1 /* 2 * Wrapper functions for crypto libraries 3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file defines the cryptographic functions that need to be implemented 9 * for wpa_supplicant and hostapd. When TLS is not used, internal 10 * implementation of MD5, SHA1, and AES is used and no external libraries are 11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the 12 * crypto library used by the TLS implementation is expected to be used for 13 * non-TLS needs, too, in order to save space by not implementing these 14 * functions twice. 15 * 16 * Wrapper code for using each crypto library is in its own file (crypto*.c) 17 * and one of these files is build and linked in to provide the functions 18 * defined here. 19 */ 20 21 #ifndef CRYPTO_H 22 #define CRYPTO_H 23 24 /** 25 * md4_vector - MD4 hash for data vector 26 * @num_elem: Number of elements in the data vector 27 * @addr: Pointers to the data areas 28 * @len: Lengths of the data blocks 29 * @mac: Buffer for the hash 30 * Returns: 0 on success, -1 on failure 31 */ 32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 33 34 /** 35 * md5_vector - MD5 hash for data vector 36 * @num_elem: Number of elements in the data vector 37 * @addr: Pointers to the data areas 38 * @len: Lengths of the data blocks 39 * @mac: Buffer for the hash 40 * Returns: 0 on success, -1 on failure 41 */ 42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 43 44 45 /** 46 * sha1_vector - SHA-1 hash for data vector 47 * @num_elem: Number of elements in the data vector 48 * @addr: Pointers to the data areas 49 * @len: Lengths of the data blocks 50 * @mac: Buffer for the hash 51 * Returns: 0 on success, -1 on failure 52 */ 53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 54 u8 *mac); 55 56 /** 57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF 58 * @seed: Seed/key for the PRF 59 * @seed_len: Seed length in bytes 60 * @x: Buffer for PRF output 61 * @xlen: Output length in bytes 62 * Returns: 0 on success, -1 on failure 63 * 64 * This function implements random number generation specified in NIST FIPS 65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to 66 * SHA-1, but has different message padding. 67 */ 68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, 69 size_t xlen); 70 71 /** 72 * sha256_vector - SHA256 hash for data vector 73 * @num_elem: Number of elements in the data vector 74 * @addr: Pointers to the data areas 75 * @len: Lengths of the data blocks 76 * @mac: Buffer for the hash 77 * Returns: 0 on success, -1 on failure 78 */ 79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 80 u8 *mac); 81 82 /** 83 * des_encrypt - Encrypt one block with DES 84 * @clear: 8 octets (in) 85 * @key: 7 octets (in) (no parity bits included) 86 * @cypher: 8 octets (out) 87 */ 88 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); 89 90 /** 91 * aes_encrypt_init - Initialize AES for encryption 92 * @key: Encryption key 93 * @len: Key length in bytes (usually 16, i.e., 128 bits) 94 * Returns: Pointer to context data or %NULL on failure 95 */ 96 void * aes_encrypt_init(const u8 *key, size_t len); 97 98 /** 99 * aes_encrypt - Encrypt one AES block 100 * @ctx: Context pointer from aes_encrypt_init() 101 * @plain: Plaintext data to be encrypted (16 bytes) 102 * @crypt: Buffer for the encrypted data (16 bytes) 103 */ 104 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); 105 106 /** 107 * aes_encrypt_deinit - Deinitialize AES encryption 108 * @ctx: Context pointer from aes_encrypt_init() 109 */ 110 void aes_encrypt_deinit(void *ctx); 111 112 /** 113 * aes_decrypt_init - Initialize AES for decryption 114 * @key: Decryption key 115 * @len: Key length in bytes (usually 16, i.e., 128 bits) 116 * Returns: Pointer to context data or %NULL on failure 117 */ 118 void * aes_decrypt_init(const u8 *key, size_t len); 119 120 /** 121 * aes_decrypt - Decrypt one AES block 122 * @ctx: Context pointer from aes_encrypt_init() 123 * @crypt: Encrypted data (16 bytes) 124 * @plain: Buffer for the decrypted data (16 bytes) 125 */ 126 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); 127 128 /** 129 * aes_decrypt_deinit - Deinitialize AES decryption 130 * @ctx: Context pointer from aes_encrypt_init() 131 */ 132 void aes_decrypt_deinit(void *ctx); 133 134 135 enum crypto_hash_alg { 136 CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, 137 CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, 138 CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256 139 }; 140 141 struct crypto_hash; 142 143 /** 144 * crypto_hash_init - Initialize hash/HMAC function 145 * @alg: Hash algorithm 146 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed 147 * @key_len: Length of the key in bytes 148 * Returns: Pointer to hash context to use with other hash functions or %NULL 149 * on failure 150 * 151 * This function is only used with internal TLSv1 implementation 152 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 153 * to implement this. 154 */ 155 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 156 size_t key_len); 157 158 /** 159 * crypto_hash_update - Add data to hash calculation 160 * @ctx: Context pointer from crypto_hash_init() 161 * @data: Data buffer to add 162 * @len: Length of the buffer 163 * 164 * This function is only used with internal TLSv1 implementation 165 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 166 * to implement this. 167 */ 168 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); 169 170 /** 171 * crypto_hash_finish - Complete hash calculation 172 * @ctx: Context pointer from crypto_hash_init() 173 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash 174 * context 175 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the 176 * hash context; on return, this is set to the actual length of the hash value 177 * Returns: 0 on success, -1 if buffer is too small (len set to needed length), 178 * or -2 on other failures (including failed crypto_hash_update() operations) 179 * 180 * This function calculates the hash value and frees the context buffer that 181 * was used for hash calculation. 182 * 183 * This function is only used with internal TLSv1 implementation 184 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 185 * to implement this. 186 */ 187 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); 188 189 190 enum crypto_cipher_alg { 191 CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, 192 CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 193 }; 194 195 struct crypto_cipher; 196 197 /** 198 * crypto_cipher_init - Initialize block/stream cipher function 199 * @alg: Cipher algorithm 200 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers 201 * @key: Cipher key 202 * @key_len: Length of key in bytes 203 * Returns: Pointer to cipher context to use with other cipher functions or 204 * %NULL on failure 205 * 206 * This function is only used with internal TLSv1 implementation 207 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 208 * to implement this. 209 */ 210 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 211 const u8 *iv, const u8 *key, 212 size_t key_len); 213 214 /** 215 * crypto_cipher_encrypt - Cipher encrypt 216 * @ctx: Context pointer from crypto_cipher_init() 217 * @plain: Plaintext to cipher 218 * @crypt: Resulting ciphertext 219 * @len: Length of the plaintext 220 * Returns: 0 on success, -1 on failure 221 * 222 * This function is only used with internal TLSv1 implementation 223 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 224 * to implement this. 225 */ 226 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, 227 const u8 *plain, u8 *crypt, size_t len); 228 229 /** 230 * crypto_cipher_decrypt - Cipher decrypt 231 * @ctx: Context pointer from crypto_cipher_init() 232 * @crypt: Ciphertext to decrypt 233 * @plain: Resulting plaintext 234 * @len: Length of the cipher text 235 * Returns: 0 on success, -1 on failure 236 * 237 * This function is only used with internal TLSv1 implementation 238 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 239 * to implement this. 240 */ 241 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, 242 const u8 *crypt, u8 *plain, size_t len); 243 244 /** 245 * crypto_cipher_decrypt - Free cipher context 246 * @ctx: Context pointer from crypto_cipher_init() 247 * 248 * This function is only used with internal TLSv1 implementation 249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 250 * to implement this. 251 */ 252 void crypto_cipher_deinit(struct crypto_cipher *ctx); 253 254 255 struct crypto_public_key; 256 struct crypto_private_key; 257 258 /** 259 * crypto_public_key_import - Import an RSA public key 260 * @key: Key buffer (DER encoded RSA public key) 261 * @len: Key buffer length in bytes 262 * Returns: Pointer to the public key or %NULL on failure 263 * 264 * This function can just return %NULL if the crypto library supports X.509 265 * parsing. In that case, crypto_public_key_from_cert() is used to import the 266 * public key from a certificate. 267 * 268 * This function is only used with internal TLSv1 implementation 269 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 270 * to implement this. 271 */ 272 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); 273 274 /** 275 * crypto_private_key_import - Import an RSA private key 276 * @key: Key buffer (DER encoded RSA private key) 277 * @len: Key buffer length in bytes 278 * @passwd: Key encryption password or %NULL if key is not encrypted 279 * Returns: Pointer to the private key or %NULL on failure 280 * 281 * This function is only used with internal TLSv1 implementation 282 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 283 * to implement this. 284 */ 285 struct crypto_private_key * crypto_private_key_import(const u8 *key, 286 size_t len, 287 const char *passwd); 288 289 /** 290 * crypto_public_key_from_cert - Import an RSA public key from a certificate 291 * @buf: DER encoded X.509 certificate 292 * @len: Certificate buffer length in bytes 293 * Returns: Pointer to public key or %NULL on failure 294 * 295 * This function can just return %NULL if the crypto library does not support 296 * X.509 parsing. In that case, internal code will be used to parse the 297 * certificate and public key is imported using crypto_public_key_import(). 298 * 299 * This function is only used with internal TLSv1 implementation 300 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 301 * to implement this. 302 */ 303 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, 304 size_t len); 305 306 /** 307 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) 308 * @key: Public key 309 * @in: Plaintext buffer 310 * @inlen: Length of plaintext buffer in bytes 311 * @out: Output buffer for encrypted data 312 * @outlen: Length of output buffer in bytes; set to used length on success 313 * Returns: 0 on success, -1 on failure 314 * 315 * This function is only used with internal TLSv1 implementation 316 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 317 * to implement this. 318 */ 319 int __must_check crypto_public_key_encrypt_pkcs1_v15( 320 struct crypto_public_key *key, const u8 *in, size_t inlen, 321 u8 *out, size_t *outlen); 322 323 /** 324 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) 325 * @key: Private key 326 * @in: Encrypted buffer 327 * @inlen: Length of encrypted buffer in bytes 328 * @out: Output buffer for encrypted data 329 * @outlen: Length of output buffer in bytes; set to used length on success 330 * Returns: 0 on success, -1 on failure 331 * 332 * This function is only used with internal TLSv1 implementation 333 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 334 * to implement this. 335 */ 336 int __must_check crypto_private_key_decrypt_pkcs1_v15( 337 struct crypto_private_key *key, const u8 *in, size_t inlen, 338 u8 *out, size_t *outlen); 339 340 /** 341 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) 342 * @key: Private key from crypto_private_key_import() 343 * @in: Plaintext buffer 344 * @inlen: Length of plaintext buffer in bytes 345 * @out: Output buffer for encrypted (signed) data 346 * @outlen: Length of output buffer in bytes; set to used length on success 347 * Returns: 0 on success, -1 on failure 348 * 349 * This function is only used with internal TLSv1 implementation 350 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 351 * to implement this. 352 */ 353 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, 354 const u8 *in, size_t inlen, 355 u8 *out, size_t *outlen); 356 357 /** 358 * crypto_public_key_free - Free public key 359 * @key: Public key 360 * 361 * This function is only used with internal TLSv1 implementation 362 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 363 * to implement this. 364 */ 365 void crypto_public_key_free(struct crypto_public_key *key); 366 367 /** 368 * crypto_private_key_free - Free private key 369 * @key: Private key from crypto_private_key_import() 370 * 371 * This function is only used with internal TLSv1 implementation 372 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 373 * to implement this. 374 */ 375 void crypto_private_key_free(struct crypto_private_key *key); 376 377 /** 378 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature 379 * @key: Public key 380 * @crypt: Encrypted signature data (using the private key) 381 * @crypt_len: Encrypted signature data length 382 * @plain: Buffer for plaintext (at least crypt_len bytes) 383 * @plain_len: Plaintext length (max buffer size on input, real len on output); 384 * Returns: 0 on success, -1 on failure 385 */ 386 int __must_check crypto_public_key_decrypt_pkcs1( 387 struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, 388 u8 *plain, size_t *plain_len); 389 390 /** 391 * crypto_global_init - Initialize crypto wrapper 392 * 393 * This function is only used with internal TLSv1 implementation 394 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 395 * to implement this. 396 */ 397 int __must_check crypto_global_init(void); 398 399 /** 400 * crypto_global_deinit - Deinitialize crypto wrapper 401 * 402 * This function is only used with internal TLSv1 implementation 403 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 404 * to implement this. 405 */ 406 void crypto_global_deinit(void); 407 408 /** 409 * crypto_mod_exp - Modular exponentiation of large integers 410 * @base: Base integer (big endian byte array) 411 * @base_len: Length of base integer in bytes 412 * @power: Power integer (big endian byte array) 413 * @power_len: Length of power integer in bytes 414 * @modulus: Modulus integer (big endian byte array) 415 * @modulus_len: Length of modulus integer in bytes 416 * @result: Buffer for the result 417 * @result_len: Result length (max buffer size on input, real len on output) 418 * Returns: 0 on success, -1 on failure 419 * 420 * This function calculates result = base ^ power mod modulus. modules_len is 421 * used as the maximum size of modulus buffer. It is set to the used size on 422 * success. 423 * 424 * This function is only used with internal TLSv1 implementation 425 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 426 * to implement this. 427 */ 428 int __must_check crypto_mod_exp(const u8 *base, size_t base_len, 429 const u8 *power, size_t power_len, 430 const u8 *modulus, size_t modulus_len, 431 u8 *result, size_t *result_len); 432 433 /** 434 * rc4_skip - XOR RC4 stream to given data with skip-stream-start 435 * @key: RC4 key 436 * @keylen: RC4 key length 437 * @skip: number of bytes to skip from the beginning of the RC4 stream 438 * @data: data to be XOR'ed with RC4 stream 439 * @data_len: buf length 440 * Returns: 0 on success, -1 on failure 441 * 442 * Generate RC4 pseudo random stream for the given key, skip beginning of the 443 * stream, and XOR the end result with the data buffer to perform RC4 444 * encryption/decryption. 445 */ 446 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 447 u8 *data, size_t data_len); 448 449 /** 450 * crypto_get_random - Generate cryptographically strong pseudy-random bytes 451 * @buf: Buffer for data 452 * @len: Number of bytes to generate 453 * Returns: 0 on success, -1 on failure 454 * 455 * If the PRNG does not have enough entropy to ensure unpredictable byte 456 * sequence, this functions must return -1. 457 */ 458 int crypto_get_random(void *buf, size_t len); 459 460 461 /** 462 * struct crypto_bignum - bignum 463 * 464 * Internal data structure for bignum implementation. The contents is specific 465 * to the used crypto library. 466 */ 467 struct crypto_bignum; 468 469 /** 470 * crypto_bignum_init - Allocate memory for bignum 471 * Returns: Pointer to allocated bignum or %NULL on failure 472 */ 473 struct crypto_bignum * crypto_bignum_init(void); 474 475 /** 476 * crypto_bignum_init_set - Allocate memory for bignum and set the value 477 * @buf: Buffer with unsigned binary value 478 * @len: Length of buf in octets 479 * Returns: Pointer to allocated bignum or %NULL on failure 480 */ 481 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); 482 483 /** 484 * crypto_bignum_deinit - Free bignum 485 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() 486 * @clear: Whether to clear the value from memory 487 */ 488 void crypto_bignum_deinit(struct crypto_bignum *n, int clear); 489 490 /** 491 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum 492 * @a: Bignum 493 * @buf: Buffer for the binary number 494 * @len: Length of @buf in octets 495 * @padlen: Length in octets to pad the result to or 0 to indicate no padding 496 * Returns: Number of octets written on success, -1 on failure 497 */ 498 int crypto_bignum_to_bin(const struct crypto_bignum *a, 499 u8 *buf, size_t buflen, size_t padlen); 500 501 /** 502 * crypto_bignum_add - c = a + b 503 * @a: Bignum 504 * @b: Bignum 505 * @c: Bignum; used to store the result of a + b 506 * Returns: 0 on success, -1 on failure 507 */ 508 int crypto_bignum_add(const struct crypto_bignum *a, 509 const struct crypto_bignum *b, 510 struct crypto_bignum *c); 511 512 /** 513 * crypto_bignum_mod - c = a % b 514 * @a: Bignum 515 * @b: Bignum 516 * @c: Bignum; used to store the result of a % b 517 * Returns: 0 on success, -1 on failure 518 */ 519 int crypto_bignum_mod(const struct crypto_bignum *a, 520 const struct crypto_bignum *b, 521 struct crypto_bignum *c); 522 523 /** 524 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) 525 * @a: Bignum; base 526 * @b: Bignum; exponent 527 * @c: Bignum; modulus 528 * @d: Bignum; used to store the result of a^b (mod c) 529 * Returns: 0 on success, -1 on failure 530 */ 531 int crypto_bignum_exptmod(const struct crypto_bignum *a, 532 const struct crypto_bignum *b, 533 const struct crypto_bignum *c, 534 struct crypto_bignum *d); 535 536 /** 537 * crypto_bignum_rshift - b = a >> n 538 * @a: Bignum 539 * @n: Number of bits to shift 540 * @b: Bignum; used to store the result of a >> n 541 * Returns: 0 on success, -1 on failure 542 */ 543 int crypto_bignum_rshift(const struct crypto_bignum *a, int n, 544 struct crypto_bignum *b); 545 546 /** 547 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) 548 * @a: Bignum 549 * @b: Bignum 550 * @c: Bignum; used to store the result 551 * Returns: 0 on success, -1 on failure 552 */ 553 int crypto_bignum_inverse(const struct crypto_bignum *a, 554 const struct crypto_bignum *b, 555 struct crypto_bignum *c); 556 557 /** 558 * crypto_bignum_sub - c = a - b 559 * @a: Bignum 560 * @b: Bignum 561 * @c: Bignum; used to store the result of a - b 562 * Returns: 0 on success, -1 on failure 563 */ 564 int crypto_bignum_sub(const struct crypto_bignum *a, 565 const struct crypto_bignum *b, 566 struct crypto_bignum *c); 567 568 /** 569 * crypto_bignum_div - c = a / b 570 * @a: Bignum 571 * @b: Bignum 572 * @c: Bignum; used to store the result of a / b 573 * Returns: 0 on success, -1 on failure 574 */ 575 int crypto_bignum_div(const struct crypto_bignum *a, 576 const struct crypto_bignum *b, 577 struct crypto_bignum *c); 578 579 /** 580 * crypto_bignum_mulmod - d = a * b (mod c) 581 * @a: Bignum 582 * @b: Bignum 583 * @c: Bignum 584 * @d: Bignum; used to store the result of (a * b) % c 585 * Returns: 0 on success, -1 on failure 586 */ 587 int crypto_bignum_mulmod(const struct crypto_bignum *a, 588 const struct crypto_bignum *b, 589 const struct crypto_bignum *c, 590 struct crypto_bignum *d); 591 592 /** 593 * crypto_bignum_cmp - Compare two bignums 594 * @a: Bignum 595 * @b: Bignum 596 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b 597 */ 598 int crypto_bignum_cmp(const struct crypto_bignum *a, 599 const struct crypto_bignum *b); 600 601 /** 602 * crypto_bignum_bits - Get size of a bignum in bits 603 * @a: Bignum 604 * Returns: Number of bits in the bignum 605 */ 606 int crypto_bignum_bits(const struct crypto_bignum *a); 607 608 /** 609 * crypto_bignum_is_zero - Is the given bignum zero 610 * @a: Bignum 611 * Returns: 1 if @a is zero or 0 if not 612 */ 613 int crypto_bignum_is_zero(const struct crypto_bignum *a); 614 615 /** 616 * crypto_bignum_is_one - Is the given bignum one 617 * @a: Bignum 618 * Returns: 1 if @a is one or 0 if not 619 */ 620 int crypto_bignum_is_one(const struct crypto_bignum *a); 621 622 /** 623 * struct crypto_ec - Elliptic curve context 624 * 625 * Internal data structure for EC implementation. The contents is specific 626 * to the used crypto library. 627 */ 628 struct crypto_ec; 629 630 /** 631 * crypto_ec_init - Initialize elliptic curve context 632 * @group: Identifying number for the ECC group (IANA "Group Description" 633 * attribute registrty for RFC 2409) 634 * Returns: Pointer to EC context or %NULL on failure 635 */ 636 struct crypto_ec * crypto_ec_init(int group); 637 638 /** 639 * crypto_ec_deinit - Deinitialize elliptic curve context 640 * @e: EC context from crypto_ec_init() 641 */ 642 void crypto_ec_deinit(struct crypto_ec *e); 643 644 /** 645 * crypto_ec_prime_len - Get length of the prime in octets 646 * @e: EC context from crypto_ec_init() 647 * Returns: Length of the prime defining the group 648 */ 649 size_t crypto_ec_prime_len(struct crypto_ec *e); 650 651 /** 652 * crypto_ec_prime_len_bits - Get length of the prime in bits 653 * @e: EC context from crypto_ec_init() 654 * Returns: Length of the prime defining the group in bits 655 */ 656 size_t crypto_ec_prime_len_bits(struct crypto_ec *e); 657 658 /** 659 * crypto_ec_get_prime - Get prime defining an EC group 660 * @e: EC context from crypto_ec_init() 661 * Returns: Prime (bignum) defining the group 662 */ 663 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); 664 665 /** 666 * crypto_ec_get_order - Get order of an EC group 667 * @e: EC context from crypto_ec_init() 668 * Returns: Order (bignum) of the group 669 */ 670 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); 671 672 /** 673 * struct crypto_ec_point - Elliptic curve point 674 * 675 * Internal data structure for EC implementation to represent a point. The 676 * contents is specific to the used crypto library. 677 */ 678 struct crypto_ec_point; 679 680 /** 681 * crypto_ec_point_init - Initialize data for an EC point 682 * @e: EC context from crypto_ec_init() 683 * Returns: Pointer to EC point data or %NULL on failure 684 */ 685 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); 686 687 /** 688 * crypto_ec_point_deinit - Deinitialize EC point data 689 * @p: EC point data from crypto_ec_point_init() 690 * @clear: Whether to clear the EC point value from memory 691 */ 692 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); 693 694 /** 695 * crypto_ec_point_to_bin - Write EC point value as binary data 696 * @e: EC context from crypto_ec_init() 697 * @p: EC point data from crypto_ec_point_init() 698 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used 699 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used 700 * Returns: 0 on success, -1 on failure 701 * 702 * This function can be used to write an EC point as binary data in a format 703 * that has the x and y coordinates in big endian byte order fields padded to 704 * the length of the prime defining the group. 705 */ 706 int crypto_ec_point_to_bin(struct crypto_ec *e, 707 const struct crypto_ec_point *point, u8 *x, u8 *y); 708 709 /** 710 * crypto_ec_point_from_bin - Create EC point from binary data 711 * @e: EC context from crypto_ec_init() 712 * @val: Binary data to read the EC point from 713 * Returns: Pointer to EC point data or %NULL on failure 714 * 715 * This function readers x and y coordinates of the EC point from the provided 716 * buffer assuming the values are in big endian byte order with fields padded to 717 * the length of the prime defining the group. 718 */ 719 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 720 const u8 *val); 721 722 /** 723 * crypto_bignum_add - c = a + b 724 * @e: EC context from crypto_ec_init() 725 * @a: Bignum 726 * @b: Bignum 727 * @c: Bignum; used to store the result of a + b 728 * Returns: 0 on success, -1 on failure 729 */ 730 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 731 const struct crypto_ec_point *b, 732 struct crypto_ec_point *c); 733 734 /** 735 * crypto_bignum_mul - res = b * p 736 * @e: EC context from crypto_ec_init() 737 * @p: EC point 738 * @b: Bignum 739 * @res: EC point; used to store the result of b * p 740 * Returns: 0 on success, -1 on failure 741 */ 742 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 743 const struct crypto_bignum *b, 744 struct crypto_ec_point *res); 745 746 /** 747 * crypto_ec_point_invert - Compute inverse of an EC point 748 * @e: EC context from crypto_ec_init() 749 * @p: EC point to invert (and result of the operation) 750 * Returns: 0 on success, -1 on failure 751 */ 752 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); 753 754 /** 755 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate 756 * @e: EC context from crypto_ec_init() 757 * @p: EC point to use for the returning the result 758 * @x: x coordinate 759 * @y_bit: y-bit (0 or 1) for selecting the y value to use 760 * Returns: 0 on success, -1 on failure 761 */ 762 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 763 struct crypto_ec_point *p, 764 const struct crypto_bignum *x, int y_bit); 765 766 /** 767 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element 768 * @e: EC context from crypto_ec_init() 769 * @p: EC point 770 * Returns: 1 if the specified EC point is the neutral element of the group or 771 * 0 if not 772 */ 773 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 774 const struct crypto_ec_point *p); 775 776 /** 777 * crypto_ec_point_is_on_curve - Check whether EC point is on curve 778 * @e: EC context from crypto_ec_init() 779 * @p: EC point 780 * Returns: 1 if the specified EC point is on the curve or 0 if not 781 */ 782 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 783 const struct crypto_ec_point *p); 784 785 #endif /* CRYPTO_H */ 786