• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Interface to describe the layout of a stack frame on the target machine.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETFRAMELOWERING_H
15 #define LLVM_TARGET_TARGETFRAMELOWERING_H
16 
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include <utility>
19 #include <vector>
20 
21 namespace llvm {
22   class CalleeSavedInfo;
23   class MachineFunction;
24   class RegScavenger;
25 
26 /// Information about stack frame layout on the target.  It holds the direction
27 /// of stack growth, the known stack alignment on entry to each function, and
28 /// the offset to the locals area.
29 ///
30 /// The offset to the local area is the offset from the stack pointer on
31 /// function entry to the first location where function data (local variables,
32 /// spill locations) can be stored.
33 class TargetFrameLowering {
34 public:
35   enum StackDirection {
36     StackGrowsUp,        // Adding to the stack increases the stack address
37     StackGrowsDown       // Adding to the stack decreases the stack address
38   };
39 
40   // Maps a callee saved register to a stack slot with a fixed offset.
41   struct SpillSlot {
42     unsigned Reg;
43     int Offset; // Offset relative to stack pointer on function entry.
44   };
45 private:
46   StackDirection StackDir;
47   unsigned StackAlignment;
48   unsigned TransientStackAlignment;
49   int LocalAreaOffset;
50   bool StackRealignable;
51 public:
52   TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO,
53                       unsigned TransAl = 1, bool StackReal = true)
StackDir(D)54     : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
55       LocalAreaOffset(LAO), StackRealignable(StackReal) {}
56 
57   virtual ~TargetFrameLowering();
58 
59   // These methods return information that describes the abstract stack layout
60   // of the target machine.
61 
62   /// getStackGrowthDirection - Return the direction the stack grows
63   ///
getStackGrowthDirection()64   StackDirection getStackGrowthDirection() const { return StackDir; }
65 
66   /// getStackAlignment - This method returns the number of bytes to which the
67   /// stack pointer must be aligned on entry to a function.  Typically, this
68   /// is the largest alignment for any data object in the target.
69   ///
getStackAlignment()70   unsigned getStackAlignment() const { return StackAlignment; }
71 
72   /// getTransientStackAlignment - This method returns the number of bytes to
73   /// which the stack pointer must be aligned at all times, even between
74   /// calls.
75   ///
getTransientStackAlignment()76   unsigned getTransientStackAlignment() const {
77     return TransientStackAlignment;
78   }
79 
80   /// isStackRealignable - This method returns whether the stack can be
81   /// realigned.
isStackRealignable()82   bool isStackRealignable() const {
83     return StackRealignable;
84   }
85 
86   /// getOffsetOfLocalArea - This method returns the offset of the local area
87   /// from the stack pointer on entrance to a function.
88   ///
getOffsetOfLocalArea()89   int getOffsetOfLocalArea() const { return LocalAreaOffset; }
90 
91   /// isFPCloseToIncomingSP - Return true if the frame pointer is close to
92   /// the incoming stack pointer, false if it is close to the post-prologue
93   /// stack pointer.
isFPCloseToIncomingSP()94   virtual bool isFPCloseToIncomingSP() const { return true; }
95 
96   /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
97   /// pairs, that contains an entry for each callee saved register that must be
98   /// spilled to a particular stack location if it is spilled.
99   ///
100   /// Each entry in this array contains a <register,offset> pair, indicating the
101   /// fixed offset from the incoming stack pointer that each register should be
102   /// spilled at. If a register is not listed here, the code generator is
103   /// allowed to spill it anywhere it chooses.
104   ///
105   virtual const SpillSlot *
getCalleeSavedSpillSlots(unsigned & NumEntries)106   getCalleeSavedSpillSlots(unsigned &NumEntries) const {
107     NumEntries = 0;
108     return 0;
109   }
110 
111   /// targetHandlesStackFrameRounding - Returns true if the target is
112   /// responsible for rounding up the stack frame (probably at emitPrologue
113   /// time).
targetHandlesStackFrameRounding()114   virtual bool targetHandlesStackFrameRounding() const {
115     return false;
116   }
117 
118   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
119   /// the function.
120   virtual void emitPrologue(MachineFunction &MF) const = 0;
121   virtual void emitEpilogue(MachineFunction &MF,
122                             MachineBasicBlock &MBB) const = 0;
123 
124   /// Adjust the prologue to have the function use segmented stacks. This works
125   /// by adding a check even before the "normal" function prologue.
adjustForSegmentedStacks(MachineFunction & MF)126   virtual void adjustForSegmentedStacks(MachineFunction &MF) const { }
127 
128   /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
129   /// the assembly prologue to explicitly handle the stack.
adjustForHiPEPrologue(MachineFunction & MF)130   virtual void adjustForHiPEPrologue(MachineFunction &MF) const { }
131 
132   /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
133   /// saved registers and returns true if it isn't possible / profitable to do
134   /// so by issuing a series of store instructions via
135   /// storeRegToStackSlot(). Returns false otherwise.
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI)136   virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
137                                          MachineBasicBlock::iterator MI,
138                                         const std::vector<CalleeSavedInfo> &CSI,
139                                          const TargetRegisterInfo *TRI) const {
140     return false;
141   }
142 
143   /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
144   /// saved registers and returns true if it isn't possible / profitable to do
145   /// so by issuing a series of load instructions via loadRegToStackSlot().
146   /// Returns false otherwise.
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI)147   virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
148                                            MachineBasicBlock::iterator MI,
149                                         const std::vector<CalleeSavedInfo> &CSI,
150                                         const TargetRegisterInfo *TRI) const {
151     return false;
152   }
153 
154   /// hasFP - Return true if the specified function should have a dedicated
155   /// frame pointer register. For most targets this is true only if the function
156   /// has variable sized allocas or if frame pointer elimination is disabled.
157   virtual bool hasFP(const MachineFunction &MF) const = 0;
158 
159   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
160   /// not required, we reserve argument space for call sites in the function
161   /// immediately on entry to the current function. This eliminates the need for
162   /// add/sub sp brackets around call sites. Returns true if the call frame is
163   /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF)164   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
165     return !hasFP(MF);
166   }
167 
168   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
169   /// call frame pseudo ops before doing frame index elimination. This is
170   /// possible only when frame index references between the pseudos won't
171   /// need adjusting for the call frame adjustments. Normally, that's true
172   /// if the function has a reserved call frame or a frame pointer. Some
173   /// targets (Thumb2, for example) may have more complicated criteria,
174   /// however, and can override this behavior.
canSimplifyCallFramePseudos(const MachineFunction & MF)175   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
176     return hasReservedCallFrame(MF) || hasFP(MF);
177   }
178 
179   /// getFrameIndexOffset - Returns the displacement from the frame register to
180   /// the stack frame of the specified index.
181   virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
182 
183   /// getFrameIndexReference - This method should return the base register
184   /// and offset used to reference a frame index location. The offset is
185   /// returned directly, and the base register is returned via FrameReg.
186   virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
187                                      unsigned &FrameReg) const;
188 
189   /// processFunctionBeforeCalleeSavedScan - This method is called immediately
190   /// before PrologEpilogInserter scans the physical registers used to determine
191   /// what callee saved registers should be spilled. This method is optional.
192   virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
193                                                 RegScavenger *RS = NULL) const {
194 
195   }
196 
197   /// processFunctionBeforeFrameFinalized - This method is called immediately
198   /// before the specified function's frame layout (MF.getFrameInfo()) is
199   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
200   /// replaced with direct constants.  This method is optional.
201   ///
202   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
203                                                RegScavenger *RS = NULL) const {
204   }
205 
206   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
207   /// code insertion to eliminate call frame setup and destroy pseudo
208   /// instructions (but only if the Target is using them).  It is responsible
209   /// for eliminating these instructions, replacing them with concrete
210   /// instructions.  This method need only be implemented if using call frame
211   /// setup/destroy pseudo instructions.
212   ///
213   virtual void
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MI)214   eliminateCallFramePseudoInstr(MachineFunction &MF,
215                                 MachineBasicBlock &MBB,
216                                 MachineBasicBlock::iterator MI) const {
217     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
218                      "target!");
219   }
220 };
221 
222 } // End llvm namespace
223 
224 #endif
225