• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "hydrogen.h"
29 
30 #include <algorithm>
31 
32 #include "v8.h"
33 #include "allocation-site-scopes.h"
34 #include "codegen.h"
35 #include "full-codegen.h"
36 #include "hashmap.h"
37 #include "hydrogen-bce.h"
38 #include "hydrogen-bch.h"
39 #include "hydrogen-canonicalize.h"
40 #include "hydrogen-check-elimination.h"
41 #include "hydrogen-dce.h"
42 #include "hydrogen-dehoist.h"
43 #include "hydrogen-environment-liveness.h"
44 #include "hydrogen-escape-analysis.h"
45 #include "hydrogen-infer-representation.h"
46 #include "hydrogen-infer-types.h"
47 #include "hydrogen-load-elimination.h"
48 #include "hydrogen-gvn.h"
49 #include "hydrogen-mark-deoptimize.h"
50 #include "hydrogen-mark-unreachable.h"
51 #include "hydrogen-minus-zero.h"
52 #include "hydrogen-osr.h"
53 #include "hydrogen-range-analysis.h"
54 #include "hydrogen-redundant-phi.h"
55 #include "hydrogen-removable-simulates.h"
56 #include "hydrogen-representation-changes.h"
57 #include "hydrogen-sce.h"
58 #include "hydrogen-uint32-analysis.h"
59 #include "lithium-allocator.h"
60 #include "parser.h"
61 #include "runtime.h"
62 #include "scopeinfo.h"
63 #include "scopes.h"
64 #include "stub-cache.h"
65 #include "typing.h"
66 
67 #if V8_TARGET_ARCH_IA32
68 #include "ia32/lithium-codegen-ia32.h"
69 #elif V8_TARGET_ARCH_X64
70 #include "x64/lithium-codegen-x64.h"
71 #elif V8_TARGET_ARCH_ARM
72 #include "arm/lithium-codegen-arm.h"
73 #elif V8_TARGET_ARCH_MIPS
74 #include "mips/lithium-codegen-mips.h"
75 #else
76 #error Unsupported target architecture.
77 #endif
78 
79 namespace v8 {
80 namespace internal {
81 
HBasicBlock(HGraph * graph)82 HBasicBlock::HBasicBlock(HGraph* graph)
83     : block_id_(graph->GetNextBlockID()),
84       graph_(graph),
85       phis_(4, graph->zone()),
86       first_(NULL),
87       last_(NULL),
88       end_(NULL),
89       loop_information_(NULL),
90       predecessors_(2, graph->zone()),
91       dominator_(NULL),
92       dominated_blocks_(4, graph->zone()),
93       last_environment_(NULL),
94       argument_count_(-1),
95       first_instruction_index_(-1),
96       last_instruction_index_(-1),
97       deleted_phis_(4, graph->zone()),
98       parent_loop_header_(NULL),
99       inlined_entry_block_(NULL),
100       is_inline_return_target_(false),
101       is_reachable_(true),
102       dominates_loop_successors_(false),
103       is_osr_entry_(false) { }
104 
105 
isolate() const106 Isolate* HBasicBlock::isolate() const {
107   return graph_->isolate();
108 }
109 
110 
MarkUnreachable()111 void HBasicBlock::MarkUnreachable() {
112   is_reachable_ = false;
113 }
114 
115 
AttachLoopInformation()116 void HBasicBlock::AttachLoopInformation() {
117   ASSERT(!IsLoopHeader());
118   loop_information_ = new(zone()) HLoopInformation(this, zone());
119 }
120 
121 
DetachLoopInformation()122 void HBasicBlock::DetachLoopInformation() {
123   ASSERT(IsLoopHeader());
124   loop_information_ = NULL;
125 }
126 
127 
AddPhi(HPhi * phi)128 void HBasicBlock::AddPhi(HPhi* phi) {
129   ASSERT(!IsStartBlock());
130   phis_.Add(phi, zone());
131   phi->SetBlock(this);
132 }
133 
134 
RemovePhi(HPhi * phi)135 void HBasicBlock::RemovePhi(HPhi* phi) {
136   ASSERT(phi->block() == this);
137   ASSERT(phis_.Contains(phi));
138   phi->Kill();
139   phis_.RemoveElement(phi);
140   phi->SetBlock(NULL);
141 }
142 
143 
AddInstruction(HInstruction * instr,int position)144 void HBasicBlock::AddInstruction(HInstruction* instr, int position) {
145   ASSERT(!IsStartBlock() || !IsFinished());
146   ASSERT(!instr->IsLinked());
147   ASSERT(!IsFinished());
148 
149   if (position != RelocInfo::kNoPosition) {
150     instr->set_position(position);
151   }
152   if (first_ == NULL) {
153     ASSERT(last_environment() != NULL);
154     ASSERT(!last_environment()->ast_id().IsNone());
155     HBlockEntry* entry = new(zone()) HBlockEntry();
156     entry->InitializeAsFirst(this);
157     if (position != RelocInfo::kNoPosition) {
158       entry->set_position(position);
159     } else {
160       ASSERT(!FLAG_emit_opt_code_positions ||
161              !graph()->info()->IsOptimizing());
162     }
163     first_ = last_ = entry;
164   }
165   instr->InsertAfter(last_);
166 }
167 
168 
AddNewPhi(int merged_index)169 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
170   if (graph()->IsInsideNoSideEffectsScope()) {
171     merged_index = HPhi::kInvalidMergedIndex;
172   }
173   HPhi* phi = new(zone()) HPhi(merged_index, zone());
174   AddPhi(phi);
175   return phi;
176 }
177 
178 
CreateSimulate(BailoutId ast_id,RemovableSimulate removable)179 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
180                                        RemovableSimulate removable) {
181   ASSERT(HasEnvironment());
182   HEnvironment* environment = last_environment();
183   ASSERT(ast_id.IsNone() ||
184          ast_id == BailoutId::StubEntry() ||
185          environment->closure()->shared()->VerifyBailoutId(ast_id));
186 
187   int push_count = environment->push_count();
188   int pop_count = environment->pop_count();
189 
190   HSimulate* instr =
191       new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
192 #ifdef DEBUG
193   instr->set_closure(environment->closure());
194 #endif
195   // Order of pushed values: newest (top of stack) first. This allows
196   // HSimulate::MergeWith() to easily append additional pushed values
197   // that are older (from further down the stack).
198   for (int i = 0; i < push_count; ++i) {
199     instr->AddPushedValue(environment->ExpressionStackAt(i));
200   }
201   for (GrowableBitVector::Iterator it(environment->assigned_variables(),
202                                       zone());
203        !it.Done();
204        it.Advance()) {
205     int index = it.Current();
206     instr->AddAssignedValue(index, environment->Lookup(index));
207   }
208   environment->ClearHistory();
209   return instr;
210 }
211 
212 
Finish(HControlInstruction * end,int position)213 void HBasicBlock::Finish(HControlInstruction* end, int position) {
214   ASSERT(!IsFinished());
215   AddInstruction(end, position);
216   end_ = end;
217   for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
218     it.Current()->RegisterPredecessor(this);
219   }
220 }
221 
222 
Goto(HBasicBlock * block,int position,FunctionState * state,bool add_simulate)223 void HBasicBlock::Goto(HBasicBlock* block,
224                        int position,
225                        FunctionState* state,
226                        bool add_simulate) {
227   bool drop_extra = state != NULL &&
228       state->inlining_kind() == DROP_EXTRA_ON_RETURN;
229 
230   if (block->IsInlineReturnTarget()) {
231     HEnvironment* env = last_environment();
232     int argument_count = env->arguments_environment()->parameter_count();
233     AddInstruction(new(zone())
234                    HLeaveInlined(state->entry(), argument_count),
235                    position);
236     UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
237   }
238 
239   if (add_simulate) AddNewSimulate(BailoutId::None(), position);
240   HGoto* instr = new(zone()) HGoto(block);
241   Finish(instr, position);
242 }
243 
244 
AddLeaveInlined(HValue * return_value,FunctionState * state,int position)245 void HBasicBlock::AddLeaveInlined(HValue* return_value,
246                                   FunctionState* state,
247                                   int position) {
248   HBasicBlock* target = state->function_return();
249   bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN;
250 
251   ASSERT(target->IsInlineReturnTarget());
252   ASSERT(return_value != NULL);
253   HEnvironment* env = last_environment();
254   int argument_count = env->arguments_environment()->parameter_count();
255   AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
256                  position);
257   UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
258   last_environment()->Push(return_value);
259   AddNewSimulate(BailoutId::None(), position);
260   HGoto* instr = new(zone()) HGoto(target);
261   Finish(instr, position);
262 }
263 
264 
SetInitialEnvironment(HEnvironment * env)265 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
266   ASSERT(!HasEnvironment());
267   ASSERT(first() == NULL);
268   UpdateEnvironment(env);
269 }
270 
271 
UpdateEnvironment(HEnvironment * env)272 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
273   last_environment_ = env;
274   graph()->update_maximum_environment_size(env->first_expression_index());
275 }
276 
277 
SetJoinId(BailoutId ast_id)278 void HBasicBlock::SetJoinId(BailoutId ast_id) {
279   int length = predecessors_.length();
280   ASSERT(length > 0);
281   for (int i = 0; i < length; i++) {
282     HBasicBlock* predecessor = predecessors_[i];
283     ASSERT(predecessor->end()->IsGoto());
284     HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
285     ASSERT(i != 0 ||
286            (predecessor->last_environment()->closure().is_null() ||
287             predecessor->last_environment()->closure()->shared()
288               ->VerifyBailoutId(ast_id)));
289     simulate->set_ast_id(ast_id);
290     predecessor->last_environment()->set_ast_id(ast_id);
291   }
292 }
293 
294 
Dominates(HBasicBlock * other) const295 bool HBasicBlock::Dominates(HBasicBlock* other) const {
296   HBasicBlock* current = other->dominator();
297   while (current != NULL) {
298     if (current == this) return true;
299     current = current->dominator();
300   }
301   return false;
302 }
303 
304 
LoopNestingDepth() const305 int HBasicBlock::LoopNestingDepth() const {
306   const HBasicBlock* current = this;
307   int result  = (current->IsLoopHeader()) ? 1 : 0;
308   while (current->parent_loop_header() != NULL) {
309     current = current->parent_loop_header();
310     result++;
311   }
312   return result;
313 }
314 
315 
PostProcessLoopHeader(IterationStatement * stmt)316 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
317   ASSERT(IsLoopHeader());
318 
319   SetJoinId(stmt->EntryId());
320   if (predecessors()->length() == 1) {
321     // This is a degenerated loop.
322     DetachLoopInformation();
323     return;
324   }
325 
326   // Only the first entry into the loop is from outside the loop. All other
327   // entries must be back edges.
328   for (int i = 1; i < predecessors()->length(); ++i) {
329     loop_information()->RegisterBackEdge(predecessors()->at(i));
330   }
331 }
332 
333 
RegisterPredecessor(HBasicBlock * pred)334 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
335   if (HasPredecessor()) {
336     // Only loop header blocks can have a predecessor added after
337     // instructions have been added to the block (they have phis for all
338     // values in the environment, these phis may be eliminated later).
339     ASSERT(IsLoopHeader() || first_ == NULL);
340     HEnvironment* incoming_env = pred->last_environment();
341     if (IsLoopHeader()) {
342       ASSERT(phis()->length() == incoming_env->length());
343       for (int i = 0; i < phis_.length(); ++i) {
344         phis_[i]->AddInput(incoming_env->values()->at(i));
345       }
346     } else {
347       last_environment()->AddIncomingEdge(this, pred->last_environment());
348     }
349   } else if (!HasEnvironment() && !IsFinished()) {
350     ASSERT(!IsLoopHeader());
351     SetInitialEnvironment(pred->last_environment()->Copy());
352   }
353 
354   predecessors_.Add(pred, zone());
355 }
356 
357 
AddDominatedBlock(HBasicBlock * block)358 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
359   ASSERT(!dominated_blocks_.Contains(block));
360   // Keep the list of dominated blocks sorted such that if there is two
361   // succeeding block in this list, the predecessor is before the successor.
362   int index = 0;
363   while (index < dominated_blocks_.length() &&
364          dominated_blocks_[index]->block_id() < block->block_id()) {
365     ++index;
366   }
367   dominated_blocks_.InsertAt(index, block, zone());
368 }
369 
370 
AssignCommonDominator(HBasicBlock * other)371 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
372   if (dominator_ == NULL) {
373     dominator_ = other;
374     other->AddDominatedBlock(this);
375   } else if (other->dominator() != NULL) {
376     HBasicBlock* first = dominator_;
377     HBasicBlock* second = other;
378 
379     while (first != second) {
380       if (first->block_id() > second->block_id()) {
381         first = first->dominator();
382       } else {
383         second = second->dominator();
384       }
385       ASSERT(first != NULL && second != NULL);
386     }
387 
388     if (dominator_ != first) {
389       ASSERT(dominator_->dominated_blocks_.Contains(this));
390       dominator_->dominated_blocks_.RemoveElement(this);
391       dominator_ = first;
392       first->AddDominatedBlock(this);
393     }
394   }
395 }
396 
397 
AssignLoopSuccessorDominators()398 void HBasicBlock::AssignLoopSuccessorDominators() {
399   // Mark blocks that dominate all subsequent reachable blocks inside their
400   // loop. Exploit the fact that blocks are sorted in reverse post order. When
401   // the loop is visited in increasing block id order, if the number of
402   // non-loop-exiting successor edges at the dominator_candidate block doesn't
403   // exceed the number of previously encountered predecessor edges, there is no
404   // path from the loop header to any block with higher id that doesn't go
405   // through the dominator_candidate block. In this case, the
406   // dominator_candidate block is guaranteed to dominate all blocks reachable
407   // from it with higher ids.
408   HBasicBlock* last = loop_information()->GetLastBackEdge();
409   int outstanding_successors = 1;  // one edge from the pre-header
410   // Header always dominates everything.
411   MarkAsLoopSuccessorDominator();
412   for (int j = block_id(); j <= last->block_id(); ++j) {
413     HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
414     for (HPredecessorIterator it(dominator_candidate); !it.Done();
415          it.Advance()) {
416       HBasicBlock* predecessor = it.Current();
417       // Don't count back edges.
418       if (predecessor->block_id() < dominator_candidate->block_id()) {
419         outstanding_successors--;
420       }
421     }
422 
423     // If more successors than predecessors have been seen in the loop up to
424     // now, it's not possible to guarantee that the current block dominates
425     // all of the blocks with higher IDs. In this case, assume conservatively
426     // that those paths through loop that don't go through the current block
427     // contain all of the loop's dependencies. Also be careful to record
428     // dominator information about the current loop that's being processed,
429     // and not nested loops, which will be processed when
430     // AssignLoopSuccessorDominators gets called on their header.
431     ASSERT(outstanding_successors >= 0);
432     HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
433     if (outstanding_successors == 0 &&
434         (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
435       dominator_candidate->MarkAsLoopSuccessorDominator();
436     }
437     HControlInstruction* end = dominator_candidate->end();
438     for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
439       HBasicBlock* successor = it.Current();
440       // Only count successors that remain inside the loop and don't loop back
441       // to a loop header.
442       if (successor->block_id() > dominator_candidate->block_id() &&
443           successor->block_id() <= last->block_id()) {
444         // Backwards edges must land on loop headers.
445         ASSERT(successor->block_id() > dominator_candidate->block_id() ||
446                successor->IsLoopHeader());
447         outstanding_successors++;
448       }
449     }
450   }
451 }
452 
453 
PredecessorIndexOf(HBasicBlock * predecessor) const454 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
455   for (int i = 0; i < predecessors_.length(); ++i) {
456     if (predecessors_[i] == predecessor) return i;
457   }
458   UNREACHABLE();
459   return -1;
460 }
461 
462 
463 #ifdef DEBUG
Verify()464 void HBasicBlock::Verify() {
465   // Check that every block is finished.
466   ASSERT(IsFinished());
467   ASSERT(block_id() >= 0);
468 
469   // Check that the incoming edges are in edge split form.
470   if (predecessors_.length() > 1) {
471     for (int i = 0; i < predecessors_.length(); ++i) {
472       ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
473     }
474   }
475 }
476 #endif
477 
478 
RegisterBackEdge(HBasicBlock * block)479 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
480   this->back_edges_.Add(block, block->zone());
481   AddBlock(block);
482 }
483 
484 
GetLastBackEdge() const485 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
486   int max_id = -1;
487   HBasicBlock* result = NULL;
488   for (int i = 0; i < back_edges_.length(); ++i) {
489     HBasicBlock* cur = back_edges_[i];
490     if (cur->block_id() > max_id) {
491       max_id = cur->block_id();
492       result = cur;
493     }
494   }
495   return result;
496 }
497 
498 
AddBlock(HBasicBlock * block)499 void HLoopInformation::AddBlock(HBasicBlock* block) {
500   if (block == loop_header()) return;
501   if (block->parent_loop_header() == loop_header()) return;
502   if (block->parent_loop_header() != NULL) {
503     AddBlock(block->parent_loop_header());
504   } else {
505     block->set_parent_loop_header(loop_header());
506     blocks_.Add(block, block->zone());
507     for (int i = 0; i < block->predecessors()->length(); ++i) {
508       AddBlock(block->predecessors()->at(i));
509     }
510   }
511 }
512 
513 
514 #ifdef DEBUG
515 
516 // Checks reachability of the blocks in this graph and stores a bit in
517 // the BitVector "reachable()" for every block that can be reached
518 // from the start block of the graph. If "dont_visit" is non-null, the given
519 // block is treated as if it would not be part of the graph. "visited_count()"
520 // returns the number of reachable blocks.
521 class ReachabilityAnalyzer BASE_EMBEDDED {
522  public:
ReachabilityAnalyzer(HBasicBlock * entry_block,int block_count,HBasicBlock * dont_visit)523   ReachabilityAnalyzer(HBasicBlock* entry_block,
524                        int block_count,
525                        HBasicBlock* dont_visit)
526       : visited_count_(0),
527         stack_(16, entry_block->zone()),
528         reachable_(block_count, entry_block->zone()),
529         dont_visit_(dont_visit) {
530     PushBlock(entry_block);
531     Analyze();
532   }
533 
visited_count() const534   int visited_count() const { return visited_count_; }
reachable() const535   const BitVector* reachable() const { return &reachable_; }
536 
537  private:
PushBlock(HBasicBlock * block)538   void PushBlock(HBasicBlock* block) {
539     if (block != NULL && block != dont_visit_ &&
540         !reachable_.Contains(block->block_id())) {
541       reachable_.Add(block->block_id());
542       stack_.Add(block, block->zone());
543       visited_count_++;
544     }
545   }
546 
Analyze()547   void Analyze() {
548     while (!stack_.is_empty()) {
549       HControlInstruction* end = stack_.RemoveLast()->end();
550       for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
551         PushBlock(it.Current());
552       }
553     }
554   }
555 
556   int visited_count_;
557   ZoneList<HBasicBlock*> stack_;
558   BitVector reachable_;
559   HBasicBlock* dont_visit_;
560 };
561 
562 
Verify(bool do_full_verify) const563 void HGraph::Verify(bool do_full_verify) const {
564   Heap::RelocationLock relocation_lock(isolate()->heap());
565   AllowHandleDereference allow_deref;
566   AllowDeferredHandleDereference allow_deferred_deref;
567   for (int i = 0; i < blocks_.length(); i++) {
568     HBasicBlock* block = blocks_.at(i);
569 
570     block->Verify();
571 
572     // Check that every block contains at least one node and that only the last
573     // node is a control instruction.
574     HInstruction* current = block->first();
575     ASSERT(current != NULL && current->IsBlockEntry());
576     while (current != NULL) {
577       ASSERT((current->next() == NULL) == current->IsControlInstruction());
578       ASSERT(current->block() == block);
579       current->Verify();
580       current = current->next();
581     }
582 
583     // Check that successors are correctly set.
584     HBasicBlock* first = block->end()->FirstSuccessor();
585     HBasicBlock* second = block->end()->SecondSuccessor();
586     ASSERT(second == NULL || first != NULL);
587 
588     // Check that the predecessor array is correct.
589     if (first != NULL) {
590       ASSERT(first->predecessors()->Contains(block));
591       if (second != NULL) {
592         ASSERT(second->predecessors()->Contains(block));
593       }
594     }
595 
596     // Check that phis have correct arguments.
597     for (int j = 0; j < block->phis()->length(); j++) {
598       HPhi* phi = block->phis()->at(j);
599       phi->Verify();
600     }
601 
602     // Check that all join blocks have predecessors that end with an
603     // unconditional goto and agree on their environment node id.
604     if (block->predecessors()->length() >= 2) {
605       BailoutId id =
606           block->predecessors()->first()->last_environment()->ast_id();
607       for (int k = 0; k < block->predecessors()->length(); k++) {
608         HBasicBlock* predecessor = block->predecessors()->at(k);
609         ASSERT(predecessor->end()->IsGoto() ||
610                predecessor->end()->IsDeoptimize());
611         ASSERT(predecessor->last_environment()->ast_id() == id);
612       }
613     }
614   }
615 
616   // Check special property of first block to have no predecessors.
617   ASSERT(blocks_.at(0)->predecessors()->is_empty());
618 
619   if (do_full_verify) {
620     // Check that the graph is fully connected.
621     ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
622     ASSERT(analyzer.visited_count() == blocks_.length());
623 
624     // Check that entry block dominator is NULL.
625     ASSERT(entry_block_->dominator() == NULL);
626 
627     // Check dominators.
628     for (int i = 0; i < blocks_.length(); ++i) {
629       HBasicBlock* block = blocks_.at(i);
630       if (block->dominator() == NULL) {
631         // Only start block may have no dominator assigned to.
632         ASSERT(i == 0);
633       } else {
634         // Assert that block is unreachable if dominator must not be visited.
635         ReachabilityAnalyzer dominator_analyzer(entry_block_,
636                                                 blocks_.length(),
637                                                 block->dominator());
638         ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
639       }
640     }
641   }
642 }
643 
644 #endif
645 
646 
GetConstant(SetOncePointer<HConstant> * pointer,int32_t value)647 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
648                                int32_t value) {
649   if (!pointer->is_set()) {
650     // Can't pass GetInvalidContext() to HConstant::New, because that will
651     // recursively call GetConstant
652     HConstant* constant = HConstant::New(zone(), NULL, value);
653     constant->InsertAfter(entry_block()->first());
654     pointer->set(constant);
655     return constant;
656   }
657   return ReinsertConstantIfNecessary(pointer->get());
658 }
659 
660 
ReinsertConstantIfNecessary(HConstant * constant)661 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
662   if (!constant->IsLinked()) {
663     // The constant was removed from the graph. Reinsert.
664     constant->ClearFlag(HValue::kIsDead);
665     constant->InsertAfter(entry_block()->first());
666   }
667   return constant;
668 }
669 
670 
GetConstant0()671 HConstant* HGraph::GetConstant0() {
672   return GetConstant(&constant_0_, 0);
673 }
674 
675 
GetConstant1()676 HConstant* HGraph::GetConstant1() {
677   return GetConstant(&constant_1_, 1);
678 }
679 
680 
GetConstantMinus1()681 HConstant* HGraph::GetConstantMinus1() {
682   return GetConstant(&constant_minus1_, -1);
683 }
684 
685 
686 #define DEFINE_GET_CONSTANT(Name, name, htype, boolean_value)                  \
687 HConstant* HGraph::GetConstant##Name() {                                       \
688   if (!constant_##name##_.is_set()) {                                          \
689     HConstant* constant = new(zone()) HConstant(                               \
690         Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
691         Representation::Tagged(),                                              \
692         htype,                                                                 \
693         false,                                                                 \
694         true,                                                                  \
695         false,                                                                 \
696         boolean_value);                                                        \
697     constant->InsertAfter(entry_block()->first());                             \
698     constant_##name##_.set(constant);                                          \
699   }                                                                            \
700   return ReinsertConstantIfNecessary(constant_##name##_.get());                \
701 }
702 
703 
DEFINE_GET_CONSTANT(Undefined,undefined,HType::Tagged (),false)704 DEFINE_GET_CONSTANT(Undefined, undefined, HType::Tagged(), false)
705 DEFINE_GET_CONSTANT(True, true, HType::Boolean(), true)
706 DEFINE_GET_CONSTANT(False, false, HType::Boolean(), false)
707 DEFINE_GET_CONSTANT(Hole, the_hole, HType::Tagged(), false)
708 DEFINE_GET_CONSTANT(Null, null, HType::Tagged(), false)
709 
710 
711 #undef DEFINE_GET_CONSTANT
712 
713 #define DEFINE_IS_CONSTANT(Name, name)                                         \
714 bool HGraph::IsConstant##Name(HConstant* constant) {                           \
715   return constant_##name##_.is_set() && constant == constant_##name##_.get();  \
716 }
717 DEFINE_IS_CONSTANT(Undefined, undefined)
718 DEFINE_IS_CONSTANT(0, 0)
719 DEFINE_IS_CONSTANT(1, 1)
720 DEFINE_IS_CONSTANT(Minus1, minus1)
721 DEFINE_IS_CONSTANT(True, true)
722 DEFINE_IS_CONSTANT(False, false)
723 DEFINE_IS_CONSTANT(Hole, the_hole)
724 DEFINE_IS_CONSTANT(Null, null)
725 
726 #undef DEFINE_IS_CONSTANT
727 
728 
729 HConstant* HGraph::GetInvalidContext() {
730   return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
731 }
732 
733 
IsStandardConstant(HConstant * constant)734 bool HGraph::IsStandardConstant(HConstant* constant) {
735   if (IsConstantUndefined(constant)) return true;
736   if (IsConstant0(constant)) return true;
737   if (IsConstant1(constant)) return true;
738   if (IsConstantMinus1(constant)) return true;
739   if (IsConstantTrue(constant)) return true;
740   if (IsConstantFalse(constant)) return true;
741   if (IsConstantHole(constant)) return true;
742   if (IsConstantNull(constant)) return true;
743   return false;
744 }
745 
746 
IfBuilder(HGraphBuilder * builder)747 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
748     : builder_(builder),
749       finished_(false),
750       did_then_(false),
751       did_else_(false),
752       did_else_if_(false),
753       did_and_(false),
754       did_or_(false),
755       captured_(false),
756       needs_compare_(true),
757       pending_merge_block_(false),
758       split_edge_merge_block_(NULL),
759       merge_at_join_blocks_(NULL),
760       normal_merge_at_join_block_count_(0),
761       deopt_merge_at_join_block_count_(0) {
762   HEnvironment* env = builder->environment();
763   first_true_block_ = builder->CreateBasicBlock(env->Copy());
764   first_false_block_ = builder->CreateBasicBlock(env->Copy());
765 }
766 
767 
IfBuilder(HGraphBuilder * builder,HIfContinuation * continuation)768 HGraphBuilder::IfBuilder::IfBuilder(
769     HGraphBuilder* builder,
770     HIfContinuation* continuation)
771     : builder_(builder),
772       finished_(false),
773       did_then_(false),
774       did_else_(false),
775       did_else_if_(false),
776       did_and_(false),
777       did_or_(false),
778       captured_(false),
779       needs_compare_(false),
780       pending_merge_block_(false),
781       first_true_block_(NULL),
782       first_false_block_(NULL),
783       split_edge_merge_block_(NULL),
784       merge_at_join_blocks_(NULL),
785       normal_merge_at_join_block_count_(0),
786       deopt_merge_at_join_block_count_(0) {
787   continuation->Continue(&first_true_block_,
788                          &first_false_block_);
789 }
790 
791 
AddCompare(HControlInstruction * compare)792 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
793     HControlInstruction* compare) {
794   ASSERT(did_then_ == did_else_);
795   if (did_else_) {
796     // Handle if-then-elseif
797     did_else_if_ = true;
798     did_else_ = false;
799     did_then_ = false;
800     did_and_ = false;
801     did_or_ = false;
802     pending_merge_block_ = false;
803     split_edge_merge_block_ = NULL;
804     HEnvironment* env = builder_->environment();
805     first_true_block_ = builder_->CreateBasicBlock(env->Copy());
806     first_false_block_ = builder_->CreateBasicBlock(env->Copy());
807   }
808   if (split_edge_merge_block_ != NULL) {
809     HEnvironment* env = first_false_block_->last_environment();
810     HBasicBlock* split_edge =
811         builder_->CreateBasicBlock(env->Copy());
812     if (did_or_) {
813       compare->SetSuccessorAt(0, split_edge);
814       compare->SetSuccessorAt(1, first_false_block_);
815     } else {
816       compare->SetSuccessorAt(0, first_true_block_);
817       compare->SetSuccessorAt(1, split_edge);
818     }
819     builder_->GotoNoSimulate(split_edge, split_edge_merge_block_);
820   } else {
821     compare->SetSuccessorAt(0, first_true_block_);
822     compare->SetSuccessorAt(1, first_false_block_);
823   }
824   builder_->FinishCurrentBlock(compare);
825   needs_compare_ = false;
826   return compare;
827 }
828 
829 
Or()830 void HGraphBuilder::IfBuilder::Or() {
831   ASSERT(!needs_compare_);
832   ASSERT(!did_and_);
833   did_or_ = true;
834   HEnvironment* env = first_false_block_->last_environment();
835   if (split_edge_merge_block_ == NULL) {
836     split_edge_merge_block_ =
837         builder_->CreateBasicBlock(env->Copy());
838     builder_->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
839     first_true_block_ = split_edge_merge_block_;
840   }
841   builder_->set_current_block(first_false_block_);
842   first_false_block_ = builder_->CreateBasicBlock(env->Copy());
843 }
844 
845 
And()846 void HGraphBuilder::IfBuilder::And() {
847   ASSERT(!needs_compare_);
848   ASSERT(!did_or_);
849   did_and_ = true;
850   HEnvironment* env = first_false_block_->last_environment();
851   if (split_edge_merge_block_ == NULL) {
852     split_edge_merge_block_ = builder_->CreateBasicBlock(env->Copy());
853     builder_->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
854     first_false_block_ = split_edge_merge_block_;
855   }
856   builder_->set_current_block(first_true_block_);
857   first_true_block_ = builder_->CreateBasicBlock(env->Copy());
858 }
859 
860 
CaptureContinuation(HIfContinuation * continuation)861 void HGraphBuilder::IfBuilder::CaptureContinuation(
862     HIfContinuation* continuation) {
863   ASSERT(!did_else_if_);
864   ASSERT(!finished_);
865   ASSERT(!captured_);
866 
867   HBasicBlock* true_block = NULL;
868   HBasicBlock* false_block = NULL;
869   Finish(&true_block, &false_block);
870   ASSERT(true_block != NULL);
871   ASSERT(false_block != NULL);
872   continuation->Capture(true_block, false_block);
873   captured_ = true;
874   builder_->set_current_block(NULL);
875   End();
876 }
877 
878 
JoinContinuation(HIfContinuation * continuation)879 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
880   ASSERT(!did_else_if_);
881   ASSERT(!finished_);
882   ASSERT(!captured_);
883   HBasicBlock* true_block = NULL;
884   HBasicBlock* false_block = NULL;
885   Finish(&true_block, &false_block);
886   merge_at_join_blocks_ = NULL;
887   if (true_block != NULL && !true_block->IsFinished()) {
888     ASSERT(continuation->IsTrueReachable());
889     builder_->GotoNoSimulate(true_block, continuation->true_branch());
890   }
891   if (false_block != NULL && !false_block->IsFinished()) {
892     ASSERT(continuation->IsFalseReachable());
893     builder_->GotoNoSimulate(false_block, continuation->false_branch());
894   }
895   captured_ = true;
896   End();
897 }
898 
899 
Then()900 void HGraphBuilder::IfBuilder::Then() {
901   ASSERT(!captured_);
902   ASSERT(!finished_);
903   did_then_ = true;
904   if (needs_compare_) {
905     // Handle if's without any expressions, they jump directly to the "else"
906     // branch. However, we must pretend that the "then" branch is reachable,
907     // so that the graph builder visits it and sees any live range extending
908     // constructs within it.
909     HConstant* constant_false = builder_->graph()->GetConstantFalse();
910     ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
911     boolean_type.Add(ToBooleanStub::BOOLEAN);
912     HBranch* branch = builder()->New<HBranch>(
913         constant_false, boolean_type, first_true_block_, first_false_block_);
914     builder_->FinishCurrentBlock(branch);
915   }
916   builder_->set_current_block(first_true_block_);
917   pending_merge_block_ = true;
918 }
919 
920 
Else()921 void HGraphBuilder::IfBuilder::Else() {
922   ASSERT(did_then_);
923   ASSERT(!captured_);
924   ASSERT(!finished_);
925   AddMergeAtJoinBlock(false);
926   builder_->set_current_block(first_false_block_);
927   pending_merge_block_ = true;
928   did_else_ = true;
929 }
930 
931 
Deopt(const char * reason)932 void HGraphBuilder::IfBuilder::Deopt(const char* reason) {
933   ASSERT(did_then_);
934   builder_->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
935   AddMergeAtJoinBlock(true);
936 }
937 
938 
Return(HValue * value)939 void HGraphBuilder::IfBuilder::Return(HValue* value) {
940   HValue* parameter_count = builder_->graph()->GetConstantMinus1();
941   builder_->FinishExitCurrentBlock(
942       builder_->New<HReturn>(value, parameter_count));
943   AddMergeAtJoinBlock(false);
944 }
945 
946 
AddMergeAtJoinBlock(bool deopt)947 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
948   if (!pending_merge_block_) return;
949   HBasicBlock* block = builder_->current_block();
950   ASSERT(block == NULL || !block->IsFinished());
951   MergeAtJoinBlock* record =
952       new(builder_->zone()) MergeAtJoinBlock(block, deopt,
953                                              merge_at_join_blocks_);
954   merge_at_join_blocks_ = record;
955   if (block != NULL) {
956     ASSERT(block->end() == NULL);
957     if (deopt) {
958       normal_merge_at_join_block_count_++;
959     } else {
960       deopt_merge_at_join_block_count_++;
961     }
962   }
963   builder_->set_current_block(NULL);
964   pending_merge_block_ = false;
965 }
966 
967 
Finish()968 void HGraphBuilder::IfBuilder::Finish() {
969   ASSERT(!finished_);
970   if (!did_then_) {
971     Then();
972   }
973   AddMergeAtJoinBlock(false);
974   if (!did_else_) {
975     Else();
976     AddMergeAtJoinBlock(false);
977   }
978   finished_ = true;
979 }
980 
981 
Finish(HBasicBlock ** then_continuation,HBasicBlock ** else_continuation)982 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
983                                       HBasicBlock** else_continuation) {
984   Finish();
985 
986   MergeAtJoinBlock* else_record = merge_at_join_blocks_;
987   if (else_continuation != NULL) {
988     *else_continuation = else_record->block_;
989   }
990   MergeAtJoinBlock* then_record = else_record->next_;
991   if (then_continuation != NULL) {
992     *then_continuation = then_record->block_;
993   }
994   ASSERT(then_record->next_ == NULL);
995 }
996 
997 
End()998 void HGraphBuilder::IfBuilder::End() {
999   if (captured_) return;
1000   Finish();
1001 
1002   int total_merged_blocks = normal_merge_at_join_block_count_ +
1003     deopt_merge_at_join_block_count_;
1004   ASSERT(total_merged_blocks >= 1);
1005   HBasicBlock* merge_block = total_merged_blocks == 1
1006       ? NULL : builder_->graph()->CreateBasicBlock();
1007 
1008   // Merge non-deopt blocks first to ensure environment has right size for
1009   // padding.
1010   MergeAtJoinBlock* current = merge_at_join_blocks_;
1011   while (current != NULL) {
1012     if (!current->deopt_ && current->block_ != NULL) {
1013       // If there is only one block that makes it through to the end of the
1014       // if, then just set it as the current block and continue rather then
1015       // creating an unnecessary merge block.
1016       if (total_merged_blocks == 1) {
1017         builder_->set_current_block(current->block_);
1018         return;
1019       }
1020       builder_->GotoNoSimulate(current->block_, merge_block);
1021     }
1022     current = current->next_;
1023   }
1024 
1025   // Merge deopt blocks, padding when necessary.
1026   current = merge_at_join_blocks_;
1027   while (current != NULL) {
1028     if (current->deopt_ && current->block_ != NULL) {
1029       builder_->PadEnvironmentForContinuation(current->block_,
1030                                               merge_block);
1031       builder_->GotoNoSimulate(current->block_, merge_block);
1032     }
1033     current = current->next_;
1034   }
1035   builder_->set_current_block(merge_block);
1036 }
1037 
1038 
LoopBuilder(HGraphBuilder * builder,HValue * context,LoopBuilder::Direction direction)1039 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
1040                                         HValue* context,
1041                                         LoopBuilder::Direction direction)
1042     : builder_(builder),
1043       context_(context),
1044       direction_(direction),
1045       finished_(false) {
1046   header_block_ = builder->CreateLoopHeaderBlock();
1047   body_block_ = NULL;
1048   exit_block_ = NULL;
1049   exit_trampoline_block_ = NULL;
1050   increment_amount_ = builder_->graph()->GetConstant1();
1051 }
1052 
1053 
LoopBuilder(HGraphBuilder * builder,HValue * context,LoopBuilder::Direction direction,HValue * increment_amount)1054 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
1055                                         HValue* context,
1056                                         LoopBuilder::Direction direction,
1057                                         HValue* increment_amount)
1058     : builder_(builder),
1059       context_(context),
1060       direction_(direction),
1061       finished_(false) {
1062   header_block_ = builder->CreateLoopHeaderBlock();
1063   body_block_ = NULL;
1064   exit_block_ = NULL;
1065   exit_trampoline_block_ = NULL;
1066   increment_amount_ = increment_amount;
1067 }
1068 
1069 
BeginBody(HValue * initial,HValue * terminating,Token::Value token)1070 HValue* HGraphBuilder::LoopBuilder::BeginBody(
1071     HValue* initial,
1072     HValue* terminating,
1073     Token::Value token) {
1074   HEnvironment* env = builder_->environment();
1075   phi_ = header_block_->AddNewPhi(env->values()->length());
1076   phi_->AddInput(initial);
1077   env->Push(initial);
1078   builder_->GotoNoSimulate(header_block_);
1079 
1080   HEnvironment* body_env = env->Copy();
1081   HEnvironment* exit_env = env->Copy();
1082   // Remove the phi from the expression stack
1083   body_env->Pop();
1084   exit_env->Pop();
1085   body_block_ = builder_->CreateBasicBlock(body_env);
1086   exit_block_ = builder_->CreateBasicBlock(exit_env);
1087 
1088   builder_->set_current_block(header_block_);
1089   env->Pop();
1090   builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
1091           phi_, terminating, token, body_block_, exit_block_));
1092 
1093   builder_->set_current_block(body_block_);
1094   if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
1095     HValue* one = builder_->graph()->GetConstant1();
1096     if (direction_ == kPreIncrement) {
1097       increment_ = HAdd::New(zone(), context_, phi_, one);
1098     } else {
1099       increment_ = HSub::New(zone(), context_, phi_, one);
1100     }
1101     increment_->ClearFlag(HValue::kCanOverflow);
1102     builder_->AddInstruction(increment_);
1103     return increment_;
1104   } else {
1105     return phi_;
1106   }
1107 }
1108 
1109 
Break()1110 void HGraphBuilder::LoopBuilder::Break() {
1111   if (exit_trampoline_block_ == NULL) {
1112     // Its the first time we saw a break.
1113     HEnvironment* env = exit_block_->last_environment()->Copy();
1114     exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1115     builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
1116   }
1117 
1118   builder_->GotoNoSimulate(exit_trampoline_block_);
1119   builder_->set_current_block(NULL);
1120 }
1121 
1122 
EndBody()1123 void HGraphBuilder::LoopBuilder::EndBody() {
1124   ASSERT(!finished_);
1125 
1126   if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
1127     if (direction_ == kPostIncrement) {
1128       increment_ = HAdd::New(zone(), context_, phi_, increment_amount_);
1129     } else {
1130       increment_ = HSub::New(zone(), context_, phi_, increment_amount_);
1131     }
1132     increment_->ClearFlag(HValue::kCanOverflow);
1133     builder_->AddInstruction(increment_);
1134   }
1135 
1136   // Push the new increment value on the expression stack to merge into the phi.
1137   builder_->environment()->Push(increment_);
1138   HBasicBlock* last_block = builder_->current_block();
1139   builder_->GotoNoSimulate(last_block, header_block_);
1140   header_block_->loop_information()->RegisterBackEdge(last_block);
1141 
1142   if (exit_trampoline_block_ != NULL) {
1143     builder_->set_current_block(exit_trampoline_block_);
1144   } else {
1145     builder_->set_current_block(exit_block_);
1146   }
1147   finished_ = true;
1148 }
1149 
1150 
CreateGraph()1151 HGraph* HGraphBuilder::CreateGraph() {
1152   graph_ = new(zone()) HGraph(info_);
1153   if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
1154   CompilationPhase phase("H_Block building", info_);
1155   set_current_block(graph()->entry_block());
1156   if (!BuildGraph()) return NULL;
1157   graph()->FinalizeUniqueness();
1158   return graph_;
1159 }
1160 
1161 
AddInstruction(HInstruction * instr)1162 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
1163   ASSERT(current_block() != NULL);
1164   ASSERT(!FLAG_emit_opt_code_positions ||
1165          position_ != RelocInfo::kNoPosition || !info_->IsOptimizing());
1166   current_block()->AddInstruction(instr, position_);
1167   if (graph()->IsInsideNoSideEffectsScope()) {
1168     instr->SetFlag(HValue::kHasNoObservableSideEffects);
1169   }
1170   return instr;
1171 }
1172 
1173 
FinishCurrentBlock(HControlInstruction * last)1174 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
1175   ASSERT(!FLAG_emit_opt_code_positions || !info_->IsOptimizing() ||
1176          position_ != RelocInfo::kNoPosition);
1177   current_block()->Finish(last, position_);
1178   if (last->IsReturn() || last->IsAbnormalExit()) {
1179     set_current_block(NULL);
1180   }
1181 }
1182 
1183 
FinishExitCurrentBlock(HControlInstruction * instruction)1184 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
1185   ASSERT(!FLAG_emit_opt_code_positions || !info_->IsOptimizing() ||
1186          position_ != RelocInfo::kNoPosition);
1187   current_block()->FinishExit(instruction, position_);
1188   if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
1189     set_current_block(NULL);
1190   }
1191 }
1192 
1193 
AddIncrementCounter(StatsCounter * counter)1194 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
1195   if (FLAG_native_code_counters && counter->Enabled()) {
1196     HValue* reference = Add<HConstant>(ExternalReference(counter));
1197     HValue* old_value = Add<HLoadNamedField>(reference,
1198                                              HObjectAccess::ForCounter());
1199     HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
1200     new_value->ClearFlag(HValue::kCanOverflow);  // Ignore counter overflow
1201     Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
1202                           new_value);
1203   }
1204 }
1205 
1206 
AddSimulate(BailoutId id,RemovableSimulate removable)1207 void HGraphBuilder::AddSimulate(BailoutId id,
1208                                 RemovableSimulate removable) {
1209   ASSERT(current_block() != NULL);
1210   ASSERT(!graph()->IsInsideNoSideEffectsScope());
1211   current_block()->AddNewSimulate(id, removable);
1212 }
1213 
1214 
CreateBasicBlock(HEnvironment * env)1215 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
1216   HBasicBlock* b = graph()->CreateBasicBlock();
1217   b->SetInitialEnvironment(env);
1218   return b;
1219 }
1220 
1221 
CreateLoopHeaderBlock()1222 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
1223   HBasicBlock* header = graph()->CreateBasicBlock();
1224   HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
1225   header->SetInitialEnvironment(entry_env);
1226   header->AttachLoopInformation();
1227   return header;
1228 }
1229 
1230 
BuildCheckHeapObject(HValue * obj)1231 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
1232   if (obj->type().IsHeapObject()) return obj;
1233   return Add<HCheckHeapObject>(obj);
1234 }
1235 
1236 
FinishExitWithHardDeoptimization(const char * reason,HBasicBlock * continuation)1237 void HGraphBuilder::FinishExitWithHardDeoptimization(
1238     const char* reason, HBasicBlock* continuation) {
1239   PadEnvironmentForContinuation(current_block(), continuation);
1240   Add<HDeoptimize>(reason, Deoptimizer::EAGER);
1241   if (graph()->IsInsideNoSideEffectsScope()) {
1242     GotoNoSimulate(continuation);
1243   } else {
1244     Goto(continuation);
1245   }
1246 }
1247 
1248 
PadEnvironmentForContinuation(HBasicBlock * from,HBasicBlock * continuation)1249 void HGraphBuilder::PadEnvironmentForContinuation(
1250     HBasicBlock* from,
1251     HBasicBlock* continuation) {
1252   if (continuation->last_environment() != NULL) {
1253     // When merging from a deopt block to a continuation, resolve differences in
1254     // environment by pushing constant 0 and popping extra values so that the
1255     // environments match during the join. Push 0 since it has the most specific
1256     // representation, and will not influence representation inference of the
1257     // phi.
1258     int continuation_env_length = continuation->last_environment()->length();
1259     while (continuation_env_length != from->last_environment()->length()) {
1260       if (continuation_env_length > from->last_environment()->length()) {
1261         from->last_environment()->Push(graph()->GetConstant0());
1262       } else {
1263         from->last_environment()->Pop();
1264       }
1265     }
1266   } else {
1267     ASSERT(continuation->predecessors()->length() == 0);
1268   }
1269 }
1270 
1271 
BuildCheckMap(HValue * obj,Handle<Map> map)1272 HValue* HGraphBuilder::BuildCheckMap(HValue* obj, Handle<Map> map) {
1273   return Add<HCheckMaps>(obj, map, top_info());
1274 }
1275 
1276 
BuildCheckString(HValue * string)1277 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
1278   if (!string->type().IsString()) {
1279     ASSERT(!string->IsConstant() ||
1280            !HConstant::cast(string)->HasStringValue());
1281     BuildCheckHeapObject(string);
1282     return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
1283   }
1284   return string;
1285 }
1286 
1287 
BuildWrapReceiver(HValue * object,HValue * function)1288 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
1289   if (object->type().IsJSObject()) return object;
1290   return Add<HWrapReceiver>(object, function);
1291 }
1292 
1293 
BuildCheckForCapacityGrow(HValue * object,HValue * elements,ElementsKind kind,HValue * length,HValue * key,bool is_js_array)1294 HValue* HGraphBuilder::BuildCheckForCapacityGrow(HValue* object,
1295                                                  HValue* elements,
1296                                                  ElementsKind kind,
1297                                                  HValue* length,
1298                                                  HValue* key,
1299                                                  bool is_js_array) {
1300   IfBuilder length_checker(this);
1301 
1302   Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
1303   length_checker.If<HCompareNumericAndBranch>(key, length, token);
1304 
1305   length_checker.Then();
1306 
1307   HValue* current_capacity = AddLoadFixedArrayLength(elements);
1308 
1309   IfBuilder capacity_checker(this);
1310 
1311   capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
1312                                                 Token::GTE);
1313   capacity_checker.Then();
1314 
1315   HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
1316   HValue* max_capacity = AddUncasted<HAdd>(current_capacity, max_gap);
1317   IfBuilder key_checker(this);
1318   key_checker.If<HCompareNumericAndBranch>(key, max_capacity, Token::LT);
1319   key_checker.Then();
1320   key_checker.ElseDeopt("Key out of capacity range");
1321   key_checker.End();
1322 
1323   HValue* new_capacity = BuildNewElementsCapacity(key);
1324   HValue* new_elements = BuildGrowElementsCapacity(object, elements,
1325                                                    kind, kind, length,
1326                                                    new_capacity);
1327 
1328   environment()->Push(new_elements);
1329   capacity_checker.Else();
1330 
1331   environment()->Push(elements);
1332   capacity_checker.End();
1333 
1334   if (is_js_array) {
1335     HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
1336     new_length->ClearFlag(HValue::kCanOverflow);
1337 
1338     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
1339                           new_length);
1340   }
1341 
1342   length_checker.Else();
1343   Add<HBoundsCheck>(key, length);
1344 
1345   environment()->Push(elements);
1346   length_checker.End();
1347 
1348   return environment()->Pop();
1349 }
1350 
1351 
BuildCopyElementsOnWrite(HValue * object,HValue * elements,ElementsKind kind,HValue * length)1352 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
1353                                                 HValue* elements,
1354                                                 ElementsKind kind,
1355                                                 HValue* length) {
1356   Factory* factory = isolate()->factory();
1357 
1358   IfBuilder cow_checker(this);
1359 
1360   cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
1361   cow_checker.Then();
1362 
1363   HValue* capacity = AddLoadFixedArrayLength(elements);
1364 
1365   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
1366                                                    kind, length, capacity);
1367 
1368   environment()->Push(new_elements);
1369 
1370   cow_checker.Else();
1371 
1372   environment()->Push(elements);
1373 
1374   cow_checker.End();
1375 
1376   return environment()->Pop();
1377 }
1378 
1379 
BuildTransitionElementsKind(HValue * object,HValue * map,ElementsKind from_kind,ElementsKind to_kind,bool is_jsarray)1380 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
1381                                                 HValue* map,
1382                                                 ElementsKind from_kind,
1383                                                 ElementsKind to_kind,
1384                                                 bool is_jsarray) {
1385   ASSERT(!IsFastHoleyElementsKind(from_kind) ||
1386          IsFastHoleyElementsKind(to_kind));
1387 
1388   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
1389     Add<HTrapAllocationMemento>(object);
1390   }
1391 
1392   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
1393     HInstruction* elements = AddLoadElements(object);
1394 
1395     HInstruction* empty_fixed_array = Add<HConstant>(
1396         isolate()->factory()->empty_fixed_array());
1397 
1398     IfBuilder if_builder(this);
1399 
1400     if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
1401 
1402     if_builder.Then();
1403 
1404     HInstruction* elements_length = AddLoadFixedArrayLength(elements);
1405 
1406     HInstruction* array_length = is_jsarray
1407         ? Add<HLoadNamedField>(object, HObjectAccess::ForArrayLength(from_kind))
1408         : elements_length;
1409 
1410     BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
1411                               array_length, elements_length);
1412 
1413     if_builder.End();
1414   }
1415 
1416   Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
1417 }
1418 
1419 
BuildUncheckedDictionaryElementLoadHelper(HValue * elements,HValue * key,HValue * hash,HValue * mask,int current_probe)1420 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoadHelper(
1421     HValue* elements,
1422     HValue* key,
1423     HValue* hash,
1424     HValue* mask,
1425     int current_probe) {
1426   if (current_probe == kNumberDictionaryProbes) {
1427     return NULL;
1428   }
1429 
1430   int32_t offset = SeededNumberDictionary::GetProbeOffset(current_probe);
1431   HValue* raw_index = (current_probe == 0)
1432       ? hash
1433       : AddUncasted<HAdd>(hash, Add<HConstant>(offset));
1434   raw_index = AddUncasted<HBitwise>(Token::BIT_AND, raw_index, mask);
1435   int32_t entry_size = SeededNumberDictionary::kEntrySize;
1436   raw_index = AddUncasted<HMul>(raw_index, Add<HConstant>(entry_size));
1437   raw_index->ClearFlag(HValue::kCanOverflow);
1438 
1439   int32_t base_offset = SeededNumberDictionary::kElementsStartIndex;
1440   HValue* key_index = AddUncasted<HAdd>(raw_index, Add<HConstant>(base_offset));
1441   key_index->ClearFlag(HValue::kCanOverflow);
1442 
1443   HValue* candidate_key = Add<HLoadKeyed>(elements, key_index,
1444                                           static_cast<HValue*>(NULL),
1445                                           FAST_SMI_ELEMENTS);
1446 
1447   IfBuilder key_compare(this);
1448   key_compare.IfNot<HCompareObjectEqAndBranch>(key, candidate_key);
1449   key_compare.Then();
1450   {
1451     // Key at the current probe doesn't match, try at the next probe.
1452     HValue* result = BuildUncheckedDictionaryElementLoadHelper(
1453         elements, key, hash, mask, current_probe + 1);
1454     if (result == NULL) {
1455       key_compare.Deopt("probes exhausted in keyed load dictionary lookup");
1456       result = graph()->GetConstantUndefined();
1457     } else {
1458       Push(result);
1459     }
1460   }
1461   key_compare.Else();
1462   {
1463     // Key at current probe matches. Details must be zero, otherwise the
1464     // dictionary element requires special handling.
1465     HValue* details_index = AddUncasted<HAdd>(
1466         raw_index, Add<HConstant>(base_offset + 2));
1467     details_index->ClearFlag(HValue::kCanOverflow);
1468 
1469     HValue* details = Add<HLoadKeyed>(elements, details_index,
1470                                       static_cast<HValue*>(NULL),
1471                                       FAST_SMI_ELEMENTS);
1472     IfBuilder details_compare(this);
1473     details_compare.If<HCompareNumericAndBranch>(details,
1474                                                  graph()->GetConstant0(),
1475                                                  Token::NE);
1476     details_compare.ThenDeopt("keyed load dictionary element not fast case");
1477 
1478     details_compare.Else();
1479     {
1480       // Key matches and details are zero --> fast case. Load and return the
1481       // value.
1482       HValue* result_index = AddUncasted<HAdd>(
1483           raw_index, Add<HConstant>(base_offset + 1));
1484       result_index->ClearFlag(HValue::kCanOverflow);
1485 
1486       Push(Add<HLoadKeyed>(elements, result_index,
1487                            static_cast<HValue*>(NULL),
1488                            FAST_ELEMENTS));
1489     }
1490     details_compare.End();
1491   }
1492   key_compare.End();
1493 
1494   return Pop();
1495 }
1496 
1497 
BuildElementIndexHash(HValue * index)1498 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
1499   int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
1500   HValue* seed = Add<HConstant>(seed_value);
1501   HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
1502 
1503   // hash = ~hash + (hash << 15);
1504   HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
1505   HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
1506                                            graph()->GetConstantMinus1());
1507   hash = AddUncasted<HAdd>(shifted_hash, not_hash);
1508 
1509   // hash = hash ^ (hash >> 12);
1510   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
1511   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1512 
1513   // hash = hash + (hash << 2);
1514   shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
1515   hash = AddUncasted<HAdd>(hash, shifted_hash);
1516 
1517   // hash = hash ^ (hash >> 4);
1518   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
1519   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1520 
1521   // hash = hash * 2057;
1522   hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
1523   hash->ClearFlag(HValue::kCanOverflow);
1524 
1525   // hash = hash ^ (hash >> 16);
1526   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
1527   return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1528 }
1529 
1530 
BuildUncheckedDictionaryElementLoad(HValue * receiver,HValue * key)1531 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(HValue* receiver,
1532                                                            HValue* key) {
1533   HValue* elements = AddLoadElements(receiver);
1534 
1535   HValue* hash = BuildElementIndexHash(key);
1536 
1537   HValue* capacity = Add<HLoadKeyed>(
1538       elements,
1539       Add<HConstant>(NameDictionary::kCapacityIndex),
1540       static_cast<HValue*>(NULL),
1541       FAST_SMI_ELEMENTS);
1542 
1543   HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
1544   mask->ChangeRepresentation(Representation::Integer32());
1545   mask->ClearFlag(HValue::kCanOverflow);
1546 
1547   return BuildUncheckedDictionaryElementLoadHelper(elements, key,
1548                                                    hash, mask, 0);
1549 }
1550 
1551 
BuildNumberToString(HValue * object,Handle<Type> type)1552 HValue* HGraphBuilder::BuildNumberToString(HValue* object,
1553                                            Handle<Type> type) {
1554   NoObservableSideEffectsScope scope(this);
1555 
1556   // Convert constant numbers at compile time.
1557   if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
1558     Handle<Object> number = HConstant::cast(object)->handle(isolate());
1559     Handle<String> result = isolate()->factory()->NumberToString(number);
1560     return Add<HConstant>(result);
1561   }
1562 
1563   // Create a joinable continuation.
1564   HIfContinuation found(graph()->CreateBasicBlock(),
1565                         graph()->CreateBasicBlock());
1566 
1567   // Load the number string cache.
1568   HValue* number_string_cache =
1569       Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
1570 
1571   // Make the hash mask from the length of the number string cache. It
1572   // contains two elements (number and string) for each cache entry.
1573   HValue* mask = AddLoadFixedArrayLength(number_string_cache);
1574   mask->set_type(HType::Smi());
1575   mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
1576   mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
1577 
1578   // Check whether object is a smi.
1579   IfBuilder if_objectissmi(this);
1580   if_objectissmi.If<HIsSmiAndBranch>(object);
1581   if_objectissmi.Then();
1582   {
1583     // Compute hash for smi similar to smi_get_hash().
1584     HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
1585 
1586     // Load the key.
1587     HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1588     HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
1589                                   static_cast<HValue*>(NULL),
1590                                   FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1591 
1592     // Check if object == key.
1593     IfBuilder if_objectiskey(this);
1594     if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
1595     if_objectiskey.Then();
1596     {
1597       // Make the key_index available.
1598       Push(key_index);
1599     }
1600     if_objectiskey.JoinContinuation(&found);
1601   }
1602   if_objectissmi.Else();
1603   {
1604     if (type->Is(Type::Smi())) {
1605       if_objectissmi.Deopt("Expected smi");
1606     } else {
1607       // Check if the object is a heap number.
1608       IfBuilder if_objectisnumber(this);
1609       if_objectisnumber.If<HCompareMap>(
1610           object, isolate()->factory()->heap_number_map());
1611       if_objectisnumber.Then();
1612       {
1613         // Compute hash for heap number similar to double_get_hash().
1614         HValue* low = Add<HLoadNamedField>(
1615             object, HObjectAccess::ForHeapNumberValueLowestBits());
1616         HValue* high = Add<HLoadNamedField>(
1617             object, HObjectAccess::ForHeapNumberValueHighestBits());
1618         HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
1619         hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
1620 
1621         // Load the key.
1622         HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1623         HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
1624                                       static_cast<HValue*>(NULL),
1625                                       FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1626 
1627         // Check if key is a heap number (the number string cache contains only
1628         // SMIs and heap number, so it is sufficient to do a SMI check here).
1629         IfBuilder if_keyisnotsmi(this);
1630         if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
1631         if_keyisnotsmi.Then();
1632         {
1633           // Check if values of key and object match.
1634           IfBuilder if_keyeqobject(this);
1635           if_keyeqobject.If<HCompareNumericAndBranch>(
1636               Add<HLoadNamedField>(key, HObjectAccess::ForHeapNumberValue()),
1637               Add<HLoadNamedField>(object, HObjectAccess::ForHeapNumberValue()),
1638               Token::EQ);
1639           if_keyeqobject.Then();
1640           {
1641             // Make the key_index available.
1642             Push(key_index);
1643           }
1644           if_keyeqobject.JoinContinuation(&found);
1645         }
1646         if_keyisnotsmi.JoinContinuation(&found);
1647       }
1648       if_objectisnumber.Else();
1649       {
1650         if (type->Is(Type::Number())) {
1651           if_objectisnumber.Deopt("Expected heap number");
1652         }
1653       }
1654       if_objectisnumber.JoinContinuation(&found);
1655     }
1656   }
1657   if_objectissmi.JoinContinuation(&found);
1658 
1659   // Check for cache hit.
1660   IfBuilder if_found(this, &found);
1661   if_found.Then();
1662   {
1663     // Count number to string operation in native code.
1664     AddIncrementCounter(isolate()->counters()->number_to_string_native());
1665 
1666     // Load the value in case of cache hit.
1667     HValue* key_index = Pop();
1668     HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
1669     Push(Add<HLoadKeyed>(number_string_cache, value_index,
1670                          static_cast<HValue*>(NULL),
1671                          FAST_ELEMENTS, ALLOW_RETURN_HOLE));
1672   }
1673   if_found.Else();
1674   {
1675     // Cache miss, fallback to runtime.
1676     Add<HPushArgument>(object);
1677     Push(Add<HCallRuntime>(
1678             isolate()->factory()->empty_string(),
1679             Runtime::FunctionForId(Runtime::kNumberToStringSkipCache),
1680             1));
1681   }
1682   if_found.End();
1683 
1684   return Pop();
1685 }
1686 
1687 
BuildSeqStringSizeFor(HValue * length,String::Encoding encoding)1688 HValue* HGraphBuilder::BuildSeqStringSizeFor(HValue* length,
1689                                              String::Encoding encoding) {
1690   STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
1691   HValue* size = length;
1692   if (encoding == String::TWO_BYTE_ENCODING) {
1693     size = AddUncasted<HShl>(length, graph()->GetConstant1());
1694     size->ClearFlag(HValue::kCanOverflow);
1695     size->SetFlag(HValue::kUint32);
1696   }
1697   size = AddUncasted<HAdd>(size, Add<HConstant>(static_cast<int32_t>(
1698               SeqString::kHeaderSize + kObjectAlignmentMask)));
1699   size->ClearFlag(HValue::kCanOverflow);
1700   size = AddUncasted<HBitwise>(
1701       Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
1702               ~kObjectAlignmentMask)));
1703   return size;
1704 }
1705 
1706 
BuildCopySeqStringChars(HValue * src,HValue * src_offset,String::Encoding src_encoding,HValue * dst,HValue * dst_offset,String::Encoding dst_encoding,HValue * length)1707 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
1708                                             HValue* src_offset,
1709                                             String::Encoding src_encoding,
1710                                             HValue* dst,
1711                                             HValue* dst_offset,
1712                                             String::Encoding dst_encoding,
1713                                             HValue* length) {
1714   ASSERT(dst_encoding != String::ONE_BYTE_ENCODING ||
1715          src_encoding == String::ONE_BYTE_ENCODING);
1716   LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
1717   HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
1718   {
1719     HValue* src_index = AddUncasted<HAdd>(src_offset, index);
1720     HValue* value =
1721         AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
1722     HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
1723     Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
1724   }
1725   loop.EndBody();
1726 }
1727 
1728 
BuildUncheckedStringAdd(HValue * left,HValue * right,PretenureFlag pretenure_flag)1729 HValue* HGraphBuilder::BuildUncheckedStringAdd(HValue* left,
1730                                                HValue* right,
1731                                                PretenureFlag pretenure_flag) {
1732   // Determine the string lengths.
1733   HValue* left_length = Add<HLoadNamedField>(
1734       left, HObjectAccess::ForStringLength());
1735   HValue* right_length = Add<HLoadNamedField>(
1736       right, HObjectAccess::ForStringLength());
1737 
1738   // Compute the combined string length. If the result is larger than the max
1739   // supported string length, we bailout to the runtime. This is done implicitly
1740   // when converting the result back to a smi in case the max string length
1741   // equals the max smi valie. Otherwise, for platforms with 32-bit smis, we do
1742   HValue* length = AddUncasted<HAdd>(left_length, right_length);
1743   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
1744   if (String::kMaxLength != Smi::kMaxValue) {
1745     IfBuilder if_nooverflow(this);
1746     if_nooverflow.If<HCompareNumericAndBranch>(
1747         length, Add<HConstant>(String::kMaxLength), Token::LTE);
1748     if_nooverflow.Then();
1749     if_nooverflow.ElseDeopt("String length exceeds limit");
1750   }
1751 
1752   // Determine the string instance types.
1753   HLoadNamedField* left_instance_type = Add<HLoadNamedField>(
1754       Add<HLoadNamedField>(left, HObjectAccess::ForMap()),
1755       HObjectAccess::ForMapInstanceType());
1756   HLoadNamedField* right_instance_type = Add<HLoadNamedField>(
1757       Add<HLoadNamedField>(right, HObjectAccess::ForMap()),
1758       HObjectAccess::ForMapInstanceType());
1759 
1760   // Compute difference of instance types.
1761   HValue* xored_instance_types = AddUncasted<HBitwise>(
1762       Token::BIT_XOR, left_instance_type, right_instance_type);
1763 
1764   // Check if we should create a cons string.
1765   IfBuilder if_createcons(this);
1766   if_createcons.If<HCompareNumericAndBranch>(
1767       length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
1768   if_createcons.Then();
1769   {
1770     // Allocate the cons string object. HAllocate does not care whether we
1771     // pass CONS_STRING_TYPE or CONS_ASCII_STRING_TYPE here, so we just use
1772     // CONS_STRING_TYPE here. Below we decide whether the cons string is
1773     // one-byte or two-byte and set the appropriate map.
1774     HAllocate* string = Add<HAllocate>(Add<HConstant>(ConsString::kSize),
1775                                        HType::String(), pretenure_flag,
1776                                        CONS_STRING_TYPE);
1777 
1778     // Compute the intersection of instance types.
1779     HValue* anded_instance_types = AddUncasted<HBitwise>(
1780         Token::BIT_AND, left_instance_type, right_instance_type);
1781 
1782     // We create a one-byte cons string if
1783     // 1. both strings are one-byte, or
1784     // 2. at least one of the strings is two-byte, but happens to contain only
1785     //    one-byte characters.
1786     // To do this, we check
1787     // 1. if both strings are one-byte, or if the one-byte data hint is set in
1788     //    both strings, or
1789     // 2. if one of the strings has the one-byte data hint set and the other
1790     //    string is one-byte.
1791     IfBuilder if_onebyte(this);
1792     STATIC_ASSERT(kOneByteStringTag != 0);
1793     STATIC_ASSERT(kOneByteDataHintMask != 0);
1794     if_onebyte.If<HCompareNumericAndBranch>(
1795         AddUncasted<HBitwise>(
1796             Token::BIT_AND, anded_instance_types,
1797             Add<HConstant>(static_cast<int32_t>(
1798                     kStringEncodingMask | kOneByteDataHintMask))),
1799         graph()->GetConstant0(), Token::NE);
1800     if_onebyte.Or();
1801     STATIC_ASSERT(kOneByteStringTag != 0 &&
1802                   kOneByteDataHintTag != 0 &&
1803                   kOneByteDataHintTag != kOneByteStringTag);
1804     if_onebyte.If<HCompareNumericAndBranch>(
1805         AddUncasted<HBitwise>(
1806             Token::BIT_AND, xored_instance_types,
1807             Add<HConstant>(static_cast<int32_t>(
1808                     kOneByteStringTag | kOneByteDataHintTag))),
1809         Add<HConstant>(static_cast<int32_t>(
1810                 kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
1811     if_onebyte.Then();
1812     {
1813       // We can safely skip the write barrier for storing the map here.
1814       Handle<Map> map = isolate()->factory()->cons_ascii_string_map();
1815       AddStoreMapConstantNoWriteBarrier(string, map);
1816     }
1817     if_onebyte.Else();
1818     {
1819       // We can safely skip the write barrier for storing the map here.
1820       Handle<Map> map = isolate()->factory()->cons_string_map();
1821       AddStoreMapConstantNoWriteBarrier(string, map);
1822     }
1823     if_onebyte.End();
1824 
1825     // Initialize the cons string fields.
1826     Add<HStoreNamedField>(string, HObjectAccess::ForStringHashField(),
1827                           Add<HConstant>(String::kEmptyHashField));
1828     Add<HStoreNamedField>(string, HObjectAccess::ForStringLength(), length);
1829     Add<HStoreNamedField>(string, HObjectAccess::ForConsStringFirst(), left);
1830     Add<HStoreNamedField>(string, HObjectAccess::ForConsStringSecond(),
1831                           right);
1832 
1833     // Count the native string addition.
1834     AddIncrementCounter(isolate()->counters()->string_add_native());
1835 
1836     // Cons string is result.
1837     Push(string);
1838   }
1839   if_createcons.Else();
1840   {
1841     // Compute union of instance types.
1842     HValue* ored_instance_types = AddUncasted<HBitwise>(
1843         Token::BIT_OR, left_instance_type, right_instance_type);
1844 
1845     // Check if both strings have the same encoding and both are
1846     // sequential.
1847     IfBuilder if_sameencodingandsequential(this);
1848     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
1849         AddUncasted<HBitwise>(
1850             Token::BIT_AND, xored_instance_types,
1851             Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
1852         graph()->GetConstant0(), Token::EQ);
1853     if_sameencodingandsequential.And();
1854     STATIC_ASSERT(kSeqStringTag == 0);
1855     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
1856         AddUncasted<HBitwise>(
1857             Token::BIT_AND, ored_instance_types,
1858             Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
1859         graph()->GetConstant0(), Token::EQ);
1860     if_sameencodingandsequential.Then();
1861     {
1862       // Check if the result is a one-byte string.
1863       IfBuilder if_onebyte(this);
1864       STATIC_ASSERT(kOneByteStringTag != 0);
1865       if_onebyte.If<HCompareNumericAndBranch>(
1866           AddUncasted<HBitwise>(
1867               Token::BIT_AND, ored_instance_types,
1868               Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
1869           graph()->GetConstant0(), Token::NE);
1870       if_onebyte.Then();
1871       {
1872         // Calculate the number of bytes needed for the characters in the
1873         // string while observing object alignment.
1874         HValue* size = BuildSeqStringSizeFor(
1875             length, String::ONE_BYTE_ENCODING);
1876 
1877         // Allocate the ASCII string object.
1878         Handle<Map> map = isolate()->factory()->ascii_string_map();
1879         HAllocate* string = Add<HAllocate>(size, HType::String(),
1880                                            pretenure_flag, ASCII_STRING_TYPE);
1881         string->set_known_initial_map(map);
1882 
1883         // We can safely skip the write barrier for storing map here.
1884         AddStoreMapConstantNoWriteBarrier(string, map);
1885 
1886         // Length must be stored into the string before we copy characters to
1887         // make debug verification code happy.
1888         Add<HStoreNamedField>(string, HObjectAccess::ForStringLength(),
1889                               length);
1890 
1891         // Copy bytes from the left string.
1892         BuildCopySeqStringChars(
1893             left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
1894             string, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
1895             left_length);
1896 
1897         // Copy bytes from the right string.
1898         BuildCopySeqStringChars(
1899             right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
1900             string, left_length, String::ONE_BYTE_ENCODING,
1901             right_length);
1902 
1903         // Count the native string addition.
1904         AddIncrementCounter(isolate()->counters()->string_add_native());
1905 
1906         // Return the string.
1907         Push(string);
1908       }
1909       if_onebyte.Else();
1910       {
1911         // Calculate the number of bytes needed for the characters in the
1912         // string while observing object alignment.
1913         HValue* size = BuildSeqStringSizeFor(
1914             length, String::TWO_BYTE_ENCODING);
1915 
1916         // Allocate the two-byte string object.
1917         Handle<Map> map = isolate()->factory()->string_map();
1918         HAllocate* string = Add<HAllocate>(size, HType::String(),
1919                                            pretenure_flag, STRING_TYPE);
1920         string->set_known_initial_map(map);
1921 
1922         // We can safely skip the write barrier for storing map here.
1923         AddStoreMapConstantNoWriteBarrier(string, map);
1924 
1925         // Length must be stored into the string before we copy characters to
1926         // make debug verification code happy.
1927         Add<HStoreNamedField>(string, HObjectAccess::ForStringLength(),
1928                               length);
1929 
1930         // Copy bytes from the left string.
1931         BuildCopySeqStringChars(
1932             left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
1933             string, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
1934             left_length);
1935 
1936         // Copy bytes from the right string.
1937         BuildCopySeqStringChars(
1938             right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
1939             string, left_length, String::TWO_BYTE_ENCODING,
1940             right_length);
1941 
1942         // Return the string.
1943         Push(string);
1944       }
1945       if_onebyte.End();
1946 
1947       // Initialize the (common) string fields.
1948       HValue* string = Pop();
1949       Add<HStoreNamedField>(string, HObjectAccess::ForStringHashField(),
1950                             Add<HConstant>(String::kEmptyHashField));
1951 
1952       // Count the native string addition.
1953       AddIncrementCounter(isolate()->counters()->string_add_native());
1954 
1955       Push(string);
1956     }
1957     if_sameencodingandsequential.Else();
1958     {
1959       // Fallback to the runtime to add the two strings.
1960       Add<HPushArgument>(left);
1961       Add<HPushArgument>(right);
1962       Push(Add<HCallRuntime>(isolate()->factory()->empty_string(),
1963                              Runtime::FunctionForId(Runtime::kStringAdd),
1964                              2));
1965     }
1966     if_sameencodingandsequential.End();
1967   }
1968   if_createcons.End();
1969 
1970   return Pop();
1971 }
1972 
1973 
BuildStringAdd(HValue * left,HValue * right,PretenureFlag pretenure_flag)1974 HValue* HGraphBuilder::BuildStringAdd(HValue* left,
1975                                       HValue* right,
1976                                       PretenureFlag pretenure_flag) {
1977   // Determine the string lengths.
1978   HValue* left_length = Add<HLoadNamedField>(
1979       left, HObjectAccess::ForStringLength());
1980   HValue* right_length = Add<HLoadNamedField>(
1981       right, HObjectAccess::ForStringLength());
1982 
1983   // Check if left string is empty.
1984   IfBuilder if_leftisempty(this);
1985   if_leftisempty.If<HCompareNumericAndBranch>(
1986       left_length, graph()->GetConstant0(), Token::EQ);
1987   if_leftisempty.Then();
1988   {
1989     // Count the native string addition.
1990     AddIncrementCounter(isolate()->counters()->string_add_native());
1991 
1992     // Just return the right string.
1993     Push(right);
1994   }
1995   if_leftisempty.Else();
1996   {
1997     // Check if right string is empty.
1998     IfBuilder if_rightisempty(this);
1999     if_rightisempty.If<HCompareNumericAndBranch>(
2000         right_length, graph()->GetConstant0(), Token::EQ);
2001     if_rightisempty.Then();
2002     {
2003       // Count the native string addition.
2004       AddIncrementCounter(isolate()->counters()->string_add_native());
2005 
2006       // Just return the left string.
2007       Push(left);
2008     }
2009     if_rightisempty.Else();
2010     {
2011       // Concatenate the two non-empty strings.
2012       Push(BuildUncheckedStringAdd(left, right, pretenure_flag));
2013     }
2014     if_rightisempty.End();
2015   }
2016   if_leftisempty.End();
2017 
2018   return Pop();
2019 }
2020 
2021 
BuildUncheckedMonomorphicElementAccess(HValue * checked_object,HValue * key,HValue * val,bool is_js_array,ElementsKind elements_kind,bool is_store,LoadKeyedHoleMode load_mode,KeyedAccessStoreMode store_mode)2022 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
2023     HValue* checked_object,
2024     HValue* key,
2025     HValue* val,
2026     bool is_js_array,
2027     ElementsKind elements_kind,
2028     bool is_store,
2029     LoadKeyedHoleMode load_mode,
2030     KeyedAccessStoreMode store_mode) {
2031   ASSERT(!IsExternalArrayElementsKind(elements_kind) || !is_js_array);
2032   // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
2033   // on a HElementsTransition instruction. The flag can also be removed if the
2034   // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
2035   // ElementsKind transitions. Finally, the dependency can be removed for stores
2036   // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
2037   // generated store code.
2038   if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
2039       (elements_kind == FAST_ELEMENTS && is_store)) {
2040     checked_object->ClearGVNFlag(kDependsOnElementsKind);
2041   }
2042 
2043   bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
2044   bool fast_elements = IsFastObjectElementsKind(elements_kind);
2045   HValue* elements = AddLoadElements(checked_object);
2046   if (is_store && (fast_elements || fast_smi_only_elements) &&
2047       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
2048     HCheckMaps* check_cow_map = Add<HCheckMaps>(
2049         elements, isolate()->factory()->fixed_array_map(), top_info());
2050     check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
2051   }
2052   HInstruction* length = NULL;
2053   if (is_js_array) {
2054     length = Add<HLoadNamedField>(
2055         checked_object, HObjectAccess::ForArrayLength(elements_kind));
2056   } else {
2057     length = AddLoadFixedArrayLength(elements);
2058   }
2059   length->set_type(HType::Smi());
2060   HValue* checked_key = NULL;
2061   if (IsExternalArrayElementsKind(elements_kind)) {
2062     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
2063       NoObservableSideEffectsScope no_effects(this);
2064        HLoadExternalArrayPointer* external_elements =
2065            Add<HLoadExternalArrayPointer>(elements);
2066       IfBuilder length_checker(this);
2067       length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
2068       length_checker.Then();
2069       IfBuilder negative_checker(this);
2070       HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
2071           key, graph()->GetConstant0(), Token::GTE);
2072       negative_checker.Then();
2073       HInstruction* result = AddElementAccess(
2074           external_elements, key, val, bounds_check, elements_kind, is_store);
2075       negative_checker.ElseDeopt("Negative key encountered");
2076       negative_checker.End();
2077       length_checker.End();
2078       return result;
2079     } else {
2080       ASSERT(store_mode == STANDARD_STORE);
2081       checked_key = Add<HBoundsCheck>(key, length);
2082       HLoadExternalArrayPointer* external_elements =
2083           Add<HLoadExternalArrayPointer>(elements);
2084       return AddElementAccess(
2085           external_elements, checked_key, val,
2086           checked_object, elements_kind, is_store);
2087     }
2088   }
2089   ASSERT(fast_smi_only_elements ||
2090          fast_elements ||
2091          IsFastDoubleElementsKind(elements_kind));
2092 
2093   // In case val is stored into a fast smi array, assure that the value is a smi
2094   // before manipulating the backing store. Otherwise the actual store may
2095   // deopt, leaving the backing store in an invalid state.
2096   if (is_store && IsFastSmiElementsKind(elements_kind) &&
2097       !val->type().IsSmi()) {
2098     val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
2099   }
2100 
2101   if (IsGrowStoreMode(store_mode)) {
2102     NoObservableSideEffectsScope no_effects(this);
2103     elements = BuildCheckForCapacityGrow(checked_object, elements,
2104                                          elements_kind, length, key,
2105                                          is_js_array);
2106     checked_key = key;
2107   } else {
2108     checked_key = Add<HBoundsCheck>(key, length);
2109 
2110     if (is_store && (fast_elements || fast_smi_only_elements)) {
2111       if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
2112         NoObservableSideEffectsScope no_effects(this);
2113         elements = BuildCopyElementsOnWrite(checked_object, elements,
2114                                             elements_kind, length);
2115       } else {
2116         HCheckMaps* check_cow_map = Add<HCheckMaps>(
2117             elements, isolate()->factory()->fixed_array_map(), top_info());
2118         check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
2119       }
2120     }
2121   }
2122   return AddElementAccess(elements, checked_key, val, checked_object,
2123                           elements_kind, is_store, load_mode);
2124 }
2125 
2126 
2127 
BuildAllocateArrayFromLength(JSArrayBuilder * array_builder,HValue * length_argument)2128 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
2129     JSArrayBuilder* array_builder,
2130     HValue* length_argument) {
2131   if (length_argument->IsConstant() &&
2132       HConstant::cast(length_argument)->HasSmiValue()) {
2133     int array_length = HConstant::cast(length_argument)->Integer32Value();
2134     HValue* new_object = array_length == 0
2135         ? array_builder->AllocateEmptyArray()
2136         : array_builder->AllocateArray(length_argument, length_argument);
2137     return new_object;
2138   }
2139 
2140   HValue* constant_zero = graph()->GetConstant0();
2141   HConstant* max_alloc_length =
2142       Add<HConstant>(JSObject::kInitialMaxFastElementArray);
2143   HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
2144                                                    max_alloc_length);
2145   IfBuilder if_builder(this);
2146   if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
2147                                           Token::EQ);
2148   if_builder.Then();
2149   const int initial_capacity = JSArray::kPreallocatedArrayElements;
2150   HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
2151   Push(initial_capacity_node);  // capacity
2152   Push(constant_zero);          // length
2153   if_builder.Else();
2154   if (!(top_info()->IsStub()) &&
2155       IsFastPackedElementsKind(array_builder->kind())) {
2156     // We'll come back later with better (holey) feedback.
2157     if_builder.Deopt("Holey array despite packed elements_kind feedback");
2158   } else {
2159     Push(checked_length);         // capacity
2160     Push(checked_length);         // length
2161   }
2162   if_builder.End();
2163 
2164   // Figure out total size
2165   HValue* length = Pop();
2166   HValue* capacity = Pop();
2167   return array_builder->AllocateArray(capacity, length);
2168 }
2169 
BuildAllocateElements(ElementsKind kind,HValue * capacity)2170 HValue* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
2171                                              HValue* capacity) {
2172   int elements_size;
2173   InstanceType instance_type;
2174 
2175   if (IsFastDoubleElementsKind(kind)) {
2176     elements_size = kDoubleSize;
2177     instance_type = FIXED_DOUBLE_ARRAY_TYPE;
2178   } else {
2179     elements_size = kPointerSize;
2180     instance_type = FIXED_ARRAY_TYPE;
2181   }
2182 
2183   HConstant* elements_size_value = Add<HConstant>(elements_size);
2184   HValue* mul = AddUncasted<HMul>(capacity, elements_size_value);
2185   mul->ClearFlag(HValue::kCanOverflow);
2186 
2187   HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
2188   HValue* total_size = AddUncasted<HAdd>(mul, header_size);
2189   total_size->ClearFlag(HValue::kCanOverflow);
2190 
2191   return Add<HAllocate>(total_size, HType::JSArray(),
2192       isolate()->heap()->GetPretenureMode(), instance_type);
2193 }
2194 
2195 
BuildInitializeElementsHeader(HValue * elements,ElementsKind kind,HValue * capacity)2196 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
2197                                                   ElementsKind kind,
2198                                                   HValue* capacity) {
2199   Factory* factory = isolate()->factory();
2200   Handle<Map> map = IsFastDoubleElementsKind(kind)
2201       ? factory->fixed_double_array_map()
2202       : factory->fixed_array_map();
2203 
2204   AddStoreMapConstant(elements, map);
2205   Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
2206                         capacity);
2207 }
2208 
2209 
BuildAllocateElementsAndInitializeElementsHeader(ElementsKind kind,HValue * capacity)2210 HValue* HGraphBuilder::BuildAllocateElementsAndInitializeElementsHeader(
2211     ElementsKind kind,
2212     HValue* capacity) {
2213   // The HForceRepresentation is to prevent possible deopt on int-smi
2214   // conversion after allocation but before the new object fields are set.
2215   capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
2216   HValue* new_elements = BuildAllocateElements(kind, capacity);
2217   BuildInitializeElementsHeader(new_elements, kind, capacity);
2218   return new_elements;
2219 }
2220 
2221 
BuildJSArrayHeader(HValue * array,HValue * array_map,AllocationSiteMode mode,ElementsKind elements_kind,HValue * allocation_site_payload,HValue * length_field)2222 HInnerAllocatedObject* HGraphBuilder::BuildJSArrayHeader(HValue* array,
2223     HValue* array_map,
2224     AllocationSiteMode mode,
2225     ElementsKind elements_kind,
2226     HValue* allocation_site_payload,
2227     HValue* length_field) {
2228 
2229   Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
2230 
2231   HConstant* empty_fixed_array =
2232     Add<HConstant>(isolate()->factory()->empty_fixed_array());
2233 
2234   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
2235   Add<HStoreNamedField>(array, access, empty_fixed_array);
2236   Add<HStoreNamedField>(array, HObjectAccess::ForArrayLength(elements_kind),
2237                         length_field);
2238 
2239   if (mode == TRACK_ALLOCATION_SITE) {
2240     BuildCreateAllocationMemento(
2241         array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
2242   }
2243 
2244   int elements_location = JSArray::kSize;
2245   if (mode == TRACK_ALLOCATION_SITE) {
2246     elements_location += AllocationMemento::kSize;
2247   }
2248 
2249   HInnerAllocatedObject* elements = Add<HInnerAllocatedObject>(
2250       array, Add<HConstant>(elements_location));
2251   Add<HStoreNamedField>(array, HObjectAccess::ForElementsPointer(), elements);
2252   return elements;
2253 }
2254 
2255 
AddElementAccess(HValue * elements,HValue * checked_key,HValue * val,HValue * dependency,ElementsKind elements_kind,bool is_store,LoadKeyedHoleMode load_mode)2256 HInstruction* HGraphBuilder::AddElementAccess(
2257     HValue* elements,
2258     HValue* checked_key,
2259     HValue* val,
2260     HValue* dependency,
2261     ElementsKind elements_kind,
2262     bool is_store,
2263     LoadKeyedHoleMode load_mode) {
2264   if (is_store) {
2265     ASSERT(val != NULL);
2266     if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
2267       val = Add<HClampToUint8>(val);
2268     }
2269     return Add<HStoreKeyed>(elements, checked_key, val, elements_kind);
2270   }
2271 
2272   ASSERT(!is_store);
2273   ASSERT(val == NULL);
2274   HLoadKeyed* load = Add<HLoadKeyed>(
2275       elements, checked_key, dependency, elements_kind, load_mode);
2276   if (FLAG_opt_safe_uint32_operations &&
2277       elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
2278     graph()->RecordUint32Instruction(load);
2279   }
2280   return load;
2281 }
2282 
2283 
AddLoadElements(HValue * object)2284 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object) {
2285   return Add<HLoadNamedField>(object, HObjectAccess::ForElementsPointer());
2286 }
2287 
2288 
AddLoadFixedArrayLength(HValue * object)2289 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(HValue* object) {
2290   return Add<HLoadNamedField>(object,
2291                               HObjectAccess::ForFixedArrayLength());
2292 }
2293 
2294 
BuildNewElementsCapacity(HValue * old_capacity)2295 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
2296   HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
2297                                                 graph_->GetConstant1());
2298 
2299   HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
2300   new_capacity->ClearFlag(HValue::kCanOverflow);
2301 
2302   HValue* min_growth = Add<HConstant>(16);
2303 
2304   new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
2305   new_capacity->ClearFlag(HValue::kCanOverflow);
2306 
2307   return new_capacity;
2308 }
2309 
2310 
BuildNewSpaceArrayCheck(HValue * length,ElementsKind kind)2311 void HGraphBuilder::BuildNewSpaceArrayCheck(HValue* length, ElementsKind kind) {
2312   Heap* heap = isolate()->heap();
2313   int element_size = IsFastDoubleElementsKind(kind) ? kDoubleSize
2314                                                     : kPointerSize;
2315   int max_size = heap->MaxRegularSpaceAllocationSize() / element_size;
2316   max_size -= JSArray::kSize / element_size;
2317   HConstant* max_size_constant = Add<HConstant>(max_size);
2318   Add<HBoundsCheck>(length, max_size_constant);
2319 }
2320 
2321 
BuildGrowElementsCapacity(HValue * object,HValue * elements,ElementsKind kind,ElementsKind new_kind,HValue * length,HValue * new_capacity)2322 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
2323                                                  HValue* elements,
2324                                                  ElementsKind kind,
2325                                                  ElementsKind new_kind,
2326                                                  HValue* length,
2327                                                  HValue* new_capacity) {
2328   BuildNewSpaceArrayCheck(new_capacity, new_kind);
2329 
2330   HValue* new_elements = BuildAllocateElementsAndInitializeElementsHeader(
2331       new_kind, new_capacity);
2332 
2333   BuildCopyElements(elements, kind,
2334                     new_elements, new_kind,
2335                     length, new_capacity);
2336 
2337   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2338                         new_elements);
2339 
2340   return new_elements;
2341 }
2342 
2343 
BuildFillElementsWithHole(HValue * elements,ElementsKind elements_kind,HValue * from,HValue * to)2344 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
2345                                               ElementsKind elements_kind,
2346                                               HValue* from,
2347                                               HValue* to) {
2348   // Fast elements kinds need to be initialized in case statements below cause
2349   // a garbage collection.
2350   Factory* factory = isolate()->factory();
2351 
2352   double nan_double = FixedDoubleArray::hole_nan_as_double();
2353   HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
2354       ? Add<HConstant>(factory->the_hole_value())
2355       : Add<HConstant>(nan_double);
2356 
2357   // Special loop unfolding case
2358   static const int kLoopUnfoldLimit = 8;
2359   STATIC_ASSERT(JSArray::kPreallocatedArrayElements <= kLoopUnfoldLimit);
2360   int initial_capacity = -1;
2361   if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
2362     int constant_from = from->GetInteger32Constant();
2363     int constant_to = to->GetInteger32Constant();
2364 
2365     if (constant_from == 0 && constant_to <= kLoopUnfoldLimit) {
2366       initial_capacity = constant_to;
2367     }
2368   }
2369 
2370   // Since we're about to store a hole value, the store instruction below must
2371   // assume an elements kind that supports heap object values.
2372   if (IsFastSmiOrObjectElementsKind(elements_kind)) {
2373     elements_kind = FAST_HOLEY_ELEMENTS;
2374   }
2375 
2376   if (initial_capacity >= 0) {
2377     for (int i = 0; i < initial_capacity; i++) {
2378       HInstruction* key = Add<HConstant>(i);
2379       Add<HStoreKeyed>(elements, key, hole, elements_kind);
2380     }
2381   } else {
2382     LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
2383 
2384     HValue* key = builder.BeginBody(from, to, Token::LT);
2385 
2386     Add<HStoreKeyed>(elements, key, hole, elements_kind);
2387 
2388     builder.EndBody();
2389   }
2390 }
2391 
2392 
BuildCopyElements(HValue * from_elements,ElementsKind from_elements_kind,HValue * to_elements,ElementsKind to_elements_kind,HValue * length,HValue * capacity)2393 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
2394                                       ElementsKind from_elements_kind,
2395                                       HValue* to_elements,
2396                                       ElementsKind to_elements_kind,
2397                                       HValue* length,
2398                                       HValue* capacity) {
2399   bool pre_fill_with_holes =
2400       IsFastDoubleElementsKind(from_elements_kind) &&
2401       IsFastObjectElementsKind(to_elements_kind);
2402 
2403   if (pre_fill_with_holes) {
2404     // If the copy might trigger a GC, make sure that the FixedArray is
2405     // pre-initialized with holes to make sure that it's always in a consistent
2406     // state.
2407     BuildFillElementsWithHole(to_elements, to_elements_kind,
2408                               graph()->GetConstant0(), capacity);
2409   }
2410 
2411   LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
2412 
2413   HValue* key = builder.BeginBody(graph()->GetConstant0(), length, Token::LT);
2414 
2415   HValue* element = Add<HLoadKeyed>(from_elements, key,
2416                                     static_cast<HValue*>(NULL),
2417                                     from_elements_kind,
2418                                     ALLOW_RETURN_HOLE);
2419 
2420   ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
2421                        IsFastSmiElementsKind(to_elements_kind))
2422       ? FAST_HOLEY_ELEMENTS : to_elements_kind;
2423 
2424   if (IsHoleyElementsKind(from_elements_kind) &&
2425       from_elements_kind != to_elements_kind) {
2426     IfBuilder if_hole(this);
2427     if_hole.If<HCompareHoleAndBranch>(element);
2428     if_hole.Then();
2429     HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
2430         ? Add<HConstant>(FixedDoubleArray::hole_nan_as_double())
2431         : graph()->GetConstantHole();
2432     Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
2433     if_hole.Else();
2434     HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
2435     store->SetFlag(HValue::kAllowUndefinedAsNaN);
2436     if_hole.End();
2437   } else {
2438     HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
2439     store->SetFlag(HValue::kAllowUndefinedAsNaN);
2440   }
2441 
2442   builder.EndBody();
2443 
2444   if (!pre_fill_with_holes && length != capacity) {
2445     // Fill unused capacity with the hole.
2446     BuildFillElementsWithHole(to_elements, to_elements_kind,
2447                               key, capacity);
2448   }
2449 }
2450 
2451 
BuildCloneShallowArray(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode,ElementsKind kind,int length)2452 HValue* HGraphBuilder::BuildCloneShallowArray(HValue* boilerplate,
2453                                               HValue* allocation_site,
2454                                               AllocationSiteMode mode,
2455                                               ElementsKind kind,
2456                                               int length) {
2457   NoObservableSideEffectsScope no_effects(this);
2458 
2459   // All sizes here are multiples of kPointerSize.
2460   int size = JSArray::kSize;
2461   if (mode == TRACK_ALLOCATION_SITE) {
2462     size += AllocationMemento::kSize;
2463   }
2464 
2465   HValue* size_in_bytes = Add<HConstant>(size);
2466   HInstruction* object = Add<HAllocate>(size_in_bytes,
2467                                         HType::JSObject(),
2468                                         NOT_TENURED,
2469                                         JS_OBJECT_TYPE);
2470 
2471   // Copy the JS array part.
2472   for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
2473     if ((i != JSArray::kElementsOffset) || (length == 0)) {
2474       HObjectAccess access = HObjectAccess::ForJSArrayOffset(i);
2475       Add<HStoreNamedField>(object, access,
2476                             Add<HLoadNamedField>(boilerplate, access));
2477     }
2478   }
2479 
2480   // Create an allocation site info if requested.
2481   if (mode == TRACK_ALLOCATION_SITE) {
2482     BuildCreateAllocationMemento(
2483         object, Add<HConstant>(JSArray::kSize), allocation_site);
2484   }
2485 
2486   if (length > 0) {
2487     HValue* boilerplate_elements = AddLoadElements(boilerplate);
2488     HValue* object_elements;
2489     if (IsFastDoubleElementsKind(kind)) {
2490       HValue* elems_size = Add<HConstant>(FixedDoubleArray::SizeFor(length));
2491       object_elements = Add<HAllocate>(elems_size, HType::JSArray(),
2492           NOT_TENURED, FIXED_DOUBLE_ARRAY_TYPE);
2493     } else {
2494       HValue* elems_size = Add<HConstant>(FixedArray::SizeFor(length));
2495       object_elements = Add<HAllocate>(elems_size, HType::JSArray(),
2496           NOT_TENURED, FIXED_ARRAY_TYPE);
2497     }
2498     Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2499                           object_elements);
2500 
2501     // Copy the elements array header.
2502     for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
2503       HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
2504       Add<HStoreNamedField>(object_elements, access,
2505                             Add<HLoadNamedField>(boilerplate_elements, access));
2506     }
2507 
2508     // Copy the elements array contents.
2509     // TODO(mstarzinger): Teach HGraphBuilder::BuildCopyElements to unfold
2510     // copying loops with constant length up to a given boundary and use this
2511     // helper here instead.
2512     for (int i = 0; i < length; i++) {
2513       HValue* key_constant = Add<HConstant>(i);
2514       HInstruction* value = Add<HLoadKeyed>(boilerplate_elements, key_constant,
2515                                             static_cast<HValue*>(NULL), kind);
2516       Add<HStoreKeyed>(object_elements, key_constant, value, kind);
2517     }
2518   }
2519 
2520   return object;
2521 }
2522 
2523 
BuildCompareNil(HValue * value,Handle<Type> type,HIfContinuation * continuation)2524 void HGraphBuilder::BuildCompareNil(
2525     HValue* value,
2526     Handle<Type> type,
2527     HIfContinuation* continuation) {
2528   IfBuilder if_nil(this);
2529   bool some_case_handled = false;
2530   bool some_case_missing = false;
2531 
2532   if (type->Maybe(Type::Null())) {
2533     if (some_case_handled) if_nil.Or();
2534     if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
2535     some_case_handled = true;
2536   } else {
2537     some_case_missing = true;
2538   }
2539 
2540   if (type->Maybe(Type::Undefined())) {
2541     if (some_case_handled) if_nil.Or();
2542     if_nil.If<HCompareObjectEqAndBranch>(value,
2543                                          graph()->GetConstantUndefined());
2544     some_case_handled = true;
2545   } else {
2546     some_case_missing = true;
2547   }
2548 
2549   if (type->Maybe(Type::Undetectable())) {
2550     if (some_case_handled) if_nil.Or();
2551     if_nil.If<HIsUndetectableAndBranch>(value);
2552     some_case_handled = true;
2553   } else {
2554     some_case_missing = true;
2555   }
2556 
2557   if (some_case_missing) {
2558     if_nil.Then();
2559     if_nil.Else();
2560     if (type->NumClasses() == 1) {
2561       BuildCheckHeapObject(value);
2562       // For ICs, the map checked below is a sentinel map that gets replaced by
2563       // the monomorphic map when the code is used as a template to generate a
2564       // new IC. For optimized functions, there is no sentinel map, the map
2565       // emitted below is the actual monomorphic map.
2566       BuildCheckMap(value, type->Classes().Current());
2567     } else {
2568       if_nil.Deopt("Too many undetectable types");
2569     }
2570   }
2571 
2572   if_nil.CaptureContinuation(continuation);
2573 }
2574 
2575 
BuildCreateAllocationMemento(HValue * previous_object,HValue * previous_object_size,HValue * allocation_site)2576 void HGraphBuilder::BuildCreateAllocationMemento(
2577     HValue* previous_object,
2578     HValue* previous_object_size,
2579     HValue* allocation_site) {
2580   ASSERT(allocation_site != NULL);
2581   HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
2582       previous_object, previous_object_size);
2583   AddStoreMapConstant(
2584       allocation_memento, isolate()->factory()->allocation_memento_map());
2585   Add<HStoreNamedField>(
2586       allocation_memento,
2587       HObjectAccess::ForAllocationMementoSite(),
2588       allocation_site);
2589   if (FLAG_allocation_site_pretenuring) {
2590     HValue* memento_create_count = Add<HLoadNamedField>(
2591         allocation_site, HObjectAccess::ForAllocationSiteOffset(
2592             AllocationSite::kMementoCreateCountOffset));
2593     memento_create_count = AddUncasted<HAdd>(
2594         memento_create_count, graph()->GetConstant1());
2595     HStoreNamedField* store = Add<HStoreNamedField>(
2596         allocation_site, HObjectAccess::ForAllocationSiteOffset(
2597             AllocationSite::kMementoCreateCountOffset), memento_create_count);
2598     // No write barrier needed to store a smi.
2599     store->SkipWriteBarrier();
2600   }
2601 }
2602 
2603 
BuildGetNativeContext()2604 HInstruction* HGraphBuilder::BuildGetNativeContext() {
2605   // Get the global context, then the native context
2606   HInstruction* global_object = Add<HGlobalObject>();
2607   HObjectAccess access = HObjectAccess::ForJSObjectOffset(
2608       GlobalObject::kNativeContextOffset);
2609   return Add<HLoadNamedField>(global_object, access);
2610 }
2611 
2612 
BuildGetArrayFunction()2613 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
2614   HInstruction* native_context = BuildGetNativeContext();
2615   HInstruction* index =
2616       Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
2617   return Add<HLoadKeyed>(
2618       native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
2619 }
2620 
2621 
JSArrayBuilder(HGraphBuilder * builder,ElementsKind kind,HValue * allocation_site_payload,HValue * constructor_function,AllocationSiteOverrideMode override_mode)2622 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
2623     ElementsKind kind,
2624     HValue* allocation_site_payload,
2625     HValue* constructor_function,
2626     AllocationSiteOverrideMode override_mode) :
2627         builder_(builder),
2628         kind_(kind),
2629         allocation_site_payload_(allocation_site_payload),
2630         constructor_function_(constructor_function) {
2631   mode_ = override_mode == DISABLE_ALLOCATION_SITES
2632       ? DONT_TRACK_ALLOCATION_SITE
2633       : AllocationSite::GetMode(kind);
2634 }
2635 
2636 
JSArrayBuilder(HGraphBuilder * builder,ElementsKind kind,HValue * constructor_function)2637 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
2638                                               ElementsKind kind,
2639                                               HValue* constructor_function) :
2640     builder_(builder),
2641     kind_(kind),
2642     mode_(DONT_TRACK_ALLOCATION_SITE),
2643     allocation_site_payload_(NULL),
2644     constructor_function_(constructor_function) {
2645 }
2646 
2647 
EmitMapCode()2648 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
2649   if (!builder()->top_info()->IsStub()) {
2650     // A constant map is fine.
2651     Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
2652                     builder()->isolate());
2653     return builder()->Add<HConstant>(map);
2654   }
2655 
2656   if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
2657     // No need for a context lookup if the kind_ matches the initial
2658     // map, because we can just load the map in that case.
2659     HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
2660     return builder()->AddLoadNamedField(constructor_function_, access);
2661   }
2662 
2663   HInstruction* native_context = builder()->BuildGetNativeContext();
2664   HInstruction* index = builder()->Add<HConstant>(
2665       static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
2666 
2667   HInstruction* map_array = builder()->Add<HLoadKeyed>(
2668       native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
2669 
2670   HInstruction* kind_index = builder()->Add<HConstant>(kind_);
2671 
2672   return builder()->Add<HLoadKeyed>(
2673       map_array, kind_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
2674 }
2675 
2676 
EmitInternalMapCode()2677 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
2678   // Find the map near the constructor function
2679   HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
2680   return builder()->AddLoadNamedField(constructor_function_, access);
2681 }
2682 
2683 
EstablishAllocationSize(HValue * length_node)2684 HValue* HGraphBuilder::JSArrayBuilder::EstablishAllocationSize(
2685     HValue* length_node) {
2686   ASSERT(length_node != NULL);
2687 
2688   int base_size = JSArray::kSize;
2689   if (mode_ == TRACK_ALLOCATION_SITE) {
2690     base_size += AllocationMemento::kSize;
2691   }
2692 
2693   STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
2694   base_size += FixedArray::kHeaderSize;
2695 
2696   HInstruction* elements_size_value =
2697       builder()->Add<HConstant>(elements_size());
2698   HInstruction* mul = HMul::NewImul(builder()->zone(), builder()->context(),
2699                                     length_node, elements_size_value);
2700   builder()->AddInstruction(mul);
2701   HInstruction* base = builder()->Add<HConstant>(base_size);
2702   HInstruction* total_size = HAdd::New(builder()->zone(), builder()->context(),
2703                                        base, mul);
2704   total_size->ClearFlag(HValue::kCanOverflow);
2705   builder()->AddInstruction(total_size);
2706   return total_size;
2707 }
2708 
2709 
EstablishEmptyArrayAllocationSize()2710 HValue* HGraphBuilder::JSArrayBuilder::EstablishEmptyArrayAllocationSize() {
2711   int base_size = JSArray::kSize;
2712   if (mode_ == TRACK_ALLOCATION_SITE) {
2713     base_size += AllocationMemento::kSize;
2714   }
2715 
2716   base_size += IsFastDoubleElementsKind(kind_)
2717       ? FixedDoubleArray::SizeFor(initial_capacity())
2718       : FixedArray::SizeFor(initial_capacity());
2719 
2720   return builder()->Add<HConstant>(base_size);
2721 }
2722 
2723 
AllocateEmptyArray()2724 HValue* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
2725   HValue* size_in_bytes = EstablishEmptyArrayAllocationSize();
2726   HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
2727   return AllocateArray(size_in_bytes,
2728                        capacity,
2729                        builder()->graph()->GetConstant0());
2730 }
2731 
2732 
AllocateArray(HValue * capacity,HValue * length_field,FillMode fill_mode)2733 HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* capacity,
2734                                                      HValue* length_field,
2735                                                      FillMode fill_mode) {
2736   HValue* size_in_bytes = EstablishAllocationSize(capacity);
2737   return AllocateArray(size_in_bytes, capacity, length_field, fill_mode);
2738 }
2739 
2740 
AllocateArray(HValue * size_in_bytes,HValue * capacity,HValue * length_field,FillMode fill_mode)2741 HValue* HGraphBuilder::JSArrayBuilder::AllocateArray(HValue* size_in_bytes,
2742                                                      HValue* capacity,
2743                                                      HValue* length_field,
2744                                                      FillMode fill_mode) {
2745   // These HForceRepresentations are because we store these as fields in the
2746   // objects we construct, and an int32-to-smi HChange could deopt. Accept
2747   // the deopt possibility now, before allocation occurs.
2748   capacity =
2749       builder()->AddUncasted<HForceRepresentation>(capacity,
2750                                                    Representation::Smi());
2751   length_field =
2752       builder()->AddUncasted<HForceRepresentation>(length_field,
2753                                                    Representation::Smi());
2754   // Allocate (dealing with failure appropriately)
2755   HAllocate* new_object = builder()->Add<HAllocate>(size_in_bytes,
2756       HType::JSArray(), NOT_TENURED, JS_ARRAY_TYPE);
2757 
2758   // Folded array allocation should be aligned if it has fast double elements.
2759   if (IsFastDoubleElementsKind(kind_)) {
2760      new_object->MakeDoubleAligned();
2761   }
2762 
2763   // Fill in the fields: map, properties, length
2764   HValue* map;
2765   if (allocation_site_payload_ == NULL) {
2766     map = EmitInternalMapCode();
2767   } else {
2768     map = EmitMapCode();
2769   }
2770   elements_location_ = builder()->BuildJSArrayHeader(new_object,
2771                                                      map,
2772                                                      mode_,
2773                                                      kind_,
2774                                                      allocation_site_payload_,
2775                                                      length_field);
2776 
2777   // Initialize the elements
2778   builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
2779 
2780   if (fill_mode == FILL_WITH_HOLE) {
2781     builder()->BuildFillElementsWithHole(elements_location_, kind_,
2782                                          graph()->GetConstant0(), capacity);
2783   }
2784 
2785   return new_object;
2786 }
2787 
2788 
AddStoreMapConstant(HValue * object,Handle<Map> map)2789 HStoreNamedField* HGraphBuilder::AddStoreMapConstant(HValue *object,
2790                                                      Handle<Map> map) {
2791   return Add<HStoreNamedField>(object, HObjectAccess::ForMap(),
2792                                Add<HConstant>(map));
2793 }
2794 
2795 
AddLoadJSBuiltin(Builtins::JavaScript builtin)2796 HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
2797   HGlobalObject* global_object = Add<HGlobalObject>();
2798   HObjectAccess access = HObjectAccess::ForJSObjectOffset(
2799       GlobalObject::kBuiltinsOffset);
2800   HValue* builtins = Add<HLoadNamedField>(global_object, access);
2801   HObjectAccess function_access = HObjectAccess::ForJSObjectOffset(
2802       JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
2803   return Add<HLoadNamedField>(builtins, function_access);
2804 }
2805 
2806 
HOptimizedGraphBuilder(CompilationInfo * info)2807 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
2808     : HGraphBuilder(info),
2809       function_state_(NULL),
2810       initial_function_state_(this, info, NORMAL_RETURN),
2811       ast_context_(NULL),
2812       break_scope_(NULL),
2813       inlined_count_(0),
2814       globals_(10, info->zone()),
2815       inline_bailout_(false),
2816       osr_(new(info->zone()) HOsrBuilder(this)) {
2817   // This is not initialized in the initializer list because the
2818   // constructor for the initial state relies on function_state_ == NULL
2819   // to know it's the initial state.
2820   function_state_= &initial_function_state_;
2821   InitializeAstVisitor(info->isolate());
2822   if (FLAG_emit_opt_code_positions) {
2823     SetSourcePosition(info->shared_info()->start_position());
2824   }
2825 }
2826 
2827 
CreateJoin(HBasicBlock * first,HBasicBlock * second,BailoutId join_id)2828 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
2829                                                 HBasicBlock* second,
2830                                                 BailoutId join_id) {
2831   if (first == NULL) {
2832     return second;
2833   } else if (second == NULL) {
2834     return first;
2835   } else {
2836     HBasicBlock* join_block = graph()->CreateBasicBlock();
2837     Goto(first, join_block);
2838     Goto(second, join_block);
2839     join_block->SetJoinId(join_id);
2840     return join_block;
2841   }
2842 }
2843 
2844 
JoinContinue(IterationStatement * statement,HBasicBlock * exit_block,HBasicBlock * continue_block)2845 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
2846                                                   HBasicBlock* exit_block,
2847                                                   HBasicBlock* continue_block) {
2848   if (continue_block != NULL) {
2849     if (exit_block != NULL) Goto(exit_block, continue_block);
2850     continue_block->SetJoinId(statement->ContinueId());
2851     return continue_block;
2852   }
2853   return exit_block;
2854 }
2855 
2856 
CreateLoop(IterationStatement * statement,HBasicBlock * loop_entry,HBasicBlock * body_exit,HBasicBlock * loop_successor,HBasicBlock * break_block)2857 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
2858                                                 HBasicBlock* loop_entry,
2859                                                 HBasicBlock* body_exit,
2860                                                 HBasicBlock* loop_successor,
2861                                                 HBasicBlock* break_block) {
2862   if (body_exit != NULL) Goto(body_exit, loop_entry);
2863   loop_entry->PostProcessLoopHeader(statement);
2864   if (break_block != NULL) {
2865     if (loop_successor != NULL) Goto(loop_successor, break_block);
2866     break_block->SetJoinId(statement->ExitId());
2867     return break_block;
2868   }
2869   return loop_successor;
2870 }
2871 
2872 
2873 // Build a new loop header block and set it as the current block.
BuildLoopEntry()2874 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
2875   HBasicBlock* loop_entry = CreateLoopHeaderBlock();
2876   Goto(loop_entry);
2877   set_current_block(loop_entry);
2878   return loop_entry;
2879 }
2880 
2881 
BuildLoopEntry(IterationStatement * statement)2882 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
2883     IterationStatement* statement) {
2884   HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
2885       ? osr()->BuildOsrLoopEntry(statement)
2886       : BuildLoopEntry();
2887   return loop_entry;
2888 }
2889 
2890 
FinishExit(HControlInstruction * instruction,int position)2891 void HBasicBlock::FinishExit(HControlInstruction* instruction, int position) {
2892   Finish(instruction, position);
2893   ClearEnvironment();
2894 }
2895 
2896 
HGraph(CompilationInfo * info)2897 HGraph::HGraph(CompilationInfo* info)
2898     : isolate_(info->isolate()),
2899       next_block_id_(0),
2900       entry_block_(NULL),
2901       blocks_(8, info->zone()),
2902       values_(16, info->zone()),
2903       phi_list_(NULL),
2904       uint32_instructions_(NULL),
2905       osr_(NULL),
2906       info_(info),
2907       zone_(info->zone()),
2908       is_recursive_(false),
2909       use_optimistic_licm_(false),
2910       depends_on_empty_array_proto_elements_(false),
2911       type_change_checksum_(0),
2912       maximum_environment_size_(0),
2913       no_side_effects_scope_count_(0),
2914       disallow_adding_new_values_(false) {
2915   if (info->IsStub()) {
2916     HydrogenCodeStub* stub = info->code_stub();
2917     CodeStubInterfaceDescriptor* descriptor =
2918         stub->GetInterfaceDescriptor(isolate_);
2919     start_environment_ =
2920         new(zone_) HEnvironment(zone_, descriptor->environment_length());
2921   } else {
2922     start_environment_ =
2923         new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
2924   }
2925   start_environment_->set_ast_id(BailoutId::FunctionEntry());
2926   entry_block_ = CreateBasicBlock();
2927   entry_block_->SetInitialEnvironment(start_environment_);
2928 }
2929 
2930 
CreateBasicBlock()2931 HBasicBlock* HGraph::CreateBasicBlock() {
2932   HBasicBlock* result = new(zone()) HBasicBlock(this);
2933   blocks_.Add(result, zone());
2934   return result;
2935 }
2936 
2937 
FinalizeUniqueness()2938 void HGraph::FinalizeUniqueness() {
2939   DisallowHeapAllocation no_gc;
2940   ASSERT(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
2941   for (int i = 0; i < blocks()->length(); ++i) {
2942     for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
2943       it.Current()->FinalizeUniqueness();
2944     }
2945   }
2946 }
2947 
2948 
2949 // Block ordering was implemented with two mutually recursive methods,
2950 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
2951 // The recursion could lead to stack overflow so the algorithm has been
2952 // implemented iteratively.
2953 // At a high level the algorithm looks like this:
2954 //
2955 // Postorder(block, loop_header) : {
2956 //   if (block has already been visited or is of another loop) return;
2957 //   mark block as visited;
2958 //   if (block is a loop header) {
2959 //     VisitLoopMembers(block, loop_header);
2960 //     VisitSuccessorsOfLoopHeader(block);
2961 //   } else {
2962 //     VisitSuccessors(block)
2963 //   }
2964 //   put block in result list;
2965 // }
2966 //
2967 // VisitLoopMembers(block, outer_loop_header) {
2968 //   foreach (block b in block loop members) {
2969 //     VisitSuccessorsOfLoopMember(b, outer_loop_header);
2970 //     if (b is loop header) VisitLoopMembers(b);
2971 //   }
2972 // }
2973 //
2974 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
2975 //   foreach (block b in block successors) Postorder(b, outer_loop_header)
2976 // }
2977 //
2978 // VisitSuccessorsOfLoopHeader(block) {
2979 //   foreach (block b in block successors) Postorder(b, block)
2980 // }
2981 //
2982 // VisitSuccessors(block, loop_header) {
2983 //   foreach (block b in block successors) Postorder(b, loop_header)
2984 // }
2985 //
2986 // The ordering is started calling Postorder(entry, NULL).
2987 //
2988 // Each instance of PostorderProcessor represents the "stack frame" of the
2989 // recursion, and particularly keeps the state of the loop (iteration) of the
2990 // "Visit..." function it represents.
2991 // To recycle memory we keep all the frames in a double linked list but
2992 // this means that we cannot use constructors to initialize the frames.
2993 //
2994 class PostorderProcessor : public ZoneObject {
2995  public:
2996   // Back link (towards the stack bottom).
parent()2997   PostorderProcessor* parent() {return father_; }
2998   // Forward link (towards the stack top).
child()2999   PostorderProcessor* child() {return child_; }
block()3000   HBasicBlock* block() { return block_; }
loop()3001   HLoopInformation* loop() { return loop_; }
loop_header()3002   HBasicBlock* loop_header() { return loop_header_; }
3003 
CreateEntryProcessor(Zone * zone,HBasicBlock * block,BitVector * visited)3004   static PostorderProcessor* CreateEntryProcessor(Zone* zone,
3005                                                   HBasicBlock* block,
3006                                                   BitVector* visited) {
3007     PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
3008     return result->SetupSuccessors(zone, block, NULL, visited);
3009   }
3010 
PerformStep(Zone * zone,BitVector * visited,ZoneList<HBasicBlock * > * order)3011   PostorderProcessor* PerformStep(Zone* zone,
3012                                   BitVector* visited,
3013                                   ZoneList<HBasicBlock*>* order) {
3014     PostorderProcessor* next =
3015         PerformNonBacktrackingStep(zone, visited, order);
3016     if (next != NULL) {
3017       return next;
3018     } else {
3019       return Backtrack(zone, visited, order);
3020     }
3021   }
3022 
3023  private:
PostorderProcessor(PostorderProcessor * father)3024   explicit PostorderProcessor(PostorderProcessor* father)
3025       : father_(father), child_(NULL), successor_iterator(NULL) { }
3026 
3027   // Each enum value states the cycle whose state is kept by this instance.
3028   enum LoopKind {
3029     NONE,
3030     SUCCESSORS,
3031     SUCCESSORS_OF_LOOP_HEADER,
3032     LOOP_MEMBERS,
3033     SUCCESSORS_OF_LOOP_MEMBER
3034   };
3035 
3036   // Each "Setup..." method is like a constructor for a cycle state.
SetupSuccessors(Zone * zone,HBasicBlock * block,HBasicBlock * loop_header,BitVector * visited)3037   PostorderProcessor* SetupSuccessors(Zone* zone,
3038                                       HBasicBlock* block,
3039                                       HBasicBlock* loop_header,
3040                                       BitVector* visited) {
3041     if (block == NULL || visited->Contains(block->block_id()) ||
3042         block->parent_loop_header() != loop_header) {
3043       kind_ = NONE;
3044       block_ = NULL;
3045       loop_ = NULL;
3046       loop_header_ = NULL;
3047       return this;
3048     } else {
3049       block_ = block;
3050       loop_ = NULL;
3051       visited->Add(block->block_id());
3052 
3053       if (block->IsLoopHeader()) {
3054         kind_ = SUCCESSORS_OF_LOOP_HEADER;
3055         loop_header_ = block;
3056         InitializeSuccessors();
3057         PostorderProcessor* result = Push(zone);
3058         return result->SetupLoopMembers(zone, block, block->loop_information(),
3059                                         loop_header);
3060       } else {
3061         ASSERT(block->IsFinished());
3062         kind_ = SUCCESSORS;
3063         loop_header_ = loop_header;
3064         InitializeSuccessors();
3065         return this;
3066       }
3067     }
3068   }
3069 
SetupLoopMembers(Zone * zone,HBasicBlock * block,HLoopInformation * loop,HBasicBlock * loop_header)3070   PostorderProcessor* SetupLoopMembers(Zone* zone,
3071                                        HBasicBlock* block,
3072                                        HLoopInformation* loop,
3073                                        HBasicBlock* loop_header) {
3074     kind_ = LOOP_MEMBERS;
3075     block_ = block;
3076     loop_ = loop;
3077     loop_header_ = loop_header;
3078     InitializeLoopMembers();
3079     return this;
3080   }
3081 
SetupSuccessorsOfLoopMember(HBasicBlock * block,HLoopInformation * loop,HBasicBlock * loop_header)3082   PostorderProcessor* SetupSuccessorsOfLoopMember(
3083       HBasicBlock* block,
3084       HLoopInformation* loop,
3085       HBasicBlock* loop_header) {
3086     kind_ = SUCCESSORS_OF_LOOP_MEMBER;
3087     block_ = block;
3088     loop_ = loop;
3089     loop_header_ = loop_header;
3090     InitializeSuccessors();
3091     return this;
3092   }
3093 
3094   // This method "allocates" a new stack frame.
Push(Zone * zone)3095   PostorderProcessor* Push(Zone* zone) {
3096     if (child_ == NULL) {
3097       child_ = new(zone) PostorderProcessor(this);
3098     }
3099     return child_;
3100   }
3101 
ClosePostorder(ZoneList<HBasicBlock * > * order,Zone * zone)3102   void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
3103     ASSERT(block_->end()->FirstSuccessor() == NULL ||
3104            order->Contains(block_->end()->FirstSuccessor()) ||
3105            block_->end()->FirstSuccessor()->IsLoopHeader());
3106     ASSERT(block_->end()->SecondSuccessor() == NULL ||
3107            order->Contains(block_->end()->SecondSuccessor()) ||
3108            block_->end()->SecondSuccessor()->IsLoopHeader());
3109     order->Add(block_, zone);
3110   }
3111 
3112   // This method is the basic block to walk up the stack.
Pop(Zone * zone,BitVector * visited,ZoneList<HBasicBlock * > * order)3113   PostorderProcessor* Pop(Zone* zone,
3114                           BitVector* visited,
3115                           ZoneList<HBasicBlock*>* order) {
3116     switch (kind_) {
3117       case SUCCESSORS:
3118       case SUCCESSORS_OF_LOOP_HEADER:
3119         ClosePostorder(order, zone);
3120         return father_;
3121       case LOOP_MEMBERS:
3122         return father_;
3123       case SUCCESSORS_OF_LOOP_MEMBER:
3124         if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
3125           // In this case we need to perform a LOOP_MEMBERS cycle so we
3126           // initialize it and return this instead of father.
3127           return SetupLoopMembers(zone, block(),
3128                                   block()->loop_information(), loop_header_);
3129         } else {
3130           return father_;
3131         }
3132       case NONE:
3133         return father_;
3134     }
3135     UNREACHABLE();
3136     return NULL;
3137   }
3138 
3139   // Walks up the stack.
Backtrack(Zone * zone,BitVector * visited,ZoneList<HBasicBlock * > * order)3140   PostorderProcessor* Backtrack(Zone* zone,
3141                                 BitVector* visited,
3142                                 ZoneList<HBasicBlock*>* order) {
3143     PostorderProcessor* parent = Pop(zone, visited, order);
3144     while (parent != NULL) {
3145       PostorderProcessor* next =
3146           parent->PerformNonBacktrackingStep(zone, visited, order);
3147       if (next != NULL) {
3148         return next;
3149       } else {
3150         parent = parent->Pop(zone, visited, order);
3151       }
3152     }
3153     return NULL;
3154   }
3155 
PerformNonBacktrackingStep(Zone * zone,BitVector * visited,ZoneList<HBasicBlock * > * order)3156   PostorderProcessor* PerformNonBacktrackingStep(
3157       Zone* zone,
3158       BitVector* visited,
3159       ZoneList<HBasicBlock*>* order) {
3160     HBasicBlock* next_block;
3161     switch (kind_) {
3162       case SUCCESSORS:
3163         next_block = AdvanceSuccessors();
3164         if (next_block != NULL) {
3165           PostorderProcessor* result = Push(zone);
3166           return result->SetupSuccessors(zone, next_block,
3167                                          loop_header_, visited);
3168         }
3169         break;
3170       case SUCCESSORS_OF_LOOP_HEADER:
3171         next_block = AdvanceSuccessors();
3172         if (next_block != NULL) {
3173           PostorderProcessor* result = Push(zone);
3174           return result->SetupSuccessors(zone, next_block,
3175                                          block(), visited);
3176         }
3177         break;
3178       case LOOP_MEMBERS:
3179         next_block = AdvanceLoopMembers();
3180         if (next_block != NULL) {
3181           PostorderProcessor* result = Push(zone);
3182           return result->SetupSuccessorsOfLoopMember(next_block,
3183                                                      loop_, loop_header_);
3184         }
3185         break;
3186       case SUCCESSORS_OF_LOOP_MEMBER:
3187         next_block = AdvanceSuccessors();
3188         if (next_block != NULL) {
3189           PostorderProcessor* result = Push(zone);
3190           return result->SetupSuccessors(zone, next_block,
3191                                          loop_header_, visited);
3192         }
3193         break;
3194       case NONE:
3195         return NULL;
3196     }
3197     return NULL;
3198   }
3199 
3200   // The following two methods implement a "foreach b in successors" cycle.
InitializeSuccessors()3201   void InitializeSuccessors() {
3202     loop_index = 0;
3203     loop_length = 0;
3204     successor_iterator = HSuccessorIterator(block_->end());
3205   }
3206 
AdvanceSuccessors()3207   HBasicBlock* AdvanceSuccessors() {
3208     if (!successor_iterator.Done()) {
3209       HBasicBlock* result = successor_iterator.Current();
3210       successor_iterator.Advance();
3211       return result;
3212     }
3213     return NULL;
3214   }
3215 
3216   // The following two methods implement a "foreach b in loop members" cycle.
InitializeLoopMembers()3217   void InitializeLoopMembers() {
3218     loop_index = 0;
3219     loop_length = loop_->blocks()->length();
3220   }
3221 
AdvanceLoopMembers()3222   HBasicBlock* AdvanceLoopMembers() {
3223     if (loop_index < loop_length) {
3224       HBasicBlock* result = loop_->blocks()->at(loop_index);
3225       loop_index++;
3226       return result;
3227     } else {
3228       return NULL;
3229     }
3230   }
3231 
3232   LoopKind kind_;
3233   PostorderProcessor* father_;
3234   PostorderProcessor* child_;
3235   HLoopInformation* loop_;
3236   HBasicBlock* block_;
3237   HBasicBlock* loop_header_;
3238   int loop_index;
3239   int loop_length;
3240   HSuccessorIterator successor_iterator;
3241 };
3242 
3243 
OrderBlocks()3244 void HGraph::OrderBlocks() {
3245   CompilationPhase phase("H_Block ordering", info());
3246   BitVector visited(blocks_.length(), zone());
3247 
3248   ZoneList<HBasicBlock*> reverse_result(8, zone());
3249   HBasicBlock* start = blocks_[0];
3250   PostorderProcessor* postorder =
3251       PostorderProcessor::CreateEntryProcessor(zone(), start, &visited);
3252   while (postorder != NULL) {
3253     postorder = postorder->PerformStep(zone(), &visited, &reverse_result);
3254   }
3255   blocks_.Rewind(0);
3256   int index = 0;
3257   for (int i = reverse_result.length() - 1; i >= 0; --i) {
3258     HBasicBlock* b = reverse_result[i];
3259     blocks_.Add(b, zone());
3260     b->set_block_id(index++);
3261   }
3262 }
3263 
3264 
AssignDominators()3265 void HGraph::AssignDominators() {
3266   HPhase phase("H_Assign dominators", this);
3267   for (int i = 0; i < blocks_.length(); ++i) {
3268     HBasicBlock* block = blocks_[i];
3269     if (block->IsLoopHeader()) {
3270       // Only the first predecessor of a loop header is from outside the loop.
3271       // All others are back edges, and thus cannot dominate the loop header.
3272       block->AssignCommonDominator(block->predecessors()->first());
3273       block->AssignLoopSuccessorDominators();
3274     } else {
3275       for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
3276         blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
3277       }
3278     }
3279   }
3280 }
3281 
3282 
CheckArgumentsPhiUses()3283 bool HGraph::CheckArgumentsPhiUses() {
3284   int block_count = blocks_.length();
3285   for (int i = 0; i < block_count; ++i) {
3286     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3287       HPhi* phi = blocks_[i]->phis()->at(j);
3288       // We don't support phi uses of arguments for now.
3289       if (phi->CheckFlag(HValue::kIsArguments)) return false;
3290     }
3291   }
3292   return true;
3293 }
3294 
3295 
CheckConstPhiUses()3296 bool HGraph::CheckConstPhiUses() {
3297   int block_count = blocks_.length();
3298   for (int i = 0; i < block_count; ++i) {
3299     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3300       HPhi* phi = blocks_[i]->phis()->at(j);
3301       // Check for the hole value (from an uninitialized const).
3302       for (int k = 0; k < phi->OperandCount(); k++) {
3303         if (phi->OperandAt(k) == GetConstantHole()) return false;
3304       }
3305     }
3306   }
3307   return true;
3308 }
3309 
3310 
CollectPhis()3311 void HGraph::CollectPhis() {
3312   int block_count = blocks_.length();
3313   phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
3314   for (int i = 0; i < block_count; ++i) {
3315     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3316       HPhi* phi = blocks_[i]->phis()->at(j);
3317       phi_list_->Add(phi, zone());
3318     }
3319   }
3320 }
3321 
3322 
3323 // Implementation of utility class to encapsulate the translation state for
3324 // a (possibly inlined) function.
FunctionState(HOptimizedGraphBuilder * owner,CompilationInfo * info,InliningKind inlining_kind)3325 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
3326                              CompilationInfo* info,
3327                              InliningKind inlining_kind)
3328     : owner_(owner),
3329       compilation_info_(info),
3330       call_context_(NULL),
3331       inlining_kind_(inlining_kind),
3332       function_return_(NULL),
3333       test_context_(NULL),
3334       entry_(NULL),
3335       arguments_object_(NULL),
3336       arguments_elements_(NULL),
3337       outer_(owner->function_state()) {
3338   if (outer_ != NULL) {
3339     // State for an inline function.
3340     if (owner->ast_context()->IsTest()) {
3341       HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
3342       HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
3343       if_true->MarkAsInlineReturnTarget(owner->current_block());
3344       if_false->MarkAsInlineReturnTarget(owner->current_block());
3345       TestContext* outer_test_context = TestContext::cast(owner->ast_context());
3346       Expression* cond = outer_test_context->condition();
3347       // The AstContext constructor pushed on the context stack.  This newed
3348       // instance is the reason that AstContext can't be BASE_EMBEDDED.
3349       test_context_ = new TestContext(owner, cond, if_true, if_false);
3350     } else {
3351       function_return_ = owner->graph()->CreateBasicBlock();
3352       function_return()->MarkAsInlineReturnTarget(owner->current_block());
3353     }
3354     // Set this after possibly allocating a new TestContext above.
3355     call_context_ = owner->ast_context();
3356   }
3357 
3358   // Push on the state stack.
3359   owner->set_function_state(this);
3360 }
3361 
3362 
~FunctionState()3363 FunctionState::~FunctionState() {
3364   delete test_context_;
3365   owner_->set_function_state(outer_);
3366 }
3367 
3368 
3369 // Implementation of utility classes to represent an expression's context in
3370 // the AST.
AstContext(HOptimizedGraphBuilder * owner,Expression::Context kind)3371 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
3372     : owner_(owner),
3373       kind_(kind),
3374       outer_(owner->ast_context()),
3375       for_typeof_(false) {
3376   owner->set_ast_context(this);  // Push.
3377 #ifdef DEBUG
3378   ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
3379   original_length_ = owner->environment()->length();
3380 #endif
3381 }
3382 
3383 
~AstContext()3384 AstContext::~AstContext() {
3385   owner_->set_ast_context(outer_);  // Pop.
3386 }
3387 
3388 
~EffectContext()3389 EffectContext::~EffectContext() {
3390   ASSERT(owner()->HasStackOverflow() ||
3391          owner()->current_block() == NULL ||
3392          (owner()->environment()->length() == original_length_ &&
3393           owner()->environment()->frame_type() == JS_FUNCTION));
3394 }
3395 
3396 
~ValueContext()3397 ValueContext::~ValueContext() {
3398   ASSERT(owner()->HasStackOverflow() ||
3399          owner()->current_block() == NULL ||
3400          (owner()->environment()->length() == original_length_ + 1 &&
3401           owner()->environment()->frame_type() == JS_FUNCTION));
3402 }
3403 
3404 
ReturnValue(HValue * value)3405 void EffectContext::ReturnValue(HValue* value) {
3406   // The value is simply ignored.
3407 }
3408 
3409 
ReturnValue(HValue * value)3410 void ValueContext::ReturnValue(HValue* value) {
3411   // The value is tracked in the bailout environment, and communicated
3412   // through the environment as the result of the expression.
3413   if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
3414     owner()->Bailout(kBadValueContextForArgumentsValue);
3415   }
3416   owner()->Push(value);
3417 }
3418 
3419 
ReturnValue(HValue * value)3420 void TestContext::ReturnValue(HValue* value) {
3421   BuildBranch(value);
3422 }
3423 
3424 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)3425 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
3426   ASSERT(!instr->IsControlInstruction());
3427   owner()->AddInstruction(instr);
3428   if (instr->HasObservableSideEffects()) {
3429     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
3430   }
3431 }
3432 
3433 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)3434 void EffectContext::ReturnControl(HControlInstruction* instr,
3435                                   BailoutId ast_id) {
3436   ASSERT(!instr->HasObservableSideEffects());
3437   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
3438   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
3439   instr->SetSuccessorAt(0, empty_true);
3440   instr->SetSuccessorAt(1, empty_false);
3441   owner()->FinishCurrentBlock(instr);
3442   HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
3443   owner()->set_current_block(join);
3444 }
3445 
3446 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)3447 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
3448                                        BailoutId ast_id) {
3449   HBasicBlock* true_branch = NULL;
3450   HBasicBlock* false_branch = NULL;
3451   continuation->Continue(&true_branch, &false_branch);
3452   if (!continuation->IsTrueReachable()) {
3453     owner()->set_current_block(false_branch);
3454   } else if (!continuation->IsFalseReachable()) {
3455     owner()->set_current_block(true_branch);
3456   } else {
3457     HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
3458     owner()->set_current_block(join);
3459   }
3460 }
3461 
3462 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)3463 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
3464   ASSERT(!instr->IsControlInstruction());
3465   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
3466     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
3467   }
3468   owner()->AddInstruction(instr);
3469   owner()->Push(instr);
3470   if (instr->HasObservableSideEffects()) {
3471     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
3472   }
3473 }
3474 
3475 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)3476 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
3477   ASSERT(!instr->HasObservableSideEffects());
3478   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
3479     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
3480   }
3481   HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
3482   HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
3483   instr->SetSuccessorAt(0, materialize_true);
3484   instr->SetSuccessorAt(1, materialize_false);
3485   owner()->FinishCurrentBlock(instr);
3486   owner()->set_current_block(materialize_true);
3487   owner()->Push(owner()->graph()->GetConstantTrue());
3488   owner()->set_current_block(materialize_false);
3489   owner()->Push(owner()->graph()->GetConstantFalse());
3490   HBasicBlock* join =
3491     owner()->CreateJoin(materialize_true, materialize_false, ast_id);
3492   owner()->set_current_block(join);
3493 }
3494 
3495 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)3496 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
3497                                       BailoutId ast_id) {
3498   HBasicBlock* materialize_true = NULL;
3499   HBasicBlock* materialize_false = NULL;
3500   continuation->Continue(&materialize_true, &materialize_false);
3501   if (continuation->IsTrueReachable()) {
3502     owner()->set_current_block(materialize_true);
3503     owner()->Push(owner()->graph()->GetConstantTrue());
3504     owner()->set_current_block(materialize_true);
3505   }
3506   if (continuation->IsFalseReachable()) {
3507     owner()->set_current_block(materialize_false);
3508     owner()->Push(owner()->graph()->GetConstantFalse());
3509     owner()->set_current_block(materialize_false);
3510   }
3511   if (continuation->TrueAndFalseReachable()) {
3512     HBasicBlock* join =
3513         owner()->CreateJoin(materialize_true, materialize_false, ast_id);
3514     owner()->set_current_block(join);
3515   }
3516 }
3517 
3518 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)3519 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
3520   ASSERT(!instr->IsControlInstruction());
3521   HOptimizedGraphBuilder* builder = owner();
3522   builder->AddInstruction(instr);
3523   // We expect a simulate after every expression with side effects, though
3524   // this one isn't actually needed (and wouldn't work if it were targeted).
3525   if (instr->HasObservableSideEffects()) {
3526     builder->Push(instr);
3527     builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
3528     builder->Pop();
3529   }
3530   BuildBranch(instr);
3531 }
3532 
3533 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)3534 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
3535   ASSERT(!instr->HasObservableSideEffects());
3536   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
3537   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
3538   instr->SetSuccessorAt(0, empty_true);
3539   instr->SetSuccessorAt(1, empty_false);
3540   owner()->FinishCurrentBlock(instr);
3541   owner()->Goto(empty_true, if_true(), owner()->function_state());
3542   owner()->Goto(empty_false, if_false(), owner()->function_state());
3543   owner()->set_current_block(NULL);
3544 }
3545 
3546 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)3547 void TestContext::ReturnContinuation(HIfContinuation* continuation,
3548                                      BailoutId ast_id) {
3549   HBasicBlock* true_branch = NULL;
3550   HBasicBlock* false_branch = NULL;
3551   continuation->Continue(&true_branch, &false_branch);
3552   if (continuation->IsTrueReachable()) {
3553     owner()->Goto(true_branch, if_true(), owner()->function_state());
3554   }
3555   if (continuation->IsFalseReachable()) {
3556     owner()->Goto(false_branch, if_false(), owner()->function_state());
3557   }
3558   owner()->set_current_block(NULL);
3559 }
3560 
3561 
BuildBranch(HValue * value)3562 void TestContext::BuildBranch(HValue* value) {
3563   // We expect the graph to be in edge-split form: there is no edge that
3564   // connects a branch node to a join node.  We conservatively ensure that
3565   // property by always adding an empty block on the outgoing edges of this
3566   // branch.
3567   HOptimizedGraphBuilder* builder = owner();
3568   if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
3569     builder->Bailout(kArgumentsObjectValueInATestContext);
3570   }
3571   ToBooleanStub::Types expected(condition()->to_boolean_types());
3572   ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
3573 }
3574 
3575 
3576 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
3577 #define CHECK_BAILOUT(call)                     \
3578   do {                                          \
3579     call;                                       \
3580     if (HasStackOverflow()) return;             \
3581   } while (false)
3582 
3583 
3584 #define CHECK_ALIVE(call)                                       \
3585   do {                                                          \
3586     call;                                                       \
3587     if (HasStackOverflow() || current_block() == NULL) return;  \
3588   } while (false)
3589 
3590 
3591 #define CHECK_ALIVE_OR_RETURN(call, value)                            \
3592   do {                                                                \
3593     call;                                                             \
3594     if (HasStackOverflow() || current_block() == NULL) return value;  \
3595   } while (false)
3596 
3597 
Bailout(BailoutReason reason)3598 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
3599   current_info()->set_bailout_reason(reason);
3600   SetStackOverflow();
3601 }
3602 
3603 
VisitForEffect(Expression * expr)3604 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
3605   EffectContext for_effect(this);
3606   Visit(expr);
3607 }
3608 
3609 
VisitForValue(Expression * expr,ArgumentsAllowedFlag flag)3610 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
3611                                            ArgumentsAllowedFlag flag) {
3612   ValueContext for_value(this, flag);
3613   Visit(expr);
3614 }
3615 
3616 
VisitForTypeOf(Expression * expr)3617 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
3618   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
3619   for_value.set_for_typeof(true);
3620   Visit(expr);
3621 }
3622 
3623 
3624 
VisitForControl(Expression * expr,HBasicBlock * true_block,HBasicBlock * false_block)3625 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
3626                                              HBasicBlock* true_block,
3627                                              HBasicBlock* false_block) {
3628   TestContext for_test(this, expr, true_block, false_block);
3629   Visit(expr);
3630 }
3631 
3632 
VisitArgument(Expression * expr)3633 void HOptimizedGraphBuilder::VisitArgument(Expression* expr) {
3634   CHECK_ALIVE(VisitForValue(expr));
3635   Push(Add<HPushArgument>(Pop()));
3636 }
3637 
3638 
VisitArgumentList(ZoneList<Expression * > * arguments)3639 void HOptimizedGraphBuilder::VisitArgumentList(
3640     ZoneList<Expression*>* arguments) {
3641   for (int i = 0; i < arguments->length(); i++) {
3642     CHECK_ALIVE(VisitArgument(arguments->at(i)));
3643   }
3644 }
3645 
3646 
VisitExpressions(ZoneList<Expression * > * exprs)3647 void HOptimizedGraphBuilder::VisitExpressions(
3648     ZoneList<Expression*>* exprs) {
3649   for (int i = 0; i < exprs->length(); ++i) {
3650     CHECK_ALIVE(VisitForValue(exprs->at(i)));
3651   }
3652 }
3653 
3654 
BuildGraph()3655 bool HOptimizedGraphBuilder::BuildGraph() {
3656   if (current_info()->function()->is_generator()) {
3657     Bailout(kFunctionIsAGenerator);
3658     return false;
3659   }
3660   Scope* scope = current_info()->scope();
3661   if (scope->HasIllegalRedeclaration()) {
3662     Bailout(kFunctionWithIllegalRedeclaration);
3663     return false;
3664   }
3665   if (scope->calls_eval()) {
3666     Bailout(kFunctionCallsEval);
3667     return false;
3668   }
3669   SetUpScope(scope);
3670 
3671   // Add an edge to the body entry.  This is warty: the graph's start
3672   // environment will be used by the Lithium translation as the initial
3673   // environment on graph entry, but it has now been mutated by the
3674   // Hydrogen translation of the instructions in the start block.  This
3675   // environment uses values which have not been defined yet.  These
3676   // Hydrogen instructions will then be replayed by the Lithium
3677   // translation, so they cannot have an environment effect.  The edge to
3678   // the body's entry block (along with some special logic for the start
3679   // block in HInstruction::InsertAfter) seals the start block from
3680   // getting unwanted instructions inserted.
3681   //
3682   // TODO(kmillikin): Fix this.  Stop mutating the initial environment.
3683   // Make the Hydrogen instructions in the initial block into Hydrogen
3684   // values (but not instructions), present in the initial environment and
3685   // not replayed by the Lithium translation.
3686   HEnvironment* initial_env = environment()->CopyWithoutHistory();
3687   HBasicBlock* body_entry = CreateBasicBlock(initial_env);
3688   Goto(body_entry);
3689   body_entry->SetJoinId(BailoutId::FunctionEntry());
3690   set_current_block(body_entry);
3691 
3692   // Handle implicit declaration of the function name in named function
3693   // expressions before other declarations.
3694   if (scope->is_function_scope() && scope->function() != NULL) {
3695     VisitVariableDeclaration(scope->function());
3696   }
3697   VisitDeclarations(scope->declarations());
3698   Add<HSimulate>(BailoutId::Declarations());
3699 
3700   Add<HStackCheck>(HStackCheck::kFunctionEntry);
3701 
3702   VisitStatements(current_info()->function()->body());
3703   if (HasStackOverflow()) return false;
3704 
3705   if (current_block() != NULL) {
3706     Add<HReturn>(graph()->GetConstantUndefined());
3707     set_current_block(NULL);
3708   }
3709 
3710   // If the checksum of the number of type info changes is the same as the
3711   // last time this function was compiled, then this recompile is likely not
3712   // due to missing/inadequate type feedback, but rather too aggressive
3713   // optimization. Disable optimistic LICM in that case.
3714   Handle<Code> unoptimized_code(current_info()->shared_info()->code());
3715   ASSERT(unoptimized_code->kind() == Code::FUNCTION);
3716   Handle<TypeFeedbackInfo> type_info(
3717       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
3718   int checksum = type_info->own_type_change_checksum();
3719   int composite_checksum = graph()->update_type_change_checksum(checksum);
3720   graph()->set_use_optimistic_licm(
3721       !type_info->matches_inlined_type_change_checksum(composite_checksum));
3722   type_info->set_inlined_type_change_checksum(composite_checksum);
3723 
3724   // Perform any necessary OSR-specific cleanups or changes to the graph.
3725   osr()->FinishGraph();
3726 
3727   return true;
3728 }
3729 
3730 
Optimize(BailoutReason * bailout_reason)3731 bool HGraph::Optimize(BailoutReason* bailout_reason) {
3732   OrderBlocks();
3733   AssignDominators();
3734 
3735   // We need to create a HConstant "zero" now so that GVN will fold every
3736   // zero-valued constant in the graph together.
3737   // The constant is needed to make idef-based bounds check work: the pass
3738   // evaluates relations with "zero" and that zero cannot be created after GVN.
3739   GetConstant0();
3740 
3741 #ifdef DEBUG
3742   // Do a full verify after building the graph and computing dominators.
3743   Verify(true);
3744 #endif
3745 
3746   if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
3747     Run<HEnvironmentLivenessAnalysisPhase>();
3748   }
3749 
3750   if (!CheckConstPhiUses()) {
3751     *bailout_reason = kUnsupportedPhiUseOfConstVariable;
3752     return false;
3753   }
3754   Run<HRedundantPhiEliminationPhase>();
3755   if (!CheckArgumentsPhiUses()) {
3756     *bailout_reason = kUnsupportedPhiUseOfArguments;
3757     return false;
3758   }
3759 
3760   // Find and mark unreachable code to simplify optimizations, especially gvn,
3761   // where unreachable code could unnecessarily defeat LICM.
3762   Run<HMarkUnreachableBlocksPhase>();
3763 
3764   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
3765   if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
3766 
3767   if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
3768 
3769   CollectPhis();
3770 
3771   if (has_osr()) osr()->FinishOsrValues();
3772 
3773   Run<HInferRepresentationPhase>();
3774 
3775   // Remove HSimulate instructions that have turned out not to be needed
3776   // after all by folding them into the following HSimulate.
3777   // This must happen after inferring representations.
3778   Run<HMergeRemovableSimulatesPhase>();
3779 
3780   Run<HMarkDeoptimizeOnUndefinedPhase>();
3781   Run<HRepresentationChangesPhase>();
3782 
3783   Run<HInferTypesPhase>();
3784 
3785   // Must be performed before canonicalization to ensure that Canonicalize
3786   // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
3787   // zero.
3788   if (FLAG_opt_safe_uint32_operations) Run<HUint32AnalysisPhase>();
3789 
3790   if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
3791 
3792   if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
3793 
3794   if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
3795 
3796   if (FLAG_use_range) Run<HRangeAnalysisPhase>();
3797 
3798   Run<HComputeChangeUndefinedToNaN>();
3799   Run<HComputeMinusZeroChecksPhase>();
3800 
3801   // Eliminate redundant stack checks on backwards branches.
3802   Run<HStackCheckEliminationPhase>();
3803 
3804   if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
3805   if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
3806   if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
3807   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
3808 
3809   RestoreActualValues();
3810 
3811   // Find unreachable code a second time, GVN and other optimizations may have
3812   // made blocks unreachable that were previously reachable.
3813   Run<HMarkUnreachableBlocksPhase>();
3814 
3815   return true;
3816 }
3817 
3818 
RestoreActualValues()3819 void HGraph::RestoreActualValues() {
3820   HPhase phase("H_Restore actual values", this);
3821 
3822   for (int block_index = 0; block_index < blocks()->length(); block_index++) {
3823     HBasicBlock* block = blocks()->at(block_index);
3824 
3825 #ifdef DEBUG
3826     for (int i = 0; i < block->phis()->length(); i++) {
3827       HPhi* phi = block->phis()->at(i);
3828       ASSERT(phi->ActualValue() == phi);
3829     }
3830 #endif
3831 
3832     for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
3833       HInstruction* instruction = it.Current();
3834       if (instruction->ActualValue() != instruction) {
3835         ASSERT(instruction->IsInformativeDefinition());
3836         if (instruction->IsPurelyInformativeDefinition()) {
3837           instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
3838         } else {
3839           instruction->ReplaceAllUsesWith(instruction->ActualValue());
3840         }
3841       }
3842     }
3843   }
3844 }
3845 
3846 
3847 template <class Instruction>
PreProcessCall(Instruction * call)3848 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
3849   int count = call->argument_count();
3850   ZoneList<HValue*> arguments(count, zone());
3851   for (int i = 0; i < count; ++i) {
3852     arguments.Add(Pop(), zone());
3853   }
3854 
3855   while (!arguments.is_empty()) {
3856     Add<HPushArgument>(arguments.RemoveLast());
3857   }
3858   return call;
3859 }
3860 
3861 
SetUpScope(Scope * scope)3862 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
3863   // First special is HContext.
3864   HInstruction* context = Add<HContext>();
3865   environment()->BindContext(context);
3866 
3867   // Create an arguments object containing the initial parameters.  Set the
3868   // initial values of parameters including "this" having parameter index 0.
3869   ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
3870   HArgumentsObject* arguments_object =
3871       New<HArgumentsObject>(environment()->parameter_count());
3872   for (int i = 0; i < environment()->parameter_count(); ++i) {
3873     HInstruction* parameter = Add<HParameter>(i);
3874     arguments_object->AddArgument(parameter, zone());
3875     environment()->Bind(i, parameter);
3876   }
3877   AddInstruction(arguments_object);
3878   graph()->SetArgumentsObject(arguments_object);
3879 
3880   HConstant* undefined_constant = graph()->GetConstantUndefined();
3881   // Initialize specials and locals to undefined.
3882   for (int i = environment()->parameter_count() + 1;
3883        i < environment()->length();
3884        ++i) {
3885     environment()->Bind(i, undefined_constant);
3886   }
3887 
3888   // Handle the arguments and arguments shadow variables specially (they do
3889   // not have declarations).
3890   if (scope->arguments() != NULL) {
3891     if (!scope->arguments()->IsStackAllocated()) {
3892       return Bailout(kContextAllocatedArguments);
3893     }
3894 
3895     environment()->Bind(scope->arguments(),
3896                         graph()->GetArgumentsObject());
3897   }
3898 }
3899 
3900 
VisitStatements(ZoneList<Statement * > * statements)3901 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
3902   for (int i = 0; i < statements->length(); i++) {
3903     Statement* stmt = statements->at(i);
3904     CHECK_ALIVE(Visit(stmt));
3905     if (stmt->IsJump()) break;
3906   }
3907 }
3908 
3909 
VisitBlock(Block * stmt)3910 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
3911   ASSERT(!HasStackOverflow());
3912   ASSERT(current_block() != NULL);
3913   ASSERT(current_block()->HasPredecessor());
3914   if (stmt->scope() != NULL) {
3915     return Bailout(kScopedBlock);
3916   }
3917   BreakAndContinueInfo break_info(stmt);
3918   { BreakAndContinueScope push(&break_info, this);
3919     CHECK_BAILOUT(VisitStatements(stmt->statements()));
3920   }
3921   HBasicBlock* break_block = break_info.break_block();
3922   if (break_block != NULL) {
3923     if (current_block() != NULL) Goto(break_block);
3924     break_block->SetJoinId(stmt->ExitId());
3925     set_current_block(break_block);
3926   }
3927 }
3928 
3929 
VisitExpressionStatement(ExpressionStatement * stmt)3930 void HOptimizedGraphBuilder::VisitExpressionStatement(
3931     ExpressionStatement* stmt) {
3932   ASSERT(!HasStackOverflow());
3933   ASSERT(current_block() != NULL);
3934   ASSERT(current_block()->HasPredecessor());
3935   VisitForEffect(stmt->expression());
3936 }
3937 
3938 
VisitEmptyStatement(EmptyStatement * stmt)3939 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
3940   ASSERT(!HasStackOverflow());
3941   ASSERT(current_block() != NULL);
3942   ASSERT(current_block()->HasPredecessor());
3943 }
3944 
3945 
VisitIfStatement(IfStatement * stmt)3946 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
3947   ASSERT(!HasStackOverflow());
3948   ASSERT(current_block() != NULL);
3949   ASSERT(current_block()->HasPredecessor());
3950   if (stmt->condition()->ToBooleanIsTrue()) {
3951     Add<HSimulate>(stmt->ThenId());
3952     Visit(stmt->then_statement());
3953   } else if (stmt->condition()->ToBooleanIsFalse()) {
3954     Add<HSimulate>(stmt->ElseId());
3955     Visit(stmt->else_statement());
3956   } else {
3957     HBasicBlock* cond_true = graph()->CreateBasicBlock();
3958     HBasicBlock* cond_false = graph()->CreateBasicBlock();
3959     CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
3960 
3961     if (cond_true->HasPredecessor()) {
3962       cond_true->SetJoinId(stmt->ThenId());
3963       set_current_block(cond_true);
3964       CHECK_BAILOUT(Visit(stmt->then_statement()));
3965       cond_true = current_block();
3966     } else {
3967       cond_true = NULL;
3968     }
3969 
3970     if (cond_false->HasPredecessor()) {
3971       cond_false->SetJoinId(stmt->ElseId());
3972       set_current_block(cond_false);
3973       CHECK_BAILOUT(Visit(stmt->else_statement()));
3974       cond_false = current_block();
3975     } else {
3976       cond_false = NULL;
3977     }
3978 
3979     HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
3980     set_current_block(join);
3981   }
3982 }
3983 
3984 
Get(BreakableStatement * stmt,BreakType type,int * drop_extra)3985 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
3986     BreakableStatement* stmt,
3987     BreakType type,
3988     int* drop_extra) {
3989   *drop_extra = 0;
3990   BreakAndContinueScope* current = this;
3991   while (current != NULL && current->info()->target() != stmt) {
3992     *drop_extra += current->info()->drop_extra();
3993     current = current->next();
3994   }
3995   ASSERT(current != NULL);  // Always found (unless stack is malformed).
3996 
3997   if (type == BREAK) {
3998     *drop_extra += current->info()->drop_extra();
3999   }
4000 
4001   HBasicBlock* block = NULL;
4002   switch (type) {
4003     case BREAK:
4004       block = current->info()->break_block();
4005       if (block == NULL) {
4006         block = current->owner()->graph()->CreateBasicBlock();
4007         current->info()->set_break_block(block);
4008       }
4009       break;
4010 
4011     case CONTINUE:
4012       block = current->info()->continue_block();
4013       if (block == NULL) {
4014         block = current->owner()->graph()->CreateBasicBlock();
4015         current->info()->set_continue_block(block);
4016       }
4017       break;
4018   }
4019 
4020   return block;
4021 }
4022 
4023 
VisitContinueStatement(ContinueStatement * stmt)4024 void HOptimizedGraphBuilder::VisitContinueStatement(
4025     ContinueStatement* stmt) {
4026   ASSERT(!HasStackOverflow());
4027   ASSERT(current_block() != NULL);
4028   ASSERT(current_block()->HasPredecessor());
4029   int drop_extra = 0;
4030   HBasicBlock* continue_block = break_scope()->Get(
4031       stmt->target(), BreakAndContinueScope::CONTINUE, &drop_extra);
4032   Drop(drop_extra);
4033   Goto(continue_block);
4034   set_current_block(NULL);
4035 }
4036 
4037 
VisitBreakStatement(BreakStatement * stmt)4038 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
4039   ASSERT(!HasStackOverflow());
4040   ASSERT(current_block() != NULL);
4041   ASSERT(current_block()->HasPredecessor());
4042   int drop_extra = 0;
4043   HBasicBlock* break_block = break_scope()->Get(
4044       stmt->target(), BreakAndContinueScope::BREAK, &drop_extra);
4045   Drop(drop_extra);
4046   Goto(break_block);
4047   set_current_block(NULL);
4048 }
4049 
4050 
VisitReturnStatement(ReturnStatement * stmt)4051 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
4052   ASSERT(!HasStackOverflow());
4053   ASSERT(current_block() != NULL);
4054   ASSERT(current_block()->HasPredecessor());
4055   FunctionState* state = function_state();
4056   AstContext* context = call_context();
4057   if (context == NULL) {
4058     // Not an inlined return, so an actual one.
4059     CHECK_ALIVE(VisitForValue(stmt->expression()));
4060     HValue* result = environment()->Pop();
4061     Add<HReturn>(result);
4062   } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
4063     // Return from an inlined construct call. In a test context the return value
4064     // will always evaluate to true, in a value context the return value needs
4065     // to be a JSObject.
4066     if (context->IsTest()) {
4067       TestContext* test = TestContext::cast(context);
4068       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4069       Goto(test->if_true(), state);
4070     } else if (context->IsEffect()) {
4071       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4072       Goto(function_return(), state);
4073     } else {
4074       ASSERT(context->IsValue());
4075       CHECK_ALIVE(VisitForValue(stmt->expression()));
4076       HValue* return_value = Pop();
4077       HValue* receiver = environment()->arguments_environment()->Lookup(0);
4078       HHasInstanceTypeAndBranch* typecheck =
4079           New<HHasInstanceTypeAndBranch>(return_value,
4080                                          FIRST_SPEC_OBJECT_TYPE,
4081                                          LAST_SPEC_OBJECT_TYPE);
4082       HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
4083       HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
4084       typecheck->SetSuccessorAt(0, if_spec_object);
4085       typecheck->SetSuccessorAt(1, not_spec_object);
4086       FinishCurrentBlock(typecheck);
4087       AddLeaveInlined(if_spec_object, return_value, state);
4088       AddLeaveInlined(not_spec_object, receiver, state);
4089     }
4090   } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
4091     // Return from an inlined setter call. The returned value is never used, the
4092     // value of an assignment is always the value of the RHS of the assignment.
4093     CHECK_ALIVE(VisitForEffect(stmt->expression()));
4094     if (context->IsTest()) {
4095       HValue* rhs = environment()->arguments_environment()->Lookup(1);
4096       context->ReturnValue(rhs);
4097     } else if (context->IsEffect()) {
4098       Goto(function_return(), state);
4099     } else {
4100       ASSERT(context->IsValue());
4101       HValue* rhs = environment()->arguments_environment()->Lookup(1);
4102       AddLeaveInlined(rhs, state);
4103     }
4104   } else {
4105     // Return from a normal inlined function. Visit the subexpression in the
4106     // expression context of the call.
4107     if (context->IsTest()) {
4108       TestContext* test = TestContext::cast(context);
4109       VisitForControl(stmt->expression(), test->if_true(), test->if_false());
4110     } else if (context->IsEffect()) {
4111       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4112       Goto(function_return(), state);
4113     } else {
4114       ASSERT(context->IsValue());
4115       CHECK_ALIVE(VisitForValue(stmt->expression()));
4116       AddLeaveInlined(Pop(), state);
4117     }
4118   }
4119   set_current_block(NULL);
4120 }
4121 
4122 
VisitWithStatement(WithStatement * stmt)4123 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
4124   ASSERT(!HasStackOverflow());
4125   ASSERT(current_block() != NULL);
4126   ASSERT(current_block()->HasPredecessor());
4127   return Bailout(kWithStatement);
4128 }
4129 
4130 
VisitSwitchStatement(SwitchStatement * stmt)4131 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
4132   ASSERT(!HasStackOverflow());
4133   ASSERT(current_block() != NULL);
4134   ASSERT(current_block()->HasPredecessor());
4135 
4136   // We only optimize switch statements with smi-literal smi comparisons,
4137   // with a bounded number of clauses.
4138   const int kCaseClauseLimit = 128;
4139   ZoneList<CaseClause*>* clauses = stmt->cases();
4140   int clause_count = clauses->length();
4141   if (clause_count > kCaseClauseLimit) {
4142     return Bailout(kSwitchStatementTooManyClauses);
4143   }
4144 
4145   ASSERT(stmt->switch_type() != SwitchStatement::UNKNOWN_SWITCH);
4146   if (stmt->switch_type() == SwitchStatement::GENERIC_SWITCH) {
4147     return Bailout(kSwitchStatementMixedOrNonLiteralSwitchLabels);
4148   }
4149 
4150   CHECK_ALIVE(VisitForValue(stmt->tag()));
4151   Add<HSimulate>(stmt->EntryId());
4152   HValue* tag_value = Pop();
4153   HBasicBlock* first_test_block = current_block();
4154 
4155   HUnaryControlInstruction* string_check = NULL;
4156   HBasicBlock* not_string_block = NULL;
4157 
4158   // Test switch's tag value if all clauses are string literals
4159   if (stmt->switch_type() == SwitchStatement::STRING_SWITCH) {
4160     first_test_block = graph()->CreateBasicBlock();
4161     not_string_block = graph()->CreateBasicBlock();
4162     string_check = New<HIsStringAndBranch>(
4163         tag_value, first_test_block, not_string_block);
4164     FinishCurrentBlock(string_check);
4165 
4166     set_current_block(first_test_block);
4167   }
4168 
4169   // 1. Build all the tests, with dangling true branches
4170   BailoutId default_id = BailoutId::None();
4171   for (int i = 0; i < clause_count; ++i) {
4172     CaseClause* clause = clauses->at(i);
4173     if (clause->is_default()) {
4174       default_id = clause->EntryId();
4175       continue;
4176     }
4177 
4178     // Generate a compare and branch.
4179     CHECK_ALIVE(VisitForValue(clause->label()));
4180     HValue* label_value = Pop();
4181 
4182     HBasicBlock* next_test_block = graph()->CreateBasicBlock();
4183     HBasicBlock* body_block = graph()->CreateBasicBlock();
4184 
4185     HControlInstruction* compare;
4186 
4187     if (stmt->switch_type() == SwitchStatement::SMI_SWITCH) {
4188       if (!clause->compare_type()->Is(Type::Smi())) {
4189         Add<HDeoptimize>("Non-smi switch type", Deoptimizer::SOFT);
4190       }
4191 
4192       HCompareNumericAndBranch* compare_ =
4193           New<HCompareNumericAndBranch>(tag_value,
4194                                         label_value,
4195                                         Token::EQ_STRICT);
4196       compare_->set_observed_input_representation(
4197           Representation::Smi(), Representation::Smi());
4198       compare = compare_;
4199     } else {
4200       compare = New<HStringCompareAndBranch>(tag_value,
4201                                              label_value,
4202                                              Token::EQ_STRICT);
4203     }
4204 
4205     compare->SetSuccessorAt(0, body_block);
4206     compare->SetSuccessorAt(1, next_test_block);
4207     FinishCurrentBlock(compare);
4208 
4209     set_current_block(next_test_block);
4210   }
4211 
4212   // Save the current block to use for the default or to join with the
4213   // exit.
4214   HBasicBlock* last_block = current_block();
4215 
4216   if (not_string_block != NULL) {
4217     BailoutId join_id = !default_id.IsNone() ? default_id : stmt->ExitId();
4218     last_block = CreateJoin(last_block, not_string_block, join_id);
4219   }
4220 
4221   // 2. Loop over the clauses and the linked list of tests in lockstep,
4222   // translating the clause bodies.
4223   HBasicBlock* curr_test_block = first_test_block;
4224   HBasicBlock* fall_through_block = NULL;
4225 
4226   BreakAndContinueInfo break_info(stmt);
4227   { BreakAndContinueScope push(&break_info, this);
4228     for (int i = 0; i < clause_count; ++i) {
4229       CaseClause* clause = clauses->at(i);
4230 
4231       // Identify the block where normal (non-fall-through) control flow
4232       // goes to.
4233       HBasicBlock* normal_block = NULL;
4234       if (clause->is_default()) {
4235         if (last_block != NULL) {
4236           normal_block = last_block;
4237           last_block = NULL;  // Cleared to indicate we've handled it.
4238         }
4239       } else {
4240         // If the current test block is deoptimizing due to an unhandled clause
4241         // of the switch, the test instruction is in the next block since the
4242         // deopt must end the current block.
4243         if (curr_test_block->IsDeoptimizing()) {
4244           ASSERT(curr_test_block->end()->SecondSuccessor() == NULL);
4245           curr_test_block = curr_test_block->end()->FirstSuccessor();
4246         }
4247         normal_block = curr_test_block->end()->FirstSuccessor();
4248         curr_test_block = curr_test_block->end()->SecondSuccessor();
4249       }
4250 
4251       // Identify a block to emit the body into.
4252       if (normal_block == NULL) {
4253         if (fall_through_block == NULL) {
4254           // (a) Unreachable.
4255           if (clause->is_default()) {
4256             continue;  // Might still be reachable clause bodies.
4257           } else {
4258             break;
4259           }
4260         } else {
4261           // (b) Reachable only as fall through.
4262           set_current_block(fall_through_block);
4263         }
4264       } else if (fall_through_block == NULL) {
4265         // (c) Reachable only normally.
4266         set_current_block(normal_block);
4267       } else {
4268         // (d) Reachable both ways.
4269         HBasicBlock* join = CreateJoin(fall_through_block,
4270                                        normal_block,
4271                                        clause->EntryId());
4272         set_current_block(join);
4273       }
4274 
4275       CHECK_BAILOUT(VisitStatements(clause->statements()));
4276       fall_through_block = current_block();
4277     }
4278   }
4279 
4280   // Create an up-to-3-way join.  Use the break block if it exists since
4281   // it's already a join block.
4282   HBasicBlock* break_block = break_info.break_block();
4283   if (break_block == NULL) {
4284     set_current_block(CreateJoin(fall_through_block,
4285                                  last_block,
4286                                  stmt->ExitId()));
4287   } else {
4288     if (fall_through_block != NULL) Goto(fall_through_block, break_block);
4289     if (last_block != NULL) Goto(last_block, break_block);
4290     break_block->SetJoinId(stmt->ExitId());
4291     set_current_block(break_block);
4292   }
4293 }
4294 
4295 
VisitLoopBody(IterationStatement * stmt,HBasicBlock * loop_entry,BreakAndContinueInfo * break_info)4296 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
4297                                            HBasicBlock* loop_entry,
4298                                            BreakAndContinueInfo* break_info) {
4299   BreakAndContinueScope push(break_info, this);
4300   Add<HSimulate>(stmt->StackCheckId());
4301   HStackCheck* stack_check =
4302       HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
4303   ASSERT(loop_entry->IsLoopHeader());
4304   loop_entry->loop_information()->set_stack_check(stack_check);
4305   CHECK_BAILOUT(Visit(stmt->body()));
4306 }
4307 
4308 
VisitDoWhileStatement(DoWhileStatement * stmt)4309 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
4310   ASSERT(!HasStackOverflow());
4311   ASSERT(current_block() != NULL);
4312   ASSERT(current_block()->HasPredecessor());
4313   ASSERT(current_block() != NULL);
4314   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4315 
4316   BreakAndContinueInfo break_info(stmt);
4317   CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
4318   HBasicBlock* body_exit =
4319       JoinContinue(stmt, current_block(), break_info.continue_block());
4320   HBasicBlock* loop_successor = NULL;
4321   if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
4322     set_current_block(body_exit);
4323     // The block for a true condition, the actual predecessor block of the
4324     // back edge.
4325     body_exit = graph()->CreateBasicBlock();
4326     loop_successor = graph()->CreateBasicBlock();
4327     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
4328     if (body_exit->HasPredecessor()) {
4329       body_exit->SetJoinId(stmt->BackEdgeId());
4330     } else {
4331       body_exit = NULL;
4332     }
4333     if (loop_successor->HasPredecessor()) {
4334       loop_successor->SetJoinId(stmt->ExitId());
4335     } else {
4336       loop_successor = NULL;
4337     }
4338   }
4339   HBasicBlock* loop_exit = CreateLoop(stmt,
4340                                       loop_entry,
4341                                       body_exit,
4342                                       loop_successor,
4343                                       break_info.break_block());
4344   set_current_block(loop_exit);
4345 }
4346 
4347 
VisitWhileStatement(WhileStatement * stmt)4348 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
4349   ASSERT(!HasStackOverflow());
4350   ASSERT(current_block() != NULL);
4351   ASSERT(current_block()->HasPredecessor());
4352   ASSERT(current_block() != NULL);
4353   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4354 
4355   // If the condition is constant true, do not generate a branch.
4356   HBasicBlock* loop_successor = NULL;
4357   if (!stmt->cond()->ToBooleanIsTrue()) {
4358     HBasicBlock* body_entry = graph()->CreateBasicBlock();
4359     loop_successor = graph()->CreateBasicBlock();
4360     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
4361     if (body_entry->HasPredecessor()) {
4362       body_entry->SetJoinId(stmt->BodyId());
4363       set_current_block(body_entry);
4364     }
4365     if (loop_successor->HasPredecessor()) {
4366       loop_successor->SetJoinId(stmt->ExitId());
4367     } else {
4368       loop_successor = NULL;
4369     }
4370   }
4371 
4372   BreakAndContinueInfo break_info(stmt);
4373   if (current_block() != NULL) {
4374     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
4375   }
4376   HBasicBlock* body_exit =
4377       JoinContinue(stmt, current_block(), break_info.continue_block());
4378   HBasicBlock* loop_exit = CreateLoop(stmt,
4379                                       loop_entry,
4380                                       body_exit,
4381                                       loop_successor,
4382                                       break_info.break_block());
4383   set_current_block(loop_exit);
4384 }
4385 
4386 
VisitForStatement(ForStatement * stmt)4387 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
4388   ASSERT(!HasStackOverflow());
4389   ASSERT(current_block() != NULL);
4390   ASSERT(current_block()->HasPredecessor());
4391   if (stmt->init() != NULL) {
4392     CHECK_ALIVE(Visit(stmt->init()));
4393   }
4394   ASSERT(current_block() != NULL);
4395   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4396 
4397   HBasicBlock* loop_successor = NULL;
4398   if (stmt->cond() != NULL) {
4399     HBasicBlock* body_entry = graph()->CreateBasicBlock();
4400     loop_successor = graph()->CreateBasicBlock();
4401     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
4402     if (body_entry->HasPredecessor()) {
4403       body_entry->SetJoinId(stmt->BodyId());
4404       set_current_block(body_entry);
4405     }
4406     if (loop_successor->HasPredecessor()) {
4407       loop_successor->SetJoinId(stmt->ExitId());
4408     } else {
4409       loop_successor = NULL;
4410     }
4411   }
4412 
4413   BreakAndContinueInfo break_info(stmt);
4414   if (current_block() != NULL) {
4415     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
4416   }
4417   HBasicBlock* body_exit =
4418       JoinContinue(stmt, current_block(), break_info.continue_block());
4419 
4420   if (stmt->next() != NULL && body_exit != NULL) {
4421     set_current_block(body_exit);
4422     CHECK_BAILOUT(Visit(stmt->next()));
4423     body_exit = current_block();
4424   }
4425 
4426   HBasicBlock* loop_exit = CreateLoop(stmt,
4427                                       loop_entry,
4428                                       body_exit,
4429                                       loop_successor,
4430                                       break_info.break_block());
4431   set_current_block(loop_exit);
4432 }
4433 
4434 
VisitForInStatement(ForInStatement * stmt)4435 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
4436   ASSERT(!HasStackOverflow());
4437   ASSERT(current_block() != NULL);
4438   ASSERT(current_block()->HasPredecessor());
4439 
4440   if (!FLAG_optimize_for_in) {
4441     return Bailout(kForInStatementOptimizationIsDisabled);
4442   }
4443 
4444   if (stmt->for_in_type() != ForInStatement::FAST_FOR_IN) {
4445     return Bailout(kForInStatementIsNotFastCase);
4446   }
4447 
4448   if (!stmt->each()->IsVariableProxy() ||
4449       !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
4450     return Bailout(kForInStatementWithNonLocalEachVariable);
4451   }
4452 
4453   Variable* each_var = stmt->each()->AsVariableProxy()->var();
4454 
4455   CHECK_ALIVE(VisitForValue(stmt->enumerable()));
4456   HValue* enumerable = Top();  // Leave enumerable at the top.
4457 
4458   HInstruction* map = Add<HForInPrepareMap>(enumerable);
4459   Add<HSimulate>(stmt->PrepareId());
4460 
4461   HInstruction* array = Add<HForInCacheArray>(
4462       enumerable, map, DescriptorArray::kEnumCacheBridgeCacheIndex);
4463 
4464   HInstruction* enum_length = Add<HMapEnumLength>(map);
4465 
4466   HInstruction* start_index = Add<HConstant>(0);
4467 
4468   Push(map);
4469   Push(array);
4470   Push(enum_length);
4471   Push(start_index);
4472 
4473   HInstruction* index_cache = Add<HForInCacheArray>(
4474       enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
4475   HForInCacheArray::cast(array)->set_index_cache(
4476       HForInCacheArray::cast(index_cache));
4477 
4478   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4479 
4480   HValue* index = environment()->ExpressionStackAt(0);
4481   HValue* limit = environment()->ExpressionStackAt(1);
4482 
4483   // Check that we still have more keys.
4484   HCompareNumericAndBranch* compare_index =
4485       New<HCompareNumericAndBranch>(index, limit, Token::LT);
4486   compare_index->set_observed_input_representation(
4487       Representation::Smi(), Representation::Smi());
4488 
4489   HBasicBlock* loop_body = graph()->CreateBasicBlock();
4490   HBasicBlock* loop_successor = graph()->CreateBasicBlock();
4491 
4492   compare_index->SetSuccessorAt(0, loop_body);
4493   compare_index->SetSuccessorAt(1, loop_successor);
4494   FinishCurrentBlock(compare_index);
4495 
4496   set_current_block(loop_successor);
4497   Drop(5);
4498 
4499   set_current_block(loop_body);
4500 
4501   HValue* key = Add<HLoadKeyed>(
4502       environment()->ExpressionStackAt(2),  // Enum cache.
4503       environment()->ExpressionStackAt(0),  // Iteration index.
4504       environment()->ExpressionStackAt(0),
4505       FAST_ELEMENTS);
4506 
4507   // Check if the expected map still matches that of the enumerable.
4508   // If not just deoptimize.
4509   Add<HCheckMapValue>(environment()->ExpressionStackAt(4),
4510                       environment()->ExpressionStackAt(3));
4511 
4512   Bind(each_var, key);
4513 
4514   BreakAndContinueInfo break_info(stmt, 5);
4515   CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
4516 
4517   HBasicBlock* body_exit =
4518       JoinContinue(stmt, current_block(), break_info.continue_block());
4519 
4520   if (body_exit != NULL) {
4521     set_current_block(body_exit);
4522 
4523     HValue* current_index = Pop();
4524     Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
4525     body_exit = current_block();
4526   }
4527 
4528   HBasicBlock* loop_exit = CreateLoop(stmt,
4529                                       loop_entry,
4530                                       body_exit,
4531                                       loop_successor,
4532                                       break_info.break_block());
4533 
4534   set_current_block(loop_exit);
4535 }
4536 
4537 
VisitForOfStatement(ForOfStatement * stmt)4538 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
4539   ASSERT(!HasStackOverflow());
4540   ASSERT(current_block() != NULL);
4541   ASSERT(current_block()->HasPredecessor());
4542   return Bailout(kForOfStatement);
4543 }
4544 
4545 
VisitTryCatchStatement(TryCatchStatement * stmt)4546 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
4547   ASSERT(!HasStackOverflow());
4548   ASSERT(current_block() != NULL);
4549   ASSERT(current_block()->HasPredecessor());
4550   return Bailout(kTryCatchStatement);
4551 }
4552 
4553 
VisitTryFinallyStatement(TryFinallyStatement * stmt)4554 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
4555     TryFinallyStatement* stmt) {
4556   ASSERT(!HasStackOverflow());
4557   ASSERT(current_block() != NULL);
4558   ASSERT(current_block()->HasPredecessor());
4559   return Bailout(kTryFinallyStatement);
4560 }
4561 
4562 
VisitDebuggerStatement(DebuggerStatement * stmt)4563 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
4564   ASSERT(!HasStackOverflow());
4565   ASSERT(current_block() != NULL);
4566   ASSERT(current_block()->HasPredecessor());
4567   return Bailout(kDebuggerStatement);
4568 }
4569 
4570 
VisitCaseClause(CaseClause * clause)4571 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
4572   UNREACHABLE();
4573 }
4574 
4575 
SearchSharedFunctionInfo(Code * unoptimized_code,FunctionLiteral * expr)4576 static Handle<SharedFunctionInfo> SearchSharedFunctionInfo(
4577     Code* unoptimized_code, FunctionLiteral* expr) {
4578   int start_position = expr->start_position();
4579   for (RelocIterator it(unoptimized_code); !it.done(); it.next()) {
4580     RelocInfo* rinfo = it.rinfo();
4581     if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
4582     Object* obj = rinfo->target_object();
4583     if (obj->IsSharedFunctionInfo()) {
4584       SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
4585       if (shared->start_position() == start_position) {
4586         return Handle<SharedFunctionInfo>(shared);
4587       }
4588     }
4589   }
4590 
4591   return Handle<SharedFunctionInfo>();
4592 }
4593 
4594 
VisitFunctionLiteral(FunctionLiteral * expr)4595 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
4596   ASSERT(!HasStackOverflow());
4597   ASSERT(current_block() != NULL);
4598   ASSERT(current_block()->HasPredecessor());
4599   Handle<SharedFunctionInfo> shared_info =
4600       SearchSharedFunctionInfo(current_info()->shared_info()->code(), expr);
4601   if (shared_info.is_null()) {
4602     shared_info = Compiler::BuildFunctionInfo(expr, current_info()->script());
4603   }
4604   // We also have a stack overflow if the recursive compilation did.
4605   if (HasStackOverflow()) return;
4606   HFunctionLiteral* instr =
4607       New<HFunctionLiteral>(shared_info, expr->pretenure());
4608   return ast_context()->ReturnInstruction(instr, expr->id());
4609 }
4610 
4611 
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)4612 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
4613     NativeFunctionLiteral* expr) {
4614   ASSERT(!HasStackOverflow());
4615   ASSERT(current_block() != NULL);
4616   ASSERT(current_block()->HasPredecessor());
4617   return Bailout(kNativeFunctionLiteral);
4618 }
4619 
4620 
VisitConditional(Conditional * expr)4621 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
4622   ASSERT(!HasStackOverflow());
4623   ASSERT(current_block() != NULL);
4624   ASSERT(current_block()->HasPredecessor());
4625   HBasicBlock* cond_true = graph()->CreateBasicBlock();
4626   HBasicBlock* cond_false = graph()->CreateBasicBlock();
4627   CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
4628 
4629   // Visit the true and false subexpressions in the same AST context as the
4630   // whole expression.
4631   if (cond_true->HasPredecessor()) {
4632     cond_true->SetJoinId(expr->ThenId());
4633     set_current_block(cond_true);
4634     CHECK_BAILOUT(Visit(expr->then_expression()));
4635     cond_true = current_block();
4636   } else {
4637     cond_true = NULL;
4638   }
4639 
4640   if (cond_false->HasPredecessor()) {
4641     cond_false->SetJoinId(expr->ElseId());
4642     set_current_block(cond_false);
4643     CHECK_BAILOUT(Visit(expr->else_expression()));
4644     cond_false = current_block();
4645   } else {
4646     cond_false = NULL;
4647   }
4648 
4649   if (!ast_context()->IsTest()) {
4650     HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
4651     set_current_block(join);
4652     if (join != NULL && !ast_context()->IsEffect()) {
4653       return ast_context()->ReturnValue(Pop());
4654     }
4655   }
4656 }
4657 
4658 
4659 HOptimizedGraphBuilder::GlobalPropertyAccess
LookupGlobalProperty(Variable * var,LookupResult * lookup,bool is_store)4660     HOptimizedGraphBuilder::LookupGlobalProperty(
4661         Variable* var, LookupResult* lookup, bool is_store) {
4662   if (var->is_this() || !current_info()->has_global_object()) {
4663     return kUseGeneric;
4664   }
4665   Handle<GlobalObject> global(current_info()->global_object());
4666   global->Lookup(*var->name(), lookup);
4667   if (!lookup->IsNormal() ||
4668       (is_store && lookup->IsReadOnly()) ||
4669       lookup->holder() != *global) {
4670     return kUseGeneric;
4671   }
4672 
4673   return kUseCell;
4674 }
4675 
4676 
BuildContextChainWalk(Variable * var)4677 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
4678   ASSERT(var->IsContextSlot());
4679   HValue* context = environment()->context();
4680   int length = current_info()->scope()->ContextChainLength(var->scope());
4681   while (length-- > 0) {
4682     context = Add<HOuterContext>(context);
4683   }
4684   return context;
4685 }
4686 
4687 
VisitVariableProxy(VariableProxy * expr)4688 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
4689   ASSERT(!HasStackOverflow());
4690   ASSERT(current_block() != NULL);
4691   ASSERT(current_block()->HasPredecessor());
4692   Variable* variable = expr->var();
4693   switch (variable->location()) {
4694     case Variable::UNALLOCATED: {
4695       if (IsLexicalVariableMode(variable->mode())) {
4696         // TODO(rossberg): should this be an ASSERT?
4697         return Bailout(kReferenceToGlobalLexicalVariable);
4698       }
4699       // Handle known global constants like 'undefined' specially to avoid a
4700       // load from a global cell for them.
4701       Handle<Object> constant_value =
4702           isolate()->factory()->GlobalConstantFor(variable->name());
4703       if (!constant_value.is_null()) {
4704         HConstant* instr = New<HConstant>(constant_value);
4705         return ast_context()->ReturnInstruction(instr, expr->id());
4706       }
4707 
4708       LookupResult lookup(isolate());
4709       GlobalPropertyAccess type =
4710           LookupGlobalProperty(variable, &lookup, false);
4711 
4712       if (type == kUseCell &&
4713           current_info()->global_object()->IsAccessCheckNeeded()) {
4714         type = kUseGeneric;
4715       }
4716 
4717       if (type == kUseCell) {
4718         Handle<GlobalObject> global(current_info()->global_object());
4719         Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
4720         if (cell->type()->IsConstant()) {
4721           cell->AddDependentCompilationInfo(top_info());
4722           Handle<Object> constant_object = cell->type()->AsConstant();
4723           if (constant_object->IsConsString()) {
4724             constant_object =
4725                 FlattenGetString(Handle<String>::cast(constant_object));
4726           }
4727           HConstant* constant = New<HConstant>(constant_object);
4728           return ast_context()->ReturnInstruction(constant, expr->id());
4729         } else {
4730           HLoadGlobalCell* instr =
4731               New<HLoadGlobalCell>(cell, lookup.GetPropertyDetails());
4732           return ast_context()->ReturnInstruction(instr, expr->id());
4733         }
4734       } else {
4735         HGlobalObject* global_object = Add<HGlobalObject>();
4736         HLoadGlobalGeneric* instr =
4737             New<HLoadGlobalGeneric>(global_object,
4738                                     variable->name(),
4739                                     ast_context()->is_for_typeof());
4740         return ast_context()->ReturnInstruction(instr, expr->id());
4741       }
4742     }
4743 
4744     case Variable::PARAMETER:
4745     case Variable::LOCAL: {
4746       HValue* value = LookupAndMakeLive(variable);
4747       if (value == graph()->GetConstantHole()) {
4748         ASSERT(IsDeclaredVariableMode(variable->mode()) &&
4749                variable->mode() != VAR);
4750         return Bailout(kReferenceToUninitializedVariable);
4751       }
4752       return ast_context()->ReturnValue(value);
4753     }
4754 
4755     case Variable::CONTEXT: {
4756       HValue* context = BuildContextChainWalk(variable);
4757       HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable);
4758       return ast_context()->ReturnInstruction(instr, expr->id());
4759     }
4760 
4761     case Variable::LOOKUP:
4762       return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
4763   }
4764 }
4765 
4766 
VisitLiteral(Literal * expr)4767 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
4768   ASSERT(!HasStackOverflow());
4769   ASSERT(current_block() != NULL);
4770   ASSERT(current_block()->HasPredecessor());
4771   HConstant* instr = New<HConstant>(expr->value());
4772   return ast_context()->ReturnInstruction(instr, expr->id());
4773 }
4774 
4775 
VisitRegExpLiteral(RegExpLiteral * expr)4776 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
4777   ASSERT(!HasStackOverflow());
4778   ASSERT(current_block() != NULL);
4779   ASSERT(current_block()->HasPredecessor());
4780   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
4781   Handle<FixedArray> literals(closure->literals());
4782   HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
4783                                               expr->pattern(),
4784                                               expr->flags(),
4785                                               expr->literal_index());
4786   return ast_context()->ReturnInstruction(instr, expr->id());
4787 }
4788 
4789 
CanInlinePropertyAccess(Map * type)4790 static bool CanInlinePropertyAccess(Map* type) {
4791   return type->IsJSObjectMap() &&
4792       !type->is_dictionary_map() &&
4793       !type->has_named_interceptor();
4794 }
4795 
4796 
LookupInPrototypes(Handle<Map> map,Handle<String> name,LookupResult * lookup)4797 static void LookupInPrototypes(Handle<Map> map,
4798                                Handle<String> name,
4799                                LookupResult* lookup) {
4800   while (map->prototype()->IsJSObject()) {
4801     Handle<JSObject> holder(JSObject::cast(map->prototype()));
4802     map = Handle<Map>(holder->map());
4803     if (!CanInlinePropertyAccess(*map)) break;
4804     map->LookupDescriptor(*holder, *name, lookup);
4805     if (lookup->IsFound()) return;
4806   }
4807   lookup->NotFound();
4808 }
4809 
4810 
4811 // Tries to find a JavaScript accessor of the given name in the prototype chain
4812 // starting at the given map. Return true iff there is one, including the
4813 // corresponding AccessorPair plus its holder (which could be null when the
4814 // accessor is found directly in the given map).
LookupAccessorPair(Handle<Map> map,Handle<String> name,Handle<AccessorPair> * accessors,Handle<JSObject> * holder)4815 static bool LookupAccessorPair(Handle<Map> map,
4816                                Handle<String> name,
4817                                Handle<AccessorPair>* accessors,
4818                                Handle<JSObject>* holder) {
4819   Isolate* isolate = map->GetIsolate();
4820   LookupResult lookup(isolate);
4821 
4822   // Check for a JavaScript accessor directly in the map.
4823   map->LookupDescriptor(NULL, *name, &lookup);
4824   if (lookup.IsPropertyCallbacks()) {
4825     Handle<Object> callback(lookup.GetValueFromMap(*map), isolate);
4826     if (!callback->IsAccessorPair()) return false;
4827     *accessors = Handle<AccessorPair>::cast(callback);
4828     *holder = Handle<JSObject>();
4829     return true;
4830   }
4831 
4832   // Everything else, e.g. a field, can't be an accessor call.
4833   if (lookup.IsFound()) return false;
4834 
4835   // Check for a JavaScript accessor somewhere in the proto chain.
4836   LookupInPrototypes(map, name, &lookup);
4837   if (lookup.IsPropertyCallbacks()) {
4838     Handle<Object> callback(lookup.GetValue(), isolate);
4839     if (!callback->IsAccessorPair()) return false;
4840     *accessors = Handle<AccessorPair>::cast(callback);
4841     *holder = Handle<JSObject>(lookup.holder());
4842     return true;
4843   }
4844 
4845   // We haven't found a JavaScript accessor anywhere.
4846   return false;
4847 }
4848 
4849 
LookupSetter(Handle<Map> map,Handle<String> name,Handle<JSFunction> * setter,Handle<JSObject> * holder)4850 static bool LookupSetter(Handle<Map> map,
4851                          Handle<String> name,
4852                          Handle<JSFunction>* setter,
4853                          Handle<JSObject>* holder) {
4854   Handle<AccessorPair> accessors;
4855   if (LookupAccessorPair(map, name, &accessors, holder) &&
4856       accessors->setter()->IsJSFunction()) {
4857     Handle<JSFunction> func(JSFunction::cast(accessors->setter()));
4858     CallOptimization call_optimization(func);
4859     // TODO(dcarney): temporary hack unless crankshaft can handle api calls.
4860     if (call_optimization.is_simple_api_call()) return false;
4861     *setter = func;
4862     return true;
4863   }
4864   return false;
4865 }
4866 
4867 
4868 // Determines whether the given array or object literal boilerplate satisfies
4869 // all limits to be considered for fast deep-copying and computes the total
4870 // size of all objects that are part of the graph.
IsFastLiteral(Handle<JSObject> boilerplate,int max_depth,int * max_properties)4871 static bool IsFastLiteral(Handle<JSObject> boilerplate,
4872                           int max_depth,
4873                           int* max_properties) {
4874   if (boilerplate->map()->is_deprecated()) {
4875     Handle<Object> result = JSObject::TryMigrateInstance(boilerplate);
4876     if (result.is_null()) return false;
4877   }
4878 
4879   ASSERT(max_depth >= 0 && *max_properties >= 0);
4880   if (max_depth == 0) return false;
4881 
4882   Isolate* isolate = boilerplate->GetIsolate();
4883   Handle<FixedArrayBase> elements(boilerplate->elements());
4884   if (elements->length() > 0 &&
4885       elements->map() != isolate->heap()->fixed_cow_array_map()) {
4886     if (boilerplate->HasFastObjectElements()) {
4887       Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
4888       int length = elements->length();
4889       for (int i = 0; i < length; i++) {
4890         if ((*max_properties)-- == 0) return false;
4891         Handle<Object> value(fast_elements->get(i), isolate);
4892         if (value->IsJSObject()) {
4893           Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4894           if (!IsFastLiteral(value_object,
4895                              max_depth - 1,
4896                              max_properties)) {
4897             return false;
4898           }
4899         }
4900       }
4901     } else if (!boilerplate->HasFastDoubleElements()) {
4902       return false;
4903     }
4904   }
4905 
4906   Handle<FixedArray> properties(boilerplate->properties());
4907   if (properties->length() > 0) {
4908     return false;
4909   } else {
4910     Handle<DescriptorArray> descriptors(
4911         boilerplate->map()->instance_descriptors());
4912     int limit = boilerplate->map()->NumberOfOwnDescriptors();
4913     for (int i = 0; i < limit; i++) {
4914       PropertyDetails details = descriptors->GetDetails(i);
4915       if (details.type() != FIELD) continue;
4916       int index = descriptors->GetFieldIndex(i);
4917       if ((*max_properties)-- == 0) return false;
4918       Handle<Object> value(boilerplate->InObjectPropertyAt(index), isolate);
4919       if (value->IsJSObject()) {
4920         Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4921         if (!IsFastLiteral(value_object,
4922                            max_depth - 1,
4923                            max_properties)) {
4924           return false;
4925         }
4926       }
4927     }
4928   }
4929   return true;
4930 }
4931 
4932 
VisitObjectLiteral(ObjectLiteral * expr)4933 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
4934   ASSERT(!HasStackOverflow());
4935   ASSERT(current_block() != NULL);
4936   ASSERT(current_block()->HasPredecessor());
4937   expr->BuildConstantProperties(isolate());
4938   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
4939   HInstruction* literal;
4940 
4941   // Check whether to use fast or slow deep-copying for boilerplate.
4942   int max_properties = kMaxFastLiteralProperties;
4943   Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
4944                                isolate());
4945   Handle<AllocationSite> site;
4946   Handle<JSObject> boilerplate;
4947   if (!literals_cell->IsUndefined()) {
4948     // Retrieve the boilerplate
4949     site = Handle<AllocationSite>::cast(literals_cell);
4950     boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
4951                                    isolate());
4952   }
4953 
4954   if (!boilerplate.is_null() &&
4955       IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
4956     AllocationSiteUsageContext usage_context(isolate(), site, false);
4957     usage_context.EnterNewScope();
4958     literal = BuildFastLiteral(boilerplate, &usage_context);
4959     usage_context.ExitScope(site, boilerplate);
4960   } else {
4961     NoObservableSideEffectsScope no_effects(this);
4962     Handle<FixedArray> closure_literals(closure->literals(), isolate());
4963     Handle<FixedArray> constant_properties = expr->constant_properties();
4964     int literal_index = expr->literal_index();
4965     int flags = expr->fast_elements()
4966         ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags;
4967     flags |= expr->has_function()
4968         ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags;
4969 
4970     Add<HPushArgument>(Add<HConstant>(closure_literals));
4971     Add<HPushArgument>(Add<HConstant>(literal_index));
4972     Add<HPushArgument>(Add<HConstant>(constant_properties));
4973     Add<HPushArgument>(Add<HConstant>(flags));
4974 
4975     // TODO(mvstanton): Add a flag to turn off creation of any
4976     // AllocationMementos for this call: we are in crankshaft and should have
4977     // learned enough about transition behavior to stop emitting mementos.
4978     Runtime::FunctionId function_id = Runtime::kCreateObjectLiteral;
4979     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
4980                                 Runtime::FunctionForId(function_id),
4981                                 4);
4982   }
4983 
4984   // The object is expected in the bailout environment during computation
4985   // of the property values and is the value of the entire expression.
4986   Push(literal);
4987 
4988   expr->CalculateEmitStore(zone());
4989 
4990   for (int i = 0; i < expr->properties()->length(); i++) {
4991     ObjectLiteral::Property* property = expr->properties()->at(i);
4992     if (property->IsCompileTimeValue()) continue;
4993 
4994     Literal* key = property->key();
4995     Expression* value = property->value();
4996 
4997     switch (property->kind()) {
4998       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
4999         ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
5000         // Fall through.
5001       case ObjectLiteral::Property::COMPUTED:
5002         if (key->value()->IsInternalizedString()) {
5003           if (property->emit_store()) {
5004             CHECK_ALIVE(VisitForValue(value));
5005             HValue* value = Pop();
5006             Handle<Map> map = property->GetReceiverType();
5007             Handle<String> name = property->key()->AsPropertyName();
5008             HInstruction* store;
5009             if (map.is_null()) {
5010               // If we don't know the monomorphic type, do a generic store.
5011               CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value));
5012             } else {
5013 #if DEBUG
5014               Handle<JSFunction> setter;
5015               Handle<JSObject> holder;
5016               ASSERT(!LookupSetter(map, name, &setter, &holder));
5017 #endif
5018               CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal,
5019                                                              name,
5020                                                              value,
5021                                                              map));
5022             }
5023             AddInstruction(store);
5024             if (store->HasObservableSideEffects()) {
5025               Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
5026             }
5027           } else {
5028             CHECK_ALIVE(VisitForEffect(value));
5029           }
5030           break;
5031         }
5032         // Fall through.
5033       case ObjectLiteral::Property::PROTOTYPE:
5034       case ObjectLiteral::Property::SETTER:
5035       case ObjectLiteral::Property::GETTER:
5036         return Bailout(kObjectLiteralWithComplexProperty);
5037       default: UNREACHABLE();
5038     }
5039   }
5040 
5041   if (expr->has_function()) {
5042     // Return the result of the transformation to fast properties
5043     // instead of the original since this operation changes the map
5044     // of the object. This makes sure that the original object won't
5045     // be used by other optimized code before it is transformed
5046     // (e.g. because of code motion).
5047     HToFastProperties* result = Add<HToFastProperties>(Pop());
5048     return ast_context()->ReturnValue(result);
5049   } else {
5050     return ast_context()->ReturnValue(Pop());
5051   }
5052 }
5053 
5054 
VisitArrayLiteral(ArrayLiteral * expr)5055 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
5056   ASSERT(!HasStackOverflow());
5057   ASSERT(current_block() != NULL);
5058   ASSERT(current_block()->HasPredecessor());
5059   expr->BuildConstantElements(isolate());
5060   ZoneList<Expression*>* subexprs = expr->values();
5061   int length = subexprs->length();
5062   HInstruction* literal;
5063 
5064   Handle<AllocationSite> site;
5065   Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
5066   bool uninitialized = false;
5067   Handle<Object> literals_cell(literals->get(expr->literal_index()),
5068                                isolate());
5069   Handle<JSObject> boilerplate_object;
5070   if (literals_cell->IsUndefined()) {
5071     uninitialized = true;
5072     Handle<Object> raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate(
5073         isolate(), literals, expr->constant_elements());
5074     if (raw_boilerplate.is_null()) {
5075       return Bailout(kArrayBoilerplateCreationFailed);
5076     }
5077 
5078     boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
5079     AllocationSiteCreationContext creation_context(isolate());
5080     site = creation_context.EnterNewScope();
5081     if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
5082       return Bailout(kArrayBoilerplateCreationFailed);
5083     }
5084     creation_context.ExitScope(site, boilerplate_object);
5085     literals->set(expr->literal_index(), *site);
5086 
5087     if (boilerplate_object->elements()->map() ==
5088         isolate()->heap()->fixed_cow_array_map()) {
5089       isolate()->counters()->cow_arrays_created_runtime()->Increment();
5090     }
5091   } else {
5092     ASSERT(literals_cell->IsAllocationSite());
5093     site = Handle<AllocationSite>::cast(literals_cell);
5094     boilerplate_object = Handle<JSObject>(
5095         JSObject::cast(site->transition_info()), isolate());
5096   }
5097 
5098   ASSERT(!boilerplate_object.is_null());
5099   ASSERT(site->SitePointsToLiteral());
5100 
5101   ElementsKind boilerplate_elements_kind =
5102       boilerplate_object->GetElementsKind();
5103 
5104   // Check whether to use fast or slow deep-copying for boilerplate.
5105   int max_properties = kMaxFastLiteralProperties;
5106   if (IsFastLiteral(boilerplate_object,
5107                     kMaxFastLiteralDepth,
5108                     &max_properties)) {
5109     AllocationSiteUsageContext usage_context(isolate(), site, false);
5110     usage_context.EnterNewScope();
5111     literal = BuildFastLiteral(boilerplate_object, &usage_context);
5112     usage_context.ExitScope(site, boilerplate_object);
5113   } else {
5114     NoObservableSideEffectsScope no_effects(this);
5115     // Boilerplate already exists and constant elements are never accessed,
5116     // pass an empty fixed array to the runtime function instead.
5117     Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
5118     int literal_index = expr->literal_index();
5119     int flags = expr->depth() == 1
5120         ? ArrayLiteral::kShallowElements
5121         : ArrayLiteral::kNoFlags;
5122     flags |= ArrayLiteral::kDisableMementos;
5123 
5124     Add<HPushArgument>(Add<HConstant>(literals));
5125     Add<HPushArgument>(Add<HConstant>(literal_index));
5126     Add<HPushArgument>(Add<HConstant>(constants));
5127     Add<HPushArgument>(Add<HConstant>(flags));
5128 
5129     // TODO(mvstanton): Consider a flag to turn off creation of any
5130     // AllocationMementos for this call: we are in crankshaft and should have
5131     // learned enough about transition behavior to stop emitting mementos.
5132     Runtime::FunctionId function_id = Runtime::kCreateArrayLiteral;
5133     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5134                                 Runtime::FunctionForId(function_id),
5135                                 4);
5136 
5137     // De-opt if elements kind changed from boilerplate_elements_kind.
5138     Handle<Map> map = Handle<Map>(boilerplate_object->map(), isolate());
5139     literal = Add<HCheckMaps>(literal, map, top_info());
5140   }
5141 
5142   // The array is expected in the bailout environment during computation
5143   // of the property values and is the value of the entire expression.
5144   Push(literal);
5145   // The literal index is on the stack, too.
5146   Push(Add<HConstant>(expr->literal_index()));
5147 
5148   HInstruction* elements = NULL;
5149 
5150   for (int i = 0; i < length; i++) {
5151     Expression* subexpr = subexprs->at(i);
5152     // If the subexpression is a literal or a simple materialized literal it
5153     // is already set in the cloned array.
5154     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
5155 
5156     CHECK_ALIVE(VisitForValue(subexpr));
5157     HValue* value = Pop();
5158     if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
5159 
5160     elements = AddLoadElements(literal);
5161 
5162     HValue* key = Add<HConstant>(i);
5163 
5164     switch (boilerplate_elements_kind) {
5165       case FAST_SMI_ELEMENTS:
5166       case FAST_HOLEY_SMI_ELEMENTS:
5167       case FAST_ELEMENTS:
5168       case FAST_HOLEY_ELEMENTS:
5169       case FAST_DOUBLE_ELEMENTS:
5170       case FAST_HOLEY_DOUBLE_ELEMENTS: {
5171         HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
5172                                               boilerplate_elements_kind);
5173         instr->SetUninitialized(uninitialized);
5174         break;
5175       }
5176       default:
5177         UNREACHABLE();
5178         break;
5179     }
5180 
5181     Add<HSimulate>(expr->GetIdForElement(i));
5182   }
5183 
5184   Drop(1);  // array literal index
5185   return ast_context()->ReturnValue(Pop());
5186 }
5187 
5188 
AddCheckMap(HValue * object,Handle<Map> map)5189 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
5190                                                 Handle<Map> map) {
5191   BuildCheckHeapObject(object);
5192   return Add<HCheckMaps>(object, map, top_info());
5193 }
5194 
5195 
BuildStoreNamedField(HValue * checked_object,Handle<String> name,HValue * value,Handle<Map> map,LookupResult * lookup)5196 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
5197     HValue* checked_object,
5198     Handle<String> name,
5199     HValue* value,
5200     Handle<Map> map,
5201     LookupResult* lookup) {
5202   ASSERT(lookup->IsFound());
5203   // If the property does not exist yet, we have to check that it wasn't made
5204   // readonly or turned into a setter by some meanwhile modifications on the
5205   // prototype chain.
5206   if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) {
5207     Object* proto = map->prototype();
5208     // First check that the prototype chain isn't affected already.
5209     LookupResult proto_result(isolate());
5210     proto->Lookup(*name, &proto_result);
5211     if (proto_result.IsProperty()) {
5212       // If the inherited property could induce readonly-ness, bail out.
5213       if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) {
5214         Bailout(kImproperObjectOnPrototypeChainForStore);
5215         return NULL;
5216       }
5217       // We only need to check up to the preexisting property.
5218       proto = proto_result.holder();
5219     } else {
5220       // Otherwise, find the top prototype.
5221       while (proto->GetPrototype(isolate())->IsJSObject()) {
5222         proto = proto->GetPrototype(isolate());
5223       }
5224       ASSERT(proto->GetPrototype(isolate())->IsNull());
5225     }
5226     ASSERT(proto->IsJSObject());
5227     BuildCheckPrototypeMaps(
5228         Handle<JSObject>(JSObject::cast(map->prototype())),
5229         Handle<JSObject>(JSObject::cast(proto)));
5230   }
5231 
5232   HObjectAccess field_access = HObjectAccess::ForField(map, lookup, name);
5233   bool transition_to_field = lookup->IsTransitionToField();
5234 
5235   HStoreNamedField *instr;
5236   if (FLAG_track_double_fields && field_access.representation().IsDouble()) {
5237     HObjectAccess heap_number_access =
5238         field_access.WithRepresentation(Representation::Tagged());
5239     if (transition_to_field) {
5240       // The store requires a mutable HeapNumber to be allocated.
5241       NoObservableSideEffectsScope no_side_effects(this);
5242       HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
5243       HInstruction* heap_number = Add<HAllocate>(heap_number_size,
5244           HType::HeapNumber(), isolate()->heap()->GetPretenureMode(),
5245           HEAP_NUMBER_TYPE);
5246       AddStoreMapConstant(heap_number, isolate()->factory()->heap_number_map());
5247       Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
5248                             value);
5249       instr = New<HStoreNamedField>(checked_object->ActualValue(),
5250                                     heap_number_access,
5251                                     heap_number);
5252     } else {
5253       // Already holds a HeapNumber; load the box and write its value field.
5254       HInstruction* heap_number = Add<HLoadNamedField>(checked_object,
5255                                                        heap_number_access);
5256       heap_number->set_type(HType::HeapNumber());
5257       instr = New<HStoreNamedField>(heap_number,
5258                                     HObjectAccess::ForHeapNumberValue(),
5259                                     value);
5260     }
5261   } else {
5262     // This is a normal store.
5263     instr = New<HStoreNamedField>(checked_object->ActualValue(),
5264                                   field_access,
5265                                   value);
5266   }
5267 
5268   if (transition_to_field) {
5269     Handle<Map> transition(lookup->GetTransitionTarget());
5270     HConstant* transition_constant = Add<HConstant>(transition);
5271     instr->SetTransition(transition_constant, top_info());
5272     // TODO(fschneider): Record the new map type of the object in the IR to
5273     // enable elimination of redundant checks after the transition store.
5274     instr->SetGVNFlag(kChangesMaps);
5275   }
5276   return instr;
5277 }
5278 
5279 
BuildStoreNamedGeneric(HValue * object,Handle<String> name,HValue * value)5280 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedGeneric(
5281     HValue* object,
5282     Handle<String> name,
5283     HValue* value) {
5284   return New<HStoreNamedGeneric>(
5285                          object,
5286                          name,
5287                          value,
5288                          function_strict_mode_flag());
5289 }
5290 
5291 
5292 // Sets the lookup result and returns true if the load/store can be inlined.
ComputeStoreField(Handle<Map> type,Handle<String> name,LookupResult * lookup,bool lookup_transition=true)5293 static bool ComputeStoreField(Handle<Map> type,
5294                               Handle<String> name,
5295                               LookupResult* lookup,
5296                               bool lookup_transition = true) {
5297   ASSERT(!type->is_observed());
5298   if (!CanInlinePropertyAccess(*type)) {
5299     lookup->NotFound();
5300     return false;
5301   }
5302   // If we directly find a field, the access can be inlined.
5303   type->LookupDescriptor(NULL, *name, lookup);
5304   if (lookup->IsField()) return true;
5305 
5306   if (!lookup_transition) return false;
5307 
5308   type->LookupTransition(NULL, *name, lookup);
5309   return lookup->IsTransitionToField() &&
5310       (type->unused_property_fields() > 0);
5311 }
5312 
5313 
BuildStoreNamedMonomorphic(HValue * object,Handle<String> name,HValue * value,Handle<Map> map)5314 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedMonomorphic(
5315     HValue* object,
5316     Handle<String> name,
5317     HValue* value,
5318     Handle<Map> map) {
5319   // Handle a store to a known field.
5320   LookupResult lookup(isolate());
5321   if (ComputeStoreField(map, name, &lookup)) {
5322     HCheckMaps* checked_object = AddCheckMap(object, map);
5323     return BuildStoreNamedField(checked_object, name, value, map, &lookup);
5324   }
5325 
5326   // No luck, do a generic store.
5327   return BuildStoreNamedGeneric(object, name, value);
5328 }
5329 
5330 
IsCompatibleForLoad(PropertyAccessInfo * info)5331 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatibleForLoad(
5332     PropertyAccessInfo* info) {
5333   if (!CanInlinePropertyAccess(*map_)) return false;
5334 
5335   if (!LookupDescriptor()) return false;
5336 
5337   if (!lookup_.IsFound()) {
5338     return (!info->lookup_.IsFound() || info->has_holder()) &&
5339         map_->prototype() == info->map_->prototype();
5340   }
5341 
5342   // Mismatch if the other access info found the property in the prototype
5343   // chain.
5344   if (info->has_holder()) return false;
5345 
5346   if (lookup_.IsPropertyCallbacks()) {
5347     return accessor_.is_identical_to(info->accessor_);
5348   }
5349 
5350   if (lookup_.IsConstant()) {
5351     return constant_.is_identical_to(info->constant_);
5352   }
5353 
5354   ASSERT(lookup_.IsField());
5355   if (!info->lookup_.IsField()) return false;
5356 
5357   Representation r = access_.representation();
5358   if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
5359   if (info->access_.offset() != access_.offset()) return false;
5360   if (info->access_.IsInobject() != access_.IsInobject()) return false;
5361   info->GeneralizeRepresentation(r);
5362   return true;
5363 }
5364 
5365 
LookupDescriptor()5366 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
5367   map_->LookupDescriptor(NULL, *name_, &lookup_);
5368   return LoadResult(map_);
5369 }
5370 
5371 
LoadResult(Handle<Map> map)5372 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
5373   if (lookup_.IsField()) {
5374     access_ = HObjectAccess::ForField(map, &lookup_, name_);
5375   } else if (lookup_.IsPropertyCallbacks()) {
5376     Handle<Object> callback(lookup_.GetValueFromMap(*map), isolate());
5377     if (!callback->IsAccessorPair()) return false;
5378     Object* getter = Handle<AccessorPair>::cast(callback)->getter();
5379     if (!getter->IsJSFunction()) return false;
5380     Handle<JSFunction> accessor = handle(JSFunction::cast(getter));
5381     CallOptimization call_optimization(accessor);
5382     // TODO(dcarney): temporary hack unless crankshaft can handle api calls.
5383     if (call_optimization.is_simple_api_call()) return false;
5384     accessor_ = accessor;
5385   } else if (lookup_.IsConstant()) {
5386     constant_ = handle(lookup_.GetConstantFromMap(*map), isolate());
5387   }
5388 
5389   return true;
5390 }
5391 
5392 
LookupInPrototypes()5393 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
5394   Handle<Map> map = map_;
5395   while (map->prototype()->IsJSObject()) {
5396     holder_ = handle(JSObject::cast(map->prototype()));
5397     if (holder_->map()->is_deprecated()) {
5398       JSObject::TryMigrateInstance(holder_);
5399     }
5400     map = Handle<Map>(holder_->map());
5401     if (!CanInlinePropertyAccess(*map)) {
5402       lookup_.NotFound();
5403       return false;
5404     }
5405     map->LookupDescriptor(*holder_, *name_, &lookup_);
5406     if (lookup_.IsFound()) return LoadResult(map);
5407   }
5408   lookup_.NotFound();
5409   return true;
5410 }
5411 
5412 
CanLoadMonomorphic()5413 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanLoadMonomorphic() {
5414   if (!CanInlinePropertyAccess(*map_)) return IsStringLength();
5415   if (IsJSObjectFieldAccessor()) return true;
5416   if (!LookupDescriptor()) return false;
5417   if (lookup_.IsFound()) return true;
5418   return LookupInPrototypes();
5419 }
5420 
5421 
CanLoadAsMonomorphic(SmallMapList * types)5422 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanLoadAsMonomorphic(
5423     SmallMapList* types) {
5424   ASSERT(map_.is_identical_to(types->first()));
5425   if (!CanLoadMonomorphic()) return false;
5426   if (types->length() > kMaxLoadPolymorphism) return false;
5427 
5428   if (IsStringLength()) {
5429     for (int i = 1; i < types->length(); ++i) {
5430       if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
5431     }
5432     return true;
5433   }
5434 
5435   if (IsArrayLength()) {
5436     bool is_fast = IsFastElementsKind(map_->elements_kind());
5437     for (int i = 1; i < types->length(); ++i) {
5438       Handle<Map> test_map = types->at(i);
5439       if (test_map->instance_type() != JS_ARRAY_TYPE) return false;
5440       if (IsFastElementsKind(test_map->elements_kind()) != is_fast) {
5441         return false;
5442       }
5443     }
5444     return true;
5445   }
5446 
5447   if (IsJSObjectFieldAccessor()) {
5448     InstanceType instance_type = map_->instance_type();
5449     for (int i = 1; i < types->length(); ++i) {
5450       if (types->at(i)->instance_type() != instance_type) return false;
5451     }
5452     return true;
5453   }
5454 
5455   for (int i = 1; i < types->length(); ++i) {
5456     PropertyAccessInfo test_info(isolate(), types->at(i), name_);
5457     if (!test_info.IsCompatibleForLoad(this)) return false;
5458   }
5459 
5460   return true;
5461 }
5462 
5463 
BuildLoadMonomorphic(PropertyAccessInfo * info,HValue * object,HInstruction * checked_object,BailoutId ast_id,BailoutId return_id,bool can_inline_accessor)5464 HInstruction* HOptimizedGraphBuilder::BuildLoadMonomorphic(
5465     PropertyAccessInfo* info,
5466     HValue* object,
5467     HInstruction* checked_object,
5468     BailoutId ast_id,
5469     BailoutId return_id,
5470     bool can_inline_accessor) {
5471 
5472   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
5473   if (info->GetJSObjectFieldAccess(&access)) {
5474     return New<HLoadNamedField>(checked_object, access);
5475   }
5476 
5477   HValue* checked_holder = checked_object;
5478   if (info->has_holder()) {
5479     Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
5480     checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
5481   }
5482 
5483   if (!info->lookup()->IsFound()) return graph()->GetConstantUndefined();
5484 
5485   if (info->lookup()->IsField()) {
5486     return BuildLoadNamedField(checked_holder, info->access());
5487   }
5488 
5489   if (info->lookup()->IsPropertyCallbacks()) {
5490     Push(checked_object);
5491     if (FLAG_inline_accessors &&
5492         can_inline_accessor &&
5493         TryInlineGetter(info->accessor(), ast_id, return_id)) {
5494       return NULL;
5495     }
5496     Add<HPushArgument>(Pop());
5497     return New<HCallConstantFunction>(info->accessor(), 1);
5498   }
5499 
5500   ASSERT(info->lookup()->IsConstant());
5501   return New<HConstant>(info->constant());
5502 }
5503 
5504 
HandlePolymorphicLoadNamedField(BailoutId ast_id,BailoutId return_id,HValue * object,SmallMapList * types,Handle<String> name)5505 void HOptimizedGraphBuilder::HandlePolymorphicLoadNamedField(
5506     BailoutId ast_id,
5507     BailoutId return_id,
5508     HValue* object,
5509     SmallMapList* types,
5510     Handle<String> name) {
5511   // Something did not match; must use a polymorphic load.
5512   int count = 0;
5513   HBasicBlock* join = NULL;
5514   for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
5515     PropertyAccessInfo info(isolate(), types->at(i), name);
5516     if (info.CanLoadMonomorphic()) {
5517       if (count == 0) {
5518         BuildCheckHeapObject(object);
5519         join = graph()->CreateBasicBlock();
5520       }
5521       ++count;
5522       HBasicBlock* if_true = graph()->CreateBasicBlock();
5523       HBasicBlock* if_false = graph()->CreateBasicBlock();
5524       HCompareMap* compare = New<HCompareMap>(
5525           object, info.map(),  if_true, if_false);
5526       FinishCurrentBlock(compare);
5527 
5528       set_current_block(if_true);
5529 
5530       HInstruction* load = BuildLoadMonomorphic(
5531           &info, object, compare, ast_id, return_id, FLAG_polymorphic_inlining);
5532       if (load == NULL) {
5533         if (HasStackOverflow()) return;
5534       } else {
5535         if (!load->IsLinked()) {
5536           AddInstruction(load);
5537         }
5538         if (!ast_context()->IsEffect()) Push(load);
5539       }
5540 
5541       if (current_block() != NULL) Goto(join);
5542       set_current_block(if_false);
5543     }
5544   }
5545 
5546   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
5547   // know about and do not want to handle ones we've never seen.  Otherwise
5548   // use a generic IC.
5549   if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
5550     // Because the deopt may be the only path in the polymorphic load, make sure
5551     // that the environment stack matches the depth on deopt that it otherwise
5552     // would have had after a successful load.
5553     if (!ast_context()->IsEffect()) Push(graph()->GetConstant0());
5554     FinishExitWithHardDeoptimization("Unknown map in polymorphic load", join);
5555   } else {
5556     HInstruction* load = Add<HLoadNamedGeneric>(object, name);
5557     if (!ast_context()->IsEffect()) Push(load);
5558 
5559     if (join != NULL) {
5560       Goto(join);
5561     } else {
5562       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
5563       if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
5564       return;
5565     }
5566   }
5567 
5568   ASSERT(join != NULL);
5569   join->SetJoinId(ast_id);
5570   set_current_block(join);
5571   if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
5572 }
5573 
5574 
TryStorePolymorphicAsMonomorphic(BailoutId assignment_id,HValue * object,HValue * value,SmallMapList * types,Handle<String> name)5575 bool HOptimizedGraphBuilder::TryStorePolymorphicAsMonomorphic(
5576     BailoutId assignment_id,
5577     HValue* object,
5578     HValue* value,
5579     SmallMapList* types,
5580     Handle<String> name) {
5581   // Use monomorphic store if property lookup results in the same field index
5582   // for all maps. Requires special map check on the set of all handled maps.
5583   if (types->length() > kMaxStorePolymorphism) return false;
5584 
5585   LookupResult lookup(isolate());
5586   int count;
5587   Representation representation = Representation::None();
5588   HObjectAccess access = HObjectAccess::ForMap();  // initial value unused.
5589   for (count = 0; count < types->length(); ++count) {
5590     Handle<Map> map = types->at(count);
5591     // Pass false to ignore transitions.
5592     if (!ComputeStoreField(map, name, &lookup, false)) break;
5593     ASSERT(!map->is_observed());
5594 
5595     HObjectAccess new_access = HObjectAccess::ForField(map, &lookup, name);
5596     Representation new_representation = new_access.representation();
5597 
5598     if (count == 0) {
5599       // First time through the loop; set access and representation.
5600       access = new_access;
5601       representation = new_representation;
5602     } else if (!representation.IsCompatibleForStore(new_representation)) {
5603       // Representations did not match.
5604       break;
5605     } else if (access.offset() != new_access.offset()) {
5606       // Offsets did not match.
5607       break;
5608     } else if (access.IsInobject() != new_access.IsInobject()) {
5609       // In-objectness did not match.
5610       break;
5611     }
5612   }
5613 
5614   if (count != types->length()) return false;
5615 
5616   // Everything matched; can use monomorphic store.
5617   BuildCheckHeapObject(object);
5618   HCheckMaps* checked_object = Add<HCheckMaps>(object, types);
5619   HInstruction* store;
5620   CHECK_ALIVE_OR_RETURN(
5621       store = BuildStoreNamedField(
5622           checked_object, name, value, types->at(count - 1), &lookup),
5623       true);
5624   if (!ast_context()->IsEffect()) Push(value);
5625   AddInstruction(store);
5626   Add<HSimulate>(assignment_id);
5627   if (!ast_context()->IsEffect()) Drop(1);
5628   ast_context()->ReturnValue(value);
5629   return true;
5630 }
5631 
5632 
HandlePolymorphicStoreNamedField(BailoutId assignment_id,HValue * object,HValue * value,SmallMapList * types,Handle<String> name)5633 void HOptimizedGraphBuilder::HandlePolymorphicStoreNamedField(
5634     BailoutId assignment_id,
5635     HValue* object,
5636     HValue* value,
5637     SmallMapList* types,
5638     Handle<String> name) {
5639   if (TryStorePolymorphicAsMonomorphic(
5640           assignment_id, object, value, types, name)) {
5641     return;
5642   }
5643 
5644   // TODO(ager): We should recognize when the prototype chains for different
5645   // maps are identical. In that case we can avoid repeatedly generating the
5646   // same prototype map checks.
5647   int count = 0;
5648   HBasicBlock* join = NULL;
5649   for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) {
5650     Handle<Map> map = types->at(i);
5651     LookupResult lookup(isolate());
5652     if (ComputeStoreField(map, name, &lookup)) {
5653       if (count == 0) {
5654         BuildCheckHeapObject(object);
5655         join = graph()->CreateBasicBlock();
5656       }
5657       ++count;
5658       HBasicBlock* if_true = graph()->CreateBasicBlock();
5659       HBasicBlock* if_false = graph()->CreateBasicBlock();
5660       HCompareMap* compare = New<HCompareMap>(object, map,  if_true, if_false);
5661       FinishCurrentBlock(compare);
5662 
5663       set_current_block(if_true);
5664       HInstruction* instr;
5665       CHECK_ALIVE(instr = BuildStoreNamedField(
5666           compare, name, value, map, &lookup));
5667       // Goto will add the HSimulate for the store.
5668       AddInstruction(instr);
5669       if (!ast_context()->IsEffect()) Push(value);
5670       Goto(join);
5671 
5672       set_current_block(if_false);
5673     }
5674   }
5675 
5676   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
5677   // know about and do not want to handle ones we've never seen.  Otherwise
5678   // use a generic IC.
5679   if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
5680     FinishExitWithHardDeoptimization("Unknown map in polymorphic store", join);
5681   } else {
5682     HInstruction* instr = BuildStoreNamedGeneric(object, name, value);
5683     AddInstruction(instr);
5684 
5685     if (join != NULL) {
5686       if (!ast_context()->IsEffect()) {
5687         Push(value);
5688       }
5689       Goto(join);
5690     } else {
5691       // The HSimulate for the store should not see the stored value in
5692       // effect contexts (it is not materialized at expr->id() in the
5693       // unoptimized code).
5694       if (instr->HasObservableSideEffects()) {
5695         if (ast_context()->IsEffect()) {
5696           Add<HSimulate>(assignment_id, REMOVABLE_SIMULATE);
5697         } else {
5698           Push(value);
5699           Add<HSimulate>(assignment_id, REMOVABLE_SIMULATE);
5700           Drop(1);
5701         }
5702       }
5703       return ast_context()->ReturnValue(value);
5704     }
5705   }
5706 
5707   ASSERT(join != NULL);
5708   join->SetJoinId(assignment_id);
5709   set_current_block(join);
5710   if (!ast_context()->IsEffect()) {
5711     ast_context()->ReturnValue(Pop());
5712   }
5713 }
5714 
5715 
ComputeReceiverTypes(Expression * expr,HValue * receiver,SmallMapList ** t)5716 static bool ComputeReceiverTypes(Expression* expr,
5717                                  HValue* receiver,
5718                                  SmallMapList** t) {
5719   SmallMapList* types = expr->GetReceiverTypes();
5720   *t = types;
5721   bool monomorphic = expr->IsMonomorphic();
5722   if (types != NULL && receiver->HasMonomorphicJSObjectType()) {
5723     Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
5724     types->FilterForPossibleTransitions(root_map);
5725     monomorphic = types->length() == 1;
5726   }
5727   return monomorphic && CanInlinePropertyAccess(*types->first());
5728 }
5729 
5730 
BuildStore(Expression * expr,Property * prop,BailoutId ast_id,BailoutId return_id,bool is_uninitialized)5731 void HOptimizedGraphBuilder::BuildStore(Expression* expr,
5732                                         Property* prop,
5733                                         BailoutId ast_id,
5734                                         BailoutId return_id,
5735                                         bool is_uninitialized) {
5736   HValue* value = environment()->ExpressionStackAt(0);
5737 
5738   if (!prop->key()->IsPropertyName()) {
5739     // Keyed store.
5740     HValue* key = environment()->ExpressionStackAt(1);
5741     HValue* object = environment()->ExpressionStackAt(2);
5742     bool has_side_effects = false;
5743     HandleKeyedElementAccess(object, key, value, expr,
5744                              true,  // is_store
5745                              &has_side_effects);
5746     Drop(3);
5747     Push(value);
5748     Add<HSimulate>(return_id, REMOVABLE_SIMULATE);
5749     return ast_context()->ReturnValue(Pop());
5750   }
5751 
5752   // Named store.
5753   HValue* object = environment()->ExpressionStackAt(1);
5754 
5755   if (is_uninitialized) {
5756     Add<HDeoptimize>("Insufficient type feedback for property assignment",
5757                      Deoptimizer::SOFT);
5758   }
5759 
5760   Literal* key = prop->key()->AsLiteral();
5761   Handle<String> name = Handle<String>::cast(key->value());
5762   ASSERT(!name.is_null());
5763 
5764   HInstruction* instr = NULL;
5765 
5766   SmallMapList* types;
5767   bool monomorphic = ComputeReceiverTypes(expr, object, &types);
5768 
5769   if (monomorphic) {
5770     Handle<Map> map = types->first();
5771     Handle<JSFunction> setter;
5772     Handle<JSObject> holder;
5773     if (LookupSetter(map, name, &setter, &holder)) {
5774       AddCheckConstantFunction(holder, object, map);
5775       if (FLAG_inline_accessors &&
5776           TryInlineSetter(setter, ast_id, return_id, value)) {
5777         return;
5778       }
5779       Drop(2);
5780       Add<HPushArgument>(object);
5781       Add<HPushArgument>(value);
5782       instr = New<HCallConstantFunction>(setter, 2);
5783     } else {
5784       Drop(2);
5785       CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object,
5786                                                      name,
5787                                                      value,
5788                                                      map));
5789     }
5790   } else if (types != NULL && types->length() > 1) {
5791     Drop(2);
5792     return HandlePolymorphicStoreNamedField(ast_id, object, value, types, name);
5793   } else {
5794     Drop(2);
5795     instr = BuildStoreNamedGeneric(object, name, value);
5796   }
5797 
5798   if (!ast_context()->IsEffect()) Push(value);
5799   AddInstruction(instr);
5800   if (instr->HasObservableSideEffects()) {
5801     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
5802   }
5803   if (!ast_context()->IsEffect()) Drop(1);
5804   return ast_context()->ReturnValue(value);
5805 }
5806 
5807 
HandlePropertyAssignment(Assignment * expr)5808 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
5809   Property* prop = expr->target()->AsProperty();
5810   ASSERT(prop != NULL);
5811   CHECK_ALIVE(VisitForValue(prop->obj()));
5812   if (!prop->key()->IsPropertyName()) {
5813     CHECK_ALIVE(VisitForValue(prop->key()));
5814   }
5815   CHECK_ALIVE(VisitForValue(expr->value()));
5816   BuildStore(expr, prop, expr->id(),
5817              expr->AssignmentId(), expr->IsUninitialized());
5818 }
5819 
5820 
5821 // Because not every expression has a position and there is not common
5822 // superclass of Assignment and CountOperation, we cannot just pass the
5823 // owning expression instead of position and ast_id separately.
HandleGlobalVariableAssignment(Variable * var,HValue * value,BailoutId ast_id)5824 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
5825     Variable* var,
5826     HValue* value,
5827     BailoutId ast_id) {
5828   LookupResult lookup(isolate());
5829   GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true);
5830   if (type == kUseCell) {
5831     Handle<GlobalObject> global(current_info()->global_object());
5832     Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
5833     if (cell->type()->IsConstant()) {
5834       IfBuilder builder(this);
5835       HValue* constant = Add<HConstant>(cell->type()->AsConstant());
5836       if (cell->type()->AsConstant()->IsNumber()) {
5837         builder.If<HCompareNumericAndBranch>(value, constant, Token::EQ);
5838       } else {
5839         builder.If<HCompareObjectEqAndBranch>(value, constant);
5840       }
5841       builder.Then();
5842       builder.Else();
5843       Add<HDeoptimize>("Constant global variable assignment",
5844                        Deoptimizer::EAGER);
5845       builder.End();
5846     }
5847     HInstruction* instr =
5848         Add<HStoreGlobalCell>(value, cell, lookup.GetPropertyDetails());
5849     if (instr->HasObservableSideEffects()) {
5850       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
5851     }
5852   } else {
5853     HGlobalObject* global_object = Add<HGlobalObject>();
5854     HStoreGlobalGeneric* instr =
5855         Add<HStoreGlobalGeneric>(global_object, var->name(),
5856                                  value, function_strict_mode_flag());
5857     USE(instr);
5858     ASSERT(instr->HasObservableSideEffects());
5859     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
5860   }
5861 }
5862 
5863 
HandleCompoundAssignment(Assignment * expr)5864 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
5865   Expression* target = expr->target();
5866   VariableProxy* proxy = target->AsVariableProxy();
5867   Property* prop = target->AsProperty();
5868   ASSERT(proxy == NULL || prop == NULL);
5869 
5870   // We have a second position recorded in the FullCodeGenerator to have
5871   // type feedback for the binary operation.
5872   BinaryOperation* operation = expr->binary_operation();
5873 
5874   if (proxy != NULL) {
5875     Variable* var = proxy->var();
5876     if (var->mode() == LET)  {
5877       return Bailout(kUnsupportedLetCompoundAssignment);
5878     }
5879 
5880     CHECK_ALIVE(VisitForValue(operation));
5881 
5882     switch (var->location()) {
5883       case Variable::UNALLOCATED:
5884         HandleGlobalVariableAssignment(var,
5885                                        Top(),
5886                                        expr->AssignmentId());
5887         break;
5888 
5889       case Variable::PARAMETER:
5890       case Variable::LOCAL:
5891         if (var->mode() == CONST)  {
5892           return Bailout(kUnsupportedConstCompoundAssignment);
5893         }
5894         BindIfLive(var, Top());
5895         break;
5896 
5897       case Variable::CONTEXT: {
5898         // Bail out if we try to mutate a parameter value in a function
5899         // using the arguments object.  We do not (yet) correctly handle the
5900         // arguments property of the function.
5901         if (current_info()->scope()->arguments() != NULL) {
5902           // Parameters will be allocated to context slots.  We have no
5903           // direct way to detect that the variable is a parameter so we do
5904           // a linear search of the parameter variables.
5905           int count = current_info()->scope()->num_parameters();
5906           for (int i = 0; i < count; ++i) {
5907             if (var == current_info()->scope()->parameter(i)) {
5908               Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
5909             }
5910           }
5911         }
5912 
5913         HStoreContextSlot::Mode mode;
5914 
5915         switch (var->mode()) {
5916           case LET:
5917             mode = HStoreContextSlot::kCheckDeoptimize;
5918             break;
5919           case CONST:
5920             return ast_context()->ReturnValue(Pop());
5921           case CONST_HARMONY:
5922             // This case is checked statically so no need to
5923             // perform checks here
5924             UNREACHABLE();
5925           default:
5926             mode = HStoreContextSlot::kNoCheck;
5927         }
5928 
5929         HValue* context = BuildContextChainWalk(var);
5930         HStoreContextSlot* instr = Add<HStoreContextSlot>(
5931             context, var->index(), mode, Top());
5932         if (instr->HasObservableSideEffects()) {
5933           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
5934         }
5935         break;
5936       }
5937 
5938       case Variable::LOOKUP:
5939         return Bailout(kCompoundAssignmentToLookupSlot);
5940     }
5941     return ast_context()->ReturnValue(Pop());
5942 
5943   } else if (prop != NULL) {
5944     CHECK_ALIVE(VisitForValue(prop->obj()));
5945     HValue* object = Top();
5946     HValue* key = NULL;
5947     if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
5948         prop->IsStringAccess()) {
5949       CHECK_ALIVE(VisitForValue(prop->key()));
5950       key = Top();
5951     }
5952 
5953     CHECK_ALIVE(PushLoad(prop, object, key));
5954 
5955     CHECK_ALIVE(VisitForValue(expr->value()));
5956     HValue* right = Pop();
5957     HValue* left = Pop();
5958 
5959     Push(BuildBinaryOperation(operation, left, right));
5960     BuildStore(expr, prop, expr->id(),
5961                expr->AssignmentId(), expr->IsUninitialized());
5962   } else {
5963     return Bailout(kInvalidLhsInCompoundAssignment);
5964   }
5965 }
5966 
5967 
VisitAssignment(Assignment * expr)5968 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
5969   ASSERT(!HasStackOverflow());
5970   ASSERT(current_block() != NULL);
5971   ASSERT(current_block()->HasPredecessor());
5972   VariableProxy* proxy = expr->target()->AsVariableProxy();
5973   Property* prop = expr->target()->AsProperty();
5974   ASSERT(proxy == NULL || prop == NULL);
5975 
5976   if (expr->is_compound()) {
5977     HandleCompoundAssignment(expr);
5978     return;
5979   }
5980 
5981   if (prop != NULL) {
5982     HandlePropertyAssignment(expr);
5983   } else if (proxy != NULL) {
5984     Variable* var = proxy->var();
5985 
5986     if (var->mode() == CONST) {
5987       if (expr->op() != Token::INIT_CONST) {
5988         CHECK_ALIVE(VisitForValue(expr->value()));
5989         return ast_context()->ReturnValue(Pop());
5990       }
5991 
5992       if (var->IsStackAllocated()) {
5993         // We insert a use of the old value to detect unsupported uses of const
5994         // variables (e.g. initialization inside a loop).
5995         HValue* old_value = environment()->Lookup(var);
5996         Add<HUseConst>(old_value);
5997       }
5998     } else if (var->mode() == CONST_HARMONY) {
5999       if (expr->op() != Token::INIT_CONST_HARMONY) {
6000         return Bailout(kNonInitializerAssignmentToConst);
6001       }
6002     }
6003 
6004     if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
6005 
6006     // Handle the assignment.
6007     switch (var->location()) {
6008       case Variable::UNALLOCATED:
6009         CHECK_ALIVE(VisitForValue(expr->value()));
6010         HandleGlobalVariableAssignment(var,
6011                                        Top(),
6012                                        expr->AssignmentId());
6013         return ast_context()->ReturnValue(Pop());
6014 
6015       case Variable::PARAMETER:
6016       case Variable::LOCAL: {
6017         // Perform an initialization check for let declared variables
6018         // or parameters.
6019         if (var->mode() == LET && expr->op() == Token::ASSIGN) {
6020           HValue* env_value = environment()->Lookup(var);
6021           if (env_value == graph()->GetConstantHole()) {
6022             return Bailout(kAssignmentToLetVariableBeforeInitialization);
6023           }
6024         }
6025         // We do not allow the arguments object to occur in a context where it
6026         // may escape, but assignments to stack-allocated locals are
6027         // permitted.
6028         CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
6029         HValue* value = Pop();
6030         BindIfLive(var, value);
6031         return ast_context()->ReturnValue(value);
6032       }
6033 
6034       case Variable::CONTEXT: {
6035         // Bail out if we try to mutate a parameter value in a function using
6036         // the arguments object.  We do not (yet) correctly handle the
6037         // arguments property of the function.
6038         if (current_info()->scope()->arguments() != NULL) {
6039           // Parameters will rewrite to context slots.  We have no direct way
6040           // to detect that the variable is a parameter.
6041           int count = current_info()->scope()->num_parameters();
6042           for (int i = 0; i < count; ++i) {
6043             if (var == current_info()->scope()->parameter(i)) {
6044               return Bailout(kAssignmentToParameterInArgumentsObject);
6045             }
6046           }
6047         }
6048 
6049         CHECK_ALIVE(VisitForValue(expr->value()));
6050         HStoreContextSlot::Mode mode;
6051         if (expr->op() == Token::ASSIGN) {
6052           switch (var->mode()) {
6053             case LET:
6054               mode = HStoreContextSlot::kCheckDeoptimize;
6055               break;
6056             case CONST:
6057               return ast_context()->ReturnValue(Pop());
6058             case CONST_HARMONY:
6059               // This case is checked statically so no need to
6060               // perform checks here
6061               UNREACHABLE();
6062             default:
6063               mode = HStoreContextSlot::kNoCheck;
6064           }
6065         } else if (expr->op() == Token::INIT_VAR ||
6066                    expr->op() == Token::INIT_LET ||
6067                    expr->op() == Token::INIT_CONST_HARMONY) {
6068           mode = HStoreContextSlot::kNoCheck;
6069         } else {
6070           ASSERT(expr->op() == Token::INIT_CONST);
6071 
6072           mode = HStoreContextSlot::kCheckIgnoreAssignment;
6073         }
6074 
6075         HValue* context = BuildContextChainWalk(var);
6076         HStoreContextSlot* instr = Add<HStoreContextSlot>(
6077             context, var->index(), mode, Top());
6078         if (instr->HasObservableSideEffects()) {
6079           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
6080         }
6081         return ast_context()->ReturnValue(Pop());
6082       }
6083 
6084       case Variable::LOOKUP:
6085         return Bailout(kAssignmentToLOOKUPVariable);
6086     }
6087   } else {
6088     return Bailout(kInvalidLeftHandSideInAssignment);
6089   }
6090 }
6091 
6092 
VisitYield(Yield * expr)6093 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
6094   // Generators are not optimized, so we should never get here.
6095   UNREACHABLE();
6096 }
6097 
6098 
VisitThrow(Throw * expr)6099 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
6100   ASSERT(!HasStackOverflow());
6101   ASSERT(current_block() != NULL);
6102   ASSERT(current_block()->HasPredecessor());
6103   // We don't optimize functions with invalid left-hand sides in
6104   // assignments, count operations, or for-in.  Consequently throw can
6105   // currently only occur in an effect context.
6106   ASSERT(ast_context()->IsEffect());
6107   CHECK_ALIVE(VisitForValue(expr->exception()));
6108 
6109   HValue* value = environment()->Pop();
6110   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
6111   Add<HThrow>(value);
6112   Add<HSimulate>(expr->id());
6113 
6114   // If the throw definitely exits the function, we can finish with a dummy
6115   // control flow at this point.  This is not the case if the throw is inside
6116   // an inlined function which may be replaced.
6117   if (call_context() == NULL) {
6118     FinishExitCurrentBlock(New<HAbnormalExit>());
6119   }
6120 }
6121 
6122 
BuildLoadNamedField(HValue * object,HObjectAccess access)6123 HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object,
6124                                                     HObjectAccess access) {
6125   if (FLAG_track_double_fields && access.representation().IsDouble()) {
6126     // load the heap number
6127     HLoadNamedField* heap_number = Add<HLoadNamedField>(
6128         object, access.WithRepresentation(Representation::Tagged()));
6129     heap_number->set_type(HType::HeapNumber());
6130     // load the double value from it
6131     return New<HLoadNamedField>(
6132         heap_number, HObjectAccess::ForHeapNumberValue());
6133   }
6134   return New<HLoadNamedField>(object, access);
6135 }
6136 
6137 
AddLoadNamedField(HValue * object,HObjectAccess access)6138 HInstruction* HGraphBuilder::AddLoadNamedField(HValue* object,
6139                                                HObjectAccess access) {
6140   return AddInstruction(BuildLoadNamedField(object, access));
6141 }
6142 
6143 
BuildLoadStringLength(HValue * object,HValue * checked_string)6144 HInstruction* HGraphBuilder::BuildLoadStringLength(HValue* object,
6145                                                    HValue* checked_string) {
6146   if (FLAG_fold_constants && object->IsConstant()) {
6147     HConstant* constant = HConstant::cast(object);
6148     if (constant->HasStringValue()) {
6149       return New<HConstant>(constant->StringValue()->length());
6150     }
6151   }
6152   return BuildLoadNamedField(checked_string, HObjectAccess::ForStringLength());
6153 }
6154 
6155 
BuildLoadNamedGeneric(HValue * object,Handle<String> name,Property * expr)6156 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedGeneric(
6157     HValue* object,
6158     Handle<String> name,
6159     Property* expr) {
6160   if (expr->IsUninitialized()) {
6161     Add<HDeoptimize>("Insufficient type feedback for generic named load",
6162                      Deoptimizer::SOFT);
6163   }
6164   return New<HLoadNamedGeneric>(object, name);
6165 }
6166 
6167 
6168 
BuildLoadKeyedGeneric(HValue * object,HValue * key)6169 HInstruction* HOptimizedGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
6170                                                             HValue* key) {
6171   return New<HLoadKeyedGeneric>(object, key);
6172 }
6173 
6174 
BuildKeyedHoleMode(Handle<Map> map)6175 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
6176   // Loads from a "stock" fast holey double arrays can elide the hole check.
6177   LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
6178   if (*map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS) &&
6179       isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
6180     Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
6181     Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
6182     BuildCheckPrototypeMaps(prototype, object_prototype);
6183     load_mode = ALLOW_RETURN_HOLE;
6184     graph()->MarkDependsOnEmptyArrayProtoElements();
6185   }
6186 
6187   return load_mode;
6188 }
6189 
6190 
BuildMonomorphicElementAccess(HValue * object,HValue * key,HValue * val,HValue * dependency,Handle<Map> map,bool is_store,KeyedAccessStoreMode store_mode)6191 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
6192     HValue* object,
6193     HValue* key,
6194     HValue* val,
6195     HValue* dependency,
6196     Handle<Map> map,
6197     bool is_store,
6198     KeyedAccessStoreMode store_mode) {
6199   HCheckMaps* checked_object = Add<HCheckMaps>(object, map, top_info(),
6200                                                dependency);
6201   if (dependency) {
6202     checked_object->ClearGVNFlag(kDependsOnElementsKind);
6203   }
6204 
6205   if (is_store && map->prototype()->IsJSObject()) {
6206     // monomorphic stores need a prototype chain check because shape
6207     // changes could allow callbacks on elements in the chain that
6208     // aren't compatible with monomorphic keyed stores.
6209     Handle<JSObject> prototype(JSObject::cast(map->prototype()));
6210     Object* holder = map->prototype();
6211     while (holder->GetPrototype(isolate())->IsJSObject()) {
6212       holder = holder->GetPrototype(isolate());
6213     }
6214     ASSERT(holder->GetPrototype(isolate())->IsNull());
6215 
6216     BuildCheckPrototypeMaps(prototype,
6217                             Handle<JSObject>(JSObject::cast(holder)));
6218   }
6219 
6220   LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
6221   return BuildUncheckedMonomorphicElementAccess(
6222       checked_object, key, val,
6223       map->instance_type() == JS_ARRAY_TYPE,
6224       map->elements_kind(), is_store,
6225       load_mode, store_mode);
6226 }
6227 
6228 
TryBuildConsolidatedElementLoad(HValue * object,HValue * key,HValue * val,SmallMapList * maps)6229 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
6230     HValue* object,
6231     HValue* key,
6232     HValue* val,
6233     SmallMapList* maps) {
6234   // For polymorphic loads of similar elements kinds (i.e. all tagged or all
6235   // double), always use the "worst case" code without a transition.  This is
6236   // much faster than transitioning the elements to the worst case, trading a
6237   // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
6238   bool has_double_maps = false;
6239   bool has_smi_or_object_maps = false;
6240   bool has_js_array_access = false;
6241   bool has_non_js_array_access = false;
6242   bool has_seen_holey_elements = false;
6243   Handle<Map> most_general_consolidated_map;
6244   for (int i = 0; i < maps->length(); ++i) {
6245     Handle<Map> map = maps->at(i);
6246     if (!map->IsJSObjectMap()) return NULL;
6247     // Don't allow mixing of JSArrays with JSObjects.
6248     if (map->instance_type() == JS_ARRAY_TYPE) {
6249       if (has_non_js_array_access) return NULL;
6250       has_js_array_access = true;
6251     } else if (has_js_array_access) {
6252       return NULL;
6253     } else {
6254       has_non_js_array_access = true;
6255     }
6256     // Don't allow mixed, incompatible elements kinds.
6257     if (map->has_fast_double_elements()) {
6258       if (has_smi_or_object_maps) return NULL;
6259       has_double_maps = true;
6260     } else if (map->has_fast_smi_or_object_elements()) {
6261       if (has_double_maps) return NULL;
6262       has_smi_or_object_maps = true;
6263     } else {
6264       return NULL;
6265     }
6266     // Remember if we've ever seen holey elements.
6267     if (IsHoleyElementsKind(map->elements_kind())) {
6268       has_seen_holey_elements = true;
6269     }
6270     // Remember the most general elements kind, the code for its load will
6271     // properly handle all of the more specific cases.
6272     if ((i == 0) || IsMoreGeneralElementsKindTransition(
6273             most_general_consolidated_map->elements_kind(),
6274             map->elements_kind())) {
6275       most_general_consolidated_map = map;
6276     }
6277   }
6278   if (!has_double_maps && !has_smi_or_object_maps) return NULL;
6279 
6280   HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
6281   // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
6282   // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
6283   ElementsKind consolidated_elements_kind = has_seen_holey_elements
6284       ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
6285       : most_general_consolidated_map->elements_kind();
6286   HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
6287       checked_object, key, val,
6288       most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
6289       consolidated_elements_kind,
6290       false, NEVER_RETURN_HOLE, STANDARD_STORE);
6291   return instr;
6292 }
6293 
6294 
HandlePolymorphicElementAccess(HValue * object,HValue * key,HValue * val,SmallMapList * maps,bool is_store,KeyedAccessStoreMode store_mode,bool * has_side_effects)6295 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
6296     HValue* object,
6297     HValue* key,
6298     HValue* val,
6299     SmallMapList* maps,
6300     bool is_store,
6301     KeyedAccessStoreMode store_mode,
6302     bool* has_side_effects) {
6303   *has_side_effects = false;
6304   BuildCheckHeapObject(object);
6305 
6306   if (!is_store) {
6307     HInstruction* consolidated_load =
6308         TryBuildConsolidatedElementLoad(object, key, val, maps);
6309     if (consolidated_load != NULL) {
6310       *has_side_effects |= consolidated_load->HasObservableSideEffects();
6311       return consolidated_load;
6312     }
6313   }
6314 
6315   // Elements_kind transition support.
6316   MapHandleList transition_target(maps->length());
6317   // Collect possible transition targets.
6318   MapHandleList possible_transitioned_maps(maps->length());
6319   for (int i = 0; i < maps->length(); ++i) {
6320     Handle<Map> map = maps->at(i);
6321     ElementsKind elements_kind = map->elements_kind();
6322     if (IsFastElementsKind(elements_kind) &&
6323         elements_kind != GetInitialFastElementsKind()) {
6324       possible_transitioned_maps.Add(map);
6325     }
6326   }
6327   // Get transition target for each map (NULL == no transition).
6328   for (int i = 0; i < maps->length(); ++i) {
6329     Handle<Map> map = maps->at(i);
6330     Handle<Map> transitioned_map =
6331         map->FindTransitionedMap(&possible_transitioned_maps);
6332     transition_target.Add(transitioned_map);
6333   }
6334 
6335   MapHandleList untransitionable_maps(maps->length());
6336   HTransitionElementsKind* transition = NULL;
6337   for (int i = 0; i < maps->length(); ++i) {
6338     Handle<Map> map = maps->at(i);
6339     ASSERT(map->IsMap());
6340     if (!transition_target.at(i).is_null()) {
6341       ASSERT(Map::IsValidElementsTransition(
6342           map->elements_kind(),
6343           transition_target.at(i)->elements_kind()));
6344       transition = Add<HTransitionElementsKind>(object, map,
6345                                                 transition_target.at(i));
6346     } else {
6347       untransitionable_maps.Add(map);
6348     }
6349   }
6350 
6351   // If only one map is left after transitioning, handle this case
6352   // monomorphically.
6353   ASSERT(untransitionable_maps.length() >= 1);
6354   if (untransitionable_maps.length() == 1) {
6355     Handle<Map> untransitionable_map = untransitionable_maps[0];
6356     HInstruction* instr = NULL;
6357     if (untransitionable_map->has_slow_elements_kind() ||
6358         !untransitionable_map->IsJSObjectMap()) {
6359       instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val)
6360                                       : BuildLoadKeyedGeneric(object, key));
6361     } else {
6362       instr = BuildMonomorphicElementAccess(
6363           object, key, val, transition, untransitionable_map, is_store,
6364           store_mode);
6365     }
6366     *has_side_effects |= instr->HasObservableSideEffects();
6367     return is_store ? NULL : instr;
6368   }
6369 
6370   HBasicBlock* join = graph()->CreateBasicBlock();
6371 
6372   for (int i = 0; i < untransitionable_maps.length(); ++i) {
6373     Handle<Map> map = untransitionable_maps[i];
6374     if (!map->IsJSObjectMap()) continue;
6375     ElementsKind elements_kind = map->elements_kind();
6376     HBasicBlock* this_map = graph()->CreateBasicBlock();
6377     HBasicBlock* other_map = graph()->CreateBasicBlock();
6378     HCompareMap* mapcompare =
6379         New<HCompareMap>(object, map, this_map, other_map);
6380     FinishCurrentBlock(mapcompare);
6381 
6382     set_current_block(this_map);
6383     HInstruction* access = NULL;
6384     if (IsDictionaryElementsKind(elements_kind)) {
6385       access = is_store
6386           ? AddInstruction(BuildStoreKeyedGeneric(object, key, val))
6387           : AddInstruction(BuildLoadKeyedGeneric(object, key));
6388     } else {
6389       ASSERT(IsFastElementsKind(elements_kind) ||
6390              IsExternalArrayElementsKind(elements_kind));
6391       LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
6392       // Happily, mapcompare is a checked object.
6393       access = BuildUncheckedMonomorphicElementAccess(
6394           mapcompare, key, val,
6395           map->instance_type() == JS_ARRAY_TYPE,
6396           elements_kind, is_store,
6397           load_mode,
6398           store_mode);
6399     }
6400     *has_side_effects |= access->HasObservableSideEffects();
6401     // The caller will use has_side_effects and add a correct Simulate.
6402     access->SetFlag(HValue::kHasNoObservableSideEffects);
6403     if (!is_store) {
6404       Push(access);
6405     }
6406     NoObservableSideEffectsScope scope(this);
6407     GotoNoSimulate(join);
6408     set_current_block(other_map);
6409   }
6410 
6411   // Deopt if none of the cases matched.
6412   NoObservableSideEffectsScope scope(this);
6413   FinishExitWithHardDeoptimization("Unknown map in polymorphic element access",
6414                                    join);
6415   set_current_block(join);
6416   return is_store ? NULL : Pop();
6417 }
6418 
6419 
HandleKeyedElementAccess(HValue * obj,HValue * key,HValue * val,Expression * expr,bool is_store,bool * has_side_effects)6420 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
6421     HValue* obj,
6422     HValue* key,
6423     HValue* val,
6424     Expression* expr,
6425     bool is_store,
6426     bool* has_side_effects) {
6427   ASSERT(!expr->IsPropertyName());
6428   HInstruction* instr = NULL;
6429 
6430   SmallMapList* types;
6431   bool monomorphic = ComputeReceiverTypes(expr, obj, &types);
6432 
6433   bool force_generic = false;
6434   if (is_store && (monomorphic || (types != NULL && !types->is_empty()))) {
6435     // Stores can't be mono/polymorphic if their prototype chain has dictionary
6436     // elements. However a receiver map that has dictionary elements itself
6437     // should be left to normal mono/poly behavior (the other maps may benefit
6438     // from highly optimized stores).
6439     for (int i = 0; i < types->length(); i++) {
6440       Handle<Map> current_map = types->at(i);
6441       if (current_map->DictionaryElementsInPrototypeChainOnly()) {
6442         force_generic = true;
6443         monomorphic = false;
6444         break;
6445       }
6446     }
6447   }
6448 
6449   if (monomorphic) {
6450     Handle<Map> map = types->first();
6451     if (map->has_slow_elements_kind()) {
6452       instr = is_store ? BuildStoreKeyedGeneric(obj, key, val)
6453                        : BuildLoadKeyedGeneric(obj, key);
6454       AddInstruction(instr);
6455     } else {
6456       BuildCheckHeapObject(obj);
6457       instr = BuildMonomorphicElementAccess(
6458           obj, key, val, NULL, map, is_store, expr->GetStoreMode());
6459     }
6460   } else if (!force_generic && (types != NULL && !types->is_empty())) {
6461     return HandlePolymorphicElementAccess(
6462         obj, key, val, types, is_store,
6463         expr->GetStoreMode(), has_side_effects);
6464   } else {
6465     if (is_store) {
6466       if (expr->IsAssignment() &&
6467           expr->AsAssignment()->HasNoTypeInformation()) {
6468         Add<HDeoptimize>("Insufficient type feedback for keyed store",
6469                          Deoptimizer::SOFT);
6470       }
6471       instr = BuildStoreKeyedGeneric(obj, key, val);
6472     } else {
6473       if (expr->AsProperty()->HasNoTypeInformation()) {
6474         Add<HDeoptimize>("Insufficient type feedback for keyed load",
6475                          Deoptimizer::SOFT);
6476       }
6477       instr = BuildLoadKeyedGeneric(obj, key);
6478     }
6479     AddInstruction(instr);
6480   }
6481   *has_side_effects = instr->HasObservableSideEffects();
6482   return instr;
6483 }
6484 
6485 
BuildStoreKeyedGeneric(HValue * object,HValue * key,HValue * value)6486 HInstruction* HOptimizedGraphBuilder::BuildStoreKeyedGeneric(
6487     HValue* object,
6488     HValue* key,
6489     HValue* value) {
6490   return New<HStoreKeyedGeneric>(
6491                          object,
6492                          key,
6493                          value,
6494                          function_strict_mode_flag());
6495 }
6496 
6497 
EnsureArgumentsArePushedForAccess()6498 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
6499   // Outermost function already has arguments on the stack.
6500   if (function_state()->outer() == NULL) return;
6501 
6502   if (function_state()->arguments_pushed()) return;
6503 
6504   // Push arguments when entering inlined function.
6505   HEnterInlined* entry = function_state()->entry();
6506   entry->set_arguments_pushed();
6507 
6508   HArgumentsObject* arguments = entry->arguments_object();
6509   const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
6510 
6511   HInstruction* insert_after = entry;
6512   for (int i = 0; i < arguments_values->length(); i++) {
6513     HValue* argument = arguments_values->at(i);
6514     HInstruction* push_argument = New<HPushArgument>(argument);
6515     push_argument->InsertAfter(insert_after);
6516     insert_after = push_argument;
6517   }
6518 
6519   HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
6520   arguments_elements->ClearFlag(HValue::kUseGVN);
6521   arguments_elements->InsertAfter(insert_after);
6522   function_state()->set_arguments_elements(arguments_elements);
6523 }
6524 
6525 
TryArgumentsAccess(Property * expr)6526 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
6527   VariableProxy* proxy = expr->obj()->AsVariableProxy();
6528   if (proxy == NULL) return false;
6529   if (!proxy->var()->IsStackAllocated()) return false;
6530   if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
6531     return false;
6532   }
6533 
6534   HInstruction* result = NULL;
6535   if (expr->key()->IsPropertyName()) {
6536     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
6537     if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false;
6538 
6539     if (function_state()->outer() == NULL) {
6540       HInstruction* elements = Add<HArgumentsElements>(false);
6541       result = New<HArgumentsLength>(elements);
6542     } else {
6543       // Number of arguments without receiver.
6544       int argument_count = environment()->
6545           arguments_environment()->parameter_count() - 1;
6546       result = New<HConstant>(argument_count);
6547     }
6548   } else {
6549     Push(graph()->GetArgumentsObject());
6550     CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
6551     HValue* key = Pop();
6552     Drop(1);  // Arguments object.
6553     if (function_state()->outer() == NULL) {
6554       HInstruction* elements = Add<HArgumentsElements>(false);
6555       HInstruction* length = Add<HArgumentsLength>(elements);
6556       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
6557       result = New<HAccessArgumentsAt>(elements, length, checked_key);
6558     } else {
6559       EnsureArgumentsArePushedForAccess();
6560 
6561       // Number of arguments without receiver.
6562       HInstruction* elements = function_state()->arguments_elements();
6563       int argument_count = environment()->
6564           arguments_environment()->parameter_count() - 1;
6565       HInstruction* length = Add<HConstant>(argument_count);
6566       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
6567       result = New<HAccessArgumentsAt>(elements, length, checked_key);
6568     }
6569   }
6570   ast_context()->ReturnInstruction(result, expr->id());
6571   return true;
6572 }
6573 
6574 
PushLoad(Property * expr,HValue * object,HValue * key)6575 void HOptimizedGraphBuilder::PushLoad(Property* expr,
6576                                       HValue* object,
6577                                       HValue* key) {
6578   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
6579   Push(object);
6580   if (key != NULL) Push(key);
6581   BuildLoad(expr, expr->LoadId());
6582 }
6583 
6584 
AreStringTypes(SmallMapList * types)6585 static bool AreStringTypes(SmallMapList* types) {
6586   for (int i = 0; i < types->length(); i++) {
6587     if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
6588   }
6589   return true;
6590 }
6591 
6592 
BuildLoad(Property * expr,BailoutId ast_id)6593 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
6594                                        BailoutId ast_id) {
6595   HInstruction* instr = NULL;
6596   if (expr->IsStringAccess()) {
6597     HValue* index = Pop();
6598     HValue* string = Pop();
6599     HInstruction* char_code = BuildStringCharCodeAt(string, index);
6600     AddInstruction(char_code);
6601     instr = NewUncasted<HStringCharFromCode>(char_code);
6602 
6603   } else if (expr->IsFunctionPrototype()) {
6604     HValue* function = Pop();
6605     BuildCheckHeapObject(function);
6606     instr = New<HLoadFunctionPrototype>(function);
6607 
6608   } else if (expr->key()->IsPropertyName()) {
6609     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
6610     HValue* object = Pop();
6611 
6612     SmallMapList* types;
6613     ComputeReceiverTypes(expr, object, &types);
6614     ASSERT(types != NULL);
6615 
6616     if (types->length() > 0) {
6617       PropertyAccessInfo info(isolate(), types->first(), name);
6618       if (!info.CanLoadAsMonomorphic(types)) {
6619         return HandlePolymorphicLoadNamedField(
6620             ast_id, expr->LoadId(), object, types, name);
6621       }
6622 
6623       BuildCheckHeapObject(object);
6624       HInstruction* checked_object;
6625       if (AreStringTypes(types)) {
6626         checked_object =
6627             Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
6628       } else {
6629         checked_object = Add<HCheckMaps>(object, types);
6630       }
6631       instr = BuildLoadMonomorphic(
6632           &info, object, checked_object, ast_id, expr->LoadId());
6633       if (instr == NULL) return;
6634       if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
6635     } else {
6636       instr = BuildLoadNamedGeneric(object, name, expr);
6637     }
6638 
6639   } else {
6640     HValue* key = Pop();
6641     HValue* obj = Pop();
6642 
6643     bool has_side_effects = false;
6644     HValue* load = HandleKeyedElementAccess(
6645         obj, key, NULL, expr,
6646         false,  // is_store
6647         &has_side_effects);
6648     if (has_side_effects) {
6649       if (ast_context()->IsEffect()) {
6650         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6651       } else {
6652         Push(load);
6653         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6654         Drop(1);
6655       }
6656     }
6657     return ast_context()->ReturnValue(load);
6658   }
6659   return ast_context()->ReturnInstruction(instr, ast_id);
6660 }
6661 
6662 
VisitProperty(Property * expr)6663 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
6664   ASSERT(!HasStackOverflow());
6665   ASSERT(current_block() != NULL);
6666   ASSERT(current_block()->HasPredecessor());
6667 
6668   if (TryArgumentsAccess(expr)) return;
6669 
6670   CHECK_ALIVE(VisitForValue(expr->obj()));
6671   if ((!expr->IsFunctionPrototype() && !expr->key()->IsPropertyName()) ||
6672       expr->IsStringAccess()) {
6673     CHECK_ALIVE(VisitForValue(expr->key()));
6674   }
6675 
6676   BuildLoad(expr, expr->id());
6677 }
6678 
6679 
BuildConstantMapCheck(Handle<JSObject> constant,CompilationInfo * info)6680 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant,
6681                                                    CompilationInfo* info) {
6682   HConstant* constant_value = New<HConstant>(constant);
6683 
6684   if (constant->map()->CanOmitMapChecks()) {
6685     constant->map()->AddDependentCompilationInfo(
6686         DependentCode::kPrototypeCheckGroup, info);
6687     return constant_value;
6688   }
6689 
6690   AddInstruction(constant_value);
6691   HCheckMaps* check =
6692       Add<HCheckMaps>(constant_value, handle(constant->map()), info);
6693   check->ClearGVNFlag(kDependsOnElementsKind);
6694   return check;
6695 }
6696 
6697 
BuildCheckPrototypeMaps(Handle<JSObject> prototype,Handle<JSObject> holder)6698 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
6699                                                      Handle<JSObject> holder) {
6700   while (!prototype.is_identical_to(holder)) {
6701     BuildConstantMapCheck(prototype, top_info());
6702     prototype = handle(JSObject::cast(prototype->GetPrototype()));
6703   }
6704 
6705   HInstruction* checked_object = BuildConstantMapCheck(prototype, top_info());
6706   if (!checked_object->IsLinked()) AddInstruction(checked_object);
6707   return checked_object;
6708 }
6709 
6710 
AddCheckPrototypeMaps(Handle<JSObject> holder,Handle<Map> receiver_map)6711 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
6712                                                    Handle<Map> receiver_map) {
6713   if (!holder.is_null()) {
6714     Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
6715     BuildCheckPrototypeMaps(prototype, holder);
6716   }
6717 }
6718 
6719 
AddCheckConstantFunction(Handle<JSObject> holder,HValue * receiver,Handle<Map> receiver_map)6720 void HOptimizedGraphBuilder::AddCheckConstantFunction(
6721     Handle<JSObject> holder,
6722     HValue* receiver,
6723     Handle<Map> receiver_map) {
6724   // Constant functions have the nice property that the map will change if they
6725   // are overwritten.  Therefore it is enough to check the map of the holder and
6726   // its prototypes.
6727   AddCheckMap(receiver, receiver_map);
6728   AddCheckPrototypeMaps(holder, receiver_map);
6729 }
6730 
6731 
6732 class FunctionSorter {
6733  public:
FunctionSorter()6734   FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { }
FunctionSorter(int index,int ticks,int ast_length,int src_length)6735   FunctionSorter(int index, int ticks, int ast_length, int src_length)
6736       : index_(index),
6737         ticks_(ticks),
6738         ast_length_(ast_length),
6739         src_length_(src_length) { }
6740 
index() const6741   int index() const { return index_; }
ticks() const6742   int ticks() const { return ticks_; }
ast_length() const6743   int ast_length() const { return ast_length_; }
src_length() const6744   int src_length() const { return src_length_; }
6745 
6746  private:
6747   int index_;
6748   int ticks_;
6749   int ast_length_;
6750   int src_length_;
6751 };
6752 
6753 
operator <(const FunctionSorter & lhs,const FunctionSorter & rhs)6754 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
6755   int diff = lhs.ticks() - rhs.ticks();
6756   if (diff != 0) return diff > 0;
6757   diff = lhs.ast_length() - rhs.ast_length();
6758   if (diff != 0) return diff < 0;
6759   return lhs.src_length() < rhs.src_length();
6760 }
6761 
6762 
TryCallPolymorphicAsMonomorphic(Call * expr,HValue * receiver,SmallMapList * types,Handle<String> name)6763 bool HOptimizedGraphBuilder::TryCallPolymorphicAsMonomorphic(
6764     Call* expr,
6765     HValue* receiver,
6766     SmallMapList* types,
6767     Handle<String> name) {
6768   if (types->length() > kMaxCallPolymorphism) return false;
6769 
6770   PropertyAccessInfo info(isolate(), types->at(0), name);
6771   if (!info.CanLoadAsMonomorphic(types)) return false;
6772   if (!expr->ComputeTarget(info.map(), name)) return false;
6773 
6774   BuildCheckHeapObject(receiver);
6775   Add<HCheckMaps>(receiver, types);
6776   AddCheckPrototypeMaps(expr->holder(), info.map());
6777   if (FLAG_trace_inlining) {
6778     Handle<JSFunction> caller = current_info()->closure();
6779     SmartArrayPointer<char> caller_name =
6780         caller->shared()->DebugName()->ToCString();
6781     PrintF("Trying to inline the polymorphic call to %s from %s\n",
6782            *name->ToCString(), *caller_name);
6783   }
6784 
6785   if (!TryInlineCall(expr)) {
6786     int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
6787     HCallConstantFunction* call =
6788       New<HCallConstantFunction>(expr->target(), argument_count);
6789     PreProcessCall(call);
6790     AddInstruction(call);
6791     if (!ast_context()->IsEffect()) Push(call);
6792     Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
6793     if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6794   }
6795 
6796   return true;
6797 }
6798 
6799 
HandlePolymorphicCallNamed(Call * expr,HValue * receiver,SmallMapList * types,Handle<String> name)6800 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
6801     Call* expr,
6802     HValue* receiver,
6803     SmallMapList* types,
6804     Handle<String> name) {
6805   if (TryCallPolymorphicAsMonomorphic(expr, receiver, types, name)) return;
6806 
6807   int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
6808   HBasicBlock* join = NULL;
6809   FunctionSorter order[kMaxCallPolymorphism];
6810   int ordered_functions = 0;
6811 
6812   Handle<Map> initial_string_map(
6813       isolate()->native_context()->string_function()->initial_map());
6814   Handle<Map> string_marker_map(
6815       JSObject::cast(initial_string_map->prototype())->map());
6816   Handle<Map> initial_number_map(
6817       isolate()->native_context()->number_function()->initial_map());
6818   Handle<Map> number_marker_map(
6819       JSObject::cast(initial_number_map->prototype())->map());
6820   Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
6821 
6822   bool handle_smi = false;
6823 
6824   for (int i = 0;
6825        i < types->length() && ordered_functions < kMaxCallPolymorphism;
6826        ++i) {
6827     Handle<Map> map = types->at(i);
6828     if (expr->ComputeTarget(map, name)) {
6829       if (map.is_identical_to(number_marker_map)) handle_smi = true;
6830       order[ordered_functions++] =
6831           FunctionSorter(i,
6832                          expr->target()->shared()->profiler_ticks(),
6833                          InliningAstSize(expr->target()),
6834                          expr->target()->shared()->SourceSize());
6835     }
6836   }
6837 
6838   std::sort(order, order + ordered_functions);
6839 
6840   HBasicBlock* number_block = NULL;
6841 
6842   for (int fn = 0; fn < ordered_functions; ++fn) {
6843     int i = order[fn].index();
6844     Handle<Map> map = types->at(i);
6845     if (fn == 0) {
6846       // Only needed once.
6847       join = graph()->CreateBasicBlock();
6848       if (handle_smi) {
6849         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
6850         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
6851         number_block = graph()->CreateBasicBlock();
6852         FinishCurrentBlock(New<HIsSmiAndBranch>(
6853                 receiver, empty_smi_block, not_smi_block));
6854         Goto(empty_smi_block, number_block);
6855         set_current_block(not_smi_block);
6856       } else {
6857         BuildCheckHeapObject(receiver);
6858       }
6859     }
6860     HBasicBlock* if_true = graph()->CreateBasicBlock();
6861     HBasicBlock* if_false = graph()->CreateBasicBlock();
6862     HUnaryControlInstruction* compare;
6863 
6864     if (handle_smi && map.is_identical_to(number_marker_map)) {
6865       compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
6866       map = initial_number_map;
6867       expr->set_number_check(
6868           Handle<JSObject>(JSObject::cast(map->prototype())));
6869     } else if (map.is_identical_to(string_marker_map)) {
6870       compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
6871       map = initial_string_map;
6872       expr->set_string_check(
6873           Handle<JSObject>(JSObject::cast(map->prototype())));
6874     } else {
6875       compare = New<HCompareMap>(receiver, map, if_true, if_false);
6876       expr->set_map_check();
6877     }
6878 
6879     FinishCurrentBlock(compare);
6880 
6881     if (expr->check_type() == NUMBER_CHECK) {
6882       Goto(if_true, number_block);
6883       if_true = number_block;
6884       number_block->SetJoinId(expr->id());
6885     }
6886     set_current_block(if_true);
6887 
6888     expr->ComputeTarget(map, name);
6889     AddCheckPrototypeMaps(expr->holder(), map);
6890     if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
6891       Handle<JSFunction> caller = current_info()->closure();
6892       SmartArrayPointer<char> caller_name =
6893           caller->shared()->DebugName()->ToCString();
6894       PrintF("Trying to inline the polymorphic call to %s from %s\n",
6895              *name->ToCString(),
6896              *caller_name);
6897     }
6898     if (FLAG_polymorphic_inlining && TryInlineCall(expr)) {
6899       // Trying to inline will signal that we should bailout from the
6900       // entire compilation by setting stack overflow on the visitor.
6901       if (HasStackOverflow()) return;
6902     } else {
6903       HCallConstantFunction* call =
6904           New<HCallConstantFunction>(expr->target(), argument_count);
6905       PreProcessCall(call);
6906       AddInstruction(call);
6907       if (!ast_context()->IsEffect()) Push(call);
6908     }
6909 
6910     if (current_block() != NULL) Goto(join);
6911     set_current_block(if_false);
6912   }
6913 
6914   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
6915   // know about and do not want to handle ones we've never seen.  Otherwise
6916   // use a generic IC.
6917   if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
6918     // Because the deopt may be the only path in the polymorphic call, make sure
6919     // that the environment stack matches the depth on deopt that it otherwise
6920     // would have had after a successful call.
6921     Drop(argument_count);
6922     if (!ast_context()->IsEffect()) Push(graph()->GetConstant0());
6923     FinishExitWithHardDeoptimization("Unknown map in polymorphic call", join);
6924   } else {
6925     HCallNamed* call = New<HCallNamed>(name, argument_count);
6926     PreProcessCall(call);
6927 
6928     if (join != NULL) {
6929       AddInstruction(call);
6930       if (!ast_context()->IsEffect()) Push(call);
6931       Goto(join);
6932     } else {
6933       return ast_context()->ReturnInstruction(call, expr->id());
6934     }
6935   }
6936 
6937   // We assume that control flow is always live after an expression.  So
6938   // even without predecessors to the join block, we set it as the exit
6939   // block and continue by adding instructions there.
6940   ASSERT(join != NULL);
6941   if (join->HasPredecessor()) {
6942     set_current_block(join);
6943     join->SetJoinId(expr->id());
6944     if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
6945   } else {
6946     set_current_block(NULL);
6947   }
6948 }
6949 
6950 
TraceInline(Handle<JSFunction> target,Handle<JSFunction> caller,const char * reason)6951 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
6952                                          Handle<JSFunction> caller,
6953                                          const char* reason) {
6954   if (FLAG_trace_inlining) {
6955     SmartArrayPointer<char> target_name =
6956         target->shared()->DebugName()->ToCString();
6957     SmartArrayPointer<char> caller_name =
6958         caller->shared()->DebugName()->ToCString();
6959     if (reason == NULL) {
6960       PrintF("Inlined %s called from %s.\n", *target_name, *caller_name);
6961     } else {
6962       PrintF("Did not inline %s called from %s (%s).\n",
6963              *target_name, *caller_name, reason);
6964     }
6965   }
6966 }
6967 
6968 
6969 static const int kNotInlinable = 1000000000;
6970 
6971 
InliningAstSize(Handle<JSFunction> target)6972 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
6973   if (!FLAG_use_inlining) return kNotInlinable;
6974 
6975   // Precondition: call is monomorphic and we have found a target with the
6976   // appropriate arity.
6977   Handle<JSFunction> caller = current_info()->closure();
6978   Handle<SharedFunctionInfo> target_shared(target->shared());
6979 
6980   // Always inline builtins marked for inlining.
6981   if (target->IsBuiltin()) {
6982     return target_shared->inline_builtin() ? 0 : kNotInlinable;
6983   }
6984 
6985   // Do a quick check on source code length to avoid parsing large
6986   // inlining candidates.
6987   if (target_shared->SourceSize() >
6988       Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
6989     TraceInline(target, caller, "target text too big");
6990     return kNotInlinable;
6991   }
6992 
6993   // Target must be inlineable.
6994   if (!target_shared->IsInlineable()) {
6995     TraceInline(target, caller, "target not inlineable");
6996     return kNotInlinable;
6997   }
6998   if (target_shared->dont_inline() || target_shared->dont_optimize()) {
6999     TraceInline(target, caller, "target contains unsupported syntax [early]");
7000     return kNotInlinable;
7001   }
7002 
7003   int nodes_added = target_shared->ast_node_count();
7004   return nodes_added;
7005 }
7006 
7007 
TryInline(CallKind call_kind,Handle<JSFunction> target,int arguments_count,HValue * implicit_return_value,BailoutId ast_id,BailoutId return_id,InliningKind inlining_kind)7008 bool HOptimizedGraphBuilder::TryInline(CallKind call_kind,
7009                                        Handle<JSFunction> target,
7010                                        int arguments_count,
7011                                        HValue* implicit_return_value,
7012                                        BailoutId ast_id,
7013                                        BailoutId return_id,
7014                                        InliningKind inlining_kind) {
7015   int nodes_added = InliningAstSize(target);
7016   if (nodes_added == kNotInlinable) return false;
7017 
7018   Handle<JSFunction> caller = current_info()->closure();
7019 
7020   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
7021     TraceInline(target, caller, "target AST is too large [early]");
7022     return false;
7023   }
7024 
7025   // Don't inline deeper than the maximum number of inlining levels.
7026   HEnvironment* env = environment();
7027   int current_level = 1;
7028   while (env->outer() != NULL) {
7029     if (current_level == FLAG_max_inlining_levels) {
7030       TraceInline(target, caller, "inline depth limit reached");
7031       return false;
7032     }
7033     if (env->outer()->frame_type() == JS_FUNCTION) {
7034       current_level++;
7035     }
7036     env = env->outer();
7037   }
7038 
7039   // Don't inline recursive functions.
7040   for (FunctionState* state = function_state();
7041        state != NULL;
7042        state = state->outer()) {
7043     if (*state->compilation_info()->closure() == *target) {
7044       TraceInline(target, caller, "target is recursive");
7045       return false;
7046     }
7047   }
7048 
7049   // We don't want to add more than a certain number of nodes from inlining.
7050   if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
7051                            kUnlimitedMaxInlinedNodesCumulative)) {
7052     TraceInline(target, caller, "cumulative AST node limit reached");
7053     return false;
7054   }
7055 
7056   // Parse and allocate variables.
7057   CompilationInfo target_info(target, zone());
7058   Handle<SharedFunctionInfo> target_shared(target->shared());
7059   if (!Parser::Parse(&target_info) || !Scope::Analyze(&target_info)) {
7060     if (target_info.isolate()->has_pending_exception()) {
7061       // Parse or scope error, never optimize this function.
7062       SetStackOverflow();
7063       target_shared->DisableOptimization(kParseScopeError);
7064     }
7065     TraceInline(target, caller, "parse failure");
7066     return false;
7067   }
7068 
7069   if (target_info.scope()->num_heap_slots() > 0) {
7070     TraceInline(target, caller, "target has context-allocated variables");
7071     return false;
7072   }
7073   FunctionLiteral* function = target_info.function();
7074 
7075   // The following conditions must be checked again after re-parsing, because
7076   // earlier the information might not have been complete due to lazy parsing.
7077   nodes_added = function->ast_node_count();
7078   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
7079     TraceInline(target, caller, "target AST is too large [late]");
7080     return false;
7081   }
7082   AstProperties::Flags* flags(function->flags());
7083   if (flags->Contains(kDontInline) || function->dont_optimize()) {
7084     TraceInline(target, caller, "target contains unsupported syntax [late]");
7085     return false;
7086   }
7087 
7088   // If the function uses the arguments object check that inlining of functions
7089   // with arguments object is enabled and the arguments-variable is
7090   // stack allocated.
7091   if (function->scope()->arguments() != NULL) {
7092     if (!FLAG_inline_arguments) {
7093       TraceInline(target, caller, "target uses arguments object");
7094       return false;
7095     }
7096 
7097     if (!function->scope()->arguments()->IsStackAllocated()) {
7098       TraceInline(target,
7099                   caller,
7100                   "target uses non-stackallocated arguments object");
7101       return false;
7102     }
7103   }
7104 
7105   // All declarations must be inlineable.
7106   ZoneList<Declaration*>* decls = target_info.scope()->declarations();
7107   int decl_count = decls->length();
7108   for (int i = 0; i < decl_count; ++i) {
7109     if (!decls->at(i)->IsInlineable()) {
7110       TraceInline(target, caller, "target has non-trivial declaration");
7111       return false;
7112     }
7113   }
7114 
7115   // Generate the deoptimization data for the unoptimized version of
7116   // the target function if we don't already have it.
7117   if (!target_shared->has_deoptimization_support()) {
7118     // Note that we compile here using the same AST that we will use for
7119     // generating the optimized inline code.
7120     target_info.EnableDeoptimizationSupport();
7121     if (!FullCodeGenerator::MakeCode(&target_info)) {
7122       TraceInline(target, caller, "could not generate deoptimization info");
7123       return false;
7124     }
7125     if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
7126       // The scope info might not have been set if a lazily compiled
7127       // function is inlined before being called for the first time.
7128       Handle<ScopeInfo> target_scope_info =
7129           ScopeInfo::Create(target_info.scope(), zone());
7130       target_shared->set_scope_info(*target_scope_info);
7131     }
7132     target_shared->EnableDeoptimizationSupport(*target_info.code());
7133     Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
7134                                         &target_info,
7135                                         target_shared);
7136   }
7137 
7138   // ----------------------------------------------------------------
7139   // After this point, we've made a decision to inline this function (so
7140   // TryInline should always return true).
7141 
7142   // Type-check the inlined function.
7143   ASSERT(target_shared->has_deoptimization_support());
7144   AstTyper::Run(&target_info);
7145 
7146   // Save the pending call context. Set up new one for the inlined function.
7147   // The function state is new-allocated because we need to delete it
7148   // in two different places.
7149   FunctionState* target_state = new FunctionState(
7150       this, &target_info, inlining_kind);
7151 
7152   HConstant* undefined = graph()->GetConstantUndefined();
7153   bool undefined_receiver = HEnvironment::UseUndefinedReceiver(
7154       target, function, call_kind, inlining_kind);
7155   HEnvironment* inner_env =
7156       environment()->CopyForInlining(target,
7157                                      arguments_count,
7158                                      function,
7159                                      undefined,
7160                                      function_state()->inlining_kind(),
7161                                      undefined_receiver);
7162 
7163   HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
7164   inner_env->BindContext(context);
7165 
7166   Add<HSimulate>(return_id);
7167   current_block()->UpdateEnvironment(inner_env);
7168   HArgumentsObject* arguments_object = NULL;
7169 
7170   // If the function uses arguments object create and bind one, also copy
7171   // current arguments values to use them for materialization.
7172   if (function->scope()->arguments() != NULL) {
7173     ASSERT(function->scope()->arguments()->IsStackAllocated());
7174     HEnvironment* arguments_env = inner_env->arguments_environment();
7175     int arguments_count = arguments_env->parameter_count();
7176     arguments_object = Add<HArgumentsObject>(arguments_count);
7177     inner_env->Bind(function->scope()->arguments(), arguments_object);
7178     for (int i = 0; i < arguments_count; i++) {
7179       arguments_object->AddArgument(arguments_env->Lookup(i), zone());
7180     }
7181   }
7182 
7183   HEnterInlined* enter_inlined =
7184       Add<HEnterInlined>(target, arguments_count, function,
7185                          function_state()->inlining_kind(),
7186                          function->scope()->arguments(),
7187                          arguments_object, undefined_receiver);
7188   function_state()->set_entry(enter_inlined);
7189 
7190   VisitDeclarations(target_info.scope()->declarations());
7191   VisitStatements(function->body());
7192   if (HasStackOverflow()) {
7193     // Bail out if the inline function did, as we cannot residualize a call
7194     // instead.
7195     TraceInline(target, caller, "inline graph construction failed");
7196     target_shared->DisableOptimization(kInliningBailedOut);
7197     inline_bailout_ = true;
7198     delete target_state;
7199     return true;
7200   }
7201 
7202   // Update inlined nodes count.
7203   inlined_count_ += nodes_added;
7204 
7205   Handle<Code> unoptimized_code(target_shared->code());
7206   ASSERT(unoptimized_code->kind() == Code::FUNCTION);
7207   Handle<TypeFeedbackInfo> type_info(
7208       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
7209   graph()->update_type_change_checksum(type_info->own_type_change_checksum());
7210 
7211   TraceInline(target, caller, NULL);
7212 
7213   if (current_block() != NULL) {
7214     FunctionState* state = function_state();
7215     if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
7216       // Falling off the end of an inlined construct call. In a test context the
7217       // return value will always evaluate to true, in a value context the
7218       // return value is the newly allocated receiver.
7219       if (call_context()->IsTest()) {
7220         Goto(inlined_test_context()->if_true(), state);
7221       } else if (call_context()->IsEffect()) {
7222         Goto(function_return(), state);
7223       } else {
7224         ASSERT(call_context()->IsValue());
7225         AddLeaveInlined(implicit_return_value, state);
7226       }
7227     } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
7228       // Falling off the end of an inlined setter call. The returned value is
7229       // never used, the value of an assignment is always the value of the RHS
7230       // of the assignment.
7231       if (call_context()->IsTest()) {
7232         inlined_test_context()->ReturnValue(implicit_return_value);
7233       } else if (call_context()->IsEffect()) {
7234         Goto(function_return(), state);
7235       } else {
7236         ASSERT(call_context()->IsValue());
7237         AddLeaveInlined(implicit_return_value, state);
7238       }
7239     } else {
7240       // Falling off the end of a normal inlined function. This basically means
7241       // returning undefined.
7242       if (call_context()->IsTest()) {
7243         Goto(inlined_test_context()->if_false(), state);
7244       } else if (call_context()->IsEffect()) {
7245         Goto(function_return(), state);
7246       } else {
7247         ASSERT(call_context()->IsValue());
7248         AddLeaveInlined(undefined, state);
7249       }
7250     }
7251   }
7252 
7253   // Fix up the function exits.
7254   if (inlined_test_context() != NULL) {
7255     HBasicBlock* if_true = inlined_test_context()->if_true();
7256     HBasicBlock* if_false = inlined_test_context()->if_false();
7257 
7258     HEnterInlined* entry = function_state()->entry();
7259 
7260     // Pop the return test context from the expression context stack.
7261     ASSERT(ast_context() == inlined_test_context());
7262     ClearInlinedTestContext();
7263     delete target_state;
7264 
7265     // Forward to the real test context.
7266     if (if_true->HasPredecessor()) {
7267       entry->RegisterReturnTarget(if_true, zone());
7268       if_true->SetJoinId(ast_id);
7269       HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
7270       Goto(if_true, true_target, function_state());
7271     }
7272     if (if_false->HasPredecessor()) {
7273       entry->RegisterReturnTarget(if_false, zone());
7274       if_false->SetJoinId(ast_id);
7275       HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
7276       Goto(if_false, false_target, function_state());
7277     }
7278     set_current_block(NULL);
7279     return true;
7280 
7281   } else if (function_return()->HasPredecessor()) {
7282     function_state()->entry()->RegisterReturnTarget(function_return(), zone());
7283     function_return()->SetJoinId(ast_id);
7284     set_current_block(function_return());
7285   } else {
7286     set_current_block(NULL);
7287   }
7288   delete target_state;
7289   return true;
7290 }
7291 
7292 
TryInlineCall(Call * expr,bool drop_extra)7293 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) {
7294   // The function call we are inlining is a method call if the call
7295   // is a property call.
7296   CallKind call_kind = (expr->expression()->AsProperty() == NULL)
7297       ? CALL_AS_FUNCTION
7298       : CALL_AS_METHOD;
7299 
7300   return TryInline(call_kind,
7301                    expr->target(),
7302                    expr->arguments()->length(),
7303                    NULL,
7304                    expr->id(),
7305                    expr->ReturnId(),
7306                    drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN);
7307 }
7308 
7309 
TryInlineConstruct(CallNew * expr,HValue * implicit_return_value)7310 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
7311                                                 HValue* implicit_return_value) {
7312   return TryInline(CALL_AS_FUNCTION,
7313                    expr->target(),
7314                    expr->arguments()->length(),
7315                    implicit_return_value,
7316                    expr->id(),
7317                    expr->ReturnId(),
7318                    CONSTRUCT_CALL_RETURN);
7319 }
7320 
7321 
TryInlineGetter(Handle<JSFunction> getter,BailoutId ast_id,BailoutId return_id)7322 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
7323                                              BailoutId ast_id,
7324                                              BailoutId return_id) {
7325   return TryInline(CALL_AS_METHOD,
7326                    getter,
7327                    0,
7328                    NULL,
7329                    ast_id,
7330                    return_id,
7331                    GETTER_CALL_RETURN);
7332 }
7333 
7334 
TryInlineSetter(Handle<JSFunction> setter,BailoutId id,BailoutId assignment_id,HValue * implicit_return_value)7335 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
7336                                              BailoutId id,
7337                                              BailoutId assignment_id,
7338                                              HValue* implicit_return_value) {
7339   return TryInline(CALL_AS_METHOD,
7340                    setter,
7341                    1,
7342                    implicit_return_value,
7343                    id, assignment_id,
7344                    SETTER_CALL_RETURN);
7345 }
7346 
7347 
TryInlineApply(Handle<JSFunction> function,Call * expr,int arguments_count)7348 bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
7349                                             Call* expr,
7350                                             int arguments_count) {
7351   return TryInline(CALL_AS_METHOD,
7352                    function,
7353                    arguments_count,
7354                    NULL,
7355                    expr->id(),
7356                    expr->ReturnId(),
7357                    NORMAL_RETURN);
7358 }
7359 
7360 
TryInlineBuiltinFunctionCall(Call * expr,bool drop_extra)7361 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr,
7362                                                           bool drop_extra) {
7363   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
7364   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
7365   switch (id) {
7366     case kMathExp:
7367       if (!FLAG_fast_math) break;
7368       // Fall through if FLAG_fast_math.
7369     case kMathRound:
7370     case kMathFloor:
7371     case kMathAbs:
7372     case kMathSqrt:
7373     case kMathLog:
7374       if (expr->arguments()->length() == 1) {
7375         HValue* argument = Pop();
7376         Drop(1);  // Receiver.
7377         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
7378         if (drop_extra) Drop(1);  // Optionally drop the function.
7379         ast_context()->ReturnInstruction(op, expr->id());
7380         return true;
7381       }
7382       break;
7383     case kMathImul:
7384       if (expr->arguments()->length() == 2) {
7385         HValue* right = Pop();
7386         HValue* left = Pop();
7387         Drop(1);  // Receiver.
7388         HInstruction* op = HMul::NewImul(zone(), context(), left, right);
7389         if (drop_extra) Drop(1);  // Optionally drop the function.
7390         ast_context()->ReturnInstruction(op, expr->id());
7391         return true;
7392       }
7393       break;
7394     default:
7395       // Not supported for inlining yet.
7396       break;
7397   }
7398   return false;
7399 }
7400 
7401 
TryInlineBuiltinMethodCall(Call * expr,HValue * receiver,Handle<Map> receiver_map,CheckType check_type)7402 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
7403     Call* expr,
7404     HValue* receiver,
7405     Handle<Map> receiver_map,
7406     CheckType check_type) {
7407   ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null());
7408   // Try to inline calls like Math.* as operations in the calling function.
7409   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
7410   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
7411   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
7412   switch (id) {
7413     case kStringCharCodeAt:
7414     case kStringCharAt:
7415       if (argument_count == 2 && check_type == STRING_CHECK) {
7416         HValue* index = Pop();
7417         HValue* string = Pop();
7418         ASSERT(!expr->holder().is_null());
7419         BuildCheckPrototypeMaps(Call::GetPrototypeForPrimitiveCheck(
7420                 STRING_CHECK, expr->holder()->GetIsolate()),
7421             expr->holder());
7422         HInstruction* char_code =
7423             BuildStringCharCodeAt(string, index);
7424         if (id == kStringCharCodeAt) {
7425           ast_context()->ReturnInstruction(char_code, expr->id());
7426           return true;
7427         }
7428         AddInstruction(char_code);
7429         HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
7430         ast_context()->ReturnInstruction(result, expr->id());
7431         return true;
7432       }
7433       break;
7434     case kStringFromCharCode:
7435       if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
7436         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
7437         HValue* argument = Pop();
7438         Drop(1);  // Receiver.
7439         HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
7440         ast_context()->ReturnInstruction(result, expr->id());
7441         return true;
7442       }
7443       break;
7444     case kMathExp:
7445       if (!FLAG_fast_math) break;
7446       // Fall through if FLAG_fast_math.
7447     case kMathRound:
7448     case kMathFloor:
7449     case kMathAbs:
7450     case kMathSqrt:
7451     case kMathLog:
7452       if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
7453         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
7454         HValue* argument = Pop();
7455         Drop(1);  // Receiver.
7456         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
7457         ast_context()->ReturnInstruction(op, expr->id());
7458         return true;
7459       }
7460       break;
7461     case kMathPow:
7462       if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
7463         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
7464         HValue* right = Pop();
7465         HValue* left = Pop();
7466         Pop();  // Pop receiver.
7467         HInstruction* result = NULL;
7468         // Use sqrt() if exponent is 0.5 or -0.5.
7469         if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
7470           double exponent = HConstant::cast(right)->DoubleValue();
7471           if (exponent == 0.5) {
7472             result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
7473           } else if (exponent == -0.5) {
7474             HValue* one = graph()->GetConstant1();
7475             HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
7476                 left, kMathPowHalf);
7477             // MathPowHalf doesn't have side effects so there's no need for
7478             // an environment simulation here.
7479             ASSERT(!sqrt->HasObservableSideEffects());
7480             result = NewUncasted<HDiv>(one, sqrt);
7481           } else if (exponent == 2.0) {
7482             result = NewUncasted<HMul>(left, left);
7483           }
7484         }
7485 
7486         if (result == NULL) {
7487           result = NewUncasted<HPower>(left, right);
7488         }
7489         ast_context()->ReturnInstruction(result, expr->id());
7490         return true;
7491       }
7492       break;
7493     case kMathMax:
7494     case kMathMin:
7495       if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
7496         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
7497         HValue* right = Pop();
7498         HValue* left = Pop();
7499         Drop(1);  // Receiver.
7500         HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
7501                                                      : HMathMinMax::kMathMax;
7502         HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
7503         ast_context()->ReturnInstruction(result, expr->id());
7504         return true;
7505       }
7506       break;
7507     case kMathImul:
7508       if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
7509         AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
7510         HValue* right = Pop();
7511         HValue* left = Pop();
7512         Drop(1);  // Receiver.
7513         HInstruction* result = HMul::NewImul(zone(), context(), left, right);
7514         ast_context()->ReturnInstruction(result, expr->id());
7515         return true;
7516       }
7517       break;
7518     default:
7519       // Not yet supported for inlining.
7520       break;
7521   }
7522   return false;
7523 }
7524 
7525 
TryCallApply(Call * expr)7526 bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
7527   Expression* callee = expr->expression();
7528   Property* prop = callee->AsProperty();
7529   ASSERT(prop != NULL);
7530 
7531   if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
7532     return false;
7533   }
7534   Handle<Map> function_map = expr->GetReceiverTypes()->first();
7535   if (function_map->instance_type() != JS_FUNCTION_TYPE ||
7536       !expr->target()->shared()->HasBuiltinFunctionId() ||
7537       expr->target()->shared()->builtin_function_id() != kFunctionApply) {
7538     return false;
7539   }
7540 
7541   if (current_info()->scope()->arguments() == NULL) return false;
7542 
7543   ZoneList<Expression*>* args = expr->arguments();
7544   if (args->length() != 2) return false;
7545 
7546   VariableProxy* arg_two = args->at(1)->AsVariableProxy();
7547   if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
7548   HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
7549   if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
7550 
7551   // Found pattern f.apply(receiver, arguments).
7552   CHECK_ALIVE_OR_RETURN(VisitForValue(prop->obj()), true);
7553   HValue* function = Top();
7554 
7555   AddCheckConstantFunction(expr->holder(), function, function_map);
7556   Drop(1);
7557 
7558   CHECK_ALIVE_OR_RETURN(VisitForValue(args->at(0)), true);
7559   HValue* receiver = Pop();
7560 
7561   if (function_state()->outer() == NULL) {
7562     HInstruction* elements = Add<HArgumentsElements>(false);
7563     HInstruction* length = Add<HArgumentsLength>(elements);
7564     HValue* wrapped_receiver = BuildWrapReceiver(receiver, function);
7565     HInstruction* result = New<HApplyArguments>(function,
7566                                                 wrapped_receiver,
7567                                                 length,
7568                                                 elements);
7569     ast_context()->ReturnInstruction(result, expr->id());
7570     return true;
7571   } else {
7572     // We are inside inlined function and we know exactly what is inside
7573     // arguments object. But we need to be able to materialize at deopt.
7574     ASSERT_EQ(environment()->arguments_environment()->parameter_count(),
7575               function_state()->entry()->arguments_object()->arguments_count());
7576     HArgumentsObject* args = function_state()->entry()->arguments_object();
7577     const ZoneList<HValue*>* arguments_values = args->arguments_values();
7578     int arguments_count = arguments_values->length();
7579     Push(BuildWrapReceiver(receiver, function));
7580     for (int i = 1; i < arguments_count; i++) {
7581       Push(arguments_values->at(i));
7582     }
7583 
7584     Handle<JSFunction> known_function;
7585     if (function->IsConstant() &&
7586         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
7587       known_function = Handle<JSFunction>::cast(
7588           HConstant::cast(function)->handle(isolate()));
7589       int args_count = arguments_count - 1;  // Excluding receiver.
7590       if (TryInlineApply(known_function, expr, args_count)) return true;
7591     }
7592 
7593     Drop(arguments_count - 1);
7594     Push(Add<HPushArgument>(Pop()));
7595     for (int i = 1; i < arguments_count; i++) {
7596       Push(Add<HPushArgument>(arguments_values->at(i)));
7597     }
7598 
7599     HInvokeFunction* call = New<HInvokeFunction>(function,
7600                                                  known_function,
7601                                                  arguments_count);
7602     Drop(arguments_count);
7603     ast_context()->ReturnInstruction(call, expr->id());
7604     return true;
7605   }
7606 }
7607 
7608 
VisitCall(Call * expr)7609 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
7610   ASSERT(!HasStackOverflow());
7611   ASSERT(current_block() != NULL);
7612   ASSERT(current_block()->HasPredecessor());
7613   Expression* callee = expr->expression();
7614   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
7615   HInstruction* call = NULL;
7616 
7617   Property* prop = callee->AsProperty();
7618   if (prop != NULL) {
7619     if (!prop->key()->IsPropertyName()) {
7620       // Keyed function call.
7621       CHECK_ALIVE(VisitForValue(prop->obj()));
7622       CHECK_ALIVE(VisitForValue(prop->key()));
7623 
7624       // Push receiver and key like the non-optimized code generator expects it.
7625       HValue* key = Pop();
7626       HValue* receiver = Pop();
7627       Push(key);
7628       Push(Add<HPushArgument>(receiver));
7629       CHECK_ALIVE(VisitArgumentList(expr->arguments()));
7630 
7631       if (expr->IsMonomorphic()) {
7632         BuildCheckHeapObject(receiver);
7633         ElementsKind kind = expr->KeyedArrayCallIsHoley()
7634             ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
7635 
7636         Handle<Map> map(isolate()->get_initial_js_array_map(kind));
7637 
7638         HValue* function = BuildMonomorphicElementAccess(
7639             receiver, key, NULL, NULL, map, false, STANDARD_STORE);
7640 
7641         call = New<HCallFunction>(function, argument_count);
7642       } else {
7643         call = New<HCallKeyed>(key, argument_count);
7644       }
7645       Drop(argument_count + 1);  // 1 is the key.
7646       return ast_context()->ReturnInstruction(call, expr->id());
7647     }
7648 
7649     // Named function call.
7650     if (TryCallApply(expr)) return;
7651 
7652     CHECK_ALIVE(VisitForValue(prop->obj()));
7653     CHECK_ALIVE(VisitExpressions(expr->arguments()));
7654 
7655     Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
7656     HValue* receiver =
7657         environment()->ExpressionStackAt(expr->arguments()->length());
7658 
7659     SmallMapList* types;
7660     bool was_monomorphic = expr->IsMonomorphic();
7661     bool monomorphic = ComputeReceiverTypes(expr, receiver, &types);
7662     if (!was_monomorphic && monomorphic) {
7663       monomorphic = expr->ComputeTarget(types->first(), name);
7664     }
7665 
7666     if (monomorphic) {
7667       Handle<Map> map = types->first();
7668       if (TryInlineBuiltinMethodCall(expr, receiver, map, expr->check_type())) {
7669         if (FLAG_trace_inlining) {
7670           PrintF("Inlining builtin ");
7671           expr->target()->ShortPrint();
7672           PrintF("\n");
7673         }
7674         return;
7675       }
7676 
7677       if (CallStubCompiler::HasCustomCallGenerator(expr->target()) ||
7678           expr->check_type() != RECEIVER_MAP_CHECK) {
7679         // When the target has a custom call IC generator, use the IC,
7680         // because it is likely to generate better code.  Also use the IC
7681         // when a primitive receiver check is required.
7682         call = PreProcessCall(New<HCallNamed>(name, argument_count));
7683       } else {
7684         AddCheckConstantFunction(expr->holder(), receiver, map);
7685 
7686         if (TryInlineCall(expr)) return;
7687         call = PreProcessCall(
7688             New<HCallConstantFunction>(expr->target(), argument_count));
7689       }
7690     } else if (types != NULL && types->length() > 1) {
7691       ASSERT(expr->check_type() == RECEIVER_MAP_CHECK);
7692       HandlePolymorphicCallNamed(expr, receiver, types, name);
7693       return;
7694 
7695     } else {
7696       call = PreProcessCall(New<HCallNamed>(name, argument_count));
7697     }
7698   } else {
7699     VariableProxy* proxy = expr->expression()->AsVariableProxy();
7700     if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
7701       return Bailout(kPossibleDirectCallToEval);
7702     }
7703 
7704     bool global_call = proxy != NULL && proxy->var()->IsUnallocated();
7705     if (global_call) {
7706       Variable* var = proxy->var();
7707       bool known_global_function = false;
7708       // If there is a global property cell for the name at compile time and
7709       // access check is not enabled we assume that the function will not change
7710       // and generate optimized code for calling the function.
7711       LookupResult lookup(isolate());
7712       GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false);
7713       if (type == kUseCell &&
7714           !current_info()->global_object()->IsAccessCheckNeeded()) {
7715         Handle<GlobalObject> global(current_info()->global_object());
7716         known_global_function = expr->ComputeGlobalTarget(global, &lookup);
7717       }
7718       if (known_global_function) {
7719         // Push the global object instead of the global receiver because
7720         // code generated by the full code generator expects it.
7721         HGlobalObject* global_object = Add<HGlobalObject>();
7722         Push(global_object);
7723         CHECK_ALIVE(VisitExpressions(expr->arguments()));
7724 
7725         CHECK_ALIVE(VisitForValue(expr->expression()));
7726         HValue* function = Pop();
7727         Add<HCheckValue>(function, expr->target());
7728 
7729         // Replace the global object with the global receiver.
7730         HGlobalReceiver* global_receiver = Add<HGlobalReceiver>(global_object);
7731         // Index of the receiver from the top of the expression stack.
7732         const int receiver_index = argument_count - 1;
7733         ASSERT(environment()->ExpressionStackAt(receiver_index)->
7734                IsGlobalObject());
7735         environment()->SetExpressionStackAt(receiver_index, global_receiver);
7736 
7737         if (TryInlineBuiltinFunctionCall(expr, false)) {  // Nothing to drop.
7738           if (FLAG_trace_inlining) {
7739             PrintF("Inlining builtin ");
7740             expr->target()->ShortPrint();
7741             PrintF("\n");
7742           }
7743           return;
7744         }
7745         if (TryInlineCall(expr)) return;
7746 
7747         if (expr->target().is_identical_to(current_info()->closure())) {
7748           graph()->MarkRecursive();
7749         }
7750 
7751         if (CallStubCompiler::HasCustomCallGenerator(expr->target())) {
7752           // When the target has a custom call IC generator, use the IC,
7753           // because it is likely to generate better code.
7754           call = PreProcessCall(New<HCallNamed>(var->name(), argument_count));
7755         } else {
7756           call = PreProcessCall(New<HCallKnownGlobal>(
7757               expr->target(), argument_count));
7758         }
7759       } else {
7760         HGlobalObject* receiver = Add<HGlobalObject>();
7761         Push(Add<HPushArgument>(receiver));
7762         CHECK_ALIVE(VisitArgumentList(expr->arguments()));
7763 
7764         call = New<HCallGlobal>(var->name(), argument_count);
7765         Drop(argument_count);
7766       }
7767 
7768     } else if (expr->IsMonomorphic()) {
7769       // The function is on the stack in the unoptimized code during
7770       // evaluation of the arguments.
7771       CHECK_ALIVE(VisitForValue(expr->expression()));
7772       HValue* function = Top();
7773       HGlobalObject* global = Add<HGlobalObject>();
7774       HGlobalReceiver* receiver = Add<HGlobalReceiver>(global);
7775       Push(receiver);
7776       CHECK_ALIVE(VisitExpressions(expr->arguments()));
7777       Add<HCheckValue>(function, expr->target());
7778 
7779       if (TryInlineBuiltinFunctionCall(expr, true)) {  // Drop the function.
7780         if (FLAG_trace_inlining) {
7781           PrintF("Inlining builtin ");
7782           expr->target()->ShortPrint();
7783           PrintF("\n");
7784         }
7785         return;
7786       }
7787 
7788       if (TryInlineCall(expr, true)) {   // Drop function from environment.
7789         return;
7790       } else {
7791         call = PreProcessCall(New<HInvokeFunction>(function, expr->target(),
7792                                                    argument_count));
7793         Drop(1);  // The function.
7794       }
7795 
7796     } else {
7797       CHECK_ALIVE(VisitForValue(expr->expression()));
7798       HValue* function = Top();
7799       HGlobalObject* global_object = Add<HGlobalObject>();
7800       HGlobalReceiver* receiver = Add<HGlobalReceiver>(global_object);
7801       Push(Add<HPushArgument>(receiver));
7802       CHECK_ALIVE(VisitArgumentList(expr->arguments()));
7803 
7804       call = New<HCallFunction>(function, argument_count);
7805       Drop(argument_count + 1);
7806     }
7807   }
7808 
7809   return ast_context()->ReturnInstruction(call, expr->id());
7810 }
7811 
7812 
BuildInlinedCallNewArray(CallNew * expr)7813 void HOptimizedGraphBuilder::BuildInlinedCallNewArray(CallNew* expr) {
7814   NoObservableSideEffectsScope no_effects(this);
7815 
7816   int argument_count = expr->arguments()->length();
7817   // We should at least have the constructor on the expression stack.
7818   HValue* constructor = environment()->ExpressionStackAt(argument_count);
7819 
7820   ElementsKind kind = expr->elements_kind();
7821   Handle<Cell> cell = expr->allocation_info_cell();
7822   AllocationSite* site = AllocationSite::cast(cell->value());
7823 
7824   // Register on the site for deoptimization if the cell value changes.
7825   site->AddDependentCompilationInfo(AllocationSite::TRANSITIONS, top_info());
7826   HInstruction* cell_instruction = Add<HConstant>(cell);
7827 
7828   // In the single constant argument case, we may have to adjust elements kind
7829   // to avoid creating a packed non-empty array.
7830   if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
7831     HValue* argument = environment()->Top();
7832     if (argument->IsConstant()) {
7833       HConstant* constant_argument = HConstant::cast(argument);
7834       ASSERT(constant_argument->HasSmiValue());
7835       int constant_array_size = constant_argument->Integer32Value();
7836       if (constant_array_size != 0) {
7837         kind = GetHoleyElementsKind(kind);
7838       }
7839     }
7840   }
7841 
7842   // Build the array.
7843   JSArrayBuilder array_builder(this,
7844                                kind,
7845                                cell_instruction,
7846                                constructor,
7847                                DISABLE_ALLOCATION_SITES);
7848   HValue* new_object;
7849   if (argument_count == 0) {
7850     new_object = array_builder.AllocateEmptyArray();
7851   } else if (argument_count == 1) {
7852     HValue* argument = environment()->Top();
7853     new_object = BuildAllocateArrayFromLength(&array_builder, argument);
7854   } else {
7855     HValue* length = Add<HConstant>(argument_count);
7856     // Smi arrays need to initialize array elements with the hole because
7857     // bailout could occur if the arguments don't fit in a smi.
7858     //
7859     // TODO(mvstanton): If all the arguments are constants in smi range, then
7860     // we could set fill_with_hole to false and save a few instructions.
7861     JSArrayBuilder::FillMode fill_mode = IsFastSmiElementsKind(kind)
7862         ? JSArrayBuilder::FILL_WITH_HOLE
7863         : JSArrayBuilder::DONT_FILL_WITH_HOLE;
7864     new_object = array_builder.AllocateArray(length, length, fill_mode);
7865     HValue* elements = array_builder.GetElementsLocation();
7866     for (int i = 0; i < argument_count; i++) {
7867       HValue* value = environment()->ExpressionStackAt(argument_count - i - 1);
7868       HValue* constant_i = Add<HConstant>(i);
7869       Add<HStoreKeyed>(elements, constant_i, value, kind);
7870     }
7871   }
7872 
7873   Drop(argument_count + 1);  // drop constructor and args.
7874   ast_context()->ReturnValue(new_object);
7875 }
7876 
7877 
7878 // Checks whether allocation using the given constructor can be inlined.
IsAllocationInlineable(Handle<JSFunction> constructor)7879 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
7880   return constructor->has_initial_map() &&
7881       constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
7882       constructor->initial_map()->instance_size() < HAllocate::kMaxInlineSize &&
7883       constructor->initial_map()->InitialPropertiesLength() == 0;
7884 }
7885 
7886 
IsCallNewArrayInlineable(CallNew * expr)7887 bool HOptimizedGraphBuilder::IsCallNewArrayInlineable(CallNew* expr) {
7888   bool inline_ok = false;
7889   Handle<JSFunction> caller = current_info()->closure();
7890   Handle<JSFunction> target(isolate()->global_context()->array_function(),
7891                             isolate());
7892   int argument_count = expr->arguments()->length();
7893   // We should have the function plus array arguments on the environment stack.
7894   ASSERT(environment()->length() >= (argument_count + 1));
7895   Handle<Cell> cell = expr->allocation_info_cell();
7896   AllocationSite* site = AllocationSite::cast(cell->value());
7897   if (site->CanInlineCall()) {
7898     // We also want to avoid inlining in certain 1 argument scenarios.
7899     if (argument_count == 1) {
7900       HValue* argument = Top();
7901       if (argument->IsConstant()) {
7902         // Do not inline if the constant length argument is not a smi or
7903         // outside the valid range for a fast array.
7904         HConstant* constant_argument = HConstant::cast(argument);
7905         if (constant_argument->HasSmiValue()) {
7906           int value = constant_argument->Integer32Value();
7907           inline_ok = value >= 0 &&
7908               value < JSObject::kInitialMaxFastElementArray;
7909           if (!inline_ok) {
7910             TraceInline(target, caller,
7911                         "Length outside of valid array range");
7912           }
7913         }
7914       } else {
7915         inline_ok = true;
7916       }
7917     } else {
7918       inline_ok = true;
7919     }
7920   } else {
7921     TraceInline(target, caller, "AllocationSite requested no inlining.");
7922   }
7923 
7924   if (inline_ok) {
7925     TraceInline(target, caller, NULL);
7926   }
7927   return inline_ok;
7928 }
7929 
7930 
VisitCallNew(CallNew * expr)7931 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
7932   ASSERT(!HasStackOverflow());
7933   ASSERT(current_block() != NULL);
7934   ASSERT(current_block()->HasPredecessor());
7935   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
7936   int argument_count = expr->arguments()->length() + 1;  // Plus constructor.
7937   Factory* factory = isolate()->factory();
7938 
7939   // The constructor function is on the stack in the unoptimized code
7940   // during evaluation of the arguments.
7941   CHECK_ALIVE(VisitForValue(expr->expression()));
7942   HValue* function = Top();
7943   CHECK_ALIVE(VisitExpressions(expr->arguments()));
7944 
7945   if (FLAG_inline_construct &&
7946       expr->IsMonomorphic() &&
7947       IsAllocationInlineable(expr->target())) {
7948     Handle<JSFunction> constructor = expr->target();
7949     HValue* check = Add<HCheckValue>(function, constructor);
7950 
7951     // Force completion of inobject slack tracking before generating
7952     // allocation code to finalize instance size.
7953     if (constructor->shared()->IsInobjectSlackTrackingInProgress()) {
7954       constructor->shared()->CompleteInobjectSlackTracking();
7955     }
7956 
7957     // Calculate instance size from initial map of constructor.
7958     ASSERT(constructor->has_initial_map());
7959     Handle<Map> initial_map(constructor->initial_map());
7960     int instance_size = initial_map->instance_size();
7961     ASSERT(initial_map->InitialPropertiesLength() == 0);
7962 
7963     // Allocate an instance of the implicit receiver object.
7964     HValue* size_in_bytes = Add<HConstant>(instance_size);
7965     PretenureFlag pretenure_flag =
7966         (FLAG_pretenuring_call_new &&
7967             isolate()->heap()->GetPretenureMode() == TENURED)
7968                 ? TENURED : NOT_TENURED;
7969     HAllocate* receiver =
7970         Add<HAllocate>(size_in_bytes, HType::JSObject(), pretenure_flag,
7971         JS_OBJECT_TYPE);
7972     receiver->set_known_initial_map(initial_map);
7973 
7974     // Load the initial map from the constructor.
7975     HValue* constructor_value = Add<HConstant>(constructor);
7976     HValue* initial_map_value =
7977       Add<HLoadNamedField>(constructor_value, HObjectAccess::ForJSObjectOffset(
7978             JSFunction::kPrototypeOrInitialMapOffset));
7979 
7980     // Initialize map and fields of the newly allocated object.
7981     { NoObservableSideEffectsScope no_effects(this);
7982       ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
7983       Add<HStoreNamedField>(receiver,
7984           HObjectAccess::ForJSObjectOffset(JSObject::kMapOffset),
7985           initial_map_value);
7986       HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
7987       Add<HStoreNamedField>(receiver,
7988           HObjectAccess::ForJSObjectOffset(JSObject::kPropertiesOffset),
7989           empty_fixed_array);
7990       Add<HStoreNamedField>(receiver,
7991           HObjectAccess::ForJSObjectOffset(JSObject::kElementsOffset),
7992           empty_fixed_array);
7993       if (initial_map->inobject_properties() != 0) {
7994         HConstant* undefined = graph()->GetConstantUndefined();
7995         for (int i = 0; i < initial_map->inobject_properties(); i++) {
7996           int property_offset = JSObject::kHeaderSize + i * kPointerSize;
7997           Add<HStoreNamedField>(receiver,
7998               HObjectAccess::ForJSObjectOffset(property_offset),
7999               undefined);
8000         }
8001       }
8002     }
8003 
8004     // Replace the constructor function with a newly allocated receiver using
8005     // the index of the receiver from the top of the expression stack.
8006     const int receiver_index = argument_count - 1;
8007     ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
8008     environment()->SetExpressionStackAt(receiver_index, receiver);
8009 
8010     if (TryInlineConstruct(expr, receiver)) return;
8011 
8012     // TODO(mstarzinger): For now we remove the previous HAllocate and all
8013     // corresponding instructions and instead add HPushArgument for the
8014     // arguments in case inlining failed.  What we actually should do is for
8015     // inlining to try to build a subgraph without mutating the parent graph.
8016     HInstruction* instr = current_block()->last();
8017     while (instr != initial_map_value) {
8018       HInstruction* prev_instr = instr->previous();
8019       instr->DeleteAndReplaceWith(NULL);
8020       instr = prev_instr;
8021     }
8022     initial_map_value->DeleteAndReplaceWith(NULL);
8023     receiver->DeleteAndReplaceWith(NULL);
8024     check->DeleteAndReplaceWith(NULL);
8025     environment()->SetExpressionStackAt(receiver_index, function);
8026     HInstruction* call =
8027       PreProcessCall(New<HCallNew>(function, argument_count));
8028     return ast_context()->ReturnInstruction(call, expr->id());
8029   } else {
8030     // The constructor function is both an operand to the instruction and an
8031     // argument to the construct call.
8032     Handle<JSFunction> array_function(
8033         isolate()->global_context()->array_function(), isolate());
8034     bool use_call_new_array = expr->target().is_identical_to(array_function);
8035     Handle<Cell> cell = expr->allocation_info_cell();
8036     if (use_call_new_array && IsCallNewArrayInlineable(expr)) {
8037       // Verify we are still calling the array function for our native context.
8038       Add<HCheckValue>(function, array_function);
8039       BuildInlinedCallNewArray(expr);
8040       return;
8041     }
8042 
8043     HBinaryCall* call;
8044     if (use_call_new_array) {
8045       Add<HCheckValue>(function, array_function);
8046       call = New<HCallNewArray>(function, argument_count, cell,
8047                                 expr->elements_kind());
8048     } else {
8049       call = New<HCallNew>(function, argument_count);
8050     }
8051     PreProcessCall(call);
8052     return ast_context()->ReturnInstruction(call, expr->id());
8053   }
8054 }
8055 
8056 
8057 // Support for generating inlined runtime functions.
8058 
8059 // Lookup table for generators for runtime calls that are generated inline.
8060 // Elements of the table are member pointers to functions of
8061 // HOptimizedGraphBuilder.
8062 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)  \
8063     &HOptimizedGraphBuilder::Generate##Name,
8064 
8065 const HOptimizedGraphBuilder::InlineFunctionGenerator
8066     HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
8067         INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
8068         INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
8069 };
8070 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
8071 
8072 
8073 template <class ViewClass>
BuildArrayBufferViewInitialization(HValue * obj,HValue * buffer,HValue * byte_offset,HValue * byte_length)8074 void HGraphBuilder::BuildArrayBufferViewInitialization(
8075     HValue* obj,
8076     HValue* buffer,
8077     HValue* byte_offset,
8078     HValue* byte_length) {
8079 
8080   for (int offset = ViewClass::kSize;
8081        offset < ViewClass::kSizeWithInternalFields;
8082        offset += kPointerSize) {
8083     Add<HStoreNamedField>(obj,
8084         HObjectAccess::ForJSObjectOffset(offset),
8085         Add<HConstant>(static_cast<int32_t>(0)));
8086   }
8087 
8088   Add<HStoreNamedField>(
8089       obj,
8090       HObjectAccess::ForJSArrayBufferViewBuffer(), buffer);
8091   Add<HStoreNamedField>(
8092       obj,
8093       HObjectAccess::ForJSArrayBufferViewByteOffset(),
8094       byte_offset);
8095   Add<HStoreNamedField>(
8096       obj,
8097       HObjectAccess::ForJSArrayBufferViewByteLength(),
8098       byte_length);
8099 
8100   HObjectAccess weak_first_view_access =
8101       HObjectAccess::ForJSArrayBufferWeakFirstView();
8102   Add<HStoreNamedField>(obj,
8103       HObjectAccess::ForJSArrayBufferViewWeakNext(),
8104       Add<HLoadNamedField>(buffer, weak_first_view_access));
8105   Add<HStoreNamedField>(buffer, weak_first_view_access, obj);
8106 }
8107 
8108 
VisitDataViewInitialize(CallRuntime * expr)8109 void HOptimizedGraphBuilder::VisitDataViewInitialize(
8110     CallRuntime* expr) {
8111   ZoneList<Expression*>* arguments = expr->arguments();
8112 
8113   NoObservableSideEffectsScope scope(this);
8114   ASSERT(arguments->length()== 4);
8115   CHECK_ALIVE(VisitForValue(arguments->at(0)));
8116   HValue* obj = Pop();
8117 
8118   CHECK_ALIVE(VisitForValue(arguments->at(1)));
8119   HValue* buffer = Pop();
8120 
8121   CHECK_ALIVE(VisitForValue(arguments->at(2)));
8122   HValue* byte_offset = Pop();
8123 
8124   CHECK_ALIVE(VisitForValue(arguments->at(3)));
8125   HValue* byte_length = Pop();
8126 
8127   BuildArrayBufferViewInitialization<JSDataView>(
8128       obj, buffer, byte_offset, byte_length);
8129 }
8130 
8131 
VisitTypedArrayInitialize(CallRuntime * expr)8132 void HOptimizedGraphBuilder::VisitTypedArrayInitialize(
8133     CallRuntime* expr) {
8134   ZoneList<Expression*>* arguments = expr->arguments();
8135 
8136   NoObservableSideEffectsScope scope(this);
8137   static const int kObjectArg = 0;
8138   static const int kArrayIdArg = 1;
8139   static const int kBufferArg = 2;
8140   static const int kByteOffsetArg = 3;
8141   static const int kByteLengthArg = 4;
8142   static const int kArgsLength = 5;
8143   ASSERT(arguments->length() == kArgsLength);
8144 
8145 
8146   CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
8147   HValue* obj = Pop();
8148 
8149   ASSERT(arguments->at(kArrayIdArg)->node_type() == AstNode::kLiteral);
8150   Handle<Object> value =
8151       static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
8152   ASSERT(value->IsSmi());
8153   int array_id = Smi::cast(*value)->value();
8154 
8155   CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
8156   HValue* buffer = Pop();
8157 
8158   HValue* byte_offset;
8159   bool is_zero_byte_offset;
8160 
8161   if (arguments->at(kByteOffsetArg)->node_type() == AstNode::kLiteral
8162       && Smi::FromInt(0) ==
8163       *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
8164     byte_offset = Add<HConstant>(static_cast<int32_t>(0));
8165     is_zero_byte_offset = true;
8166   } else {
8167     CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
8168     byte_offset = Pop();
8169     is_zero_byte_offset = false;
8170   }
8171 
8172   CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
8173   HValue* byte_length = Pop();
8174 
8175   IfBuilder byte_offset_smi(this);
8176 
8177   if (!is_zero_byte_offset) {
8178     byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
8179     byte_offset_smi.Then();
8180   }
8181 
8182   { //  byte_offset is Smi.
8183     BuildArrayBufferViewInitialization<JSTypedArray>(
8184         obj, buffer, byte_offset, byte_length);
8185 
8186     ExternalArrayType array_type = kExternalByteArray;  // Bogus initialization.
8187     size_t element_size = 1;  // Bogus initialization.
8188     Runtime::ArrayIdToTypeAndSize(array_id, &array_type, &element_size);
8189 
8190     HInstruction* length = AddUncasted<HDiv>(byte_length,
8191         Add<HConstant>(static_cast<int32_t>(element_size)));
8192 
8193     Add<HStoreNamedField>(obj,
8194         HObjectAccess::ForJSTypedArrayLength(),
8195         length);
8196 
8197     HValue* elements =
8198         Add<HAllocate>(
8199             Add<HConstant>(ExternalArray::kAlignedSize),
8200             HType::JSArray(),
8201             NOT_TENURED,
8202             static_cast<InstanceType>(FIRST_EXTERNAL_ARRAY_TYPE + array_type));
8203 
8204     Handle<Map> external_array_map(
8205         isolate()->heap()->MapForExternalArrayType(array_type));
8206     Add<HStoreNamedField>(elements,
8207         HObjectAccess::ForMap(),
8208         Add<HConstant>(external_array_map));
8209 
8210     HValue* backing_store = Add<HLoadNamedField>(
8211         buffer, HObjectAccess::ForJSArrayBufferBackingStore());
8212 
8213     HValue* typed_array_start;
8214     if (is_zero_byte_offset) {
8215       typed_array_start = backing_store;
8216     } else {
8217       HInstruction* external_pointer =
8218           AddUncasted<HAdd>(backing_store, byte_offset);
8219       // Arguments are checked prior to call to TypedArrayInitialize,
8220       // including byte_offset.
8221       external_pointer->ClearFlag(HValue::kCanOverflow);
8222       typed_array_start = external_pointer;
8223     }
8224 
8225     Add<HStoreNamedField>(elements,
8226         HObjectAccess::ForExternalArrayExternalPointer(),
8227         typed_array_start);
8228     Add<HStoreNamedField>(elements,
8229         HObjectAccess::ForFixedArrayLength(),
8230         length);
8231     Add<HStoreNamedField>(
8232         obj, HObjectAccess::ForElementsPointer(), elements);
8233   }
8234 
8235   if (!is_zero_byte_offset) {
8236     byte_offset_smi.Else();
8237     { //  byte_offset is not Smi.
8238       Push(Add<HPushArgument>(obj));
8239       VisitArgument(arguments->at(kArrayIdArg));
8240       Push(Add<HPushArgument>(buffer));
8241       Push(Add<HPushArgument>(byte_offset));
8242       Push(Add<HPushArgument>(byte_length));
8243       Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
8244       Drop(kArgsLength);
8245     }
8246   }
8247   byte_offset_smi.End();
8248 }
8249 
8250 
VisitCallRuntime(CallRuntime * expr)8251 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
8252   ASSERT(!HasStackOverflow());
8253   ASSERT(current_block() != NULL);
8254   ASSERT(current_block()->HasPredecessor());
8255   if (expr->is_jsruntime()) {
8256     return Bailout(kCallToAJavaScriptRuntimeFunction);
8257   }
8258 
8259   const Runtime::Function* function = expr->function();
8260   ASSERT(function != NULL);
8261 
8262   if (function->function_id == Runtime::kDataViewInitialize) {
8263       return VisitDataViewInitialize(expr);
8264   }
8265 
8266   if (function->function_id == Runtime::kTypedArrayInitialize) {
8267     return VisitTypedArrayInitialize(expr);
8268   }
8269 
8270   if (function->function_id == Runtime::kMaxSmi) {
8271     ASSERT(expr->arguments()->length() == 0);
8272     HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
8273     return ast_context()->ReturnInstruction(max_smi, expr->id());
8274   }
8275 
8276   if (function->intrinsic_type == Runtime::INLINE) {
8277     ASSERT(expr->name()->length() > 0);
8278     ASSERT(expr->name()->Get(0) == '_');
8279     // Call to an inline function.
8280     int lookup_index = static_cast<int>(function->function_id) -
8281         static_cast<int>(Runtime::kFirstInlineFunction);
8282     ASSERT(lookup_index >= 0);
8283     ASSERT(static_cast<size_t>(lookup_index) <
8284            ARRAY_SIZE(kInlineFunctionGenerators));
8285     InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
8286 
8287     // Call the inline code generator using the pointer-to-member.
8288     (this->*generator)(expr);
8289   } else {
8290     ASSERT(function->intrinsic_type == Runtime::RUNTIME);
8291     CHECK_ALIVE(VisitArgumentList(expr->arguments()));
8292 
8293     Handle<String> name = expr->name();
8294     int argument_count = expr->arguments()->length();
8295     HCallRuntime* call = New<HCallRuntime>(name, function,
8296                                            argument_count);
8297     Drop(argument_count);
8298     return ast_context()->ReturnInstruction(call, expr->id());
8299   }
8300 }
8301 
8302 
VisitUnaryOperation(UnaryOperation * expr)8303 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
8304   ASSERT(!HasStackOverflow());
8305   ASSERT(current_block() != NULL);
8306   ASSERT(current_block()->HasPredecessor());
8307   switch (expr->op()) {
8308     case Token::DELETE: return VisitDelete(expr);
8309     case Token::VOID: return VisitVoid(expr);
8310     case Token::TYPEOF: return VisitTypeof(expr);
8311     case Token::NOT: return VisitNot(expr);
8312     default: UNREACHABLE();
8313   }
8314 }
8315 
8316 
VisitDelete(UnaryOperation * expr)8317 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
8318   Property* prop = expr->expression()->AsProperty();
8319   VariableProxy* proxy = expr->expression()->AsVariableProxy();
8320   if (prop != NULL) {
8321     CHECK_ALIVE(VisitForValue(prop->obj()));
8322     CHECK_ALIVE(VisitForValue(prop->key()));
8323     HValue* key = Pop();
8324     HValue* obj = Pop();
8325     HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
8326     Add<HPushArgument>(obj);
8327     Add<HPushArgument>(key);
8328     Add<HPushArgument>(Add<HConstant>(function_strict_mode_flag()));
8329     // TODO(olivf) InvokeFunction produces a check for the parameter count,
8330     // even though we are certain to pass the correct number of arguments here.
8331     HInstruction* instr = New<HInvokeFunction>(function, 3);
8332     return ast_context()->ReturnInstruction(instr, expr->id());
8333   } else if (proxy != NULL) {
8334     Variable* var = proxy->var();
8335     if (var->IsUnallocated()) {
8336       Bailout(kDeleteWithGlobalVariable);
8337     } else if (var->IsStackAllocated() || var->IsContextSlot()) {
8338       // Result of deleting non-global variables is false.  'this' is not
8339       // really a variable, though we implement it as one.  The
8340       // subexpression does not have side effects.
8341       HValue* value = var->is_this()
8342           ? graph()->GetConstantTrue()
8343           : graph()->GetConstantFalse();
8344       return ast_context()->ReturnValue(value);
8345     } else {
8346       Bailout(kDeleteWithNonGlobalVariable);
8347     }
8348   } else {
8349     // Result of deleting non-property, non-variable reference is true.
8350     // Evaluate the subexpression for side effects.
8351     CHECK_ALIVE(VisitForEffect(expr->expression()));
8352     return ast_context()->ReturnValue(graph()->GetConstantTrue());
8353   }
8354 }
8355 
8356 
VisitVoid(UnaryOperation * expr)8357 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
8358   CHECK_ALIVE(VisitForEffect(expr->expression()));
8359   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
8360 }
8361 
8362 
VisitTypeof(UnaryOperation * expr)8363 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
8364   CHECK_ALIVE(VisitForTypeOf(expr->expression()));
8365   HValue* value = Pop();
8366   HInstruction* instr = New<HTypeof>(value);
8367   return ast_context()->ReturnInstruction(instr, expr->id());
8368 }
8369 
8370 
VisitNot(UnaryOperation * expr)8371 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
8372   if (ast_context()->IsTest()) {
8373     TestContext* context = TestContext::cast(ast_context());
8374     VisitForControl(expr->expression(),
8375                     context->if_false(),
8376                     context->if_true());
8377     return;
8378   }
8379 
8380   if (ast_context()->IsEffect()) {
8381     VisitForEffect(expr->expression());
8382     return;
8383   }
8384 
8385   ASSERT(ast_context()->IsValue());
8386   HBasicBlock* materialize_false = graph()->CreateBasicBlock();
8387   HBasicBlock* materialize_true = graph()->CreateBasicBlock();
8388   CHECK_BAILOUT(VisitForControl(expr->expression(),
8389                                 materialize_false,
8390                                 materialize_true));
8391 
8392   if (materialize_false->HasPredecessor()) {
8393     materialize_false->SetJoinId(expr->MaterializeFalseId());
8394     set_current_block(materialize_false);
8395     Push(graph()->GetConstantFalse());
8396   } else {
8397     materialize_false = NULL;
8398   }
8399 
8400   if (materialize_true->HasPredecessor()) {
8401     materialize_true->SetJoinId(expr->MaterializeTrueId());
8402     set_current_block(materialize_true);
8403     Push(graph()->GetConstantTrue());
8404   } else {
8405     materialize_true = NULL;
8406   }
8407 
8408   HBasicBlock* join =
8409     CreateJoin(materialize_false, materialize_true, expr->id());
8410   set_current_block(join);
8411   if (join != NULL) return ast_context()->ReturnValue(Pop());
8412 }
8413 
8414 
BuildIncrement(bool returns_original_input,CountOperation * expr)8415 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
8416     bool returns_original_input,
8417     CountOperation* expr) {
8418   // The input to the count operation is on top of the expression stack.
8419   Handle<Type> info = expr->type();
8420   Representation rep = Representation::FromType(info);
8421   if (rep.IsNone() || rep.IsTagged()) {
8422     rep = Representation::Smi();
8423   }
8424 
8425   if (returns_original_input) {
8426     // We need an explicit HValue representing ToNumber(input).  The
8427     // actual HChange instruction we need is (sometimes) added in a later
8428     // phase, so it is not available now to be used as an input to HAdd and
8429     // as the return value.
8430     HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
8431     if (!rep.IsDouble()) {
8432       number_input->SetFlag(HInstruction::kFlexibleRepresentation);
8433       number_input->SetFlag(HInstruction::kCannotBeTagged);
8434     }
8435     Push(number_input);
8436   }
8437 
8438   // The addition has no side effects, so we do not need
8439   // to simulate the expression stack after this instruction.
8440   // Any later failures deopt to the load of the input or earlier.
8441   HConstant* delta = (expr->op() == Token::INC)
8442       ? graph()->GetConstant1()
8443       : graph()->GetConstantMinus1();
8444   HInstruction* instr = AddUncasted<HAdd>(Top(), delta);
8445   if (instr->IsAdd()) {
8446     HAdd* add = HAdd::cast(instr);
8447     add->set_observed_input_representation(1, rep);
8448     add->set_observed_input_representation(2, Representation::Smi());
8449   }
8450   instr->SetFlag(HInstruction::kCannotBeTagged);
8451   instr->ClearAllSideEffects();
8452   return instr;
8453 }
8454 
8455 
BuildStoreForEffect(Expression * expr,Property * prop,BailoutId ast_id,BailoutId return_id,HValue * object,HValue * key,HValue * value)8456 void HOptimizedGraphBuilder::BuildStoreForEffect(Expression* expr,
8457                                                  Property* prop,
8458                                                  BailoutId ast_id,
8459                                                  BailoutId return_id,
8460                                                  HValue* object,
8461                                                  HValue* key,
8462                                                  HValue* value) {
8463   EffectContext for_effect(this);
8464   Push(object);
8465   if (key != NULL) Push(key);
8466   Push(value);
8467   BuildStore(expr, prop, ast_id, return_id);
8468 }
8469 
8470 
VisitCountOperation(CountOperation * expr)8471 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
8472   ASSERT(!HasStackOverflow());
8473   ASSERT(current_block() != NULL);
8474   ASSERT(current_block()->HasPredecessor());
8475   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
8476   Expression* target = expr->expression();
8477   VariableProxy* proxy = target->AsVariableProxy();
8478   Property* prop = target->AsProperty();
8479   if (proxy == NULL && prop == NULL) {
8480     return Bailout(kInvalidLhsInCountOperation);
8481   }
8482 
8483   // Match the full code generator stack by simulating an extra stack
8484   // element for postfix operations in a non-effect context.  The return
8485   // value is ToNumber(input).
8486   bool returns_original_input =
8487       expr->is_postfix() && !ast_context()->IsEffect();
8488   HValue* input = NULL;  // ToNumber(original_input).
8489   HValue* after = NULL;  // The result after incrementing or decrementing.
8490 
8491   if (proxy != NULL) {
8492     Variable* var = proxy->var();
8493     if (var->mode() == CONST)  {
8494       return Bailout(kUnsupportedCountOperationWithConst);
8495     }
8496     // Argument of the count operation is a variable, not a property.
8497     ASSERT(prop == NULL);
8498     CHECK_ALIVE(VisitForValue(target));
8499 
8500     after = BuildIncrement(returns_original_input, expr);
8501     input = returns_original_input ? Top() : Pop();
8502     Push(after);
8503 
8504     switch (var->location()) {
8505       case Variable::UNALLOCATED:
8506         HandleGlobalVariableAssignment(var,
8507                                        after,
8508                                        expr->AssignmentId());
8509         break;
8510 
8511       case Variable::PARAMETER:
8512       case Variable::LOCAL:
8513         BindIfLive(var, after);
8514         break;
8515 
8516       case Variable::CONTEXT: {
8517         // Bail out if we try to mutate a parameter value in a function
8518         // using the arguments object.  We do not (yet) correctly handle the
8519         // arguments property of the function.
8520         if (current_info()->scope()->arguments() != NULL) {
8521           // Parameters will rewrite to context slots.  We have no direct
8522           // way to detect that the variable is a parameter so we use a
8523           // linear search of the parameter list.
8524           int count = current_info()->scope()->num_parameters();
8525           for (int i = 0; i < count; ++i) {
8526             if (var == current_info()->scope()->parameter(i)) {
8527               return Bailout(kAssignmentToParameterInArgumentsObject);
8528             }
8529           }
8530         }
8531 
8532         HValue* context = BuildContextChainWalk(var);
8533         HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
8534             ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
8535         HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
8536                                                           mode, after);
8537         if (instr->HasObservableSideEffects()) {
8538           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
8539         }
8540         break;
8541       }
8542 
8543       case Variable::LOOKUP:
8544         return Bailout(kLookupVariableInCountOperation);
8545     }
8546 
8547     Drop(returns_original_input ? 2 : 1);
8548     return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
8549   }
8550 
8551   // Argument of the count operation is a property.
8552   ASSERT(prop != NULL);
8553   if (returns_original_input) Push(graph()->GetConstantUndefined());
8554 
8555   CHECK_ALIVE(VisitForValue(prop->obj()));
8556   HValue* object = Top();
8557 
8558   HValue* key = NULL;
8559   if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
8560       prop->IsStringAccess()) {
8561     CHECK_ALIVE(VisitForValue(prop->key()));
8562     key = Top();
8563   }
8564 
8565   CHECK_ALIVE(PushLoad(prop, object, key));
8566 
8567   after = BuildIncrement(returns_original_input, expr);
8568 
8569   if (returns_original_input) {
8570     input = Pop();
8571     // Drop object and key to push it again in the effect context below.
8572     Drop(key == NULL ? 1 : 2);
8573     environment()->SetExpressionStackAt(0, input);
8574     CHECK_ALIVE(BuildStoreForEffect(
8575         expr, prop, expr->id(), expr->AssignmentId(), object, key, after));
8576     return ast_context()->ReturnValue(Pop());
8577   }
8578 
8579   environment()->SetExpressionStackAt(0, after);
8580   return BuildStore(expr, prop, expr->id(), expr->AssignmentId());
8581 }
8582 
8583 
BuildStringCharCodeAt(HValue * string,HValue * index)8584 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
8585     HValue* string,
8586     HValue* index) {
8587   if (string->IsConstant() && index->IsConstant()) {
8588     HConstant* c_string = HConstant::cast(string);
8589     HConstant* c_index = HConstant::cast(index);
8590     if (c_string->HasStringValue() && c_index->HasNumberValue()) {
8591       int32_t i = c_index->NumberValueAsInteger32();
8592       Handle<String> s = c_string->StringValue();
8593       if (i < 0 || i >= s->length()) {
8594         return New<HConstant>(OS::nan_value());
8595       }
8596       return New<HConstant>(s->Get(i));
8597     }
8598   }
8599   BuildCheckHeapObject(string);
8600   HValue* checkstring =
8601       Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
8602   HInstruction* length = BuildLoadStringLength(string, checkstring);
8603   AddInstruction(length);
8604   HInstruction* checked_index = Add<HBoundsCheck>(index, length);
8605   return New<HStringCharCodeAt>(string, checked_index);
8606 }
8607 
8608 
8609 // Checks if the given shift amounts have following forms:
8610 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
ShiftAmountsAllowReplaceByRotate(HValue * sa,HValue * const32_minus_sa)8611 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
8612                                              HValue* const32_minus_sa) {
8613   if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
8614     const HConstant* c1 = HConstant::cast(sa);
8615     const HConstant* c2 = HConstant::cast(const32_minus_sa);
8616     return c1->HasInteger32Value() && c2->HasInteger32Value() &&
8617         (c1->Integer32Value() + c2->Integer32Value() == 32);
8618   }
8619   if (!const32_minus_sa->IsSub()) return false;
8620   HSub* sub = HSub::cast(const32_minus_sa);
8621   if (sa != sub->right()) return false;
8622   HValue* const32 = sub->left();
8623   if (!const32->IsConstant() ||
8624       HConstant::cast(const32)->Integer32Value() != 32) {
8625     return false;
8626   }
8627   return (sub->right() == sa);
8628 }
8629 
8630 
8631 // Checks if the left and the right are shift instructions with the oposite
8632 // directions that can be replaced by one rotate right instruction or not.
8633 // Returns the operand and the shift amount for the rotate instruction in the
8634 // former case.
MatchRotateRight(HValue * left,HValue * right,HValue ** operand,HValue ** shift_amount)8635 bool HGraphBuilder::MatchRotateRight(HValue* left,
8636                                      HValue* right,
8637                                      HValue** operand,
8638                                      HValue** shift_amount) {
8639   HShl* shl;
8640   HShr* shr;
8641   if (left->IsShl() && right->IsShr()) {
8642     shl = HShl::cast(left);
8643     shr = HShr::cast(right);
8644   } else if (left->IsShr() && right->IsShl()) {
8645     shl = HShl::cast(right);
8646     shr = HShr::cast(left);
8647   } else {
8648     return false;
8649   }
8650   if (shl->left() != shr->left()) return false;
8651 
8652   if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
8653       !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
8654     return false;
8655   }
8656   *operand= shr->left();
8657   *shift_amount = shr->right();
8658   return true;
8659 }
8660 
8661 
CanBeZero(HValue * right)8662 bool CanBeZero(HValue* right) {
8663   if (right->IsConstant()) {
8664     HConstant* right_const = HConstant::cast(right);
8665     if (right_const->HasInteger32Value() &&
8666        (right_const->Integer32Value() & 0x1f) != 0) {
8667       return false;
8668     }
8669   }
8670   return true;
8671 }
8672 
8673 
EnforceNumberType(HValue * number,Handle<Type> expected)8674 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
8675                                          Handle<Type> expected) {
8676   if (expected->Is(Type::Smi())) {
8677     return AddUncasted<HForceRepresentation>(number, Representation::Smi());
8678   }
8679   if (expected->Is(Type::Signed32())) {
8680     return AddUncasted<HForceRepresentation>(number,
8681                                              Representation::Integer32());
8682   }
8683   return number;
8684 }
8685 
8686 
TruncateToNumber(HValue * value,Handle<Type> * expected)8687 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Handle<Type>* expected) {
8688   if (value->IsConstant()) {
8689     HConstant* constant = HConstant::cast(value);
8690     Maybe<HConstant*> number = constant->CopyToTruncatedNumber(zone());
8691     if (number.has_value) {
8692       *expected = handle(Type::Number(), isolate());
8693       return AddInstruction(number.value);
8694     }
8695   }
8696 
8697   // We put temporary values on the stack, which don't correspond to anything
8698   // in baseline code. Since nothing is observable we avoid recording those
8699   // pushes with a NoObservableSideEffectsScope.
8700   NoObservableSideEffectsScope no_effects(this);
8701 
8702   Handle<Type> expected_type = *expected;
8703 
8704   // Separate the number type from the rest.
8705   Handle<Type> expected_obj = handle(Type::Intersect(
8706       expected_type, handle(Type::NonNumber(), isolate())), isolate());
8707   Handle<Type> expected_number = handle(Type::Intersect(
8708       expected_type, handle(Type::Number(), isolate())), isolate());
8709 
8710   // We expect to get a number.
8711   // (We need to check first, since Type::None->Is(Type::Any()) == true.
8712   if (expected_obj->Is(Type::None())) {
8713     ASSERT(!expected_number->Is(Type::None()));
8714     return value;
8715   }
8716 
8717   if (expected_obj->Is(Type::Undefined())) {
8718     // This is already done by HChange.
8719     *expected = handle(Type::Union(
8720           expected_number, handle(Type::Double(), isolate())), isolate());
8721     return value;
8722   }
8723 
8724   return value;
8725 }
8726 
8727 
BuildBinaryOperation(BinaryOperation * expr,HValue * left,HValue * right)8728 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
8729     BinaryOperation* expr,
8730     HValue* left,
8731     HValue* right) {
8732   Handle<Type> left_type = expr->left()->bounds().lower;
8733   Handle<Type> right_type = expr->right()->bounds().lower;
8734   Handle<Type> result_type = expr->bounds().lower;
8735   Maybe<int> fixed_right_arg = expr->fixed_right_arg();
8736 
8737   HValue* result = HGraphBuilder::BuildBinaryOperation(
8738       expr->op(), left, right, left_type, right_type,
8739       result_type, fixed_right_arg);
8740   // Add a simulate after instructions with observable side effects, and
8741   // after phis, which are the result of BuildBinaryOperation when we
8742   // inlined some complex subgraph.
8743   if (result->HasObservableSideEffects() || result->IsPhi()) {
8744     Push(result);
8745     Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8746     Drop(1);
8747   }
8748   return result;
8749 }
8750 
8751 
BuildBinaryOperation(Token::Value op,HValue * left,HValue * right,Handle<Type> left_type,Handle<Type> right_type,Handle<Type> result_type,Maybe<int> fixed_right_arg)8752 HValue* HGraphBuilder::BuildBinaryOperation(
8753     Token::Value op,
8754     HValue* left,
8755     HValue* right,
8756     Handle<Type> left_type,
8757     Handle<Type> right_type,
8758     Handle<Type> result_type,
8759     Maybe<int> fixed_right_arg) {
8760 
8761   Representation left_rep = Representation::FromType(left_type);
8762   Representation right_rep = Representation::FromType(right_type);
8763 
8764   bool maybe_string_add = op == Token::ADD &&
8765                           (left_type->Maybe(Type::String()) ||
8766                            right_type->Maybe(Type::String()));
8767 
8768   if (left_type->Is(Type::None())) {
8769     Add<HDeoptimize>("Insufficient type feedback for LHS of binary operation",
8770                      Deoptimizer::SOFT);
8771     // TODO(rossberg): we should be able to get rid of non-continuous
8772     // defaults.
8773     left_type = handle(Type::Any(), isolate());
8774   } else {
8775     if (!maybe_string_add) left = TruncateToNumber(left, &left_type);
8776     left_rep = Representation::FromType(left_type);
8777   }
8778 
8779   if (right_type->Is(Type::None())) {
8780     Add<HDeoptimize>("Insufficient type feedback for RHS of binary operation",
8781                      Deoptimizer::SOFT);
8782     right_type = handle(Type::Any(), isolate());
8783   } else {
8784     if (!maybe_string_add) right = TruncateToNumber(right, &right_type);
8785     right_rep = Representation::FromType(right_type);
8786   }
8787 
8788   // Special case for string addition here.
8789   if (op == Token::ADD &&
8790       (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
8791     // Validate type feedback for left argument.
8792     if (left_type->Is(Type::String())) {
8793       left = BuildCheckString(left);
8794     }
8795 
8796     // Validate type feedback for right argument.
8797     if (right_type->Is(Type::String())) {
8798       right = BuildCheckString(right);
8799     }
8800 
8801     // Convert left argument as necessary.
8802     if (left_type->Is(Type::Number())) {
8803       ASSERT(right_type->Is(Type::String()));
8804       left = BuildNumberToString(left, left_type);
8805     } else if (!left_type->Is(Type::String())) {
8806       ASSERT(right_type->Is(Type::String()));
8807       HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_RIGHT);
8808       Add<HPushArgument>(left);
8809       Add<HPushArgument>(right);
8810       return AddUncasted<HInvokeFunction>(function, 2);
8811     }
8812 
8813     // Convert right argument as necessary.
8814     if (right_type->Is(Type::Number())) {
8815       ASSERT(left_type->Is(Type::String()));
8816       right = BuildNumberToString(right, right_type);
8817     } else if (!right_type->Is(Type::String())) {
8818       ASSERT(left_type->Is(Type::String()));
8819       HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_LEFT);
8820       Add<HPushArgument>(left);
8821       Add<HPushArgument>(right);
8822       return AddUncasted<HInvokeFunction>(function, 2);
8823     }
8824 
8825     return AddUncasted<HStringAdd>(left, right, STRING_ADD_CHECK_NONE);
8826   }
8827 
8828   if (graph()->info()->IsStub()) {
8829     left = EnforceNumberType(left, left_type);
8830     right = EnforceNumberType(right, right_type);
8831   }
8832 
8833   Representation result_rep = Representation::FromType(result_type);
8834 
8835   bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
8836                           (right_rep.IsTagged() && !right_rep.IsSmi());
8837 
8838   HInstruction* instr = NULL;
8839   // Only the stub is allowed to call into the runtime, since otherwise we would
8840   // inline several instructions (including the two pushes) for every tagged
8841   // operation in optimized code, which is more expensive, than a stub call.
8842   if (graph()->info()->IsStub() && is_non_primitive) {
8843     HValue* function = AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op));
8844     Add<HPushArgument>(left);
8845     Add<HPushArgument>(right);
8846     instr = AddUncasted<HInvokeFunction>(function, 2);
8847   } else {
8848     switch (op) {
8849       case Token::ADD:
8850         instr = AddUncasted<HAdd>(left, right);
8851         break;
8852       case Token::SUB:
8853         instr = AddUncasted<HSub>(left, right);
8854         break;
8855       case Token::MUL:
8856         instr = AddUncasted<HMul>(left, right);
8857         break;
8858       case Token::MOD: {
8859         if (fixed_right_arg.has_value) {
8860           if (right->IsConstant()) {
8861             HConstant* c_right = HConstant::cast(right);
8862             if (c_right->HasInteger32Value()) {
8863               ASSERT_EQ(fixed_right_arg.value, c_right->Integer32Value());
8864             }
8865           } else {
8866             HConstant* fixed_right = Add<HConstant>(
8867                 static_cast<int>(fixed_right_arg.value));
8868             IfBuilder if_same(this);
8869             if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
8870             if_same.Then();
8871             if_same.ElseDeopt("Unexpected RHS of binary operation");
8872             right = fixed_right;
8873           }
8874         }
8875         instr = AddUncasted<HMod>(left, right);
8876         break;
8877       }
8878       case Token::DIV:
8879         instr = AddUncasted<HDiv>(left, right);
8880         break;
8881       case Token::BIT_XOR:
8882       case Token::BIT_AND:
8883         instr = AddUncasted<HBitwise>(op, left, right);
8884         break;
8885       case Token::BIT_OR: {
8886         HValue* operand, *shift_amount;
8887         if (left_type->Is(Type::Signed32()) &&
8888             right_type->Is(Type::Signed32()) &&
8889             MatchRotateRight(left, right, &operand, &shift_amount)) {
8890           instr = AddUncasted<HRor>(operand, shift_amount);
8891         } else {
8892           instr = AddUncasted<HBitwise>(op, left, right);
8893         }
8894         break;
8895       }
8896       case Token::SAR:
8897         instr = AddUncasted<HSar>(left, right);
8898         break;
8899       case Token::SHR:
8900         instr = AddUncasted<HShr>(left, right);
8901         if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
8902             CanBeZero(right)) {
8903           graph()->RecordUint32Instruction(instr);
8904         }
8905         break;
8906       case Token::SHL:
8907         instr = AddUncasted<HShl>(left, right);
8908         break;
8909       default:
8910         UNREACHABLE();
8911     }
8912   }
8913 
8914   if (instr->IsBinaryOperation()) {
8915     HBinaryOperation* binop = HBinaryOperation::cast(instr);
8916     binop->set_observed_input_representation(1, left_rep);
8917     binop->set_observed_input_representation(2, right_rep);
8918     binop->initialize_output_representation(result_rep);
8919     if (graph()->info()->IsStub()) {
8920       // Stub should not call into stub.
8921       instr->SetFlag(HValue::kCannotBeTagged);
8922       // And should truncate on HForceRepresentation already.
8923       if (left->IsForceRepresentation()) {
8924         left->CopyFlag(HValue::kTruncatingToSmi, instr);
8925         left->CopyFlag(HValue::kTruncatingToInt32, instr);
8926       }
8927       if (right->IsForceRepresentation()) {
8928         right->CopyFlag(HValue::kTruncatingToSmi, instr);
8929         right->CopyFlag(HValue::kTruncatingToInt32, instr);
8930       }
8931     }
8932   }
8933   return instr;
8934 }
8935 
8936 
8937 // Check for the form (%_ClassOf(foo) === 'BarClass').
IsClassOfTest(CompareOperation * expr)8938 static bool IsClassOfTest(CompareOperation* expr) {
8939   if (expr->op() != Token::EQ_STRICT) return false;
8940   CallRuntime* call = expr->left()->AsCallRuntime();
8941   if (call == NULL) return false;
8942   Literal* literal = expr->right()->AsLiteral();
8943   if (literal == NULL) return false;
8944   if (!literal->value()->IsString()) return false;
8945   if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
8946     return false;
8947   }
8948   ASSERT(call->arguments()->length() == 1);
8949   return true;
8950 }
8951 
8952 
VisitBinaryOperation(BinaryOperation * expr)8953 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
8954   ASSERT(!HasStackOverflow());
8955   ASSERT(current_block() != NULL);
8956   ASSERT(current_block()->HasPredecessor());
8957   switch (expr->op()) {
8958     case Token::COMMA:
8959       return VisitComma(expr);
8960     case Token::OR:
8961     case Token::AND:
8962       return VisitLogicalExpression(expr);
8963     default:
8964       return VisitArithmeticExpression(expr);
8965   }
8966 }
8967 
8968 
VisitComma(BinaryOperation * expr)8969 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
8970   CHECK_ALIVE(VisitForEffect(expr->left()));
8971   // Visit the right subexpression in the same AST context as the entire
8972   // expression.
8973   Visit(expr->right());
8974 }
8975 
8976 
VisitLogicalExpression(BinaryOperation * expr)8977 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
8978   bool is_logical_and = expr->op() == Token::AND;
8979   if (ast_context()->IsTest()) {
8980     TestContext* context = TestContext::cast(ast_context());
8981     // Translate left subexpression.
8982     HBasicBlock* eval_right = graph()->CreateBasicBlock();
8983     if (is_logical_and) {
8984       CHECK_BAILOUT(VisitForControl(expr->left(),
8985                                     eval_right,
8986                                     context->if_false()));
8987     } else {
8988       CHECK_BAILOUT(VisitForControl(expr->left(),
8989                                     context->if_true(),
8990                                     eval_right));
8991     }
8992 
8993     // Translate right subexpression by visiting it in the same AST
8994     // context as the entire expression.
8995     if (eval_right->HasPredecessor()) {
8996       eval_right->SetJoinId(expr->RightId());
8997       set_current_block(eval_right);
8998       Visit(expr->right());
8999     }
9000 
9001   } else if (ast_context()->IsValue()) {
9002     CHECK_ALIVE(VisitForValue(expr->left()));
9003     ASSERT(current_block() != NULL);
9004     HValue* left_value = Top();
9005 
9006     // Short-circuit left values that always evaluate to the same boolean value.
9007     if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
9008       // l (evals true)  && r -> r
9009       // l (evals true)  || r -> l
9010       // l (evals false) && r -> l
9011       // l (evals false) || r -> r
9012       if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
9013         Drop(1);
9014         CHECK_ALIVE(VisitForValue(expr->right()));
9015       }
9016       return ast_context()->ReturnValue(Pop());
9017     }
9018 
9019     // We need an extra block to maintain edge-split form.
9020     HBasicBlock* empty_block = graph()->CreateBasicBlock();
9021     HBasicBlock* eval_right = graph()->CreateBasicBlock();
9022     ToBooleanStub::Types expected(expr->left()->to_boolean_types());
9023     HBranch* test = is_logical_and
9024         ? New<HBranch>(left_value, expected, eval_right, empty_block)
9025         : New<HBranch>(left_value, expected, empty_block, eval_right);
9026     FinishCurrentBlock(test);
9027 
9028     set_current_block(eval_right);
9029     Drop(1);  // Value of the left subexpression.
9030     CHECK_BAILOUT(VisitForValue(expr->right()));
9031 
9032     HBasicBlock* join_block =
9033       CreateJoin(empty_block, current_block(), expr->id());
9034     set_current_block(join_block);
9035     return ast_context()->ReturnValue(Pop());
9036 
9037   } else {
9038     ASSERT(ast_context()->IsEffect());
9039     // In an effect context, we don't need the value of the left subexpression,
9040     // only its control flow and side effects.  We need an extra block to
9041     // maintain edge-split form.
9042     HBasicBlock* empty_block = graph()->CreateBasicBlock();
9043     HBasicBlock* right_block = graph()->CreateBasicBlock();
9044     if (is_logical_and) {
9045       CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
9046     } else {
9047       CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
9048     }
9049 
9050     // TODO(kmillikin): Find a way to fix this.  It's ugly that there are
9051     // actually two empty blocks (one here and one inserted by
9052     // TestContext::BuildBranch, and that they both have an HSimulate though the
9053     // second one is not a merge node, and that we really have no good AST ID to
9054     // put on that first HSimulate.
9055 
9056     if (empty_block->HasPredecessor()) {
9057       empty_block->SetJoinId(expr->id());
9058     } else {
9059       empty_block = NULL;
9060     }
9061 
9062     if (right_block->HasPredecessor()) {
9063       right_block->SetJoinId(expr->RightId());
9064       set_current_block(right_block);
9065       CHECK_BAILOUT(VisitForEffect(expr->right()));
9066       right_block = current_block();
9067     } else {
9068       right_block = NULL;
9069     }
9070 
9071     HBasicBlock* join_block =
9072       CreateJoin(empty_block, right_block, expr->id());
9073     set_current_block(join_block);
9074     // We did not materialize any value in the predecessor environments,
9075     // so there is no need to handle it here.
9076   }
9077 }
9078 
9079 
VisitArithmeticExpression(BinaryOperation * expr)9080 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
9081   CHECK_ALIVE(VisitForValue(expr->left()));
9082   CHECK_ALIVE(VisitForValue(expr->right()));
9083   SetSourcePosition(expr->position());
9084   HValue* right = Pop();
9085   HValue* left = Pop();
9086   HValue* result = BuildBinaryOperation(expr, left, right);
9087   if (FLAG_emit_opt_code_positions && result->IsBinaryOperation()) {
9088     HBinaryOperation::cast(result)->SetOperandPositions(
9089         zone(), expr->left()->position(), expr->right()->position());
9090   }
9091   return ast_context()->ReturnValue(result);
9092 }
9093 
9094 
HandleLiteralCompareTypeof(CompareOperation * expr,Expression * sub_expr,Handle<String> check)9095 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
9096                                                         Expression* sub_expr,
9097                                                         Handle<String> check) {
9098   CHECK_ALIVE(VisitForTypeOf(sub_expr));
9099   SetSourcePosition(expr->position());
9100   HValue* value = Pop();
9101   HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
9102   return ast_context()->ReturnControl(instr, expr->id());
9103 }
9104 
9105 
IsLiteralCompareBool(Isolate * isolate,HValue * left,Token::Value op,HValue * right)9106 static bool IsLiteralCompareBool(Isolate* isolate,
9107                                  HValue* left,
9108                                  Token::Value op,
9109                                  HValue* right) {
9110   return op == Token::EQ_STRICT &&
9111       ((left->IsConstant() &&
9112           HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
9113        (right->IsConstant() &&
9114            HConstant::cast(right)->handle(isolate)->IsBoolean()));
9115 }
9116 
9117 
VisitCompareOperation(CompareOperation * expr)9118 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
9119   ASSERT(!HasStackOverflow());
9120   ASSERT(current_block() != NULL);
9121   ASSERT(current_block()->HasPredecessor());
9122 
9123   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
9124 
9125   // Check for a few fast cases. The AST visiting behavior must be in sync
9126   // with the full codegen: We don't push both left and right values onto
9127   // the expression stack when one side is a special-case literal.
9128   Expression* sub_expr = NULL;
9129   Handle<String> check;
9130   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
9131     return HandleLiteralCompareTypeof(expr, sub_expr, check);
9132   }
9133   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
9134     return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
9135   }
9136   if (expr->IsLiteralCompareNull(&sub_expr)) {
9137     return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
9138   }
9139 
9140   if (IsClassOfTest(expr)) {
9141     CallRuntime* call = expr->left()->AsCallRuntime();
9142     ASSERT(call->arguments()->length() == 1);
9143     CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9144     HValue* value = Pop();
9145     Literal* literal = expr->right()->AsLiteral();
9146     Handle<String> rhs = Handle<String>::cast(literal->value());
9147     HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
9148     return ast_context()->ReturnControl(instr, expr->id());
9149   }
9150 
9151   Handle<Type> left_type = expr->left()->bounds().lower;
9152   Handle<Type> right_type = expr->right()->bounds().lower;
9153   Handle<Type> combined_type = expr->combined_type();
9154   Representation combined_rep = Representation::FromType(combined_type);
9155   Representation left_rep = Representation::FromType(left_type);
9156   Representation right_rep = Representation::FromType(right_type);
9157 
9158   CHECK_ALIVE(VisitForValue(expr->left()));
9159   CHECK_ALIVE(VisitForValue(expr->right()));
9160 
9161   if (FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
9162 
9163   HValue* right = Pop();
9164   HValue* left = Pop();
9165   Token::Value op = expr->op();
9166 
9167   if (IsLiteralCompareBool(isolate(), left, op, right)) {
9168     HCompareObjectEqAndBranch* result =
9169         New<HCompareObjectEqAndBranch>(left, right);
9170     return ast_context()->ReturnControl(result, expr->id());
9171   }
9172 
9173   if (op == Token::INSTANCEOF) {
9174     // Check to see if the rhs of the instanceof is a global function not
9175     // residing in new space. If it is we assume that the function will stay the
9176     // same.
9177     Handle<JSFunction> target = Handle<JSFunction>::null();
9178     VariableProxy* proxy = expr->right()->AsVariableProxy();
9179     bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
9180     if (global_function &&
9181         current_info()->has_global_object() &&
9182         !current_info()->global_object()->IsAccessCheckNeeded()) {
9183       Handle<String> name = proxy->name();
9184       Handle<GlobalObject> global(current_info()->global_object());
9185       LookupResult lookup(isolate());
9186       global->Lookup(*name, &lookup);
9187       if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
9188         Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
9189         // If the function is in new space we assume it's more likely to
9190         // change and thus prefer the general IC code.
9191         if (!isolate()->heap()->InNewSpace(*candidate)) {
9192           target = candidate;
9193         }
9194       }
9195     }
9196 
9197     // If the target is not null we have found a known global function that is
9198     // assumed to stay the same for this instanceof.
9199     if (target.is_null()) {
9200       HInstanceOf* result = New<HInstanceOf>(left, right);
9201       return ast_context()->ReturnInstruction(result, expr->id());
9202     } else {
9203       Add<HCheckValue>(right, target);
9204       HInstanceOfKnownGlobal* result =
9205         New<HInstanceOfKnownGlobal>(left, target);
9206       return ast_context()->ReturnInstruction(result, expr->id());
9207     }
9208 
9209     // Code below assumes that we don't fall through.
9210     UNREACHABLE();
9211   } else if (op == Token::IN) {
9212     HValue* function = AddLoadJSBuiltin(Builtins::IN);
9213     Add<HPushArgument>(left);
9214     Add<HPushArgument>(right);
9215     // TODO(olivf) InvokeFunction produces a check for the parameter count,
9216     // even though we are certain to pass the correct number of arguments here.
9217     HInstruction* result = New<HInvokeFunction>(function, 2);
9218     return ast_context()->ReturnInstruction(result, expr->id());
9219   }
9220 
9221   // Cases handled below depend on collected type feedback. They should
9222   // soft deoptimize when there is no type feedback.
9223   if (combined_type->Is(Type::None())) {
9224     Add<HDeoptimize>("Insufficient type feedback for combined type "
9225                      "of binary operation",
9226                      Deoptimizer::SOFT);
9227     combined_type = left_type = right_type = handle(Type::Any(), isolate());
9228   }
9229 
9230   if (combined_type->Is(Type::Receiver())) {
9231     switch (op) {
9232       case Token::EQ:
9233       case Token::EQ_STRICT: {
9234         // Can we get away with map check and not instance type check?
9235         if (combined_type->IsClass()) {
9236           Handle<Map> map = combined_type->AsClass();
9237           AddCheckMap(left, map);
9238           AddCheckMap(right, map);
9239           HCompareObjectEqAndBranch* result =
9240               New<HCompareObjectEqAndBranch>(left, right);
9241           if (FLAG_emit_opt_code_positions) {
9242             result->set_operand_position(zone(), 0, expr->left()->position());
9243             result->set_operand_position(zone(), 1, expr->right()->position());
9244           }
9245           return ast_context()->ReturnControl(result, expr->id());
9246         } else {
9247           BuildCheckHeapObject(left);
9248           Add<HCheckInstanceType>(left, HCheckInstanceType::IS_SPEC_OBJECT);
9249           BuildCheckHeapObject(right);
9250           Add<HCheckInstanceType>(right, HCheckInstanceType::IS_SPEC_OBJECT);
9251           HCompareObjectEqAndBranch* result =
9252               New<HCompareObjectEqAndBranch>(left, right);
9253           return ast_context()->ReturnControl(result, expr->id());
9254         }
9255       }
9256       default:
9257         return Bailout(kUnsupportedNonPrimitiveCompare);
9258     }
9259   } else if (combined_type->Is(Type::InternalizedString()) &&
9260              Token::IsEqualityOp(op)) {
9261     BuildCheckHeapObject(left);
9262     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
9263     BuildCheckHeapObject(right);
9264     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
9265     HCompareObjectEqAndBranch* result =
9266         New<HCompareObjectEqAndBranch>(left, right);
9267     return ast_context()->ReturnControl(result, expr->id());
9268   } else if (combined_type->Is(Type::String())) {
9269     BuildCheckHeapObject(left);
9270     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
9271     BuildCheckHeapObject(right);
9272     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
9273     HStringCompareAndBranch* result =
9274         New<HStringCompareAndBranch>(left, right, op);
9275     return ast_context()->ReturnControl(result, expr->id());
9276   } else {
9277     if (combined_rep.IsTagged() || combined_rep.IsNone()) {
9278       HCompareGeneric* result = New<HCompareGeneric>(left, right, op);
9279       result->set_observed_input_representation(1, left_rep);
9280       result->set_observed_input_representation(2, right_rep);
9281       return ast_context()->ReturnInstruction(result, expr->id());
9282     } else {
9283       HCompareNumericAndBranch* result =
9284           New<HCompareNumericAndBranch>(left, right, op);
9285       result->set_observed_input_representation(left_rep, right_rep);
9286       if (FLAG_emit_opt_code_positions) {
9287         result->SetOperandPositions(zone(),
9288                                     expr->left()->position(),
9289                                     expr->right()->position());
9290       }
9291       return ast_context()->ReturnControl(result, expr->id());
9292     }
9293   }
9294 }
9295 
9296 
HandleLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)9297 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
9298                                                      Expression* sub_expr,
9299                                                      NilValue nil) {
9300   ASSERT(!HasStackOverflow());
9301   ASSERT(current_block() != NULL);
9302   ASSERT(current_block()->HasPredecessor());
9303   ASSERT(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
9304   if (!FLAG_emit_opt_code_positions) SetSourcePosition(expr->position());
9305   CHECK_ALIVE(VisitForValue(sub_expr));
9306   HValue* value = Pop();
9307   if (expr->op() == Token::EQ_STRICT) {
9308     HConstant* nil_constant = nil == kNullValue
9309         ? graph()->GetConstantNull()
9310         : graph()->GetConstantUndefined();
9311     HCompareObjectEqAndBranch* instr =
9312         New<HCompareObjectEqAndBranch>(value, nil_constant);
9313     return ast_context()->ReturnControl(instr, expr->id());
9314   } else {
9315     ASSERT_EQ(Token::EQ, expr->op());
9316     Handle<Type> type = expr->combined_type()->Is(Type::None())
9317         ? handle(Type::Any(), isolate_)
9318         : expr->combined_type();
9319     HIfContinuation continuation;
9320     BuildCompareNil(value, type, &continuation);
9321     return ast_context()->ReturnContinuation(&continuation, expr->id());
9322   }
9323 }
9324 
9325 
BuildThisFunction()9326 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
9327   // If we share optimized code between different closures, the
9328   // this-function is not a constant, except inside an inlined body.
9329   if (function_state()->outer() != NULL) {
9330       return New<HConstant>(
9331           function_state()->compilation_info()->closure());
9332   } else {
9333       return New<HThisFunction>();
9334   }
9335 }
9336 
9337 
BuildFastLiteral(Handle<JSObject> boilerplate_object,AllocationSiteUsageContext * site_context)9338 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
9339     Handle<JSObject> boilerplate_object,
9340     AllocationSiteUsageContext* site_context) {
9341   NoObservableSideEffectsScope no_effects(this);
9342   InstanceType instance_type = boilerplate_object->map()->instance_type();
9343   ASSERT(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
9344 
9345   HType type = instance_type == JS_ARRAY_TYPE
9346       ? HType::JSArray() : HType::JSObject();
9347   HValue* object_size_constant = Add<HConstant>(
9348       boilerplate_object->map()->instance_size());
9349 
9350   // We should pull pre-tenure mode from the allocation site.
9351   // For now, just see what it says, and remark on it if it sez
9352   // we should pretenure. That means the rudimentary counting in the garbage
9353   // collector is having an effect.
9354   PretenureFlag pretenure_flag = isolate()->heap()->GetPretenureMode();
9355   if (FLAG_allocation_site_pretenuring) {
9356     pretenure_flag = site_context->current()->GetPretenureMode()
9357         ? TENURED
9358         : NOT_TENURED;
9359   }
9360 
9361   HInstruction* object = Add<HAllocate>(object_size_constant, type,
9362       pretenure_flag, instance_type, site_context->current());
9363 
9364   BuildEmitObjectHeader(boilerplate_object, object);
9365 
9366   Handle<FixedArrayBase> elements(boilerplate_object->elements());
9367   int elements_size = (elements->length() > 0 &&
9368       elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
9369           elements->Size() : 0;
9370 
9371   HInstruction* object_elements = NULL;
9372   if (elements_size > 0) {
9373     HValue* object_elements_size = Add<HConstant>(elements_size);
9374     if (boilerplate_object->HasFastDoubleElements()) {
9375       object_elements = Add<HAllocate>(object_elements_size, HType::JSObject(),
9376           pretenure_flag, FIXED_DOUBLE_ARRAY_TYPE, site_context->current());
9377     } else {
9378       object_elements = Add<HAllocate>(object_elements_size, HType::JSObject(),
9379           pretenure_flag, FIXED_ARRAY_TYPE, site_context->current());
9380     }
9381   }
9382   BuildInitElementsInObjectHeader(boilerplate_object, object, object_elements);
9383 
9384   // Copy object elements if non-COW.
9385   if (object_elements != NULL) {
9386     BuildEmitElements(boilerplate_object, elements, object_elements,
9387                       site_context);
9388   }
9389 
9390   // Copy in-object properties.
9391   if (boilerplate_object->map()->NumberOfFields() != 0) {
9392     BuildEmitInObjectProperties(boilerplate_object, object, site_context,
9393                                 pretenure_flag);
9394   }
9395   return object;
9396 }
9397 
9398 
BuildEmitObjectHeader(Handle<JSObject> boilerplate_object,HInstruction * object)9399 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
9400     Handle<JSObject> boilerplate_object,
9401     HInstruction* object) {
9402   ASSERT(boilerplate_object->properties()->length() == 0);
9403 
9404   Handle<Map> boilerplate_object_map(boilerplate_object->map());
9405   AddStoreMapConstant(object, boilerplate_object_map);
9406 
9407   Handle<Object> properties_field =
9408       Handle<Object>(boilerplate_object->properties(), isolate());
9409   ASSERT(*properties_field == isolate()->heap()->empty_fixed_array());
9410   HInstruction* properties = Add<HConstant>(properties_field);
9411   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
9412   Add<HStoreNamedField>(object, access, properties);
9413 
9414   if (boilerplate_object->IsJSArray()) {
9415     Handle<JSArray> boilerplate_array =
9416         Handle<JSArray>::cast(boilerplate_object);
9417     Handle<Object> length_field =
9418         Handle<Object>(boilerplate_array->length(), isolate());
9419     HInstruction* length = Add<HConstant>(length_field);
9420 
9421     ASSERT(boilerplate_array->length()->IsSmi());
9422     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
9423         boilerplate_array->GetElementsKind()), length);
9424   }
9425 }
9426 
9427 
BuildInitElementsInObjectHeader(Handle<JSObject> boilerplate_object,HInstruction * object,HInstruction * object_elements)9428 void HOptimizedGraphBuilder::BuildInitElementsInObjectHeader(
9429     Handle<JSObject> boilerplate_object,
9430     HInstruction* object,
9431     HInstruction* object_elements) {
9432   ASSERT(boilerplate_object->properties()->length() == 0);
9433   if (object_elements == NULL) {
9434     Handle<Object> elements_field =
9435         Handle<Object>(boilerplate_object->elements(), isolate());
9436     object_elements = Add<HConstant>(elements_field);
9437   }
9438   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
9439       object_elements);
9440 }
9441 
9442 
BuildEmitInObjectProperties(Handle<JSObject> boilerplate_object,HInstruction * object,AllocationSiteUsageContext * site_context,PretenureFlag pretenure_flag)9443 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
9444     Handle<JSObject> boilerplate_object,
9445     HInstruction* object,
9446     AllocationSiteUsageContext* site_context,
9447     PretenureFlag pretenure_flag) {
9448   Handle<DescriptorArray> descriptors(
9449       boilerplate_object->map()->instance_descriptors());
9450   int limit = boilerplate_object->map()->NumberOfOwnDescriptors();
9451 
9452   int copied_fields = 0;
9453   for (int i = 0; i < limit; i++) {
9454     PropertyDetails details = descriptors->GetDetails(i);
9455     if (details.type() != FIELD) continue;
9456     copied_fields++;
9457     int index = descriptors->GetFieldIndex(i);
9458     int property_offset = boilerplate_object->GetInObjectPropertyOffset(index);
9459     Handle<Name> name(descriptors->GetKey(i));
9460     Handle<Object> value =
9461         Handle<Object>(boilerplate_object->InObjectPropertyAt(index),
9462         isolate());
9463 
9464     // The access for the store depends on the type of the boilerplate.
9465     HObjectAccess access = boilerplate_object->IsJSArray() ?
9466         HObjectAccess::ForJSArrayOffset(property_offset) :
9467         HObjectAccess::ForJSObjectOffset(property_offset);
9468 
9469     if (value->IsJSObject()) {
9470       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
9471       Handle<AllocationSite> current_site = site_context->EnterNewScope();
9472       HInstruction* result =
9473           BuildFastLiteral(value_object, site_context);
9474       site_context->ExitScope(current_site, value_object);
9475       Add<HStoreNamedField>(object, access, result);
9476     } else {
9477       Representation representation = details.representation();
9478       HInstruction* value_instruction;
9479 
9480       if (representation.IsDouble()) {
9481         // Allocate a HeapNumber box and store the value into it.
9482         HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
9483         // This heap number alloc does not have a corresponding
9484         // AllocationSite. That is okay because
9485         // 1) it's a child object of another object with a valid allocation site
9486         // 2) we can just use the mode of the parent object for pretenuring
9487         HInstruction* double_box =
9488             Add<HAllocate>(heap_number_constant, HType::HeapNumber(),
9489                 pretenure_flag, HEAP_NUMBER_TYPE);
9490         AddStoreMapConstant(double_box,
9491             isolate()->factory()->heap_number_map());
9492         Add<HStoreNamedField>(double_box, HObjectAccess::ForHeapNumberValue(),
9493                               Add<HConstant>(value));
9494         value_instruction = double_box;
9495       } else if (representation.IsSmi()) {
9496         value_instruction = value->IsUninitialized()
9497             ? graph()->GetConstant0()
9498             : Add<HConstant>(value);
9499         // Ensure that value is stored as smi.
9500         access = access.WithRepresentation(representation);
9501       } else {
9502         value_instruction = Add<HConstant>(value);
9503       }
9504 
9505       Add<HStoreNamedField>(object, access, value_instruction);
9506     }
9507   }
9508 
9509   int inobject_properties = boilerplate_object->map()->inobject_properties();
9510   HInstruction* value_instruction =
9511       Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
9512   for (int i = copied_fields; i < inobject_properties; i++) {
9513     ASSERT(boilerplate_object->IsJSObject());
9514     int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
9515     HObjectAccess access = HObjectAccess::ForJSObjectOffset(property_offset);
9516     Add<HStoreNamedField>(object, access, value_instruction);
9517   }
9518 }
9519 
9520 
BuildEmitElements(Handle<JSObject> boilerplate_object,Handle<FixedArrayBase> elements,HValue * object_elements,AllocationSiteUsageContext * site_context)9521 void HOptimizedGraphBuilder::BuildEmitElements(
9522     Handle<JSObject> boilerplate_object,
9523     Handle<FixedArrayBase> elements,
9524     HValue* object_elements,
9525     AllocationSiteUsageContext* site_context) {
9526   ElementsKind kind = boilerplate_object->map()->elements_kind();
9527   int elements_length = elements->length();
9528   HValue* object_elements_length = Add<HConstant>(elements_length);
9529   BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
9530 
9531   // Copy elements backing store content.
9532   if (elements->IsFixedDoubleArray()) {
9533     BuildEmitFixedDoubleArray(elements, kind, object_elements);
9534   } else if (elements->IsFixedArray()) {
9535     BuildEmitFixedArray(elements, kind, object_elements,
9536                         site_context);
9537   } else {
9538     UNREACHABLE();
9539   }
9540 }
9541 
9542 
BuildEmitFixedDoubleArray(Handle<FixedArrayBase> elements,ElementsKind kind,HValue * object_elements)9543 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
9544     Handle<FixedArrayBase> elements,
9545     ElementsKind kind,
9546     HValue* object_elements) {
9547   HInstruction* boilerplate_elements = Add<HConstant>(elements);
9548   int elements_length = elements->length();
9549   for (int i = 0; i < elements_length; i++) {
9550     HValue* key_constant = Add<HConstant>(i);
9551     HInstruction* value_instruction =
9552         Add<HLoadKeyed>(boilerplate_elements, key_constant,
9553                         static_cast<HValue*>(NULL), kind,
9554                         ALLOW_RETURN_HOLE);
9555     HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
9556                                            value_instruction, kind);
9557     store->SetFlag(HValue::kAllowUndefinedAsNaN);
9558   }
9559 }
9560 
9561 
BuildEmitFixedArray(Handle<FixedArrayBase> elements,ElementsKind kind,HValue * object_elements,AllocationSiteUsageContext * site_context)9562 void HOptimizedGraphBuilder::BuildEmitFixedArray(
9563     Handle<FixedArrayBase> elements,
9564     ElementsKind kind,
9565     HValue* object_elements,
9566     AllocationSiteUsageContext* site_context) {
9567   HInstruction* boilerplate_elements = Add<HConstant>(elements);
9568   int elements_length = elements->length();
9569   Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
9570   for (int i = 0; i < elements_length; i++) {
9571     Handle<Object> value(fast_elements->get(i), isolate());
9572     HValue* key_constant = Add<HConstant>(i);
9573     if (value->IsJSObject()) {
9574       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
9575       Handle<AllocationSite> current_site = site_context->EnterNewScope();
9576       HInstruction* result =
9577           BuildFastLiteral(value_object, site_context);
9578       site_context->ExitScope(current_site, value_object);
9579       Add<HStoreKeyed>(object_elements, key_constant, result, kind);
9580     } else {
9581       HInstruction* value_instruction =
9582           Add<HLoadKeyed>(boilerplate_elements, key_constant,
9583                           static_cast<HValue*>(NULL), kind,
9584                           ALLOW_RETURN_HOLE);
9585       Add<HStoreKeyed>(object_elements, key_constant, value_instruction, kind);
9586     }
9587   }
9588 }
9589 
9590 
VisitThisFunction(ThisFunction * expr)9591 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
9592   ASSERT(!HasStackOverflow());
9593   ASSERT(current_block() != NULL);
9594   ASSERT(current_block()->HasPredecessor());
9595   HInstruction* instr = BuildThisFunction();
9596   return ast_context()->ReturnInstruction(instr, expr->id());
9597 }
9598 
9599 
VisitDeclarations(ZoneList<Declaration * > * declarations)9600 void HOptimizedGraphBuilder::VisitDeclarations(
9601     ZoneList<Declaration*>* declarations) {
9602   ASSERT(globals_.is_empty());
9603   AstVisitor::VisitDeclarations(declarations);
9604   if (!globals_.is_empty()) {
9605     Handle<FixedArray> array =
9606        isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
9607     for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
9608     int flags = DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
9609         DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
9610         DeclareGlobalsLanguageMode::encode(current_info()->language_mode());
9611     Add<HDeclareGlobals>(array, flags);
9612     globals_.Clear();
9613   }
9614 }
9615 
9616 
VisitVariableDeclaration(VariableDeclaration * declaration)9617 void HOptimizedGraphBuilder::VisitVariableDeclaration(
9618     VariableDeclaration* declaration) {
9619   VariableProxy* proxy = declaration->proxy();
9620   VariableMode mode = declaration->mode();
9621   Variable* variable = proxy->var();
9622   bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
9623   switch (variable->location()) {
9624     case Variable::UNALLOCATED:
9625       globals_.Add(variable->name(), zone());
9626       globals_.Add(variable->binding_needs_init()
9627                        ? isolate()->factory()->the_hole_value()
9628                        : isolate()->factory()->undefined_value(), zone());
9629       return;
9630     case Variable::PARAMETER:
9631     case Variable::LOCAL:
9632       if (hole_init) {
9633         HValue* value = graph()->GetConstantHole();
9634         environment()->Bind(variable, value);
9635       }
9636       break;
9637     case Variable::CONTEXT:
9638       if (hole_init) {
9639         HValue* value = graph()->GetConstantHole();
9640         HValue* context = environment()->context();
9641         HStoreContextSlot* store = Add<HStoreContextSlot>(
9642             context, variable->index(), HStoreContextSlot::kNoCheck, value);
9643         if (store->HasObservableSideEffects()) {
9644           Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
9645         }
9646       }
9647       break;
9648     case Variable::LOOKUP:
9649       return Bailout(kUnsupportedLookupSlotInDeclaration);
9650   }
9651 }
9652 
9653 
VisitFunctionDeclaration(FunctionDeclaration * declaration)9654 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
9655     FunctionDeclaration* declaration) {
9656   VariableProxy* proxy = declaration->proxy();
9657   Variable* variable = proxy->var();
9658   switch (variable->location()) {
9659     case Variable::UNALLOCATED: {
9660       globals_.Add(variable->name(), zone());
9661       Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(
9662           declaration->fun(), current_info()->script());
9663       // Check for stack-overflow exception.
9664       if (function.is_null()) return SetStackOverflow();
9665       globals_.Add(function, zone());
9666       return;
9667     }
9668     case Variable::PARAMETER:
9669     case Variable::LOCAL: {
9670       CHECK_ALIVE(VisitForValue(declaration->fun()));
9671       HValue* value = Pop();
9672       BindIfLive(variable, value);
9673       break;
9674     }
9675     case Variable::CONTEXT: {
9676       CHECK_ALIVE(VisitForValue(declaration->fun()));
9677       HValue* value = Pop();
9678       HValue* context = environment()->context();
9679       HStoreContextSlot* store = Add<HStoreContextSlot>(
9680           context, variable->index(), HStoreContextSlot::kNoCheck, value);
9681       if (store->HasObservableSideEffects()) {
9682         Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
9683       }
9684       break;
9685     }
9686     case Variable::LOOKUP:
9687       return Bailout(kUnsupportedLookupSlotInDeclaration);
9688   }
9689 }
9690 
9691 
VisitModuleDeclaration(ModuleDeclaration * declaration)9692 void HOptimizedGraphBuilder::VisitModuleDeclaration(
9693     ModuleDeclaration* declaration) {
9694   UNREACHABLE();
9695 }
9696 
9697 
VisitImportDeclaration(ImportDeclaration * declaration)9698 void HOptimizedGraphBuilder::VisitImportDeclaration(
9699     ImportDeclaration* declaration) {
9700   UNREACHABLE();
9701 }
9702 
9703 
VisitExportDeclaration(ExportDeclaration * declaration)9704 void HOptimizedGraphBuilder::VisitExportDeclaration(
9705     ExportDeclaration* declaration) {
9706   UNREACHABLE();
9707 }
9708 
9709 
VisitModuleLiteral(ModuleLiteral * module)9710 void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
9711   UNREACHABLE();
9712 }
9713 
9714 
VisitModuleVariable(ModuleVariable * module)9715 void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
9716   UNREACHABLE();
9717 }
9718 
9719 
VisitModulePath(ModulePath * module)9720 void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
9721   UNREACHABLE();
9722 }
9723 
9724 
VisitModuleUrl(ModuleUrl * module)9725 void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
9726   UNREACHABLE();
9727 }
9728 
9729 
VisitModuleStatement(ModuleStatement * stmt)9730 void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
9731   UNREACHABLE();
9732 }
9733 
9734 
9735 // Generators for inline runtime functions.
9736 // Support for types.
GenerateIsSmi(CallRuntime * call)9737 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
9738   ASSERT(call->arguments()->length() == 1);
9739   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9740   HValue* value = Pop();
9741   HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
9742   return ast_context()->ReturnControl(result, call->id());
9743 }
9744 
9745 
GenerateIsSpecObject(CallRuntime * call)9746 void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
9747   ASSERT(call->arguments()->length() == 1);
9748   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9749   HValue* value = Pop();
9750   HHasInstanceTypeAndBranch* result =
9751       New<HHasInstanceTypeAndBranch>(value,
9752                                      FIRST_SPEC_OBJECT_TYPE,
9753                                      LAST_SPEC_OBJECT_TYPE);
9754   return ast_context()->ReturnControl(result, call->id());
9755 }
9756 
9757 
GenerateIsFunction(CallRuntime * call)9758 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
9759   ASSERT(call->arguments()->length() == 1);
9760   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9761   HValue* value = Pop();
9762   HHasInstanceTypeAndBranch* result =
9763       New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
9764   return ast_context()->ReturnControl(result, call->id());
9765 }
9766 
9767 
GenerateIsMinusZero(CallRuntime * call)9768 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
9769   ASSERT(call->arguments()->length() == 1);
9770   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9771   HValue* value = Pop();
9772   HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
9773   return ast_context()->ReturnControl(result, call->id());
9774 }
9775 
9776 
GenerateHasCachedArrayIndex(CallRuntime * call)9777 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
9778   ASSERT(call->arguments()->length() == 1);
9779   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9780   HValue* value = Pop();
9781   HHasCachedArrayIndexAndBranch* result =
9782       New<HHasCachedArrayIndexAndBranch>(value);
9783   return ast_context()->ReturnControl(result, call->id());
9784 }
9785 
9786 
GenerateIsArray(CallRuntime * call)9787 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
9788   ASSERT(call->arguments()->length() == 1);
9789   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9790   HValue* value = Pop();
9791   HHasInstanceTypeAndBranch* result =
9792       New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
9793   return ast_context()->ReturnControl(result, call->id());
9794 }
9795 
9796 
GenerateIsRegExp(CallRuntime * call)9797 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
9798   ASSERT(call->arguments()->length() == 1);
9799   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9800   HValue* value = Pop();
9801   HHasInstanceTypeAndBranch* result =
9802       New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
9803   return ast_context()->ReturnControl(result, call->id());
9804 }
9805 
9806 
GenerateIsObject(CallRuntime * call)9807 void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
9808   ASSERT(call->arguments()->length() == 1);
9809   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9810   HValue* value = Pop();
9811   HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
9812   return ast_context()->ReturnControl(result, call->id());
9813 }
9814 
9815 
GenerateIsNonNegativeSmi(CallRuntime * call)9816 void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
9817   return Bailout(kInlinedRuntimeFunctionIsNonNegativeSmi);
9818 }
9819 
9820 
GenerateIsUndetectableObject(CallRuntime * call)9821 void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
9822   ASSERT(call->arguments()->length() == 1);
9823   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9824   HValue* value = Pop();
9825   HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
9826   return ast_context()->ReturnControl(result, call->id());
9827 }
9828 
9829 
GenerateIsStringWrapperSafeForDefaultValueOf(CallRuntime * call)9830 void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
9831     CallRuntime* call) {
9832   return Bailout(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf);
9833 }
9834 
9835 
9836 // Support for construct call checks.
GenerateIsConstructCall(CallRuntime * call)9837 void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
9838   ASSERT(call->arguments()->length() == 0);
9839   if (function_state()->outer() != NULL) {
9840     // We are generating graph for inlined function.
9841     HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
9842         ? graph()->GetConstantTrue()
9843         : graph()->GetConstantFalse();
9844     return ast_context()->ReturnValue(value);
9845   } else {
9846     return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
9847                                         call->id());
9848   }
9849 }
9850 
9851 
9852 // Support for arguments.length and arguments[?].
GenerateArgumentsLength(CallRuntime * call)9853 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
9854   // Our implementation of arguments (based on this stack frame or an
9855   // adapter below it) does not work for inlined functions.  This runtime
9856   // function is blacklisted by AstNode::IsInlineable.
9857   ASSERT(function_state()->outer() == NULL);
9858   ASSERT(call->arguments()->length() == 0);
9859   HInstruction* elements = Add<HArgumentsElements>(false);
9860   HArgumentsLength* result = New<HArgumentsLength>(elements);
9861   return ast_context()->ReturnInstruction(result, call->id());
9862 }
9863 
9864 
GenerateArguments(CallRuntime * call)9865 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
9866   // Our implementation of arguments (based on this stack frame or an
9867   // adapter below it) does not work for inlined functions.  This runtime
9868   // function is blacklisted by AstNode::IsInlineable.
9869   ASSERT(function_state()->outer() == NULL);
9870   ASSERT(call->arguments()->length() == 1);
9871   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9872   HValue* index = Pop();
9873   HInstruction* elements = Add<HArgumentsElements>(false);
9874   HInstruction* length = Add<HArgumentsLength>(elements);
9875   HInstruction* checked_index = Add<HBoundsCheck>(index, length);
9876   HAccessArgumentsAt* result = New<HAccessArgumentsAt>(
9877       elements, length, checked_index);
9878   return ast_context()->ReturnInstruction(result, call->id());
9879 }
9880 
9881 
9882 // Support for accessing the class and value fields of an object.
GenerateClassOf(CallRuntime * call)9883 void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
9884   // The special form detected by IsClassOfTest is detected before we get here
9885   // and does not cause a bailout.
9886   return Bailout(kInlinedRuntimeFunctionClassOf);
9887 }
9888 
9889 
GenerateValueOf(CallRuntime * call)9890 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
9891   ASSERT(call->arguments()->length() == 1);
9892   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9893   HValue* value = Pop();
9894   HValueOf* result = New<HValueOf>(value);
9895   return ast_context()->ReturnInstruction(result, call->id());
9896 }
9897 
9898 
GenerateDateField(CallRuntime * call)9899 void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
9900   ASSERT(call->arguments()->length() == 2);
9901   ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
9902   Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
9903   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9904   HValue* date = Pop();
9905   HDateField* result = New<HDateField>(date, index);
9906   return ast_context()->ReturnInstruction(result, call->id());
9907 }
9908 
9909 
GenerateOneByteSeqStringSetChar(CallRuntime * call)9910 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
9911     CallRuntime* call) {
9912   ASSERT(call->arguments()->length() == 3);
9913   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9914   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
9915   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
9916   HValue* value = Pop();
9917   HValue* index = Pop();
9918   HValue* string = Pop();
9919   Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
9920                          index, value);
9921   Add<HSimulate>(call->id(), FIXED_SIMULATE);
9922   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
9923 }
9924 
9925 
GenerateTwoByteSeqStringSetChar(CallRuntime * call)9926 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
9927     CallRuntime* call) {
9928   ASSERT(call->arguments()->length() == 3);
9929   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9930   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
9931   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
9932   HValue* value = Pop();
9933   HValue* index = Pop();
9934   HValue* string = Pop();
9935   Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
9936                          index, value);
9937   Add<HSimulate>(call->id(), FIXED_SIMULATE);
9938   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
9939 }
9940 
9941 
GenerateSetValueOf(CallRuntime * call)9942 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
9943   ASSERT(call->arguments()->length() == 2);
9944   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9945   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
9946   HValue* value = Pop();
9947   HValue* object = Pop();
9948   // Check if object is a not a smi.
9949   HBasicBlock* if_smi = graph()->CreateBasicBlock();
9950   HBasicBlock* if_heap_object = graph()->CreateBasicBlock();
9951   HBasicBlock* join = graph()->CreateBasicBlock();
9952   FinishCurrentBlock(New<HIsSmiAndBranch>(object, if_smi, if_heap_object));
9953   Goto(if_smi, join);
9954 
9955   // Check if object is a JSValue.
9956   set_current_block(if_heap_object);
9957   HHasInstanceTypeAndBranch* typecheck =
9958       New<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
9959   HBasicBlock* if_js_value = graph()->CreateBasicBlock();
9960   HBasicBlock* not_js_value = graph()->CreateBasicBlock();
9961   typecheck->SetSuccessorAt(0, if_js_value);
9962   typecheck->SetSuccessorAt(1, not_js_value);
9963   FinishCurrentBlock(typecheck);
9964   Goto(not_js_value, join);
9965 
9966   // Create in-object property store to kValueOffset.
9967   set_current_block(if_js_value);
9968   Add<HStoreNamedField>(object,
9969       HObjectAccess::ForJSObjectOffset(JSValue::kValueOffset), value);
9970   Goto(if_js_value, join);
9971   join->SetJoinId(call->id());
9972   set_current_block(join);
9973   return ast_context()->ReturnValue(value);
9974 }
9975 
9976 
9977 // Fast support for charCodeAt(n).
GenerateStringCharCodeAt(CallRuntime * call)9978 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
9979   ASSERT(call->arguments()->length() == 2);
9980   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9981   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
9982   HValue* index = Pop();
9983   HValue* string = Pop();
9984   HInstruction* result = BuildStringCharCodeAt(string, index);
9985   return ast_context()->ReturnInstruction(result, call->id());
9986 }
9987 
9988 
9989 // Fast support for string.charAt(n) and string[n].
GenerateStringCharFromCode(CallRuntime * call)9990 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
9991   ASSERT(call->arguments()->length() == 1);
9992   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
9993   HValue* char_code = Pop();
9994   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
9995   return ast_context()->ReturnInstruction(result, call->id());
9996 }
9997 
9998 
9999 // Fast support for string.charAt(n) and string[n].
GenerateStringCharAt(CallRuntime * call)10000 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
10001   ASSERT(call->arguments()->length() == 2);
10002   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10003   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
10004   HValue* index = Pop();
10005   HValue* string = Pop();
10006   HInstruction* char_code = BuildStringCharCodeAt(string, index);
10007   AddInstruction(char_code);
10008   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
10009   return ast_context()->ReturnInstruction(result, call->id());
10010 }
10011 
10012 
10013 // Fast support for object equality testing.
GenerateObjectEquals(CallRuntime * call)10014 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
10015   ASSERT(call->arguments()->length() == 2);
10016   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10017   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
10018   HValue* right = Pop();
10019   HValue* left = Pop();
10020   HCompareObjectEqAndBranch* result =
10021       New<HCompareObjectEqAndBranch>(left, right);
10022   return ast_context()->ReturnControl(result, call->id());
10023 }
10024 
10025 
GenerateLog(CallRuntime * call)10026 void HOptimizedGraphBuilder::GenerateLog(CallRuntime* call) {
10027   // %_Log is ignored in optimized code.
10028   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
10029 }
10030 
10031 
10032 // Fast support for StringAdd.
GenerateStringAdd(CallRuntime * call)10033 void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
10034   ASSERT_EQ(2, call->arguments()->length());
10035   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10036   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
10037   HValue* right = Pop();
10038   HValue* left = Pop();
10039   HInstruction* result =
10040       NewUncasted<HStringAdd>(left, right, STRING_ADD_CHECK_BOTH);
10041   return ast_context()->ReturnInstruction(result, call->id());
10042 }
10043 
10044 
10045 // Fast support for SubString.
GenerateSubString(CallRuntime * call)10046 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
10047   ASSERT_EQ(3, call->arguments()->length());
10048   CHECK_ALIVE(VisitArgumentList(call->arguments()));
10049   HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
10050   Drop(3);
10051   return ast_context()->ReturnInstruction(result, call->id());
10052 }
10053 
10054 
10055 // Fast support for StringCompare.
GenerateStringCompare(CallRuntime * call)10056 void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
10057   ASSERT_EQ(2, call->arguments()->length());
10058   CHECK_ALIVE(VisitArgumentList(call->arguments()));
10059   HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
10060   Drop(2);
10061   return ast_context()->ReturnInstruction(result, call->id());
10062 }
10063 
10064 
10065 // Support for direct calls from JavaScript to native RegExp code.
GenerateRegExpExec(CallRuntime * call)10066 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
10067   ASSERT_EQ(4, call->arguments()->length());
10068   CHECK_ALIVE(VisitArgumentList(call->arguments()));
10069   HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
10070   Drop(4);
10071   return ast_context()->ReturnInstruction(result, call->id());
10072 }
10073 
10074 
10075 // Construct a RegExp exec result with two in-object properties.
GenerateRegExpConstructResult(CallRuntime * call)10076 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
10077   ASSERT_EQ(3, call->arguments()->length());
10078   CHECK_ALIVE(VisitArgumentList(call->arguments()));
10079   HCallStub* result = New<HCallStub>(CodeStub::RegExpConstructResult, 3);
10080   Drop(3);
10081   return ast_context()->ReturnInstruction(result, call->id());
10082 }
10083 
10084 
10085 // Support for fast native caches.
GenerateGetFromCache(CallRuntime * call)10086 void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
10087   return Bailout(kInlinedRuntimeFunctionGetFromCache);
10088 }
10089 
10090 
10091 // Fast support for number to string.
GenerateNumberToString(CallRuntime * call)10092 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
10093   ASSERT_EQ(1, call->arguments()->length());
10094   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10095   HValue* number = Pop();
10096   HValue* result = BuildNumberToString(
10097       number, handle(Type::Number(), isolate()));
10098   return ast_context()->ReturnValue(result);
10099 }
10100 
10101 
10102 // Fast call for custom callbacks.
GenerateCallFunction(CallRuntime * call)10103 void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
10104   // 1 ~ The function to call is not itself an argument to the call.
10105   int arg_count = call->arguments()->length() - 1;
10106   ASSERT(arg_count >= 1);  // There's always at least a receiver.
10107 
10108   for (int i = 0; i < arg_count; ++i) {
10109     CHECK_ALIVE(VisitArgument(call->arguments()->at(i)));
10110   }
10111   CHECK_ALIVE(VisitForValue(call->arguments()->last()));
10112 
10113   HValue* function = Pop();
10114 
10115   // Branch for function proxies, or other non-functions.
10116   HHasInstanceTypeAndBranch* typecheck =
10117       New<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
10118   HBasicBlock* if_jsfunction = graph()->CreateBasicBlock();
10119   HBasicBlock* if_nonfunction = graph()->CreateBasicBlock();
10120   HBasicBlock* join = graph()->CreateBasicBlock();
10121   typecheck->SetSuccessorAt(0, if_jsfunction);
10122   typecheck->SetSuccessorAt(1, if_nonfunction);
10123   FinishCurrentBlock(typecheck);
10124 
10125   set_current_block(if_jsfunction);
10126   HInstruction* invoke_result = Add<HInvokeFunction>(function, arg_count);
10127   Drop(arg_count);
10128   Push(invoke_result);
10129   Goto(if_jsfunction, join);
10130 
10131   set_current_block(if_nonfunction);
10132   HInstruction* call_result = Add<HCallFunction>(function, arg_count);
10133   Drop(arg_count);
10134   Push(call_result);
10135   Goto(if_nonfunction, join);
10136 
10137   set_current_block(join);
10138   join->SetJoinId(call->id());
10139   return ast_context()->ReturnValue(Pop());
10140 }
10141 
10142 
10143 // Fast call to math functions.
GenerateMathPow(CallRuntime * call)10144 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
10145   ASSERT_EQ(2, call->arguments()->length());
10146   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10147   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
10148   HValue* right = Pop();
10149   HValue* left = Pop();
10150   HInstruction* result = NewUncasted<HPower>(left, right);
10151   return ast_context()->ReturnInstruction(result, call->id());
10152 }
10153 
10154 
GenerateMathLog(CallRuntime * call)10155 void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) {
10156   ASSERT_EQ(1, call->arguments()->length());
10157   CHECK_ALIVE(VisitArgumentList(call->arguments()));
10158   HCallStub* result = New<HCallStub>(CodeStub::TranscendentalCache, 1);
10159   result->set_transcendental_type(TranscendentalCache::LOG);
10160   Drop(1);
10161   return ast_context()->ReturnInstruction(result, call->id());
10162 }
10163 
10164 
GenerateMathSqrt(CallRuntime * call)10165 void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
10166   ASSERT(call->arguments()->length() == 1);
10167   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10168   HValue* value = Pop();
10169   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
10170   return ast_context()->ReturnInstruction(result, call->id());
10171 }
10172 
10173 
10174 // Check whether two RegExps are equivalent
GenerateIsRegExpEquivalent(CallRuntime * call)10175 void HOptimizedGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) {
10176   return Bailout(kInlinedRuntimeFunctionIsRegExpEquivalent);
10177 }
10178 
10179 
GenerateGetCachedArrayIndex(CallRuntime * call)10180 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
10181   ASSERT(call->arguments()->length() == 1);
10182   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10183   HValue* value = Pop();
10184   HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
10185   return ast_context()->ReturnInstruction(result, call->id());
10186 }
10187 
10188 
GenerateFastAsciiArrayJoin(CallRuntime * call)10189 void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
10190   return Bailout(kInlinedRuntimeFunctionFastAsciiArrayJoin);
10191 }
10192 
10193 
10194 // Support for generators.
GenerateGeneratorNext(CallRuntime * call)10195 void HOptimizedGraphBuilder::GenerateGeneratorNext(CallRuntime* call) {
10196   return Bailout(kInlinedRuntimeFunctionGeneratorNext);
10197 }
10198 
10199 
GenerateGeneratorThrow(CallRuntime * call)10200 void HOptimizedGraphBuilder::GenerateGeneratorThrow(CallRuntime* call) {
10201   return Bailout(kInlinedRuntimeFunctionGeneratorThrow);
10202 }
10203 
10204 
GenerateDebugBreakInOptimizedCode(CallRuntime * call)10205 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
10206     CallRuntime* call) {
10207   Add<HDebugBreak>();
10208   return ast_context()->ReturnValue(graph()->GetConstant0());
10209 }
10210 
10211 
10212 #undef CHECK_BAILOUT
10213 #undef CHECK_ALIVE
10214 
10215 
HEnvironment(HEnvironment * outer,Scope * scope,Handle<JSFunction> closure,Zone * zone)10216 HEnvironment::HEnvironment(HEnvironment* outer,
10217                            Scope* scope,
10218                            Handle<JSFunction> closure,
10219                            Zone* zone)
10220     : closure_(closure),
10221       values_(0, zone),
10222       frame_type_(JS_FUNCTION),
10223       parameter_count_(0),
10224       specials_count_(1),
10225       local_count_(0),
10226       outer_(outer),
10227       entry_(NULL),
10228       pop_count_(0),
10229       push_count_(0),
10230       ast_id_(BailoutId::None()),
10231       zone_(zone) {
10232   Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
10233 }
10234 
10235 
HEnvironment(Zone * zone,int parameter_count)10236 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
10237     : values_(0, zone),
10238       frame_type_(STUB),
10239       parameter_count_(parameter_count),
10240       specials_count_(1),
10241       local_count_(0),
10242       outer_(NULL),
10243       entry_(NULL),
10244       pop_count_(0),
10245       push_count_(0),
10246       ast_id_(BailoutId::None()),
10247       zone_(zone) {
10248   Initialize(parameter_count, 0, 0);
10249 }
10250 
10251 
HEnvironment(const HEnvironment * other,Zone * zone)10252 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
10253     : values_(0, zone),
10254       frame_type_(JS_FUNCTION),
10255       parameter_count_(0),
10256       specials_count_(0),
10257       local_count_(0),
10258       outer_(NULL),
10259       entry_(NULL),
10260       pop_count_(0),
10261       push_count_(0),
10262       ast_id_(other->ast_id()),
10263       zone_(zone) {
10264   Initialize(other);
10265 }
10266 
10267 
HEnvironment(HEnvironment * outer,Handle<JSFunction> closure,FrameType frame_type,int arguments,Zone * zone)10268 HEnvironment::HEnvironment(HEnvironment* outer,
10269                            Handle<JSFunction> closure,
10270                            FrameType frame_type,
10271                            int arguments,
10272                            Zone* zone)
10273     : closure_(closure),
10274       values_(arguments, zone),
10275       frame_type_(frame_type),
10276       parameter_count_(arguments),
10277       specials_count_(0),
10278       local_count_(0),
10279       outer_(outer),
10280       entry_(NULL),
10281       pop_count_(0),
10282       push_count_(0),
10283       ast_id_(BailoutId::None()),
10284       zone_(zone) {
10285 }
10286 
10287 
Initialize(int parameter_count,int local_count,int stack_height)10288 void HEnvironment::Initialize(int parameter_count,
10289                               int local_count,
10290                               int stack_height) {
10291   parameter_count_ = parameter_count;
10292   local_count_ = local_count;
10293 
10294   // Avoid reallocating the temporaries' backing store on the first Push.
10295   int total = parameter_count + specials_count_ + local_count + stack_height;
10296   values_.Initialize(total + 4, zone());
10297   for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
10298 }
10299 
10300 
Initialize(const HEnvironment * other)10301 void HEnvironment::Initialize(const HEnvironment* other) {
10302   closure_ = other->closure();
10303   values_.AddAll(other->values_, zone());
10304   assigned_variables_.Union(other->assigned_variables_, zone());
10305   frame_type_ = other->frame_type_;
10306   parameter_count_ = other->parameter_count_;
10307   local_count_ = other->local_count_;
10308   if (other->outer_ != NULL) outer_ = other->outer_->Copy();  // Deep copy.
10309   entry_ = other->entry_;
10310   pop_count_ = other->pop_count_;
10311   push_count_ = other->push_count_;
10312   specials_count_ = other->specials_count_;
10313   ast_id_ = other->ast_id_;
10314 }
10315 
10316 
AddIncomingEdge(HBasicBlock * block,HEnvironment * other)10317 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
10318   ASSERT(!block->IsLoopHeader());
10319   ASSERT(values_.length() == other->values_.length());
10320 
10321   int length = values_.length();
10322   for (int i = 0; i < length; ++i) {
10323     HValue* value = values_[i];
10324     if (value != NULL && value->IsPhi() && value->block() == block) {
10325       // There is already a phi for the i'th value.
10326       HPhi* phi = HPhi::cast(value);
10327       // Assert index is correct and that we haven't missed an incoming edge.
10328       ASSERT(phi->merged_index() == i || !phi->HasMergedIndex());
10329       ASSERT(phi->OperandCount() == block->predecessors()->length());
10330       phi->AddInput(other->values_[i]);
10331     } else if (values_[i] != other->values_[i]) {
10332       // There is a fresh value on the incoming edge, a phi is needed.
10333       ASSERT(values_[i] != NULL && other->values_[i] != NULL);
10334       HPhi* phi = block->AddNewPhi(i);
10335       HValue* old_value = values_[i];
10336       for (int j = 0; j < block->predecessors()->length(); j++) {
10337         phi->AddInput(old_value);
10338       }
10339       phi->AddInput(other->values_[i]);
10340       this->values_[i] = phi;
10341     }
10342   }
10343 }
10344 
10345 
Bind(int index,HValue * value)10346 void HEnvironment::Bind(int index, HValue* value) {
10347   ASSERT(value != NULL);
10348   assigned_variables_.Add(index, zone());
10349   values_[index] = value;
10350 }
10351 
10352 
HasExpressionAt(int index) const10353 bool HEnvironment::HasExpressionAt(int index) const {
10354   return index >= parameter_count_ + specials_count_ + local_count_;
10355 }
10356 
10357 
ExpressionStackIsEmpty() const10358 bool HEnvironment::ExpressionStackIsEmpty() const {
10359   ASSERT(length() >= first_expression_index());
10360   return length() == first_expression_index();
10361 }
10362 
10363 
SetExpressionStackAt(int index_from_top,HValue * value)10364 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
10365   int count = index_from_top + 1;
10366   int index = values_.length() - count;
10367   ASSERT(HasExpressionAt(index));
10368   // The push count must include at least the element in question or else
10369   // the new value will not be included in this environment's history.
10370   if (push_count_ < count) {
10371     // This is the same effect as popping then re-pushing 'count' elements.
10372     pop_count_ += (count - push_count_);
10373     push_count_ = count;
10374   }
10375   values_[index] = value;
10376 }
10377 
10378 
Drop(int count)10379 void HEnvironment::Drop(int count) {
10380   for (int i = 0; i < count; ++i) {
10381     Pop();
10382   }
10383 }
10384 
10385 
Copy() const10386 HEnvironment* HEnvironment::Copy() const {
10387   return new(zone()) HEnvironment(this, zone());
10388 }
10389 
10390 
CopyWithoutHistory() const10391 HEnvironment* HEnvironment::CopyWithoutHistory() const {
10392   HEnvironment* result = Copy();
10393   result->ClearHistory();
10394   return result;
10395 }
10396 
10397 
CopyAsLoopHeader(HBasicBlock * loop_header) const10398 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
10399   HEnvironment* new_env = Copy();
10400   for (int i = 0; i < values_.length(); ++i) {
10401     HPhi* phi = loop_header->AddNewPhi(i);
10402     phi->AddInput(values_[i]);
10403     new_env->values_[i] = phi;
10404   }
10405   new_env->ClearHistory();
10406   return new_env;
10407 }
10408 
10409 
CreateStubEnvironment(HEnvironment * outer,Handle<JSFunction> target,FrameType frame_type,int arguments) const10410 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
10411                                                   Handle<JSFunction> target,
10412                                                   FrameType frame_type,
10413                                                   int arguments) const {
10414   HEnvironment* new_env =
10415       new(zone()) HEnvironment(outer, target, frame_type,
10416                                arguments + 1, zone());
10417   for (int i = 0; i <= arguments; ++i) {  // Include receiver.
10418     new_env->Push(ExpressionStackAt(arguments - i));
10419   }
10420   new_env->ClearHistory();
10421   return new_env;
10422 }
10423 
10424 
CopyForInlining(Handle<JSFunction> target,int arguments,FunctionLiteral * function,HConstant * undefined,InliningKind inlining_kind,bool undefined_receiver) const10425 HEnvironment* HEnvironment::CopyForInlining(
10426     Handle<JSFunction> target,
10427     int arguments,
10428     FunctionLiteral* function,
10429     HConstant* undefined,
10430     InliningKind inlining_kind,
10431     bool undefined_receiver) const {
10432   ASSERT(frame_type() == JS_FUNCTION);
10433 
10434   // Outer environment is a copy of this one without the arguments.
10435   int arity = function->scope()->num_parameters();
10436 
10437   HEnvironment* outer = Copy();
10438   outer->Drop(arguments + 1);  // Including receiver.
10439   outer->ClearHistory();
10440 
10441   if (inlining_kind == CONSTRUCT_CALL_RETURN) {
10442     // Create artificial constructor stub environment.  The receiver should
10443     // actually be the constructor function, but we pass the newly allocated
10444     // object instead, DoComputeConstructStubFrame() relies on that.
10445     outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
10446   } else if (inlining_kind == GETTER_CALL_RETURN) {
10447     // We need an additional StackFrame::INTERNAL frame for restoring the
10448     // correct context.
10449     outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
10450   } else if (inlining_kind == SETTER_CALL_RETURN) {
10451     // We need an additional StackFrame::INTERNAL frame for temporarily saving
10452     // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
10453     outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
10454   }
10455 
10456   if (arity != arguments) {
10457     // Create artificial arguments adaptation environment.
10458     outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
10459   }
10460 
10461   HEnvironment* inner =
10462       new(zone()) HEnvironment(outer, function->scope(), target, zone());
10463   // Get the argument values from the original environment.
10464   for (int i = 0; i <= arity; ++i) {  // Include receiver.
10465     HValue* push = (i <= arguments) ?
10466         ExpressionStackAt(arguments - i) : undefined;
10467     inner->SetValueAt(i, push);
10468   }
10469   // If the function we are inlining is a strict mode function or a
10470   // builtin function, pass undefined as the receiver for function
10471   // calls (instead of the global receiver).
10472   if (undefined_receiver) {
10473     inner->SetValueAt(0, undefined);
10474   }
10475   inner->SetValueAt(arity + 1, context());
10476   for (int i = arity + 2; i < inner->length(); ++i) {
10477     inner->SetValueAt(i, undefined);
10478   }
10479 
10480   inner->set_ast_id(BailoutId::FunctionEntry());
10481   return inner;
10482 }
10483 
10484 
PrintTo(StringStream * stream)10485 void HEnvironment::PrintTo(StringStream* stream) {
10486   for (int i = 0; i < length(); i++) {
10487     if (i == 0) stream->Add("parameters\n");
10488     if (i == parameter_count()) stream->Add("specials\n");
10489     if (i == parameter_count() + specials_count()) stream->Add("locals\n");
10490     if (i == parameter_count() + specials_count() + local_count()) {
10491       stream->Add("expressions\n");
10492     }
10493     HValue* val = values_.at(i);
10494     stream->Add("%d: ", i);
10495     if (val != NULL) {
10496       val->PrintNameTo(stream);
10497     } else {
10498       stream->Add("NULL");
10499     }
10500     stream->Add("\n");
10501   }
10502   PrintF("\n");
10503 }
10504 
10505 
PrintToStd()10506 void HEnvironment::PrintToStd() {
10507   HeapStringAllocator string_allocator;
10508   StringStream trace(&string_allocator);
10509   PrintTo(&trace);
10510   PrintF("%s", *trace.ToCString());
10511 }
10512 
10513 
TraceCompilation(CompilationInfo * info)10514 void HTracer::TraceCompilation(CompilationInfo* info) {
10515   Tag tag(this, "compilation");
10516   if (info->IsOptimizing()) {
10517     Handle<String> name = info->function()->debug_name();
10518     PrintStringProperty("name", *name->ToCString());
10519     PrintStringProperty("method", *name->ToCString());
10520   } else {
10521     CodeStub::Major major_key = info->code_stub()->MajorKey();
10522     PrintStringProperty("name", CodeStub::MajorName(major_key, false));
10523     PrintStringProperty("method", "stub");
10524   }
10525   PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
10526 }
10527 
10528 
TraceLithium(const char * name,LChunk * chunk)10529 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
10530   ASSERT(!chunk->isolate()->concurrent_recompilation_enabled());
10531   AllowHandleDereference allow_deref;
10532   AllowDeferredHandleDereference allow_deferred_deref;
10533   Trace(name, chunk->graph(), chunk);
10534 }
10535 
10536 
TraceHydrogen(const char * name,HGraph * graph)10537 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
10538   ASSERT(!graph->isolate()->concurrent_recompilation_enabled());
10539   AllowHandleDereference allow_deref;
10540   AllowDeferredHandleDereference allow_deferred_deref;
10541   Trace(name, graph, NULL);
10542 }
10543 
10544 
Trace(const char * name,HGraph * graph,LChunk * chunk)10545 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
10546   Tag tag(this, "cfg");
10547   PrintStringProperty("name", name);
10548   const ZoneList<HBasicBlock*>* blocks = graph->blocks();
10549   for (int i = 0; i < blocks->length(); i++) {
10550     HBasicBlock* current = blocks->at(i);
10551     Tag block_tag(this, "block");
10552     PrintBlockProperty("name", current->block_id());
10553     PrintIntProperty("from_bci", -1);
10554     PrintIntProperty("to_bci", -1);
10555 
10556     if (!current->predecessors()->is_empty()) {
10557       PrintIndent();
10558       trace_.Add("predecessors");
10559       for (int j = 0; j < current->predecessors()->length(); ++j) {
10560         trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
10561       }
10562       trace_.Add("\n");
10563     } else {
10564       PrintEmptyProperty("predecessors");
10565     }
10566 
10567     if (current->end()->SuccessorCount() == 0) {
10568       PrintEmptyProperty("successors");
10569     } else  {
10570       PrintIndent();
10571       trace_.Add("successors");
10572       for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
10573         trace_.Add(" \"B%d\"", it.Current()->block_id());
10574       }
10575       trace_.Add("\n");
10576     }
10577 
10578     PrintEmptyProperty("xhandlers");
10579     const char* flags = current->IsLoopSuccessorDominator()
10580         ? "dom-loop-succ"
10581         : "";
10582     PrintStringProperty("flags", flags);
10583 
10584     if (current->dominator() != NULL) {
10585       PrintBlockProperty("dominator", current->dominator()->block_id());
10586     }
10587 
10588     PrintIntProperty("loop_depth", current->LoopNestingDepth());
10589 
10590     if (chunk != NULL) {
10591       int first_index = current->first_instruction_index();
10592       int last_index = current->last_instruction_index();
10593       PrintIntProperty(
10594           "first_lir_id",
10595           LifetimePosition::FromInstructionIndex(first_index).Value());
10596       PrintIntProperty(
10597           "last_lir_id",
10598           LifetimePosition::FromInstructionIndex(last_index).Value());
10599     }
10600 
10601     {
10602       Tag states_tag(this, "states");
10603       Tag locals_tag(this, "locals");
10604       int total = current->phis()->length();
10605       PrintIntProperty("size", current->phis()->length());
10606       PrintStringProperty("method", "None");
10607       for (int j = 0; j < total; ++j) {
10608         HPhi* phi = current->phis()->at(j);
10609         PrintIndent();
10610         trace_.Add("%d ", phi->merged_index());
10611         phi->PrintNameTo(&trace_);
10612         trace_.Add(" ");
10613         phi->PrintTo(&trace_);
10614         trace_.Add("\n");
10615       }
10616     }
10617 
10618     {
10619       Tag HIR_tag(this, "HIR");
10620       for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
10621         HInstruction* instruction = it.Current();
10622         int bci = FLAG_emit_opt_code_positions && instruction->has_position() ?
10623             instruction->position() : 0;
10624         int uses = instruction->UseCount();
10625         PrintIndent();
10626         trace_.Add("%d %d ", bci, uses);
10627         instruction->PrintNameTo(&trace_);
10628         trace_.Add(" ");
10629         instruction->PrintTo(&trace_);
10630         trace_.Add(" <|@\n");
10631       }
10632     }
10633 
10634 
10635     if (chunk != NULL) {
10636       Tag LIR_tag(this, "LIR");
10637       int first_index = current->first_instruction_index();
10638       int last_index = current->last_instruction_index();
10639       if (first_index != -1 && last_index != -1) {
10640         const ZoneList<LInstruction*>* instructions = chunk->instructions();
10641         for (int i = first_index; i <= last_index; ++i) {
10642           LInstruction* linstr = instructions->at(i);
10643           if (linstr != NULL) {
10644             PrintIndent();
10645             trace_.Add("%d ",
10646                        LifetimePosition::FromInstructionIndex(i).Value());
10647             linstr->PrintTo(&trace_);
10648             trace_.Add(" [hir:");
10649             linstr->hydrogen_value()->PrintNameTo(&trace_);
10650             trace_.Add("]");
10651             trace_.Add(" <|@\n");
10652           }
10653         }
10654       }
10655     }
10656   }
10657 }
10658 
10659 
TraceLiveRanges(const char * name,LAllocator * allocator)10660 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
10661   Tag tag(this, "intervals");
10662   PrintStringProperty("name", name);
10663 
10664   const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
10665   for (int i = 0; i < fixed_d->length(); ++i) {
10666     TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
10667   }
10668 
10669   const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
10670   for (int i = 0; i < fixed->length(); ++i) {
10671     TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
10672   }
10673 
10674   const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
10675   for (int i = 0; i < live_ranges->length(); ++i) {
10676     TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
10677   }
10678 }
10679 
10680 
TraceLiveRange(LiveRange * range,const char * type,Zone * zone)10681 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
10682                              Zone* zone) {
10683   if (range != NULL && !range->IsEmpty()) {
10684     PrintIndent();
10685     trace_.Add("%d %s", range->id(), type);
10686     if (range->HasRegisterAssigned()) {
10687       LOperand* op = range->CreateAssignedOperand(zone);
10688       int assigned_reg = op->index();
10689       if (op->IsDoubleRegister()) {
10690         trace_.Add(" \"%s\"",
10691                    DoubleRegister::AllocationIndexToString(assigned_reg));
10692       } else {
10693         ASSERT(op->IsRegister());
10694         trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
10695       }
10696     } else if (range->IsSpilled()) {
10697       LOperand* op = range->TopLevel()->GetSpillOperand();
10698       if (op->IsDoubleStackSlot()) {
10699         trace_.Add(" \"double_stack:%d\"", op->index());
10700       } else {
10701         ASSERT(op->IsStackSlot());
10702         trace_.Add(" \"stack:%d\"", op->index());
10703       }
10704     }
10705     int parent_index = -1;
10706     if (range->IsChild()) {
10707       parent_index = range->parent()->id();
10708     } else {
10709       parent_index = range->id();
10710     }
10711     LOperand* op = range->FirstHint();
10712     int hint_index = -1;
10713     if (op != NULL && op->IsUnallocated()) {
10714       hint_index = LUnallocated::cast(op)->virtual_register();
10715     }
10716     trace_.Add(" %d %d", parent_index, hint_index);
10717     UseInterval* cur_interval = range->first_interval();
10718     while (cur_interval != NULL && range->Covers(cur_interval->start())) {
10719       trace_.Add(" [%d, %d[",
10720                  cur_interval->start().Value(),
10721                  cur_interval->end().Value());
10722       cur_interval = cur_interval->next();
10723     }
10724 
10725     UsePosition* current_pos = range->first_pos();
10726     while (current_pos != NULL) {
10727       if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
10728         trace_.Add(" %d M", current_pos->pos().Value());
10729       }
10730       current_pos = current_pos->next();
10731     }
10732 
10733     trace_.Add(" \"\"\n");
10734   }
10735 }
10736 
10737 
FlushToFile()10738 void HTracer::FlushToFile() {
10739   AppendChars(filename_.start(), *trace_.ToCString(), trace_.length(), false);
10740   trace_.Reset();
10741 }
10742 
10743 
Initialize(CompilationInfo * info)10744 void HStatistics::Initialize(CompilationInfo* info) {
10745   if (info->shared_info().is_null()) return;
10746   source_size_ += info->shared_info()->SourceSize();
10747 }
10748 
10749 
Print()10750 void HStatistics::Print() {
10751   PrintF("Timing results:\n");
10752   TimeDelta sum;
10753   for (int i = 0; i < times_.length(); ++i) {
10754     sum += times_[i];
10755   }
10756 
10757   for (int i = 0; i < names_.length(); ++i) {
10758     PrintF("%32s", names_[i]);
10759     double ms = times_[i].InMillisecondsF();
10760     double percent = times_[i].PercentOf(sum);
10761     PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
10762 
10763     unsigned size = sizes_[i];
10764     double size_percent = static_cast<double>(size) * 100 / total_size_;
10765     PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
10766   }
10767 
10768   PrintF("----------------------------------------"
10769          "---------------------------------------\n");
10770   TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
10771   PrintF("%32s %8.3f ms / %4.1f %% \n",
10772          "Create graph",
10773          create_graph_.InMillisecondsF(),
10774          create_graph_.PercentOf(total));
10775   PrintF("%32s %8.3f ms / %4.1f %% \n",
10776          "Optimize graph",
10777          optimize_graph_.InMillisecondsF(),
10778          optimize_graph_.PercentOf(total));
10779   PrintF("%32s %8.3f ms / %4.1f %% \n",
10780          "Generate and install code",
10781          generate_code_.InMillisecondsF(),
10782          generate_code_.PercentOf(total));
10783   PrintF("----------------------------------------"
10784          "---------------------------------------\n");
10785   PrintF("%32s %8.3f ms (%.1f times slower than full code gen)\n",
10786          "Total",
10787          total.InMillisecondsF(),
10788          total.TimesOf(full_code_gen_));
10789 
10790   double source_size_in_kb = static_cast<double>(source_size_) / 1024;
10791   double normalized_time =  source_size_in_kb > 0
10792       ? total.InMillisecondsF() / source_size_in_kb
10793       : 0;
10794   double normalized_size_in_kb = source_size_in_kb > 0
10795       ? total_size_ / 1024 / source_size_in_kb
10796       : 0;
10797   PrintF("%32s %8.3f ms           %7.3f kB allocated\n",
10798          "Average per kB source",
10799          normalized_time, normalized_size_in_kb);
10800 }
10801 
10802 
SaveTiming(const char * name,TimeDelta time,unsigned size)10803 void HStatistics::SaveTiming(const char* name, TimeDelta time, unsigned size) {
10804   total_size_ += size;
10805   for (int i = 0; i < names_.length(); ++i) {
10806     if (strcmp(names_[i], name) == 0) {
10807       times_[i] += time;
10808       sizes_[i] += size;
10809       return;
10810     }
10811   }
10812   names_.Add(name);
10813   times_.Add(time);
10814   sizes_.Add(size);
10815 }
10816 
10817 
~HPhase()10818 HPhase::~HPhase() {
10819   if (ShouldProduceTraceOutput()) {
10820     isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
10821   }
10822 
10823 #ifdef DEBUG
10824   graph_->Verify(false);  // No full verify.
10825 #endif
10826 }
10827 
10828 } }  // namespace v8::internal
10829