1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/TemplateDeduction.h"
35 #include "llvm/ADT/APInt.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/Support/ErrorHandling.h"
38 using namespace clang;
39 using namespace sema;
40
41 /// \brief Handle the result of the special case name lookup for inheriting
42 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
43 /// constructor names in member using declarations, even if 'X' is not the
44 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)45 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
46 SourceLocation NameLoc,
47 IdentifierInfo &Name) {
48 NestedNameSpecifier *NNS = SS.getScopeRep();
49
50 // Convert the nested-name-specifier into a type.
51 QualType Type;
52 switch (NNS->getKind()) {
53 case NestedNameSpecifier::TypeSpec:
54 case NestedNameSpecifier::TypeSpecWithTemplate:
55 Type = QualType(NNS->getAsType(), 0);
56 break;
57
58 case NestedNameSpecifier::Identifier:
59 // Strip off the last layer of the nested-name-specifier and build a
60 // typename type for it.
61 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
62 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
63 NNS->getAsIdentifier());
64 break;
65
66 case NestedNameSpecifier::Global:
67 case NestedNameSpecifier::Namespace:
68 case NestedNameSpecifier::NamespaceAlias:
69 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
70 }
71
72 // This reference to the type is located entirely at the location of the
73 // final identifier in the qualified-id.
74 return CreateParsedType(Type,
75 Context.getTrivialTypeSourceInfo(Type, NameLoc));
76 }
77
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)78 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
79 IdentifierInfo &II,
80 SourceLocation NameLoc,
81 Scope *S, CXXScopeSpec &SS,
82 ParsedType ObjectTypePtr,
83 bool EnteringContext) {
84 // Determine where to perform name lookup.
85
86 // FIXME: This area of the standard is very messy, and the current
87 // wording is rather unclear about which scopes we search for the
88 // destructor name; see core issues 399 and 555. Issue 399 in
89 // particular shows where the current description of destructor name
90 // lookup is completely out of line with existing practice, e.g.,
91 // this appears to be ill-formed:
92 //
93 // namespace N {
94 // template <typename T> struct S {
95 // ~S();
96 // };
97 // }
98 //
99 // void f(N::S<int>* s) {
100 // s->N::S<int>::~S();
101 // }
102 //
103 // See also PR6358 and PR6359.
104 // For this reason, we're currently only doing the C++03 version of this
105 // code; the C++0x version has to wait until we get a proper spec.
106 QualType SearchType;
107 DeclContext *LookupCtx = 0;
108 bool isDependent = false;
109 bool LookInScope = false;
110
111 // If we have an object type, it's because we are in a
112 // pseudo-destructor-expression or a member access expression, and
113 // we know what type we're looking for.
114 if (ObjectTypePtr)
115 SearchType = GetTypeFromParser(ObjectTypePtr);
116
117 if (SS.isSet()) {
118 NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
119
120 bool AlreadySearched = false;
121 bool LookAtPrefix = true;
122 // C++ [basic.lookup.qual]p6:
123 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
124 // the type-names are looked up as types in the scope designated by the
125 // nested-name-specifier. In a qualified-id of the form:
126 //
127 // ::[opt] nested-name-specifier ~ class-name
128 //
129 // where the nested-name-specifier designates a namespace scope, and in
130 // a qualified-id of the form:
131 //
132 // ::opt nested-name-specifier class-name :: ~ class-name
133 //
134 // the class-names are looked up as types in the scope designated by
135 // the nested-name-specifier.
136 //
137 // Here, we check the first case (completely) and determine whether the
138 // code below is permitted to look at the prefix of the
139 // nested-name-specifier.
140 DeclContext *DC = computeDeclContext(SS, EnteringContext);
141 if (DC && DC->isFileContext()) {
142 AlreadySearched = true;
143 LookupCtx = DC;
144 isDependent = false;
145 } else if (DC && isa<CXXRecordDecl>(DC))
146 LookAtPrefix = false;
147
148 // The second case from the C++03 rules quoted further above.
149 NestedNameSpecifier *Prefix = 0;
150 if (AlreadySearched) {
151 // Nothing left to do.
152 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
153 CXXScopeSpec PrefixSS;
154 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
155 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
156 isDependent = isDependentScopeSpecifier(PrefixSS);
157 } else if (ObjectTypePtr) {
158 LookupCtx = computeDeclContext(SearchType);
159 isDependent = SearchType->isDependentType();
160 } else {
161 LookupCtx = computeDeclContext(SS, EnteringContext);
162 isDependent = LookupCtx && LookupCtx->isDependentContext();
163 }
164
165 LookInScope = false;
166 } else if (ObjectTypePtr) {
167 // C++ [basic.lookup.classref]p3:
168 // If the unqualified-id is ~type-name, the type-name is looked up
169 // in the context of the entire postfix-expression. If the type T
170 // of the object expression is of a class type C, the type-name is
171 // also looked up in the scope of class C. At least one of the
172 // lookups shall find a name that refers to (possibly
173 // cv-qualified) T.
174 LookupCtx = computeDeclContext(SearchType);
175 isDependent = SearchType->isDependentType();
176 assert((isDependent || !SearchType->isIncompleteType()) &&
177 "Caller should have completed object type");
178
179 LookInScope = true;
180 } else {
181 // Perform lookup into the current scope (only).
182 LookInScope = true;
183 }
184
185 TypeDecl *NonMatchingTypeDecl = 0;
186 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187 for (unsigned Step = 0; Step != 2; ++Step) {
188 // Look for the name first in the computed lookup context (if we
189 // have one) and, if that fails to find a match, in the scope (if
190 // we're allowed to look there).
191 Found.clear();
192 if (Step == 0 && LookupCtx)
193 LookupQualifiedName(Found, LookupCtx);
194 else if (Step == 1 && LookInScope && S)
195 LookupName(Found, S);
196 else
197 continue;
198
199 // FIXME: Should we be suppressing ambiguities here?
200 if (Found.isAmbiguous())
201 return ParsedType();
202
203 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204 QualType T = Context.getTypeDeclType(Type);
205
206 if (SearchType.isNull() || SearchType->isDependentType() ||
207 Context.hasSameUnqualifiedType(T, SearchType)) {
208 // We found our type!
209
210 return ParsedType::make(T);
211 }
212
213 if (!SearchType.isNull())
214 NonMatchingTypeDecl = Type;
215 }
216
217 // If the name that we found is a class template name, and it is
218 // the same name as the template name in the last part of the
219 // nested-name-specifier (if present) or the object type, then
220 // this is the destructor for that class.
221 // FIXME: This is a workaround until we get real drafting for core
222 // issue 399, for which there isn't even an obvious direction.
223 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
224 QualType MemberOfType;
225 if (SS.isSet()) {
226 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
227 // Figure out the type of the context, if it has one.
228 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
229 MemberOfType = Context.getTypeDeclType(Record);
230 }
231 }
232 if (MemberOfType.isNull())
233 MemberOfType = SearchType;
234
235 if (MemberOfType.isNull())
236 continue;
237
238 // We're referring into a class template specialization. If the
239 // class template we found is the same as the template being
240 // specialized, we found what we are looking for.
241 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
242 if (ClassTemplateSpecializationDecl *Spec
243 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
244 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
245 Template->getCanonicalDecl())
246 return ParsedType::make(MemberOfType);
247 }
248
249 continue;
250 }
251
252 // We're referring to an unresolved class template
253 // specialization. Determine whether we class template we found
254 // is the same as the template being specialized or, if we don't
255 // know which template is being specialized, that it at least
256 // has the same name.
257 if (const TemplateSpecializationType *SpecType
258 = MemberOfType->getAs<TemplateSpecializationType>()) {
259 TemplateName SpecName = SpecType->getTemplateName();
260
261 // The class template we found is the same template being
262 // specialized.
263 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
264 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
265 return ParsedType::make(MemberOfType);
266
267 continue;
268 }
269
270 // The class template we found has the same name as the
271 // (dependent) template name being specialized.
272 if (DependentTemplateName *DepTemplate
273 = SpecName.getAsDependentTemplateName()) {
274 if (DepTemplate->isIdentifier() &&
275 DepTemplate->getIdentifier() == Template->getIdentifier())
276 return ParsedType::make(MemberOfType);
277
278 continue;
279 }
280 }
281 }
282 }
283
284 if (isDependent) {
285 // We didn't find our type, but that's okay: it's dependent
286 // anyway.
287
288 // FIXME: What if we have no nested-name-specifier?
289 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
290 SS.getWithLocInContext(Context),
291 II, NameLoc);
292 return ParsedType::make(T);
293 }
294
295 if (NonMatchingTypeDecl) {
296 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
297 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
298 << T << SearchType;
299 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
300 << T;
301 } else if (ObjectTypePtr)
302 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
303 << &II;
304 else {
305 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
306 diag::err_destructor_class_name);
307 if (S) {
308 const DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
309 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
310 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
311 Class->getNameAsString());
312 }
313 }
314
315 return ParsedType();
316 }
317
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)318 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
319 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
320 return ParsedType();
321 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
322 && "only get destructor types from declspecs");
323 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
324 QualType SearchType = GetTypeFromParser(ObjectType);
325 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
326 return ParsedType::make(T);
327 }
328
329 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
330 << T << SearchType;
331 return ParsedType();
332 }
333
334 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)335 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
336 SourceLocation TypeidLoc,
337 TypeSourceInfo *Operand,
338 SourceLocation RParenLoc) {
339 // C++ [expr.typeid]p4:
340 // The top-level cv-qualifiers of the lvalue expression or the type-id
341 // that is the operand of typeid are always ignored.
342 // If the type of the type-id is a class type or a reference to a class
343 // type, the class shall be completely-defined.
344 Qualifiers Quals;
345 QualType T
346 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
347 Quals);
348 if (T->getAs<RecordType>() &&
349 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
350 return ExprError();
351
352 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
353 Operand,
354 SourceRange(TypeidLoc, RParenLoc)));
355 }
356
357 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)358 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
359 SourceLocation TypeidLoc,
360 Expr *E,
361 SourceLocation RParenLoc) {
362 if (E && !E->isTypeDependent()) {
363 if (E->getType()->isPlaceholderType()) {
364 ExprResult result = CheckPlaceholderExpr(E);
365 if (result.isInvalid()) return ExprError();
366 E = result.take();
367 }
368
369 QualType T = E->getType();
370 if (const RecordType *RecordT = T->getAs<RecordType>()) {
371 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
372 // C++ [expr.typeid]p3:
373 // [...] If the type of the expression is a class type, the class
374 // shall be completely-defined.
375 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
376 return ExprError();
377
378 // C++ [expr.typeid]p3:
379 // When typeid is applied to an expression other than an glvalue of a
380 // polymorphic class type [...] [the] expression is an unevaluated
381 // operand. [...]
382 if (RecordD->isPolymorphic() && E->isGLValue()) {
383 // The subexpression is potentially evaluated; switch the context
384 // and recheck the subexpression.
385 ExprResult Result = TransformToPotentiallyEvaluated(E);
386 if (Result.isInvalid()) return ExprError();
387 E = Result.take();
388
389 // We require a vtable to query the type at run time.
390 MarkVTableUsed(TypeidLoc, RecordD);
391 }
392 }
393
394 // C++ [expr.typeid]p4:
395 // [...] If the type of the type-id is a reference to a possibly
396 // cv-qualified type, the result of the typeid expression refers to a
397 // std::type_info object representing the cv-unqualified referenced
398 // type.
399 Qualifiers Quals;
400 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
401 if (!Context.hasSameType(T, UnqualT)) {
402 T = UnqualT;
403 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
404 }
405 }
406
407 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
408 E,
409 SourceRange(TypeidLoc, RParenLoc)));
410 }
411
412 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
413 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)414 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
415 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
416 // Find the std::type_info type.
417 if (!getStdNamespace())
418 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
419
420 if (!CXXTypeInfoDecl) {
421 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
422 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
423 LookupQualifiedName(R, getStdNamespace());
424 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
425 // Microsoft's typeinfo doesn't have type_info in std but in the global
426 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
427 if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
428 LookupQualifiedName(R, Context.getTranslationUnitDecl());
429 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
430 }
431 if (!CXXTypeInfoDecl)
432 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
433 }
434
435 if (!getLangOpts().RTTI) {
436 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
437 }
438
439 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
440
441 if (isType) {
442 // The operand is a type; handle it as such.
443 TypeSourceInfo *TInfo = 0;
444 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
445 &TInfo);
446 if (T.isNull())
447 return ExprError();
448
449 if (!TInfo)
450 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
451
452 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
453 }
454
455 // The operand is an expression.
456 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
457 }
458
459 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)460 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
461 SourceLocation TypeidLoc,
462 TypeSourceInfo *Operand,
463 SourceLocation RParenLoc) {
464 if (!Operand->getType()->isDependentType()) {
465 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
466 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
467 }
468
469 // FIXME: add __uuidof semantic analysis for type operand.
470 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
471 Operand,
472 SourceRange(TypeidLoc, RParenLoc)));
473 }
474
475 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)476 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
477 SourceLocation TypeidLoc,
478 Expr *E,
479 SourceLocation RParenLoc) {
480 if (!E->getType()->isDependentType()) {
481 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
482 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
483 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
484 }
485 // FIXME: add __uuidof semantic analysis for type operand.
486 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
487 E,
488 SourceRange(TypeidLoc, RParenLoc)));
489 }
490
491 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
492 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)493 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
494 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
495 // If MSVCGuidDecl has not been cached, do the lookup.
496 if (!MSVCGuidDecl) {
497 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
498 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
499 LookupQualifiedName(R, Context.getTranslationUnitDecl());
500 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
501 if (!MSVCGuidDecl)
502 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
503 }
504
505 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
506
507 if (isType) {
508 // The operand is a type; handle it as such.
509 TypeSourceInfo *TInfo = 0;
510 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
511 &TInfo);
512 if (T.isNull())
513 return ExprError();
514
515 if (!TInfo)
516 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
517
518 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
519 }
520
521 // The operand is an expression.
522 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
523 }
524
525 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
526 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)527 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
528 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
529 "Unknown C++ Boolean value!");
530 return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
531 Context.BoolTy, OpLoc));
532 }
533
534 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
535 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)536 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
537 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
538 }
539
540 /// ActOnCXXThrow - Parse throw expressions.
541 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)542 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
543 bool IsThrownVarInScope = false;
544 if (Ex) {
545 // C++0x [class.copymove]p31:
546 // When certain criteria are met, an implementation is allowed to omit the
547 // copy/move construction of a class object [...]
548 //
549 // - in a throw-expression, when the operand is the name of a
550 // non-volatile automatic object (other than a function or catch-
551 // clause parameter) whose scope does not extend beyond the end of the
552 // innermost enclosing try-block (if there is one), the copy/move
553 // operation from the operand to the exception object (15.1) can be
554 // omitted by constructing the automatic object directly into the
555 // exception object
556 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
557 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
558 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
559 for( ; S; S = S->getParent()) {
560 if (S->isDeclScope(Var)) {
561 IsThrownVarInScope = true;
562 break;
563 }
564
565 if (S->getFlags() &
566 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
567 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
568 Scope::TryScope))
569 break;
570 }
571 }
572 }
573 }
574
575 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
576 }
577
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)578 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
579 bool IsThrownVarInScope) {
580 // Don't report an error if 'throw' is used in system headers.
581 if (!getLangOpts().CXXExceptions &&
582 !getSourceManager().isInSystemHeader(OpLoc))
583 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
584
585 if (Ex && !Ex->isTypeDependent()) {
586 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
587 if (ExRes.isInvalid())
588 return ExprError();
589 Ex = ExRes.take();
590 }
591
592 return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
593 IsThrownVarInScope));
594 }
595
596 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)597 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
598 bool IsThrownVarInScope) {
599 // C++ [except.throw]p3:
600 // A throw-expression initializes a temporary object, called the exception
601 // object, the type of which is determined by removing any top-level
602 // cv-qualifiers from the static type of the operand of throw and adjusting
603 // the type from "array of T" or "function returning T" to "pointer to T"
604 // or "pointer to function returning T", [...]
605 if (E->getType().hasQualifiers())
606 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
607 E->getValueKind()).take();
608
609 ExprResult Res = DefaultFunctionArrayConversion(E);
610 if (Res.isInvalid())
611 return ExprError();
612 E = Res.take();
613
614 // If the type of the exception would be an incomplete type or a pointer
615 // to an incomplete type other than (cv) void the program is ill-formed.
616 QualType Ty = E->getType();
617 bool isPointer = false;
618 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
619 Ty = Ptr->getPointeeType();
620 isPointer = true;
621 }
622 if (!isPointer || !Ty->isVoidType()) {
623 if (RequireCompleteType(ThrowLoc, Ty,
624 isPointer? diag::err_throw_incomplete_ptr
625 : diag::err_throw_incomplete,
626 E->getSourceRange()))
627 return ExprError();
628
629 if (RequireNonAbstractType(ThrowLoc, E->getType(),
630 diag::err_throw_abstract_type, E))
631 return ExprError();
632 }
633
634 // Initialize the exception result. This implicitly weeds out
635 // abstract types or types with inaccessible copy constructors.
636
637 // C++0x [class.copymove]p31:
638 // When certain criteria are met, an implementation is allowed to omit the
639 // copy/move construction of a class object [...]
640 //
641 // - in a throw-expression, when the operand is the name of a
642 // non-volatile automatic object (other than a function or catch-clause
643 // parameter) whose scope does not extend beyond the end of the
644 // innermost enclosing try-block (if there is one), the copy/move
645 // operation from the operand to the exception object (15.1) can be
646 // omitted by constructing the automatic object directly into the
647 // exception object
648 const VarDecl *NRVOVariable = 0;
649 if (IsThrownVarInScope)
650 NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
651
652 InitializedEntity Entity =
653 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
654 /*NRVO=*/NRVOVariable != 0);
655 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
656 QualType(), E,
657 IsThrownVarInScope);
658 if (Res.isInvalid())
659 return ExprError();
660 E = Res.take();
661
662 // If the exception has class type, we need additional handling.
663 const RecordType *RecordTy = Ty->getAs<RecordType>();
664 if (!RecordTy)
665 return Owned(E);
666 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
667
668 // If we are throwing a polymorphic class type or pointer thereof,
669 // exception handling will make use of the vtable.
670 MarkVTableUsed(ThrowLoc, RD);
671
672 // If a pointer is thrown, the referenced object will not be destroyed.
673 if (isPointer)
674 return Owned(E);
675
676 // If the class has a destructor, we must be able to call it.
677 if (RD->hasIrrelevantDestructor())
678 return Owned(E);
679
680 CXXDestructorDecl *Destructor = LookupDestructor(RD);
681 if (!Destructor)
682 return Owned(E);
683
684 MarkFunctionReferenced(E->getExprLoc(), Destructor);
685 CheckDestructorAccess(E->getExprLoc(), Destructor,
686 PDiag(diag::err_access_dtor_exception) << Ty);
687 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
688 return ExprError();
689 return Owned(E);
690 }
691
getCurrentThisType()692 QualType Sema::getCurrentThisType() {
693 DeclContext *DC = getFunctionLevelDeclContext();
694 QualType ThisTy = CXXThisTypeOverride;
695 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
696 if (method && method->isInstance())
697 ThisTy = method->getThisType(Context);
698 }
699
700 return ThisTy;
701 }
702
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)703 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
704 Decl *ContextDecl,
705 unsigned CXXThisTypeQuals,
706 bool Enabled)
707 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
708 {
709 if (!Enabled || !ContextDecl)
710 return;
711
712 CXXRecordDecl *Record = 0;
713 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
714 Record = Template->getTemplatedDecl();
715 else
716 Record = cast<CXXRecordDecl>(ContextDecl);
717
718 S.CXXThisTypeOverride
719 = S.Context.getPointerType(
720 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
721
722 this->Enabled = true;
723 }
724
725
~CXXThisScopeRAII()726 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
727 if (Enabled) {
728 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
729 }
730 }
731
captureThis(ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc)732 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
733 QualType ThisTy, SourceLocation Loc) {
734 FieldDecl *Field
735 = FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
736 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
737 0, false, ICIS_NoInit);
738 Field->setImplicit(true);
739 Field->setAccess(AS_private);
740 RD->addDecl(Field);
741 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
742 }
743
CheckCXXThisCapture(SourceLocation Loc,bool Explicit)744 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
745 // We don't need to capture this in an unevaluated context.
746 if (isUnevaluatedContext() && !Explicit)
747 return;
748
749 // Otherwise, check that we can capture 'this'.
750 unsigned NumClosures = 0;
751 for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
752 if (CapturingScopeInfo *CSI =
753 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
754 if (CSI->CXXThisCaptureIndex != 0) {
755 // 'this' is already being captured; there isn't anything more to do.
756 break;
757 }
758
759 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
760 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
761 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
762 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
763 Explicit) {
764 // This closure can capture 'this'; continue looking upwards.
765 NumClosures++;
766 Explicit = false;
767 continue;
768 }
769 // This context can't implicitly capture 'this'; fail out.
770 Diag(Loc, diag::err_this_capture) << Explicit;
771 return;
772 }
773 break;
774 }
775
776 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
777 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
778 // contexts.
779 for (unsigned idx = FunctionScopes.size() - 1;
780 NumClosures; --idx, --NumClosures) {
781 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
782 Expr *ThisExpr = 0;
783 QualType ThisTy = getCurrentThisType();
784 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
785 // For lambda expressions, build a field and an initializing expression.
786 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
787 else if (CapturedRegionScopeInfo *RSI
788 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
789 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
790
791 bool isNested = NumClosures > 1;
792 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
793 }
794 }
795
ActOnCXXThis(SourceLocation Loc)796 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
797 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
798 /// is a non-lvalue expression whose value is the address of the object for
799 /// which the function is called.
800
801 QualType ThisTy = getCurrentThisType();
802 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
803
804 CheckCXXThisCapture(Loc);
805 return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
806 }
807
isThisOutsideMemberFunctionBody(QualType BaseType)808 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
809 // If we're outside the body of a member function, then we'll have a specified
810 // type for 'this'.
811 if (CXXThisTypeOverride.isNull())
812 return false;
813
814 // Determine whether we're looking into a class that's currently being
815 // defined.
816 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
817 return Class && Class->isBeingDefined();
818 }
819
820 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)821 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
822 SourceLocation LParenLoc,
823 MultiExprArg exprs,
824 SourceLocation RParenLoc) {
825 if (!TypeRep)
826 return ExprError();
827
828 TypeSourceInfo *TInfo;
829 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
830 if (!TInfo)
831 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
832
833 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
834 }
835
836 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
837 /// Can be interpreted either as function-style casting ("int(x)")
838 /// or class type construction ("ClassType(x,y,z)")
839 /// or creation of a value-initialized type ("int()").
840 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg Exprs,SourceLocation RParenLoc)841 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
842 SourceLocation LParenLoc,
843 MultiExprArg Exprs,
844 SourceLocation RParenLoc) {
845 QualType Ty = TInfo->getType();
846 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
847
848 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
849 return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
850 LParenLoc,
851 Exprs,
852 RParenLoc));
853 }
854
855 bool ListInitialization = LParenLoc.isInvalid();
856 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
857 && "List initialization must have initializer list as expression.");
858 SourceRange FullRange = SourceRange(TyBeginLoc,
859 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
860
861 // C++ [expr.type.conv]p1:
862 // If the expression list is a single expression, the type conversion
863 // expression is equivalent (in definedness, and if defined in meaning) to the
864 // corresponding cast expression.
865 if (Exprs.size() == 1 && !ListInitialization) {
866 Expr *Arg = Exprs[0];
867 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
868 }
869
870 QualType ElemTy = Ty;
871 if (Ty->isArrayType()) {
872 if (!ListInitialization)
873 return ExprError(Diag(TyBeginLoc,
874 diag::err_value_init_for_array_type) << FullRange);
875 ElemTy = Context.getBaseElementType(Ty);
876 }
877
878 if (!Ty->isVoidType() &&
879 RequireCompleteType(TyBeginLoc, ElemTy,
880 diag::err_invalid_incomplete_type_use, FullRange))
881 return ExprError();
882
883 if (RequireNonAbstractType(TyBeginLoc, Ty,
884 diag::err_allocation_of_abstract_type))
885 return ExprError();
886
887 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
888 InitializationKind Kind =
889 Exprs.size() ? ListInitialization
890 ? InitializationKind::CreateDirectList(TyBeginLoc)
891 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
892 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
893 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
894 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
895
896 if (!Result.isInvalid() && ListInitialization &&
897 isa<InitListExpr>(Result.get())) {
898 // If the list-initialization doesn't involve a constructor call, we'll get
899 // the initializer-list (with corrected type) back, but that's not what we
900 // want, since it will be treated as an initializer list in further
901 // processing. Explicitly insert a cast here.
902 InitListExpr *List = cast<InitListExpr>(Result.take());
903 Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
904 Expr::getValueKindForType(TInfo->getType()),
905 TInfo, TyBeginLoc, CK_NoOp,
906 List, /*Path=*/0, RParenLoc));
907 }
908
909 // FIXME: Improve AST representation?
910 return Result;
911 }
912
913 /// doesUsualArrayDeleteWantSize - Answers whether the usual
914 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)915 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
916 QualType allocType) {
917 const RecordType *record =
918 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
919 if (!record) return false;
920
921 // Try to find an operator delete[] in class scope.
922
923 DeclarationName deleteName =
924 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
925 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
926 S.LookupQualifiedName(ops, record->getDecl());
927
928 // We're just doing this for information.
929 ops.suppressDiagnostics();
930
931 // Very likely: there's no operator delete[].
932 if (ops.empty()) return false;
933
934 // If it's ambiguous, it should be illegal to call operator delete[]
935 // on this thing, so it doesn't matter if we allocate extra space or not.
936 if (ops.isAmbiguous()) return false;
937
938 LookupResult::Filter filter = ops.makeFilter();
939 while (filter.hasNext()) {
940 NamedDecl *del = filter.next()->getUnderlyingDecl();
941
942 // C++0x [basic.stc.dynamic.deallocation]p2:
943 // A template instance is never a usual deallocation function,
944 // regardless of its signature.
945 if (isa<FunctionTemplateDecl>(del)) {
946 filter.erase();
947 continue;
948 }
949
950 // C++0x [basic.stc.dynamic.deallocation]p2:
951 // If class T does not declare [an operator delete[] with one
952 // parameter] but does declare a member deallocation function
953 // named operator delete[] with exactly two parameters, the
954 // second of which has type std::size_t, then this function
955 // is a usual deallocation function.
956 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
957 filter.erase();
958 continue;
959 }
960 }
961 filter.done();
962
963 if (!ops.isSingleResult()) return false;
964
965 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
966 return (del->getNumParams() == 2);
967 }
968
969 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
970 ///
971 /// E.g.:
972 /// @code new (memory) int[size][4] @endcode
973 /// or
974 /// @code ::new Foo(23, "hello") @endcode
975 ///
976 /// \param StartLoc The first location of the expression.
977 /// \param UseGlobal True if 'new' was prefixed with '::'.
978 /// \param PlacementLParen Opening paren of the placement arguments.
979 /// \param PlacementArgs Placement new arguments.
980 /// \param PlacementRParen Closing paren of the placement arguments.
981 /// \param TypeIdParens If the type is in parens, the source range.
982 /// \param D The type to be allocated, as well as array dimensions.
983 /// \param Initializer The initializing expression or initializer-list, or null
984 /// if there is none.
985 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)986 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
987 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
988 SourceLocation PlacementRParen, SourceRange TypeIdParens,
989 Declarator &D, Expr *Initializer) {
990 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
991
992 Expr *ArraySize = 0;
993 // If the specified type is an array, unwrap it and save the expression.
994 if (D.getNumTypeObjects() > 0 &&
995 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
996 DeclaratorChunk &Chunk = D.getTypeObject(0);
997 if (TypeContainsAuto)
998 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
999 << D.getSourceRange());
1000 if (Chunk.Arr.hasStatic)
1001 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1002 << D.getSourceRange());
1003 if (!Chunk.Arr.NumElts)
1004 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1005 << D.getSourceRange());
1006
1007 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1008 D.DropFirstTypeObject();
1009 }
1010
1011 // Every dimension shall be of constant size.
1012 if (ArraySize) {
1013 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1014 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1015 break;
1016
1017 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1018 if (Expr *NumElts = (Expr *)Array.NumElts) {
1019 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1020 if (getLangOpts().CPlusPlus1y) {
1021 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1022 // shall be a converted constant expression (5.19) of type std::size_t
1023 // and shall evaluate to a strictly positive value.
1024 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1025 assert(IntWidth && "Builtin type of size 0?");
1026 llvm::APSInt Value(IntWidth);
1027 Array.NumElts
1028 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1029 CCEK_NewExpr)
1030 .take();
1031 } else {
1032 Array.NumElts
1033 = VerifyIntegerConstantExpression(NumElts, 0,
1034 diag::err_new_array_nonconst)
1035 .take();
1036 }
1037 if (!Array.NumElts)
1038 return ExprError();
1039 }
1040 }
1041 }
1042 }
1043
1044 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1045 QualType AllocType = TInfo->getType();
1046 if (D.isInvalidType())
1047 return ExprError();
1048
1049 SourceRange DirectInitRange;
1050 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1051 DirectInitRange = List->getSourceRange();
1052
1053 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1054 PlacementLParen,
1055 PlacementArgs,
1056 PlacementRParen,
1057 TypeIdParens,
1058 AllocType,
1059 TInfo,
1060 ArraySize,
1061 DirectInitRange,
1062 Initializer,
1063 TypeContainsAuto);
1064 }
1065
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1066 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1067 Expr *Init) {
1068 if (!Init)
1069 return true;
1070 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1071 return PLE->getNumExprs() == 0;
1072 if (isa<ImplicitValueInitExpr>(Init))
1073 return true;
1074 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1075 return !CCE->isListInitialization() &&
1076 CCE->getConstructor()->isDefaultConstructor();
1077 else if (Style == CXXNewExpr::ListInit) {
1078 assert(isa<InitListExpr>(Init) &&
1079 "Shouldn't create list CXXConstructExprs for arrays.");
1080 return true;
1081 }
1082 return false;
1083 }
1084
1085 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1086 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1087 SourceLocation PlacementLParen,
1088 MultiExprArg PlacementArgs,
1089 SourceLocation PlacementRParen,
1090 SourceRange TypeIdParens,
1091 QualType AllocType,
1092 TypeSourceInfo *AllocTypeInfo,
1093 Expr *ArraySize,
1094 SourceRange DirectInitRange,
1095 Expr *Initializer,
1096 bool TypeMayContainAuto) {
1097 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1098 SourceLocation StartLoc = Range.getBegin();
1099
1100 CXXNewExpr::InitializationStyle initStyle;
1101 if (DirectInitRange.isValid()) {
1102 assert(Initializer && "Have parens but no initializer.");
1103 initStyle = CXXNewExpr::CallInit;
1104 } else if (Initializer && isa<InitListExpr>(Initializer))
1105 initStyle = CXXNewExpr::ListInit;
1106 else {
1107 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1108 isa<CXXConstructExpr>(Initializer)) &&
1109 "Initializer expression that cannot have been implicitly created.");
1110 initStyle = CXXNewExpr::NoInit;
1111 }
1112
1113 Expr **Inits = &Initializer;
1114 unsigned NumInits = Initializer ? 1 : 0;
1115 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1116 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1117 Inits = List->getExprs();
1118 NumInits = List->getNumExprs();
1119 }
1120
1121 // Determine whether we've already built the initializer.
1122 bool HaveCompleteInit = false;
1123 if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1124 !isa<CXXTemporaryObjectExpr>(Initializer))
1125 HaveCompleteInit = true;
1126 else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1127 HaveCompleteInit = true;
1128
1129 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1130 if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1131 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1132 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1133 << AllocType << TypeRange);
1134 if (initStyle == CXXNewExpr::ListInit)
1135 return ExprError(Diag(Inits[0]->getLocStart(),
1136 diag::err_auto_new_requires_parens)
1137 << AllocType << TypeRange);
1138 if (NumInits > 1) {
1139 Expr *FirstBad = Inits[1];
1140 return ExprError(Diag(FirstBad->getLocStart(),
1141 diag::err_auto_new_ctor_multiple_expressions)
1142 << AllocType << TypeRange);
1143 }
1144 Expr *Deduce = Inits[0];
1145 QualType DeducedType;
1146 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1147 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1148 << AllocType << Deduce->getType()
1149 << TypeRange << Deduce->getSourceRange());
1150 if (DeducedType.isNull())
1151 return ExprError();
1152 AllocType = DeducedType;
1153 }
1154
1155 // Per C++0x [expr.new]p5, the type being constructed may be a
1156 // typedef of an array type.
1157 if (!ArraySize) {
1158 if (const ConstantArrayType *Array
1159 = Context.getAsConstantArrayType(AllocType)) {
1160 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1161 Context.getSizeType(),
1162 TypeRange.getEnd());
1163 AllocType = Array->getElementType();
1164 }
1165 }
1166
1167 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1168 return ExprError();
1169
1170 if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1171 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1172 diag::warn_dangling_std_initializer_list)
1173 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1174 }
1175
1176 // In ARC, infer 'retaining' for the allocated
1177 if (getLangOpts().ObjCAutoRefCount &&
1178 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1179 AllocType->isObjCLifetimeType()) {
1180 AllocType = Context.getLifetimeQualifiedType(AllocType,
1181 AllocType->getObjCARCImplicitLifetime());
1182 }
1183
1184 QualType ResultType = Context.getPointerType(AllocType);
1185
1186 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1187 ExprResult result = CheckPlaceholderExpr(ArraySize);
1188 if (result.isInvalid()) return ExprError();
1189 ArraySize = result.take();
1190 }
1191 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1192 // integral or enumeration type with a non-negative value."
1193 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1194 // enumeration type, or a class type for which a single non-explicit
1195 // conversion function to integral or unscoped enumeration type exists.
1196 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1197 // std::size_t.
1198 if (ArraySize && !ArraySize->isTypeDependent()) {
1199 ExprResult ConvertedSize;
1200 if (getLangOpts().CPlusPlus1y) {
1201 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1202 assert(IntWidth && "Builtin type of size 0?");
1203 llvm::APSInt Value(IntWidth);
1204 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1205 AA_Converting);
1206
1207 if (!ConvertedSize.isInvalid() &&
1208 ArraySize->getType()->getAs<RecordType>())
1209 // Diagnose the compatibility of this conversion.
1210 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1211 << ArraySize->getType() << 0 << "'size_t'";
1212 } else {
1213 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1214 protected:
1215 Expr *ArraySize;
1216
1217 public:
1218 SizeConvertDiagnoser(Expr *ArraySize)
1219 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1220 ArraySize(ArraySize) {}
1221
1222 virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1223 QualType T) {
1224 return S.Diag(Loc, diag::err_array_size_not_integral)
1225 << S.getLangOpts().CPlusPlus11 << T;
1226 }
1227
1228 virtual SemaDiagnosticBuilder diagnoseIncomplete(
1229 Sema &S, SourceLocation Loc, QualType T) {
1230 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1231 << T << ArraySize->getSourceRange();
1232 }
1233
1234 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
1235 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
1236 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1237 }
1238
1239 virtual SemaDiagnosticBuilder noteExplicitConv(
1240 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
1241 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1242 << ConvTy->isEnumeralType() << ConvTy;
1243 }
1244
1245 virtual SemaDiagnosticBuilder diagnoseAmbiguous(
1246 Sema &S, SourceLocation Loc, QualType T) {
1247 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1248 }
1249
1250 virtual SemaDiagnosticBuilder noteAmbiguous(
1251 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
1252 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1253 << ConvTy->isEnumeralType() << ConvTy;
1254 }
1255
1256 virtual SemaDiagnosticBuilder diagnoseConversion(
1257 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
1258 return S.Diag(Loc,
1259 S.getLangOpts().CPlusPlus11
1260 ? diag::warn_cxx98_compat_array_size_conversion
1261 : diag::ext_array_size_conversion)
1262 << T << ConvTy->isEnumeralType() << ConvTy;
1263 }
1264 } SizeDiagnoser(ArraySize);
1265
1266 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1267 SizeDiagnoser);
1268 }
1269 if (ConvertedSize.isInvalid())
1270 return ExprError();
1271
1272 ArraySize = ConvertedSize.take();
1273 QualType SizeType = ArraySize->getType();
1274
1275 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1276 return ExprError();
1277
1278 // C++98 [expr.new]p7:
1279 // The expression in a direct-new-declarator shall have integral type
1280 // with a non-negative value.
1281 //
1282 // Let's see if this is a constant < 0. If so, we reject it out of
1283 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1284 // array type.
1285 //
1286 // Note: such a construct has well-defined semantics in C++11: it throws
1287 // std::bad_array_new_length.
1288 if (!ArraySize->isValueDependent()) {
1289 llvm::APSInt Value;
1290 // We've already performed any required implicit conversion to integer or
1291 // unscoped enumeration type.
1292 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1293 if (Value < llvm::APSInt(
1294 llvm::APInt::getNullValue(Value.getBitWidth()),
1295 Value.isUnsigned())) {
1296 if (getLangOpts().CPlusPlus11)
1297 Diag(ArraySize->getLocStart(),
1298 diag::warn_typecheck_negative_array_new_size)
1299 << ArraySize->getSourceRange();
1300 else
1301 return ExprError(Diag(ArraySize->getLocStart(),
1302 diag::err_typecheck_negative_array_size)
1303 << ArraySize->getSourceRange());
1304 } else if (!AllocType->isDependentType()) {
1305 unsigned ActiveSizeBits =
1306 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1307 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1308 if (getLangOpts().CPlusPlus11)
1309 Diag(ArraySize->getLocStart(),
1310 diag::warn_array_new_too_large)
1311 << Value.toString(10)
1312 << ArraySize->getSourceRange();
1313 else
1314 return ExprError(Diag(ArraySize->getLocStart(),
1315 diag::err_array_too_large)
1316 << Value.toString(10)
1317 << ArraySize->getSourceRange());
1318 }
1319 }
1320 } else if (TypeIdParens.isValid()) {
1321 // Can't have dynamic array size when the type-id is in parentheses.
1322 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1323 << ArraySize->getSourceRange()
1324 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1325 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1326
1327 TypeIdParens = SourceRange();
1328 }
1329 }
1330
1331 // Note that we do *not* convert the argument in any way. It can
1332 // be signed, larger than size_t, whatever.
1333 }
1334
1335 FunctionDecl *OperatorNew = 0;
1336 FunctionDecl *OperatorDelete = 0;
1337
1338 if (!AllocType->isDependentType() &&
1339 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1340 FindAllocationFunctions(StartLoc,
1341 SourceRange(PlacementLParen, PlacementRParen),
1342 UseGlobal, AllocType, ArraySize, PlacementArgs,
1343 OperatorNew, OperatorDelete))
1344 return ExprError();
1345
1346 // If this is an array allocation, compute whether the usual array
1347 // deallocation function for the type has a size_t parameter.
1348 bool UsualArrayDeleteWantsSize = false;
1349 if (ArraySize && !AllocType->isDependentType())
1350 UsualArrayDeleteWantsSize
1351 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1352
1353 SmallVector<Expr *, 8> AllPlaceArgs;
1354 if (OperatorNew) {
1355 // Add default arguments, if any.
1356 const FunctionProtoType *Proto =
1357 OperatorNew->getType()->getAs<FunctionProtoType>();
1358 VariadicCallType CallType =
1359 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1360
1361 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1362 PlacementArgs, AllPlaceArgs, CallType))
1363 return ExprError();
1364
1365 if (!AllPlaceArgs.empty())
1366 PlacementArgs = AllPlaceArgs;
1367
1368 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1369
1370 // FIXME: Missing call to CheckFunctionCall or equivalent
1371 }
1372
1373 // Warn if the type is over-aligned and is being allocated by global operator
1374 // new.
1375 if (PlacementArgs.empty() && OperatorNew &&
1376 (OperatorNew->isImplicit() ||
1377 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1378 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1379 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1380 if (Align > SuitableAlign)
1381 Diag(StartLoc, diag::warn_overaligned_type)
1382 << AllocType
1383 << unsigned(Align / Context.getCharWidth())
1384 << unsigned(SuitableAlign / Context.getCharWidth());
1385 }
1386 }
1387
1388 QualType InitType = AllocType;
1389 // Array 'new' can't have any initializers except empty parentheses.
1390 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1391 // dialect distinction.
1392 if (ResultType->isArrayType() || ArraySize) {
1393 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1394 SourceRange InitRange(Inits[0]->getLocStart(),
1395 Inits[NumInits - 1]->getLocEnd());
1396 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1397 return ExprError();
1398 }
1399 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1400 // We do the initialization typechecking against the array type
1401 // corresponding to the number of initializers + 1 (to also check
1402 // default-initialization).
1403 unsigned NumElements = ILE->getNumInits() + 1;
1404 InitType = Context.getConstantArrayType(AllocType,
1405 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1406 ArrayType::Normal, 0);
1407 }
1408 }
1409
1410 // If we can perform the initialization, and we've not already done so,
1411 // do it now.
1412 if (!AllocType->isDependentType() &&
1413 !Expr::hasAnyTypeDependentArguments(
1414 llvm::makeArrayRef(Inits, NumInits)) &&
1415 !HaveCompleteInit) {
1416 // C++11 [expr.new]p15:
1417 // A new-expression that creates an object of type T initializes that
1418 // object as follows:
1419 InitializationKind Kind
1420 // - If the new-initializer is omitted, the object is default-
1421 // initialized (8.5); if no initialization is performed,
1422 // the object has indeterminate value
1423 = initStyle == CXXNewExpr::NoInit
1424 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1425 // - Otherwise, the new-initializer is interpreted according to the
1426 // initialization rules of 8.5 for direct-initialization.
1427 : initStyle == CXXNewExpr::ListInit
1428 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1429 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1430 DirectInitRange.getBegin(),
1431 DirectInitRange.getEnd());
1432
1433 InitializedEntity Entity
1434 = InitializedEntity::InitializeNew(StartLoc, InitType);
1435 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1436 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1437 MultiExprArg(Inits, NumInits));
1438 if (FullInit.isInvalid())
1439 return ExprError();
1440
1441 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1442 // we don't want the initialized object to be destructed.
1443 if (CXXBindTemporaryExpr *Binder =
1444 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1445 FullInit = Owned(Binder->getSubExpr());
1446
1447 Initializer = FullInit.take();
1448 }
1449
1450 // Mark the new and delete operators as referenced.
1451 if (OperatorNew) {
1452 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1453 return ExprError();
1454 MarkFunctionReferenced(StartLoc, OperatorNew);
1455 }
1456 if (OperatorDelete) {
1457 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1458 return ExprError();
1459 MarkFunctionReferenced(StartLoc, OperatorDelete);
1460 }
1461
1462 // C++0x [expr.new]p17:
1463 // If the new expression creates an array of objects of class type,
1464 // access and ambiguity control are done for the destructor.
1465 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1466 if (ArraySize && !BaseAllocType->isDependentType()) {
1467 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1468 if (CXXDestructorDecl *dtor = LookupDestructor(
1469 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1470 MarkFunctionReferenced(StartLoc, dtor);
1471 CheckDestructorAccess(StartLoc, dtor,
1472 PDiag(diag::err_access_dtor)
1473 << BaseAllocType);
1474 if (DiagnoseUseOfDecl(dtor, StartLoc))
1475 return ExprError();
1476 }
1477 }
1478 }
1479
1480 return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1481 OperatorDelete,
1482 UsualArrayDeleteWantsSize,
1483 PlacementArgs, TypeIdParens,
1484 ArraySize, initStyle, Initializer,
1485 ResultType, AllocTypeInfo,
1486 Range, DirectInitRange));
1487 }
1488
1489 /// \brief Checks that a type is suitable as the allocated type
1490 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1491 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1492 SourceRange R) {
1493 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1494 // abstract class type or array thereof.
1495 if (AllocType->isFunctionType())
1496 return Diag(Loc, diag::err_bad_new_type)
1497 << AllocType << 0 << R;
1498 else if (AllocType->isReferenceType())
1499 return Diag(Loc, diag::err_bad_new_type)
1500 << AllocType << 1 << R;
1501 else if (!AllocType->isDependentType() &&
1502 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1503 return true;
1504 else if (RequireNonAbstractType(Loc, AllocType,
1505 diag::err_allocation_of_abstract_type))
1506 return true;
1507 else if (AllocType->isVariablyModifiedType())
1508 return Diag(Loc, diag::err_variably_modified_new_type)
1509 << AllocType;
1510 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1511 return Diag(Loc, diag::err_address_space_qualified_new)
1512 << AllocType.getUnqualifiedType() << AddressSpace;
1513 else if (getLangOpts().ObjCAutoRefCount) {
1514 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1515 QualType BaseAllocType = Context.getBaseElementType(AT);
1516 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1517 BaseAllocType->isObjCLifetimeType())
1518 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1519 << BaseAllocType;
1520 }
1521 }
1522
1523 return false;
1524 }
1525
1526 /// \brief Determine whether the given function is a non-placement
1527 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1528 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1529 if (FD->isInvalidDecl())
1530 return false;
1531
1532 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1533 return Method->isUsualDeallocationFunction();
1534
1535 return ((FD->getOverloadedOperator() == OO_Delete ||
1536 FD->getOverloadedOperator() == OO_Array_Delete) &&
1537 FD->getNumParams() == 1);
1538 }
1539
1540 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1541 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1542 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1543 bool UseGlobal, QualType AllocType,
1544 bool IsArray, MultiExprArg PlaceArgs,
1545 FunctionDecl *&OperatorNew,
1546 FunctionDecl *&OperatorDelete) {
1547 // --- Choosing an allocation function ---
1548 // C++ 5.3.4p8 - 14 & 18
1549 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1550 // in the scope of the allocated class.
1551 // 2) If an array size is given, look for operator new[], else look for
1552 // operator new.
1553 // 3) The first argument is always size_t. Append the arguments from the
1554 // placement form.
1555
1556 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1557 // We don't care about the actual value of this argument.
1558 // FIXME: Should the Sema create the expression and embed it in the syntax
1559 // tree? Or should the consumer just recalculate the value?
1560 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1561 Context.getTargetInfo().getPointerWidth(0)),
1562 Context.getSizeType(),
1563 SourceLocation());
1564 AllocArgs[0] = &Size;
1565 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1566
1567 // C++ [expr.new]p8:
1568 // If the allocated type is a non-array type, the allocation
1569 // function's name is operator new and the deallocation function's
1570 // name is operator delete. If the allocated type is an array
1571 // type, the allocation function's name is operator new[] and the
1572 // deallocation function's name is operator delete[].
1573 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1574 IsArray ? OO_Array_New : OO_New);
1575 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1576 IsArray ? OO_Array_Delete : OO_Delete);
1577
1578 QualType AllocElemType = Context.getBaseElementType(AllocType);
1579
1580 if (AllocElemType->isRecordType() && !UseGlobal) {
1581 CXXRecordDecl *Record
1582 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1583 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1584 /*AllowMissing=*/true, OperatorNew))
1585 return true;
1586 }
1587
1588 if (!OperatorNew) {
1589 // Didn't find a member overload. Look for a global one.
1590 DeclareGlobalNewDelete();
1591 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1592 bool FallbackEnabled = IsArray && Context.getLangOpts().MicrosoftMode;
1593 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1594 /*AllowMissing=*/FallbackEnabled, OperatorNew,
1595 /*Diagnose=*/!FallbackEnabled)) {
1596 if (!FallbackEnabled)
1597 return true;
1598
1599 // MSVC will fall back on trying to find a matching global operator new
1600 // if operator new[] cannot be found. Also, MSVC will leak by not
1601 // generating a call to operator delete or operator delete[], but we
1602 // will not replicate that bug.
1603 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1604 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1605 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1606 /*AllowMissing=*/false, OperatorNew))
1607 return true;
1608 }
1609 }
1610
1611 // We don't need an operator delete if we're running under
1612 // -fno-exceptions.
1613 if (!getLangOpts().Exceptions) {
1614 OperatorDelete = 0;
1615 return false;
1616 }
1617
1618 // FindAllocationOverload can change the passed in arguments, so we need to
1619 // copy them back.
1620 if (!PlaceArgs.empty())
1621 std::copy(AllocArgs.begin() + 1, AllocArgs.end(), PlaceArgs.data());
1622
1623 // C++ [expr.new]p19:
1624 //
1625 // If the new-expression begins with a unary :: operator, the
1626 // deallocation function's name is looked up in the global
1627 // scope. Otherwise, if the allocated type is a class type T or an
1628 // array thereof, the deallocation function's name is looked up in
1629 // the scope of T. If this lookup fails to find the name, or if
1630 // the allocated type is not a class type or array thereof, the
1631 // deallocation function's name is looked up in the global scope.
1632 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1633 if (AllocElemType->isRecordType() && !UseGlobal) {
1634 CXXRecordDecl *RD
1635 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1636 LookupQualifiedName(FoundDelete, RD);
1637 }
1638 if (FoundDelete.isAmbiguous())
1639 return true; // FIXME: clean up expressions?
1640
1641 if (FoundDelete.empty()) {
1642 DeclareGlobalNewDelete();
1643 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1644 }
1645
1646 FoundDelete.suppressDiagnostics();
1647
1648 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1649
1650 // Whether we're looking for a placement operator delete is dictated
1651 // by whether we selected a placement operator new, not by whether
1652 // we had explicit placement arguments. This matters for things like
1653 // struct A { void *operator new(size_t, int = 0); ... };
1654 // A *a = new A()
1655 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1656
1657 if (isPlacementNew) {
1658 // C++ [expr.new]p20:
1659 // A declaration of a placement deallocation function matches the
1660 // declaration of a placement allocation function if it has the
1661 // same number of parameters and, after parameter transformations
1662 // (8.3.5), all parameter types except the first are
1663 // identical. [...]
1664 //
1665 // To perform this comparison, we compute the function type that
1666 // the deallocation function should have, and use that type both
1667 // for template argument deduction and for comparison purposes.
1668 //
1669 // FIXME: this comparison should ignore CC and the like.
1670 QualType ExpectedFunctionType;
1671 {
1672 const FunctionProtoType *Proto
1673 = OperatorNew->getType()->getAs<FunctionProtoType>();
1674
1675 SmallVector<QualType, 4> ArgTypes;
1676 ArgTypes.push_back(Context.VoidPtrTy);
1677 for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1678 ArgTypes.push_back(Proto->getArgType(I));
1679
1680 FunctionProtoType::ExtProtoInfo EPI;
1681 EPI.Variadic = Proto->isVariadic();
1682
1683 ExpectedFunctionType
1684 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1685 }
1686
1687 for (LookupResult::iterator D = FoundDelete.begin(),
1688 DEnd = FoundDelete.end();
1689 D != DEnd; ++D) {
1690 FunctionDecl *Fn = 0;
1691 if (FunctionTemplateDecl *FnTmpl
1692 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1693 // Perform template argument deduction to try to match the
1694 // expected function type.
1695 TemplateDeductionInfo Info(StartLoc);
1696 if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1697 continue;
1698 } else
1699 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1700
1701 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1702 Matches.push_back(std::make_pair(D.getPair(), Fn));
1703 }
1704 } else {
1705 // C++ [expr.new]p20:
1706 // [...] Any non-placement deallocation function matches a
1707 // non-placement allocation function. [...]
1708 for (LookupResult::iterator D = FoundDelete.begin(),
1709 DEnd = FoundDelete.end();
1710 D != DEnd; ++D) {
1711 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1712 if (isNonPlacementDeallocationFunction(Fn))
1713 Matches.push_back(std::make_pair(D.getPair(), Fn));
1714 }
1715 }
1716
1717 // C++ [expr.new]p20:
1718 // [...] If the lookup finds a single matching deallocation
1719 // function, that function will be called; otherwise, no
1720 // deallocation function will be called.
1721 if (Matches.size() == 1) {
1722 OperatorDelete = Matches[0].second;
1723
1724 // C++0x [expr.new]p20:
1725 // If the lookup finds the two-parameter form of a usual
1726 // deallocation function (3.7.4.2) and that function, considered
1727 // as a placement deallocation function, would have been
1728 // selected as a match for the allocation function, the program
1729 // is ill-formed.
1730 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1731 isNonPlacementDeallocationFunction(OperatorDelete)) {
1732 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1733 << SourceRange(PlaceArgs.front()->getLocStart(),
1734 PlaceArgs.back()->getLocEnd());
1735 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1736 << DeleteName;
1737 } else {
1738 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1739 Matches[0].first);
1740 }
1741 }
1742
1743 return false;
1744 }
1745
1746 /// FindAllocationOverload - Find an fitting overload for the allocation
1747 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,MultiExprArg Args,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1748 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1749 DeclarationName Name, MultiExprArg Args,
1750 DeclContext *Ctx,
1751 bool AllowMissing, FunctionDecl *&Operator,
1752 bool Diagnose) {
1753 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1754 LookupQualifiedName(R, Ctx);
1755 if (R.empty()) {
1756 if (AllowMissing || !Diagnose)
1757 return false;
1758 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1759 << Name << Range;
1760 }
1761
1762 if (R.isAmbiguous())
1763 return true;
1764
1765 R.suppressDiagnostics();
1766
1767 OverloadCandidateSet Candidates(StartLoc);
1768 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1769 Alloc != AllocEnd; ++Alloc) {
1770 // Even member operator new/delete are implicitly treated as
1771 // static, so don't use AddMemberCandidate.
1772 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1773
1774 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1775 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1776 /*ExplicitTemplateArgs=*/0,
1777 Args, Candidates,
1778 /*SuppressUserConversions=*/false);
1779 continue;
1780 }
1781
1782 FunctionDecl *Fn = cast<FunctionDecl>(D);
1783 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1784 /*SuppressUserConversions=*/false);
1785 }
1786
1787 // Do the resolution.
1788 OverloadCandidateSet::iterator Best;
1789 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1790 case OR_Success: {
1791 // Got one!
1792 FunctionDecl *FnDecl = Best->Function;
1793 MarkFunctionReferenced(StartLoc, FnDecl);
1794 // The first argument is size_t, and the first parameter must be size_t,
1795 // too. This is checked on declaration and can be assumed. (It can't be
1796 // asserted on, though, since invalid decls are left in there.)
1797 // Watch out for variadic allocator function.
1798 unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1799 for (unsigned i = 0; (i < Args.size() && i < NumArgsInFnDecl); ++i) {
1800 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1801 FnDecl->getParamDecl(i));
1802
1803 if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1804 return true;
1805
1806 ExprResult Result
1807 = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1808 if (Result.isInvalid())
1809 return true;
1810
1811 Args[i] = Result.takeAs<Expr>();
1812 }
1813
1814 Operator = FnDecl;
1815
1816 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1817 Best->FoundDecl, Diagnose) == AR_inaccessible)
1818 return true;
1819
1820 return false;
1821 }
1822
1823 case OR_No_Viable_Function:
1824 if (Diagnose) {
1825 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1826 << Name << Range;
1827 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1828 }
1829 return true;
1830
1831 case OR_Ambiguous:
1832 if (Diagnose) {
1833 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1834 << Name << Range;
1835 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1836 }
1837 return true;
1838
1839 case OR_Deleted: {
1840 if (Diagnose) {
1841 Diag(StartLoc, diag::err_ovl_deleted_call)
1842 << Best->Function->isDeleted()
1843 << Name
1844 << getDeletedOrUnavailableSuffix(Best->Function)
1845 << Range;
1846 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1847 }
1848 return true;
1849 }
1850 }
1851 llvm_unreachable("Unreachable, bad result from BestViableFunction");
1852 }
1853
1854
1855 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1856 /// delete. These are:
1857 /// @code
1858 /// // C++03:
1859 /// void* operator new(std::size_t) throw(std::bad_alloc);
1860 /// void* operator new[](std::size_t) throw(std::bad_alloc);
1861 /// void operator delete(void *) throw();
1862 /// void operator delete[](void *) throw();
1863 /// // C++0x:
1864 /// void* operator new(std::size_t);
1865 /// void* operator new[](std::size_t);
1866 /// void operator delete(void *);
1867 /// void operator delete[](void *);
1868 /// @endcode
1869 /// C++0x operator delete is implicitly noexcept.
1870 /// Note that the placement and nothrow forms of new are *not* implicitly
1871 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1872 void Sema::DeclareGlobalNewDelete() {
1873 if (GlobalNewDeleteDeclared)
1874 return;
1875
1876 // C++ [basic.std.dynamic]p2:
1877 // [...] The following allocation and deallocation functions (18.4) are
1878 // implicitly declared in global scope in each translation unit of a
1879 // program
1880 //
1881 // C++03:
1882 // void* operator new(std::size_t) throw(std::bad_alloc);
1883 // void* operator new[](std::size_t) throw(std::bad_alloc);
1884 // void operator delete(void*) throw();
1885 // void operator delete[](void*) throw();
1886 // C++0x:
1887 // void* operator new(std::size_t);
1888 // void* operator new[](std::size_t);
1889 // void operator delete(void*);
1890 // void operator delete[](void*);
1891 //
1892 // These implicit declarations introduce only the function names operator
1893 // new, operator new[], operator delete, operator delete[].
1894 //
1895 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1896 // "std" or "bad_alloc" as necessary to form the exception specification.
1897 // However, we do not make these implicit declarations visible to name
1898 // lookup.
1899 // Note that the C++0x versions of operator delete are deallocation functions,
1900 // and thus are implicitly noexcept.
1901 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1902 // The "std::bad_alloc" class has not yet been declared, so build it
1903 // implicitly.
1904 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1905 getOrCreateStdNamespace(),
1906 SourceLocation(), SourceLocation(),
1907 &PP.getIdentifierTable().get("bad_alloc"),
1908 0);
1909 getStdBadAlloc()->setImplicit(true);
1910 }
1911
1912 GlobalNewDeleteDeclared = true;
1913
1914 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1915 QualType SizeT = Context.getSizeType();
1916 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1917
1918 DeclareGlobalAllocationFunction(
1919 Context.DeclarationNames.getCXXOperatorName(OO_New),
1920 VoidPtr, SizeT, AssumeSaneOperatorNew);
1921 DeclareGlobalAllocationFunction(
1922 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1923 VoidPtr, SizeT, AssumeSaneOperatorNew);
1924 DeclareGlobalAllocationFunction(
1925 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1926 Context.VoidTy, VoidPtr);
1927 DeclareGlobalAllocationFunction(
1928 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1929 Context.VoidTy, VoidPtr);
1930 }
1931
1932 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1933 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1934 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1935 QualType Return, QualType Argument,
1936 bool AddMallocAttr) {
1937 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1938
1939 // Check if this function is already declared.
1940 {
1941 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1942 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1943 Alloc != AllocEnd; ++Alloc) {
1944 // Only look at non-template functions, as it is the predefined,
1945 // non-templated allocation function we are trying to declare here.
1946 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1947 QualType InitialParamType =
1948 Context.getCanonicalType(
1949 Func->getParamDecl(0)->getType().getUnqualifiedType());
1950 // FIXME: Do we need to check for default arguments here?
1951 if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1952 if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
1953 Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1954 // Make the function visible to name lookup, even if we found it in an
1955 // unimported module. It either is an implicitly-declared global
1956 // allocation function, or is suppressing that function.
1957 Func->setHidden(false);
1958 return;
1959 }
1960 }
1961 }
1962 }
1963
1964 QualType BadAllocType;
1965 bool HasBadAllocExceptionSpec
1966 = (Name.getCXXOverloadedOperator() == OO_New ||
1967 Name.getCXXOverloadedOperator() == OO_Array_New);
1968 if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1969 assert(StdBadAlloc && "Must have std::bad_alloc declared");
1970 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1971 }
1972
1973 FunctionProtoType::ExtProtoInfo EPI;
1974 if (HasBadAllocExceptionSpec) {
1975 if (!getLangOpts().CPlusPlus11) {
1976 EPI.ExceptionSpecType = EST_Dynamic;
1977 EPI.NumExceptions = 1;
1978 EPI.Exceptions = &BadAllocType;
1979 }
1980 } else {
1981 EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1982 EST_BasicNoexcept : EST_DynamicNone;
1983 }
1984
1985 QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1986 FunctionDecl *Alloc =
1987 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1988 SourceLocation(), Name,
1989 FnType, /*TInfo=*/0, SC_None, false, true);
1990 Alloc->setImplicit();
1991
1992 if (AddMallocAttr)
1993 Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1994
1995 ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1996 SourceLocation(), 0,
1997 Argument, /*TInfo=*/0,
1998 SC_None, 0);
1999 Alloc->setParams(Param);
2000
2001 // FIXME: Also add this declaration to the IdentifierResolver, but
2002 // make sure it is at the end of the chain to coincide with the
2003 // global scope.
2004 Context.getTranslationUnitDecl()->addDecl(Alloc);
2005 }
2006
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2007 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2008 DeclarationName Name,
2009 FunctionDecl* &Operator, bool Diagnose) {
2010 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2011 // Try to find operator delete/operator delete[] in class scope.
2012 LookupQualifiedName(Found, RD);
2013
2014 if (Found.isAmbiguous())
2015 return true;
2016
2017 Found.suppressDiagnostics();
2018
2019 SmallVector<DeclAccessPair,4> Matches;
2020 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2021 F != FEnd; ++F) {
2022 NamedDecl *ND = (*F)->getUnderlyingDecl();
2023
2024 // Ignore template operator delete members from the check for a usual
2025 // deallocation function.
2026 if (isa<FunctionTemplateDecl>(ND))
2027 continue;
2028
2029 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2030 Matches.push_back(F.getPair());
2031 }
2032
2033 // There's exactly one suitable operator; pick it.
2034 if (Matches.size() == 1) {
2035 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2036
2037 if (Operator->isDeleted()) {
2038 if (Diagnose) {
2039 Diag(StartLoc, diag::err_deleted_function_use);
2040 NoteDeletedFunction(Operator);
2041 }
2042 return true;
2043 }
2044
2045 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2046 Matches[0], Diagnose) == AR_inaccessible)
2047 return true;
2048
2049 return false;
2050
2051 // We found multiple suitable operators; complain about the ambiguity.
2052 } else if (!Matches.empty()) {
2053 if (Diagnose) {
2054 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2055 << Name << RD;
2056
2057 for (SmallVectorImpl<DeclAccessPair>::iterator
2058 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2059 Diag((*F)->getUnderlyingDecl()->getLocation(),
2060 diag::note_member_declared_here) << Name;
2061 }
2062 return true;
2063 }
2064
2065 // We did find operator delete/operator delete[] declarations, but
2066 // none of them were suitable.
2067 if (!Found.empty()) {
2068 if (Diagnose) {
2069 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2070 << Name << RD;
2071
2072 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2073 F != FEnd; ++F)
2074 Diag((*F)->getUnderlyingDecl()->getLocation(),
2075 diag::note_member_declared_here) << Name;
2076 }
2077 return true;
2078 }
2079
2080 // Look for a global declaration.
2081 DeclareGlobalNewDelete();
2082 DeclContext *TUDecl = Context.getTranslationUnitDecl();
2083
2084 CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2085 Expr *DeallocArgs[1] = { &Null };
2086 if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2087 DeallocArgs, TUDecl, !Diagnose,
2088 Operator, Diagnose))
2089 return true;
2090
2091 assert(Operator && "Did not find a deallocation function!");
2092 return false;
2093 }
2094
2095 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2096 /// @code ::delete ptr; @endcode
2097 /// or
2098 /// @code delete [] ptr; @endcode
2099 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2100 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2101 bool ArrayForm, Expr *ExE) {
2102 // C++ [expr.delete]p1:
2103 // The operand shall have a pointer type, or a class type having a single
2104 // non-explicit conversion function to a pointer type. The result has type
2105 // void.
2106 //
2107 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2108
2109 ExprResult Ex = Owned(ExE);
2110 FunctionDecl *OperatorDelete = 0;
2111 bool ArrayFormAsWritten = ArrayForm;
2112 bool UsualArrayDeleteWantsSize = false;
2113
2114 if (!Ex.get()->isTypeDependent()) {
2115 // Perform lvalue-to-rvalue cast, if needed.
2116 Ex = DefaultLvalueConversion(Ex.take());
2117 if (Ex.isInvalid())
2118 return ExprError();
2119
2120 QualType Type = Ex.get()->getType();
2121
2122 class DeleteConverter : public ContextualImplicitConverter {
2123 public:
2124 DeleteConverter() : ContextualImplicitConverter(false, true) {}
2125
2126 bool match(QualType ConvType) {
2127 // FIXME: If we have an operator T* and an operator void*, we must pick
2128 // the operator T*.
2129 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2130 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2131 return true;
2132 return false;
2133 }
2134
2135 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2136 QualType T) {
2137 return S.Diag(Loc, diag::err_delete_operand) << T;
2138 }
2139
2140 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2141 QualType T) {
2142 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2143 }
2144
2145 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2146 QualType T, QualType ConvTy) {
2147 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2148 }
2149
2150 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2151 QualType ConvTy) {
2152 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2153 << ConvTy;
2154 }
2155
2156 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2157 QualType T) {
2158 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2159 }
2160
2161 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2162 QualType ConvTy) {
2163 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2164 << ConvTy;
2165 }
2166
2167 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2168 QualType T, QualType ConvTy) {
2169 llvm_unreachable("conversion functions are permitted");
2170 }
2171 } Converter;
2172
2173 Ex = PerformContextualImplicitConversion(StartLoc, Ex.take(), Converter);
2174 if (Ex.isInvalid())
2175 return ExprError();
2176 Type = Ex.get()->getType();
2177 if (!Converter.match(Type))
2178 // FIXME: PerformContextualImplicitConversion should return ExprError
2179 // itself in this case.
2180 return ExprError();
2181
2182 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2183 QualType PointeeElem = Context.getBaseElementType(Pointee);
2184
2185 if (unsigned AddressSpace = Pointee.getAddressSpace())
2186 return Diag(Ex.get()->getLocStart(),
2187 diag::err_address_space_qualified_delete)
2188 << Pointee.getUnqualifiedType() << AddressSpace;
2189
2190 CXXRecordDecl *PointeeRD = 0;
2191 if (Pointee->isVoidType() && !isSFINAEContext()) {
2192 // The C++ standard bans deleting a pointer to a non-object type, which
2193 // effectively bans deletion of "void*". However, most compilers support
2194 // this, so we treat it as a warning unless we're in a SFINAE context.
2195 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2196 << Type << Ex.get()->getSourceRange();
2197 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2198 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2199 << Type << Ex.get()->getSourceRange());
2200 } else if (!Pointee->isDependentType()) {
2201 if (!RequireCompleteType(StartLoc, Pointee,
2202 diag::warn_delete_incomplete, Ex.get())) {
2203 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2204 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2205 }
2206 }
2207
2208 // C++ [expr.delete]p2:
2209 // [Note: a pointer to a const type can be the operand of a
2210 // delete-expression; it is not necessary to cast away the constness
2211 // (5.2.11) of the pointer expression before it is used as the operand
2212 // of the delete-expression. ]
2213
2214 if (Pointee->isArrayType() && !ArrayForm) {
2215 Diag(StartLoc, diag::warn_delete_array_type)
2216 << Type << Ex.get()->getSourceRange()
2217 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2218 ArrayForm = true;
2219 }
2220
2221 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2222 ArrayForm ? OO_Array_Delete : OO_Delete);
2223
2224 if (PointeeRD) {
2225 if (!UseGlobal &&
2226 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2227 OperatorDelete))
2228 return ExprError();
2229
2230 // If we're allocating an array of records, check whether the
2231 // usual operator delete[] has a size_t parameter.
2232 if (ArrayForm) {
2233 // If the user specifically asked to use the global allocator,
2234 // we'll need to do the lookup into the class.
2235 if (UseGlobal)
2236 UsualArrayDeleteWantsSize =
2237 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2238
2239 // Otherwise, the usual operator delete[] should be the
2240 // function we just found.
2241 else if (isa<CXXMethodDecl>(OperatorDelete))
2242 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2243 }
2244
2245 if (!PointeeRD->hasIrrelevantDestructor())
2246 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2247 MarkFunctionReferenced(StartLoc,
2248 const_cast<CXXDestructorDecl*>(Dtor));
2249 if (DiagnoseUseOfDecl(Dtor, StartLoc))
2250 return ExprError();
2251 }
2252
2253 // C++ [expr.delete]p3:
2254 // In the first alternative (delete object), if the static type of the
2255 // object to be deleted is different from its dynamic type, the static
2256 // type shall be a base class of the dynamic type of the object to be
2257 // deleted and the static type shall have a virtual destructor or the
2258 // behavior is undefined.
2259 //
2260 // Note: a final class cannot be derived from, no issue there
2261 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2262 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2263 if (dtor && !dtor->isVirtual()) {
2264 if (PointeeRD->isAbstract()) {
2265 // If the class is abstract, we warn by default, because we're
2266 // sure the code has undefined behavior.
2267 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2268 << PointeeElem;
2269 } else if (!ArrayForm) {
2270 // Otherwise, if this is not an array delete, it's a bit suspect,
2271 // but not necessarily wrong.
2272 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2273 }
2274 }
2275 }
2276
2277 }
2278
2279 if (!OperatorDelete) {
2280 // Look for a global declaration.
2281 DeclareGlobalNewDelete();
2282 DeclContext *TUDecl = Context.getTranslationUnitDecl();
2283 Expr *Arg = Ex.get();
2284 if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2285 Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2286 CK_BitCast, Arg, 0, VK_RValue);
2287 Expr *DeallocArgs[1] = { Arg };
2288 if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2289 DeallocArgs, TUDecl, /*AllowMissing=*/false,
2290 OperatorDelete))
2291 return ExprError();
2292 }
2293
2294 MarkFunctionReferenced(StartLoc, OperatorDelete);
2295
2296 // Check access and ambiguity of operator delete and destructor.
2297 if (PointeeRD) {
2298 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2299 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2300 PDiag(diag::err_access_dtor) << PointeeElem);
2301 }
2302 }
2303 }
2304
2305 return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2306 ArrayFormAsWritten,
2307 UsualArrayDeleteWantsSize,
2308 OperatorDelete, Ex.take(), StartLoc));
2309 }
2310
2311 /// \brief Check the use of the given variable as a C++ condition in an if,
2312 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2313 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2314 SourceLocation StmtLoc,
2315 bool ConvertToBoolean) {
2316 if (ConditionVar->isInvalidDecl())
2317 return ExprError();
2318
2319 QualType T = ConditionVar->getType();
2320
2321 // C++ [stmt.select]p2:
2322 // The declarator shall not specify a function or an array.
2323 if (T->isFunctionType())
2324 return ExprError(Diag(ConditionVar->getLocation(),
2325 diag::err_invalid_use_of_function_type)
2326 << ConditionVar->getSourceRange());
2327 else if (T->isArrayType())
2328 return ExprError(Diag(ConditionVar->getLocation(),
2329 diag::err_invalid_use_of_array_type)
2330 << ConditionVar->getSourceRange());
2331
2332 ExprResult Condition =
2333 Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2334 SourceLocation(),
2335 ConditionVar,
2336 /*enclosing*/ false,
2337 ConditionVar->getLocation(),
2338 ConditionVar->getType().getNonReferenceType(),
2339 VK_LValue));
2340
2341 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2342
2343 if (ConvertToBoolean) {
2344 Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2345 if (Condition.isInvalid())
2346 return ExprError();
2347 }
2348
2349 return Condition;
2350 }
2351
2352 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2353 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2354 // C++ 6.4p4:
2355 // The value of a condition that is an initialized declaration in a statement
2356 // other than a switch statement is the value of the declared variable
2357 // implicitly converted to type bool. If that conversion is ill-formed, the
2358 // program is ill-formed.
2359 // The value of a condition that is an expression is the value of the
2360 // expression, implicitly converted to bool.
2361 //
2362 return PerformContextuallyConvertToBool(CondExpr);
2363 }
2364
2365 /// Helper function to determine whether this is the (deprecated) C++
2366 /// conversion from a string literal to a pointer to non-const char or
2367 /// non-const wchar_t (for narrow and wide string literals,
2368 /// respectively).
2369 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2370 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2371 // Look inside the implicit cast, if it exists.
2372 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2373 From = Cast->getSubExpr();
2374
2375 // A string literal (2.13.4) that is not a wide string literal can
2376 // be converted to an rvalue of type "pointer to char"; a wide
2377 // string literal can be converted to an rvalue of type "pointer
2378 // to wchar_t" (C++ 4.2p2).
2379 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2380 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2381 if (const BuiltinType *ToPointeeType
2382 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2383 // This conversion is considered only when there is an
2384 // explicit appropriate pointer target type (C++ 4.2p2).
2385 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2386 switch (StrLit->getKind()) {
2387 case StringLiteral::UTF8:
2388 case StringLiteral::UTF16:
2389 case StringLiteral::UTF32:
2390 // We don't allow UTF literals to be implicitly converted
2391 break;
2392 case StringLiteral::Ascii:
2393 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2394 ToPointeeType->getKind() == BuiltinType::Char_S);
2395 case StringLiteral::Wide:
2396 return ToPointeeType->isWideCharType();
2397 }
2398 }
2399 }
2400
2401 return false;
2402 }
2403
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2404 static ExprResult BuildCXXCastArgument(Sema &S,
2405 SourceLocation CastLoc,
2406 QualType Ty,
2407 CastKind Kind,
2408 CXXMethodDecl *Method,
2409 DeclAccessPair FoundDecl,
2410 bool HadMultipleCandidates,
2411 Expr *From) {
2412 switch (Kind) {
2413 default: llvm_unreachable("Unhandled cast kind!");
2414 case CK_ConstructorConversion: {
2415 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2416 SmallVector<Expr*, 8> ConstructorArgs;
2417
2418 if (S.RequireNonAbstractType(CastLoc, Ty,
2419 diag::err_allocation_of_abstract_type))
2420 return ExprError();
2421
2422 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2423 return ExprError();
2424
2425 S.CheckConstructorAccess(CastLoc, Constructor,
2426 InitializedEntity::InitializeTemporary(Ty),
2427 Constructor->getAccess());
2428
2429 ExprResult Result
2430 = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2431 ConstructorArgs, HadMultipleCandidates,
2432 /*ListInit*/ false, /*ZeroInit*/ false,
2433 CXXConstructExpr::CK_Complete, SourceRange());
2434 if (Result.isInvalid())
2435 return ExprError();
2436
2437 return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2438 }
2439
2440 case CK_UserDefinedConversion: {
2441 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2442
2443 // Create an implicit call expr that calls it.
2444 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2445 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2446 HadMultipleCandidates);
2447 if (Result.isInvalid())
2448 return ExprError();
2449 // Record usage of conversion in an implicit cast.
2450 Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2451 Result.get()->getType(),
2452 CK_UserDefinedConversion,
2453 Result.get(), 0,
2454 Result.get()->getValueKind()));
2455
2456 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2457
2458 return S.MaybeBindToTemporary(Result.get());
2459 }
2460 }
2461 }
2462
2463 /// PerformImplicitConversion - Perform an implicit conversion of the
2464 /// expression From to the type ToType using the pre-computed implicit
2465 /// conversion sequence ICS. Returns the converted
2466 /// expression. Action is the kind of conversion we're performing,
2467 /// used in the error message.
2468 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2469 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2470 const ImplicitConversionSequence &ICS,
2471 AssignmentAction Action,
2472 CheckedConversionKind CCK) {
2473 switch (ICS.getKind()) {
2474 case ImplicitConversionSequence::StandardConversion: {
2475 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2476 Action, CCK);
2477 if (Res.isInvalid())
2478 return ExprError();
2479 From = Res.take();
2480 break;
2481 }
2482
2483 case ImplicitConversionSequence::UserDefinedConversion: {
2484
2485 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2486 CastKind CastKind;
2487 QualType BeforeToType;
2488 assert(FD && "FIXME: aggregate initialization from init list");
2489 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2490 CastKind = CK_UserDefinedConversion;
2491
2492 // If the user-defined conversion is specified by a conversion function,
2493 // the initial standard conversion sequence converts the source type to
2494 // the implicit object parameter of the conversion function.
2495 BeforeToType = Context.getTagDeclType(Conv->getParent());
2496 } else {
2497 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2498 CastKind = CK_ConstructorConversion;
2499 // Do no conversion if dealing with ... for the first conversion.
2500 if (!ICS.UserDefined.EllipsisConversion) {
2501 // If the user-defined conversion is specified by a constructor, the
2502 // initial standard conversion sequence converts the source type to the
2503 // type required by the argument of the constructor
2504 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2505 }
2506 }
2507 // Watch out for ellipsis conversion.
2508 if (!ICS.UserDefined.EllipsisConversion) {
2509 ExprResult Res =
2510 PerformImplicitConversion(From, BeforeToType,
2511 ICS.UserDefined.Before, AA_Converting,
2512 CCK);
2513 if (Res.isInvalid())
2514 return ExprError();
2515 From = Res.take();
2516 }
2517
2518 ExprResult CastArg
2519 = BuildCXXCastArgument(*this,
2520 From->getLocStart(),
2521 ToType.getNonReferenceType(),
2522 CastKind, cast<CXXMethodDecl>(FD),
2523 ICS.UserDefined.FoundConversionFunction,
2524 ICS.UserDefined.HadMultipleCandidates,
2525 From);
2526
2527 if (CastArg.isInvalid())
2528 return ExprError();
2529
2530 From = CastArg.take();
2531
2532 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2533 AA_Converting, CCK);
2534 }
2535
2536 case ImplicitConversionSequence::AmbiguousConversion:
2537 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2538 PDiag(diag::err_typecheck_ambiguous_condition)
2539 << From->getSourceRange());
2540 return ExprError();
2541
2542 case ImplicitConversionSequence::EllipsisConversion:
2543 llvm_unreachable("Cannot perform an ellipsis conversion");
2544
2545 case ImplicitConversionSequence::BadConversion:
2546 return ExprError();
2547 }
2548
2549 // Everything went well.
2550 return Owned(From);
2551 }
2552
2553 /// PerformImplicitConversion - Perform an implicit conversion of the
2554 /// expression From to the type ToType by following the standard
2555 /// conversion sequence SCS. Returns the converted
2556 /// expression. Flavor is the context in which we're performing this
2557 /// conversion, for use in error messages.
2558 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2559 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2560 const StandardConversionSequence& SCS,
2561 AssignmentAction Action,
2562 CheckedConversionKind CCK) {
2563 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2564
2565 // Overall FIXME: we are recomputing too many types here and doing far too
2566 // much extra work. What this means is that we need to keep track of more
2567 // information that is computed when we try the implicit conversion initially,
2568 // so that we don't need to recompute anything here.
2569 QualType FromType = From->getType();
2570
2571 if (SCS.CopyConstructor) {
2572 // FIXME: When can ToType be a reference type?
2573 assert(!ToType->isReferenceType());
2574 if (SCS.Second == ICK_Derived_To_Base) {
2575 SmallVector<Expr*, 8> ConstructorArgs;
2576 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2577 From, /*FIXME:ConstructLoc*/SourceLocation(),
2578 ConstructorArgs))
2579 return ExprError();
2580 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2581 ToType, SCS.CopyConstructor,
2582 ConstructorArgs,
2583 /*HadMultipleCandidates*/ false,
2584 /*ListInit*/ false, /*ZeroInit*/ false,
2585 CXXConstructExpr::CK_Complete,
2586 SourceRange());
2587 }
2588 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2589 ToType, SCS.CopyConstructor,
2590 From, /*HadMultipleCandidates*/ false,
2591 /*ListInit*/ false, /*ZeroInit*/ false,
2592 CXXConstructExpr::CK_Complete,
2593 SourceRange());
2594 }
2595
2596 // Resolve overloaded function references.
2597 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2598 DeclAccessPair Found;
2599 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2600 true, Found);
2601 if (!Fn)
2602 return ExprError();
2603
2604 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2605 return ExprError();
2606
2607 From = FixOverloadedFunctionReference(From, Found, Fn);
2608 FromType = From->getType();
2609 }
2610
2611 // If we're converting to an atomic type, first convert to the corresponding
2612 // non-atomic type.
2613 QualType ToAtomicType;
2614 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2615 ToAtomicType = ToType;
2616 ToType = ToAtomic->getValueType();
2617 }
2618
2619 // Perform the first implicit conversion.
2620 switch (SCS.First) {
2621 case ICK_Identity:
2622 // Nothing to do.
2623 break;
2624
2625 case ICK_Lvalue_To_Rvalue: {
2626 assert(From->getObjectKind() != OK_ObjCProperty);
2627 FromType = FromType.getUnqualifiedType();
2628 ExprResult FromRes = DefaultLvalueConversion(From);
2629 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2630 From = FromRes.take();
2631 break;
2632 }
2633
2634 case ICK_Array_To_Pointer:
2635 FromType = Context.getArrayDecayedType(FromType);
2636 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2637 VK_RValue, /*BasePath=*/0, CCK).take();
2638 break;
2639
2640 case ICK_Function_To_Pointer:
2641 FromType = Context.getPointerType(FromType);
2642 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2643 VK_RValue, /*BasePath=*/0, CCK).take();
2644 break;
2645
2646 default:
2647 llvm_unreachable("Improper first standard conversion");
2648 }
2649
2650 // Perform the second implicit conversion
2651 switch (SCS.Second) {
2652 case ICK_Identity:
2653 // If both sides are functions (or pointers/references to them), there could
2654 // be incompatible exception declarations.
2655 if (CheckExceptionSpecCompatibility(From, ToType))
2656 return ExprError();
2657 // Nothing else to do.
2658 break;
2659
2660 case ICK_NoReturn_Adjustment:
2661 // If both sides are functions (or pointers/references to them), there could
2662 // be incompatible exception declarations.
2663 if (CheckExceptionSpecCompatibility(From, ToType))
2664 return ExprError();
2665
2666 From = ImpCastExprToType(From, ToType, CK_NoOp,
2667 VK_RValue, /*BasePath=*/0, CCK).take();
2668 break;
2669
2670 case ICK_Integral_Promotion:
2671 case ICK_Integral_Conversion:
2672 if (ToType->isBooleanType()) {
2673 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2674 SCS.Second == ICK_Integral_Promotion &&
2675 "only enums with fixed underlying type can promote to bool");
2676 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2677 VK_RValue, /*BasePath=*/0, CCK).take();
2678 } else {
2679 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2680 VK_RValue, /*BasePath=*/0, CCK).take();
2681 }
2682 break;
2683
2684 case ICK_Floating_Promotion:
2685 case ICK_Floating_Conversion:
2686 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2687 VK_RValue, /*BasePath=*/0, CCK).take();
2688 break;
2689
2690 case ICK_Complex_Promotion:
2691 case ICK_Complex_Conversion: {
2692 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2693 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2694 CastKind CK;
2695 if (FromEl->isRealFloatingType()) {
2696 if (ToEl->isRealFloatingType())
2697 CK = CK_FloatingComplexCast;
2698 else
2699 CK = CK_FloatingComplexToIntegralComplex;
2700 } else if (ToEl->isRealFloatingType()) {
2701 CK = CK_IntegralComplexToFloatingComplex;
2702 } else {
2703 CK = CK_IntegralComplexCast;
2704 }
2705 From = ImpCastExprToType(From, ToType, CK,
2706 VK_RValue, /*BasePath=*/0, CCK).take();
2707 break;
2708 }
2709
2710 case ICK_Floating_Integral:
2711 if (ToType->isRealFloatingType())
2712 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2713 VK_RValue, /*BasePath=*/0, CCK).take();
2714 else
2715 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2716 VK_RValue, /*BasePath=*/0, CCK).take();
2717 break;
2718
2719 case ICK_Compatible_Conversion:
2720 From = ImpCastExprToType(From, ToType, CK_NoOp,
2721 VK_RValue, /*BasePath=*/0, CCK).take();
2722 break;
2723
2724 case ICK_Writeback_Conversion:
2725 case ICK_Pointer_Conversion: {
2726 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2727 // Diagnose incompatible Objective-C conversions
2728 if (Action == AA_Initializing || Action == AA_Assigning)
2729 Diag(From->getLocStart(),
2730 diag::ext_typecheck_convert_incompatible_pointer)
2731 << ToType << From->getType() << Action
2732 << From->getSourceRange() << 0;
2733 else
2734 Diag(From->getLocStart(),
2735 diag::ext_typecheck_convert_incompatible_pointer)
2736 << From->getType() << ToType << Action
2737 << From->getSourceRange() << 0;
2738
2739 if (From->getType()->isObjCObjectPointerType() &&
2740 ToType->isObjCObjectPointerType())
2741 EmitRelatedResultTypeNote(From);
2742 }
2743 else if (getLangOpts().ObjCAutoRefCount &&
2744 !CheckObjCARCUnavailableWeakConversion(ToType,
2745 From->getType())) {
2746 if (Action == AA_Initializing)
2747 Diag(From->getLocStart(),
2748 diag::err_arc_weak_unavailable_assign);
2749 else
2750 Diag(From->getLocStart(),
2751 diag::err_arc_convesion_of_weak_unavailable)
2752 << (Action == AA_Casting) << From->getType() << ToType
2753 << From->getSourceRange();
2754 }
2755
2756 CastKind Kind = CK_Invalid;
2757 CXXCastPath BasePath;
2758 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2759 return ExprError();
2760
2761 // Make sure we extend blocks if necessary.
2762 // FIXME: doing this here is really ugly.
2763 if (Kind == CK_BlockPointerToObjCPointerCast) {
2764 ExprResult E = From;
2765 (void) PrepareCastToObjCObjectPointer(E);
2766 From = E.take();
2767 }
2768 if (getLangOpts().ObjCAutoRefCount)
2769 CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
2770 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2771 .take();
2772 break;
2773 }
2774
2775 case ICK_Pointer_Member: {
2776 CastKind Kind = CK_Invalid;
2777 CXXCastPath BasePath;
2778 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2779 return ExprError();
2780 if (CheckExceptionSpecCompatibility(From, ToType))
2781 return ExprError();
2782 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2783 .take();
2784 break;
2785 }
2786
2787 case ICK_Boolean_Conversion:
2788 // Perform half-to-boolean conversion via float.
2789 if (From->getType()->isHalfType()) {
2790 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2791 FromType = Context.FloatTy;
2792 }
2793
2794 From = ImpCastExprToType(From, Context.BoolTy,
2795 ScalarTypeToBooleanCastKind(FromType),
2796 VK_RValue, /*BasePath=*/0, CCK).take();
2797 break;
2798
2799 case ICK_Derived_To_Base: {
2800 CXXCastPath BasePath;
2801 if (CheckDerivedToBaseConversion(From->getType(),
2802 ToType.getNonReferenceType(),
2803 From->getLocStart(),
2804 From->getSourceRange(),
2805 &BasePath,
2806 CStyle))
2807 return ExprError();
2808
2809 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2810 CK_DerivedToBase, From->getValueKind(),
2811 &BasePath, CCK).take();
2812 break;
2813 }
2814
2815 case ICK_Vector_Conversion:
2816 From = ImpCastExprToType(From, ToType, CK_BitCast,
2817 VK_RValue, /*BasePath=*/0, CCK).take();
2818 break;
2819
2820 case ICK_Vector_Splat:
2821 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2822 VK_RValue, /*BasePath=*/0, CCK).take();
2823 break;
2824
2825 case ICK_Complex_Real:
2826 // Case 1. x -> _Complex y
2827 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2828 QualType ElType = ToComplex->getElementType();
2829 bool isFloatingComplex = ElType->isRealFloatingType();
2830
2831 // x -> y
2832 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2833 // do nothing
2834 } else if (From->getType()->isRealFloatingType()) {
2835 From = ImpCastExprToType(From, ElType,
2836 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2837 } else {
2838 assert(From->getType()->isIntegerType());
2839 From = ImpCastExprToType(From, ElType,
2840 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2841 }
2842 // y -> _Complex y
2843 From = ImpCastExprToType(From, ToType,
2844 isFloatingComplex ? CK_FloatingRealToComplex
2845 : CK_IntegralRealToComplex).take();
2846
2847 // Case 2. _Complex x -> y
2848 } else {
2849 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2850 assert(FromComplex);
2851
2852 QualType ElType = FromComplex->getElementType();
2853 bool isFloatingComplex = ElType->isRealFloatingType();
2854
2855 // _Complex x -> x
2856 From = ImpCastExprToType(From, ElType,
2857 isFloatingComplex ? CK_FloatingComplexToReal
2858 : CK_IntegralComplexToReal,
2859 VK_RValue, /*BasePath=*/0, CCK).take();
2860
2861 // x -> y
2862 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2863 // do nothing
2864 } else if (ToType->isRealFloatingType()) {
2865 From = ImpCastExprToType(From, ToType,
2866 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2867 VK_RValue, /*BasePath=*/0, CCK).take();
2868 } else {
2869 assert(ToType->isIntegerType());
2870 From = ImpCastExprToType(From, ToType,
2871 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2872 VK_RValue, /*BasePath=*/0, CCK).take();
2873 }
2874 }
2875 break;
2876
2877 case ICK_Block_Pointer_Conversion: {
2878 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2879 VK_RValue, /*BasePath=*/0, CCK).take();
2880 break;
2881 }
2882
2883 case ICK_TransparentUnionConversion: {
2884 ExprResult FromRes = Owned(From);
2885 Sema::AssignConvertType ConvTy =
2886 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2887 if (FromRes.isInvalid())
2888 return ExprError();
2889 From = FromRes.take();
2890 assert ((ConvTy == Sema::Compatible) &&
2891 "Improper transparent union conversion");
2892 (void)ConvTy;
2893 break;
2894 }
2895
2896 case ICK_Zero_Event_Conversion:
2897 From = ImpCastExprToType(From, ToType,
2898 CK_ZeroToOCLEvent,
2899 From->getValueKind()).take();
2900 break;
2901
2902 case ICK_Lvalue_To_Rvalue:
2903 case ICK_Array_To_Pointer:
2904 case ICK_Function_To_Pointer:
2905 case ICK_Qualification:
2906 case ICK_Num_Conversion_Kinds:
2907 llvm_unreachable("Improper second standard conversion");
2908 }
2909
2910 switch (SCS.Third) {
2911 case ICK_Identity:
2912 // Nothing to do.
2913 break;
2914
2915 case ICK_Qualification: {
2916 // The qualification keeps the category of the inner expression, unless the
2917 // target type isn't a reference.
2918 ExprValueKind VK = ToType->isReferenceType() ?
2919 From->getValueKind() : VK_RValue;
2920 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2921 CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2922
2923 if (SCS.DeprecatedStringLiteralToCharPtr &&
2924 !getLangOpts().WritableStrings)
2925 Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2926 << ToType.getNonReferenceType();
2927
2928 break;
2929 }
2930
2931 default:
2932 llvm_unreachable("Improper third standard conversion");
2933 }
2934
2935 // If this conversion sequence involved a scalar -> atomic conversion, perform
2936 // that conversion now.
2937 if (!ToAtomicType.isNull()) {
2938 assert(Context.hasSameType(
2939 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
2940 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
2941 VK_RValue, 0, CCK).take();
2942 }
2943
2944 return Owned(From);
2945 }
2946
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2947 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2948 SourceLocation KWLoc,
2949 ParsedType Ty,
2950 SourceLocation RParen) {
2951 TypeSourceInfo *TSInfo;
2952 QualType T = GetTypeFromParser(Ty, &TSInfo);
2953
2954 if (!TSInfo)
2955 TSInfo = Context.getTrivialTypeSourceInfo(T);
2956 return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2957 }
2958
2959 /// \brief Check the completeness of a type in a unary type trait.
2960 ///
2961 /// If the particular type trait requires a complete type, tries to complete
2962 /// it. If completing the type fails, a diagnostic is emitted and false
2963 /// returned. If completing the type succeeds or no completion was required,
2964 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2965 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2966 UnaryTypeTrait UTT,
2967 SourceLocation Loc,
2968 QualType ArgTy) {
2969 // C++0x [meta.unary.prop]p3:
2970 // For all of the class templates X declared in this Clause, instantiating
2971 // that template with a template argument that is a class template
2972 // specialization may result in the implicit instantiation of the template
2973 // argument if and only if the semantics of X require that the argument
2974 // must be a complete type.
2975 // We apply this rule to all the type trait expressions used to implement
2976 // these class templates. We also try to follow any GCC documented behavior
2977 // in these expressions to ensure portability of standard libraries.
2978 switch (UTT) {
2979 // is_complete_type somewhat obviously cannot require a complete type.
2980 case UTT_IsCompleteType:
2981 // Fall-through
2982
2983 // These traits are modeled on the type predicates in C++0x
2984 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2985 // requiring a complete type, as whether or not they return true cannot be
2986 // impacted by the completeness of the type.
2987 case UTT_IsVoid:
2988 case UTT_IsIntegral:
2989 case UTT_IsFloatingPoint:
2990 case UTT_IsArray:
2991 case UTT_IsPointer:
2992 case UTT_IsLvalueReference:
2993 case UTT_IsRvalueReference:
2994 case UTT_IsMemberFunctionPointer:
2995 case UTT_IsMemberObjectPointer:
2996 case UTT_IsEnum:
2997 case UTT_IsUnion:
2998 case UTT_IsClass:
2999 case UTT_IsFunction:
3000 case UTT_IsReference:
3001 case UTT_IsArithmetic:
3002 case UTT_IsFundamental:
3003 case UTT_IsObject:
3004 case UTT_IsScalar:
3005 case UTT_IsCompound:
3006 case UTT_IsMemberPointer:
3007 // Fall-through
3008
3009 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3010 // which requires some of its traits to have the complete type. However,
3011 // the completeness of the type cannot impact these traits' semantics, and
3012 // so they don't require it. This matches the comments on these traits in
3013 // Table 49.
3014 case UTT_IsConst:
3015 case UTT_IsVolatile:
3016 case UTT_IsSigned:
3017 case UTT_IsUnsigned:
3018 return true;
3019
3020 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3021 // applied to a complete type.
3022 case UTT_IsTrivial:
3023 case UTT_IsTriviallyCopyable:
3024 case UTT_IsStandardLayout:
3025 case UTT_IsPOD:
3026 case UTT_IsLiteral:
3027 case UTT_IsEmpty:
3028 case UTT_IsPolymorphic:
3029 case UTT_IsAbstract:
3030 case UTT_IsInterfaceClass:
3031 // Fall-through
3032
3033 // These traits require a complete type.
3034 case UTT_IsFinal:
3035
3036 // These trait expressions are designed to help implement predicates in
3037 // [meta.unary.prop] despite not being named the same. They are specified
3038 // by both GCC and the Embarcadero C++ compiler, and require the complete
3039 // type due to the overarching C++0x type predicates being implemented
3040 // requiring the complete type.
3041 case UTT_HasNothrowAssign:
3042 case UTT_HasNothrowMoveAssign:
3043 case UTT_HasNothrowConstructor:
3044 case UTT_HasNothrowCopy:
3045 case UTT_HasTrivialAssign:
3046 case UTT_HasTrivialMoveAssign:
3047 case UTT_HasTrivialDefaultConstructor:
3048 case UTT_HasTrivialMoveConstructor:
3049 case UTT_HasTrivialCopy:
3050 case UTT_HasTrivialDestructor:
3051 case UTT_HasVirtualDestructor:
3052 // Arrays of unknown bound are expressly allowed.
3053 QualType ElTy = ArgTy;
3054 if (ArgTy->isIncompleteArrayType())
3055 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3056
3057 // The void type is expressly allowed.
3058 if (ElTy->isVoidType())
3059 return true;
3060
3061 return !S.RequireCompleteType(
3062 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3063 }
3064 llvm_unreachable("Type trait not handled by switch");
3065 }
3066
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)3067 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3068 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3069 bool (CXXRecordDecl::*HasTrivial)() const,
3070 bool (CXXRecordDecl::*HasNonTrivial)() const,
3071 bool (CXXMethodDecl::*IsDesiredOp)() const)
3072 {
3073 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3074 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3075 return true;
3076
3077 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3078 DeclarationNameInfo NameInfo(Name, KeyLoc);
3079 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3080 if (Self.LookupQualifiedName(Res, RD)) {
3081 bool FoundOperator = false;
3082 Res.suppressDiagnostics();
3083 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3084 Op != OpEnd; ++Op) {
3085 if (isa<FunctionTemplateDecl>(*Op))
3086 continue;
3087
3088 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3089 if((Operator->*IsDesiredOp)()) {
3090 FoundOperator = true;
3091 const FunctionProtoType *CPT =
3092 Operator->getType()->getAs<FunctionProtoType>();
3093 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3094 if (!CPT || !CPT->isNothrow(Self.Context))
3095 return false;
3096 }
3097 }
3098 return FoundOperator;
3099 }
3100 return false;
3101 }
3102
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)3103 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
3104 SourceLocation KeyLoc, QualType T) {
3105 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3106
3107 ASTContext &C = Self.Context;
3108 switch(UTT) {
3109 // Type trait expressions corresponding to the primary type category
3110 // predicates in C++0x [meta.unary.cat].
3111 case UTT_IsVoid:
3112 return T->isVoidType();
3113 case UTT_IsIntegral:
3114 return T->isIntegralType(C);
3115 case UTT_IsFloatingPoint:
3116 return T->isFloatingType();
3117 case UTT_IsArray:
3118 return T->isArrayType();
3119 case UTT_IsPointer:
3120 return T->isPointerType();
3121 case UTT_IsLvalueReference:
3122 return T->isLValueReferenceType();
3123 case UTT_IsRvalueReference:
3124 return T->isRValueReferenceType();
3125 case UTT_IsMemberFunctionPointer:
3126 return T->isMemberFunctionPointerType();
3127 case UTT_IsMemberObjectPointer:
3128 return T->isMemberDataPointerType();
3129 case UTT_IsEnum:
3130 return T->isEnumeralType();
3131 case UTT_IsUnion:
3132 return T->isUnionType();
3133 case UTT_IsClass:
3134 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3135 case UTT_IsFunction:
3136 return T->isFunctionType();
3137
3138 // Type trait expressions which correspond to the convenient composition
3139 // predicates in C++0x [meta.unary.comp].
3140 case UTT_IsReference:
3141 return T->isReferenceType();
3142 case UTT_IsArithmetic:
3143 return T->isArithmeticType() && !T->isEnumeralType();
3144 case UTT_IsFundamental:
3145 return T->isFundamentalType();
3146 case UTT_IsObject:
3147 return T->isObjectType();
3148 case UTT_IsScalar:
3149 // Note: semantic analysis depends on Objective-C lifetime types to be
3150 // considered scalar types. However, such types do not actually behave
3151 // like scalar types at run time (since they may require retain/release
3152 // operations), so we report them as non-scalar.
3153 if (T->isObjCLifetimeType()) {
3154 switch (T.getObjCLifetime()) {
3155 case Qualifiers::OCL_None:
3156 case Qualifiers::OCL_ExplicitNone:
3157 return true;
3158
3159 case Qualifiers::OCL_Strong:
3160 case Qualifiers::OCL_Weak:
3161 case Qualifiers::OCL_Autoreleasing:
3162 return false;
3163 }
3164 }
3165
3166 return T->isScalarType();
3167 case UTT_IsCompound:
3168 return T->isCompoundType();
3169 case UTT_IsMemberPointer:
3170 return T->isMemberPointerType();
3171
3172 // Type trait expressions which correspond to the type property predicates
3173 // in C++0x [meta.unary.prop].
3174 case UTT_IsConst:
3175 return T.isConstQualified();
3176 case UTT_IsVolatile:
3177 return T.isVolatileQualified();
3178 case UTT_IsTrivial:
3179 return T.isTrivialType(Self.Context);
3180 case UTT_IsTriviallyCopyable:
3181 return T.isTriviallyCopyableType(Self.Context);
3182 case UTT_IsStandardLayout:
3183 return T->isStandardLayoutType();
3184 case UTT_IsPOD:
3185 return T.isPODType(Self.Context);
3186 case UTT_IsLiteral:
3187 return T->isLiteralType(Self.Context);
3188 case UTT_IsEmpty:
3189 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3190 return !RD->isUnion() && RD->isEmpty();
3191 return false;
3192 case UTT_IsPolymorphic:
3193 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3194 return RD->isPolymorphic();
3195 return false;
3196 case UTT_IsAbstract:
3197 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3198 return RD->isAbstract();
3199 return false;
3200 case UTT_IsInterfaceClass:
3201 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3202 return RD->isInterface();
3203 return false;
3204 case UTT_IsFinal:
3205 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3206 return RD->hasAttr<FinalAttr>();
3207 return false;
3208 case UTT_IsSigned:
3209 return T->isSignedIntegerType();
3210 case UTT_IsUnsigned:
3211 return T->isUnsignedIntegerType();
3212
3213 // Type trait expressions which query classes regarding their construction,
3214 // destruction, and copying. Rather than being based directly on the
3215 // related type predicates in the standard, they are specified by both
3216 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3217 // specifications.
3218 //
3219 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3220 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3221 //
3222 // Note that these builtins do not behave as documented in g++: if a class
3223 // has both a trivial and a non-trivial special member of a particular kind,
3224 // they return false! For now, we emulate this behavior.
3225 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3226 // does not correctly compute triviality in the presence of multiple special
3227 // members of the same kind. Revisit this once the g++ bug is fixed.
3228 case UTT_HasTrivialDefaultConstructor:
3229 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3230 // If __is_pod (type) is true then the trait is true, else if type is
3231 // a cv class or union type (or array thereof) with a trivial default
3232 // constructor ([class.ctor]) then the trait is true, else it is false.
3233 if (T.isPODType(Self.Context))
3234 return true;
3235 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3236 return RD->hasTrivialDefaultConstructor() &&
3237 !RD->hasNonTrivialDefaultConstructor();
3238 return false;
3239 case UTT_HasTrivialMoveConstructor:
3240 // This trait is implemented by MSVC 2012 and needed to parse the
3241 // standard library headers. Specifically this is used as the logic
3242 // behind std::is_trivially_move_constructible (20.9.4.3).
3243 if (T.isPODType(Self.Context))
3244 return true;
3245 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3246 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3247 return false;
3248 case UTT_HasTrivialCopy:
3249 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3250 // If __is_pod (type) is true or type is a reference type then
3251 // the trait is true, else if type is a cv class or union type
3252 // with a trivial copy constructor ([class.copy]) then the trait
3253 // is true, else it is false.
3254 if (T.isPODType(Self.Context) || T->isReferenceType())
3255 return true;
3256 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3257 return RD->hasTrivialCopyConstructor() &&
3258 !RD->hasNonTrivialCopyConstructor();
3259 return false;
3260 case UTT_HasTrivialMoveAssign:
3261 // This trait is implemented by MSVC 2012 and needed to parse the
3262 // standard library headers. Specifically it is used as the logic
3263 // behind std::is_trivially_move_assignable (20.9.4.3)
3264 if (T.isPODType(Self.Context))
3265 return true;
3266 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3267 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3268 return false;
3269 case UTT_HasTrivialAssign:
3270 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3271 // If type is const qualified or is a reference type then the
3272 // trait is false. Otherwise if __is_pod (type) is true then the
3273 // trait is true, else if type is a cv class or union type with
3274 // a trivial copy assignment ([class.copy]) then the trait is
3275 // true, else it is false.
3276 // Note: the const and reference restrictions are interesting,
3277 // given that const and reference members don't prevent a class
3278 // from having a trivial copy assignment operator (but do cause
3279 // errors if the copy assignment operator is actually used, q.v.
3280 // [class.copy]p12).
3281
3282 if (T.isConstQualified())
3283 return false;
3284 if (T.isPODType(Self.Context))
3285 return true;
3286 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3287 return RD->hasTrivialCopyAssignment() &&
3288 !RD->hasNonTrivialCopyAssignment();
3289 return false;
3290 case UTT_HasTrivialDestructor:
3291 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3292 // If __is_pod (type) is true or type is a reference type
3293 // then the trait is true, else if type is a cv class or union
3294 // type (or array thereof) with a trivial destructor
3295 // ([class.dtor]) then the trait is true, else it is
3296 // false.
3297 if (T.isPODType(Self.Context) || T->isReferenceType())
3298 return true;
3299
3300 // Objective-C++ ARC: autorelease types don't require destruction.
3301 if (T->isObjCLifetimeType() &&
3302 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3303 return true;
3304
3305 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3306 return RD->hasTrivialDestructor();
3307 return false;
3308 // TODO: Propagate nothrowness for implicitly declared special members.
3309 case UTT_HasNothrowAssign:
3310 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3311 // If type is const qualified or is a reference type then the
3312 // trait is false. Otherwise if __has_trivial_assign (type)
3313 // is true then the trait is true, else if type is a cv class
3314 // or union type with copy assignment operators that are known
3315 // not to throw an exception then the trait is true, else it is
3316 // false.
3317 if (C.getBaseElementType(T).isConstQualified())
3318 return false;
3319 if (T->isReferenceType())
3320 return false;
3321 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3322 return true;
3323
3324 if (const RecordType *RT = T->getAs<RecordType>())
3325 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3326 &CXXRecordDecl::hasTrivialCopyAssignment,
3327 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3328 &CXXMethodDecl::isCopyAssignmentOperator);
3329 return false;
3330 case UTT_HasNothrowMoveAssign:
3331 // This trait is implemented by MSVC 2012 and needed to parse the
3332 // standard library headers. Specifically this is used as the logic
3333 // behind std::is_nothrow_move_assignable (20.9.4.3).
3334 if (T.isPODType(Self.Context))
3335 return true;
3336
3337 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3338 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3339 &CXXRecordDecl::hasTrivialMoveAssignment,
3340 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3341 &CXXMethodDecl::isMoveAssignmentOperator);
3342 return false;
3343 case UTT_HasNothrowCopy:
3344 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3345 // If __has_trivial_copy (type) is true then the trait is true, else
3346 // if type is a cv class or union type with copy constructors that are
3347 // known not to throw an exception then the trait is true, else it is
3348 // false.
3349 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3350 return true;
3351 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3352 if (RD->hasTrivialCopyConstructor() &&
3353 !RD->hasNonTrivialCopyConstructor())
3354 return true;
3355
3356 bool FoundConstructor = false;
3357 unsigned FoundTQs;
3358 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3359 for (DeclContext::lookup_const_iterator Con = R.begin(),
3360 ConEnd = R.end(); Con != ConEnd; ++Con) {
3361 // A template constructor is never a copy constructor.
3362 // FIXME: However, it may actually be selected at the actual overload
3363 // resolution point.
3364 if (isa<FunctionTemplateDecl>(*Con))
3365 continue;
3366 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3367 if (Constructor->isCopyConstructor(FoundTQs)) {
3368 FoundConstructor = true;
3369 const FunctionProtoType *CPT
3370 = Constructor->getType()->getAs<FunctionProtoType>();
3371 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3372 if (!CPT)
3373 return false;
3374 // FIXME: check whether evaluating default arguments can throw.
3375 // For now, we'll be conservative and assume that they can throw.
3376 if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3377 return false;
3378 }
3379 }
3380
3381 return FoundConstructor;
3382 }
3383 return false;
3384 case UTT_HasNothrowConstructor:
3385 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3386 // If __has_trivial_constructor (type) is true then the trait is
3387 // true, else if type is a cv class or union type (or array
3388 // thereof) with a default constructor that is known not to
3389 // throw an exception then the trait is true, else it is false.
3390 if (T.isPODType(C) || T->isObjCLifetimeType())
3391 return true;
3392 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3393 if (RD->hasTrivialDefaultConstructor() &&
3394 !RD->hasNonTrivialDefaultConstructor())
3395 return true;
3396
3397 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3398 for (DeclContext::lookup_const_iterator Con = R.begin(),
3399 ConEnd = R.end(); Con != ConEnd; ++Con) {
3400 // FIXME: In C++0x, a constructor template can be a default constructor.
3401 if (isa<FunctionTemplateDecl>(*Con))
3402 continue;
3403 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3404 if (Constructor->isDefaultConstructor()) {
3405 const FunctionProtoType *CPT
3406 = Constructor->getType()->getAs<FunctionProtoType>();
3407 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3408 if (!CPT)
3409 return false;
3410 // TODO: check whether evaluating default arguments can throw.
3411 // For now, we'll be conservative and assume that they can throw.
3412 return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3413 }
3414 }
3415 }
3416 return false;
3417 case UTT_HasVirtualDestructor:
3418 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3419 // If type is a class type with a virtual destructor ([class.dtor])
3420 // then the trait is true, else it is false.
3421 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3422 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3423 return Destructor->isVirtual();
3424 return false;
3425
3426 // These type trait expressions are modeled on the specifications for the
3427 // Embarcadero C++0x type trait functions:
3428 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3429 case UTT_IsCompleteType:
3430 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3431 // Returns True if and only if T is a complete type at the point of the
3432 // function call.
3433 return !T->isIncompleteType();
3434 }
3435 llvm_unreachable("Type trait not covered by switch");
3436 }
3437
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)3438 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3439 SourceLocation KWLoc,
3440 TypeSourceInfo *TSInfo,
3441 SourceLocation RParen) {
3442 QualType T = TSInfo->getType();
3443 if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3444 return ExprError();
3445
3446 bool Value = false;
3447 if (!T->isDependentType())
3448 Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3449
3450 return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3451 RParen, Context.BoolTy));
3452 }
3453
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)3454 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3455 SourceLocation KWLoc,
3456 ParsedType LhsTy,
3457 ParsedType RhsTy,
3458 SourceLocation RParen) {
3459 TypeSourceInfo *LhsTSInfo;
3460 QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3461 if (!LhsTSInfo)
3462 LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3463
3464 TypeSourceInfo *RhsTSInfo;
3465 QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3466 if (!RhsTSInfo)
3467 RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3468
3469 return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3470 }
3471
3472 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3473 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3474 static bool hasNontrivialObjCLifetime(QualType T) {
3475 switch (T.getObjCLifetime()) {
3476 case Qualifiers::OCL_ExplicitNone:
3477 return false;
3478
3479 case Qualifiers::OCL_Strong:
3480 case Qualifiers::OCL_Weak:
3481 case Qualifiers::OCL_Autoreleasing:
3482 return true;
3483
3484 case Qualifiers::OCL_None:
3485 return T->isObjCLifetimeType();
3486 }
3487
3488 llvm_unreachable("Unknown ObjC lifetime qualifier");
3489 }
3490
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3491 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3492 ArrayRef<TypeSourceInfo *> Args,
3493 SourceLocation RParenLoc) {
3494 switch (Kind) {
3495 case clang::TT_IsTriviallyConstructible: {
3496 // C++11 [meta.unary.prop]:
3497 // is_trivially_constructible is defined as:
3498 //
3499 // is_constructible<T, Args...>::value is true and the variable
3500 // definition for is_constructible, as defined below, is known to call no
3501 // operation that is not trivial.
3502 //
3503 // The predicate condition for a template specialization
3504 // is_constructible<T, Args...> shall be satisfied if and only if the
3505 // following variable definition would be well-formed for some invented
3506 // variable t:
3507 //
3508 // T t(create<Args>()...);
3509 if (Args.empty()) {
3510 S.Diag(KWLoc, diag::err_type_trait_arity)
3511 << 1 << 1 << 1 << (int)Args.size();
3512 return false;
3513 }
3514
3515 bool SawVoid = false;
3516 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3517 if (Args[I]->getType()->isVoidType()) {
3518 SawVoid = true;
3519 continue;
3520 }
3521
3522 if (!Args[I]->getType()->isIncompleteType() &&
3523 S.RequireCompleteType(KWLoc, Args[I]->getType(),
3524 diag::err_incomplete_type_used_in_type_trait_expr))
3525 return false;
3526 }
3527
3528 // If any argument was 'void', of course it won't type-check.
3529 if (SawVoid)
3530 return false;
3531
3532 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3533 SmallVector<Expr *, 2> ArgExprs;
3534 ArgExprs.reserve(Args.size() - 1);
3535 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3536 QualType T = Args[I]->getType();
3537 if (T->isObjectType() || T->isFunctionType())
3538 T = S.Context.getRValueReferenceType(T);
3539 OpaqueArgExprs.push_back(
3540 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3541 T.getNonLValueExprType(S.Context),
3542 Expr::getValueKindForType(T)));
3543 ArgExprs.push_back(&OpaqueArgExprs.back());
3544 }
3545
3546 // Perform the initialization in an unevaluated context within a SFINAE
3547 // trap at translation unit scope.
3548 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3549 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3550 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3551 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3552 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3553 RParenLoc));
3554 InitializationSequence Init(S, To, InitKind, ArgExprs);
3555 if (Init.Failed())
3556 return false;
3557
3558 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3559 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3560 return false;
3561
3562 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3563 // lifetime, this is a non-trivial construction.
3564 if (S.getLangOpts().ObjCAutoRefCount &&
3565 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3566 return false;
3567
3568 // The initialization succeeded; now make sure there are no non-trivial
3569 // calls.
3570 return !Result.get()->hasNonTrivialCall(S.Context);
3571 }
3572 }
3573
3574 return false;
3575 }
3576
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3577 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3578 ArrayRef<TypeSourceInfo *> Args,
3579 SourceLocation RParenLoc) {
3580 bool Dependent = false;
3581 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3582 if (Args[I]->getType()->isDependentType()) {
3583 Dependent = true;
3584 break;
3585 }
3586 }
3587
3588 bool Value = false;
3589 if (!Dependent)
3590 Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3591
3592 return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3593 Args, RParenLoc, Value);
3594 }
3595
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3596 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3597 ArrayRef<ParsedType> Args,
3598 SourceLocation RParenLoc) {
3599 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3600 ConvertedArgs.reserve(Args.size());
3601
3602 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3603 TypeSourceInfo *TInfo;
3604 QualType T = GetTypeFromParser(Args[I], &TInfo);
3605 if (!TInfo)
3606 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3607
3608 ConvertedArgs.push_back(TInfo);
3609 }
3610
3611 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3612 }
3613
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3614 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3615 QualType LhsT, QualType RhsT,
3616 SourceLocation KeyLoc) {
3617 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3618 "Cannot evaluate traits of dependent types");
3619
3620 switch(BTT) {
3621 case BTT_IsBaseOf: {
3622 // C++0x [meta.rel]p2
3623 // Base is a base class of Derived without regard to cv-qualifiers or
3624 // Base and Derived are not unions and name the same class type without
3625 // regard to cv-qualifiers.
3626
3627 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3628 if (!lhsRecord) return false;
3629
3630 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3631 if (!rhsRecord) return false;
3632
3633 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3634 == (lhsRecord == rhsRecord));
3635
3636 if (lhsRecord == rhsRecord)
3637 return !lhsRecord->getDecl()->isUnion();
3638
3639 // C++0x [meta.rel]p2:
3640 // If Base and Derived are class types and are different types
3641 // (ignoring possible cv-qualifiers) then Derived shall be a
3642 // complete type.
3643 if (Self.RequireCompleteType(KeyLoc, RhsT,
3644 diag::err_incomplete_type_used_in_type_trait_expr))
3645 return false;
3646
3647 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3648 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3649 }
3650 case BTT_IsSame:
3651 return Self.Context.hasSameType(LhsT, RhsT);
3652 case BTT_TypeCompatible:
3653 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3654 RhsT.getUnqualifiedType());
3655 case BTT_IsConvertible:
3656 case BTT_IsConvertibleTo: {
3657 // C++0x [meta.rel]p4:
3658 // Given the following function prototype:
3659 //
3660 // template <class T>
3661 // typename add_rvalue_reference<T>::type create();
3662 //
3663 // the predicate condition for a template specialization
3664 // is_convertible<From, To> shall be satisfied if and only if
3665 // the return expression in the following code would be
3666 // well-formed, including any implicit conversions to the return
3667 // type of the function:
3668 //
3669 // To test() {
3670 // return create<From>();
3671 // }
3672 //
3673 // Access checking is performed as if in a context unrelated to To and
3674 // From. Only the validity of the immediate context of the expression
3675 // of the return-statement (including conversions to the return type)
3676 // is considered.
3677 //
3678 // We model the initialization as a copy-initialization of a temporary
3679 // of the appropriate type, which for this expression is identical to the
3680 // return statement (since NRVO doesn't apply).
3681
3682 // Functions aren't allowed to return function or array types.
3683 if (RhsT->isFunctionType() || RhsT->isArrayType())
3684 return false;
3685
3686 // A return statement in a void function must have void type.
3687 if (RhsT->isVoidType())
3688 return LhsT->isVoidType();
3689
3690 // A function definition requires a complete, non-abstract return type.
3691 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3692 Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3693 return false;
3694
3695 // Compute the result of add_rvalue_reference.
3696 if (LhsT->isObjectType() || LhsT->isFunctionType())
3697 LhsT = Self.Context.getRValueReferenceType(LhsT);
3698
3699 // Build a fake source and destination for initialization.
3700 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3701 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3702 Expr::getValueKindForType(LhsT));
3703 Expr *FromPtr = &From;
3704 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3705 SourceLocation()));
3706
3707 // Perform the initialization in an unevaluated context within a SFINAE
3708 // trap at translation unit scope.
3709 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3710 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3711 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3712 InitializationSequence Init(Self, To, Kind, FromPtr);
3713 if (Init.Failed())
3714 return false;
3715
3716 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3717 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3718 }
3719
3720 case BTT_IsTriviallyAssignable: {
3721 // C++11 [meta.unary.prop]p3:
3722 // is_trivially_assignable is defined as:
3723 // is_assignable<T, U>::value is true and the assignment, as defined by
3724 // is_assignable, is known to call no operation that is not trivial
3725 //
3726 // is_assignable is defined as:
3727 // The expression declval<T>() = declval<U>() is well-formed when
3728 // treated as an unevaluated operand (Clause 5).
3729 //
3730 // For both, T and U shall be complete types, (possibly cv-qualified)
3731 // void, or arrays of unknown bound.
3732 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3733 Self.RequireCompleteType(KeyLoc, LhsT,
3734 diag::err_incomplete_type_used_in_type_trait_expr))
3735 return false;
3736 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3737 Self.RequireCompleteType(KeyLoc, RhsT,
3738 diag::err_incomplete_type_used_in_type_trait_expr))
3739 return false;
3740
3741 // cv void is never assignable.
3742 if (LhsT->isVoidType() || RhsT->isVoidType())
3743 return false;
3744
3745 // Build expressions that emulate the effect of declval<T>() and
3746 // declval<U>().
3747 if (LhsT->isObjectType() || LhsT->isFunctionType())
3748 LhsT = Self.Context.getRValueReferenceType(LhsT);
3749 if (RhsT->isObjectType() || RhsT->isFunctionType())
3750 RhsT = Self.Context.getRValueReferenceType(RhsT);
3751 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3752 Expr::getValueKindForType(LhsT));
3753 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3754 Expr::getValueKindForType(RhsT));
3755
3756 // Attempt the assignment in an unevaluated context within a SFINAE
3757 // trap at translation unit scope.
3758 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3759 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3760 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3761 ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3762 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3763 return false;
3764
3765 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3766 // lifetime, this is a non-trivial assignment.
3767 if (Self.getLangOpts().ObjCAutoRefCount &&
3768 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3769 return false;
3770
3771 return !Result.get()->hasNonTrivialCall(Self.Context);
3772 }
3773 }
3774 llvm_unreachable("Unknown type trait or not implemented");
3775 }
3776
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3777 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3778 SourceLocation KWLoc,
3779 TypeSourceInfo *LhsTSInfo,
3780 TypeSourceInfo *RhsTSInfo,
3781 SourceLocation RParen) {
3782 QualType LhsT = LhsTSInfo->getType();
3783 QualType RhsT = RhsTSInfo->getType();
3784
3785 if (BTT == BTT_TypeCompatible) {
3786 if (getLangOpts().CPlusPlus) {
3787 Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3788 << SourceRange(KWLoc, RParen);
3789 return ExprError();
3790 }
3791 }
3792
3793 bool Value = false;
3794 if (!LhsT->isDependentType() && !RhsT->isDependentType())
3795 Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3796
3797 // Select trait result type.
3798 QualType ResultType;
3799 switch (BTT) {
3800 case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
3801 case BTT_IsConvertible: ResultType = Context.BoolTy; break;
3802 case BTT_IsSame: ResultType = Context.BoolTy; break;
3803 case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3804 case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3805 case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3806 }
3807
3808 return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3809 RhsTSInfo, Value, RParen,
3810 ResultType));
3811 }
3812
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3813 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3814 SourceLocation KWLoc,
3815 ParsedType Ty,
3816 Expr* DimExpr,
3817 SourceLocation RParen) {
3818 TypeSourceInfo *TSInfo;
3819 QualType T = GetTypeFromParser(Ty, &TSInfo);
3820 if (!TSInfo)
3821 TSInfo = Context.getTrivialTypeSourceInfo(T);
3822
3823 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3824 }
3825
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3826 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3827 QualType T, Expr *DimExpr,
3828 SourceLocation KeyLoc) {
3829 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3830
3831 switch(ATT) {
3832 case ATT_ArrayRank:
3833 if (T->isArrayType()) {
3834 unsigned Dim = 0;
3835 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3836 ++Dim;
3837 T = AT->getElementType();
3838 }
3839 return Dim;
3840 }
3841 return 0;
3842
3843 case ATT_ArrayExtent: {
3844 llvm::APSInt Value;
3845 uint64_t Dim;
3846 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3847 diag::err_dimension_expr_not_constant_integer,
3848 false).isInvalid())
3849 return 0;
3850 if (Value.isSigned() && Value.isNegative()) {
3851 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3852 << DimExpr->getSourceRange();
3853 return 0;
3854 }
3855 Dim = Value.getLimitedValue();
3856
3857 if (T->isArrayType()) {
3858 unsigned D = 0;
3859 bool Matched = false;
3860 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3861 if (Dim == D) {
3862 Matched = true;
3863 break;
3864 }
3865 ++D;
3866 T = AT->getElementType();
3867 }
3868
3869 if (Matched && T->isArrayType()) {
3870 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3871 return CAT->getSize().getLimitedValue();
3872 }
3873 }
3874 return 0;
3875 }
3876 }
3877 llvm_unreachable("Unknown type trait or not implemented");
3878 }
3879
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3880 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3881 SourceLocation KWLoc,
3882 TypeSourceInfo *TSInfo,
3883 Expr* DimExpr,
3884 SourceLocation RParen) {
3885 QualType T = TSInfo->getType();
3886
3887 // FIXME: This should likely be tracked as an APInt to remove any host
3888 // assumptions about the width of size_t on the target.
3889 uint64_t Value = 0;
3890 if (!T->isDependentType())
3891 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3892
3893 // While the specification for these traits from the Embarcadero C++
3894 // compiler's documentation says the return type is 'unsigned int', Clang
3895 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3896 // compiler, there is no difference. On several other platforms this is an
3897 // important distinction.
3898 return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3899 DimExpr, RParen,
3900 Context.getSizeType()));
3901 }
3902
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3903 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3904 SourceLocation KWLoc,
3905 Expr *Queried,
3906 SourceLocation RParen) {
3907 // If error parsing the expression, ignore.
3908 if (!Queried)
3909 return ExprError();
3910
3911 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3912
3913 return Result;
3914 }
3915
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3916 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3917 switch (ET) {
3918 case ET_IsLValueExpr: return E->isLValue();
3919 case ET_IsRValueExpr: return E->isRValue();
3920 }
3921 llvm_unreachable("Expression trait not covered by switch");
3922 }
3923
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3924 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3925 SourceLocation KWLoc,
3926 Expr *Queried,
3927 SourceLocation RParen) {
3928 if (Queried->isTypeDependent()) {
3929 // Delay type-checking for type-dependent expressions.
3930 } else if (Queried->getType()->isPlaceholderType()) {
3931 ExprResult PE = CheckPlaceholderExpr(Queried);
3932 if (PE.isInvalid()) return ExprError();
3933 return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3934 }
3935
3936 bool Value = EvaluateExpressionTrait(ET, Queried);
3937
3938 return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3939 RParen, Context.BoolTy));
3940 }
3941
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3942 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3943 ExprValueKind &VK,
3944 SourceLocation Loc,
3945 bool isIndirect) {
3946 assert(!LHS.get()->getType()->isPlaceholderType() &&
3947 !RHS.get()->getType()->isPlaceholderType() &&
3948 "placeholders should have been weeded out by now");
3949
3950 // The LHS undergoes lvalue conversions if this is ->*.
3951 if (isIndirect) {
3952 LHS = DefaultLvalueConversion(LHS.take());
3953 if (LHS.isInvalid()) return QualType();
3954 }
3955
3956 // The RHS always undergoes lvalue conversions.
3957 RHS = DefaultLvalueConversion(RHS.take());
3958 if (RHS.isInvalid()) return QualType();
3959
3960 const char *OpSpelling = isIndirect ? "->*" : ".*";
3961 // C++ 5.5p2
3962 // The binary operator .* [p3: ->*] binds its second operand, which shall
3963 // be of type "pointer to member of T" (where T is a completely-defined
3964 // class type) [...]
3965 QualType RHSType = RHS.get()->getType();
3966 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3967 if (!MemPtr) {
3968 Diag(Loc, diag::err_bad_memptr_rhs)
3969 << OpSpelling << RHSType << RHS.get()->getSourceRange();
3970 return QualType();
3971 }
3972
3973 QualType Class(MemPtr->getClass(), 0);
3974
3975 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3976 // member pointer points must be completely-defined. However, there is no
3977 // reason for this semantic distinction, and the rule is not enforced by
3978 // other compilers. Therefore, we do not check this property, as it is
3979 // likely to be considered a defect.
3980
3981 // C++ 5.5p2
3982 // [...] to its first operand, which shall be of class T or of a class of
3983 // which T is an unambiguous and accessible base class. [p3: a pointer to
3984 // such a class]
3985 QualType LHSType = LHS.get()->getType();
3986 if (isIndirect) {
3987 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3988 LHSType = Ptr->getPointeeType();
3989 else {
3990 Diag(Loc, diag::err_bad_memptr_lhs)
3991 << OpSpelling << 1 << LHSType
3992 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3993 return QualType();
3994 }
3995 }
3996
3997 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3998 // If we want to check the hierarchy, we need a complete type.
3999 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4000 OpSpelling, (int)isIndirect)) {
4001 return QualType();
4002 }
4003 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4004 /*DetectVirtual=*/false);
4005 // FIXME: Would it be useful to print full ambiguity paths, or is that
4006 // overkill?
4007 if (!IsDerivedFrom(LHSType, Class, Paths) ||
4008 Paths.isAmbiguous(Context.getCanonicalType(Class))) {
4009 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4010 << (int)isIndirect << LHS.get()->getType();
4011 return QualType();
4012 }
4013 // Cast LHS to type of use.
4014 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4015 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4016
4017 CXXCastPath BasePath;
4018 BuildBasePathArray(Paths, BasePath);
4019 LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
4020 &BasePath);
4021 }
4022
4023 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4024 // Diagnose use of pointer-to-member type which when used as
4025 // the functional cast in a pointer-to-member expression.
4026 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4027 return QualType();
4028 }
4029
4030 // C++ 5.5p2
4031 // The result is an object or a function of the type specified by the
4032 // second operand.
4033 // The cv qualifiers are the union of those in the pointer and the left side,
4034 // in accordance with 5.5p5 and 5.2.5.
4035 QualType Result = MemPtr->getPointeeType();
4036 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4037
4038 // C++0x [expr.mptr.oper]p6:
4039 // In a .* expression whose object expression is an rvalue, the program is
4040 // ill-formed if the second operand is a pointer to member function with
4041 // ref-qualifier &. In a ->* expression or in a .* expression whose object
4042 // expression is an lvalue, the program is ill-formed if the second operand
4043 // is a pointer to member function with ref-qualifier &&.
4044 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4045 switch (Proto->getRefQualifier()) {
4046 case RQ_None:
4047 // Do nothing
4048 break;
4049
4050 case RQ_LValue:
4051 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4052 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4053 << RHSType << 1 << LHS.get()->getSourceRange();
4054 break;
4055
4056 case RQ_RValue:
4057 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4058 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4059 << RHSType << 0 << LHS.get()->getSourceRange();
4060 break;
4061 }
4062 }
4063
4064 // C++ [expr.mptr.oper]p6:
4065 // The result of a .* expression whose second operand is a pointer
4066 // to a data member is of the same value category as its
4067 // first operand. The result of a .* expression whose second
4068 // operand is a pointer to a member function is a prvalue. The
4069 // result of an ->* expression is an lvalue if its second operand
4070 // is a pointer to data member and a prvalue otherwise.
4071 if (Result->isFunctionType()) {
4072 VK = VK_RValue;
4073 return Context.BoundMemberTy;
4074 } else if (isIndirect) {
4075 VK = VK_LValue;
4076 } else {
4077 VK = LHS.get()->getValueKind();
4078 }
4079
4080 return Result;
4081 }
4082
4083 /// \brief Try to convert a type to another according to C++0x 5.16p3.
4084 ///
4085 /// This is part of the parameter validation for the ? operator. If either
4086 /// value operand is a class type, the two operands are attempted to be
4087 /// converted to each other. This function does the conversion in one direction.
4088 /// It returns true if the program is ill-formed and has already been diagnosed
4089 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)4090 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4091 SourceLocation QuestionLoc,
4092 bool &HaveConversion,
4093 QualType &ToType) {
4094 HaveConversion = false;
4095 ToType = To->getType();
4096
4097 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4098 SourceLocation());
4099 // C++0x 5.16p3
4100 // The process for determining whether an operand expression E1 of type T1
4101 // can be converted to match an operand expression E2 of type T2 is defined
4102 // as follows:
4103 // -- If E2 is an lvalue:
4104 bool ToIsLvalue = To->isLValue();
4105 if (ToIsLvalue) {
4106 // E1 can be converted to match E2 if E1 can be implicitly converted to
4107 // type "lvalue reference to T2", subject to the constraint that in the
4108 // conversion the reference must bind directly to E1.
4109 QualType T = Self.Context.getLValueReferenceType(ToType);
4110 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4111
4112 InitializationSequence InitSeq(Self, Entity, Kind, From);
4113 if (InitSeq.isDirectReferenceBinding()) {
4114 ToType = T;
4115 HaveConversion = true;
4116 return false;
4117 }
4118
4119 if (InitSeq.isAmbiguous())
4120 return InitSeq.Diagnose(Self, Entity, Kind, From);
4121 }
4122
4123 // -- If E2 is an rvalue, or if the conversion above cannot be done:
4124 // -- if E1 and E2 have class type, and the underlying class types are
4125 // the same or one is a base class of the other:
4126 QualType FTy = From->getType();
4127 QualType TTy = To->getType();
4128 const RecordType *FRec = FTy->getAs<RecordType>();
4129 const RecordType *TRec = TTy->getAs<RecordType>();
4130 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4131 Self.IsDerivedFrom(FTy, TTy);
4132 if (FRec && TRec &&
4133 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4134 // E1 can be converted to match E2 if the class of T2 is the
4135 // same type as, or a base class of, the class of T1, and
4136 // [cv2 > cv1].
4137 if (FRec == TRec || FDerivedFromT) {
4138 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4139 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4140 InitializationSequence InitSeq(Self, Entity, Kind, From);
4141 if (InitSeq) {
4142 HaveConversion = true;
4143 return false;
4144 }
4145
4146 if (InitSeq.isAmbiguous())
4147 return InitSeq.Diagnose(Self, Entity, Kind, From);
4148 }
4149 }
4150
4151 return false;
4152 }
4153
4154 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4155 // implicitly converted to the type that expression E2 would have
4156 // if E2 were converted to an rvalue (or the type it has, if E2 is
4157 // an rvalue).
4158 //
4159 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4160 // to the array-to-pointer or function-to-pointer conversions.
4161 if (!TTy->getAs<TagType>())
4162 TTy = TTy.getUnqualifiedType();
4163
4164 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4165 InitializationSequence InitSeq(Self, Entity, Kind, From);
4166 HaveConversion = !InitSeq.Failed();
4167 ToType = TTy;
4168 if (InitSeq.isAmbiguous())
4169 return InitSeq.Diagnose(Self, Entity, Kind, From);
4170
4171 return false;
4172 }
4173
4174 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4175 ///
4176 /// This is part of the parameter validation for the ? operator. If either
4177 /// value operand is a class type, overload resolution is used to find a
4178 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4179 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4180 SourceLocation QuestionLoc) {
4181 Expr *Args[2] = { LHS.get(), RHS.get() };
4182 OverloadCandidateSet CandidateSet(QuestionLoc);
4183 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4184 CandidateSet);
4185
4186 OverloadCandidateSet::iterator Best;
4187 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4188 case OR_Success: {
4189 // We found a match. Perform the conversions on the arguments and move on.
4190 ExprResult LHSRes =
4191 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4192 Best->Conversions[0], Sema::AA_Converting);
4193 if (LHSRes.isInvalid())
4194 break;
4195 LHS = LHSRes;
4196
4197 ExprResult RHSRes =
4198 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4199 Best->Conversions[1], Sema::AA_Converting);
4200 if (RHSRes.isInvalid())
4201 break;
4202 RHS = RHSRes;
4203 if (Best->Function)
4204 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4205 return false;
4206 }
4207
4208 case OR_No_Viable_Function:
4209
4210 // Emit a better diagnostic if one of the expressions is a null pointer
4211 // constant and the other is a pointer type. In this case, the user most
4212 // likely forgot to take the address of the other expression.
4213 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4214 return true;
4215
4216 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4217 << LHS.get()->getType() << RHS.get()->getType()
4218 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4219 return true;
4220
4221 case OR_Ambiguous:
4222 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4223 << LHS.get()->getType() << RHS.get()->getType()
4224 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4225 // FIXME: Print the possible common types by printing the return types of
4226 // the viable candidates.
4227 break;
4228
4229 case OR_Deleted:
4230 llvm_unreachable("Conditional operator has only built-in overloads");
4231 }
4232 return true;
4233 }
4234
4235 /// \brief Perform an "extended" implicit conversion as returned by
4236 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4237 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4238 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4239 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4240 SourceLocation());
4241 Expr *Arg = E.take();
4242 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4243 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4244 if (Result.isInvalid())
4245 return true;
4246
4247 E = Result;
4248 return false;
4249 }
4250
4251 /// \brief Check the operands of ?: under C++ semantics.
4252 ///
4253 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4254 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4255 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4256 ExprResult &RHS, ExprValueKind &VK,
4257 ExprObjectKind &OK,
4258 SourceLocation QuestionLoc) {
4259 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4260 // interface pointers.
4261
4262 // C++11 [expr.cond]p1
4263 // The first expression is contextually converted to bool.
4264 if (!Cond.get()->isTypeDependent()) {
4265 ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4266 if (CondRes.isInvalid())
4267 return QualType();
4268 Cond = CondRes;
4269 }
4270
4271 // Assume r-value.
4272 VK = VK_RValue;
4273 OK = OK_Ordinary;
4274
4275 // Either of the arguments dependent?
4276 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4277 return Context.DependentTy;
4278
4279 // C++11 [expr.cond]p2
4280 // If either the second or the third operand has type (cv) void, ...
4281 QualType LTy = LHS.get()->getType();
4282 QualType RTy = RHS.get()->getType();
4283 bool LVoid = LTy->isVoidType();
4284 bool RVoid = RTy->isVoidType();
4285 if (LVoid || RVoid) {
4286 // ... then the [l2r] conversions are performed on the second and third
4287 // operands ...
4288 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4289 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4290 if (LHS.isInvalid() || RHS.isInvalid())
4291 return QualType();
4292
4293 // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4294 // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4295 // do this part for us.
4296 ExprResult &NonVoid = LVoid ? RHS : LHS;
4297 if (NonVoid.get()->getType()->isRecordType() &&
4298 NonVoid.get()->isGLValue()) {
4299 if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4300 diag::err_allocation_of_abstract_type))
4301 return QualType();
4302 InitializedEntity Entity =
4303 InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4304 NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4305 if (NonVoid.isInvalid())
4306 return QualType();
4307 }
4308
4309 LTy = LHS.get()->getType();
4310 RTy = RHS.get()->getType();
4311
4312 // ... and one of the following shall hold:
4313 // -- The second or the third operand (but not both) is a throw-
4314 // expression; the result is of the type of the other and is a prvalue.
4315 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenCasts());
4316 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenCasts());
4317 if (LThrow && !RThrow)
4318 return RTy;
4319 if (RThrow && !LThrow)
4320 return LTy;
4321
4322 // -- Both the second and third operands have type void; the result is of
4323 // type void and is a prvalue.
4324 if (LVoid && RVoid)
4325 return Context.VoidTy;
4326
4327 // Neither holds, error.
4328 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4329 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4330 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4331 return QualType();
4332 }
4333
4334 // Neither is void.
4335
4336 // C++11 [expr.cond]p3
4337 // Otherwise, if the second and third operand have different types, and
4338 // either has (cv) class type [...] an attempt is made to convert each of
4339 // those operands to the type of the other.
4340 if (!Context.hasSameType(LTy, RTy) &&
4341 (LTy->isRecordType() || RTy->isRecordType())) {
4342 ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4343 // These return true if a single direction is already ambiguous.
4344 QualType L2RType, R2LType;
4345 bool HaveL2R, HaveR2L;
4346 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4347 return QualType();
4348 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4349 return QualType();
4350
4351 // If both can be converted, [...] the program is ill-formed.
4352 if (HaveL2R && HaveR2L) {
4353 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4354 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4355 return QualType();
4356 }
4357
4358 // If exactly one conversion is possible, that conversion is applied to
4359 // the chosen operand and the converted operands are used in place of the
4360 // original operands for the remainder of this section.
4361 if (HaveL2R) {
4362 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4363 return QualType();
4364 LTy = LHS.get()->getType();
4365 } else if (HaveR2L) {
4366 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4367 return QualType();
4368 RTy = RHS.get()->getType();
4369 }
4370 }
4371
4372 // C++11 [expr.cond]p3
4373 // if both are glvalues of the same value category and the same type except
4374 // for cv-qualification, an attempt is made to convert each of those
4375 // operands to the type of the other.
4376 ExprValueKind LVK = LHS.get()->getValueKind();
4377 ExprValueKind RVK = RHS.get()->getValueKind();
4378 if (!Context.hasSameType(LTy, RTy) &&
4379 Context.hasSameUnqualifiedType(LTy, RTy) &&
4380 LVK == RVK && LVK != VK_RValue) {
4381 // Since the unqualified types are reference-related and we require the
4382 // result to be as if a reference bound directly, the only conversion
4383 // we can perform is to add cv-qualifiers.
4384 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4385 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4386 if (RCVR.isStrictSupersetOf(LCVR)) {
4387 LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4388 LTy = LHS.get()->getType();
4389 }
4390 else if (LCVR.isStrictSupersetOf(RCVR)) {
4391 RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4392 RTy = RHS.get()->getType();
4393 }
4394 }
4395
4396 // C++11 [expr.cond]p4
4397 // If the second and third operands are glvalues of the same value
4398 // category and have the same type, the result is of that type and
4399 // value category and it is a bit-field if the second or the third
4400 // operand is a bit-field, or if both are bit-fields.
4401 // We only extend this to bitfields, not to the crazy other kinds of
4402 // l-values.
4403 bool Same = Context.hasSameType(LTy, RTy);
4404 if (Same && LVK == RVK && LVK != VK_RValue &&
4405 LHS.get()->isOrdinaryOrBitFieldObject() &&
4406 RHS.get()->isOrdinaryOrBitFieldObject()) {
4407 VK = LHS.get()->getValueKind();
4408 if (LHS.get()->getObjectKind() == OK_BitField ||
4409 RHS.get()->getObjectKind() == OK_BitField)
4410 OK = OK_BitField;
4411 return LTy;
4412 }
4413
4414 // C++11 [expr.cond]p5
4415 // Otherwise, the result is a prvalue. If the second and third operands
4416 // do not have the same type, and either has (cv) class type, ...
4417 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4418 // ... overload resolution is used to determine the conversions (if any)
4419 // to be applied to the operands. If the overload resolution fails, the
4420 // program is ill-formed.
4421 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4422 return QualType();
4423 }
4424
4425 // C++11 [expr.cond]p6
4426 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4427 // conversions are performed on the second and third operands.
4428 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4429 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4430 if (LHS.isInvalid() || RHS.isInvalid())
4431 return QualType();
4432 LTy = LHS.get()->getType();
4433 RTy = RHS.get()->getType();
4434
4435 // After those conversions, one of the following shall hold:
4436 // -- The second and third operands have the same type; the result
4437 // is of that type. If the operands have class type, the result
4438 // is a prvalue temporary of the result type, which is
4439 // copy-initialized from either the second operand or the third
4440 // operand depending on the value of the first operand.
4441 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4442 if (LTy->isRecordType()) {
4443 // The operands have class type. Make a temporary copy.
4444 if (RequireNonAbstractType(QuestionLoc, LTy,
4445 diag::err_allocation_of_abstract_type))
4446 return QualType();
4447 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4448
4449 ExprResult LHSCopy = PerformCopyInitialization(Entity,
4450 SourceLocation(),
4451 LHS);
4452 if (LHSCopy.isInvalid())
4453 return QualType();
4454
4455 ExprResult RHSCopy = PerformCopyInitialization(Entity,
4456 SourceLocation(),
4457 RHS);
4458 if (RHSCopy.isInvalid())
4459 return QualType();
4460
4461 LHS = LHSCopy;
4462 RHS = RHSCopy;
4463 }
4464
4465 return LTy;
4466 }
4467
4468 // Extension: conditional operator involving vector types.
4469 if (LTy->isVectorType() || RTy->isVectorType())
4470 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4471
4472 // -- The second and third operands have arithmetic or enumeration type;
4473 // the usual arithmetic conversions are performed to bring them to a
4474 // common type, and the result is of that type.
4475 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4476 UsualArithmeticConversions(LHS, RHS);
4477 if (LHS.isInvalid() || RHS.isInvalid())
4478 return QualType();
4479 return LHS.get()->getType();
4480 }
4481
4482 // -- The second and third operands have pointer type, or one has pointer
4483 // type and the other is a null pointer constant, or both are null
4484 // pointer constants, at least one of which is non-integral; pointer
4485 // conversions and qualification conversions are performed to bring them
4486 // to their composite pointer type. The result is of the composite
4487 // pointer type.
4488 // -- The second and third operands have pointer to member type, or one has
4489 // pointer to member type and the other is a null pointer constant;
4490 // pointer to member conversions and qualification conversions are
4491 // performed to bring them to a common type, whose cv-qualification
4492 // shall match the cv-qualification of either the second or the third
4493 // operand. The result is of the common type.
4494 bool NonStandardCompositeType = false;
4495 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4496 isSFINAEContext()? 0 : &NonStandardCompositeType);
4497 if (!Composite.isNull()) {
4498 if (NonStandardCompositeType)
4499 Diag(QuestionLoc,
4500 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4501 << LTy << RTy << Composite
4502 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4503
4504 return Composite;
4505 }
4506
4507 // Similarly, attempt to find composite type of two objective-c pointers.
4508 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4509 if (!Composite.isNull())
4510 return Composite;
4511
4512 // Check if we are using a null with a non-pointer type.
4513 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4514 return QualType();
4515
4516 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4517 << LHS.get()->getType() << RHS.get()->getType()
4518 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4519 return QualType();
4520 }
4521
4522 /// \brief Find a merged pointer type and convert the two expressions to it.
4523 ///
4524 /// This finds the composite pointer type (or member pointer type) for @p E1
4525 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4526 /// type and returns it.
4527 /// It does not emit diagnostics.
4528 ///
4529 /// \param Loc The location of the operator requiring these two expressions to
4530 /// be converted to the composite pointer type.
4531 ///
4532 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4533 /// a non-standard (but still sane) composite type to which both expressions
4534 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4535 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4536 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4537 Expr *&E1, Expr *&E2,
4538 bool *NonStandardCompositeType) {
4539 if (NonStandardCompositeType)
4540 *NonStandardCompositeType = false;
4541
4542 assert(getLangOpts().CPlusPlus && "This function assumes C++");
4543 QualType T1 = E1->getType(), T2 = E2->getType();
4544
4545 // C++11 5.9p2
4546 // Pointer conversions and qualification conversions are performed on
4547 // pointer operands to bring them to their composite pointer type. If
4548 // one operand is a null pointer constant, the composite pointer type is
4549 // std::nullptr_t if the other operand is also a null pointer constant or,
4550 // if the other operand is a pointer, the type of the other operand.
4551 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4552 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4553 if (T1->isNullPtrType() &&
4554 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4555 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4556 return T1;
4557 }
4558 if (T2->isNullPtrType() &&
4559 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4560 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4561 return T2;
4562 }
4563 return QualType();
4564 }
4565
4566 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4567 if (T2->isMemberPointerType())
4568 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4569 else
4570 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4571 return T2;
4572 }
4573 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4574 if (T1->isMemberPointerType())
4575 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4576 else
4577 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4578 return T1;
4579 }
4580
4581 // Now both have to be pointers or member pointers.
4582 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4583 (!T2->isPointerType() && !T2->isMemberPointerType()))
4584 return QualType();
4585
4586 // Otherwise, of one of the operands has type "pointer to cv1 void," then
4587 // the other has type "pointer to cv2 T" and the composite pointer type is
4588 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4589 // Otherwise, the composite pointer type is a pointer type similar to the
4590 // type of one of the operands, with a cv-qualification signature that is
4591 // the union of the cv-qualification signatures of the operand types.
4592 // In practice, the first part here is redundant; it's subsumed by the second.
4593 // What we do here is, we build the two possible composite types, and try the
4594 // conversions in both directions. If only one works, or if the two composite
4595 // types are the same, we have succeeded.
4596 // FIXME: extended qualifiers?
4597 typedef SmallVector<unsigned, 4> QualifierVector;
4598 QualifierVector QualifierUnion;
4599 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4600 ContainingClassVector;
4601 ContainingClassVector MemberOfClass;
4602 QualType Composite1 = Context.getCanonicalType(T1),
4603 Composite2 = Context.getCanonicalType(T2);
4604 unsigned NeedConstBefore = 0;
4605 do {
4606 const PointerType *Ptr1, *Ptr2;
4607 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4608 (Ptr2 = Composite2->getAs<PointerType>())) {
4609 Composite1 = Ptr1->getPointeeType();
4610 Composite2 = Ptr2->getPointeeType();
4611
4612 // If we're allowed to create a non-standard composite type, keep track
4613 // of where we need to fill in additional 'const' qualifiers.
4614 if (NonStandardCompositeType &&
4615 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4616 NeedConstBefore = QualifierUnion.size();
4617
4618 QualifierUnion.push_back(
4619 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4620 MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4621 continue;
4622 }
4623
4624 const MemberPointerType *MemPtr1, *MemPtr2;
4625 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4626 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4627 Composite1 = MemPtr1->getPointeeType();
4628 Composite2 = MemPtr2->getPointeeType();
4629
4630 // If we're allowed to create a non-standard composite type, keep track
4631 // of where we need to fill in additional 'const' qualifiers.
4632 if (NonStandardCompositeType &&
4633 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4634 NeedConstBefore = QualifierUnion.size();
4635
4636 QualifierUnion.push_back(
4637 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4638 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4639 MemPtr2->getClass()));
4640 continue;
4641 }
4642
4643 // FIXME: block pointer types?
4644
4645 // Cannot unwrap any more types.
4646 break;
4647 } while (true);
4648
4649 if (NeedConstBefore && NonStandardCompositeType) {
4650 // Extension: Add 'const' to qualifiers that come before the first qualifier
4651 // mismatch, so that our (non-standard!) composite type meets the
4652 // requirements of C++ [conv.qual]p4 bullet 3.
4653 for (unsigned I = 0; I != NeedConstBefore; ++I) {
4654 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4655 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4656 *NonStandardCompositeType = true;
4657 }
4658 }
4659 }
4660
4661 // Rewrap the composites as pointers or member pointers with the union CVRs.
4662 ContainingClassVector::reverse_iterator MOC
4663 = MemberOfClass.rbegin();
4664 for (QualifierVector::reverse_iterator
4665 I = QualifierUnion.rbegin(),
4666 E = QualifierUnion.rend();
4667 I != E; (void)++I, ++MOC) {
4668 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4669 if (MOC->first && MOC->second) {
4670 // Rebuild member pointer type
4671 Composite1 = Context.getMemberPointerType(
4672 Context.getQualifiedType(Composite1, Quals),
4673 MOC->first);
4674 Composite2 = Context.getMemberPointerType(
4675 Context.getQualifiedType(Composite2, Quals),
4676 MOC->second);
4677 } else {
4678 // Rebuild pointer type
4679 Composite1
4680 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4681 Composite2
4682 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4683 }
4684 }
4685
4686 // Try to convert to the first composite pointer type.
4687 InitializedEntity Entity1
4688 = InitializedEntity::InitializeTemporary(Composite1);
4689 InitializationKind Kind
4690 = InitializationKind::CreateCopy(Loc, SourceLocation());
4691 InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4692 InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4693
4694 if (E1ToC1 && E2ToC1) {
4695 // Conversion to Composite1 is viable.
4696 if (!Context.hasSameType(Composite1, Composite2)) {
4697 // Composite2 is a different type from Composite1. Check whether
4698 // Composite2 is also viable.
4699 InitializedEntity Entity2
4700 = InitializedEntity::InitializeTemporary(Composite2);
4701 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4702 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4703 if (E1ToC2 && E2ToC2) {
4704 // Both Composite1 and Composite2 are viable and are different;
4705 // this is an ambiguity.
4706 return QualType();
4707 }
4708 }
4709
4710 // Convert E1 to Composite1
4711 ExprResult E1Result
4712 = E1ToC1.Perform(*this, Entity1, Kind, E1);
4713 if (E1Result.isInvalid())
4714 return QualType();
4715 E1 = E1Result.takeAs<Expr>();
4716
4717 // Convert E2 to Composite1
4718 ExprResult E2Result
4719 = E2ToC1.Perform(*this, Entity1, Kind, E2);
4720 if (E2Result.isInvalid())
4721 return QualType();
4722 E2 = E2Result.takeAs<Expr>();
4723
4724 return Composite1;
4725 }
4726
4727 // Check whether Composite2 is viable.
4728 InitializedEntity Entity2
4729 = InitializedEntity::InitializeTemporary(Composite2);
4730 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4731 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4732 if (!E1ToC2 || !E2ToC2)
4733 return QualType();
4734
4735 // Convert E1 to Composite2
4736 ExprResult E1Result
4737 = E1ToC2.Perform(*this, Entity2, Kind, E1);
4738 if (E1Result.isInvalid())
4739 return QualType();
4740 E1 = E1Result.takeAs<Expr>();
4741
4742 // Convert E2 to Composite2
4743 ExprResult E2Result
4744 = E2ToC2.Perform(*this, Entity2, Kind, E2);
4745 if (E2Result.isInvalid())
4746 return QualType();
4747 E2 = E2Result.takeAs<Expr>();
4748
4749 return Composite2;
4750 }
4751
MaybeBindToTemporary(Expr * E)4752 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4753 if (!E)
4754 return ExprError();
4755
4756 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4757
4758 // If the result is a glvalue, we shouldn't bind it.
4759 if (!E->isRValue())
4760 return Owned(E);
4761
4762 // In ARC, calls that return a retainable type can return retained,
4763 // in which case we have to insert a consuming cast.
4764 if (getLangOpts().ObjCAutoRefCount &&
4765 E->getType()->isObjCRetainableType()) {
4766
4767 bool ReturnsRetained;
4768
4769 // For actual calls, we compute this by examining the type of the
4770 // called value.
4771 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4772 Expr *Callee = Call->getCallee()->IgnoreParens();
4773 QualType T = Callee->getType();
4774
4775 if (T == Context.BoundMemberTy) {
4776 // Handle pointer-to-members.
4777 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4778 T = BinOp->getRHS()->getType();
4779 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4780 T = Mem->getMemberDecl()->getType();
4781 }
4782
4783 if (const PointerType *Ptr = T->getAs<PointerType>())
4784 T = Ptr->getPointeeType();
4785 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4786 T = Ptr->getPointeeType();
4787 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4788 T = MemPtr->getPointeeType();
4789
4790 const FunctionType *FTy = T->getAs<FunctionType>();
4791 assert(FTy && "call to value not of function type?");
4792 ReturnsRetained = FTy->getExtInfo().getProducesResult();
4793
4794 // ActOnStmtExpr arranges things so that StmtExprs of retainable
4795 // type always produce a +1 object.
4796 } else if (isa<StmtExpr>(E)) {
4797 ReturnsRetained = true;
4798
4799 // We hit this case with the lambda conversion-to-block optimization;
4800 // we don't want any extra casts here.
4801 } else if (isa<CastExpr>(E) &&
4802 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4803 return Owned(E);
4804
4805 // For message sends and property references, we try to find an
4806 // actual method. FIXME: we should infer retention by selector in
4807 // cases where we don't have an actual method.
4808 } else {
4809 ObjCMethodDecl *D = 0;
4810 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4811 D = Send->getMethodDecl();
4812 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4813 D = BoxedExpr->getBoxingMethod();
4814 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4815 D = ArrayLit->getArrayWithObjectsMethod();
4816 } else if (ObjCDictionaryLiteral *DictLit
4817 = dyn_cast<ObjCDictionaryLiteral>(E)) {
4818 D = DictLit->getDictWithObjectsMethod();
4819 }
4820
4821 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4822
4823 // Don't do reclaims on performSelector calls; despite their
4824 // return type, the invoked method doesn't necessarily actually
4825 // return an object.
4826 if (!ReturnsRetained &&
4827 D && D->getMethodFamily() == OMF_performSelector)
4828 return Owned(E);
4829 }
4830
4831 // Don't reclaim an object of Class type.
4832 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4833 return Owned(E);
4834
4835 ExprNeedsCleanups = true;
4836
4837 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4838 : CK_ARCReclaimReturnedObject);
4839 return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4840 VK_RValue));
4841 }
4842
4843 if (!getLangOpts().CPlusPlus)
4844 return Owned(E);
4845
4846 // Search for the base element type (cf. ASTContext::getBaseElementType) with
4847 // a fast path for the common case that the type is directly a RecordType.
4848 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4849 const RecordType *RT = 0;
4850 while (!RT) {
4851 switch (T->getTypeClass()) {
4852 case Type::Record:
4853 RT = cast<RecordType>(T);
4854 break;
4855 case Type::ConstantArray:
4856 case Type::IncompleteArray:
4857 case Type::VariableArray:
4858 case Type::DependentSizedArray:
4859 T = cast<ArrayType>(T)->getElementType().getTypePtr();
4860 break;
4861 default:
4862 return Owned(E);
4863 }
4864 }
4865
4866 // That should be enough to guarantee that this type is complete, if we're
4867 // not processing a decltype expression.
4868 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4869 if (RD->isInvalidDecl() || RD->isDependentContext())
4870 return Owned(E);
4871
4872 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4873 CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4874
4875 if (Destructor) {
4876 MarkFunctionReferenced(E->getExprLoc(), Destructor);
4877 CheckDestructorAccess(E->getExprLoc(), Destructor,
4878 PDiag(diag::err_access_dtor_temp)
4879 << E->getType());
4880 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4881 return ExprError();
4882
4883 // If destructor is trivial, we can avoid the extra copy.
4884 if (Destructor->isTrivial())
4885 return Owned(E);
4886
4887 // We need a cleanup, but we don't need to remember the temporary.
4888 ExprNeedsCleanups = true;
4889 }
4890
4891 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4892 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4893
4894 if (IsDecltype)
4895 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4896
4897 return Owned(Bind);
4898 }
4899
4900 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4901 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4902 if (SubExpr.isInvalid())
4903 return ExprError();
4904
4905 return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4906 }
4907
MaybeCreateExprWithCleanups(Expr * SubExpr)4908 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4909 assert(SubExpr && "sub expression can't be null!");
4910
4911 CleanupVarDeclMarking();
4912
4913 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4914 assert(ExprCleanupObjects.size() >= FirstCleanup);
4915 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4916 if (!ExprNeedsCleanups)
4917 return SubExpr;
4918
4919 ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4920 = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4921 ExprCleanupObjects.size() - FirstCleanup);
4922
4923 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4924 DiscardCleanupsInEvaluationContext();
4925
4926 return E;
4927 }
4928
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4929 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4930 assert(SubStmt && "sub statement can't be null!");
4931
4932 CleanupVarDeclMarking();
4933
4934 if (!ExprNeedsCleanups)
4935 return SubStmt;
4936
4937 // FIXME: In order to attach the temporaries, wrap the statement into
4938 // a StmtExpr; currently this is only used for asm statements.
4939 // This is hacky, either create a new CXXStmtWithTemporaries statement or
4940 // a new AsmStmtWithTemporaries.
4941 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4942 SourceLocation(),
4943 SourceLocation());
4944 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4945 SourceLocation());
4946 return MaybeCreateExprWithCleanups(E);
4947 }
4948
4949 /// Process the expression contained within a decltype. For such expressions,
4950 /// certain semantic checks on temporaries are delayed until this point, and
4951 /// are omitted for the 'topmost' call in the decltype expression. If the
4952 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)4953 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4954 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4955
4956 // C++11 [expr.call]p11:
4957 // If a function call is a prvalue of object type,
4958 // -- if the function call is either
4959 // -- the operand of a decltype-specifier, or
4960 // -- the right operand of a comma operator that is the operand of a
4961 // decltype-specifier,
4962 // a temporary object is not introduced for the prvalue.
4963
4964 // Recursively rebuild ParenExprs and comma expressions to strip out the
4965 // outermost CXXBindTemporaryExpr, if any.
4966 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4967 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4968 if (SubExpr.isInvalid())
4969 return ExprError();
4970 if (SubExpr.get() == PE->getSubExpr())
4971 return Owned(E);
4972 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4973 }
4974 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4975 if (BO->getOpcode() == BO_Comma) {
4976 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4977 if (RHS.isInvalid())
4978 return ExprError();
4979 if (RHS.get() == BO->getRHS())
4980 return Owned(E);
4981 return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4982 BO_Comma, BO->getType(),
4983 BO->getValueKind(),
4984 BO->getObjectKind(),
4985 BO->getOperatorLoc(),
4986 BO->isFPContractable()));
4987 }
4988 }
4989
4990 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4991 if (TopBind)
4992 E = TopBind->getSubExpr();
4993
4994 // Disable the special decltype handling now.
4995 ExprEvalContexts.back().IsDecltype = false;
4996
4997 // In MS mode, don't perform any extra checking of call return types within a
4998 // decltype expression.
4999 if (getLangOpts().MicrosoftMode)
5000 return Owned(E);
5001
5002 // Perform the semantic checks we delayed until this point.
5003 CallExpr *TopCall = dyn_cast<CallExpr>(E);
5004 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5005 I != N; ++I) {
5006 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5007 if (Call == TopCall)
5008 continue;
5009
5010 if (CheckCallReturnType(Call->getCallReturnType(),
5011 Call->getLocStart(),
5012 Call, Call->getDirectCallee()))
5013 return ExprError();
5014 }
5015
5016 // Now all relevant types are complete, check the destructors are accessible
5017 // and non-deleted, and annotate them on the temporaries.
5018 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5019 I != N; ++I) {
5020 CXXBindTemporaryExpr *Bind =
5021 ExprEvalContexts.back().DelayedDecltypeBinds[I];
5022 if (Bind == TopBind)
5023 continue;
5024
5025 CXXTemporary *Temp = Bind->getTemporary();
5026
5027 CXXRecordDecl *RD =
5028 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5029 CXXDestructorDecl *Destructor = LookupDestructor(RD);
5030 Temp->setDestructor(Destructor);
5031
5032 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5033 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5034 PDiag(diag::err_access_dtor_temp)
5035 << Bind->getType());
5036 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5037 return ExprError();
5038
5039 // We need a cleanup, but we don't need to remember the temporary.
5040 ExprNeedsCleanups = true;
5041 }
5042
5043 // Possibly strip off the top CXXBindTemporaryExpr.
5044 return Owned(E);
5045 }
5046
5047 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)5048 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
5049 tok::TokenKind OpKind, ParsedType &ObjectType,
5050 bool &MayBePseudoDestructor) {
5051 // Since this might be a postfix expression, get rid of ParenListExprs.
5052 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5053 if (Result.isInvalid()) return ExprError();
5054 Base = Result.get();
5055
5056 Result = CheckPlaceholderExpr(Base);
5057 if (Result.isInvalid()) return ExprError();
5058 Base = Result.take();
5059
5060 QualType BaseType = Base->getType();
5061 MayBePseudoDestructor = false;
5062 if (BaseType->isDependentType()) {
5063 // If we have a pointer to a dependent type and are using the -> operator,
5064 // the object type is the type that the pointer points to. We might still
5065 // have enough information about that type to do something useful.
5066 if (OpKind == tok::arrow)
5067 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5068 BaseType = Ptr->getPointeeType();
5069
5070 ObjectType = ParsedType::make(BaseType);
5071 MayBePseudoDestructor = true;
5072 return Owned(Base);
5073 }
5074
5075 // C++ [over.match.oper]p8:
5076 // [...] When operator->returns, the operator-> is applied to the value
5077 // returned, with the original second operand.
5078 if (OpKind == tok::arrow) {
5079 bool NoArrowOperatorFound = false;
5080 bool FirstIteration = true;
5081 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5082 // The set of types we've considered so far.
5083 llvm::SmallPtrSet<CanQualType,8> CTypes;
5084 SmallVector<SourceLocation, 8> Locations;
5085 CTypes.insert(Context.getCanonicalType(BaseType));
5086
5087 while (BaseType->isRecordType()) {
5088 Result = BuildOverloadedArrowExpr(
5089 S, Base, OpLoc,
5090 // When in a template specialization and on the first loop iteration,
5091 // potentially give the default diagnostic (with the fixit in a
5092 // separate note) instead of having the error reported back to here
5093 // and giving a diagnostic with a fixit attached to the error itself.
5094 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5095 ? 0
5096 : &NoArrowOperatorFound);
5097 if (Result.isInvalid()) {
5098 if (NoArrowOperatorFound) {
5099 if (FirstIteration) {
5100 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5101 << BaseType << 1 << Base->getSourceRange()
5102 << FixItHint::CreateReplacement(OpLoc, ".");
5103 OpKind = tok::period;
5104 break;
5105 }
5106 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5107 << BaseType << Base->getSourceRange();
5108 CallExpr *CE = dyn_cast<CallExpr>(Base);
5109 if (Decl *CD = (CE ? CE->getCalleeDecl() : 0)) {
5110 Diag(CD->getLocStart(),
5111 diag::note_member_reference_arrow_from_operator_arrow);
5112 }
5113 }
5114 return ExprError();
5115 }
5116 Base = Result.get();
5117 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5118 Locations.push_back(OpCall->getDirectCallee()->getLocation());
5119 BaseType = Base->getType();
5120 CanQualType CBaseType = Context.getCanonicalType(BaseType);
5121 if (!CTypes.insert(CBaseType)) {
5122 Diag(OpLoc, diag::err_operator_arrow_circular);
5123 for (unsigned i = 0; i < Locations.size(); i++)
5124 Diag(Locations[i], diag::note_declared_at);
5125 return ExprError();
5126 }
5127 FirstIteration = false;
5128 }
5129
5130 if (OpKind == tok::arrow &&
5131 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5132 BaseType = BaseType->getPointeeType();
5133 }
5134
5135 // Objective-C properties allow "." access on Objective-C pointer types,
5136 // so adjust the base type to the object type itself.
5137 if (BaseType->isObjCObjectPointerType())
5138 BaseType = BaseType->getPointeeType();
5139
5140 // C++ [basic.lookup.classref]p2:
5141 // [...] If the type of the object expression is of pointer to scalar
5142 // type, the unqualified-id is looked up in the context of the complete
5143 // postfix-expression.
5144 //
5145 // This also indicates that we could be parsing a pseudo-destructor-name.
5146 // Note that Objective-C class and object types can be pseudo-destructor
5147 // expressions or normal member (ivar or property) access expressions.
5148 if (BaseType->isObjCObjectOrInterfaceType()) {
5149 MayBePseudoDestructor = true;
5150 } else if (!BaseType->isRecordType()) {
5151 ObjectType = ParsedType();
5152 MayBePseudoDestructor = true;
5153 return Owned(Base);
5154 }
5155
5156 // The object type must be complete (or dependent), or
5157 // C++11 [expr.prim.general]p3:
5158 // Unlike the object expression in other contexts, *this is not required to
5159 // be of complete type for purposes of class member access (5.2.5) outside
5160 // the member function body.
5161 if (!BaseType->isDependentType() &&
5162 !isThisOutsideMemberFunctionBody(BaseType) &&
5163 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5164 return ExprError();
5165
5166 // C++ [basic.lookup.classref]p2:
5167 // If the id-expression in a class member access (5.2.5) is an
5168 // unqualified-id, and the type of the object expression is of a class
5169 // type C (or of pointer to a class type C), the unqualified-id is looked
5170 // up in the scope of class C. [...]
5171 ObjectType = ParsedType::make(BaseType);
5172 return Base;
5173 }
5174
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)5175 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5176 Expr *MemExpr) {
5177 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5178 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5179 << isa<CXXPseudoDestructorExpr>(MemExpr)
5180 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5181
5182 return ActOnCallExpr(/*Scope*/ 0,
5183 MemExpr,
5184 /*LPLoc*/ ExpectedLParenLoc,
5185 None,
5186 /*RPLoc*/ ExpectedLParenLoc);
5187 }
5188
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5189 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5190 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5191 if (Base->hasPlaceholderType()) {
5192 ExprResult result = S.CheckPlaceholderExpr(Base);
5193 if (result.isInvalid()) return true;
5194 Base = result.take();
5195 }
5196 ObjectType = Base->getType();
5197
5198 // C++ [expr.pseudo]p2:
5199 // The left-hand side of the dot operator shall be of scalar type. The
5200 // left-hand side of the arrow operator shall be of pointer to scalar type.
5201 // This scalar type is the object type.
5202 // Note that this is rather different from the normal handling for the
5203 // arrow operator.
5204 if (OpKind == tok::arrow) {
5205 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5206 ObjectType = Ptr->getPointeeType();
5207 } else if (!Base->isTypeDependent()) {
5208 // The user wrote "p->" when she probably meant "p."; fix it.
5209 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5210 << ObjectType << true
5211 << FixItHint::CreateReplacement(OpLoc, ".");
5212 if (S.isSFINAEContext())
5213 return true;
5214
5215 OpKind = tok::period;
5216 }
5217 }
5218
5219 return false;
5220 }
5221
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5222 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5223 SourceLocation OpLoc,
5224 tok::TokenKind OpKind,
5225 const CXXScopeSpec &SS,
5226 TypeSourceInfo *ScopeTypeInfo,
5227 SourceLocation CCLoc,
5228 SourceLocation TildeLoc,
5229 PseudoDestructorTypeStorage Destructed,
5230 bool HasTrailingLParen) {
5231 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5232
5233 QualType ObjectType;
5234 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5235 return ExprError();
5236
5237 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5238 !ObjectType->isVectorType()) {
5239 if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5240 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5241 else
5242 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5243 << ObjectType << Base->getSourceRange();
5244 return ExprError();
5245 }
5246
5247 // C++ [expr.pseudo]p2:
5248 // [...] The cv-unqualified versions of the object type and of the type
5249 // designated by the pseudo-destructor-name shall be the same type.
5250 if (DestructedTypeInfo) {
5251 QualType DestructedType = DestructedTypeInfo->getType();
5252 SourceLocation DestructedTypeStart
5253 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5254 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5255 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5256 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5257 << ObjectType << DestructedType << Base->getSourceRange()
5258 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5259
5260 // Recover by setting the destructed type to the object type.
5261 DestructedType = ObjectType;
5262 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5263 DestructedTypeStart);
5264 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5265 } else if (DestructedType.getObjCLifetime() !=
5266 ObjectType.getObjCLifetime()) {
5267
5268 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5269 // Okay: just pretend that the user provided the correctly-qualified
5270 // type.
5271 } else {
5272 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5273 << ObjectType << DestructedType << Base->getSourceRange()
5274 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5275 }
5276
5277 // Recover by setting the destructed type to the object type.
5278 DestructedType = ObjectType;
5279 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5280 DestructedTypeStart);
5281 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5282 }
5283 }
5284 }
5285
5286 // C++ [expr.pseudo]p2:
5287 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5288 // form
5289 //
5290 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5291 //
5292 // shall designate the same scalar type.
5293 if (ScopeTypeInfo) {
5294 QualType ScopeType = ScopeTypeInfo->getType();
5295 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5296 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5297
5298 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5299 diag::err_pseudo_dtor_type_mismatch)
5300 << ObjectType << ScopeType << Base->getSourceRange()
5301 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5302
5303 ScopeType = QualType();
5304 ScopeTypeInfo = 0;
5305 }
5306 }
5307
5308 Expr *Result
5309 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5310 OpKind == tok::arrow, OpLoc,
5311 SS.getWithLocInContext(Context),
5312 ScopeTypeInfo,
5313 CCLoc,
5314 TildeLoc,
5315 Destructed);
5316
5317 if (HasTrailingLParen)
5318 return Owned(Result);
5319
5320 return DiagnoseDtorReference(Destructed.getLocation(), Result);
5321 }
5322
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5323 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5324 SourceLocation OpLoc,
5325 tok::TokenKind OpKind,
5326 CXXScopeSpec &SS,
5327 UnqualifiedId &FirstTypeName,
5328 SourceLocation CCLoc,
5329 SourceLocation TildeLoc,
5330 UnqualifiedId &SecondTypeName,
5331 bool HasTrailingLParen) {
5332 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5333 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5334 "Invalid first type name in pseudo-destructor");
5335 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5336 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5337 "Invalid second type name in pseudo-destructor");
5338
5339 QualType ObjectType;
5340 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5341 return ExprError();
5342
5343 // Compute the object type that we should use for name lookup purposes. Only
5344 // record types and dependent types matter.
5345 ParsedType ObjectTypePtrForLookup;
5346 if (!SS.isSet()) {
5347 if (ObjectType->isRecordType())
5348 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5349 else if (ObjectType->isDependentType())
5350 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5351 }
5352
5353 // Convert the name of the type being destructed (following the ~) into a
5354 // type (with source-location information).
5355 QualType DestructedType;
5356 TypeSourceInfo *DestructedTypeInfo = 0;
5357 PseudoDestructorTypeStorage Destructed;
5358 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5359 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5360 SecondTypeName.StartLocation,
5361 S, &SS, true, false, ObjectTypePtrForLookup);
5362 if (!T &&
5363 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5364 (!SS.isSet() && ObjectType->isDependentType()))) {
5365 // The name of the type being destroyed is a dependent name, and we
5366 // couldn't find anything useful in scope. Just store the identifier and
5367 // it's location, and we'll perform (qualified) name lookup again at
5368 // template instantiation time.
5369 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5370 SecondTypeName.StartLocation);
5371 } else if (!T) {
5372 Diag(SecondTypeName.StartLocation,
5373 diag::err_pseudo_dtor_destructor_non_type)
5374 << SecondTypeName.Identifier << ObjectType;
5375 if (isSFINAEContext())
5376 return ExprError();
5377
5378 // Recover by assuming we had the right type all along.
5379 DestructedType = ObjectType;
5380 } else
5381 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5382 } else {
5383 // Resolve the template-id to a type.
5384 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5385 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5386 TemplateId->NumArgs);
5387 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5388 TemplateId->TemplateKWLoc,
5389 TemplateId->Template,
5390 TemplateId->TemplateNameLoc,
5391 TemplateId->LAngleLoc,
5392 TemplateArgsPtr,
5393 TemplateId->RAngleLoc);
5394 if (T.isInvalid() || !T.get()) {
5395 // Recover by assuming we had the right type all along.
5396 DestructedType = ObjectType;
5397 } else
5398 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5399 }
5400
5401 // If we've performed some kind of recovery, (re-)build the type source
5402 // information.
5403 if (!DestructedType.isNull()) {
5404 if (!DestructedTypeInfo)
5405 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5406 SecondTypeName.StartLocation);
5407 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5408 }
5409
5410 // Convert the name of the scope type (the type prior to '::') into a type.
5411 TypeSourceInfo *ScopeTypeInfo = 0;
5412 QualType ScopeType;
5413 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5414 FirstTypeName.Identifier) {
5415 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5416 ParsedType T = getTypeName(*FirstTypeName.Identifier,
5417 FirstTypeName.StartLocation,
5418 S, &SS, true, false, ObjectTypePtrForLookup);
5419 if (!T) {
5420 Diag(FirstTypeName.StartLocation,
5421 diag::err_pseudo_dtor_destructor_non_type)
5422 << FirstTypeName.Identifier << ObjectType;
5423
5424 if (isSFINAEContext())
5425 return ExprError();
5426
5427 // Just drop this type. It's unnecessary anyway.
5428 ScopeType = QualType();
5429 } else
5430 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5431 } else {
5432 // Resolve the template-id to a type.
5433 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5434 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5435 TemplateId->NumArgs);
5436 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5437 TemplateId->TemplateKWLoc,
5438 TemplateId->Template,
5439 TemplateId->TemplateNameLoc,
5440 TemplateId->LAngleLoc,
5441 TemplateArgsPtr,
5442 TemplateId->RAngleLoc);
5443 if (T.isInvalid() || !T.get()) {
5444 // Recover by dropping this type.
5445 ScopeType = QualType();
5446 } else
5447 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5448 }
5449 }
5450
5451 if (!ScopeType.isNull() && !ScopeTypeInfo)
5452 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5453 FirstTypeName.StartLocation);
5454
5455
5456 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5457 ScopeTypeInfo, CCLoc, TildeLoc,
5458 Destructed, HasTrailingLParen);
5459 }
5460
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5461 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5462 SourceLocation OpLoc,
5463 tok::TokenKind OpKind,
5464 SourceLocation TildeLoc,
5465 const DeclSpec& DS,
5466 bool HasTrailingLParen) {
5467 QualType ObjectType;
5468 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5469 return ExprError();
5470
5471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5472
5473 TypeLocBuilder TLB;
5474 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5475 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5476 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5477 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5478
5479 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5480 0, SourceLocation(), TildeLoc,
5481 Destructed, HasTrailingLParen);
5482 }
5483
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5484 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5485 CXXConversionDecl *Method,
5486 bool HadMultipleCandidates) {
5487 if (Method->getParent()->isLambda() &&
5488 Method->getConversionType()->isBlockPointerType()) {
5489 // This is a lambda coversion to block pointer; check if the argument
5490 // is a LambdaExpr.
5491 Expr *SubE = E;
5492 CastExpr *CE = dyn_cast<CastExpr>(SubE);
5493 if (CE && CE->getCastKind() == CK_NoOp)
5494 SubE = CE->getSubExpr();
5495 SubE = SubE->IgnoreParens();
5496 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5497 SubE = BE->getSubExpr();
5498 if (isa<LambdaExpr>(SubE)) {
5499 // For the conversion to block pointer on a lambda expression, we
5500 // construct a special BlockLiteral instead; this doesn't really make
5501 // a difference in ARC, but outside of ARC the resulting block literal
5502 // follows the normal lifetime rules for block literals instead of being
5503 // autoreleased.
5504 DiagnosticErrorTrap Trap(Diags);
5505 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5506 E->getExprLoc(),
5507 Method, E);
5508 if (Exp.isInvalid())
5509 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5510 return Exp;
5511 }
5512 }
5513
5514
5515 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5516 FoundDecl, Method);
5517 if (Exp.isInvalid())
5518 return true;
5519
5520 MemberExpr *ME =
5521 new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5522 SourceLocation(), Context.BoundMemberTy,
5523 VK_RValue, OK_Ordinary);
5524 if (HadMultipleCandidates)
5525 ME->setHadMultipleCandidates(true);
5526 MarkMemberReferenced(ME);
5527
5528 QualType ResultType = Method->getResultType();
5529 ExprValueKind VK = Expr::getValueKindForType(ResultType);
5530 ResultType = ResultType.getNonLValueExprType(Context);
5531
5532 CXXMemberCallExpr *CE =
5533 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5534 Exp.get()->getLocEnd());
5535 return CE;
5536 }
5537
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5538 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5539 SourceLocation RParen) {
5540 CanThrowResult CanThrow = canThrow(Operand);
5541 return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5542 CanThrow, KeyLoc, RParen));
5543 }
5544
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5545 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5546 Expr *Operand, SourceLocation RParen) {
5547 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5548 }
5549
IsSpecialDiscardedValue(Expr * E)5550 static bool IsSpecialDiscardedValue(Expr *E) {
5551 // In C++11, discarded-value expressions of a certain form are special,
5552 // according to [expr]p10:
5553 // The lvalue-to-rvalue conversion (4.1) is applied only if the
5554 // expression is an lvalue of volatile-qualified type and it has
5555 // one of the following forms:
5556 E = E->IgnoreParens();
5557
5558 // - id-expression (5.1.1),
5559 if (isa<DeclRefExpr>(E))
5560 return true;
5561
5562 // - subscripting (5.2.1),
5563 if (isa<ArraySubscriptExpr>(E))
5564 return true;
5565
5566 // - class member access (5.2.5),
5567 if (isa<MemberExpr>(E))
5568 return true;
5569
5570 // - indirection (5.3.1),
5571 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5572 if (UO->getOpcode() == UO_Deref)
5573 return true;
5574
5575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5576 // - pointer-to-member operation (5.5),
5577 if (BO->isPtrMemOp())
5578 return true;
5579
5580 // - comma expression (5.18) where the right operand is one of the above.
5581 if (BO->getOpcode() == BO_Comma)
5582 return IsSpecialDiscardedValue(BO->getRHS());
5583 }
5584
5585 // - conditional expression (5.16) where both the second and the third
5586 // operands are one of the above, or
5587 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5588 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5589 IsSpecialDiscardedValue(CO->getFalseExpr());
5590 // The related edge case of "*x ?: *x".
5591 if (BinaryConditionalOperator *BCO =
5592 dyn_cast<BinaryConditionalOperator>(E)) {
5593 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5594 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5595 IsSpecialDiscardedValue(BCO->getFalseExpr());
5596 }
5597
5598 // Objective-C++ extensions to the rule.
5599 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5600 return true;
5601
5602 return false;
5603 }
5604
5605 /// Perform the conversions required for an expression used in a
5606 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5607 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5608 if (E->hasPlaceholderType()) {
5609 ExprResult result = CheckPlaceholderExpr(E);
5610 if (result.isInvalid()) return Owned(E);
5611 E = result.take();
5612 }
5613
5614 // C99 6.3.2.1:
5615 // [Except in specific positions,] an lvalue that does not have
5616 // array type is converted to the value stored in the
5617 // designated object (and is no longer an lvalue).
5618 if (E->isRValue()) {
5619 // In C, function designators (i.e. expressions of function type)
5620 // are r-values, but we still want to do function-to-pointer decay
5621 // on them. This is both technically correct and convenient for
5622 // some clients.
5623 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5624 return DefaultFunctionArrayConversion(E);
5625
5626 return Owned(E);
5627 }
5628
5629 if (getLangOpts().CPlusPlus) {
5630 // The C++11 standard defines the notion of a discarded-value expression;
5631 // normally, we don't need to do anything to handle it, but if it is a
5632 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5633 // conversion.
5634 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5635 E->getType().isVolatileQualified() &&
5636 IsSpecialDiscardedValue(E)) {
5637 ExprResult Res = DefaultLvalueConversion(E);
5638 if (Res.isInvalid())
5639 return Owned(E);
5640 E = Res.take();
5641 }
5642 return Owned(E);
5643 }
5644
5645 // GCC seems to also exclude expressions of incomplete enum type.
5646 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5647 if (!T->getDecl()->isComplete()) {
5648 // FIXME: stupid workaround for a codegen bug!
5649 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5650 return Owned(E);
5651 }
5652 }
5653
5654 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5655 if (Res.isInvalid())
5656 return Owned(E);
5657 E = Res.take();
5658
5659 if (!E->getType()->isVoidType())
5660 RequireCompleteType(E->getExprLoc(), E->getType(),
5661 diag::err_incomplete_type);
5662 return Owned(E);
5663 }
5664
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)5665 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5666 bool DiscardedValue,
5667 bool IsConstexpr) {
5668 ExprResult FullExpr = Owned(FE);
5669
5670 if (!FullExpr.get())
5671 return ExprError();
5672
5673 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5674 return ExprError();
5675
5676 // Top-level expressions default to 'id' when we're in a debugger.
5677 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5678 FullExpr.get()->getType() == Context.UnknownAnyTy) {
5679 FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5680 if (FullExpr.isInvalid())
5681 return ExprError();
5682 }
5683
5684 if (DiscardedValue) {
5685 FullExpr = CheckPlaceholderExpr(FullExpr.take());
5686 if (FullExpr.isInvalid())
5687 return ExprError();
5688
5689 FullExpr = IgnoredValueConversions(FullExpr.take());
5690 if (FullExpr.isInvalid())
5691 return ExprError();
5692 }
5693
5694 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5695 return MaybeCreateExprWithCleanups(FullExpr);
5696 }
5697
ActOnFinishFullStmt(Stmt * FullStmt)5698 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5699 if (!FullStmt) return StmtError();
5700
5701 return MaybeCreateStmtWithCleanups(FullStmt);
5702 }
5703
5704 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)5705 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5706 CXXScopeSpec &SS,
5707 const DeclarationNameInfo &TargetNameInfo) {
5708 DeclarationName TargetName = TargetNameInfo.getName();
5709 if (!TargetName)
5710 return IER_DoesNotExist;
5711
5712 // If the name itself is dependent, then the result is dependent.
5713 if (TargetName.isDependentName())
5714 return IER_Dependent;
5715
5716 // Do the redeclaration lookup in the current scope.
5717 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5718 Sema::NotForRedeclaration);
5719 LookupParsedName(R, S, &SS);
5720 R.suppressDiagnostics();
5721
5722 switch (R.getResultKind()) {
5723 case LookupResult::Found:
5724 case LookupResult::FoundOverloaded:
5725 case LookupResult::FoundUnresolvedValue:
5726 case LookupResult::Ambiguous:
5727 return IER_Exists;
5728
5729 case LookupResult::NotFound:
5730 return IER_DoesNotExist;
5731
5732 case LookupResult::NotFoundInCurrentInstantiation:
5733 return IER_Dependent;
5734 }
5735
5736 llvm_unreachable("Invalid LookupResult Kind!");
5737 }
5738
5739 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)5740 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5741 bool IsIfExists, CXXScopeSpec &SS,
5742 UnqualifiedId &Name) {
5743 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5744
5745 // Check for unexpanded parameter packs.
5746 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5747 collectUnexpandedParameterPacks(SS, Unexpanded);
5748 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5749 if (!Unexpanded.empty()) {
5750 DiagnoseUnexpandedParameterPacks(KeywordLoc,
5751 IsIfExists? UPPC_IfExists
5752 : UPPC_IfNotExists,
5753 Unexpanded);
5754 return IER_Error;
5755 }
5756
5757 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5758 }
5759