• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "llvm/ADT/APInt.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/Support/ErrorHandling.h"
38 using namespace clang;
39 using namespace sema;
40 
41 /// \brief Handle the result of the special case name lookup for inheriting
42 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
43 /// constructor names in member using declarations, even if 'X' is not the
44 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)45 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
46                                               SourceLocation NameLoc,
47                                               IdentifierInfo &Name) {
48   NestedNameSpecifier *NNS = SS.getScopeRep();
49 
50   // Convert the nested-name-specifier into a type.
51   QualType Type;
52   switch (NNS->getKind()) {
53   case NestedNameSpecifier::TypeSpec:
54   case NestedNameSpecifier::TypeSpecWithTemplate:
55     Type = QualType(NNS->getAsType(), 0);
56     break;
57 
58   case NestedNameSpecifier::Identifier:
59     // Strip off the last layer of the nested-name-specifier and build a
60     // typename type for it.
61     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
62     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
63                                         NNS->getAsIdentifier());
64     break;
65 
66   case NestedNameSpecifier::Global:
67   case NestedNameSpecifier::Namespace:
68   case NestedNameSpecifier::NamespaceAlias:
69     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
70   }
71 
72   // This reference to the type is located entirely at the location of the
73   // final identifier in the qualified-id.
74   return CreateParsedType(Type,
75                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
76 }
77 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)78 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
79                                    IdentifierInfo &II,
80                                    SourceLocation NameLoc,
81                                    Scope *S, CXXScopeSpec &SS,
82                                    ParsedType ObjectTypePtr,
83                                    bool EnteringContext) {
84   // Determine where to perform name lookup.
85 
86   // FIXME: This area of the standard is very messy, and the current
87   // wording is rather unclear about which scopes we search for the
88   // destructor name; see core issues 399 and 555. Issue 399 in
89   // particular shows where the current description of destructor name
90   // lookup is completely out of line with existing practice, e.g.,
91   // this appears to be ill-formed:
92   //
93   //   namespace N {
94   //     template <typename T> struct S {
95   //       ~S();
96   //     };
97   //   }
98   //
99   //   void f(N::S<int>* s) {
100   //     s->N::S<int>::~S();
101   //   }
102   //
103   // See also PR6358 and PR6359.
104   // For this reason, we're currently only doing the C++03 version of this
105   // code; the C++0x version has to wait until we get a proper spec.
106   QualType SearchType;
107   DeclContext *LookupCtx = 0;
108   bool isDependent = false;
109   bool LookInScope = false;
110 
111   // If we have an object type, it's because we are in a
112   // pseudo-destructor-expression or a member access expression, and
113   // we know what type we're looking for.
114   if (ObjectTypePtr)
115     SearchType = GetTypeFromParser(ObjectTypePtr);
116 
117   if (SS.isSet()) {
118     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
119 
120     bool AlreadySearched = false;
121     bool LookAtPrefix = true;
122     // C++ [basic.lookup.qual]p6:
123     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
124     //   the type-names are looked up as types in the scope designated by the
125     //   nested-name-specifier. In a qualified-id of the form:
126     //
127     //     ::[opt] nested-name-specifier  ~ class-name
128     //
129     //   where the nested-name-specifier designates a namespace scope, and in
130     //   a qualified-id of the form:
131     //
132     //     ::opt nested-name-specifier class-name ::  ~ class-name
133     //
134     //   the class-names are looked up as types in the scope designated by
135     //   the nested-name-specifier.
136     //
137     // Here, we check the first case (completely) and determine whether the
138     // code below is permitted to look at the prefix of the
139     // nested-name-specifier.
140     DeclContext *DC = computeDeclContext(SS, EnteringContext);
141     if (DC && DC->isFileContext()) {
142       AlreadySearched = true;
143       LookupCtx = DC;
144       isDependent = false;
145     } else if (DC && isa<CXXRecordDecl>(DC))
146       LookAtPrefix = false;
147 
148     // The second case from the C++03 rules quoted further above.
149     NestedNameSpecifier *Prefix = 0;
150     if (AlreadySearched) {
151       // Nothing left to do.
152     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
153       CXXScopeSpec PrefixSS;
154       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
155       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
156       isDependent = isDependentScopeSpecifier(PrefixSS);
157     } else if (ObjectTypePtr) {
158       LookupCtx = computeDeclContext(SearchType);
159       isDependent = SearchType->isDependentType();
160     } else {
161       LookupCtx = computeDeclContext(SS, EnteringContext);
162       isDependent = LookupCtx && LookupCtx->isDependentContext();
163     }
164 
165     LookInScope = false;
166   } else if (ObjectTypePtr) {
167     // C++ [basic.lookup.classref]p3:
168     //   If the unqualified-id is ~type-name, the type-name is looked up
169     //   in the context of the entire postfix-expression. If the type T
170     //   of the object expression is of a class type C, the type-name is
171     //   also looked up in the scope of class C. At least one of the
172     //   lookups shall find a name that refers to (possibly
173     //   cv-qualified) T.
174     LookupCtx = computeDeclContext(SearchType);
175     isDependent = SearchType->isDependentType();
176     assert((isDependent || !SearchType->isIncompleteType()) &&
177            "Caller should have completed object type");
178 
179     LookInScope = true;
180   } else {
181     // Perform lookup into the current scope (only).
182     LookInScope = true;
183   }
184 
185   TypeDecl *NonMatchingTypeDecl = 0;
186   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187   for (unsigned Step = 0; Step != 2; ++Step) {
188     // Look for the name first in the computed lookup context (if we
189     // have one) and, if that fails to find a match, in the scope (if
190     // we're allowed to look there).
191     Found.clear();
192     if (Step == 0 && LookupCtx)
193       LookupQualifiedName(Found, LookupCtx);
194     else if (Step == 1 && LookInScope && S)
195       LookupName(Found, S);
196     else
197       continue;
198 
199     // FIXME: Should we be suppressing ambiguities here?
200     if (Found.isAmbiguous())
201       return ParsedType();
202 
203     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204       QualType T = Context.getTypeDeclType(Type);
205 
206       if (SearchType.isNull() || SearchType->isDependentType() ||
207           Context.hasSameUnqualifiedType(T, SearchType)) {
208         // We found our type!
209 
210         return ParsedType::make(T);
211       }
212 
213       if (!SearchType.isNull())
214         NonMatchingTypeDecl = Type;
215     }
216 
217     // If the name that we found is a class template name, and it is
218     // the same name as the template name in the last part of the
219     // nested-name-specifier (if present) or the object type, then
220     // this is the destructor for that class.
221     // FIXME: This is a workaround until we get real drafting for core
222     // issue 399, for which there isn't even an obvious direction.
223     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
224       QualType MemberOfType;
225       if (SS.isSet()) {
226         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
227           // Figure out the type of the context, if it has one.
228           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
229             MemberOfType = Context.getTypeDeclType(Record);
230         }
231       }
232       if (MemberOfType.isNull())
233         MemberOfType = SearchType;
234 
235       if (MemberOfType.isNull())
236         continue;
237 
238       // We're referring into a class template specialization. If the
239       // class template we found is the same as the template being
240       // specialized, we found what we are looking for.
241       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
242         if (ClassTemplateSpecializationDecl *Spec
243               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
244           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
245                 Template->getCanonicalDecl())
246             return ParsedType::make(MemberOfType);
247         }
248 
249         continue;
250       }
251 
252       // We're referring to an unresolved class template
253       // specialization. Determine whether we class template we found
254       // is the same as the template being specialized or, if we don't
255       // know which template is being specialized, that it at least
256       // has the same name.
257       if (const TemplateSpecializationType *SpecType
258             = MemberOfType->getAs<TemplateSpecializationType>()) {
259         TemplateName SpecName = SpecType->getTemplateName();
260 
261         // The class template we found is the same template being
262         // specialized.
263         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
264           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
265             return ParsedType::make(MemberOfType);
266 
267           continue;
268         }
269 
270         // The class template we found has the same name as the
271         // (dependent) template name being specialized.
272         if (DependentTemplateName *DepTemplate
273                                     = SpecName.getAsDependentTemplateName()) {
274           if (DepTemplate->isIdentifier() &&
275               DepTemplate->getIdentifier() == Template->getIdentifier())
276             return ParsedType::make(MemberOfType);
277 
278           continue;
279         }
280       }
281     }
282   }
283 
284   if (isDependent) {
285     // We didn't find our type, but that's okay: it's dependent
286     // anyway.
287 
288     // FIXME: What if we have no nested-name-specifier?
289     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
290                                    SS.getWithLocInContext(Context),
291                                    II, NameLoc);
292     return ParsedType::make(T);
293   }
294 
295   if (NonMatchingTypeDecl) {
296     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
297     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
298       << T << SearchType;
299     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
300       << T;
301   } else if (ObjectTypePtr)
302     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
303       << &II;
304   else {
305     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
306                                           diag::err_destructor_class_name);
307     if (S) {
308       const DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
309       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
310         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
311                                                  Class->getNameAsString());
312     }
313   }
314 
315   return ParsedType();
316 }
317 
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)318 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
319     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
320       return ParsedType();
321     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
322            && "only get destructor types from declspecs");
323     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
324     QualType SearchType = GetTypeFromParser(ObjectType);
325     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
326       return ParsedType::make(T);
327     }
328 
329     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
330       << T << SearchType;
331     return ParsedType();
332 }
333 
334 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)335 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
336                                 SourceLocation TypeidLoc,
337                                 TypeSourceInfo *Operand,
338                                 SourceLocation RParenLoc) {
339   // C++ [expr.typeid]p4:
340   //   The top-level cv-qualifiers of the lvalue expression or the type-id
341   //   that is the operand of typeid are always ignored.
342   //   If the type of the type-id is a class type or a reference to a class
343   //   type, the class shall be completely-defined.
344   Qualifiers Quals;
345   QualType T
346     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
347                                       Quals);
348   if (T->getAs<RecordType>() &&
349       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
350     return ExprError();
351 
352   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
353                                            Operand,
354                                            SourceRange(TypeidLoc, RParenLoc)));
355 }
356 
357 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)358 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
359                                 SourceLocation TypeidLoc,
360                                 Expr *E,
361                                 SourceLocation RParenLoc) {
362   if (E && !E->isTypeDependent()) {
363     if (E->getType()->isPlaceholderType()) {
364       ExprResult result = CheckPlaceholderExpr(E);
365       if (result.isInvalid()) return ExprError();
366       E = result.take();
367     }
368 
369     QualType T = E->getType();
370     if (const RecordType *RecordT = T->getAs<RecordType>()) {
371       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
372       // C++ [expr.typeid]p3:
373       //   [...] If the type of the expression is a class type, the class
374       //   shall be completely-defined.
375       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
376         return ExprError();
377 
378       // C++ [expr.typeid]p3:
379       //   When typeid is applied to an expression other than an glvalue of a
380       //   polymorphic class type [...] [the] expression is an unevaluated
381       //   operand. [...]
382       if (RecordD->isPolymorphic() && E->isGLValue()) {
383         // The subexpression is potentially evaluated; switch the context
384         // and recheck the subexpression.
385         ExprResult Result = TransformToPotentiallyEvaluated(E);
386         if (Result.isInvalid()) return ExprError();
387         E = Result.take();
388 
389         // We require a vtable to query the type at run time.
390         MarkVTableUsed(TypeidLoc, RecordD);
391       }
392     }
393 
394     // C++ [expr.typeid]p4:
395     //   [...] If the type of the type-id is a reference to a possibly
396     //   cv-qualified type, the result of the typeid expression refers to a
397     //   std::type_info object representing the cv-unqualified referenced
398     //   type.
399     Qualifiers Quals;
400     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
401     if (!Context.hasSameType(T, UnqualT)) {
402       T = UnqualT;
403       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
404     }
405   }
406 
407   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
408                                            E,
409                                            SourceRange(TypeidLoc, RParenLoc)));
410 }
411 
412 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
413 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)414 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
415                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
416   // Find the std::type_info type.
417   if (!getStdNamespace())
418     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
419 
420   if (!CXXTypeInfoDecl) {
421     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
422     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
423     LookupQualifiedName(R, getStdNamespace());
424     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
425     // Microsoft's typeinfo doesn't have type_info in std but in the global
426     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
427     if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
428       LookupQualifiedName(R, Context.getTranslationUnitDecl());
429       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
430     }
431     if (!CXXTypeInfoDecl)
432       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
433   }
434 
435   if (!getLangOpts().RTTI) {
436     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
437   }
438 
439   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
440 
441   if (isType) {
442     // The operand is a type; handle it as such.
443     TypeSourceInfo *TInfo = 0;
444     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
445                                    &TInfo);
446     if (T.isNull())
447       return ExprError();
448 
449     if (!TInfo)
450       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
451 
452     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
453   }
454 
455   // The operand is an expression.
456   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
457 }
458 
459 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)460 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
461                                 SourceLocation TypeidLoc,
462                                 TypeSourceInfo *Operand,
463                                 SourceLocation RParenLoc) {
464   if (!Operand->getType()->isDependentType()) {
465     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
466       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
467   }
468 
469   // FIXME: add __uuidof semantic analysis for type operand.
470   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
471                                            Operand,
472                                            SourceRange(TypeidLoc, RParenLoc)));
473 }
474 
475 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)476 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
477                                 SourceLocation TypeidLoc,
478                                 Expr *E,
479                                 SourceLocation RParenLoc) {
480   if (!E->getType()->isDependentType()) {
481     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
482         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
483       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
484   }
485   // FIXME: add __uuidof semantic analysis for type operand.
486   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
487                                            E,
488                                            SourceRange(TypeidLoc, RParenLoc)));
489 }
490 
491 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
492 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)493 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
494                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
495   // If MSVCGuidDecl has not been cached, do the lookup.
496   if (!MSVCGuidDecl) {
497     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
498     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
499     LookupQualifiedName(R, Context.getTranslationUnitDecl());
500     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
501     if (!MSVCGuidDecl)
502       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
503   }
504 
505   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
506 
507   if (isType) {
508     // The operand is a type; handle it as such.
509     TypeSourceInfo *TInfo = 0;
510     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
511                                    &TInfo);
512     if (T.isNull())
513       return ExprError();
514 
515     if (!TInfo)
516       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
517 
518     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
519   }
520 
521   // The operand is an expression.
522   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
523 }
524 
525 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
526 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)527 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
528   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
529          "Unknown C++ Boolean value!");
530   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
531                                                 Context.BoolTy, OpLoc));
532 }
533 
534 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
535 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)536 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
537   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
538 }
539 
540 /// ActOnCXXThrow - Parse throw expressions.
541 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)542 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
543   bool IsThrownVarInScope = false;
544   if (Ex) {
545     // C++0x [class.copymove]p31:
546     //   When certain criteria are met, an implementation is allowed to omit the
547     //   copy/move construction of a class object [...]
548     //
549     //     - in a throw-expression, when the operand is the name of a
550     //       non-volatile automatic object (other than a function or catch-
551     //       clause parameter) whose scope does not extend beyond the end of the
552     //       innermost enclosing try-block (if there is one), the copy/move
553     //       operation from the operand to the exception object (15.1) can be
554     //       omitted by constructing the automatic object directly into the
555     //       exception object
556     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
557       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
558         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
559           for( ; S; S = S->getParent()) {
560             if (S->isDeclScope(Var)) {
561               IsThrownVarInScope = true;
562               break;
563             }
564 
565             if (S->getFlags() &
566                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
567                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
568                  Scope::TryScope))
569               break;
570           }
571         }
572       }
573   }
574 
575   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
576 }
577 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)578 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
579                                bool IsThrownVarInScope) {
580   // Don't report an error if 'throw' is used in system headers.
581   if (!getLangOpts().CXXExceptions &&
582       !getSourceManager().isInSystemHeader(OpLoc))
583     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
584 
585   if (Ex && !Ex->isTypeDependent()) {
586     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
587     if (ExRes.isInvalid())
588       return ExprError();
589     Ex = ExRes.take();
590   }
591 
592   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
593                                           IsThrownVarInScope));
594 }
595 
596 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)597 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
598                                       bool IsThrownVarInScope) {
599   // C++ [except.throw]p3:
600   //   A throw-expression initializes a temporary object, called the exception
601   //   object, the type of which is determined by removing any top-level
602   //   cv-qualifiers from the static type of the operand of throw and adjusting
603   //   the type from "array of T" or "function returning T" to "pointer to T"
604   //   or "pointer to function returning T", [...]
605   if (E->getType().hasQualifiers())
606     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
607                           E->getValueKind()).take();
608 
609   ExprResult Res = DefaultFunctionArrayConversion(E);
610   if (Res.isInvalid())
611     return ExprError();
612   E = Res.take();
613 
614   //   If the type of the exception would be an incomplete type or a pointer
615   //   to an incomplete type other than (cv) void the program is ill-formed.
616   QualType Ty = E->getType();
617   bool isPointer = false;
618   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
619     Ty = Ptr->getPointeeType();
620     isPointer = true;
621   }
622   if (!isPointer || !Ty->isVoidType()) {
623     if (RequireCompleteType(ThrowLoc, Ty,
624                             isPointer? diag::err_throw_incomplete_ptr
625                                      : diag::err_throw_incomplete,
626                             E->getSourceRange()))
627       return ExprError();
628 
629     if (RequireNonAbstractType(ThrowLoc, E->getType(),
630                                diag::err_throw_abstract_type, E))
631       return ExprError();
632   }
633 
634   // Initialize the exception result.  This implicitly weeds out
635   // abstract types or types with inaccessible copy constructors.
636 
637   // C++0x [class.copymove]p31:
638   //   When certain criteria are met, an implementation is allowed to omit the
639   //   copy/move construction of a class object [...]
640   //
641   //     - in a throw-expression, when the operand is the name of a
642   //       non-volatile automatic object (other than a function or catch-clause
643   //       parameter) whose scope does not extend beyond the end of the
644   //       innermost enclosing try-block (if there is one), the copy/move
645   //       operation from the operand to the exception object (15.1) can be
646   //       omitted by constructing the automatic object directly into the
647   //       exception object
648   const VarDecl *NRVOVariable = 0;
649   if (IsThrownVarInScope)
650     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
651 
652   InitializedEntity Entity =
653       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
654                                              /*NRVO=*/NRVOVariable != 0);
655   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
656                                         QualType(), E,
657                                         IsThrownVarInScope);
658   if (Res.isInvalid())
659     return ExprError();
660   E = Res.take();
661 
662   // If the exception has class type, we need additional handling.
663   const RecordType *RecordTy = Ty->getAs<RecordType>();
664   if (!RecordTy)
665     return Owned(E);
666   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
667 
668   // If we are throwing a polymorphic class type or pointer thereof,
669   // exception handling will make use of the vtable.
670   MarkVTableUsed(ThrowLoc, RD);
671 
672   // If a pointer is thrown, the referenced object will not be destroyed.
673   if (isPointer)
674     return Owned(E);
675 
676   // If the class has a destructor, we must be able to call it.
677   if (RD->hasIrrelevantDestructor())
678     return Owned(E);
679 
680   CXXDestructorDecl *Destructor = LookupDestructor(RD);
681   if (!Destructor)
682     return Owned(E);
683 
684   MarkFunctionReferenced(E->getExprLoc(), Destructor);
685   CheckDestructorAccess(E->getExprLoc(), Destructor,
686                         PDiag(diag::err_access_dtor_exception) << Ty);
687   if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
688     return ExprError();
689   return Owned(E);
690 }
691 
getCurrentThisType()692 QualType Sema::getCurrentThisType() {
693   DeclContext *DC = getFunctionLevelDeclContext();
694   QualType ThisTy = CXXThisTypeOverride;
695   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
696     if (method && method->isInstance())
697       ThisTy = method->getThisType(Context);
698   }
699 
700   return ThisTy;
701 }
702 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)703 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
704                                          Decl *ContextDecl,
705                                          unsigned CXXThisTypeQuals,
706                                          bool Enabled)
707   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
708 {
709   if (!Enabled || !ContextDecl)
710     return;
711 
712   CXXRecordDecl *Record = 0;
713   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
714     Record = Template->getTemplatedDecl();
715   else
716     Record = cast<CXXRecordDecl>(ContextDecl);
717 
718   S.CXXThisTypeOverride
719     = S.Context.getPointerType(
720         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
721 
722   this->Enabled = true;
723 }
724 
725 
~CXXThisScopeRAII()726 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
727   if (Enabled) {
728     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
729   }
730 }
731 
captureThis(ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc)732 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
733                          QualType ThisTy, SourceLocation Loc) {
734   FieldDecl *Field
735     = FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
736                         Context.getTrivialTypeSourceInfo(ThisTy, Loc),
737                         0, false, ICIS_NoInit);
738   Field->setImplicit(true);
739   Field->setAccess(AS_private);
740   RD->addDecl(Field);
741   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
742 }
743 
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)744 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
745   // We don't need to capture this in an unevaluated context.
746   if (isUnevaluatedContext() && !Explicit)
747     return;
748 
749   // Otherwise, check that we can capture 'this'.
750   unsigned NumClosures = 0;
751   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
752     if (CapturingScopeInfo *CSI =
753             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
754       if (CSI->CXXThisCaptureIndex != 0) {
755         // 'this' is already being captured; there isn't anything more to do.
756         break;
757       }
758 
759       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
760           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
761           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
762           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
763           Explicit) {
764         // This closure can capture 'this'; continue looking upwards.
765         NumClosures++;
766         Explicit = false;
767         continue;
768       }
769       // This context can't implicitly capture 'this'; fail out.
770       Diag(Loc, diag::err_this_capture) << Explicit;
771       return;
772     }
773     break;
774   }
775 
776   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
777   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
778   // contexts.
779   for (unsigned idx = FunctionScopes.size() - 1;
780        NumClosures; --idx, --NumClosures) {
781     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
782     Expr *ThisExpr = 0;
783     QualType ThisTy = getCurrentThisType();
784     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
785       // For lambda expressions, build a field and an initializing expression.
786       ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
787     else if (CapturedRegionScopeInfo *RSI
788         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
789       ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
790 
791     bool isNested = NumClosures > 1;
792     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
793   }
794 }
795 
ActOnCXXThis(SourceLocation Loc)796 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
797   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
798   /// is a non-lvalue expression whose value is the address of the object for
799   /// which the function is called.
800 
801   QualType ThisTy = getCurrentThisType();
802   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
803 
804   CheckCXXThisCapture(Loc);
805   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
806 }
807 
isThisOutsideMemberFunctionBody(QualType BaseType)808 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
809   // If we're outside the body of a member function, then we'll have a specified
810   // type for 'this'.
811   if (CXXThisTypeOverride.isNull())
812     return false;
813 
814   // Determine whether we're looking into a class that's currently being
815   // defined.
816   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
817   return Class && Class->isBeingDefined();
818 }
819 
820 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)821 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
822                                 SourceLocation LParenLoc,
823                                 MultiExprArg exprs,
824                                 SourceLocation RParenLoc) {
825   if (!TypeRep)
826     return ExprError();
827 
828   TypeSourceInfo *TInfo;
829   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
830   if (!TInfo)
831     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
832 
833   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
834 }
835 
836 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
837 /// Can be interpreted either as function-style casting ("int(x)")
838 /// or class type construction ("ClassType(x,y,z)")
839 /// or creation of a value-initialized type ("int()").
840 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg Exprs,SourceLocation RParenLoc)841 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
842                                 SourceLocation LParenLoc,
843                                 MultiExprArg Exprs,
844                                 SourceLocation RParenLoc) {
845   QualType Ty = TInfo->getType();
846   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
847 
848   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
849     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
850                                                     LParenLoc,
851                                                     Exprs,
852                                                     RParenLoc));
853   }
854 
855   bool ListInitialization = LParenLoc.isInvalid();
856   assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
857          && "List initialization must have initializer list as expression.");
858   SourceRange FullRange = SourceRange(TyBeginLoc,
859       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
860 
861   // C++ [expr.type.conv]p1:
862   // If the expression list is a single expression, the type conversion
863   // expression is equivalent (in definedness, and if defined in meaning) to the
864   // corresponding cast expression.
865   if (Exprs.size() == 1 && !ListInitialization) {
866     Expr *Arg = Exprs[0];
867     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
868   }
869 
870   QualType ElemTy = Ty;
871   if (Ty->isArrayType()) {
872     if (!ListInitialization)
873       return ExprError(Diag(TyBeginLoc,
874                             diag::err_value_init_for_array_type) << FullRange);
875     ElemTy = Context.getBaseElementType(Ty);
876   }
877 
878   if (!Ty->isVoidType() &&
879       RequireCompleteType(TyBeginLoc, ElemTy,
880                           diag::err_invalid_incomplete_type_use, FullRange))
881     return ExprError();
882 
883   if (RequireNonAbstractType(TyBeginLoc, Ty,
884                              diag::err_allocation_of_abstract_type))
885     return ExprError();
886 
887   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
888   InitializationKind Kind =
889       Exprs.size() ? ListInitialization
890       ? InitializationKind::CreateDirectList(TyBeginLoc)
891       : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
892       : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
893   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
894   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
895 
896   if (!Result.isInvalid() && ListInitialization &&
897       isa<InitListExpr>(Result.get())) {
898     // If the list-initialization doesn't involve a constructor call, we'll get
899     // the initializer-list (with corrected type) back, but that's not what we
900     // want, since it will be treated as an initializer list in further
901     // processing. Explicitly insert a cast here.
902     InitListExpr *List = cast<InitListExpr>(Result.take());
903     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
904                                     Expr::getValueKindForType(TInfo->getType()),
905                                                  TInfo, TyBeginLoc, CK_NoOp,
906                                                  List, /*Path=*/0, RParenLoc));
907   }
908 
909   // FIXME: Improve AST representation?
910   return Result;
911 }
912 
913 /// doesUsualArrayDeleteWantSize - Answers whether the usual
914 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)915 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
916                                          QualType allocType) {
917   const RecordType *record =
918     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
919   if (!record) return false;
920 
921   // Try to find an operator delete[] in class scope.
922 
923   DeclarationName deleteName =
924     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
925   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
926   S.LookupQualifiedName(ops, record->getDecl());
927 
928   // We're just doing this for information.
929   ops.suppressDiagnostics();
930 
931   // Very likely: there's no operator delete[].
932   if (ops.empty()) return false;
933 
934   // If it's ambiguous, it should be illegal to call operator delete[]
935   // on this thing, so it doesn't matter if we allocate extra space or not.
936   if (ops.isAmbiguous()) return false;
937 
938   LookupResult::Filter filter = ops.makeFilter();
939   while (filter.hasNext()) {
940     NamedDecl *del = filter.next()->getUnderlyingDecl();
941 
942     // C++0x [basic.stc.dynamic.deallocation]p2:
943     //   A template instance is never a usual deallocation function,
944     //   regardless of its signature.
945     if (isa<FunctionTemplateDecl>(del)) {
946       filter.erase();
947       continue;
948     }
949 
950     // C++0x [basic.stc.dynamic.deallocation]p2:
951     //   If class T does not declare [an operator delete[] with one
952     //   parameter] but does declare a member deallocation function
953     //   named operator delete[] with exactly two parameters, the
954     //   second of which has type std::size_t, then this function
955     //   is a usual deallocation function.
956     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
957       filter.erase();
958       continue;
959     }
960   }
961   filter.done();
962 
963   if (!ops.isSingleResult()) return false;
964 
965   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
966   return (del->getNumParams() == 2);
967 }
968 
969 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
970 ///
971 /// E.g.:
972 /// @code new (memory) int[size][4] @endcode
973 /// or
974 /// @code ::new Foo(23, "hello") @endcode
975 ///
976 /// \param StartLoc The first location of the expression.
977 /// \param UseGlobal True if 'new' was prefixed with '::'.
978 /// \param PlacementLParen Opening paren of the placement arguments.
979 /// \param PlacementArgs Placement new arguments.
980 /// \param PlacementRParen Closing paren of the placement arguments.
981 /// \param TypeIdParens If the type is in parens, the source range.
982 /// \param D The type to be allocated, as well as array dimensions.
983 /// \param Initializer The initializing expression or initializer-list, or null
984 ///   if there is none.
985 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)986 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
987                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
988                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
989                   Declarator &D, Expr *Initializer) {
990   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
991 
992   Expr *ArraySize = 0;
993   // If the specified type is an array, unwrap it and save the expression.
994   if (D.getNumTypeObjects() > 0 &&
995       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
996      DeclaratorChunk &Chunk = D.getTypeObject(0);
997     if (TypeContainsAuto)
998       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
999         << D.getSourceRange());
1000     if (Chunk.Arr.hasStatic)
1001       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1002         << D.getSourceRange());
1003     if (!Chunk.Arr.NumElts)
1004       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1005         << D.getSourceRange());
1006 
1007     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1008     D.DropFirstTypeObject();
1009   }
1010 
1011   // Every dimension shall be of constant size.
1012   if (ArraySize) {
1013     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1014       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1015         break;
1016 
1017       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1018       if (Expr *NumElts = (Expr *)Array.NumElts) {
1019         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1020           if (getLangOpts().CPlusPlus1y) {
1021 	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1022 	    //   shall be a converted constant expression (5.19) of type std::size_t
1023 	    //   and shall evaluate to a strictly positive value.
1024             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1025             assert(IntWidth && "Builtin type of size 0?");
1026             llvm::APSInt Value(IntWidth);
1027             Array.NumElts
1028              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1029                                                 CCEK_NewExpr)
1030                  .take();
1031           } else {
1032             Array.NumElts
1033               = VerifyIntegerConstantExpression(NumElts, 0,
1034                                                 diag::err_new_array_nonconst)
1035                   .take();
1036           }
1037           if (!Array.NumElts)
1038             return ExprError();
1039         }
1040       }
1041     }
1042   }
1043 
1044   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1045   QualType AllocType = TInfo->getType();
1046   if (D.isInvalidType())
1047     return ExprError();
1048 
1049   SourceRange DirectInitRange;
1050   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1051     DirectInitRange = List->getSourceRange();
1052 
1053   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1054                      PlacementLParen,
1055                      PlacementArgs,
1056                      PlacementRParen,
1057                      TypeIdParens,
1058                      AllocType,
1059                      TInfo,
1060                      ArraySize,
1061                      DirectInitRange,
1062                      Initializer,
1063                      TypeContainsAuto);
1064 }
1065 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1066 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1067                                        Expr *Init) {
1068   if (!Init)
1069     return true;
1070   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1071     return PLE->getNumExprs() == 0;
1072   if (isa<ImplicitValueInitExpr>(Init))
1073     return true;
1074   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1075     return !CCE->isListInitialization() &&
1076            CCE->getConstructor()->isDefaultConstructor();
1077   else if (Style == CXXNewExpr::ListInit) {
1078     assert(isa<InitListExpr>(Init) &&
1079            "Shouldn't create list CXXConstructExprs for arrays.");
1080     return true;
1081   }
1082   return false;
1083 }
1084 
1085 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1086 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1087                   SourceLocation PlacementLParen,
1088                   MultiExprArg PlacementArgs,
1089                   SourceLocation PlacementRParen,
1090                   SourceRange TypeIdParens,
1091                   QualType AllocType,
1092                   TypeSourceInfo *AllocTypeInfo,
1093                   Expr *ArraySize,
1094                   SourceRange DirectInitRange,
1095                   Expr *Initializer,
1096                   bool TypeMayContainAuto) {
1097   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1098   SourceLocation StartLoc = Range.getBegin();
1099 
1100   CXXNewExpr::InitializationStyle initStyle;
1101   if (DirectInitRange.isValid()) {
1102     assert(Initializer && "Have parens but no initializer.");
1103     initStyle = CXXNewExpr::CallInit;
1104   } else if (Initializer && isa<InitListExpr>(Initializer))
1105     initStyle = CXXNewExpr::ListInit;
1106   else {
1107     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1108             isa<CXXConstructExpr>(Initializer)) &&
1109            "Initializer expression that cannot have been implicitly created.");
1110     initStyle = CXXNewExpr::NoInit;
1111   }
1112 
1113   Expr **Inits = &Initializer;
1114   unsigned NumInits = Initializer ? 1 : 0;
1115   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1116     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1117     Inits = List->getExprs();
1118     NumInits = List->getNumExprs();
1119   }
1120 
1121   // Determine whether we've already built the initializer.
1122   bool HaveCompleteInit = false;
1123   if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1124       !isa<CXXTemporaryObjectExpr>(Initializer))
1125     HaveCompleteInit = true;
1126   else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1127     HaveCompleteInit = true;
1128 
1129   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1130   if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1131     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1132       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1133                        << AllocType << TypeRange);
1134     if (initStyle == CXXNewExpr::ListInit)
1135       return ExprError(Diag(Inits[0]->getLocStart(),
1136                             diag::err_auto_new_requires_parens)
1137                        << AllocType << TypeRange);
1138     if (NumInits > 1) {
1139       Expr *FirstBad = Inits[1];
1140       return ExprError(Diag(FirstBad->getLocStart(),
1141                             diag::err_auto_new_ctor_multiple_expressions)
1142                        << AllocType << TypeRange);
1143     }
1144     Expr *Deduce = Inits[0];
1145     QualType DeducedType;
1146     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1147       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1148                        << AllocType << Deduce->getType()
1149                        << TypeRange << Deduce->getSourceRange());
1150     if (DeducedType.isNull())
1151       return ExprError();
1152     AllocType = DeducedType;
1153   }
1154 
1155   // Per C++0x [expr.new]p5, the type being constructed may be a
1156   // typedef of an array type.
1157   if (!ArraySize) {
1158     if (const ConstantArrayType *Array
1159                               = Context.getAsConstantArrayType(AllocType)) {
1160       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1161                                          Context.getSizeType(),
1162                                          TypeRange.getEnd());
1163       AllocType = Array->getElementType();
1164     }
1165   }
1166 
1167   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1168     return ExprError();
1169 
1170   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1171     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1172          diag::warn_dangling_std_initializer_list)
1173         << /*at end of FE*/0 << Inits[0]->getSourceRange();
1174   }
1175 
1176   // In ARC, infer 'retaining' for the allocated
1177   if (getLangOpts().ObjCAutoRefCount &&
1178       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1179       AllocType->isObjCLifetimeType()) {
1180     AllocType = Context.getLifetimeQualifiedType(AllocType,
1181                                     AllocType->getObjCARCImplicitLifetime());
1182   }
1183 
1184   QualType ResultType = Context.getPointerType(AllocType);
1185 
1186   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1187     ExprResult result = CheckPlaceholderExpr(ArraySize);
1188     if (result.isInvalid()) return ExprError();
1189     ArraySize = result.take();
1190   }
1191   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1192   //   integral or enumeration type with a non-negative value."
1193   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1194   //   enumeration type, or a class type for which a single non-explicit
1195   //   conversion function to integral or unscoped enumeration type exists.
1196   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1197   //   std::size_t.
1198   if (ArraySize && !ArraySize->isTypeDependent()) {
1199     ExprResult ConvertedSize;
1200     if (getLangOpts().CPlusPlus1y) {
1201       unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1202       assert(IntWidth && "Builtin type of size 0?");
1203       llvm::APSInt Value(IntWidth);
1204       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1205 						AA_Converting);
1206 
1207       if (!ConvertedSize.isInvalid() &&
1208           ArraySize->getType()->getAs<RecordType>())
1209         // Diagnose the compatibility of this conversion.
1210         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1211           << ArraySize->getType() << 0 << "'size_t'";
1212     } else {
1213       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1214       protected:
1215         Expr *ArraySize;
1216 
1217       public:
1218         SizeConvertDiagnoser(Expr *ArraySize)
1219             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1220               ArraySize(ArraySize) {}
1221 
1222         virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1223                                                      QualType T) {
1224           return S.Diag(Loc, diag::err_array_size_not_integral)
1225                    << S.getLangOpts().CPlusPlus11 << T;
1226         }
1227 
1228         virtual SemaDiagnosticBuilder diagnoseIncomplete(
1229             Sema &S, SourceLocation Loc, QualType T) {
1230           return S.Diag(Loc, diag::err_array_size_incomplete_type)
1231                    << T << ArraySize->getSourceRange();
1232         }
1233 
1234         virtual SemaDiagnosticBuilder diagnoseExplicitConv(
1235             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
1236           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1237         }
1238 
1239         virtual SemaDiagnosticBuilder noteExplicitConv(
1240             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
1241           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1242                    << ConvTy->isEnumeralType() << ConvTy;
1243         }
1244 
1245         virtual SemaDiagnosticBuilder diagnoseAmbiguous(
1246             Sema &S, SourceLocation Loc, QualType T) {
1247           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1248         }
1249 
1250         virtual SemaDiagnosticBuilder noteAmbiguous(
1251             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
1252           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1253                    << ConvTy->isEnumeralType() << ConvTy;
1254         }
1255 
1256         virtual SemaDiagnosticBuilder diagnoseConversion(
1257             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
1258           return S.Diag(Loc,
1259                         S.getLangOpts().CPlusPlus11
1260                           ? diag::warn_cxx98_compat_array_size_conversion
1261                           : diag::ext_array_size_conversion)
1262                    << T << ConvTy->isEnumeralType() << ConvTy;
1263         }
1264       } SizeDiagnoser(ArraySize);
1265 
1266       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1267                                                           SizeDiagnoser);
1268     }
1269     if (ConvertedSize.isInvalid())
1270       return ExprError();
1271 
1272     ArraySize = ConvertedSize.take();
1273     QualType SizeType = ArraySize->getType();
1274 
1275     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1276       return ExprError();
1277 
1278     // C++98 [expr.new]p7:
1279     //   The expression in a direct-new-declarator shall have integral type
1280     //   with a non-negative value.
1281     //
1282     // Let's see if this is a constant < 0. If so, we reject it out of
1283     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1284     // array type.
1285     //
1286     // Note: such a construct has well-defined semantics in C++11: it throws
1287     // std::bad_array_new_length.
1288     if (!ArraySize->isValueDependent()) {
1289       llvm::APSInt Value;
1290       // We've already performed any required implicit conversion to integer or
1291       // unscoped enumeration type.
1292       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1293         if (Value < llvm::APSInt(
1294                         llvm::APInt::getNullValue(Value.getBitWidth()),
1295                                  Value.isUnsigned())) {
1296           if (getLangOpts().CPlusPlus11)
1297             Diag(ArraySize->getLocStart(),
1298                  diag::warn_typecheck_negative_array_new_size)
1299               << ArraySize->getSourceRange();
1300           else
1301             return ExprError(Diag(ArraySize->getLocStart(),
1302                                   diag::err_typecheck_negative_array_size)
1303                              << ArraySize->getSourceRange());
1304         } else if (!AllocType->isDependentType()) {
1305           unsigned ActiveSizeBits =
1306             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1307           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1308             if (getLangOpts().CPlusPlus11)
1309               Diag(ArraySize->getLocStart(),
1310                    diag::warn_array_new_too_large)
1311                 << Value.toString(10)
1312                 << ArraySize->getSourceRange();
1313             else
1314               return ExprError(Diag(ArraySize->getLocStart(),
1315                                     diag::err_array_too_large)
1316                                << Value.toString(10)
1317                                << ArraySize->getSourceRange());
1318           }
1319         }
1320       } else if (TypeIdParens.isValid()) {
1321         // Can't have dynamic array size when the type-id is in parentheses.
1322         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1323           << ArraySize->getSourceRange()
1324           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1325           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1326 
1327         TypeIdParens = SourceRange();
1328       }
1329     }
1330 
1331     // Note that we do *not* convert the argument in any way.  It can
1332     // be signed, larger than size_t, whatever.
1333   }
1334 
1335   FunctionDecl *OperatorNew = 0;
1336   FunctionDecl *OperatorDelete = 0;
1337 
1338   if (!AllocType->isDependentType() &&
1339       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1340       FindAllocationFunctions(StartLoc,
1341                               SourceRange(PlacementLParen, PlacementRParen),
1342                               UseGlobal, AllocType, ArraySize, PlacementArgs,
1343                               OperatorNew, OperatorDelete))
1344     return ExprError();
1345 
1346   // If this is an array allocation, compute whether the usual array
1347   // deallocation function for the type has a size_t parameter.
1348   bool UsualArrayDeleteWantsSize = false;
1349   if (ArraySize && !AllocType->isDependentType())
1350     UsualArrayDeleteWantsSize
1351       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1352 
1353   SmallVector<Expr *, 8> AllPlaceArgs;
1354   if (OperatorNew) {
1355     // Add default arguments, if any.
1356     const FunctionProtoType *Proto =
1357       OperatorNew->getType()->getAs<FunctionProtoType>();
1358     VariadicCallType CallType =
1359       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1360 
1361     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1362                                PlacementArgs, AllPlaceArgs, CallType))
1363       return ExprError();
1364 
1365     if (!AllPlaceArgs.empty())
1366       PlacementArgs = AllPlaceArgs;
1367 
1368     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1369 
1370     // FIXME: Missing call to CheckFunctionCall or equivalent
1371   }
1372 
1373   // Warn if the type is over-aligned and is being allocated by global operator
1374   // new.
1375   if (PlacementArgs.empty() && OperatorNew &&
1376       (OperatorNew->isImplicit() ||
1377        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1378     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1379       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1380       if (Align > SuitableAlign)
1381         Diag(StartLoc, diag::warn_overaligned_type)
1382             << AllocType
1383             << unsigned(Align / Context.getCharWidth())
1384             << unsigned(SuitableAlign / Context.getCharWidth());
1385     }
1386   }
1387 
1388   QualType InitType = AllocType;
1389   // Array 'new' can't have any initializers except empty parentheses.
1390   // Initializer lists are also allowed, in C++11. Rely on the parser for the
1391   // dialect distinction.
1392   if (ResultType->isArrayType() || ArraySize) {
1393     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1394       SourceRange InitRange(Inits[0]->getLocStart(),
1395                             Inits[NumInits - 1]->getLocEnd());
1396       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1397       return ExprError();
1398     }
1399     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1400       // We do the initialization typechecking against the array type
1401       // corresponding to the number of initializers + 1 (to also check
1402       // default-initialization).
1403       unsigned NumElements = ILE->getNumInits() + 1;
1404       InitType = Context.getConstantArrayType(AllocType,
1405           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1406                                               ArrayType::Normal, 0);
1407     }
1408   }
1409 
1410   // If we can perform the initialization, and we've not already done so,
1411   // do it now.
1412   if (!AllocType->isDependentType() &&
1413       !Expr::hasAnyTypeDependentArguments(
1414         llvm::makeArrayRef(Inits, NumInits)) &&
1415       !HaveCompleteInit) {
1416     // C++11 [expr.new]p15:
1417     //   A new-expression that creates an object of type T initializes that
1418     //   object as follows:
1419     InitializationKind Kind
1420     //     - If the new-initializer is omitted, the object is default-
1421     //       initialized (8.5); if no initialization is performed,
1422     //       the object has indeterminate value
1423       = initStyle == CXXNewExpr::NoInit
1424           ? InitializationKind::CreateDefault(TypeRange.getBegin())
1425     //     - Otherwise, the new-initializer is interpreted according to the
1426     //       initialization rules of 8.5 for direct-initialization.
1427           : initStyle == CXXNewExpr::ListInit
1428               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1429               : InitializationKind::CreateDirect(TypeRange.getBegin(),
1430                                                  DirectInitRange.getBegin(),
1431                                                  DirectInitRange.getEnd());
1432 
1433     InitializedEntity Entity
1434       = InitializedEntity::InitializeNew(StartLoc, InitType);
1435     InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1436     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1437                                           MultiExprArg(Inits, NumInits));
1438     if (FullInit.isInvalid())
1439       return ExprError();
1440 
1441     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1442     // we don't want the initialized object to be destructed.
1443     if (CXXBindTemporaryExpr *Binder =
1444             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1445       FullInit = Owned(Binder->getSubExpr());
1446 
1447     Initializer = FullInit.take();
1448   }
1449 
1450   // Mark the new and delete operators as referenced.
1451   if (OperatorNew) {
1452     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1453       return ExprError();
1454     MarkFunctionReferenced(StartLoc, OperatorNew);
1455   }
1456   if (OperatorDelete) {
1457     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1458       return ExprError();
1459     MarkFunctionReferenced(StartLoc, OperatorDelete);
1460   }
1461 
1462   // C++0x [expr.new]p17:
1463   //   If the new expression creates an array of objects of class type,
1464   //   access and ambiguity control are done for the destructor.
1465   QualType BaseAllocType = Context.getBaseElementType(AllocType);
1466   if (ArraySize && !BaseAllocType->isDependentType()) {
1467     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1468       if (CXXDestructorDecl *dtor = LookupDestructor(
1469               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1470         MarkFunctionReferenced(StartLoc, dtor);
1471         CheckDestructorAccess(StartLoc, dtor,
1472                               PDiag(diag::err_access_dtor)
1473                                 << BaseAllocType);
1474         if (DiagnoseUseOfDecl(dtor, StartLoc))
1475           return ExprError();
1476       }
1477     }
1478   }
1479 
1480   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1481                                         OperatorDelete,
1482                                         UsualArrayDeleteWantsSize,
1483                                         PlacementArgs, TypeIdParens,
1484                                         ArraySize, initStyle, Initializer,
1485                                         ResultType, AllocTypeInfo,
1486                                         Range, DirectInitRange));
1487 }
1488 
1489 /// \brief Checks that a type is suitable as the allocated type
1490 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1491 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1492                               SourceRange R) {
1493   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1494   //   abstract class type or array thereof.
1495   if (AllocType->isFunctionType())
1496     return Diag(Loc, diag::err_bad_new_type)
1497       << AllocType << 0 << R;
1498   else if (AllocType->isReferenceType())
1499     return Diag(Loc, diag::err_bad_new_type)
1500       << AllocType << 1 << R;
1501   else if (!AllocType->isDependentType() &&
1502            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1503     return true;
1504   else if (RequireNonAbstractType(Loc, AllocType,
1505                                   diag::err_allocation_of_abstract_type))
1506     return true;
1507   else if (AllocType->isVariablyModifiedType())
1508     return Diag(Loc, diag::err_variably_modified_new_type)
1509              << AllocType;
1510   else if (unsigned AddressSpace = AllocType.getAddressSpace())
1511     return Diag(Loc, diag::err_address_space_qualified_new)
1512       << AllocType.getUnqualifiedType() << AddressSpace;
1513   else if (getLangOpts().ObjCAutoRefCount) {
1514     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1515       QualType BaseAllocType = Context.getBaseElementType(AT);
1516       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1517           BaseAllocType->isObjCLifetimeType())
1518         return Diag(Loc, diag::err_arc_new_array_without_ownership)
1519           << BaseAllocType;
1520     }
1521   }
1522 
1523   return false;
1524 }
1525 
1526 /// \brief Determine whether the given function is a non-placement
1527 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1528 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1529   if (FD->isInvalidDecl())
1530     return false;
1531 
1532   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1533     return Method->isUsualDeallocationFunction();
1534 
1535   return ((FD->getOverloadedOperator() == OO_Delete ||
1536            FD->getOverloadedOperator() == OO_Array_Delete) &&
1537           FD->getNumParams() == 1);
1538 }
1539 
1540 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1541 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1542 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1543                                    bool UseGlobal, QualType AllocType,
1544                                    bool IsArray, MultiExprArg PlaceArgs,
1545                                    FunctionDecl *&OperatorNew,
1546                                    FunctionDecl *&OperatorDelete) {
1547   // --- Choosing an allocation function ---
1548   // C++ 5.3.4p8 - 14 & 18
1549   // 1) If UseGlobal is true, only look in the global scope. Else, also look
1550   //   in the scope of the allocated class.
1551   // 2) If an array size is given, look for operator new[], else look for
1552   //   operator new.
1553   // 3) The first argument is always size_t. Append the arguments from the
1554   //   placement form.
1555 
1556   SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1557   // We don't care about the actual value of this argument.
1558   // FIXME: Should the Sema create the expression and embed it in the syntax
1559   // tree? Or should the consumer just recalculate the value?
1560   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1561                       Context.getTargetInfo().getPointerWidth(0)),
1562                       Context.getSizeType(),
1563                       SourceLocation());
1564   AllocArgs[0] = &Size;
1565   std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1566 
1567   // C++ [expr.new]p8:
1568   //   If the allocated type is a non-array type, the allocation
1569   //   function's name is operator new and the deallocation function's
1570   //   name is operator delete. If the allocated type is an array
1571   //   type, the allocation function's name is operator new[] and the
1572   //   deallocation function's name is operator delete[].
1573   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1574                                         IsArray ? OO_Array_New : OO_New);
1575   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1576                                         IsArray ? OO_Array_Delete : OO_Delete);
1577 
1578   QualType AllocElemType = Context.getBaseElementType(AllocType);
1579 
1580   if (AllocElemType->isRecordType() && !UseGlobal) {
1581     CXXRecordDecl *Record
1582       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1583     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1584                                /*AllowMissing=*/true, OperatorNew))
1585       return true;
1586   }
1587 
1588   if (!OperatorNew) {
1589     // Didn't find a member overload. Look for a global one.
1590     DeclareGlobalNewDelete();
1591     DeclContext *TUDecl = Context.getTranslationUnitDecl();
1592     bool FallbackEnabled = IsArray && Context.getLangOpts().MicrosoftMode;
1593     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1594                                /*AllowMissing=*/FallbackEnabled, OperatorNew,
1595                                /*Diagnose=*/!FallbackEnabled)) {
1596       if (!FallbackEnabled)
1597         return true;
1598 
1599       // MSVC will fall back on trying to find a matching global operator new
1600       // if operator new[] cannot be found.  Also, MSVC will leak by not
1601       // generating a call to operator delete or operator delete[], but we
1602       // will not replicate that bug.
1603       NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1604       DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1605       if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1606                                /*AllowMissing=*/false, OperatorNew))
1607       return true;
1608     }
1609   }
1610 
1611   // We don't need an operator delete if we're running under
1612   // -fno-exceptions.
1613   if (!getLangOpts().Exceptions) {
1614     OperatorDelete = 0;
1615     return false;
1616   }
1617 
1618   // FindAllocationOverload can change the passed in arguments, so we need to
1619   // copy them back.
1620   if (!PlaceArgs.empty())
1621     std::copy(AllocArgs.begin() + 1, AllocArgs.end(), PlaceArgs.data());
1622 
1623   // C++ [expr.new]p19:
1624   //
1625   //   If the new-expression begins with a unary :: operator, the
1626   //   deallocation function's name is looked up in the global
1627   //   scope. Otherwise, if the allocated type is a class type T or an
1628   //   array thereof, the deallocation function's name is looked up in
1629   //   the scope of T. If this lookup fails to find the name, or if
1630   //   the allocated type is not a class type or array thereof, the
1631   //   deallocation function's name is looked up in the global scope.
1632   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1633   if (AllocElemType->isRecordType() && !UseGlobal) {
1634     CXXRecordDecl *RD
1635       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1636     LookupQualifiedName(FoundDelete, RD);
1637   }
1638   if (FoundDelete.isAmbiguous())
1639     return true; // FIXME: clean up expressions?
1640 
1641   if (FoundDelete.empty()) {
1642     DeclareGlobalNewDelete();
1643     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1644   }
1645 
1646   FoundDelete.suppressDiagnostics();
1647 
1648   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1649 
1650   // Whether we're looking for a placement operator delete is dictated
1651   // by whether we selected a placement operator new, not by whether
1652   // we had explicit placement arguments.  This matters for things like
1653   //   struct A { void *operator new(size_t, int = 0); ... };
1654   //   A *a = new A()
1655   bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1656 
1657   if (isPlacementNew) {
1658     // C++ [expr.new]p20:
1659     //   A declaration of a placement deallocation function matches the
1660     //   declaration of a placement allocation function if it has the
1661     //   same number of parameters and, after parameter transformations
1662     //   (8.3.5), all parameter types except the first are
1663     //   identical. [...]
1664     //
1665     // To perform this comparison, we compute the function type that
1666     // the deallocation function should have, and use that type both
1667     // for template argument deduction and for comparison purposes.
1668     //
1669     // FIXME: this comparison should ignore CC and the like.
1670     QualType ExpectedFunctionType;
1671     {
1672       const FunctionProtoType *Proto
1673         = OperatorNew->getType()->getAs<FunctionProtoType>();
1674 
1675       SmallVector<QualType, 4> ArgTypes;
1676       ArgTypes.push_back(Context.VoidPtrTy);
1677       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1678         ArgTypes.push_back(Proto->getArgType(I));
1679 
1680       FunctionProtoType::ExtProtoInfo EPI;
1681       EPI.Variadic = Proto->isVariadic();
1682 
1683       ExpectedFunctionType
1684         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1685     }
1686 
1687     for (LookupResult::iterator D = FoundDelete.begin(),
1688                              DEnd = FoundDelete.end();
1689          D != DEnd; ++D) {
1690       FunctionDecl *Fn = 0;
1691       if (FunctionTemplateDecl *FnTmpl
1692             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1693         // Perform template argument deduction to try to match the
1694         // expected function type.
1695         TemplateDeductionInfo Info(StartLoc);
1696         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1697           continue;
1698       } else
1699         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1700 
1701       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1702         Matches.push_back(std::make_pair(D.getPair(), Fn));
1703     }
1704   } else {
1705     // C++ [expr.new]p20:
1706     //   [...] Any non-placement deallocation function matches a
1707     //   non-placement allocation function. [...]
1708     for (LookupResult::iterator D = FoundDelete.begin(),
1709                              DEnd = FoundDelete.end();
1710          D != DEnd; ++D) {
1711       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1712         if (isNonPlacementDeallocationFunction(Fn))
1713           Matches.push_back(std::make_pair(D.getPair(), Fn));
1714     }
1715   }
1716 
1717   // C++ [expr.new]p20:
1718   //   [...] If the lookup finds a single matching deallocation
1719   //   function, that function will be called; otherwise, no
1720   //   deallocation function will be called.
1721   if (Matches.size() == 1) {
1722     OperatorDelete = Matches[0].second;
1723 
1724     // C++0x [expr.new]p20:
1725     //   If the lookup finds the two-parameter form of a usual
1726     //   deallocation function (3.7.4.2) and that function, considered
1727     //   as a placement deallocation function, would have been
1728     //   selected as a match for the allocation function, the program
1729     //   is ill-formed.
1730     if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1731         isNonPlacementDeallocationFunction(OperatorDelete)) {
1732       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1733         << SourceRange(PlaceArgs.front()->getLocStart(),
1734                        PlaceArgs.back()->getLocEnd());
1735       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1736         << DeleteName;
1737     } else {
1738       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1739                             Matches[0].first);
1740     }
1741   }
1742 
1743   return false;
1744 }
1745 
1746 /// FindAllocationOverload - Find an fitting overload for the allocation
1747 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,MultiExprArg Args,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1748 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1749                                   DeclarationName Name, MultiExprArg Args,
1750                                   DeclContext *Ctx,
1751                                   bool AllowMissing, FunctionDecl *&Operator,
1752                                   bool Diagnose) {
1753   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1754   LookupQualifiedName(R, Ctx);
1755   if (R.empty()) {
1756     if (AllowMissing || !Diagnose)
1757       return false;
1758     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1759       << Name << Range;
1760   }
1761 
1762   if (R.isAmbiguous())
1763     return true;
1764 
1765   R.suppressDiagnostics();
1766 
1767   OverloadCandidateSet Candidates(StartLoc);
1768   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1769        Alloc != AllocEnd; ++Alloc) {
1770     // Even member operator new/delete are implicitly treated as
1771     // static, so don't use AddMemberCandidate.
1772     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1773 
1774     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1775       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1776                                    /*ExplicitTemplateArgs=*/0,
1777                                    Args, Candidates,
1778                                    /*SuppressUserConversions=*/false);
1779       continue;
1780     }
1781 
1782     FunctionDecl *Fn = cast<FunctionDecl>(D);
1783     AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1784                          /*SuppressUserConversions=*/false);
1785   }
1786 
1787   // Do the resolution.
1788   OverloadCandidateSet::iterator Best;
1789   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1790   case OR_Success: {
1791     // Got one!
1792     FunctionDecl *FnDecl = Best->Function;
1793     MarkFunctionReferenced(StartLoc, FnDecl);
1794     // The first argument is size_t, and the first parameter must be size_t,
1795     // too. This is checked on declaration and can be assumed. (It can't be
1796     // asserted on, though, since invalid decls are left in there.)
1797     // Watch out for variadic allocator function.
1798     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1799     for (unsigned i = 0; (i < Args.size() && i < NumArgsInFnDecl); ++i) {
1800       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1801                                                        FnDecl->getParamDecl(i));
1802 
1803       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1804         return true;
1805 
1806       ExprResult Result
1807         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1808       if (Result.isInvalid())
1809         return true;
1810 
1811       Args[i] = Result.takeAs<Expr>();
1812     }
1813 
1814     Operator = FnDecl;
1815 
1816     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1817                               Best->FoundDecl, Diagnose) == AR_inaccessible)
1818       return true;
1819 
1820     return false;
1821   }
1822 
1823   case OR_No_Viable_Function:
1824     if (Diagnose) {
1825       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1826         << Name << Range;
1827       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1828     }
1829     return true;
1830 
1831   case OR_Ambiguous:
1832     if (Diagnose) {
1833       Diag(StartLoc, diag::err_ovl_ambiguous_call)
1834         << Name << Range;
1835       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1836     }
1837     return true;
1838 
1839   case OR_Deleted: {
1840     if (Diagnose) {
1841       Diag(StartLoc, diag::err_ovl_deleted_call)
1842         << Best->Function->isDeleted()
1843         << Name
1844         << getDeletedOrUnavailableSuffix(Best->Function)
1845         << Range;
1846       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1847     }
1848     return true;
1849   }
1850   }
1851   llvm_unreachable("Unreachable, bad result from BestViableFunction");
1852 }
1853 
1854 
1855 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1856 /// delete. These are:
1857 /// @code
1858 ///   // C++03:
1859 ///   void* operator new(std::size_t) throw(std::bad_alloc);
1860 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
1861 ///   void operator delete(void *) throw();
1862 ///   void operator delete[](void *) throw();
1863 ///   // C++0x:
1864 ///   void* operator new(std::size_t);
1865 ///   void* operator new[](std::size_t);
1866 ///   void operator delete(void *);
1867 ///   void operator delete[](void *);
1868 /// @endcode
1869 /// C++0x operator delete is implicitly noexcept.
1870 /// Note that the placement and nothrow forms of new are *not* implicitly
1871 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1872 void Sema::DeclareGlobalNewDelete() {
1873   if (GlobalNewDeleteDeclared)
1874     return;
1875 
1876   // C++ [basic.std.dynamic]p2:
1877   //   [...] The following allocation and deallocation functions (18.4) are
1878   //   implicitly declared in global scope in each translation unit of a
1879   //   program
1880   //
1881   //     C++03:
1882   //     void* operator new(std::size_t) throw(std::bad_alloc);
1883   //     void* operator new[](std::size_t) throw(std::bad_alloc);
1884   //     void  operator delete(void*) throw();
1885   //     void  operator delete[](void*) throw();
1886   //     C++0x:
1887   //     void* operator new(std::size_t);
1888   //     void* operator new[](std::size_t);
1889   //     void  operator delete(void*);
1890   //     void  operator delete[](void*);
1891   //
1892   //   These implicit declarations introduce only the function names operator
1893   //   new, operator new[], operator delete, operator delete[].
1894   //
1895   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1896   // "std" or "bad_alloc" as necessary to form the exception specification.
1897   // However, we do not make these implicit declarations visible to name
1898   // lookup.
1899   // Note that the C++0x versions of operator delete are deallocation functions,
1900   // and thus are implicitly noexcept.
1901   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1902     // The "std::bad_alloc" class has not yet been declared, so build it
1903     // implicitly.
1904     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1905                                         getOrCreateStdNamespace(),
1906                                         SourceLocation(), SourceLocation(),
1907                                       &PP.getIdentifierTable().get("bad_alloc"),
1908                                         0);
1909     getStdBadAlloc()->setImplicit(true);
1910   }
1911 
1912   GlobalNewDeleteDeclared = true;
1913 
1914   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1915   QualType SizeT = Context.getSizeType();
1916   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1917 
1918   DeclareGlobalAllocationFunction(
1919       Context.DeclarationNames.getCXXOperatorName(OO_New),
1920       VoidPtr, SizeT, AssumeSaneOperatorNew);
1921   DeclareGlobalAllocationFunction(
1922       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1923       VoidPtr, SizeT, AssumeSaneOperatorNew);
1924   DeclareGlobalAllocationFunction(
1925       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1926       Context.VoidTy, VoidPtr);
1927   DeclareGlobalAllocationFunction(
1928       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1929       Context.VoidTy, VoidPtr);
1930 }
1931 
1932 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1933 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1934 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1935                                            QualType Return, QualType Argument,
1936                                            bool AddMallocAttr) {
1937   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1938 
1939   // Check if this function is already declared.
1940   {
1941     DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1942     for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1943          Alloc != AllocEnd; ++Alloc) {
1944       // Only look at non-template functions, as it is the predefined,
1945       // non-templated allocation function we are trying to declare here.
1946       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1947         QualType InitialParamType =
1948           Context.getCanonicalType(
1949             Func->getParamDecl(0)->getType().getUnqualifiedType());
1950         // FIXME: Do we need to check for default arguments here?
1951         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1952           if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
1953             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1954           // Make the function visible to name lookup, even if we found it in an
1955           // unimported module. It either is an implicitly-declared global
1956           // allocation function, or is suppressing that function.
1957           Func->setHidden(false);
1958           return;
1959         }
1960       }
1961     }
1962   }
1963 
1964   QualType BadAllocType;
1965   bool HasBadAllocExceptionSpec
1966     = (Name.getCXXOverloadedOperator() == OO_New ||
1967        Name.getCXXOverloadedOperator() == OO_Array_New);
1968   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1969     assert(StdBadAlloc && "Must have std::bad_alloc declared");
1970     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1971   }
1972 
1973   FunctionProtoType::ExtProtoInfo EPI;
1974   if (HasBadAllocExceptionSpec) {
1975     if (!getLangOpts().CPlusPlus11) {
1976       EPI.ExceptionSpecType = EST_Dynamic;
1977       EPI.NumExceptions = 1;
1978       EPI.Exceptions = &BadAllocType;
1979     }
1980   } else {
1981     EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1982                                 EST_BasicNoexcept : EST_DynamicNone;
1983   }
1984 
1985   QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1986   FunctionDecl *Alloc =
1987     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1988                          SourceLocation(), Name,
1989                          FnType, /*TInfo=*/0, SC_None, false, true);
1990   Alloc->setImplicit();
1991 
1992   if (AddMallocAttr)
1993     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1994 
1995   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1996                                            SourceLocation(), 0,
1997                                            Argument, /*TInfo=*/0,
1998                                            SC_None, 0);
1999   Alloc->setParams(Param);
2000 
2001   // FIXME: Also add this declaration to the IdentifierResolver, but
2002   // make sure it is at the end of the chain to coincide with the
2003   // global scope.
2004   Context.getTranslationUnitDecl()->addDecl(Alloc);
2005 }
2006 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2007 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2008                                     DeclarationName Name,
2009                                     FunctionDecl* &Operator, bool Diagnose) {
2010   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2011   // Try to find operator delete/operator delete[] in class scope.
2012   LookupQualifiedName(Found, RD);
2013 
2014   if (Found.isAmbiguous())
2015     return true;
2016 
2017   Found.suppressDiagnostics();
2018 
2019   SmallVector<DeclAccessPair,4> Matches;
2020   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2021        F != FEnd; ++F) {
2022     NamedDecl *ND = (*F)->getUnderlyingDecl();
2023 
2024     // Ignore template operator delete members from the check for a usual
2025     // deallocation function.
2026     if (isa<FunctionTemplateDecl>(ND))
2027       continue;
2028 
2029     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2030       Matches.push_back(F.getPair());
2031   }
2032 
2033   // There's exactly one suitable operator;  pick it.
2034   if (Matches.size() == 1) {
2035     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2036 
2037     if (Operator->isDeleted()) {
2038       if (Diagnose) {
2039         Diag(StartLoc, diag::err_deleted_function_use);
2040         NoteDeletedFunction(Operator);
2041       }
2042       return true;
2043     }
2044 
2045     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2046                               Matches[0], Diagnose) == AR_inaccessible)
2047       return true;
2048 
2049     return false;
2050 
2051   // We found multiple suitable operators;  complain about the ambiguity.
2052   } else if (!Matches.empty()) {
2053     if (Diagnose) {
2054       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2055         << Name << RD;
2056 
2057       for (SmallVectorImpl<DeclAccessPair>::iterator
2058              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2059         Diag((*F)->getUnderlyingDecl()->getLocation(),
2060              diag::note_member_declared_here) << Name;
2061     }
2062     return true;
2063   }
2064 
2065   // We did find operator delete/operator delete[] declarations, but
2066   // none of them were suitable.
2067   if (!Found.empty()) {
2068     if (Diagnose) {
2069       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2070         << Name << RD;
2071 
2072       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2073            F != FEnd; ++F)
2074         Diag((*F)->getUnderlyingDecl()->getLocation(),
2075              diag::note_member_declared_here) << Name;
2076     }
2077     return true;
2078   }
2079 
2080   // Look for a global declaration.
2081   DeclareGlobalNewDelete();
2082   DeclContext *TUDecl = Context.getTranslationUnitDecl();
2083 
2084   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2085   Expr *DeallocArgs[1] = { &Null };
2086   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2087                              DeallocArgs, TUDecl, !Diagnose,
2088                              Operator, Diagnose))
2089     return true;
2090 
2091   assert(Operator && "Did not find a deallocation function!");
2092   return false;
2093 }
2094 
2095 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2096 /// @code ::delete ptr; @endcode
2097 /// or
2098 /// @code delete [] ptr; @endcode
2099 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2100 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2101                      bool ArrayForm, Expr *ExE) {
2102   // C++ [expr.delete]p1:
2103   //   The operand shall have a pointer type, or a class type having a single
2104   //   non-explicit conversion function to a pointer type. The result has type
2105   //   void.
2106   //
2107   // DR599 amends "pointer type" to "pointer to object type" in both cases.
2108 
2109   ExprResult Ex = Owned(ExE);
2110   FunctionDecl *OperatorDelete = 0;
2111   bool ArrayFormAsWritten = ArrayForm;
2112   bool UsualArrayDeleteWantsSize = false;
2113 
2114   if (!Ex.get()->isTypeDependent()) {
2115     // Perform lvalue-to-rvalue cast, if needed.
2116     Ex = DefaultLvalueConversion(Ex.take());
2117     if (Ex.isInvalid())
2118       return ExprError();
2119 
2120     QualType Type = Ex.get()->getType();
2121 
2122     class DeleteConverter : public ContextualImplicitConverter {
2123     public:
2124       DeleteConverter() : ContextualImplicitConverter(false, true) {}
2125 
2126       bool match(QualType ConvType) {
2127         // FIXME: If we have an operator T* and an operator void*, we must pick
2128         // the operator T*.
2129         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2130           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2131             return true;
2132         return false;
2133       }
2134 
2135       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2136                                             QualType T) {
2137         return S.Diag(Loc, diag::err_delete_operand) << T;
2138       }
2139 
2140       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2141                                                QualType T) {
2142         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2143       }
2144 
2145       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2146                                                  QualType T, QualType ConvTy) {
2147         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2148       }
2149 
2150       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2151                                              QualType ConvTy) {
2152         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2153           << ConvTy;
2154       }
2155 
2156       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2157                                               QualType T) {
2158         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2159       }
2160 
2161       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2162                                           QualType ConvTy) {
2163         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2164           << ConvTy;
2165       }
2166 
2167       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2168                                                QualType T, QualType ConvTy) {
2169         llvm_unreachable("conversion functions are permitted");
2170       }
2171     } Converter;
2172 
2173     Ex = PerformContextualImplicitConversion(StartLoc, Ex.take(), Converter);
2174     if (Ex.isInvalid())
2175       return ExprError();
2176     Type = Ex.get()->getType();
2177     if (!Converter.match(Type))
2178       // FIXME: PerformContextualImplicitConversion should return ExprError
2179       //        itself in this case.
2180       return ExprError();
2181 
2182     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2183     QualType PointeeElem = Context.getBaseElementType(Pointee);
2184 
2185     if (unsigned AddressSpace = Pointee.getAddressSpace())
2186       return Diag(Ex.get()->getLocStart(),
2187                   diag::err_address_space_qualified_delete)
2188                << Pointee.getUnqualifiedType() << AddressSpace;
2189 
2190     CXXRecordDecl *PointeeRD = 0;
2191     if (Pointee->isVoidType() && !isSFINAEContext()) {
2192       // The C++ standard bans deleting a pointer to a non-object type, which
2193       // effectively bans deletion of "void*". However, most compilers support
2194       // this, so we treat it as a warning unless we're in a SFINAE context.
2195       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2196         << Type << Ex.get()->getSourceRange();
2197     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2198       return ExprError(Diag(StartLoc, diag::err_delete_operand)
2199         << Type << Ex.get()->getSourceRange());
2200     } else if (!Pointee->isDependentType()) {
2201       if (!RequireCompleteType(StartLoc, Pointee,
2202                                diag::warn_delete_incomplete, Ex.get())) {
2203         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2204           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2205       }
2206     }
2207 
2208     // C++ [expr.delete]p2:
2209     //   [Note: a pointer to a const type can be the operand of a
2210     //   delete-expression; it is not necessary to cast away the constness
2211     //   (5.2.11) of the pointer expression before it is used as the operand
2212     //   of the delete-expression. ]
2213 
2214     if (Pointee->isArrayType() && !ArrayForm) {
2215       Diag(StartLoc, diag::warn_delete_array_type)
2216           << Type << Ex.get()->getSourceRange()
2217           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2218       ArrayForm = true;
2219     }
2220 
2221     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2222                                       ArrayForm ? OO_Array_Delete : OO_Delete);
2223 
2224     if (PointeeRD) {
2225       if (!UseGlobal &&
2226           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2227                                    OperatorDelete))
2228         return ExprError();
2229 
2230       // If we're allocating an array of records, check whether the
2231       // usual operator delete[] has a size_t parameter.
2232       if (ArrayForm) {
2233         // If the user specifically asked to use the global allocator,
2234         // we'll need to do the lookup into the class.
2235         if (UseGlobal)
2236           UsualArrayDeleteWantsSize =
2237             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2238 
2239         // Otherwise, the usual operator delete[] should be the
2240         // function we just found.
2241         else if (isa<CXXMethodDecl>(OperatorDelete))
2242           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2243       }
2244 
2245       if (!PointeeRD->hasIrrelevantDestructor())
2246         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2247           MarkFunctionReferenced(StartLoc,
2248                                     const_cast<CXXDestructorDecl*>(Dtor));
2249           if (DiagnoseUseOfDecl(Dtor, StartLoc))
2250             return ExprError();
2251         }
2252 
2253       // C++ [expr.delete]p3:
2254       //   In the first alternative (delete object), if the static type of the
2255       //   object to be deleted is different from its dynamic type, the static
2256       //   type shall be a base class of the dynamic type of the object to be
2257       //   deleted and the static type shall have a virtual destructor or the
2258       //   behavior is undefined.
2259       //
2260       // Note: a final class cannot be derived from, no issue there
2261       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2262         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2263         if (dtor && !dtor->isVirtual()) {
2264           if (PointeeRD->isAbstract()) {
2265             // If the class is abstract, we warn by default, because we're
2266             // sure the code has undefined behavior.
2267             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2268                 << PointeeElem;
2269           } else if (!ArrayForm) {
2270             // Otherwise, if this is not an array delete, it's a bit suspect,
2271             // but not necessarily wrong.
2272             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2273           }
2274         }
2275       }
2276 
2277     }
2278 
2279     if (!OperatorDelete) {
2280       // Look for a global declaration.
2281       DeclareGlobalNewDelete();
2282       DeclContext *TUDecl = Context.getTranslationUnitDecl();
2283       Expr *Arg = Ex.get();
2284       if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2285         Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2286                                        CK_BitCast, Arg, 0, VK_RValue);
2287       Expr *DeallocArgs[1] = { Arg };
2288       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2289                                  DeallocArgs, TUDecl, /*AllowMissing=*/false,
2290                                  OperatorDelete))
2291         return ExprError();
2292     }
2293 
2294     MarkFunctionReferenced(StartLoc, OperatorDelete);
2295 
2296     // Check access and ambiguity of operator delete and destructor.
2297     if (PointeeRD) {
2298       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2299           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2300                       PDiag(diag::err_access_dtor) << PointeeElem);
2301       }
2302     }
2303   }
2304 
2305   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2306                                            ArrayFormAsWritten,
2307                                            UsualArrayDeleteWantsSize,
2308                                            OperatorDelete, Ex.take(), StartLoc));
2309 }
2310 
2311 /// \brief Check the use of the given variable as a C++ condition in an if,
2312 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2313 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2314                                         SourceLocation StmtLoc,
2315                                         bool ConvertToBoolean) {
2316   if (ConditionVar->isInvalidDecl())
2317     return ExprError();
2318 
2319   QualType T = ConditionVar->getType();
2320 
2321   // C++ [stmt.select]p2:
2322   //   The declarator shall not specify a function or an array.
2323   if (T->isFunctionType())
2324     return ExprError(Diag(ConditionVar->getLocation(),
2325                           diag::err_invalid_use_of_function_type)
2326                        << ConditionVar->getSourceRange());
2327   else if (T->isArrayType())
2328     return ExprError(Diag(ConditionVar->getLocation(),
2329                           diag::err_invalid_use_of_array_type)
2330                      << ConditionVar->getSourceRange());
2331 
2332   ExprResult Condition =
2333     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2334                               SourceLocation(),
2335                               ConditionVar,
2336                               /*enclosing*/ false,
2337                               ConditionVar->getLocation(),
2338                               ConditionVar->getType().getNonReferenceType(),
2339                               VK_LValue));
2340 
2341   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2342 
2343   if (ConvertToBoolean) {
2344     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2345     if (Condition.isInvalid())
2346       return ExprError();
2347   }
2348 
2349   return Condition;
2350 }
2351 
2352 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2353 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2354   // C++ 6.4p4:
2355   // The value of a condition that is an initialized declaration in a statement
2356   // other than a switch statement is the value of the declared variable
2357   // implicitly converted to type bool. If that conversion is ill-formed, the
2358   // program is ill-formed.
2359   // The value of a condition that is an expression is the value of the
2360   // expression, implicitly converted to bool.
2361   //
2362   return PerformContextuallyConvertToBool(CondExpr);
2363 }
2364 
2365 /// Helper function to determine whether this is the (deprecated) C++
2366 /// conversion from a string literal to a pointer to non-const char or
2367 /// non-const wchar_t (for narrow and wide string literals,
2368 /// respectively).
2369 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2370 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2371   // Look inside the implicit cast, if it exists.
2372   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2373     From = Cast->getSubExpr();
2374 
2375   // A string literal (2.13.4) that is not a wide string literal can
2376   // be converted to an rvalue of type "pointer to char"; a wide
2377   // string literal can be converted to an rvalue of type "pointer
2378   // to wchar_t" (C++ 4.2p2).
2379   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2380     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2381       if (const BuiltinType *ToPointeeType
2382           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2383         // This conversion is considered only when there is an
2384         // explicit appropriate pointer target type (C++ 4.2p2).
2385         if (!ToPtrType->getPointeeType().hasQualifiers()) {
2386           switch (StrLit->getKind()) {
2387             case StringLiteral::UTF8:
2388             case StringLiteral::UTF16:
2389             case StringLiteral::UTF32:
2390               // We don't allow UTF literals to be implicitly converted
2391               break;
2392             case StringLiteral::Ascii:
2393               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2394                       ToPointeeType->getKind() == BuiltinType::Char_S);
2395             case StringLiteral::Wide:
2396               return ToPointeeType->isWideCharType();
2397           }
2398         }
2399       }
2400 
2401   return false;
2402 }
2403 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2404 static ExprResult BuildCXXCastArgument(Sema &S,
2405                                        SourceLocation CastLoc,
2406                                        QualType Ty,
2407                                        CastKind Kind,
2408                                        CXXMethodDecl *Method,
2409                                        DeclAccessPair FoundDecl,
2410                                        bool HadMultipleCandidates,
2411                                        Expr *From) {
2412   switch (Kind) {
2413   default: llvm_unreachable("Unhandled cast kind!");
2414   case CK_ConstructorConversion: {
2415     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2416     SmallVector<Expr*, 8> ConstructorArgs;
2417 
2418     if (S.RequireNonAbstractType(CastLoc, Ty,
2419                                  diag::err_allocation_of_abstract_type))
2420       return ExprError();
2421 
2422     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2423       return ExprError();
2424 
2425     S.CheckConstructorAccess(CastLoc, Constructor,
2426                              InitializedEntity::InitializeTemporary(Ty),
2427                              Constructor->getAccess());
2428 
2429     ExprResult Result
2430       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2431                                 ConstructorArgs, HadMultipleCandidates,
2432                                 /*ListInit*/ false, /*ZeroInit*/ false,
2433                                 CXXConstructExpr::CK_Complete, SourceRange());
2434     if (Result.isInvalid())
2435       return ExprError();
2436 
2437     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2438   }
2439 
2440   case CK_UserDefinedConversion: {
2441     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2442 
2443     // Create an implicit call expr that calls it.
2444     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2445     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2446                                                  HadMultipleCandidates);
2447     if (Result.isInvalid())
2448       return ExprError();
2449     // Record usage of conversion in an implicit cast.
2450     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2451                                               Result.get()->getType(),
2452                                               CK_UserDefinedConversion,
2453                                               Result.get(), 0,
2454                                               Result.get()->getValueKind()));
2455 
2456     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2457 
2458     return S.MaybeBindToTemporary(Result.get());
2459   }
2460   }
2461 }
2462 
2463 /// PerformImplicitConversion - Perform an implicit conversion of the
2464 /// expression From to the type ToType using the pre-computed implicit
2465 /// conversion sequence ICS. Returns the converted
2466 /// expression. Action is the kind of conversion we're performing,
2467 /// used in the error message.
2468 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2469 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2470                                 const ImplicitConversionSequence &ICS,
2471                                 AssignmentAction Action,
2472                                 CheckedConversionKind CCK) {
2473   switch (ICS.getKind()) {
2474   case ImplicitConversionSequence::StandardConversion: {
2475     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2476                                                Action, CCK);
2477     if (Res.isInvalid())
2478       return ExprError();
2479     From = Res.take();
2480     break;
2481   }
2482 
2483   case ImplicitConversionSequence::UserDefinedConversion: {
2484 
2485       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2486       CastKind CastKind;
2487       QualType BeforeToType;
2488       assert(FD && "FIXME: aggregate initialization from init list");
2489       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2490         CastKind = CK_UserDefinedConversion;
2491 
2492         // If the user-defined conversion is specified by a conversion function,
2493         // the initial standard conversion sequence converts the source type to
2494         // the implicit object parameter of the conversion function.
2495         BeforeToType = Context.getTagDeclType(Conv->getParent());
2496       } else {
2497         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2498         CastKind = CK_ConstructorConversion;
2499         // Do no conversion if dealing with ... for the first conversion.
2500         if (!ICS.UserDefined.EllipsisConversion) {
2501           // If the user-defined conversion is specified by a constructor, the
2502           // initial standard conversion sequence converts the source type to the
2503           // type required by the argument of the constructor
2504           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2505         }
2506       }
2507       // Watch out for ellipsis conversion.
2508       if (!ICS.UserDefined.EllipsisConversion) {
2509         ExprResult Res =
2510           PerformImplicitConversion(From, BeforeToType,
2511                                     ICS.UserDefined.Before, AA_Converting,
2512                                     CCK);
2513         if (Res.isInvalid())
2514           return ExprError();
2515         From = Res.take();
2516       }
2517 
2518       ExprResult CastArg
2519         = BuildCXXCastArgument(*this,
2520                                From->getLocStart(),
2521                                ToType.getNonReferenceType(),
2522                                CastKind, cast<CXXMethodDecl>(FD),
2523                                ICS.UserDefined.FoundConversionFunction,
2524                                ICS.UserDefined.HadMultipleCandidates,
2525                                From);
2526 
2527       if (CastArg.isInvalid())
2528         return ExprError();
2529 
2530       From = CastArg.take();
2531 
2532       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2533                                        AA_Converting, CCK);
2534   }
2535 
2536   case ImplicitConversionSequence::AmbiguousConversion:
2537     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2538                           PDiag(diag::err_typecheck_ambiguous_condition)
2539                             << From->getSourceRange());
2540      return ExprError();
2541 
2542   case ImplicitConversionSequence::EllipsisConversion:
2543     llvm_unreachable("Cannot perform an ellipsis conversion");
2544 
2545   case ImplicitConversionSequence::BadConversion:
2546     return ExprError();
2547   }
2548 
2549   // Everything went well.
2550   return Owned(From);
2551 }
2552 
2553 /// PerformImplicitConversion - Perform an implicit conversion of the
2554 /// expression From to the type ToType by following the standard
2555 /// conversion sequence SCS. Returns the converted
2556 /// expression. Flavor is the context in which we're performing this
2557 /// conversion, for use in error messages.
2558 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2559 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2560                                 const StandardConversionSequence& SCS,
2561                                 AssignmentAction Action,
2562                                 CheckedConversionKind CCK) {
2563   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2564 
2565   // Overall FIXME: we are recomputing too many types here and doing far too
2566   // much extra work. What this means is that we need to keep track of more
2567   // information that is computed when we try the implicit conversion initially,
2568   // so that we don't need to recompute anything here.
2569   QualType FromType = From->getType();
2570 
2571   if (SCS.CopyConstructor) {
2572     // FIXME: When can ToType be a reference type?
2573     assert(!ToType->isReferenceType());
2574     if (SCS.Second == ICK_Derived_To_Base) {
2575       SmallVector<Expr*, 8> ConstructorArgs;
2576       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2577                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
2578                                   ConstructorArgs))
2579         return ExprError();
2580       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2581                                    ToType, SCS.CopyConstructor,
2582                                    ConstructorArgs,
2583                                    /*HadMultipleCandidates*/ false,
2584                                    /*ListInit*/ false, /*ZeroInit*/ false,
2585                                    CXXConstructExpr::CK_Complete,
2586                                    SourceRange());
2587     }
2588     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2589                                  ToType, SCS.CopyConstructor,
2590                                  From, /*HadMultipleCandidates*/ false,
2591                                  /*ListInit*/ false, /*ZeroInit*/ false,
2592                                  CXXConstructExpr::CK_Complete,
2593                                  SourceRange());
2594   }
2595 
2596   // Resolve overloaded function references.
2597   if (Context.hasSameType(FromType, Context.OverloadTy)) {
2598     DeclAccessPair Found;
2599     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2600                                                           true, Found);
2601     if (!Fn)
2602       return ExprError();
2603 
2604     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2605       return ExprError();
2606 
2607     From = FixOverloadedFunctionReference(From, Found, Fn);
2608     FromType = From->getType();
2609   }
2610 
2611   // If we're converting to an atomic type, first convert to the corresponding
2612   // non-atomic type.
2613   QualType ToAtomicType;
2614   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2615     ToAtomicType = ToType;
2616     ToType = ToAtomic->getValueType();
2617   }
2618 
2619   // Perform the first implicit conversion.
2620   switch (SCS.First) {
2621   case ICK_Identity:
2622     // Nothing to do.
2623     break;
2624 
2625   case ICK_Lvalue_To_Rvalue: {
2626     assert(From->getObjectKind() != OK_ObjCProperty);
2627     FromType = FromType.getUnqualifiedType();
2628     ExprResult FromRes = DefaultLvalueConversion(From);
2629     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2630     From = FromRes.take();
2631     break;
2632   }
2633 
2634   case ICK_Array_To_Pointer:
2635     FromType = Context.getArrayDecayedType(FromType);
2636     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2637                              VK_RValue, /*BasePath=*/0, CCK).take();
2638     break;
2639 
2640   case ICK_Function_To_Pointer:
2641     FromType = Context.getPointerType(FromType);
2642     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2643                              VK_RValue, /*BasePath=*/0, CCK).take();
2644     break;
2645 
2646   default:
2647     llvm_unreachable("Improper first standard conversion");
2648   }
2649 
2650   // Perform the second implicit conversion
2651   switch (SCS.Second) {
2652   case ICK_Identity:
2653     // If both sides are functions (or pointers/references to them), there could
2654     // be incompatible exception declarations.
2655     if (CheckExceptionSpecCompatibility(From, ToType))
2656       return ExprError();
2657     // Nothing else to do.
2658     break;
2659 
2660   case ICK_NoReturn_Adjustment:
2661     // If both sides are functions (or pointers/references to them), there could
2662     // be incompatible exception declarations.
2663     if (CheckExceptionSpecCompatibility(From, ToType))
2664       return ExprError();
2665 
2666     From = ImpCastExprToType(From, ToType, CK_NoOp,
2667                              VK_RValue, /*BasePath=*/0, CCK).take();
2668     break;
2669 
2670   case ICK_Integral_Promotion:
2671   case ICK_Integral_Conversion:
2672     if (ToType->isBooleanType()) {
2673       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2674              SCS.Second == ICK_Integral_Promotion &&
2675              "only enums with fixed underlying type can promote to bool");
2676       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2677                                VK_RValue, /*BasePath=*/0, CCK).take();
2678     } else {
2679       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2680                                VK_RValue, /*BasePath=*/0, CCK).take();
2681     }
2682     break;
2683 
2684   case ICK_Floating_Promotion:
2685   case ICK_Floating_Conversion:
2686     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2687                              VK_RValue, /*BasePath=*/0, CCK).take();
2688     break;
2689 
2690   case ICK_Complex_Promotion:
2691   case ICK_Complex_Conversion: {
2692     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2693     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2694     CastKind CK;
2695     if (FromEl->isRealFloatingType()) {
2696       if (ToEl->isRealFloatingType())
2697         CK = CK_FloatingComplexCast;
2698       else
2699         CK = CK_FloatingComplexToIntegralComplex;
2700     } else if (ToEl->isRealFloatingType()) {
2701       CK = CK_IntegralComplexToFloatingComplex;
2702     } else {
2703       CK = CK_IntegralComplexCast;
2704     }
2705     From = ImpCastExprToType(From, ToType, CK,
2706                              VK_RValue, /*BasePath=*/0, CCK).take();
2707     break;
2708   }
2709 
2710   case ICK_Floating_Integral:
2711     if (ToType->isRealFloatingType())
2712       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2713                                VK_RValue, /*BasePath=*/0, CCK).take();
2714     else
2715       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2716                                VK_RValue, /*BasePath=*/0, CCK).take();
2717     break;
2718 
2719   case ICK_Compatible_Conversion:
2720       From = ImpCastExprToType(From, ToType, CK_NoOp,
2721                                VK_RValue, /*BasePath=*/0, CCK).take();
2722     break;
2723 
2724   case ICK_Writeback_Conversion:
2725   case ICK_Pointer_Conversion: {
2726     if (SCS.IncompatibleObjC && Action != AA_Casting) {
2727       // Diagnose incompatible Objective-C conversions
2728       if (Action == AA_Initializing || Action == AA_Assigning)
2729         Diag(From->getLocStart(),
2730              diag::ext_typecheck_convert_incompatible_pointer)
2731           << ToType << From->getType() << Action
2732           << From->getSourceRange() << 0;
2733       else
2734         Diag(From->getLocStart(),
2735              diag::ext_typecheck_convert_incompatible_pointer)
2736           << From->getType() << ToType << Action
2737           << From->getSourceRange() << 0;
2738 
2739       if (From->getType()->isObjCObjectPointerType() &&
2740           ToType->isObjCObjectPointerType())
2741         EmitRelatedResultTypeNote(From);
2742     }
2743     else if (getLangOpts().ObjCAutoRefCount &&
2744              !CheckObjCARCUnavailableWeakConversion(ToType,
2745                                                     From->getType())) {
2746       if (Action == AA_Initializing)
2747         Diag(From->getLocStart(),
2748              diag::err_arc_weak_unavailable_assign);
2749       else
2750         Diag(From->getLocStart(),
2751              diag::err_arc_convesion_of_weak_unavailable)
2752           << (Action == AA_Casting) << From->getType() << ToType
2753           << From->getSourceRange();
2754     }
2755 
2756     CastKind Kind = CK_Invalid;
2757     CXXCastPath BasePath;
2758     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2759       return ExprError();
2760 
2761     // Make sure we extend blocks if necessary.
2762     // FIXME: doing this here is really ugly.
2763     if (Kind == CK_BlockPointerToObjCPointerCast) {
2764       ExprResult E = From;
2765       (void) PrepareCastToObjCObjectPointer(E);
2766       From = E.take();
2767     }
2768     if (getLangOpts().ObjCAutoRefCount)
2769       CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
2770     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2771              .take();
2772     break;
2773   }
2774 
2775   case ICK_Pointer_Member: {
2776     CastKind Kind = CK_Invalid;
2777     CXXCastPath BasePath;
2778     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2779       return ExprError();
2780     if (CheckExceptionSpecCompatibility(From, ToType))
2781       return ExprError();
2782     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2783              .take();
2784     break;
2785   }
2786 
2787   case ICK_Boolean_Conversion:
2788     // Perform half-to-boolean conversion via float.
2789     if (From->getType()->isHalfType()) {
2790       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2791       FromType = Context.FloatTy;
2792     }
2793 
2794     From = ImpCastExprToType(From, Context.BoolTy,
2795                              ScalarTypeToBooleanCastKind(FromType),
2796                              VK_RValue, /*BasePath=*/0, CCK).take();
2797     break;
2798 
2799   case ICK_Derived_To_Base: {
2800     CXXCastPath BasePath;
2801     if (CheckDerivedToBaseConversion(From->getType(),
2802                                      ToType.getNonReferenceType(),
2803                                      From->getLocStart(),
2804                                      From->getSourceRange(),
2805                                      &BasePath,
2806                                      CStyle))
2807       return ExprError();
2808 
2809     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2810                       CK_DerivedToBase, From->getValueKind(),
2811                       &BasePath, CCK).take();
2812     break;
2813   }
2814 
2815   case ICK_Vector_Conversion:
2816     From = ImpCastExprToType(From, ToType, CK_BitCast,
2817                              VK_RValue, /*BasePath=*/0, CCK).take();
2818     break;
2819 
2820   case ICK_Vector_Splat:
2821     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2822                              VK_RValue, /*BasePath=*/0, CCK).take();
2823     break;
2824 
2825   case ICK_Complex_Real:
2826     // Case 1.  x -> _Complex y
2827     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2828       QualType ElType = ToComplex->getElementType();
2829       bool isFloatingComplex = ElType->isRealFloatingType();
2830 
2831       // x -> y
2832       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2833         // do nothing
2834       } else if (From->getType()->isRealFloatingType()) {
2835         From = ImpCastExprToType(From, ElType,
2836                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2837       } else {
2838         assert(From->getType()->isIntegerType());
2839         From = ImpCastExprToType(From, ElType,
2840                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2841       }
2842       // y -> _Complex y
2843       From = ImpCastExprToType(From, ToType,
2844                    isFloatingComplex ? CK_FloatingRealToComplex
2845                                      : CK_IntegralRealToComplex).take();
2846 
2847     // Case 2.  _Complex x -> y
2848     } else {
2849       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2850       assert(FromComplex);
2851 
2852       QualType ElType = FromComplex->getElementType();
2853       bool isFloatingComplex = ElType->isRealFloatingType();
2854 
2855       // _Complex x -> x
2856       From = ImpCastExprToType(From, ElType,
2857                    isFloatingComplex ? CK_FloatingComplexToReal
2858                                      : CK_IntegralComplexToReal,
2859                                VK_RValue, /*BasePath=*/0, CCK).take();
2860 
2861       // x -> y
2862       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2863         // do nothing
2864       } else if (ToType->isRealFloatingType()) {
2865         From = ImpCastExprToType(From, ToType,
2866                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2867                                  VK_RValue, /*BasePath=*/0, CCK).take();
2868       } else {
2869         assert(ToType->isIntegerType());
2870         From = ImpCastExprToType(From, ToType,
2871                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2872                                  VK_RValue, /*BasePath=*/0, CCK).take();
2873       }
2874     }
2875     break;
2876 
2877   case ICK_Block_Pointer_Conversion: {
2878     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2879                              VK_RValue, /*BasePath=*/0, CCK).take();
2880     break;
2881   }
2882 
2883   case ICK_TransparentUnionConversion: {
2884     ExprResult FromRes = Owned(From);
2885     Sema::AssignConvertType ConvTy =
2886       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2887     if (FromRes.isInvalid())
2888       return ExprError();
2889     From = FromRes.take();
2890     assert ((ConvTy == Sema::Compatible) &&
2891             "Improper transparent union conversion");
2892     (void)ConvTy;
2893     break;
2894   }
2895 
2896   case ICK_Zero_Event_Conversion:
2897     From = ImpCastExprToType(From, ToType,
2898                              CK_ZeroToOCLEvent,
2899                              From->getValueKind()).take();
2900     break;
2901 
2902   case ICK_Lvalue_To_Rvalue:
2903   case ICK_Array_To_Pointer:
2904   case ICK_Function_To_Pointer:
2905   case ICK_Qualification:
2906   case ICK_Num_Conversion_Kinds:
2907     llvm_unreachable("Improper second standard conversion");
2908   }
2909 
2910   switch (SCS.Third) {
2911   case ICK_Identity:
2912     // Nothing to do.
2913     break;
2914 
2915   case ICK_Qualification: {
2916     // The qualification keeps the category of the inner expression, unless the
2917     // target type isn't a reference.
2918     ExprValueKind VK = ToType->isReferenceType() ?
2919                                   From->getValueKind() : VK_RValue;
2920     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2921                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2922 
2923     if (SCS.DeprecatedStringLiteralToCharPtr &&
2924         !getLangOpts().WritableStrings)
2925       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2926         << ToType.getNonReferenceType();
2927 
2928     break;
2929   }
2930 
2931   default:
2932     llvm_unreachable("Improper third standard conversion");
2933   }
2934 
2935   // If this conversion sequence involved a scalar -> atomic conversion, perform
2936   // that conversion now.
2937   if (!ToAtomicType.isNull()) {
2938     assert(Context.hasSameType(
2939         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
2940     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
2941                              VK_RValue, 0, CCK).take();
2942   }
2943 
2944   return Owned(From);
2945 }
2946 
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2947 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2948                                      SourceLocation KWLoc,
2949                                      ParsedType Ty,
2950                                      SourceLocation RParen) {
2951   TypeSourceInfo *TSInfo;
2952   QualType T = GetTypeFromParser(Ty, &TSInfo);
2953 
2954   if (!TSInfo)
2955     TSInfo = Context.getTrivialTypeSourceInfo(T);
2956   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2957 }
2958 
2959 /// \brief Check the completeness of a type in a unary type trait.
2960 ///
2961 /// If the particular type trait requires a complete type, tries to complete
2962 /// it. If completing the type fails, a diagnostic is emitted and false
2963 /// returned. If completing the type succeeds or no completion was required,
2964 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2965 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2966                                                 UnaryTypeTrait UTT,
2967                                                 SourceLocation Loc,
2968                                                 QualType ArgTy) {
2969   // C++0x [meta.unary.prop]p3:
2970   //   For all of the class templates X declared in this Clause, instantiating
2971   //   that template with a template argument that is a class template
2972   //   specialization may result in the implicit instantiation of the template
2973   //   argument if and only if the semantics of X require that the argument
2974   //   must be a complete type.
2975   // We apply this rule to all the type trait expressions used to implement
2976   // these class templates. We also try to follow any GCC documented behavior
2977   // in these expressions to ensure portability of standard libraries.
2978   switch (UTT) {
2979     // is_complete_type somewhat obviously cannot require a complete type.
2980   case UTT_IsCompleteType:
2981     // Fall-through
2982 
2983     // These traits are modeled on the type predicates in C++0x
2984     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2985     // requiring a complete type, as whether or not they return true cannot be
2986     // impacted by the completeness of the type.
2987   case UTT_IsVoid:
2988   case UTT_IsIntegral:
2989   case UTT_IsFloatingPoint:
2990   case UTT_IsArray:
2991   case UTT_IsPointer:
2992   case UTT_IsLvalueReference:
2993   case UTT_IsRvalueReference:
2994   case UTT_IsMemberFunctionPointer:
2995   case UTT_IsMemberObjectPointer:
2996   case UTT_IsEnum:
2997   case UTT_IsUnion:
2998   case UTT_IsClass:
2999   case UTT_IsFunction:
3000   case UTT_IsReference:
3001   case UTT_IsArithmetic:
3002   case UTT_IsFundamental:
3003   case UTT_IsObject:
3004   case UTT_IsScalar:
3005   case UTT_IsCompound:
3006   case UTT_IsMemberPointer:
3007     // Fall-through
3008 
3009     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3010     // which requires some of its traits to have the complete type. However,
3011     // the completeness of the type cannot impact these traits' semantics, and
3012     // so they don't require it. This matches the comments on these traits in
3013     // Table 49.
3014   case UTT_IsConst:
3015   case UTT_IsVolatile:
3016   case UTT_IsSigned:
3017   case UTT_IsUnsigned:
3018     return true;
3019 
3020     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3021     // applied to a complete type.
3022   case UTT_IsTrivial:
3023   case UTT_IsTriviallyCopyable:
3024   case UTT_IsStandardLayout:
3025   case UTT_IsPOD:
3026   case UTT_IsLiteral:
3027   case UTT_IsEmpty:
3028   case UTT_IsPolymorphic:
3029   case UTT_IsAbstract:
3030   case UTT_IsInterfaceClass:
3031     // Fall-through
3032 
3033   // These traits require a complete type.
3034   case UTT_IsFinal:
3035 
3036     // These trait expressions are designed to help implement predicates in
3037     // [meta.unary.prop] despite not being named the same. They are specified
3038     // by both GCC and the Embarcadero C++ compiler, and require the complete
3039     // type due to the overarching C++0x type predicates being implemented
3040     // requiring the complete type.
3041   case UTT_HasNothrowAssign:
3042   case UTT_HasNothrowMoveAssign:
3043   case UTT_HasNothrowConstructor:
3044   case UTT_HasNothrowCopy:
3045   case UTT_HasTrivialAssign:
3046   case UTT_HasTrivialMoveAssign:
3047   case UTT_HasTrivialDefaultConstructor:
3048   case UTT_HasTrivialMoveConstructor:
3049   case UTT_HasTrivialCopy:
3050   case UTT_HasTrivialDestructor:
3051   case UTT_HasVirtualDestructor:
3052     // Arrays of unknown bound are expressly allowed.
3053     QualType ElTy = ArgTy;
3054     if (ArgTy->isIncompleteArrayType())
3055       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3056 
3057     // The void type is expressly allowed.
3058     if (ElTy->isVoidType())
3059       return true;
3060 
3061     return !S.RequireCompleteType(
3062       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3063   }
3064   llvm_unreachable("Type trait not handled by switch");
3065 }
3066 
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)3067 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3068                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3069                                bool (CXXRecordDecl::*HasTrivial)() const,
3070                                bool (CXXRecordDecl::*HasNonTrivial)() const,
3071                                bool (CXXMethodDecl::*IsDesiredOp)() const)
3072 {
3073   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3074   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3075     return true;
3076 
3077   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3078   DeclarationNameInfo NameInfo(Name, KeyLoc);
3079   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3080   if (Self.LookupQualifiedName(Res, RD)) {
3081     bool FoundOperator = false;
3082     Res.suppressDiagnostics();
3083     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3084          Op != OpEnd; ++Op) {
3085       if (isa<FunctionTemplateDecl>(*Op))
3086         continue;
3087 
3088       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3089       if((Operator->*IsDesiredOp)()) {
3090         FoundOperator = true;
3091         const FunctionProtoType *CPT =
3092           Operator->getType()->getAs<FunctionProtoType>();
3093         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3094         if (!CPT || !CPT->isNothrow(Self.Context))
3095           return false;
3096       }
3097     }
3098     return FoundOperator;
3099   }
3100   return false;
3101 }
3102 
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)3103 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
3104                                    SourceLocation KeyLoc, QualType T) {
3105   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3106 
3107   ASTContext &C = Self.Context;
3108   switch(UTT) {
3109     // Type trait expressions corresponding to the primary type category
3110     // predicates in C++0x [meta.unary.cat].
3111   case UTT_IsVoid:
3112     return T->isVoidType();
3113   case UTT_IsIntegral:
3114     return T->isIntegralType(C);
3115   case UTT_IsFloatingPoint:
3116     return T->isFloatingType();
3117   case UTT_IsArray:
3118     return T->isArrayType();
3119   case UTT_IsPointer:
3120     return T->isPointerType();
3121   case UTT_IsLvalueReference:
3122     return T->isLValueReferenceType();
3123   case UTT_IsRvalueReference:
3124     return T->isRValueReferenceType();
3125   case UTT_IsMemberFunctionPointer:
3126     return T->isMemberFunctionPointerType();
3127   case UTT_IsMemberObjectPointer:
3128     return T->isMemberDataPointerType();
3129   case UTT_IsEnum:
3130     return T->isEnumeralType();
3131   case UTT_IsUnion:
3132     return T->isUnionType();
3133   case UTT_IsClass:
3134     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3135   case UTT_IsFunction:
3136     return T->isFunctionType();
3137 
3138     // Type trait expressions which correspond to the convenient composition
3139     // predicates in C++0x [meta.unary.comp].
3140   case UTT_IsReference:
3141     return T->isReferenceType();
3142   case UTT_IsArithmetic:
3143     return T->isArithmeticType() && !T->isEnumeralType();
3144   case UTT_IsFundamental:
3145     return T->isFundamentalType();
3146   case UTT_IsObject:
3147     return T->isObjectType();
3148   case UTT_IsScalar:
3149     // Note: semantic analysis depends on Objective-C lifetime types to be
3150     // considered scalar types. However, such types do not actually behave
3151     // like scalar types at run time (since they may require retain/release
3152     // operations), so we report them as non-scalar.
3153     if (T->isObjCLifetimeType()) {
3154       switch (T.getObjCLifetime()) {
3155       case Qualifiers::OCL_None:
3156       case Qualifiers::OCL_ExplicitNone:
3157         return true;
3158 
3159       case Qualifiers::OCL_Strong:
3160       case Qualifiers::OCL_Weak:
3161       case Qualifiers::OCL_Autoreleasing:
3162         return false;
3163       }
3164     }
3165 
3166     return T->isScalarType();
3167   case UTT_IsCompound:
3168     return T->isCompoundType();
3169   case UTT_IsMemberPointer:
3170     return T->isMemberPointerType();
3171 
3172     // Type trait expressions which correspond to the type property predicates
3173     // in C++0x [meta.unary.prop].
3174   case UTT_IsConst:
3175     return T.isConstQualified();
3176   case UTT_IsVolatile:
3177     return T.isVolatileQualified();
3178   case UTT_IsTrivial:
3179     return T.isTrivialType(Self.Context);
3180   case UTT_IsTriviallyCopyable:
3181     return T.isTriviallyCopyableType(Self.Context);
3182   case UTT_IsStandardLayout:
3183     return T->isStandardLayoutType();
3184   case UTT_IsPOD:
3185     return T.isPODType(Self.Context);
3186   case UTT_IsLiteral:
3187     return T->isLiteralType(Self.Context);
3188   case UTT_IsEmpty:
3189     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3190       return !RD->isUnion() && RD->isEmpty();
3191     return false;
3192   case UTT_IsPolymorphic:
3193     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3194       return RD->isPolymorphic();
3195     return false;
3196   case UTT_IsAbstract:
3197     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3198       return RD->isAbstract();
3199     return false;
3200   case UTT_IsInterfaceClass:
3201     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3202       return RD->isInterface();
3203     return false;
3204   case UTT_IsFinal:
3205     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3206       return RD->hasAttr<FinalAttr>();
3207     return false;
3208   case UTT_IsSigned:
3209     return T->isSignedIntegerType();
3210   case UTT_IsUnsigned:
3211     return T->isUnsignedIntegerType();
3212 
3213     // Type trait expressions which query classes regarding their construction,
3214     // destruction, and copying. Rather than being based directly on the
3215     // related type predicates in the standard, they are specified by both
3216     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3217     // specifications.
3218     //
3219     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3220     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3221     //
3222     // Note that these builtins do not behave as documented in g++: if a class
3223     // has both a trivial and a non-trivial special member of a particular kind,
3224     // they return false! For now, we emulate this behavior.
3225     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3226     // does not correctly compute triviality in the presence of multiple special
3227     // members of the same kind. Revisit this once the g++ bug is fixed.
3228   case UTT_HasTrivialDefaultConstructor:
3229     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3230     //   If __is_pod (type) is true then the trait is true, else if type is
3231     //   a cv class or union type (or array thereof) with a trivial default
3232     //   constructor ([class.ctor]) then the trait is true, else it is false.
3233     if (T.isPODType(Self.Context))
3234       return true;
3235     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3236       return RD->hasTrivialDefaultConstructor() &&
3237              !RD->hasNonTrivialDefaultConstructor();
3238     return false;
3239   case UTT_HasTrivialMoveConstructor:
3240     //  This trait is implemented by MSVC 2012 and needed to parse the
3241     //  standard library headers. Specifically this is used as the logic
3242     //  behind std::is_trivially_move_constructible (20.9.4.3).
3243     if (T.isPODType(Self.Context))
3244       return true;
3245     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3246       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3247     return false;
3248   case UTT_HasTrivialCopy:
3249     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3250     //   If __is_pod (type) is true or type is a reference type then
3251     //   the trait is true, else if type is a cv class or union type
3252     //   with a trivial copy constructor ([class.copy]) then the trait
3253     //   is true, else it is false.
3254     if (T.isPODType(Self.Context) || T->isReferenceType())
3255       return true;
3256     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3257       return RD->hasTrivialCopyConstructor() &&
3258              !RD->hasNonTrivialCopyConstructor();
3259     return false;
3260   case UTT_HasTrivialMoveAssign:
3261     //  This trait is implemented by MSVC 2012 and needed to parse the
3262     //  standard library headers. Specifically it is used as the logic
3263     //  behind std::is_trivially_move_assignable (20.9.4.3)
3264     if (T.isPODType(Self.Context))
3265       return true;
3266     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3267       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3268     return false;
3269   case UTT_HasTrivialAssign:
3270     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3271     //   If type is const qualified or is a reference type then the
3272     //   trait is false. Otherwise if __is_pod (type) is true then the
3273     //   trait is true, else if type is a cv class or union type with
3274     //   a trivial copy assignment ([class.copy]) then the trait is
3275     //   true, else it is false.
3276     // Note: the const and reference restrictions are interesting,
3277     // given that const and reference members don't prevent a class
3278     // from having a trivial copy assignment operator (but do cause
3279     // errors if the copy assignment operator is actually used, q.v.
3280     // [class.copy]p12).
3281 
3282     if (T.isConstQualified())
3283       return false;
3284     if (T.isPODType(Self.Context))
3285       return true;
3286     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3287       return RD->hasTrivialCopyAssignment() &&
3288              !RD->hasNonTrivialCopyAssignment();
3289     return false;
3290   case UTT_HasTrivialDestructor:
3291     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3292     //   If __is_pod (type) is true or type is a reference type
3293     //   then the trait is true, else if type is a cv class or union
3294     //   type (or array thereof) with a trivial destructor
3295     //   ([class.dtor]) then the trait is true, else it is
3296     //   false.
3297     if (T.isPODType(Self.Context) || T->isReferenceType())
3298       return true;
3299 
3300     // Objective-C++ ARC: autorelease types don't require destruction.
3301     if (T->isObjCLifetimeType() &&
3302         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3303       return true;
3304 
3305     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3306       return RD->hasTrivialDestructor();
3307     return false;
3308   // TODO: Propagate nothrowness for implicitly declared special members.
3309   case UTT_HasNothrowAssign:
3310     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3311     //   If type is const qualified or is a reference type then the
3312     //   trait is false. Otherwise if __has_trivial_assign (type)
3313     //   is true then the trait is true, else if type is a cv class
3314     //   or union type with copy assignment operators that are known
3315     //   not to throw an exception then the trait is true, else it is
3316     //   false.
3317     if (C.getBaseElementType(T).isConstQualified())
3318       return false;
3319     if (T->isReferenceType())
3320       return false;
3321     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3322       return true;
3323 
3324     if (const RecordType *RT = T->getAs<RecordType>())
3325       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3326                                 &CXXRecordDecl::hasTrivialCopyAssignment,
3327                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3328                                 &CXXMethodDecl::isCopyAssignmentOperator);
3329     return false;
3330   case UTT_HasNothrowMoveAssign:
3331     //  This trait is implemented by MSVC 2012 and needed to parse the
3332     //  standard library headers. Specifically this is used as the logic
3333     //  behind std::is_nothrow_move_assignable (20.9.4.3).
3334     if (T.isPODType(Self.Context))
3335       return true;
3336 
3337     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3338       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3339                                 &CXXRecordDecl::hasTrivialMoveAssignment,
3340                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3341                                 &CXXMethodDecl::isMoveAssignmentOperator);
3342     return false;
3343   case UTT_HasNothrowCopy:
3344     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3345     //   If __has_trivial_copy (type) is true then the trait is true, else
3346     //   if type is a cv class or union type with copy constructors that are
3347     //   known not to throw an exception then the trait is true, else it is
3348     //   false.
3349     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3350       return true;
3351     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3352       if (RD->hasTrivialCopyConstructor() &&
3353           !RD->hasNonTrivialCopyConstructor())
3354         return true;
3355 
3356       bool FoundConstructor = false;
3357       unsigned FoundTQs;
3358       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3359       for (DeclContext::lookup_const_iterator Con = R.begin(),
3360            ConEnd = R.end(); Con != ConEnd; ++Con) {
3361         // A template constructor is never a copy constructor.
3362         // FIXME: However, it may actually be selected at the actual overload
3363         // resolution point.
3364         if (isa<FunctionTemplateDecl>(*Con))
3365           continue;
3366         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3367         if (Constructor->isCopyConstructor(FoundTQs)) {
3368           FoundConstructor = true;
3369           const FunctionProtoType *CPT
3370               = Constructor->getType()->getAs<FunctionProtoType>();
3371           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3372           if (!CPT)
3373             return false;
3374           // FIXME: check whether evaluating default arguments can throw.
3375           // For now, we'll be conservative and assume that they can throw.
3376           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3377             return false;
3378         }
3379       }
3380 
3381       return FoundConstructor;
3382     }
3383     return false;
3384   case UTT_HasNothrowConstructor:
3385     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3386     //   If __has_trivial_constructor (type) is true then the trait is
3387     //   true, else if type is a cv class or union type (or array
3388     //   thereof) with a default constructor that is known not to
3389     //   throw an exception then the trait is true, else it is false.
3390     if (T.isPODType(C) || T->isObjCLifetimeType())
3391       return true;
3392     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3393       if (RD->hasTrivialDefaultConstructor() &&
3394           !RD->hasNonTrivialDefaultConstructor())
3395         return true;
3396 
3397       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3398       for (DeclContext::lookup_const_iterator Con = R.begin(),
3399            ConEnd = R.end(); Con != ConEnd; ++Con) {
3400         // FIXME: In C++0x, a constructor template can be a default constructor.
3401         if (isa<FunctionTemplateDecl>(*Con))
3402           continue;
3403         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3404         if (Constructor->isDefaultConstructor()) {
3405           const FunctionProtoType *CPT
3406               = Constructor->getType()->getAs<FunctionProtoType>();
3407           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3408           if (!CPT)
3409             return false;
3410           // TODO: check whether evaluating default arguments can throw.
3411           // For now, we'll be conservative and assume that they can throw.
3412           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3413         }
3414       }
3415     }
3416     return false;
3417   case UTT_HasVirtualDestructor:
3418     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3419     //   If type is a class type with a virtual destructor ([class.dtor])
3420     //   then the trait is true, else it is false.
3421     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3422       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3423         return Destructor->isVirtual();
3424     return false;
3425 
3426     // These type trait expressions are modeled on the specifications for the
3427     // Embarcadero C++0x type trait functions:
3428     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3429   case UTT_IsCompleteType:
3430     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3431     //   Returns True if and only if T is a complete type at the point of the
3432     //   function call.
3433     return !T->isIncompleteType();
3434   }
3435   llvm_unreachable("Type trait not covered by switch");
3436 }
3437 
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3438 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3439                                      SourceLocation KWLoc,
3440                                      TypeSourceInfo *TSInfo,
3441                                      SourceLocation RParen) {
3442   QualType T = TSInfo->getType();
3443   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3444     return ExprError();
3445 
3446   bool Value = false;
3447   if (!T->isDependentType())
3448     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3449 
3450   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3451                                                 RParen, Context.BoolTy));
3452 }
3453 
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3454 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3455                                       SourceLocation KWLoc,
3456                                       ParsedType LhsTy,
3457                                       ParsedType RhsTy,
3458                                       SourceLocation RParen) {
3459   TypeSourceInfo *LhsTSInfo;
3460   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3461   if (!LhsTSInfo)
3462     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3463 
3464   TypeSourceInfo *RhsTSInfo;
3465   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3466   if (!RhsTSInfo)
3467     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3468 
3469   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3470 }
3471 
3472 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3473 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3474 static bool hasNontrivialObjCLifetime(QualType T) {
3475   switch (T.getObjCLifetime()) {
3476   case Qualifiers::OCL_ExplicitNone:
3477     return false;
3478 
3479   case Qualifiers::OCL_Strong:
3480   case Qualifiers::OCL_Weak:
3481   case Qualifiers::OCL_Autoreleasing:
3482     return true;
3483 
3484   case Qualifiers::OCL_None:
3485     return T->isObjCLifetimeType();
3486   }
3487 
3488   llvm_unreachable("Unknown ObjC lifetime qualifier");
3489 }
3490 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3491 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3492                               ArrayRef<TypeSourceInfo *> Args,
3493                               SourceLocation RParenLoc) {
3494   switch (Kind) {
3495   case clang::TT_IsTriviallyConstructible: {
3496     // C++11 [meta.unary.prop]:
3497     //   is_trivially_constructible is defined as:
3498     //
3499     //     is_constructible<T, Args...>::value is true and the variable
3500     //     definition for is_constructible, as defined below, is known to call no
3501     //     operation that is not trivial.
3502     //
3503     //   The predicate condition for a template specialization
3504     //   is_constructible<T, Args...> shall be satisfied if and only if the
3505     //   following variable definition would be well-formed for some invented
3506     //   variable t:
3507     //
3508     //     T t(create<Args>()...);
3509     if (Args.empty()) {
3510       S.Diag(KWLoc, diag::err_type_trait_arity)
3511         << 1 << 1 << 1 << (int)Args.size();
3512       return false;
3513     }
3514 
3515     bool SawVoid = false;
3516     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3517       if (Args[I]->getType()->isVoidType()) {
3518         SawVoid = true;
3519         continue;
3520       }
3521 
3522       if (!Args[I]->getType()->isIncompleteType() &&
3523         S.RequireCompleteType(KWLoc, Args[I]->getType(),
3524           diag::err_incomplete_type_used_in_type_trait_expr))
3525         return false;
3526     }
3527 
3528     // If any argument was 'void', of course it won't type-check.
3529     if (SawVoid)
3530       return false;
3531 
3532     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3533     SmallVector<Expr *, 2> ArgExprs;
3534     ArgExprs.reserve(Args.size() - 1);
3535     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3536       QualType T = Args[I]->getType();
3537       if (T->isObjectType() || T->isFunctionType())
3538         T = S.Context.getRValueReferenceType(T);
3539       OpaqueArgExprs.push_back(
3540         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3541                         T.getNonLValueExprType(S.Context),
3542                         Expr::getValueKindForType(T)));
3543       ArgExprs.push_back(&OpaqueArgExprs.back());
3544     }
3545 
3546     // Perform the initialization in an unevaluated context within a SFINAE
3547     // trap at translation unit scope.
3548     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3549     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3550     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3551     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3552     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3553                                                                  RParenLoc));
3554     InitializationSequence Init(S, To, InitKind, ArgExprs);
3555     if (Init.Failed())
3556       return false;
3557 
3558     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3559     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3560       return false;
3561 
3562     // Under Objective-C ARC, if the destination has non-trivial Objective-C
3563     // lifetime, this is a non-trivial construction.
3564     if (S.getLangOpts().ObjCAutoRefCount &&
3565         hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3566       return false;
3567 
3568     // The initialization succeeded; now make sure there are no non-trivial
3569     // calls.
3570     return !Result.get()->hasNonTrivialCall(S.Context);
3571   }
3572   }
3573 
3574   return false;
3575 }
3576 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3577 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3578                                 ArrayRef<TypeSourceInfo *> Args,
3579                                 SourceLocation RParenLoc) {
3580   bool Dependent = false;
3581   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3582     if (Args[I]->getType()->isDependentType()) {
3583       Dependent = true;
3584       break;
3585     }
3586   }
3587 
3588   bool Value = false;
3589   if (!Dependent)
3590     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3591 
3592   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3593                                Args, RParenLoc, Value);
3594 }
3595 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3596 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3597                                 ArrayRef<ParsedType> Args,
3598                                 SourceLocation RParenLoc) {
3599   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3600   ConvertedArgs.reserve(Args.size());
3601 
3602   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3603     TypeSourceInfo *TInfo;
3604     QualType T = GetTypeFromParser(Args[I], &TInfo);
3605     if (!TInfo)
3606       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3607 
3608     ConvertedArgs.push_back(TInfo);
3609   }
3610 
3611   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3612 }
3613 
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3614 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3615                                     QualType LhsT, QualType RhsT,
3616                                     SourceLocation KeyLoc) {
3617   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3618          "Cannot evaluate traits of dependent types");
3619 
3620   switch(BTT) {
3621   case BTT_IsBaseOf: {
3622     // C++0x [meta.rel]p2
3623     // Base is a base class of Derived without regard to cv-qualifiers or
3624     // Base and Derived are not unions and name the same class type without
3625     // regard to cv-qualifiers.
3626 
3627     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3628     if (!lhsRecord) return false;
3629 
3630     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3631     if (!rhsRecord) return false;
3632 
3633     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3634              == (lhsRecord == rhsRecord));
3635 
3636     if (lhsRecord == rhsRecord)
3637       return !lhsRecord->getDecl()->isUnion();
3638 
3639     // C++0x [meta.rel]p2:
3640     //   If Base and Derived are class types and are different types
3641     //   (ignoring possible cv-qualifiers) then Derived shall be a
3642     //   complete type.
3643     if (Self.RequireCompleteType(KeyLoc, RhsT,
3644                           diag::err_incomplete_type_used_in_type_trait_expr))
3645       return false;
3646 
3647     return cast<CXXRecordDecl>(rhsRecord->getDecl())
3648       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3649   }
3650   case BTT_IsSame:
3651     return Self.Context.hasSameType(LhsT, RhsT);
3652   case BTT_TypeCompatible:
3653     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3654                                            RhsT.getUnqualifiedType());
3655   case BTT_IsConvertible:
3656   case BTT_IsConvertibleTo: {
3657     // C++0x [meta.rel]p4:
3658     //   Given the following function prototype:
3659     //
3660     //     template <class T>
3661     //       typename add_rvalue_reference<T>::type create();
3662     //
3663     //   the predicate condition for a template specialization
3664     //   is_convertible<From, To> shall be satisfied if and only if
3665     //   the return expression in the following code would be
3666     //   well-formed, including any implicit conversions to the return
3667     //   type of the function:
3668     //
3669     //     To test() {
3670     //       return create<From>();
3671     //     }
3672     //
3673     //   Access checking is performed as if in a context unrelated to To and
3674     //   From. Only the validity of the immediate context of the expression
3675     //   of the return-statement (including conversions to the return type)
3676     //   is considered.
3677     //
3678     // We model the initialization as a copy-initialization of a temporary
3679     // of the appropriate type, which for this expression is identical to the
3680     // return statement (since NRVO doesn't apply).
3681 
3682     // Functions aren't allowed to return function or array types.
3683     if (RhsT->isFunctionType() || RhsT->isArrayType())
3684       return false;
3685 
3686     // A return statement in a void function must have void type.
3687     if (RhsT->isVoidType())
3688       return LhsT->isVoidType();
3689 
3690     // A function definition requires a complete, non-abstract return type.
3691     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3692         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3693       return false;
3694 
3695     // Compute the result of add_rvalue_reference.
3696     if (LhsT->isObjectType() || LhsT->isFunctionType())
3697       LhsT = Self.Context.getRValueReferenceType(LhsT);
3698 
3699     // Build a fake source and destination for initialization.
3700     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3701     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3702                          Expr::getValueKindForType(LhsT));
3703     Expr *FromPtr = &From;
3704     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3705                                                            SourceLocation()));
3706 
3707     // Perform the initialization in an unevaluated context within a SFINAE
3708     // trap at translation unit scope.
3709     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3710     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3711     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3712     InitializationSequence Init(Self, To, Kind, FromPtr);
3713     if (Init.Failed())
3714       return false;
3715 
3716     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3717     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3718   }
3719 
3720   case BTT_IsTriviallyAssignable: {
3721     // C++11 [meta.unary.prop]p3:
3722     //   is_trivially_assignable is defined as:
3723     //     is_assignable<T, U>::value is true and the assignment, as defined by
3724     //     is_assignable, is known to call no operation that is not trivial
3725     //
3726     //   is_assignable is defined as:
3727     //     The expression declval<T>() = declval<U>() is well-formed when
3728     //     treated as an unevaluated operand (Clause 5).
3729     //
3730     //   For both, T and U shall be complete types, (possibly cv-qualified)
3731     //   void, or arrays of unknown bound.
3732     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3733         Self.RequireCompleteType(KeyLoc, LhsT,
3734           diag::err_incomplete_type_used_in_type_trait_expr))
3735       return false;
3736     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3737         Self.RequireCompleteType(KeyLoc, RhsT,
3738           diag::err_incomplete_type_used_in_type_trait_expr))
3739       return false;
3740 
3741     // cv void is never assignable.
3742     if (LhsT->isVoidType() || RhsT->isVoidType())
3743       return false;
3744 
3745     // Build expressions that emulate the effect of declval<T>() and
3746     // declval<U>().
3747     if (LhsT->isObjectType() || LhsT->isFunctionType())
3748       LhsT = Self.Context.getRValueReferenceType(LhsT);
3749     if (RhsT->isObjectType() || RhsT->isFunctionType())
3750       RhsT = Self.Context.getRValueReferenceType(RhsT);
3751     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3752                         Expr::getValueKindForType(LhsT));
3753     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3754                         Expr::getValueKindForType(RhsT));
3755 
3756     // Attempt the assignment in an unevaluated context within a SFINAE
3757     // trap at translation unit scope.
3758     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3759     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3760     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3761     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3762     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3763       return false;
3764 
3765     // Under Objective-C ARC, if the destination has non-trivial Objective-C
3766     // lifetime, this is a non-trivial assignment.
3767     if (Self.getLangOpts().ObjCAutoRefCount &&
3768         hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3769       return false;
3770 
3771     return !Result.get()->hasNonTrivialCall(Self.Context);
3772   }
3773   }
3774   llvm_unreachable("Unknown type trait or not implemented");
3775 }
3776 
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3777 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3778                                       SourceLocation KWLoc,
3779                                       TypeSourceInfo *LhsTSInfo,
3780                                       TypeSourceInfo *RhsTSInfo,
3781                                       SourceLocation RParen) {
3782   QualType LhsT = LhsTSInfo->getType();
3783   QualType RhsT = RhsTSInfo->getType();
3784 
3785   if (BTT == BTT_TypeCompatible) {
3786     if (getLangOpts().CPlusPlus) {
3787       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3788         << SourceRange(KWLoc, RParen);
3789       return ExprError();
3790     }
3791   }
3792 
3793   bool Value = false;
3794   if (!LhsT->isDependentType() && !RhsT->isDependentType())
3795     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3796 
3797   // Select trait result type.
3798   QualType ResultType;
3799   switch (BTT) {
3800   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3801   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3802   case BTT_IsSame:         ResultType = Context.BoolTy; break;
3803   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3804   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3805   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3806   }
3807 
3808   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3809                                                  RhsTSInfo, Value, RParen,
3810                                                  ResultType));
3811 }
3812 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3813 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3814                                      SourceLocation KWLoc,
3815                                      ParsedType Ty,
3816                                      Expr* DimExpr,
3817                                      SourceLocation RParen) {
3818   TypeSourceInfo *TSInfo;
3819   QualType T = GetTypeFromParser(Ty, &TSInfo);
3820   if (!TSInfo)
3821     TSInfo = Context.getTrivialTypeSourceInfo(T);
3822 
3823   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3824 }
3825 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3826 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3827                                            QualType T, Expr *DimExpr,
3828                                            SourceLocation KeyLoc) {
3829   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3830 
3831   switch(ATT) {
3832   case ATT_ArrayRank:
3833     if (T->isArrayType()) {
3834       unsigned Dim = 0;
3835       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3836         ++Dim;
3837         T = AT->getElementType();
3838       }
3839       return Dim;
3840     }
3841     return 0;
3842 
3843   case ATT_ArrayExtent: {
3844     llvm::APSInt Value;
3845     uint64_t Dim;
3846     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3847           diag::err_dimension_expr_not_constant_integer,
3848           false).isInvalid())
3849       return 0;
3850     if (Value.isSigned() && Value.isNegative()) {
3851       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3852         << DimExpr->getSourceRange();
3853       return 0;
3854     }
3855     Dim = Value.getLimitedValue();
3856 
3857     if (T->isArrayType()) {
3858       unsigned D = 0;
3859       bool Matched = false;
3860       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3861         if (Dim == D) {
3862           Matched = true;
3863           break;
3864         }
3865         ++D;
3866         T = AT->getElementType();
3867       }
3868 
3869       if (Matched && T->isArrayType()) {
3870         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3871           return CAT->getSize().getLimitedValue();
3872       }
3873     }
3874     return 0;
3875   }
3876   }
3877   llvm_unreachable("Unknown type trait or not implemented");
3878 }
3879 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3880 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3881                                      SourceLocation KWLoc,
3882                                      TypeSourceInfo *TSInfo,
3883                                      Expr* DimExpr,
3884                                      SourceLocation RParen) {
3885   QualType T = TSInfo->getType();
3886 
3887   // FIXME: This should likely be tracked as an APInt to remove any host
3888   // assumptions about the width of size_t on the target.
3889   uint64_t Value = 0;
3890   if (!T->isDependentType())
3891     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3892 
3893   // While the specification for these traits from the Embarcadero C++
3894   // compiler's documentation says the return type is 'unsigned int', Clang
3895   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3896   // compiler, there is no difference. On several other platforms this is an
3897   // important distinction.
3898   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3899                                                 DimExpr, RParen,
3900                                                 Context.getSizeType()));
3901 }
3902 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3903 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3904                                       SourceLocation KWLoc,
3905                                       Expr *Queried,
3906                                       SourceLocation RParen) {
3907   // If error parsing the expression, ignore.
3908   if (!Queried)
3909     return ExprError();
3910 
3911   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3912 
3913   return Result;
3914 }
3915 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3916 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3917   switch (ET) {
3918   case ET_IsLValueExpr: return E->isLValue();
3919   case ET_IsRValueExpr: return E->isRValue();
3920   }
3921   llvm_unreachable("Expression trait not covered by switch");
3922 }
3923 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3924 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3925                                       SourceLocation KWLoc,
3926                                       Expr *Queried,
3927                                       SourceLocation RParen) {
3928   if (Queried->isTypeDependent()) {
3929     // Delay type-checking for type-dependent expressions.
3930   } else if (Queried->getType()->isPlaceholderType()) {
3931     ExprResult PE = CheckPlaceholderExpr(Queried);
3932     if (PE.isInvalid()) return ExprError();
3933     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3934   }
3935 
3936   bool Value = EvaluateExpressionTrait(ET, Queried);
3937 
3938   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3939                                                  RParen, Context.BoolTy));
3940 }
3941 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3942 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3943                                             ExprValueKind &VK,
3944                                             SourceLocation Loc,
3945                                             bool isIndirect) {
3946   assert(!LHS.get()->getType()->isPlaceholderType() &&
3947          !RHS.get()->getType()->isPlaceholderType() &&
3948          "placeholders should have been weeded out by now");
3949 
3950   // The LHS undergoes lvalue conversions if this is ->*.
3951   if (isIndirect) {
3952     LHS = DefaultLvalueConversion(LHS.take());
3953     if (LHS.isInvalid()) return QualType();
3954   }
3955 
3956   // The RHS always undergoes lvalue conversions.
3957   RHS = DefaultLvalueConversion(RHS.take());
3958   if (RHS.isInvalid()) return QualType();
3959 
3960   const char *OpSpelling = isIndirect ? "->*" : ".*";
3961   // C++ 5.5p2
3962   //   The binary operator .* [p3: ->*] binds its second operand, which shall
3963   //   be of type "pointer to member of T" (where T is a completely-defined
3964   //   class type) [...]
3965   QualType RHSType = RHS.get()->getType();
3966   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3967   if (!MemPtr) {
3968     Diag(Loc, diag::err_bad_memptr_rhs)
3969       << OpSpelling << RHSType << RHS.get()->getSourceRange();
3970     return QualType();
3971   }
3972 
3973   QualType Class(MemPtr->getClass(), 0);
3974 
3975   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3976   // member pointer points must be completely-defined. However, there is no
3977   // reason for this semantic distinction, and the rule is not enforced by
3978   // other compilers. Therefore, we do not check this property, as it is
3979   // likely to be considered a defect.
3980 
3981   // C++ 5.5p2
3982   //   [...] to its first operand, which shall be of class T or of a class of
3983   //   which T is an unambiguous and accessible base class. [p3: a pointer to
3984   //   such a class]
3985   QualType LHSType = LHS.get()->getType();
3986   if (isIndirect) {
3987     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3988       LHSType = Ptr->getPointeeType();
3989     else {
3990       Diag(Loc, diag::err_bad_memptr_lhs)
3991         << OpSpelling << 1 << LHSType
3992         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3993       return QualType();
3994     }
3995   }
3996 
3997   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3998     // If we want to check the hierarchy, we need a complete type.
3999     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4000                             OpSpelling, (int)isIndirect)) {
4001       return QualType();
4002     }
4003     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4004                        /*DetectVirtual=*/false);
4005     // FIXME: Would it be useful to print full ambiguity paths, or is that
4006     // overkill?
4007     if (!IsDerivedFrom(LHSType, Class, Paths) ||
4008         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
4009       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4010         << (int)isIndirect << LHS.get()->getType();
4011       return QualType();
4012     }
4013     // Cast LHS to type of use.
4014     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4015     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4016 
4017     CXXCastPath BasePath;
4018     BuildBasePathArray(Paths, BasePath);
4019     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
4020                             &BasePath);
4021   }
4022 
4023   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4024     // Diagnose use of pointer-to-member type which when used as
4025     // the functional cast in a pointer-to-member expression.
4026     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4027      return QualType();
4028   }
4029 
4030   // C++ 5.5p2
4031   //   The result is an object or a function of the type specified by the
4032   //   second operand.
4033   // The cv qualifiers are the union of those in the pointer and the left side,
4034   // in accordance with 5.5p5 and 5.2.5.
4035   QualType Result = MemPtr->getPointeeType();
4036   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4037 
4038   // C++0x [expr.mptr.oper]p6:
4039   //   In a .* expression whose object expression is an rvalue, the program is
4040   //   ill-formed if the second operand is a pointer to member function with
4041   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
4042   //   expression is an lvalue, the program is ill-formed if the second operand
4043   //   is a pointer to member function with ref-qualifier &&.
4044   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4045     switch (Proto->getRefQualifier()) {
4046     case RQ_None:
4047       // Do nothing
4048       break;
4049 
4050     case RQ_LValue:
4051       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4052         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4053           << RHSType << 1 << LHS.get()->getSourceRange();
4054       break;
4055 
4056     case RQ_RValue:
4057       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4058         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4059           << RHSType << 0 << LHS.get()->getSourceRange();
4060       break;
4061     }
4062   }
4063 
4064   // C++ [expr.mptr.oper]p6:
4065   //   The result of a .* expression whose second operand is a pointer
4066   //   to a data member is of the same value category as its
4067   //   first operand. The result of a .* expression whose second
4068   //   operand is a pointer to a member function is a prvalue. The
4069   //   result of an ->* expression is an lvalue if its second operand
4070   //   is a pointer to data member and a prvalue otherwise.
4071   if (Result->isFunctionType()) {
4072     VK = VK_RValue;
4073     return Context.BoundMemberTy;
4074   } else if (isIndirect) {
4075     VK = VK_LValue;
4076   } else {
4077     VK = LHS.get()->getValueKind();
4078   }
4079 
4080   return Result;
4081 }
4082 
4083 /// \brief Try to convert a type to another according to C++0x 5.16p3.
4084 ///
4085 /// This is part of the parameter validation for the ? operator. If either
4086 /// value operand is a class type, the two operands are attempted to be
4087 /// converted to each other. This function does the conversion in one direction.
4088 /// It returns true if the program is ill-formed and has already been diagnosed
4089 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)4090 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4091                                 SourceLocation QuestionLoc,
4092                                 bool &HaveConversion,
4093                                 QualType &ToType) {
4094   HaveConversion = false;
4095   ToType = To->getType();
4096 
4097   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4098                                                            SourceLocation());
4099   // C++0x 5.16p3
4100   //   The process for determining whether an operand expression E1 of type T1
4101   //   can be converted to match an operand expression E2 of type T2 is defined
4102   //   as follows:
4103   //   -- If E2 is an lvalue:
4104   bool ToIsLvalue = To->isLValue();
4105   if (ToIsLvalue) {
4106     //   E1 can be converted to match E2 if E1 can be implicitly converted to
4107     //   type "lvalue reference to T2", subject to the constraint that in the
4108     //   conversion the reference must bind directly to E1.
4109     QualType T = Self.Context.getLValueReferenceType(ToType);
4110     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4111 
4112     InitializationSequence InitSeq(Self, Entity, Kind, From);
4113     if (InitSeq.isDirectReferenceBinding()) {
4114       ToType = T;
4115       HaveConversion = true;
4116       return false;
4117     }
4118 
4119     if (InitSeq.isAmbiguous())
4120       return InitSeq.Diagnose(Self, Entity, Kind, From);
4121   }
4122 
4123   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4124   //      -- if E1 and E2 have class type, and the underlying class types are
4125   //         the same or one is a base class of the other:
4126   QualType FTy = From->getType();
4127   QualType TTy = To->getType();
4128   const RecordType *FRec = FTy->getAs<RecordType>();
4129   const RecordType *TRec = TTy->getAs<RecordType>();
4130   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4131                        Self.IsDerivedFrom(FTy, TTy);
4132   if (FRec && TRec &&
4133       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4134     //         E1 can be converted to match E2 if the class of T2 is the
4135     //         same type as, or a base class of, the class of T1, and
4136     //         [cv2 > cv1].
4137     if (FRec == TRec || FDerivedFromT) {
4138       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4139         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4140         InitializationSequence InitSeq(Self, Entity, Kind, From);
4141         if (InitSeq) {
4142           HaveConversion = true;
4143           return false;
4144         }
4145 
4146         if (InitSeq.isAmbiguous())
4147           return InitSeq.Diagnose(Self, Entity, Kind, From);
4148       }
4149     }
4150 
4151     return false;
4152   }
4153 
4154   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4155   //        implicitly converted to the type that expression E2 would have
4156   //        if E2 were converted to an rvalue (or the type it has, if E2 is
4157   //        an rvalue).
4158   //
4159   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4160   // to the array-to-pointer or function-to-pointer conversions.
4161   if (!TTy->getAs<TagType>())
4162     TTy = TTy.getUnqualifiedType();
4163 
4164   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4165   InitializationSequence InitSeq(Self, Entity, Kind, From);
4166   HaveConversion = !InitSeq.Failed();
4167   ToType = TTy;
4168   if (InitSeq.isAmbiguous())
4169     return InitSeq.Diagnose(Self, Entity, Kind, From);
4170 
4171   return false;
4172 }
4173 
4174 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4175 ///
4176 /// This is part of the parameter validation for the ? operator. If either
4177 /// value operand is a class type, overload resolution is used to find a
4178 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4179 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4180                                     SourceLocation QuestionLoc) {
4181   Expr *Args[2] = { LHS.get(), RHS.get() };
4182   OverloadCandidateSet CandidateSet(QuestionLoc);
4183   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4184                                     CandidateSet);
4185 
4186   OverloadCandidateSet::iterator Best;
4187   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4188     case OR_Success: {
4189       // We found a match. Perform the conversions on the arguments and move on.
4190       ExprResult LHSRes =
4191         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4192                                        Best->Conversions[0], Sema::AA_Converting);
4193       if (LHSRes.isInvalid())
4194         break;
4195       LHS = LHSRes;
4196 
4197       ExprResult RHSRes =
4198         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4199                                        Best->Conversions[1], Sema::AA_Converting);
4200       if (RHSRes.isInvalid())
4201         break;
4202       RHS = RHSRes;
4203       if (Best->Function)
4204         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4205       return false;
4206     }
4207 
4208     case OR_No_Viable_Function:
4209 
4210       // Emit a better diagnostic if one of the expressions is a null pointer
4211       // constant and the other is a pointer type. In this case, the user most
4212       // likely forgot to take the address of the other expression.
4213       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4214         return true;
4215 
4216       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4217         << LHS.get()->getType() << RHS.get()->getType()
4218         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4219       return true;
4220 
4221     case OR_Ambiguous:
4222       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4223         << LHS.get()->getType() << RHS.get()->getType()
4224         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4225       // FIXME: Print the possible common types by printing the return types of
4226       // the viable candidates.
4227       break;
4228 
4229     case OR_Deleted:
4230       llvm_unreachable("Conditional operator has only built-in overloads");
4231   }
4232   return true;
4233 }
4234 
4235 /// \brief Perform an "extended" implicit conversion as returned by
4236 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4237 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4238   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4239   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4240                                                            SourceLocation());
4241   Expr *Arg = E.take();
4242   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4243   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4244   if (Result.isInvalid())
4245     return true;
4246 
4247   E = Result;
4248   return false;
4249 }
4250 
4251 /// \brief Check the operands of ?: under C++ semantics.
4252 ///
4253 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4254 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4255 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4256                                            ExprResult &RHS, ExprValueKind &VK,
4257                                            ExprObjectKind &OK,
4258                                            SourceLocation QuestionLoc) {
4259   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4260   // interface pointers.
4261 
4262   // C++11 [expr.cond]p1
4263   //   The first expression is contextually converted to bool.
4264   if (!Cond.get()->isTypeDependent()) {
4265     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4266     if (CondRes.isInvalid())
4267       return QualType();
4268     Cond = CondRes;
4269   }
4270 
4271   // Assume r-value.
4272   VK = VK_RValue;
4273   OK = OK_Ordinary;
4274 
4275   // Either of the arguments dependent?
4276   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4277     return Context.DependentTy;
4278 
4279   // C++11 [expr.cond]p2
4280   //   If either the second or the third operand has type (cv) void, ...
4281   QualType LTy = LHS.get()->getType();
4282   QualType RTy = RHS.get()->getType();
4283   bool LVoid = LTy->isVoidType();
4284   bool RVoid = RTy->isVoidType();
4285   if (LVoid || RVoid) {
4286     //   ... then the [l2r] conversions are performed on the second and third
4287     //   operands ...
4288     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4289     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4290     if (LHS.isInvalid() || RHS.isInvalid())
4291       return QualType();
4292 
4293     // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4294     // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4295     // do this part for us.
4296     ExprResult &NonVoid = LVoid ? RHS : LHS;
4297     if (NonVoid.get()->getType()->isRecordType() &&
4298         NonVoid.get()->isGLValue()) {
4299       if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4300                              diag::err_allocation_of_abstract_type))
4301         return QualType();
4302       InitializedEntity Entity =
4303           InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4304       NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4305       if (NonVoid.isInvalid())
4306         return QualType();
4307     }
4308 
4309     LTy = LHS.get()->getType();
4310     RTy = RHS.get()->getType();
4311 
4312     //   ... and one of the following shall hold:
4313     //   -- The second or the third operand (but not both) is a throw-
4314     //      expression; the result is of the type of the other and is a prvalue.
4315     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenCasts());
4316     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenCasts());
4317     if (LThrow && !RThrow)
4318       return RTy;
4319     if (RThrow && !LThrow)
4320       return LTy;
4321 
4322     //   -- Both the second and third operands have type void; the result is of
4323     //      type void and is a prvalue.
4324     if (LVoid && RVoid)
4325       return Context.VoidTy;
4326 
4327     // Neither holds, error.
4328     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4329       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4330       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4331     return QualType();
4332   }
4333 
4334   // Neither is void.
4335 
4336   // C++11 [expr.cond]p3
4337   //   Otherwise, if the second and third operand have different types, and
4338   //   either has (cv) class type [...] an attempt is made to convert each of
4339   //   those operands to the type of the other.
4340   if (!Context.hasSameType(LTy, RTy) &&
4341       (LTy->isRecordType() || RTy->isRecordType())) {
4342     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4343     // These return true if a single direction is already ambiguous.
4344     QualType L2RType, R2LType;
4345     bool HaveL2R, HaveR2L;
4346     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4347       return QualType();
4348     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4349       return QualType();
4350 
4351     //   If both can be converted, [...] the program is ill-formed.
4352     if (HaveL2R && HaveR2L) {
4353       Diag(QuestionLoc, diag::err_conditional_ambiguous)
4354         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4355       return QualType();
4356     }
4357 
4358     //   If exactly one conversion is possible, that conversion is applied to
4359     //   the chosen operand and the converted operands are used in place of the
4360     //   original operands for the remainder of this section.
4361     if (HaveL2R) {
4362       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4363         return QualType();
4364       LTy = LHS.get()->getType();
4365     } else if (HaveR2L) {
4366       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4367         return QualType();
4368       RTy = RHS.get()->getType();
4369     }
4370   }
4371 
4372   // C++11 [expr.cond]p3
4373   //   if both are glvalues of the same value category and the same type except
4374   //   for cv-qualification, an attempt is made to convert each of those
4375   //   operands to the type of the other.
4376   ExprValueKind LVK = LHS.get()->getValueKind();
4377   ExprValueKind RVK = RHS.get()->getValueKind();
4378   if (!Context.hasSameType(LTy, RTy) &&
4379       Context.hasSameUnqualifiedType(LTy, RTy) &&
4380       LVK == RVK && LVK != VK_RValue) {
4381     // Since the unqualified types are reference-related and we require the
4382     // result to be as if a reference bound directly, the only conversion
4383     // we can perform is to add cv-qualifiers.
4384     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4385     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4386     if (RCVR.isStrictSupersetOf(LCVR)) {
4387       LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4388       LTy = LHS.get()->getType();
4389     }
4390     else if (LCVR.isStrictSupersetOf(RCVR)) {
4391       RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4392       RTy = RHS.get()->getType();
4393     }
4394   }
4395 
4396   // C++11 [expr.cond]p4
4397   //   If the second and third operands are glvalues of the same value
4398   //   category and have the same type, the result is of that type and
4399   //   value category and it is a bit-field if the second or the third
4400   //   operand is a bit-field, or if both are bit-fields.
4401   // We only extend this to bitfields, not to the crazy other kinds of
4402   // l-values.
4403   bool Same = Context.hasSameType(LTy, RTy);
4404   if (Same && LVK == RVK && LVK != VK_RValue &&
4405       LHS.get()->isOrdinaryOrBitFieldObject() &&
4406       RHS.get()->isOrdinaryOrBitFieldObject()) {
4407     VK = LHS.get()->getValueKind();
4408     if (LHS.get()->getObjectKind() == OK_BitField ||
4409         RHS.get()->getObjectKind() == OK_BitField)
4410       OK = OK_BitField;
4411     return LTy;
4412   }
4413 
4414   // C++11 [expr.cond]p5
4415   //   Otherwise, the result is a prvalue. If the second and third operands
4416   //   do not have the same type, and either has (cv) class type, ...
4417   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4418     //   ... overload resolution is used to determine the conversions (if any)
4419     //   to be applied to the operands. If the overload resolution fails, the
4420     //   program is ill-formed.
4421     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4422       return QualType();
4423   }
4424 
4425   // C++11 [expr.cond]p6
4426   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4427   //   conversions are performed on the second and third operands.
4428   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4429   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4430   if (LHS.isInvalid() || RHS.isInvalid())
4431     return QualType();
4432   LTy = LHS.get()->getType();
4433   RTy = RHS.get()->getType();
4434 
4435   //   After those conversions, one of the following shall hold:
4436   //   -- The second and third operands have the same type; the result
4437   //      is of that type. If the operands have class type, the result
4438   //      is a prvalue temporary of the result type, which is
4439   //      copy-initialized from either the second operand or the third
4440   //      operand depending on the value of the first operand.
4441   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4442     if (LTy->isRecordType()) {
4443       // The operands have class type. Make a temporary copy.
4444       if (RequireNonAbstractType(QuestionLoc, LTy,
4445                                  diag::err_allocation_of_abstract_type))
4446         return QualType();
4447       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4448 
4449       ExprResult LHSCopy = PerformCopyInitialization(Entity,
4450                                                      SourceLocation(),
4451                                                      LHS);
4452       if (LHSCopy.isInvalid())
4453         return QualType();
4454 
4455       ExprResult RHSCopy = PerformCopyInitialization(Entity,
4456                                                      SourceLocation(),
4457                                                      RHS);
4458       if (RHSCopy.isInvalid())
4459         return QualType();
4460 
4461       LHS = LHSCopy;
4462       RHS = RHSCopy;
4463     }
4464 
4465     return LTy;
4466   }
4467 
4468   // Extension: conditional operator involving vector types.
4469   if (LTy->isVectorType() || RTy->isVectorType())
4470     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4471 
4472   //   -- The second and third operands have arithmetic or enumeration type;
4473   //      the usual arithmetic conversions are performed to bring them to a
4474   //      common type, and the result is of that type.
4475   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4476     UsualArithmeticConversions(LHS, RHS);
4477     if (LHS.isInvalid() || RHS.isInvalid())
4478       return QualType();
4479     return LHS.get()->getType();
4480   }
4481 
4482   //   -- The second and third operands have pointer type, or one has pointer
4483   //      type and the other is a null pointer constant, or both are null
4484   //      pointer constants, at least one of which is non-integral; pointer
4485   //      conversions and qualification conversions are performed to bring them
4486   //      to their composite pointer type. The result is of the composite
4487   //      pointer type.
4488   //   -- The second and third operands have pointer to member type, or one has
4489   //      pointer to member type and the other is a null pointer constant;
4490   //      pointer to member conversions and qualification conversions are
4491   //      performed to bring them to a common type, whose cv-qualification
4492   //      shall match the cv-qualification of either the second or the third
4493   //      operand. The result is of the common type.
4494   bool NonStandardCompositeType = false;
4495   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4496                               isSFINAEContext()? 0 : &NonStandardCompositeType);
4497   if (!Composite.isNull()) {
4498     if (NonStandardCompositeType)
4499       Diag(QuestionLoc,
4500            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4501         << LTy << RTy << Composite
4502         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4503 
4504     return Composite;
4505   }
4506 
4507   // Similarly, attempt to find composite type of two objective-c pointers.
4508   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4509   if (!Composite.isNull())
4510     return Composite;
4511 
4512   // Check if we are using a null with a non-pointer type.
4513   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4514     return QualType();
4515 
4516   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4517     << LHS.get()->getType() << RHS.get()->getType()
4518     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4519   return QualType();
4520 }
4521 
4522 /// \brief Find a merged pointer type and convert the two expressions to it.
4523 ///
4524 /// This finds the composite pointer type (or member pointer type) for @p E1
4525 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4526 /// type and returns it.
4527 /// It does not emit diagnostics.
4528 ///
4529 /// \param Loc The location of the operator requiring these two expressions to
4530 /// be converted to the composite pointer type.
4531 ///
4532 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4533 /// a non-standard (but still sane) composite type to which both expressions
4534 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4535 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4536 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4537                                         Expr *&E1, Expr *&E2,
4538                                         bool *NonStandardCompositeType) {
4539   if (NonStandardCompositeType)
4540     *NonStandardCompositeType = false;
4541 
4542   assert(getLangOpts().CPlusPlus && "This function assumes C++");
4543   QualType T1 = E1->getType(), T2 = E2->getType();
4544 
4545   // C++11 5.9p2
4546   //   Pointer conversions and qualification conversions are performed on
4547   //   pointer operands to bring them to their composite pointer type. If
4548   //   one operand is a null pointer constant, the composite pointer type is
4549   //   std::nullptr_t if the other operand is also a null pointer constant or,
4550   //   if the other operand is a pointer, the type of the other operand.
4551   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4552       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4553     if (T1->isNullPtrType() &&
4554         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4555       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4556       return T1;
4557     }
4558     if (T2->isNullPtrType() &&
4559         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4560       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4561       return T2;
4562     }
4563     return QualType();
4564   }
4565 
4566   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4567     if (T2->isMemberPointerType())
4568       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4569     else
4570       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4571     return T2;
4572   }
4573   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4574     if (T1->isMemberPointerType())
4575       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4576     else
4577       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4578     return T1;
4579   }
4580 
4581   // Now both have to be pointers or member pointers.
4582   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4583       (!T2->isPointerType() && !T2->isMemberPointerType()))
4584     return QualType();
4585 
4586   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4587   //   the other has type "pointer to cv2 T" and the composite pointer type is
4588   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4589   //   Otherwise, the composite pointer type is a pointer type similar to the
4590   //   type of one of the operands, with a cv-qualification signature that is
4591   //   the union of the cv-qualification signatures of the operand types.
4592   // In practice, the first part here is redundant; it's subsumed by the second.
4593   // What we do here is, we build the two possible composite types, and try the
4594   // conversions in both directions. If only one works, or if the two composite
4595   // types are the same, we have succeeded.
4596   // FIXME: extended qualifiers?
4597   typedef SmallVector<unsigned, 4> QualifierVector;
4598   QualifierVector QualifierUnion;
4599   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4600       ContainingClassVector;
4601   ContainingClassVector MemberOfClass;
4602   QualType Composite1 = Context.getCanonicalType(T1),
4603            Composite2 = Context.getCanonicalType(T2);
4604   unsigned NeedConstBefore = 0;
4605   do {
4606     const PointerType *Ptr1, *Ptr2;
4607     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4608         (Ptr2 = Composite2->getAs<PointerType>())) {
4609       Composite1 = Ptr1->getPointeeType();
4610       Composite2 = Ptr2->getPointeeType();
4611 
4612       // If we're allowed to create a non-standard composite type, keep track
4613       // of where we need to fill in additional 'const' qualifiers.
4614       if (NonStandardCompositeType &&
4615           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4616         NeedConstBefore = QualifierUnion.size();
4617 
4618       QualifierUnion.push_back(
4619                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4620       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4621       continue;
4622     }
4623 
4624     const MemberPointerType *MemPtr1, *MemPtr2;
4625     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4626         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4627       Composite1 = MemPtr1->getPointeeType();
4628       Composite2 = MemPtr2->getPointeeType();
4629 
4630       // If we're allowed to create a non-standard composite type, keep track
4631       // of where we need to fill in additional 'const' qualifiers.
4632       if (NonStandardCompositeType &&
4633           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4634         NeedConstBefore = QualifierUnion.size();
4635 
4636       QualifierUnion.push_back(
4637                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4638       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4639                                              MemPtr2->getClass()));
4640       continue;
4641     }
4642 
4643     // FIXME: block pointer types?
4644 
4645     // Cannot unwrap any more types.
4646     break;
4647   } while (true);
4648 
4649   if (NeedConstBefore && NonStandardCompositeType) {
4650     // Extension: Add 'const' to qualifiers that come before the first qualifier
4651     // mismatch, so that our (non-standard!) composite type meets the
4652     // requirements of C++ [conv.qual]p4 bullet 3.
4653     for (unsigned I = 0; I != NeedConstBefore; ++I) {
4654       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4655         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4656         *NonStandardCompositeType = true;
4657       }
4658     }
4659   }
4660 
4661   // Rewrap the composites as pointers or member pointers with the union CVRs.
4662   ContainingClassVector::reverse_iterator MOC
4663     = MemberOfClass.rbegin();
4664   for (QualifierVector::reverse_iterator
4665          I = QualifierUnion.rbegin(),
4666          E = QualifierUnion.rend();
4667        I != E; (void)++I, ++MOC) {
4668     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4669     if (MOC->first && MOC->second) {
4670       // Rebuild member pointer type
4671       Composite1 = Context.getMemberPointerType(
4672                                     Context.getQualifiedType(Composite1, Quals),
4673                                     MOC->first);
4674       Composite2 = Context.getMemberPointerType(
4675                                     Context.getQualifiedType(Composite2, Quals),
4676                                     MOC->second);
4677     } else {
4678       // Rebuild pointer type
4679       Composite1
4680         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4681       Composite2
4682         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4683     }
4684   }
4685 
4686   // Try to convert to the first composite pointer type.
4687   InitializedEntity Entity1
4688     = InitializedEntity::InitializeTemporary(Composite1);
4689   InitializationKind Kind
4690     = InitializationKind::CreateCopy(Loc, SourceLocation());
4691   InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4692   InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4693 
4694   if (E1ToC1 && E2ToC1) {
4695     // Conversion to Composite1 is viable.
4696     if (!Context.hasSameType(Composite1, Composite2)) {
4697       // Composite2 is a different type from Composite1. Check whether
4698       // Composite2 is also viable.
4699       InitializedEntity Entity2
4700         = InitializedEntity::InitializeTemporary(Composite2);
4701       InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4702       InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4703       if (E1ToC2 && E2ToC2) {
4704         // Both Composite1 and Composite2 are viable and are different;
4705         // this is an ambiguity.
4706         return QualType();
4707       }
4708     }
4709 
4710     // Convert E1 to Composite1
4711     ExprResult E1Result
4712       = E1ToC1.Perform(*this, Entity1, Kind, E1);
4713     if (E1Result.isInvalid())
4714       return QualType();
4715     E1 = E1Result.takeAs<Expr>();
4716 
4717     // Convert E2 to Composite1
4718     ExprResult E2Result
4719       = E2ToC1.Perform(*this, Entity1, Kind, E2);
4720     if (E2Result.isInvalid())
4721       return QualType();
4722     E2 = E2Result.takeAs<Expr>();
4723 
4724     return Composite1;
4725   }
4726 
4727   // Check whether Composite2 is viable.
4728   InitializedEntity Entity2
4729     = InitializedEntity::InitializeTemporary(Composite2);
4730   InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4731   InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4732   if (!E1ToC2 || !E2ToC2)
4733     return QualType();
4734 
4735   // Convert E1 to Composite2
4736   ExprResult E1Result
4737     = E1ToC2.Perform(*this, Entity2, Kind, E1);
4738   if (E1Result.isInvalid())
4739     return QualType();
4740   E1 = E1Result.takeAs<Expr>();
4741 
4742   // Convert E2 to Composite2
4743   ExprResult E2Result
4744     = E2ToC2.Perform(*this, Entity2, Kind, E2);
4745   if (E2Result.isInvalid())
4746     return QualType();
4747   E2 = E2Result.takeAs<Expr>();
4748 
4749   return Composite2;
4750 }
4751 
MaybeBindToTemporary(Expr * E)4752 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4753   if (!E)
4754     return ExprError();
4755 
4756   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4757 
4758   // If the result is a glvalue, we shouldn't bind it.
4759   if (!E->isRValue())
4760     return Owned(E);
4761 
4762   // In ARC, calls that return a retainable type can return retained,
4763   // in which case we have to insert a consuming cast.
4764   if (getLangOpts().ObjCAutoRefCount &&
4765       E->getType()->isObjCRetainableType()) {
4766 
4767     bool ReturnsRetained;
4768 
4769     // For actual calls, we compute this by examining the type of the
4770     // called value.
4771     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4772       Expr *Callee = Call->getCallee()->IgnoreParens();
4773       QualType T = Callee->getType();
4774 
4775       if (T == Context.BoundMemberTy) {
4776         // Handle pointer-to-members.
4777         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4778           T = BinOp->getRHS()->getType();
4779         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4780           T = Mem->getMemberDecl()->getType();
4781       }
4782 
4783       if (const PointerType *Ptr = T->getAs<PointerType>())
4784         T = Ptr->getPointeeType();
4785       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4786         T = Ptr->getPointeeType();
4787       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4788         T = MemPtr->getPointeeType();
4789 
4790       const FunctionType *FTy = T->getAs<FunctionType>();
4791       assert(FTy && "call to value not of function type?");
4792       ReturnsRetained = FTy->getExtInfo().getProducesResult();
4793 
4794     // ActOnStmtExpr arranges things so that StmtExprs of retainable
4795     // type always produce a +1 object.
4796     } else if (isa<StmtExpr>(E)) {
4797       ReturnsRetained = true;
4798 
4799     // We hit this case with the lambda conversion-to-block optimization;
4800     // we don't want any extra casts here.
4801     } else if (isa<CastExpr>(E) &&
4802                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4803       return Owned(E);
4804 
4805     // For message sends and property references, we try to find an
4806     // actual method.  FIXME: we should infer retention by selector in
4807     // cases where we don't have an actual method.
4808     } else {
4809       ObjCMethodDecl *D = 0;
4810       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4811         D = Send->getMethodDecl();
4812       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4813         D = BoxedExpr->getBoxingMethod();
4814       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4815         D = ArrayLit->getArrayWithObjectsMethod();
4816       } else if (ObjCDictionaryLiteral *DictLit
4817                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
4818         D = DictLit->getDictWithObjectsMethod();
4819       }
4820 
4821       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4822 
4823       // Don't do reclaims on performSelector calls; despite their
4824       // return type, the invoked method doesn't necessarily actually
4825       // return an object.
4826       if (!ReturnsRetained &&
4827           D && D->getMethodFamily() == OMF_performSelector)
4828         return Owned(E);
4829     }
4830 
4831     // Don't reclaim an object of Class type.
4832     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4833       return Owned(E);
4834 
4835     ExprNeedsCleanups = true;
4836 
4837     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4838                                    : CK_ARCReclaimReturnedObject);
4839     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4840                                           VK_RValue));
4841   }
4842 
4843   if (!getLangOpts().CPlusPlus)
4844     return Owned(E);
4845 
4846   // Search for the base element type (cf. ASTContext::getBaseElementType) with
4847   // a fast path for the common case that the type is directly a RecordType.
4848   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4849   const RecordType *RT = 0;
4850   while (!RT) {
4851     switch (T->getTypeClass()) {
4852     case Type::Record:
4853       RT = cast<RecordType>(T);
4854       break;
4855     case Type::ConstantArray:
4856     case Type::IncompleteArray:
4857     case Type::VariableArray:
4858     case Type::DependentSizedArray:
4859       T = cast<ArrayType>(T)->getElementType().getTypePtr();
4860       break;
4861     default:
4862       return Owned(E);
4863     }
4864   }
4865 
4866   // That should be enough to guarantee that this type is complete, if we're
4867   // not processing a decltype expression.
4868   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4869   if (RD->isInvalidDecl() || RD->isDependentContext())
4870     return Owned(E);
4871 
4872   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4873   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4874 
4875   if (Destructor) {
4876     MarkFunctionReferenced(E->getExprLoc(), Destructor);
4877     CheckDestructorAccess(E->getExprLoc(), Destructor,
4878                           PDiag(diag::err_access_dtor_temp)
4879                             << E->getType());
4880     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4881       return ExprError();
4882 
4883     // If destructor is trivial, we can avoid the extra copy.
4884     if (Destructor->isTrivial())
4885       return Owned(E);
4886 
4887     // We need a cleanup, but we don't need to remember the temporary.
4888     ExprNeedsCleanups = true;
4889   }
4890 
4891   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4892   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4893 
4894   if (IsDecltype)
4895     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4896 
4897   return Owned(Bind);
4898 }
4899 
4900 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4901 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4902   if (SubExpr.isInvalid())
4903     return ExprError();
4904 
4905   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4906 }
4907 
MaybeCreateExprWithCleanups(Expr * SubExpr)4908 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4909   assert(SubExpr && "sub expression can't be null!");
4910 
4911   CleanupVarDeclMarking();
4912 
4913   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4914   assert(ExprCleanupObjects.size() >= FirstCleanup);
4915   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4916   if (!ExprNeedsCleanups)
4917     return SubExpr;
4918 
4919   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4920     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4921                          ExprCleanupObjects.size() - FirstCleanup);
4922 
4923   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4924   DiscardCleanupsInEvaluationContext();
4925 
4926   return E;
4927 }
4928 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4929 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4930   assert(SubStmt && "sub statement can't be null!");
4931 
4932   CleanupVarDeclMarking();
4933 
4934   if (!ExprNeedsCleanups)
4935     return SubStmt;
4936 
4937   // FIXME: In order to attach the temporaries, wrap the statement into
4938   // a StmtExpr; currently this is only used for asm statements.
4939   // This is hacky, either create a new CXXStmtWithTemporaries statement or
4940   // a new AsmStmtWithTemporaries.
4941   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4942                                                       SourceLocation(),
4943                                                       SourceLocation());
4944   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4945                                    SourceLocation());
4946   return MaybeCreateExprWithCleanups(E);
4947 }
4948 
4949 /// Process the expression contained within a decltype. For such expressions,
4950 /// certain semantic checks on temporaries are delayed until this point, and
4951 /// are omitted for the 'topmost' call in the decltype expression. If the
4952 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4953 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4954   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4955 
4956   // C++11 [expr.call]p11:
4957   //   If a function call is a prvalue of object type,
4958   // -- if the function call is either
4959   //   -- the operand of a decltype-specifier, or
4960   //   -- the right operand of a comma operator that is the operand of a
4961   //      decltype-specifier,
4962   //   a temporary object is not introduced for the prvalue.
4963 
4964   // Recursively rebuild ParenExprs and comma expressions to strip out the
4965   // outermost CXXBindTemporaryExpr, if any.
4966   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4967     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4968     if (SubExpr.isInvalid())
4969       return ExprError();
4970     if (SubExpr.get() == PE->getSubExpr())
4971       return Owned(E);
4972     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4973   }
4974   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4975     if (BO->getOpcode() == BO_Comma) {
4976       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4977       if (RHS.isInvalid())
4978         return ExprError();
4979       if (RHS.get() == BO->getRHS())
4980         return Owned(E);
4981       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4982                                                 BO_Comma, BO->getType(),
4983                                                 BO->getValueKind(),
4984                                                 BO->getObjectKind(),
4985                                                 BO->getOperatorLoc(),
4986                                                 BO->isFPContractable()));
4987     }
4988   }
4989 
4990   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4991   if (TopBind)
4992     E = TopBind->getSubExpr();
4993 
4994   // Disable the special decltype handling now.
4995   ExprEvalContexts.back().IsDecltype = false;
4996 
4997   // In MS mode, don't perform any extra checking of call return types within a
4998   // decltype expression.
4999   if (getLangOpts().MicrosoftMode)
5000     return Owned(E);
5001 
5002   // Perform the semantic checks we delayed until this point.
5003   CallExpr *TopCall = dyn_cast<CallExpr>(E);
5004   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5005        I != N; ++I) {
5006     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5007     if (Call == TopCall)
5008       continue;
5009 
5010     if (CheckCallReturnType(Call->getCallReturnType(),
5011                             Call->getLocStart(),
5012                             Call, Call->getDirectCallee()))
5013       return ExprError();
5014   }
5015 
5016   // Now all relevant types are complete, check the destructors are accessible
5017   // and non-deleted, and annotate them on the temporaries.
5018   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5019        I != N; ++I) {
5020     CXXBindTemporaryExpr *Bind =
5021       ExprEvalContexts.back().DelayedDecltypeBinds[I];
5022     if (Bind == TopBind)
5023       continue;
5024 
5025     CXXTemporary *Temp = Bind->getTemporary();
5026 
5027     CXXRecordDecl *RD =
5028       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5029     CXXDestructorDecl *Destructor = LookupDestructor(RD);
5030     Temp->setDestructor(Destructor);
5031 
5032     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5033     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5034                           PDiag(diag::err_access_dtor_temp)
5035                             << Bind->getType());
5036     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5037       return ExprError();
5038 
5039     // We need a cleanup, but we don't need to remember the temporary.
5040     ExprNeedsCleanups = true;
5041   }
5042 
5043   // Possibly strip off the top CXXBindTemporaryExpr.
5044   return Owned(E);
5045 }
5046 
5047 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)5048 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
5049                                    tok::TokenKind OpKind, ParsedType &ObjectType,
5050                                    bool &MayBePseudoDestructor) {
5051   // Since this might be a postfix expression, get rid of ParenListExprs.
5052   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5053   if (Result.isInvalid()) return ExprError();
5054   Base = Result.get();
5055 
5056   Result = CheckPlaceholderExpr(Base);
5057   if (Result.isInvalid()) return ExprError();
5058   Base = Result.take();
5059 
5060   QualType BaseType = Base->getType();
5061   MayBePseudoDestructor = false;
5062   if (BaseType->isDependentType()) {
5063     // If we have a pointer to a dependent type and are using the -> operator,
5064     // the object type is the type that the pointer points to. We might still
5065     // have enough information about that type to do something useful.
5066     if (OpKind == tok::arrow)
5067       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5068         BaseType = Ptr->getPointeeType();
5069 
5070     ObjectType = ParsedType::make(BaseType);
5071     MayBePseudoDestructor = true;
5072     return Owned(Base);
5073   }
5074 
5075   // C++ [over.match.oper]p8:
5076   //   [...] When operator->returns, the operator-> is applied  to the value
5077   //   returned, with the original second operand.
5078   if (OpKind == tok::arrow) {
5079     bool NoArrowOperatorFound = false;
5080     bool FirstIteration = true;
5081     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5082     // The set of types we've considered so far.
5083     llvm::SmallPtrSet<CanQualType,8> CTypes;
5084     SmallVector<SourceLocation, 8> Locations;
5085     CTypes.insert(Context.getCanonicalType(BaseType));
5086 
5087     while (BaseType->isRecordType()) {
5088       Result = BuildOverloadedArrowExpr(
5089           S, Base, OpLoc,
5090           // When in a template specialization and on the first loop iteration,
5091           // potentially give the default diagnostic (with the fixit in a
5092           // separate note) instead of having the error reported back to here
5093           // and giving a diagnostic with a fixit attached to the error itself.
5094           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5095               ? 0
5096               : &NoArrowOperatorFound);
5097       if (Result.isInvalid()) {
5098         if (NoArrowOperatorFound) {
5099           if (FirstIteration) {
5100             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5101               << BaseType << 1 << Base->getSourceRange()
5102               << FixItHint::CreateReplacement(OpLoc, ".");
5103             OpKind = tok::period;
5104             break;
5105           }
5106           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5107             << BaseType << Base->getSourceRange();
5108           CallExpr *CE = dyn_cast<CallExpr>(Base);
5109           if (Decl *CD = (CE ? CE->getCalleeDecl() : 0)) {
5110             Diag(CD->getLocStart(),
5111                  diag::note_member_reference_arrow_from_operator_arrow);
5112           }
5113         }
5114         return ExprError();
5115       }
5116       Base = Result.get();
5117       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5118         Locations.push_back(OpCall->getDirectCallee()->getLocation());
5119       BaseType = Base->getType();
5120       CanQualType CBaseType = Context.getCanonicalType(BaseType);
5121       if (!CTypes.insert(CBaseType)) {
5122         Diag(OpLoc, diag::err_operator_arrow_circular);
5123         for (unsigned i = 0; i < Locations.size(); i++)
5124           Diag(Locations[i], diag::note_declared_at);
5125         return ExprError();
5126       }
5127       FirstIteration = false;
5128     }
5129 
5130     if (OpKind == tok::arrow &&
5131         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5132       BaseType = BaseType->getPointeeType();
5133   }
5134 
5135   // Objective-C properties allow "." access on Objective-C pointer types,
5136   // so adjust the base type to the object type itself.
5137   if (BaseType->isObjCObjectPointerType())
5138     BaseType = BaseType->getPointeeType();
5139 
5140   // C++ [basic.lookup.classref]p2:
5141   //   [...] If the type of the object expression is of pointer to scalar
5142   //   type, the unqualified-id is looked up in the context of the complete
5143   //   postfix-expression.
5144   //
5145   // This also indicates that we could be parsing a pseudo-destructor-name.
5146   // Note that Objective-C class and object types can be pseudo-destructor
5147   // expressions or normal member (ivar or property) access expressions.
5148   if (BaseType->isObjCObjectOrInterfaceType()) {
5149     MayBePseudoDestructor = true;
5150   } else if (!BaseType->isRecordType()) {
5151     ObjectType = ParsedType();
5152     MayBePseudoDestructor = true;
5153     return Owned(Base);
5154   }
5155 
5156   // The object type must be complete (or dependent), or
5157   // C++11 [expr.prim.general]p3:
5158   //   Unlike the object expression in other contexts, *this is not required to
5159   //   be of complete type for purposes of class member access (5.2.5) outside
5160   //   the member function body.
5161   if (!BaseType->isDependentType() &&
5162       !isThisOutsideMemberFunctionBody(BaseType) &&
5163       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5164     return ExprError();
5165 
5166   // C++ [basic.lookup.classref]p2:
5167   //   If the id-expression in a class member access (5.2.5) is an
5168   //   unqualified-id, and the type of the object expression is of a class
5169   //   type C (or of pointer to a class type C), the unqualified-id is looked
5170   //   up in the scope of class C. [...]
5171   ObjectType = ParsedType::make(BaseType);
5172   return Base;
5173 }
5174 
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)5175 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5176                                                    Expr *MemExpr) {
5177   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5178   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5179     << isa<CXXPseudoDestructorExpr>(MemExpr)
5180     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5181 
5182   return ActOnCallExpr(/*Scope*/ 0,
5183                        MemExpr,
5184                        /*LPLoc*/ ExpectedLParenLoc,
5185                        None,
5186                        /*RPLoc*/ ExpectedLParenLoc);
5187 }
5188 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5189 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5190                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
5191   if (Base->hasPlaceholderType()) {
5192     ExprResult result = S.CheckPlaceholderExpr(Base);
5193     if (result.isInvalid()) return true;
5194     Base = result.take();
5195   }
5196   ObjectType = Base->getType();
5197 
5198   // C++ [expr.pseudo]p2:
5199   //   The left-hand side of the dot operator shall be of scalar type. The
5200   //   left-hand side of the arrow operator shall be of pointer to scalar type.
5201   //   This scalar type is the object type.
5202   // Note that this is rather different from the normal handling for the
5203   // arrow operator.
5204   if (OpKind == tok::arrow) {
5205     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5206       ObjectType = Ptr->getPointeeType();
5207     } else if (!Base->isTypeDependent()) {
5208       // The user wrote "p->" when she probably meant "p."; fix it.
5209       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5210         << ObjectType << true
5211         << FixItHint::CreateReplacement(OpLoc, ".");
5212       if (S.isSFINAEContext())
5213         return true;
5214 
5215       OpKind = tok::period;
5216     }
5217   }
5218 
5219   return false;
5220 }
5221 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5222 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5223                                            SourceLocation OpLoc,
5224                                            tok::TokenKind OpKind,
5225                                            const CXXScopeSpec &SS,
5226                                            TypeSourceInfo *ScopeTypeInfo,
5227                                            SourceLocation CCLoc,
5228                                            SourceLocation TildeLoc,
5229                                          PseudoDestructorTypeStorage Destructed,
5230                                            bool HasTrailingLParen) {
5231   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5232 
5233   QualType ObjectType;
5234   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5235     return ExprError();
5236 
5237   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5238       !ObjectType->isVectorType()) {
5239     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5240       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5241     else
5242       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5243         << ObjectType << Base->getSourceRange();
5244     return ExprError();
5245   }
5246 
5247   // C++ [expr.pseudo]p2:
5248   //   [...] The cv-unqualified versions of the object type and of the type
5249   //   designated by the pseudo-destructor-name shall be the same type.
5250   if (DestructedTypeInfo) {
5251     QualType DestructedType = DestructedTypeInfo->getType();
5252     SourceLocation DestructedTypeStart
5253       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5254     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5255       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5256         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5257           << ObjectType << DestructedType << Base->getSourceRange()
5258           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5259 
5260         // Recover by setting the destructed type to the object type.
5261         DestructedType = ObjectType;
5262         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5263                                                            DestructedTypeStart);
5264         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5265       } else if (DestructedType.getObjCLifetime() !=
5266                                                 ObjectType.getObjCLifetime()) {
5267 
5268         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5269           // Okay: just pretend that the user provided the correctly-qualified
5270           // type.
5271         } else {
5272           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5273             << ObjectType << DestructedType << Base->getSourceRange()
5274             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5275         }
5276 
5277         // Recover by setting the destructed type to the object type.
5278         DestructedType = ObjectType;
5279         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5280                                                            DestructedTypeStart);
5281         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5282       }
5283     }
5284   }
5285 
5286   // C++ [expr.pseudo]p2:
5287   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5288   //   form
5289   //
5290   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5291   //
5292   //   shall designate the same scalar type.
5293   if (ScopeTypeInfo) {
5294     QualType ScopeType = ScopeTypeInfo->getType();
5295     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5296         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5297 
5298       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5299            diag::err_pseudo_dtor_type_mismatch)
5300         << ObjectType << ScopeType << Base->getSourceRange()
5301         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5302 
5303       ScopeType = QualType();
5304       ScopeTypeInfo = 0;
5305     }
5306   }
5307 
5308   Expr *Result
5309     = new (Context) CXXPseudoDestructorExpr(Context, Base,
5310                                             OpKind == tok::arrow, OpLoc,
5311                                             SS.getWithLocInContext(Context),
5312                                             ScopeTypeInfo,
5313                                             CCLoc,
5314                                             TildeLoc,
5315                                             Destructed);
5316 
5317   if (HasTrailingLParen)
5318     return Owned(Result);
5319 
5320   return DiagnoseDtorReference(Destructed.getLocation(), Result);
5321 }
5322 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5323 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5324                                            SourceLocation OpLoc,
5325                                            tok::TokenKind OpKind,
5326                                            CXXScopeSpec &SS,
5327                                            UnqualifiedId &FirstTypeName,
5328                                            SourceLocation CCLoc,
5329                                            SourceLocation TildeLoc,
5330                                            UnqualifiedId &SecondTypeName,
5331                                            bool HasTrailingLParen) {
5332   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5333           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5334          "Invalid first type name in pseudo-destructor");
5335   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5336           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5337          "Invalid second type name in pseudo-destructor");
5338 
5339   QualType ObjectType;
5340   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5341     return ExprError();
5342 
5343   // Compute the object type that we should use for name lookup purposes. Only
5344   // record types and dependent types matter.
5345   ParsedType ObjectTypePtrForLookup;
5346   if (!SS.isSet()) {
5347     if (ObjectType->isRecordType())
5348       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5349     else if (ObjectType->isDependentType())
5350       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5351   }
5352 
5353   // Convert the name of the type being destructed (following the ~) into a
5354   // type (with source-location information).
5355   QualType DestructedType;
5356   TypeSourceInfo *DestructedTypeInfo = 0;
5357   PseudoDestructorTypeStorage Destructed;
5358   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5359     ParsedType T = getTypeName(*SecondTypeName.Identifier,
5360                                SecondTypeName.StartLocation,
5361                                S, &SS, true, false, ObjectTypePtrForLookup);
5362     if (!T &&
5363         ((SS.isSet() && !computeDeclContext(SS, false)) ||
5364          (!SS.isSet() && ObjectType->isDependentType()))) {
5365       // The name of the type being destroyed is a dependent name, and we
5366       // couldn't find anything useful in scope. Just store the identifier and
5367       // it's location, and we'll perform (qualified) name lookup again at
5368       // template instantiation time.
5369       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5370                                                SecondTypeName.StartLocation);
5371     } else if (!T) {
5372       Diag(SecondTypeName.StartLocation,
5373            diag::err_pseudo_dtor_destructor_non_type)
5374         << SecondTypeName.Identifier << ObjectType;
5375       if (isSFINAEContext())
5376         return ExprError();
5377 
5378       // Recover by assuming we had the right type all along.
5379       DestructedType = ObjectType;
5380     } else
5381       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5382   } else {
5383     // Resolve the template-id to a type.
5384     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5385     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5386                                        TemplateId->NumArgs);
5387     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5388                                        TemplateId->TemplateKWLoc,
5389                                        TemplateId->Template,
5390                                        TemplateId->TemplateNameLoc,
5391                                        TemplateId->LAngleLoc,
5392                                        TemplateArgsPtr,
5393                                        TemplateId->RAngleLoc);
5394     if (T.isInvalid() || !T.get()) {
5395       // Recover by assuming we had the right type all along.
5396       DestructedType = ObjectType;
5397     } else
5398       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5399   }
5400 
5401   // If we've performed some kind of recovery, (re-)build the type source
5402   // information.
5403   if (!DestructedType.isNull()) {
5404     if (!DestructedTypeInfo)
5405       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5406                                                   SecondTypeName.StartLocation);
5407     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5408   }
5409 
5410   // Convert the name of the scope type (the type prior to '::') into a type.
5411   TypeSourceInfo *ScopeTypeInfo = 0;
5412   QualType ScopeType;
5413   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5414       FirstTypeName.Identifier) {
5415     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5416       ParsedType T = getTypeName(*FirstTypeName.Identifier,
5417                                  FirstTypeName.StartLocation,
5418                                  S, &SS, true, false, ObjectTypePtrForLookup);
5419       if (!T) {
5420         Diag(FirstTypeName.StartLocation,
5421              diag::err_pseudo_dtor_destructor_non_type)
5422           << FirstTypeName.Identifier << ObjectType;
5423 
5424         if (isSFINAEContext())
5425           return ExprError();
5426 
5427         // Just drop this type. It's unnecessary anyway.
5428         ScopeType = QualType();
5429       } else
5430         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5431     } else {
5432       // Resolve the template-id to a type.
5433       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5434       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5435                                          TemplateId->NumArgs);
5436       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5437                                          TemplateId->TemplateKWLoc,
5438                                          TemplateId->Template,
5439                                          TemplateId->TemplateNameLoc,
5440                                          TemplateId->LAngleLoc,
5441                                          TemplateArgsPtr,
5442                                          TemplateId->RAngleLoc);
5443       if (T.isInvalid() || !T.get()) {
5444         // Recover by dropping this type.
5445         ScopeType = QualType();
5446       } else
5447         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5448     }
5449   }
5450 
5451   if (!ScopeType.isNull() && !ScopeTypeInfo)
5452     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5453                                                   FirstTypeName.StartLocation);
5454 
5455 
5456   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5457                                    ScopeTypeInfo, CCLoc, TildeLoc,
5458                                    Destructed, HasTrailingLParen);
5459 }
5460 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5461 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5462                                            SourceLocation OpLoc,
5463                                            tok::TokenKind OpKind,
5464                                            SourceLocation TildeLoc,
5465                                            const DeclSpec& DS,
5466                                            bool HasTrailingLParen) {
5467   QualType ObjectType;
5468   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5469     return ExprError();
5470 
5471   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5472 
5473   TypeLocBuilder TLB;
5474   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5475   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5476   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5477   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5478 
5479   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5480                                    0, SourceLocation(), TildeLoc,
5481                                    Destructed, HasTrailingLParen);
5482 }
5483 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5484 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5485                                         CXXConversionDecl *Method,
5486                                         bool HadMultipleCandidates) {
5487   if (Method->getParent()->isLambda() &&
5488       Method->getConversionType()->isBlockPointerType()) {
5489     // This is a lambda coversion to block pointer; check if the argument
5490     // is a LambdaExpr.
5491     Expr *SubE = E;
5492     CastExpr *CE = dyn_cast<CastExpr>(SubE);
5493     if (CE && CE->getCastKind() == CK_NoOp)
5494       SubE = CE->getSubExpr();
5495     SubE = SubE->IgnoreParens();
5496     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5497       SubE = BE->getSubExpr();
5498     if (isa<LambdaExpr>(SubE)) {
5499       // For the conversion to block pointer on a lambda expression, we
5500       // construct a special BlockLiteral instead; this doesn't really make
5501       // a difference in ARC, but outside of ARC the resulting block literal
5502       // follows the normal lifetime rules for block literals instead of being
5503       // autoreleased.
5504       DiagnosticErrorTrap Trap(Diags);
5505       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5506                                                      E->getExprLoc(),
5507                                                      Method, E);
5508       if (Exp.isInvalid())
5509         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5510       return Exp;
5511     }
5512   }
5513 
5514 
5515   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5516                                           FoundDecl, Method);
5517   if (Exp.isInvalid())
5518     return true;
5519 
5520   MemberExpr *ME =
5521       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5522                                SourceLocation(), Context.BoundMemberTy,
5523                                VK_RValue, OK_Ordinary);
5524   if (HadMultipleCandidates)
5525     ME->setHadMultipleCandidates(true);
5526   MarkMemberReferenced(ME);
5527 
5528   QualType ResultType = Method->getResultType();
5529   ExprValueKind VK = Expr::getValueKindForType(ResultType);
5530   ResultType = ResultType.getNonLValueExprType(Context);
5531 
5532   CXXMemberCallExpr *CE =
5533     new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5534                                     Exp.get()->getLocEnd());
5535   return CE;
5536 }
5537 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5538 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5539                                       SourceLocation RParen) {
5540   CanThrowResult CanThrow = canThrow(Operand);
5541   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5542                                              CanThrow, KeyLoc, RParen));
5543 }
5544 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5545 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5546                                    Expr *Operand, SourceLocation RParen) {
5547   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5548 }
5549 
IsSpecialDiscardedValue(Expr * E)5550 static bool IsSpecialDiscardedValue(Expr *E) {
5551   // In C++11, discarded-value expressions of a certain form are special,
5552   // according to [expr]p10:
5553   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5554   //   expression is an lvalue of volatile-qualified type and it has
5555   //   one of the following forms:
5556   E = E->IgnoreParens();
5557 
5558   //   - id-expression (5.1.1),
5559   if (isa<DeclRefExpr>(E))
5560     return true;
5561 
5562   //   - subscripting (5.2.1),
5563   if (isa<ArraySubscriptExpr>(E))
5564     return true;
5565 
5566   //   - class member access (5.2.5),
5567   if (isa<MemberExpr>(E))
5568     return true;
5569 
5570   //   - indirection (5.3.1),
5571   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5572     if (UO->getOpcode() == UO_Deref)
5573       return true;
5574 
5575   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5576     //   - pointer-to-member operation (5.5),
5577     if (BO->isPtrMemOp())
5578       return true;
5579 
5580     //   - comma expression (5.18) where the right operand is one of the above.
5581     if (BO->getOpcode() == BO_Comma)
5582       return IsSpecialDiscardedValue(BO->getRHS());
5583   }
5584 
5585   //   - conditional expression (5.16) where both the second and the third
5586   //     operands are one of the above, or
5587   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5588     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5589            IsSpecialDiscardedValue(CO->getFalseExpr());
5590   // The related edge case of "*x ?: *x".
5591   if (BinaryConditionalOperator *BCO =
5592           dyn_cast<BinaryConditionalOperator>(E)) {
5593     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5594       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5595              IsSpecialDiscardedValue(BCO->getFalseExpr());
5596   }
5597 
5598   // Objective-C++ extensions to the rule.
5599   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5600     return true;
5601 
5602   return false;
5603 }
5604 
5605 /// Perform the conversions required for an expression used in a
5606 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5607 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5608   if (E->hasPlaceholderType()) {
5609     ExprResult result = CheckPlaceholderExpr(E);
5610     if (result.isInvalid()) return Owned(E);
5611     E = result.take();
5612   }
5613 
5614   // C99 6.3.2.1:
5615   //   [Except in specific positions,] an lvalue that does not have
5616   //   array type is converted to the value stored in the
5617   //   designated object (and is no longer an lvalue).
5618   if (E->isRValue()) {
5619     // In C, function designators (i.e. expressions of function type)
5620     // are r-values, but we still want to do function-to-pointer decay
5621     // on them.  This is both technically correct and convenient for
5622     // some clients.
5623     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5624       return DefaultFunctionArrayConversion(E);
5625 
5626     return Owned(E);
5627   }
5628 
5629   if (getLangOpts().CPlusPlus)  {
5630     // The C++11 standard defines the notion of a discarded-value expression;
5631     // normally, we don't need to do anything to handle it, but if it is a
5632     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5633     // conversion.
5634     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5635         E->getType().isVolatileQualified() &&
5636         IsSpecialDiscardedValue(E)) {
5637       ExprResult Res = DefaultLvalueConversion(E);
5638       if (Res.isInvalid())
5639         return Owned(E);
5640       E = Res.take();
5641     }
5642     return Owned(E);
5643   }
5644 
5645   // GCC seems to also exclude expressions of incomplete enum type.
5646   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5647     if (!T->getDecl()->isComplete()) {
5648       // FIXME: stupid workaround for a codegen bug!
5649       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5650       return Owned(E);
5651     }
5652   }
5653 
5654   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5655   if (Res.isInvalid())
5656     return Owned(E);
5657   E = Res.take();
5658 
5659   if (!E->getType()->isVoidType())
5660     RequireCompleteType(E->getExprLoc(), E->getType(),
5661                         diag::err_incomplete_type);
5662   return Owned(E);
5663 }
5664 
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)5665 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5666                                      bool DiscardedValue,
5667                                      bool IsConstexpr) {
5668   ExprResult FullExpr = Owned(FE);
5669 
5670   if (!FullExpr.get())
5671     return ExprError();
5672 
5673   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5674     return ExprError();
5675 
5676   // Top-level expressions default to 'id' when we're in a debugger.
5677   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5678       FullExpr.get()->getType() == Context.UnknownAnyTy) {
5679     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5680     if (FullExpr.isInvalid())
5681       return ExprError();
5682   }
5683 
5684   if (DiscardedValue) {
5685     FullExpr = CheckPlaceholderExpr(FullExpr.take());
5686     if (FullExpr.isInvalid())
5687       return ExprError();
5688 
5689     FullExpr = IgnoredValueConversions(FullExpr.take());
5690     if (FullExpr.isInvalid())
5691       return ExprError();
5692   }
5693 
5694   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5695   return MaybeCreateExprWithCleanups(FullExpr);
5696 }
5697 
ActOnFinishFullStmt(Stmt * FullStmt)5698 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5699   if (!FullStmt) return StmtError();
5700 
5701   return MaybeCreateStmtWithCleanups(FullStmt);
5702 }
5703 
5704 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5705 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5706                                    CXXScopeSpec &SS,
5707                                    const DeclarationNameInfo &TargetNameInfo) {
5708   DeclarationName TargetName = TargetNameInfo.getName();
5709   if (!TargetName)
5710     return IER_DoesNotExist;
5711 
5712   // If the name itself is dependent, then the result is dependent.
5713   if (TargetName.isDependentName())
5714     return IER_Dependent;
5715 
5716   // Do the redeclaration lookup in the current scope.
5717   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5718                  Sema::NotForRedeclaration);
5719   LookupParsedName(R, S, &SS);
5720   R.suppressDiagnostics();
5721 
5722   switch (R.getResultKind()) {
5723   case LookupResult::Found:
5724   case LookupResult::FoundOverloaded:
5725   case LookupResult::FoundUnresolvedValue:
5726   case LookupResult::Ambiguous:
5727     return IER_Exists;
5728 
5729   case LookupResult::NotFound:
5730     return IER_DoesNotExist;
5731 
5732   case LookupResult::NotFoundInCurrentInstantiation:
5733     return IER_Dependent;
5734   }
5735 
5736   llvm_unreachable("Invalid LookupResult Kind!");
5737 }
5738 
5739 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5740 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5741                                    bool IsIfExists, CXXScopeSpec &SS,
5742                                    UnqualifiedId &Name) {
5743   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5744 
5745   // Check for unexpanded parameter packs.
5746   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5747   collectUnexpandedParameterPacks(SS, Unexpanded);
5748   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5749   if (!Unexpanded.empty()) {
5750     DiagnoseUnexpandedParameterPacks(KeywordLoc,
5751                                      IsIfExists? UPPC_IfExists
5752                                                : UPPC_IfNotExists,
5753                                      Unexpanded);
5754     return IER_Error;
5755   }
5756 
5757   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5758 }
5759