1881 /// which are created in Sema::BuildCXXForRangeStmt.
1882 ///
1883 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1884 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1885 /// CandidateSet and BEF are set and some non-success value is returned on
1886 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Scope * S,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,Sema::BeginEndFunction * BEF)1887 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1888                                             Expr *BeginRange, Expr *EndRange,
1889                                             QualType RangeType,
1890                                             VarDecl *BeginVar,
1891                                             VarDecl *EndVar,
1892                                             SourceLocation ColonLoc,
1893                                             OverloadCandidateSet *CandidateSet,
1894                                             ExprResult *BeginExpr,
1895                                             ExprResult *EndExpr,
1896                                             Sema::BeginEndFunction *BEF) {
1897   DeclarationNameInfo BeginNameInfo(
1898       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1899   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1900                                   ColonLoc);
1901 
1902   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1903                                  Sema::LookupMemberName);
1904   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1905 
1906   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1907     // - if _RangeT is a class type, the unqualified-ids begin and end are
1908     //   looked up in the scope of class _RangeT as if by class member access
1909     //   lookup (3.4.5), and if either (or both) finds at least one
1910     //   declaration, begin-expr and end-expr are __range.begin() and
1911     //   __range.end(), respectively;
1912     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1913     SemaRef.LookupQualifiedName(EndMemberLookup, D);
1914 
1915     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1916       SourceLocation RangeLoc = BeginVar->getLocation();
1917       *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1918 
1919       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1920           << RangeLoc << BeginRange->getType() << *BEF;
1921       return Sema::FRS_DiagnosticIssued;
1922     }
1923   } else {
1924     // - otherwise, begin-expr and end-expr are begin(__range) and
1925     //   end(__range), respectively, where begin and end are looked up with
1926     //   argument-dependent lookup (3.4.2). For the purposes of this name
1927     //   lookup, namespace std is an associated namespace.
1928 
1929   }
1930 
1931   *BEF = Sema::BEF_begin;
1932   Sema::ForRangeStatus RangeStatus =
1933       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1934                                         Sema::BEF_begin, BeginNameInfo,
1935                                         BeginMemberLookup, CandidateSet,
1936                                         BeginRange, BeginExpr);
1937 
1938   if (RangeStatus != Sema::FRS_Success)
1939     return RangeStatus;
1940   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1941                             diag::err_for_range_iter_deduction_failure)) {
1942     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1943     return Sema::FRS_DiagnosticIssued;
1944   }
1945 
1946   *BEF = Sema::BEF_end;
1947   RangeStatus =
1948       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1949                                         Sema::BEF_end, EndNameInfo,
1950                                         EndMemberLookup, CandidateSet,
1951                                         EndRange, EndExpr);
1952   if (RangeStatus != Sema::FRS_Success)
1953     return RangeStatus;
1954   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1955                             diag::err_for_range_iter_deduction_failure)) {
1956     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1957     return Sema::FRS_DiagnosticIssued;
1958   }
1959   return Sema::FRS_Success;
1960 }
1961 
1962 /// Speculatively attempt to dereference an invalid range expression.
1963 /// If the attempt fails, this function will return a valid, null StmtResult
1964 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)1965 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1966                                                  SourceLocation ForLoc,
1967                                                  Stmt *LoopVarDecl,
1968                                                  SourceLocation ColonLoc,
1969                                                  Expr *Range,
1970                                                  SourceLocation RangeLoc,
1971                                                  SourceLocation RParenLoc) {
1972   // Determine whether we can rebuild the for-range statement with a
1973   // dereferenced range expression.
1974   ExprResult AdjustedRange;
1975   {
1976     Sema::SFINAETrap Trap(SemaRef);
1977 
1978     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1979     if (AdjustedRange.isInvalid())
1980       return StmtResult();
1981 
1982     StmtResult SR =
1983       SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1984                                    AdjustedRange.get(), RParenLoc,
1985                                    Sema::BFRK_Check);
1986     if (SR.isInvalid())
1987       return StmtResult();
1988   }
1989 
1990   // The attempt to dereference worked well enough that it could produce a valid
1991   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
1992   // case there are any other (non-fatal) problems with it.
1993   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
1994     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
1995   return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1996                                       AdjustedRange.get(), RParenLoc,
1997                                       Sema::BFRK_Rebuild);
1998 }
1999 
2000 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2001 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)2002 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
2003                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2004                            Expr *Inc, Stmt *LoopVarDecl,
2005                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
2006   Scope *S = getCurScope();
2007 
2008   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2009   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2010   QualType RangeVarType = RangeVar->getType();
2011 
2012   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2013   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2014 
2015   StmtResult BeginEndDecl = BeginEnd;
2016   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2017 
2018   if (RangeVarType->isDependentType()) {
2019     // The range is implicitly used as a placeholder when it is dependent.
2020     RangeVar->setUsed();
2021 
2022     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2023     // them in properly when we instantiate the loop.
2024     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2025       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2026   } else if (!BeginEndDecl.get()) {
2027     SourceLocation RangeLoc = RangeVar->getLocation();
2028 
2029     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2030 
2031     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2032                                                 VK_LValue, ColonLoc);
2033     if (BeginRangeRef.isInvalid())
2034       return StmtError();
2035 
2036     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2037                                               VK_LValue, ColonLoc);
2038     if (EndRangeRef.isInvalid())
2039       return StmtError();
2040 
2041     QualType AutoType = Context.getAutoDeductType();
2042     Expr *Range = RangeVar->getInit();
2043     if (!Range)
2044       return StmtError();
2045     QualType RangeType = Range->getType();
2046 
2047     if (RequireCompleteType(RangeLoc, RangeType,
2048                             diag::err_for_range_incomplete_type))
2049       return StmtError();
2050 
2051     // Build auto __begin = begin-expr, __end = end-expr.
2052     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2053                                              "__begin");
2054     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2055                                            "__end");
2056 
2057     // Build begin-expr and end-expr and attach to __begin and __end variables.
2058     ExprResult BeginExpr, EndExpr;
2059     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2060       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2061       //   __range + __bound, respectively, where __bound is the array bound. If
2062       //   _RangeT is an array of unknown size or an array of incomplete type,
2063       //   the program is ill-formed;
2064 
2065       // begin-expr is __range.
2066       BeginExpr = BeginRangeRef;
2067       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2068                                 diag::err_for_range_iter_deduction_failure)) {
2069         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2070         return StmtError();
2071       }
2072 
2073       // Find the array bound.
2074       ExprResult BoundExpr;
2075       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2076         BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
2077                                                  Context.getPointerDiffType(),
2078                                                  RangeLoc));
2079       else if (const VariableArrayType *VAT =
2080                dyn_cast<VariableArrayType>(UnqAT))
2081         // FIXME: Need to build an OpaqueValueExpr for this rather than
2082         // recomputing it!
2083         BoundExpr = VAT->getSizeExpr();
2084       else {
2085         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2086         // UnqAT is not incomplete and Range is not type-dependent.
2087         llvm_unreachable("Unexpected array type in for-range");
2088       }
2089 
2090       // end-expr is __range + __bound.
2091       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2092                            BoundExpr.get());
2093       if (EndExpr.isInvalid())
2094         return StmtError();
2095       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2096                                 diag::err_for_range_iter_deduction_failure)) {
2097         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2098         return StmtError();
2099       }
2100     } else {
2101       OverloadCandidateSet CandidateSet(RangeLoc);
2102       Sema::BeginEndFunction BEFFailure;
2103       ForRangeStatus RangeStatus =
2104           BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
2105                                 EndRangeRef.get(), RangeType,
2106                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
2107                                 &BeginExpr, &EndExpr, &BEFFailure);
2108 
2109       // If building the range failed, try dereferencing the range expression
2110       // unless a diagnostic was issued or the end function is problematic.
2111       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2112           BEFFailure == BEF_begin) {
2113         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2114                                                        LoopVarDecl, ColonLoc,
2115                                                        Range, RangeLoc,
2116                                                        RParenLoc);
2117         if (SR.isInvalid() || SR.isUsable())
2118           return SR;
2119       }
2120 
2121       // Otherwise, emit diagnostics if we haven't already.
2122       if (RangeStatus == FRS_NoViableFunction) {
2123         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2124         Diag(Range->getLocStart(), diag::err_for_range_invalid)
2125             << RangeLoc << Range->getType() << BEFFailure;
2126         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2127       }
2128       // Return an error if no fix was discovered.
2129       if (RangeStatus != FRS_Success)
2130         return StmtError();
2131     }
2132 
2133     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2134            "invalid range expression in for loop");
2135 
2136     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2137     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2138     if (!Context.hasSameType(BeginType, EndType)) {
2139       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2140         << BeginType << EndType;
2141       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2142       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2143     }
2144 
2145     Decl *BeginEndDecls[] = { BeginVar, EndVar };
2146     // Claim the type doesn't contain auto: we've already done the checking.
2147     DeclGroupPtrTy BeginEndGroup =
2148         BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *>(BeginEndDecls, 2),
2149                              /*TypeMayContainAuto=*/ false);
2150     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2151 
2152     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2153     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2154                                            VK_LValue, ColonLoc);
2155     if (BeginRef.isInvalid())
2156       return StmtError();
2157 
2158     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2159                                          VK_LValue, ColonLoc);
2160     if (EndRef.isInvalid())
2161       return StmtError();
2162 
2163     // Build and check __begin != __end expression.
2164     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2165                            BeginRef.get(), EndRef.get());
2166     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2167     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2168     if (NotEqExpr.isInvalid()) {
2169       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2170         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2171       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2172       if (!Context.hasSameType(BeginType, EndType))
2173         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2174       return StmtError();
2175     }
2176 
2177     // Build and check ++__begin expression.
2178     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2179                                 VK_LValue, ColonLoc);
2180     if (BeginRef.isInvalid())
2181       return StmtError();
2182 
2183     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2184     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2185     if (IncrExpr.isInvalid()) {
2186       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2187         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2188       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2189       return StmtError();
2190     }
2191 
2192     // Build and check *__begin  expression.
2193     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2194                                 VK_LValue, ColonLoc);
2195     if (BeginRef.isInvalid())
2196       return StmtError();
2197 
2198     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2199     if (DerefExpr.isInvalid()) {
2200       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2201         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2202       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2203       return StmtError();
2204     }
2205 
2206     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2207     // trying to determine whether this would be a valid range.
2208     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2209       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2210                            /*TypeMayContainAuto=*/true);
2211       if (LoopVar->isInvalidDecl())
2212         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2213     }
2214   }
2215 
2216   // Don't bother to actually allocate the result if we're just trying to
2217   // determine whether it would be valid.
2218   if (Kind == BFRK_Check)
2219     return StmtResult();
2220 
2221   return Owned(new (Context) CXXForRangeStmt(RangeDS,
2222                                      cast_or_null<DeclStmt>(BeginEndDecl.get()),
2223                                              NotEqExpr.take(), IncrExpr.take(),
2224                                              LoopVarDS, /*Body=*/0, ForLoc,
2225                                              ColonLoc, RParenLoc));
2226 }
2227 
2228 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2229 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2230 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2231   if (!S || !B)
2232     return StmtError();
2233   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2234 
2235   ForStmt->setBody(B);
2236   return S;
2237 }
2238 
2239 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2240 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2241 /// body cannot be performed until after the type of the range variable is
2242 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2243 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2244   if (!S || !B)
2245     return StmtError();
2246 
2247   if (isa<ObjCForCollectionStmt>(S))
2248     return FinishObjCForCollectionStmt(S, B);
2249 
2250   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2251   ForStmt->setBody(B);
2252 
2253   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2254                         diag::warn_empty_range_based_for_body);
2255 
2256   return S;
2257 }
2258 
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2259 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2260                                SourceLocation LabelLoc,
2261                                LabelDecl *TheDecl) {
2262   getCurFunction()->setHasBranchIntoScope();
2263   TheDecl->setUsed();
2264   return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2265 }
2266 
2267 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2268 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2269                             Expr *E) {
2270   // Convert operand to void*
2271   if (!E->isTypeDependent()) {
2272     QualType ETy = E->getType();
2273     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2274     ExprResult ExprRes = Owned(E);
2275     AssignConvertType ConvTy =
2276       CheckSingleAssignmentConstraints(DestTy, ExprRes);
2277     if (ExprRes.isInvalid())
2278       return StmtError();
2279     E = ExprRes.take();
2280     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2281       return StmtError();
2282   }
2283 
2284   ExprResult ExprRes = ActOnFinishFullExpr(E);
2285   if (ExprRes.isInvalid())
2286     return StmtError();
2287   E = ExprRes.take();
2288 
2289   getCurFunction()->setHasIndirectGoto();
2290 
2291   return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2292 }
2293 
2294 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2295 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2296   Scope *S = CurScope->getContinueParent();
2297   if (!S) {
2298     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2299     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2300   }
2301 
2302   return Owned(new (Context) ContinueStmt(ContinueLoc));
2303 }
2304 
2305 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2306 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2307   Scope *S = CurScope->getBreakParent();
2308   if (!S) {
2309     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2310     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2311   }
2312 
2313   return Owned(new (Context) BreakStmt(BreakLoc));
2314 }
2315 
2316 /// \brief Determine whether the given expression is a candidate for
2317 /// copy elision in either a return statement or a throw expression.
2318 ///
2319 /// \param ReturnType If we're determining the copy elision candidate for
2320 /// a return statement, this is the return type of the function. If we're
2321 /// determining the copy elision candidate for a throw expression, this will
2322 /// be a NULL type.
2323 ///
2324 /// \param E The expression being returned from the function or block, or
2325 /// being thrown.
2326 ///
2327 /// \param AllowFunctionParameter Whether we allow function parameters to
2328 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2329 /// we re-use this logic to determine whether we should try to move as part of
2330 /// a return or throw (which does allow function parameters).
2331 ///
2332 /// \returns The NRVO candidate variable, if the return statement may use the
2333 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2334 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2335                                              Expr *E,
2336                                              bool AllowFunctionParameter) {
2337   QualType ExprType = E->getType();
2338   // - in a return statement in a function with ...
2339   // ... a class return type ...
2340   if (!ReturnType.isNull()) {
2341     if (!ReturnType->isRecordType())
2342       return 0;
2343     // ... the same cv-unqualified type as the function return type ...
2344     if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2345       return 0;
2346   }
2347 
2348   // ... the expression is the name of a non-volatile automatic object
2349   // (other than a function or catch-clause parameter)) ...
2350   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2351   if (!DR || DR->refersToEnclosingLocal())
2352     return 0;
2353   const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2354   if (!VD)
2355     return 0;
2356 
2357   // ...object (other than a function or catch-clause parameter)...
2358   if (VD->getKind() != Decl::Var &&
2359       !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2360     return 0;
2361   if (VD->isExceptionVariable()) return 0;
2362 
2363   // ...automatic...
2364   if (!VD->hasLocalStorage()) return 0;
2365 
2366   // ...non-volatile...
2367   if (VD->getType().isVolatileQualified()) return 0;
2368   if (VD->getType()->isReferenceType()) return 0;
2369 
2370   // __block variables can't be allocated in a way that permits NRVO.
2371   if (VD->hasAttr<BlocksAttr>()) return 0;
2372 
2373   // Variables with higher required alignment than their type's ABI
2374   // alignment cannot use NRVO.
2375   if (VD->hasAttr<AlignedAttr>() &&
2376       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2377     return 0;
2378 
2379   return VD;
2380 }
2381 
2382 /// \brief Perform the initialization of a potentially-movable value, which
2383 /// is the result of return value.
2384 ///
2385 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2386 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2387 /// then falls back to treating them as lvalues if that failed.
2388 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2389 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2390                                       const VarDecl *NRVOCandidate,
2391                                       QualType ResultType,
2392                                       Expr *Value,
2393                                       bool AllowNRVO) {
2394   // C++0x [class.copy]p33:
2395   //   When the criteria for elision of a copy operation are met or would
2396   //   be met save for the fact that the source object is a function
2397   //   parameter, and the object to be copied is designated by an lvalue,
2398   //   overload resolution to select the constructor for the copy is first
2399   //   performed as if the object were designated by an rvalue.
2400   ExprResult Res = ExprError();
2401   if (AllowNRVO &&
2402       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2403     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2404                               Value->getType(), CK_NoOp, Value, VK_XValue);
2405 
2406     Expr *InitExpr = &AsRvalue;
2407     InitializationKind Kind
2408       = InitializationKind::CreateCopy(Value->getLocStart(),
2409                                        Value->getLocStart());
2410     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2411 
2412     //   [...] If overload resolution fails, or if the type of the first
2413     //   parameter of the selected constructor is not an rvalue reference
2414     //   to the object's type (possibly cv-qualified), overload resolution
2415     //   is performed again, considering the object as an lvalue.
2416     if (Seq) {
2417       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2418            StepEnd = Seq.step_end();
2419            Step != StepEnd; ++Step) {
2420         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2421           continue;
2422 
2423         CXXConstructorDecl *Constructor
2424         = cast<CXXConstructorDecl>(Step->Function.Function);
2425 
2426         const RValueReferenceType *RRefType
2427           = Constructor->getParamDecl(0)->getType()
2428                                                  ->getAs<RValueReferenceType>();
2429 
2430         // If we don't meet the criteria, break out now.
2431         if (!RRefType ||
2432             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2433                             Context.getTypeDeclType(Constructor->getParent())))
2434           break;
2435 
2436         // Promote "AsRvalue" to the heap, since we now need this
2437         // expression node to persist.
2438         Value = ImplicitCastExpr::Create(Context, Value->getType(),
2439                                          CK_NoOp, Value, 0, VK_XValue);
2440 
2441         // Complete type-checking the initialization of the return type
2442         // using the constructor we found.
2443         Res = Seq.Perform(*this, Entity, Kind, Value);
2444       }
2445     }
2446   }
2447 
2448   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2449   // above, or overload resolution failed. Either way, we need to try
2450   // (again) now with the return value expression as written.
2451   if (Res.isInvalid())
2452     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2453 
2454   return Res;
2455 }
2456 
2457 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2458 /// for capturing scopes.
2459 ///
2460 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2461 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2462   // If this is the first return we've seen, infer the return type.
2463   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2464   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2465   QualType FnRetType = CurCap->ReturnType;
2466 
2467   // For blocks/lambdas with implicit return types, we check each return
2468   // statement individually, and deduce the common return type when the block
2469   // or lambda is completed.
2470   if (CurCap->HasImplicitReturnType) {
2471     // FIXME: Fold this into the 'auto' codepath below.
2472     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2473       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2474       if (Result.isInvalid())
2475         return StmtError();
2476       RetValExp = Result.take();
2477 
2478       if (!CurContext->isDependentContext()) {
2479         FnRetType = RetValExp->getType();
2480         // In C++11, we take the type of the expression after decay and
2481         // lvalue-to-rvalue conversion, so a class type can be cv-qualified.
2482         // In C++1y, we perform template argument deduction as if the return
2483         // type were 'auto', so an implicit return type is never cv-qualified.
2484         if (getLangOpts().CPlusPlus1y && FnRetType.hasQualifiers())
2485           FnRetType = FnRetType.getUnqualifiedType();
2486       } else
2487         FnRetType = CurCap->ReturnType = Context.DependentTy;
2488     } else {
2489       if (RetValExp) {
2490         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2491         // initializer list, because it is not an expression (even
2492         // though we represent it as one). We still deduce 'void'.
2493         Diag(ReturnLoc, diag::err_lambda_return_init_list)
2494           << RetValExp->getSourceRange();
2495       }
2496 
2497       FnRetType = Context.VoidTy;
2498     }
2499 
2500     // Although we'll properly infer the type of the block once it's completed,
2501     // make sure we provide a return type now for better error recovery.
2502     if (CurCap->ReturnType.isNull())
2503       CurCap->ReturnType = FnRetType;
2504   } else if (AutoType *AT =
2505                  FnRetType.isNull() ? 0 : FnRetType->getContainedAutoType()) {
2506     // In C++1y, the return type may involve 'auto'.
2507     FunctionDecl *FD = cast<LambdaScopeInfo>(CurCap)->CallOperator;
2508     if (CurContext->isDependentContext()) {
2509       // C++1y [dcl.spec.auto]p12:
2510       //   Return type deduction [...] occurs when the definition is
2511       //   instantiated even if the function body contains a return
2512       //   statement with a non-type-dependent operand.
2513       CurCap->ReturnType = FnRetType = Context.DependentTy;
2514     } else if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2515       FD->setInvalidDecl();
2516       return StmtError();
2517     } else
2518       CurCap->ReturnType = FnRetType = FD->getResultType();
2519   }
2520   assert(!FnRetType.isNull());
2521 
2522   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2523     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2524       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2525       return StmtError();
2526     }
2527   } else if (CapturedRegionScopeInfo *CurRegion =
2528                  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2529     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2530     return StmtError();
2531   } else {
2532     LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2533     if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2534       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2535       return StmtError();
2536     }
2537   }
2538 
2539   // Otherwise, verify that this result type matches the previous one.  We are
2540   // pickier with blocks than for normal functions because we don't have GCC
2541   // compatibility to worry about here.
2542   const VarDecl *NRVOCandidate = 0;
2543   if (FnRetType->isDependentType()) {
2544     // Delay processing for now.  TODO: there are lots of dependent
2545     // types we can conclusively prove aren't void.
2546   } else if (FnRetType->isVoidType()) {
2547     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2548         !(getLangOpts().CPlusPlus &&
2549           (RetValExp->isTypeDependent() ||
2550            RetValExp->getType()->isVoidType()))) {
2551       if (!getLangOpts().CPlusPlus &&
2552           RetValExp->getType()->isVoidType())
2553         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2554       else {
2555         Diag(ReturnLoc, diag::err_return_block_has_expr);
2556         RetValExp = 0;
2557       }
2558     }
2559   } else if (!RetValExp) {
2560     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2561   } else if (!RetValExp->isTypeDependent()) {
2562     // we have a non-void block with an expression, continue checking
2563 
2564     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2565     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2566     // function return.
2567 
2568     // In C++ the return statement is handled via a copy initialization.
2569     // the C version of which boils down to CheckSingleAssignmentConstraints.
2570     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2571     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2572                                                                    FnRetType,
2573                                                           NRVOCandidate != 0);
2574     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2575                                                      FnRetType, RetValExp);
2576     if (Res.isInvalid()) {
2577       // FIXME: Cleanup temporaries here, anyway?
2578       return StmtError();
2579     }
2580     RetValExp = Res.take();
2581     CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2582   }
2583 
2584   if (RetValExp) {
2585     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2586     if (ER.isInvalid())
2587       return StmtError();
2588     RetValExp = ER.take();
2589   }
2590   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2591                                                 NRVOCandidate);
2592 
2593   // If we need to check for the named return value optimization,
2594   // or if we need to infer the return type,
2595   // save the return statement in our scope for later processing.
2596   if (CurCap->HasImplicitReturnType ||
2597       (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2598        !CurContext->isDependentContext()))
2599     FunctionScopes.back()->Returns.push_back(Result);
2600 
2601   return Owned(Result);
2602 }
2603 
2604 /// Deduce the return type for a function from a returned expression, per
2605 /// C++1y [dcl.spec.auto]p6.
DeduceFunctionTypeFromReturnExpr(FunctionDecl * FD,SourceLocation ReturnLoc,Expr * & RetExpr,AutoType * AT)2606 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
2607                                             SourceLocation ReturnLoc,
2608                                             Expr *&RetExpr,
2609                                             AutoType *AT) {
2610   TypeLoc OrigResultType = FD->getTypeSourceInfo()->getTypeLoc().
2611     IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
2612   QualType Deduced;
2613 
2614   if (RetExpr) {
2615     //  If the deduction is for a return statement and the initializer is
2616     //  a braced-init-list, the program is ill-formed.
2617     if (isa<InitListExpr>(RetExpr)) {
2618       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
2619       return true;
2620     }
2621 
2622     //  Otherwise, [...] deduce a value for U using the rules of template
2623     //  argument deduction.
2624     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
2625 
2626     if (DAR == DAR_Failed && !FD->isInvalidDecl())
2627       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
2628         << OrigResultType.getType() << RetExpr->getType();
2629 
2630     if (DAR != DAR_Succeeded)
2631       return true;
2632   } else {
2633     //  In the case of a return with no operand, the initializer is considered
2634     //  to be void().
2635     //
2636     // Deduction here can only succeed if the return type is exactly 'cv auto'
2637     // or 'decltype(auto)', so just check for that case directly.
2638     if (!OrigResultType.getType()->getAs<AutoType>()) {
2639       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
2640         << OrigResultType.getType();
2641       return true;
2642     }
2643     // We always deduce U = void in this case.
2644     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
2645     if (Deduced.isNull())
2646       return true;
2647   }
2648 
2649   //  If a function with a declared return type that contains a placeholder type
2650   //  has multiple return statements, the return type is deduced for each return
2651   //  statement. [...] if the type deduced is not the same in each deduction,
2652   //  the program is ill-formed.
2653   if (AT->isDeduced() && !FD->isInvalidDecl()) {
2654     AutoType *NewAT = Deduced->getContainedAutoType();
2655     if (!Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
2656       Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
2657         << (AT->isDecltypeAuto() ? 1 : 0)
2658         << NewAT->getDeducedType() << AT->getDeducedType();
2659       return true;
2660     }
2661   } else if (!FD->isInvalidDecl()) {
2662     // Update all declarations of the function to have the deduced return type.
2663     Context.adjustDeducedFunctionResultType(FD, Deduced);
2664   }
2665 
2666   return false;
2667 }
2668 
2669 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2670 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2671   // Check for unexpanded parameter packs.
2672   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2673     return StmtError();
2674 
2675   if (isa<CapturingScopeInfo>(getCurFunction()))
2676     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2677 
2678   QualType FnRetType;
2679   QualType RelatedRetType;
2680   if (const FunctionDecl *FD = getCurFunctionDecl()) {
2681     FnRetType = FD->getResultType();
2682     if (FD->isNoReturn())
2683       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2684         << FD->getDeclName();
2685   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2686     FnRetType = MD->getResultType();
2687     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2688       // In the implementation of a method with a related return type, the
2689       // type used to type-check the validity of return statements within the
2690       // method body is a pointer to the type of the class being implemented.
2691       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2692       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2693     }
2694   } else // If we don't have a function/method context, bail.
2695     return StmtError();
2696 
2697   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
2698   // deduction.
2699   bool HasDependentReturnType = FnRetType->isDependentType();
2700   if (getLangOpts().CPlusPlus1y) {
2701     if (AutoType *AT = FnRetType->getContainedAutoType()) {
2702       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
2703       if (CurContext->isDependentContext())
2704         HasDependentReturnType = true;
2705       else if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2706         FD->setInvalidDecl();
2707         return StmtError();
2708       } else {
2709         FnRetType = FD->getResultType();
2710       }
2711     }
2712   }
2713 
2714   ReturnStmt *Result = 0;
2715   if (FnRetType->isVoidType()) {
2716     if (RetValExp) {
2717       if (isa<InitListExpr>(RetValExp)) {
2718         // We simply never allow init lists as the return value of void
2719         // functions. This is compatible because this was never allowed before,
2720         // so there's no legacy code to deal with.
2721         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2722         int FunctionKind = 0;
2723         if (isa<ObjCMethodDecl>(CurDecl))
2724           FunctionKind = 1;
2725         else if (isa<CXXConstructorDecl>(CurDecl))
2726           FunctionKind = 2;
2727         else if (isa<CXXDestructorDecl>(CurDecl))
2728           FunctionKind = 3;
2729 
2730         Diag(ReturnLoc, diag::err_return_init_list)
2731           << CurDecl->getDeclName() << FunctionKind
2732           << RetValExp->getSourceRange();
2733 
2734         // Drop the expression.
2735         RetValExp = 0;
2736       } else if (!RetValExp->isTypeDependent()) {
2737         // C99 6.8.6.4p1 (ext_ since GCC warns)
2738         unsigned D = diag::ext_return_has_expr;
2739         if (RetValExp->getType()->isVoidType())
2740           D = diag::ext_return_has_void_expr;
2741         else {
2742           ExprResult Result = Owned(RetValExp);
2743           Result = IgnoredValueConversions(Result.take());
2744           if (Result.isInvalid())
2745             return StmtError();
2746           RetValExp = Result.take();
2747           RetValExp = ImpCastExprToType(RetValExp,
2748                                         Context.VoidTy, CK_ToVoid).take();
2749         }
2750 
2751         // return (some void expression); is legal in C++.
2752         if (D != diag::ext_return_has_void_expr ||
2753             !getLangOpts().CPlusPlus) {
2754           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2755 
2756           int FunctionKind = 0;
2757           if (isa<ObjCMethodDecl>(CurDecl))
2758             FunctionKind = 1;
2759           else if (isa<CXXConstructorDecl>(CurDecl))
2760             FunctionKind = 2;
2761           else if (isa<CXXDestructorDecl>(CurDecl))
2762             FunctionKind = 3;
2763 
2764           Diag(ReturnLoc, D)
2765             << CurDecl->getDeclName() << FunctionKind
2766             << RetValExp->getSourceRange();
2767         }
2768       }
2769 
2770       if (RetValExp) {
2771         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2772         if (ER.isInvalid())
2773           return StmtError();
2774         RetValExp = ER.take();
2775       }
2776     }
2777 
2778     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2779   } else if (!RetValExp && !HasDependentReturnType) {
2780     unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2781     // C99 6.8.6.4p1 (ext_ since GCC warns)
2782     if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2783 
2784     if (FunctionDecl *FD = getCurFunctionDecl())
2785       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2786     else
2787       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2788     Result = new (Context) ReturnStmt(ReturnLoc);
2789   } else {
2790     assert(RetValExp || HasDependentReturnType);
2791     const VarDecl *NRVOCandidate = 0;
2792     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
2793       // we have a non-void function with an expression, continue checking
2794 
2795       QualType RetType = (RelatedRetType.isNull() ? FnRetType : RelatedRetType);
2796 
2797       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2798       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2799       // function return.
2800 
2801       // In C++ the return statement is handled via a copy initialization,
2802       // the C version of which boils down to CheckSingleAssignmentConstraints.
2803       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2804       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2805                                                                      RetType,
2806                                                             NRVOCandidate != 0);
2807       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2808                                                        RetType, RetValExp);
2809       if (Res.isInvalid()) {
2810         // FIXME: Clean up temporaries here anyway?
2811         return StmtError();
2812       }
2813       RetValExp = Res.takeAs<Expr>();
2814 
2815       // If we have a related result type, we need to implicitly
2816       // convert back to the formal result type.  We can't pretend to
2817       // initialize the result again --- we might end double-retaining
2818       // --- so instead we initialize a notional temporary.
2819       if (!RelatedRetType.isNull()) {
2820         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
2821                                                             FnRetType);
2822         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
2823         if (Res.isInvalid()) {
2824           // FIXME: Clean up temporaries here anyway?
2825           return StmtError();
2826         }
2827         RetValExp = Res.takeAs<Expr>();
2828       }
2829 
2830       CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2831     }
2832 
2833     if (RetValExp) {
2834       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2835       if (ER.isInvalid())
2836         return StmtError();
2837       RetValExp = ER.take();
2838     }
2839     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2840   }
2841 
2842   // If we need to check for the named return value optimization, save the
2843   // return statement in our scope for later processing.
2844   if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2845       !CurContext->isDependentContext())
2846     FunctionScopes.back()->Returns.push_back(Result);
2847 
2848   return Owned(Result);
2849 }
2850 
2851 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)2852 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2853                            SourceLocation RParen, Decl *Parm,
2854                            Stmt *Body) {
2855   VarDecl *Var = cast_or_null<VarDecl>(Parm);
2856   if (Var && Var->isInvalidDecl())
2857     return StmtError();
2858 
2859   return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2860 }
2861 
2862 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)2863 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2864   return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2865 }
2866 
2867 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)2868 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2869                          MultiStmtArg CatchStmts, Stmt *Finally) {
2870   if (!getLangOpts().ObjCExceptions)
2871     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2872 
2873   getCurFunction()->setHasBranchProtectedScope();
2874   unsigned NumCatchStmts = CatchStmts.size();
2875   return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2876                                      CatchStmts.data(),
2877                                      NumCatchStmts,
2878                                      Finally));
2879 }
2880 
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)2881 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2882   if (Throw) {
2883     ExprResult Result = DefaultLvalueConversion(Throw);
2884     if (Result.isInvalid())
2885       return StmtError();
2886 
2887     Result = ActOnFinishFullExpr(Result.take());
2888     if (Result.isInvalid())
2889       return StmtError();
2890     Throw = Result.take();
2891 
2892     QualType ThrowType = Throw->getType();
2893     // Make sure the expression type is an ObjC pointer or "void *".
2894     if (!ThrowType->isDependentType() &&
2895         !ThrowType->isObjCObjectPointerType()) {
2896       const PointerType *PT = ThrowType->getAs<PointerType>();
2897       if (!PT || !PT->getPointeeType()->isVoidType())
2898         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2899                          << Throw->getType() << Throw->getSourceRange());
2900     }
2901   }
2902 
2903   return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2904 }
2905 
2906 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)2907 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2908                            Scope *CurScope) {
2909   if (!getLangOpts().ObjCExceptions)
2910     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2911 
2912   if (!Throw) {
2913     // @throw without an expression designates a rethrow (which much occur
2914     // in the context of an @catch clause).
2915     Scope *AtCatchParent = CurScope;
2916     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2917       AtCatchParent = AtCatchParent->getParent();
2918     if (!AtCatchParent)
2919       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2920   }
2921   return BuildObjCAtThrowStmt(AtLoc, Throw);
2922 }
2923 
2924 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)2925 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2926   ExprResult result = DefaultLvalueConversion(operand);
2927   if (result.isInvalid())
2928     return ExprError();
2929   operand = result.take();
2930 
2931   // Make sure the expression type is an ObjC pointer or "void *".
2932   QualType type = operand->getType();
2933   if (!type->isDependentType() &&
2934       !type->isObjCObjectPointerType()) {
2935     const PointerType *pointerType = type->getAs<PointerType>();
2936     if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2937       return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2938                << type << operand->getSourceRange();
2939   }
2940 
2941   // The operand to @synchronized is a full-expression.
2942   return ActOnFinishFullExpr(operand);
2943 }
2944 
2945 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)2946 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2947                                   Stmt *SyncBody) {
2948   // We can't jump into or indirect-jump out of a @synchronized block.
2949   getCurFunction()->setHasBranchProtectedScope();
2950   return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2951 }
2952 
2953 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2954 /// and creates a proper catch handler from them.
2955 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)2956 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2957                          Stmt *HandlerBlock) {
2958   // There's nothing to test that ActOnExceptionDecl didn't already test.
2959   return Owned(new (Context) CXXCatchStmt(CatchLoc,
2960                                           cast_or_null<VarDecl>(ExDecl),
2961                                           HandlerBlock));
2962 }
2963 
2964 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2965 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2966   getCurFunction()->setHasBranchProtectedScope();
2967   return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2968 }
2969 
2970 namespace {
2971 
2972 class TypeWithHandler {
2973   QualType t;
2974   CXXCatchStmt *stmt;
2975 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)2976   TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2977   : t(type), stmt(statement) {}
2978 
2979   // An arbitrary order is fine as long as it places identical
2980   // types next to each other.
operator <(const TypeWithHandler & y) const2981   bool operator<(const TypeWithHandler &y) const {
2982     if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2983       return true;
2984     if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2985       return false;
2986     else
2987       return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2988   }
2989 
operator ==(const TypeWithHandler & other) const2990   bool operator==(const TypeWithHandler& other) const {
2991     return t == other.t;
2992   }
2993 
getCatchStmt() const2994   CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const2995   SourceLocation getTypeSpecStartLoc() const {
2996     return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2997   }
2998 };
2999 
3000 }
3001 
3002 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3003 /// handlers and creates a try statement from them.
3004 StmtResult
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg RawHandlers)3005 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3006                        MultiStmtArg RawHandlers) {
3007   // Don't report an error if 'try' is used in system headers.
3008   if (!getLangOpts().CXXExceptions &&
3009       !getSourceManager().isInSystemHeader(TryLoc))
3010       Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3011 
3012   unsigned NumHandlers = RawHandlers.size();
3013   assert(NumHandlers > 0 &&
3014          "The parser shouldn't call this if there are no handlers.");
3015   Stmt **Handlers = RawHandlers.data();
3016 
3017   SmallVector<TypeWithHandler, 8> TypesWithHandlers;
3018 
3019   for (unsigned i = 0; i < NumHandlers; ++i) {
3020     CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
3021     if (!Handler->getExceptionDecl()) {
3022       if (i < NumHandlers - 1)
3023         return StmtError(Diag(Handler->getLocStart(),
3024                               diag::err_early_catch_all));
3025 
3026       continue;
3027     }
3028 
3029     const QualType CaughtType = Handler->getCaughtType();
3030     const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
3031     TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
3032   }
3033 
3034   // Detect handlers for the same type as an earlier one.
3035   if (NumHandlers > 1) {
3036     llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
3037 
3038     TypeWithHandler prev = TypesWithHandlers[0];
3039     for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
3040       TypeWithHandler curr = TypesWithHandlers[i];
3041 
3042       if (curr == prev) {
3043         Diag(curr.getTypeSpecStartLoc(),
3044              diag::warn_exception_caught_by_earlier_handler)
3045           << curr.getCatchStmt()->getCaughtType().getAsString();
3046         Diag(prev.getTypeSpecStartLoc(),
3047              diag::note_previous_exception_handler)
3048           << prev.getCatchStmt()->getCaughtType().getAsString();
3049       }
3050 
3051       prev = curr;
3052     }
3053   }
3054 
3055   getCurFunction()->setHasBranchProtectedScope();
3056 
3057   // FIXME: We should detect handlers that cannot catch anything because an
3058   // earlier handler catches a superclass. Need to find a method that is not
3059   // quadratic for this.
3060   // Neither of these are explicitly forbidden, but every compiler detects them
3061   // and warns.
3062 
3063   return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
3064                                   llvm::makeArrayRef(Handlers, NumHandlers)));
3065 }
3066 
3067 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)3068 Sema::ActOnSEHTryBlock(bool IsCXXTry,
3069                        SourceLocation TryLoc,
3070                        Stmt *TryBlock,
3071                        Stmt *Handler) {
3072   assert(TryBlock && Handler);
3073 
3074   getCurFunction()->setHasBranchProtectedScope();
3075 
3076   return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
3077 }
3078 
3079 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)3080 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3081                           Expr *FilterExpr,
3082                           Stmt *Block) {
3083   assert(FilterExpr && Block);
3084 
3085   if(!FilterExpr->getType()->isIntegerType()) {
3086     return StmtError(Diag(FilterExpr->getExprLoc(),
3087                      diag::err_filter_expression_integral)
3088                      << FilterExpr->getType());
3089   }
3090 
3091   return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
3092 }
3093 
3094 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)3095 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
3096                            Stmt *Block) {
3097   assert(Block);
3098   return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
3099 }
3100 
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)3101 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3102                                             bool IsIfExists,
3103                                             NestedNameSpecifierLoc QualifierLoc,
3104                                             DeclarationNameInfo NameInfo,
3105                                             Stmt *Nested)
3106 {
3107   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3108                                              QualifierLoc, NameInfo,
3109                                              cast<CompoundStmt>(Nested));
3110 }
3111 
3112 
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)3113 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3114                                             bool IsIfExists,
3115                                             CXXScopeSpec &SS,
3116                                             UnqualifiedId &Name,
3117                                             Stmt *Nested) {
3118   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3119                                     SS.getWithLocInContext(Context),
3120                                     GetNameFromUnqualifiedId(Name),
3121                                     Nested);
3122 }
3123 
3124 RecordDecl*
CreateCapturedStmtRecordDecl(CapturedDecl * & CD,SourceLocation Loc,unsigned NumParams)3125 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3126                                    unsigned NumParams) {
3127   DeclContext *DC = CurContext;
3128   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3129     DC = DC->getParent();
3130 
3131   RecordDecl *RD = 0;
3132   if (getLangOpts().CPlusPlus)
3133     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0);
3134   else
3135     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0);
3136 
3137   DC->addDecl(RD);
3138   RD->setImplicit();
3139   RD->startDefinition();
3140 
3141   CD = CapturedDecl::Create(Context, CurContext, NumParams);
3142   DC->addDecl(CD);
3143 
3144   // Build the context parameter
3145   assert(NumParams > 0 && "CapturedStmt requires context parameter");
3146   DC = CapturedDecl::castToDeclContext(CD);
3147   IdentifierInfo *VarName = &Context.Idents.get("__context");
3148   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3149   ImplicitParamDecl *Param
3150     = ImplicitParamDecl::Create(Context, DC, Loc, VarName, ParamType);
3151   DC->addDecl(Param);
3152 
3153   CD->setContextParam(Param);
3154 
3155   return RD;
3156 }
3157 
buildCapturedStmtCaptureList(SmallVectorImpl<CapturedStmt::Capture> & Captures,SmallVectorImpl<Expr * > & CaptureInits,ArrayRef<CapturingScopeInfo::Capture> Candidates)3158 static void buildCapturedStmtCaptureList(
3159     SmallVectorImpl<CapturedStmt::Capture> &Captures,
3160     SmallVectorImpl<Expr *> &CaptureInits,
3161     ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3162 
3163   typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3164   for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3165 
3166     if (Cap->isThisCapture()) {
3167       Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3168                                                CapturedStmt::VCK_This));
3169       CaptureInits.push_back(Cap->getInitExpr());
3170       continue;
3171     }
3172 
3173     assert(Cap->isReferenceCapture() &&
3174            "non-reference capture not yet implemented");
3175 
3176     Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3177                                              CapturedStmt::VCK_ByRef,
3178                                              Cap->getVariable()));
3179     CaptureInits.push_back(Cap->getInitExpr());
3180   }
3181 }
3182 
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,unsigned NumParams)3183 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3184                                     CapturedRegionKind Kind,
3185                                     unsigned NumParams) {
3186   CapturedDecl *CD = 0;
3187   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3188 
3189   // Enter the capturing scope for this captured region.
3190   PushCapturedRegionScope(CurScope, CD, RD, Kind);
3191 
3192   if (CurScope)
3193     PushDeclContext(CurScope, CD);
3194   else
3195     CurContext = CD;
3196 
3197   PushExpressionEvaluationContext(PotentiallyEvaluated);
3198 }
3199 
ActOnCapturedRegionError()3200 void Sema::ActOnCapturedRegionError() {
3201   DiscardCleanupsInEvaluationContext();
3202   PopExpressionEvaluationContext();
3203 
3204   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3205   RecordDecl *Record = RSI->TheRecordDecl;
3206   Record->setInvalidDecl();
3207 
3208   SmallVector<Decl*, 4> Fields;
3209   for (RecordDecl::field_iterator I = Record->field_begin(),
3210                                   E = Record->field_end(); I != E; ++I)
3211     Fields.push_back(*I);
3212   ActOnFields(/*Scope=*/0, Record->getLocation(), Record, Fields,
3213               SourceLocation(), SourceLocation(), /*AttributeList=*/0);
3214 
3215   PopDeclContext();
3216   PopFunctionScopeInfo();
3217 }
3218 
ActOnCapturedRegionEnd(Stmt * S)3219 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3220   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3221 
3222   SmallVector<CapturedStmt::Capture, 4> Captures;
3223   SmallVector<Expr *, 4> CaptureInits;
3224   buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3225 
3226   CapturedDecl *CD = RSI->TheCapturedDecl;
3227   RecordDecl *RD = RSI->TheRecordDecl;
3228 
3229   CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3230                                            RSI->CapRegionKind, Captures,
3231                                            CaptureInits, CD, RD);
3232 
3233   CD->setBody(Res->getCapturedStmt());
3234   RD->completeDefinition();
3235 
3236   DiscardCleanupsInEvaluationContext();
3237   PopExpressionEvaluationContext();
3238 
3239   PopDeclContext();
3240   PopFunctionScopeInfo();
3241 
3242   return Owned(Res);
3243 }
3244