• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Analysis/Analyses/FormatString.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/ADT/SmallBitVector.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <limits>
41 using namespace clang;
42 using namespace sema;
43 
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const44 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                     unsigned ByteNo) const {
46   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                                PP.getLangOpts(), PP.getTargetInfo());
48 }
49 
50 /// Checks that a call expression's argument count is the desired number.
51 /// This is useful when doing custom type-checking.  Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)52 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53   unsigned argCount = call->getNumArgs();
54   if (argCount == desiredArgCount) return false;
55 
56   if (argCount < desiredArgCount)
57     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58         << 0 /*function call*/ << desiredArgCount << argCount
59         << call->getSourceRange();
60 
61   // Highlight all the excess arguments.
62   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                     call->getArg(argCount - 1)->getLocEnd());
64 
65   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66     << 0 /*function call*/ << desiredArgCount << argCount
67     << call->getArg(1)->getSourceRange();
68 }
69 
70 /// Check that the first argument to __builtin_annotation is an integer
71 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)72 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73   if (checkArgCount(S, TheCall, 2))
74     return true;
75 
76   // First argument should be an integer.
77   Expr *ValArg = TheCall->getArg(0);
78   QualType Ty = ValArg->getType();
79   if (!Ty->isIntegerType()) {
80     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81       << ValArg->getSourceRange();
82     return true;
83   }
84 
85   // Second argument should be a constant string.
86   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88   if (!Literal || !Literal->isAscii()) {
89     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90       << StrArg->getSourceRange();
91     return true;
92   }
93 
94   TheCall->setType(Ty);
95   return false;
96 }
97 
98 /// Check that the argument to __builtin_addressof is a glvalue, and set the
99 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)100 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101   if (checkArgCount(S, TheCall, 1))
102     return true;
103 
104   ExprResult Arg(S.Owned(TheCall->getArg(0)));
105   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106   if (ResultType.isNull())
107     return true;
108 
109   TheCall->setArg(0, Arg.take());
110   TheCall->setType(ResultType);
111   return false;
112 }
113 
114 ExprResult
CheckBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)115 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
116   ExprResult TheCallResult(Owned(TheCall));
117 
118   // Find out if any arguments are required to be integer constant expressions.
119   unsigned ICEArguments = 0;
120   ASTContext::GetBuiltinTypeError Error;
121   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
122   if (Error != ASTContext::GE_None)
123     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
124 
125   // If any arguments are required to be ICE's, check and diagnose.
126   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
127     // Skip arguments not required to be ICE's.
128     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
129 
130     llvm::APSInt Result;
131     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
132       return true;
133     ICEArguments &= ~(1 << ArgNo);
134   }
135 
136   switch (BuiltinID) {
137   case Builtin::BI__builtin___CFStringMakeConstantString:
138     assert(TheCall->getNumArgs() == 1 &&
139            "Wrong # arguments to builtin CFStringMakeConstantString");
140     if (CheckObjCString(TheCall->getArg(0)))
141       return ExprError();
142     break;
143   case Builtin::BI__builtin_stdarg_start:
144   case Builtin::BI__builtin_va_start:
145     if (SemaBuiltinVAStart(TheCall))
146       return ExprError();
147     break;
148   case Builtin::BI__builtin_isgreater:
149   case Builtin::BI__builtin_isgreaterequal:
150   case Builtin::BI__builtin_isless:
151   case Builtin::BI__builtin_islessequal:
152   case Builtin::BI__builtin_islessgreater:
153   case Builtin::BI__builtin_isunordered:
154     if (SemaBuiltinUnorderedCompare(TheCall))
155       return ExprError();
156     break;
157   case Builtin::BI__builtin_fpclassify:
158     if (SemaBuiltinFPClassification(TheCall, 6))
159       return ExprError();
160     break;
161   case Builtin::BI__builtin_isfinite:
162   case Builtin::BI__builtin_isinf:
163   case Builtin::BI__builtin_isinf_sign:
164   case Builtin::BI__builtin_isnan:
165   case Builtin::BI__builtin_isnormal:
166     if (SemaBuiltinFPClassification(TheCall, 1))
167       return ExprError();
168     break;
169   case Builtin::BI__builtin_shufflevector:
170     return SemaBuiltinShuffleVector(TheCall);
171     // TheCall will be freed by the smart pointer here, but that's fine, since
172     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
173   case Builtin::BI__builtin_prefetch:
174     if (SemaBuiltinPrefetch(TheCall))
175       return ExprError();
176     break;
177   case Builtin::BI__builtin_object_size:
178     if (SemaBuiltinObjectSize(TheCall))
179       return ExprError();
180     break;
181   case Builtin::BI__builtin_longjmp:
182     if (SemaBuiltinLongjmp(TheCall))
183       return ExprError();
184     break;
185 
186   case Builtin::BI__builtin_classify_type:
187     if (checkArgCount(*this, TheCall, 1)) return true;
188     TheCall->setType(Context.IntTy);
189     break;
190   case Builtin::BI__builtin_constant_p:
191     if (checkArgCount(*this, TheCall, 1)) return true;
192     TheCall->setType(Context.IntTy);
193     break;
194   case Builtin::BI__sync_fetch_and_add:
195   case Builtin::BI__sync_fetch_and_add_1:
196   case Builtin::BI__sync_fetch_and_add_2:
197   case Builtin::BI__sync_fetch_and_add_4:
198   case Builtin::BI__sync_fetch_and_add_8:
199   case Builtin::BI__sync_fetch_and_add_16:
200   case Builtin::BI__sync_fetch_and_sub:
201   case Builtin::BI__sync_fetch_and_sub_1:
202   case Builtin::BI__sync_fetch_and_sub_2:
203   case Builtin::BI__sync_fetch_and_sub_4:
204   case Builtin::BI__sync_fetch_and_sub_8:
205   case Builtin::BI__sync_fetch_and_sub_16:
206   case Builtin::BI__sync_fetch_and_or:
207   case Builtin::BI__sync_fetch_and_or_1:
208   case Builtin::BI__sync_fetch_and_or_2:
209   case Builtin::BI__sync_fetch_and_or_4:
210   case Builtin::BI__sync_fetch_and_or_8:
211   case Builtin::BI__sync_fetch_and_or_16:
212   case Builtin::BI__sync_fetch_and_and:
213   case Builtin::BI__sync_fetch_and_and_1:
214   case Builtin::BI__sync_fetch_and_and_2:
215   case Builtin::BI__sync_fetch_and_and_4:
216   case Builtin::BI__sync_fetch_and_and_8:
217   case Builtin::BI__sync_fetch_and_and_16:
218   case Builtin::BI__sync_fetch_and_xor:
219   case Builtin::BI__sync_fetch_and_xor_1:
220   case Builtin::BI__sync_fetch_and_xor_2:
221   case Builtin::BI__sync_fetch_and_xor_4:
222   case Builtin::BI__sync_fetch_and_xor_8:
223   case Builtin::BI__sync_fetch_and_xor_16:
224   case Builtin::BI__sync_add_and_fetch:
225   case Builtin::BI__sync_add_and_fetch_1:
226   case Builtin::BI__sync_add_and_fetch_2:
227   case Builtin::BI__sync_add_and_fetch_4:
228   case Builtin::BI__sync_add_and_fetch_8:
229   case Builtin::BI__sync_add_and_fetch_16:
230   case Builtin::BI__sync_sub_and_fetch:
231   case Builtin::BI__sync_sub_and_fetch_1:
232   case Builtin::BI__sync_sub_and_fetch_2:
233   case Builtin::BI__sync_sub_and_fetch_4:
234   case Builtin::BI__sync_sub_and_fetch_8:
235   case Builtin::BI__sync_sub_and_fetch_16:
236   case Builtin::BI__sync_and_and_fetch:
237   case Builtin::BI__sync_and_and_fetch_1:
238   case Builtin::BI__sync_and_and_fetch_2:
239   case Builtin::BI__sync_and_and_fetch_4:
240   case Builtin::BI__sync_and_and_fetch_8:
241   case Builtin::BI__sync_and_and_fetch_16:
242   case Builtin::BI__sync_or_and_fetch:
243   case Builtin::BI__sync_or_and_fetch_1:
244   case Builtin::BI__sync_or_and_fetch_2:
245   case Builtin::BI__sync_or_and_fetch_4:
246   case Builtin::BI__sync_or_and_fetch_8:
247   case Builtin::BI__sync_or_and_fetch_16:
248   case Builtin::BI__sync_xor_and_fetch:
249   case Builtin::BI__sync_xor_and_fetch_1:
250   case Builtin::BI__sync_xor_and_fetch_2:
251   case Builtin::BI__sync_xor_and_fetch_4:
252   case Builtin::BI__sync_xor_and_fetch_8:
253   case Builtin::BI__sync_xor_and_fetch_16:
254   case Builtin::BI__sync_val_compare_and_swap:
255   case Builtin::BI__sync_val_compare_and_swap_1:
256   case Builtin::BI__sync_val_compare_and_swap_2:
257   case Builtin::BI__sync_val_compare_and_swap_4:
258   case Builtin::BI__sync_val_compare_and_swap_8:
259   case Builtin::BI__sync_val_compare_and_swap_16:
260   case Builtin::BI__sync_bool_compare_and_swap:
261   case Builtin::BI__sync_bool_compare_and_swap_1:
262   case Builtin::BI__sync_bool_compare_and_swap_2:
263   case Builtin::BI__sync_bool_compare_and_swap_4:
264   case Builtin::BI__sync_bool_compare_and_swap_8:
265   case Builtin::BI__sync_bool_compare_and_swap_16:
266   case Builtin::BI__sync_lock_test_and_set:
267   case Builtin::BI__sync_lock_test_and_set_1:
268   case Builtin::BI__sync_lock_test_and_set_2:
269   case Builtin::BI__sync_lock_test_and_set_4:
270   case Builtin::BI__sync_lock_test_and_set_8:
271   case Builtin::BI__sync_lock_test_and_set_16:
272   case Builtin::BI__sync_lock_release:
273   case Builtin::BI__sync_lock_release_1:
274   case Builtin::BI__sync_lock_release_2:
275   case Builtin::BI__sync_lock_release_4:
276   case Builtin::BI__sync_lock_release_8:
277   case Builtin::BI__sync_lock_release_16:
278   case Builtin::BI__sync_swap:
279   case Builtin::BI__sync_swap_1:
280   case Builtin::BI__sync_swap_2:
281   case Builtin::BI__sync_swap_4:
282   case Builtin::BI__sync_swap_8:
283   case Builtin::BI__sync_swap_16:
284     return SemaBuiltinAtomicOverloaded(TheCallResult);
285 #define BUILTIN(ID, TYPE, ATTRS)
286 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
287   case Builtin::BI##ID: \
288     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
289 #include "clang/Basic/Builtins.def"
290   case Builtin::BI__builtin_annotation:
291     if (SemaBuiltinAnnotation(*this, TheCall))
292       return ExprError();
293     break;
294   case Builtin::BI__builtin_addressof:
295     if (SemaBuiltinAddressof(*this, TheCall))
296       return ExprError();
297     break;
298   }
299 
300   // Since the target specific builtins for each arch overlap, only check those
301   // of the arch we are compiling for.
302   if (BuiltinID >= Builtin::FirstTSBuiltin) {
303     switch (Context.getTargetInfo().getTriple().getArch()) {
304       case llvm::Triple::arm:
305       case llvm::Triple::thumb:
306         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
307           return ExprError();
308         break;
309       case llvm::Triple::aarch64:
310         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
311           return ExprError();
312         break;
313       case llvm::Triple::mips:
314       case llvm::Triple::mipsel:
315       case llvm::Triple::mips64:
316       case llvm::Triple::mips64el:
317         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
318           return ExprError();
319         break;
320       default:
321         break;
322     }
323   }
324 
325   return TheCallResult;
326 }
327 
328 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false)329 static unsigned RFT(unsigned t, bool shift = false) {
330   NeonTypeFlags Type(t);
331   int IsQuad = Type.isQuad();
332   switch (Type.getEltType()) {
333   case NeonTypeFlags::Int8:
334   case NeonTypeFlags::Poly8:
335     return shift ? 7 : (8 << IsQuad) - 1;
336   case NeonTypeFlags::Int16:
337   case NeonTypeFlags::Poly16:
338     return shift ? 15 : (4 << IsQuad) - 1;
339   case NeonTypeFlags::Int32:
340     return shift ? 31 : (2 << IsQuad) - 1;
341   case NeonTypeFlags::Int64:
342     return shift ? 63 : (1 << IsQuad) - 1;
343   case NeonTypeFlags::Float16:
344     assert(!shift && "cannot shift float types!");
345     return (4 << IsQuad) - 1;
346   case NeonTypeFlags::Float32:
347     assert(!shift && "cannot shift float types!");
348     return (2 << IsQuad) - 1;
349   case NeonTypeFlags::Float64:
350     assert(!shift && "cannot shift float types!");
351     return (1 << IsQuad) - 1;
352   }
353   llvm_unreachable("Invalid NeonTypeFlag!");
354 }
355 
356 /// getNeonEltType - Return the QualType corresponding to the elements of
357 /// the vector type specified by the NeonTypeFlags.  This is used to check
358 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context)359 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
360   switch (Flags.getEltType()) {
361   case NeonTypeFlags::Int8:
362     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
363   case NeonTypeFlags::Int16:
364     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
365   case NeonTypeFlags::Int32:
366     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
367   case NeonTypeFlags::Int64:
368     return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
369   case NeonTypeFlags::Poly8:
370     return Context.SignedCharTy;
371   case NeonTypeFlags::Poly16:
372     return Context.ShortTy;
373   case NeonTypeFlags::Float16:
374     return Context.UnsignedShortTy;
375   case NeonTypeFlags::Float32:
376     return Context.FloatTy;
377   case NeonTypeFlags::Float64:
378     return Context.DoubleTy;
379   }
380   llvm_unreachable("Invalid NeonTypeFlag!");
381 }
382 
CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)383 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
384                                            CallExpr *TheCall) {
385 
386   llvm::APSInt Result;
387 
388   uint64_t mask = 0;
389   unsigned TV = 0;
390   int PtrArgNum = -1;
391   bool HasConstPtr = false;
392   switch (BuiltinID) {
393 #define GET_NEON_AARCH64_OVERLOAD_CHECK
394 #include "clang/Basic/arm_neon.inc"
395 #undef GET_NEON_AARCH64_OVERLOAD_CHECK
396   }
397 
398   // For NEON intrinsics which are overloaded on vector element type, validate
399   // the immediate which specifies which variant to emit.
400   unsigned ImmArg = TheCall->getNumArgs() - 1;
401   if (mask) {
402     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
403       return true;
404 
405     TV = Result.getLimitedValue(64);
406     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
407       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
408              << TheCall->getArg(ImmArg)->getSourceRange();
409   }
410 
411   if (PtrArgNum >= 0) {
412     // Check that pointer arguments have the specified type.
413     Expr *Arg = TheCall->getArg(PtrArgNum);
414     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
415       Arg = ICE->getSubExpr();
416     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
417     QualType RHSTy = RHS.get()->getType();
418     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
419     if (HasConstPtr)
420       EltTy = EltTy.withConst();
421     QualType LHSTy = Context.getPointerType(EltTy);
422     AssignConvertType ConvTy;
423     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
424     if (RHS.isInvalid())
425       return true;
426     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
427                                  RHS.get(), AA_Assigning))
428       return true;
429   }
430 
431   // For NEON intrinsics which take an immediate value as part of the
432   // instruction, range check them here.
433   unsigned i = 0, l = 0, u = 0;
434   switch (BuiltinID) {
435   default:
436     return false;
437 #define GET_NEON_AARCH64_IMMEDIATE_CHECK
438 #include "clang/Basic/arm_neon.inc"
439 #undef GET_NEON_AARCH64_IMMEDIATE_CHECK
440   }
441   ;
442 
443   // We can't check the value of a dependent argument.
444   if (TheCall->getArg(i)->isTypeDependent() ||
445       TheCall->getArg(i)->isValueDependent())
446     return false;
447 
448   // Check that the immediate argument is actually a constant.
449   if (SemaBuiltinConstantArg(TheCall, i, Result))
450     return true;
451 
452   // Range check against the upper/lower values for this isntruction.
453   unsigned Val = Result.getZExtValue();
454   if (Val < l || Val > (u + l))
455     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
456            << l << u + l << TheCall->getArg(i)->getSourceRange();
457 
458   return false;
459 }
460 
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall)461 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
462   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
463           BuiltinID == ARM::BI__builtin_arm_strex) &&
464          "unexpected ARM builtin");
465   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
466 
467   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
468 
469   // Ensure that we have the proper number of arguments.
470   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
471     return true;
472 
473   // Inspect the pointer argument of the atomic builtin.  This should always be
474   // a pointer type, whose element is an integral scalar or pointer type.
475   // Because it is a pointer type, we don't have to worry about any implicit
476   // casts here.
477   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
478   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
479   if (PointerArgRes.isInvalid())
480     return true;
481   PointerArg = PointerArgRes.take();
482 
483   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
484   if (!pointerType) {
485     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
486       << PointerArg->getType() << PointerArg->getSourceRange();
487     return true;
488   }
489 
490   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
491   // task is to insert the appropriate casts into the AST. First work out just
492   // what the appropriate type is.
493   QualType ValType = pointerType->getPointeeType();
494   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
495   if (IsLdrex)
496     AddrType.addConst();
497 
498   // Issue a warning if the cast is dodgy.
499   CastKind CastNeeded = CK_NoOp;
500   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
501     CastNeeded = CK_BitCast;
502     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
503       << PointerArg->getType()
504       << Context.getPointerType(AddrType)
505       << AA_Passing << PointerArg->getSourceRange();
506   }
507 
508   // Finally, do the cast and replace the argument with the corrected version.
509   AddrType = Context.getPointerType(AddrType);
510   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
511   if (PointerArgRes.isInvalid())
512     return true;
513   PointerArg = PointerArgRes.take();
514 
515   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
516 
517   // In general, we allow ints, floats and pointers to be loaded and stored.
518   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
519       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
520     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
521       << PointerArg->getType() << PointerArg->getSourceRange();
522     return true;
523   }
524 
525   // But ARM doesn't have instructions to deal with 128-bit versions.
526   if (Context.getTypeSize(ValType) > 64) {
527     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
528       << PointerArg->getType() << PointerArg->getSourceRange();
529     return true;
530   }
531 
532   switch (ValType.getObjCLifetime()) {
533   case Qualifiers::OCL_None:
534   case Qualifiers::OCL_ExplicitNone:
535     // okay
536     break;
537 
538   case Qualifiers::OCL_Weak:
539   case Qualifiers::OCL_Strong:
540   case Qualifiers::OCL_Autoreleasing:
541     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
542       << ValType << PointerArg->getSourceRange();
543     return true;
544   }
545 
546 
547   if (IsLdrex) {
548     TheCall->setType(ValType);
549     return false;
550   }
551 
552   // Initialize the argument to be stored.
553   ExprResult ValArg = TheCall->getArg(0);
554   InitializedEntity Entity = InitializedEntity::InitializeParameter(
555       Context, ValType, /*consume*/ false);
556   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
557   if (ValArg.isInvalid())
558     return true;
559 
560   TheCall->setArg(0, ValArg.get());
561   return false;
562 }
563 
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)564 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
565   llvm::APSInt Result;
566 
567   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
568       BuiltinID == ARM::BI__builtin_arm_strex) {
569     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
570   }
571 
572   uint64_t mask = 0;
573   unsigned TV = 0;
574   int PtrArgNum = -1;
575   bool HasConstPtr = false;
576   switch (BuiltinID) {
577 #define GET_NEON_OVERLOAD_CHECK
578 #include "clang/Basic/arm_neon.inc"
579 #undef GET_NEON_OVERLOAD_CHECK
580   }
581 
582   // For NEON intrinsics which are overloaded on vector element type, validate
583   // the immediate which specifies which variant to emit.
584   unsigned ImmArg = TheCall->getNumArgs()-1;
585   if (mask) {
586     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
587       return true;
588 
589     TV = Result.getLimitedValue(64);
590     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
591       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
592         << TheCall->getArg(ImmArg)->getSourceRange();
593   }
594 
595   if (PtrArgNum >= 0) {
596     // Check that pointer arguments have the specified type.
597     Expr *Arg = TheCall->getArg(PtrArgNum);
598     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
599       Arg = ICE->getSubExpr();
600     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
601     QualType RHSTy = RHS.get()->getType();
602     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
603     if (HasConstPtr)
604       EltTy = EltTy.withConst();
605     QualType LHSTy = Context.getPointerType(EltTy);
606     AssignConvertType ConvTy;
607     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
608     if (RHS.isInvalid())
609       return true;
610     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
611                                  RHS.get(), AA_Assigning))
612       return true;
613   }
614 
615   // For NEON intrinsics which take an immediate value as part of the
616   // instruction, range check them here.
617   unsigned i = 0, l = 0, u = 0;
618   switch (BuiltinID) {
619   default: return false;
620   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
621   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
622   case ARM::BI__builtin_arm_vcvtr_f:
623   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
624 #define GET_NEON_IMMEDIATE_CHECK
625 #include "clang/Basic/arm_neon.inc"
626 #undef GET_NEON_IMMEDIATE_CHECK
627   };
628 
629   // We can't check the value of a dependent argument.
630   if (TheCall->getArg(i)->isTypeDependent() ||
631       TheCall->getArg(i)->isValueDependent())
632     return false;
633 
634   // Check that the immediate argument is actually a constant.
635   if (SemaBuiltinConstantArg(TheCall, i, Result))
636     return true;
637 
638   // Range check against the upper/lower values for this isntruction.
639   unsigned Val = Result.getZExtValue();
640   if (Val < l || Val > (u + l))
641     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
642       << l << u+l << TheCall->getArg(i)->getSourceRange();
643 
644   // FIXME: VFP Intrinsics should error if VFP not present.
645   return false;
646 }
647 
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)648 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
649   unsigned i = 0, l = 0, u = 0;
650   switch (BuiltinID) {
651   default: return false;
652   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
653   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
654   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
655   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
656   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
657   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
658   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
659   };
660 
661   // We can't check the value of a dependent argument.
662   if (TheCall->getArg(i)->isTypeDependent() ||
663       TheCall->getArg(i)->isValueDependent())
664     return false;
665 
666   // Check that the immediate argument is actually a constant.
667   llvm::APSInt Result;
668   if (SemaBuiltinConstantArg(TheCall, i, Result))
669     return true;
670 
671   // Range check against the upper/lower values for this instruction.
672   unsigned Val = Result.getZExtValue();
673   if (Val < l || Val > u)
674     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
675       << l << u << TheCall->getArg(i)->getSourceRange();
676 
677   return false;
678 }
679 
680 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
681 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
682 /// Returns true when the format fits the function and the FormatStringInfo has
683 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)684 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
685                                FormatStringInfo *FSI) {
686   FSI->HasVAListArg = Format->getFirstArg() == 0;
687   FSI->FormatIdx = Format->getFormatIdx() - 1;
688   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
689 
690   // The way the format attribute works in GCC, the implicit this argument
691   // of member functions is counted. However, it doesn't appear in our own
692   // lists, so decrement format_idx in that case.
693   if (IsCXXMember) {
694     if(FSI->FormatIdx == 0)
695       return false;
696     --FSI->FormatIdx;
697     if (FSI->FirstDataArg != 0)
698       --FSI->FirstDataArg;
699   }
700   return true;
701 }
702 
703 /// Handles the checks for format strings, non-POD arguments to vararg
704 /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,ArrayRef<const Expr * > Args,unsigned NumProtoArgs,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)705 void Sema::checkCall(NamedDecl *FDecl,
706                      ArrayRef<const Expr *> Args,
707                      unsigned NumProtoArgs,
708                      bool IsMemberFunction,
709                      SourceLocation Loc,
710                      SourceRange Range,
711                      VariadicCallType CallType) {
712   // FIXME: We should check as much as we can in the template definition.
713   if (CurContext->isDependentContext())
714     return;
715 
716   // Printf and scanf checking.
717   bool HandledFormatString = false;
718   llvm::SmallBitVector CheckedVarArgs;
719   if (FDecl) {
720     for (specific_attr_iterator<FormatAttr>
721            I = FDecl->specific_attr_begin<FormatAttr>(),
722            E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I) {
723       CheckedVarArgs.resize(Args.size());
724       if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc,
725                                Range, CheckedVarArgs))
726         HandledFormatString = true;
727     }
728   }
729 
730   // Refuse POD arguments that weren't caught by the format string
731   // checks above.
732   if (CallType != VariadicDoesNotApply) {
733     for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
734       // Args[ArgIdx] can be null in malformed code.
735       if (const Expr *Arg = Args[ArgIdx]) {
736         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
737           checkVariadicArgument(Arg, CallType);
738       }
739     }
740   }
741 
742   if (FDecl) {
743     for (specific_attr_iterator<NonNullAttr>
744            I = FDecl->specific_attr_begin<NonNullAttr>(),
745            E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
746       CheckNonNullArguments(*I, Args.data(), Loc);
747 
748     // Type safety checking.
749     for (specific_attr_iterator<ArgumentWithTypeTagAttr>
750            i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
751            e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
752          i != e; ++i) {
753       CheckArgumentWithTypeTag(*i, Args.data());
754     }
755   }
756 }
757 
758 /// CheckConstructorCall - Check a constructor call for correctness and safety
759 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)760 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
761                                 ArrayRef<const Expr *> Args,
762                                 const FunctionProtoType *Proto,
763                                 SourceLocation Loc) {
764   VariadicCallType CallType =
765     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
766   checkCall(FDecl, Args, Proto->getNumArgs(),
767             /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
768 }
769 
770 /// CheckFunctionCall - Check a direct function call for various correctness
771 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)772 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
773                              const FunctionProtoType *Proto) {
774   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
775                               isa<CXXMethodDecl>(FDecl);
776   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
777                           IsMemberOperatorCall;
778   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
779                                                   TheCall->getCallee());
780   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
781   Expr** Args = TheCall->getArgs();
782   unsigned NumArgs = TheCall->getNumArgs();
783   if (IsMemberOperatorCall) {
784     // If this is a call to a member operator, hide the first argument
785     // from checkCall.
786     // FIXME: Our choice of AST representation here is less than ideal.
787     ++Args;
788     --NumArgs;
789   }
790   checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
791             NumProtoArgs,
792             IsMemberFunction, TheCall->getRParenLoc(),
793             TheCall->getCallee()->getSourceRange(), CallType);
794 
795   IdentifierInfo *FnInfo = FDecl->getIdentifier();
796   // None of the checks below are needed for functions that don't have
797   // simple names (e.g., C++ conversion functions).
798   if (!FnInfo)
799     return false;
800 
801   unsigned CMId = FDecl->getMemoryFunctionKind();
802   if (CMId == 0)
803     return false;
804 
805   // Handle memory setting and copying functions.
806   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
807     CheckStrlcpycatArguments(TheCall, FnInfo);
808   else if (CMId == Builtin::BIstrncat)
809     CheckStrncatArguments(TheCall, FnInfo);
810   else
811     CheckMemaccessArguments(TheCall, CMId, FnInfo);
812 
813   return false;
814 }
815 
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)816 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
817                                ArrayRef<const Expr *> Args) {
818   VariadicCallType CallType =
819       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
820 
821   checkCall(Method, Args, Method->param_size(),
822             /*IsMemberFunction=*/false,
823             lbrac, Method->getSourceRange(), CallType);
824 
825   return false;
826 }
827 
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)828 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
829                             const FunctionProtoType *Proto) {
830   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
831   if (!V)
832     return false;
833 
834   QualType Ty = V->getType();
835   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
836     return false;
837 
838   VariadicCallType CallType;
839   if (!Proto || !Proto->isVariadic()) {
840     CallType = VariadicDoesNotApply;
841   } else if (Ty->isBlockPointerType()) {
842     CallType = VariadicBlock;
843   } else { // Ty->isFunctionPointerType()
844     CallType = VariadicFunction;
845   }
846   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
847 
848   checkCall(NDecl,
849             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
850                                              TheCall->getNumArgs()),
851             NumProtoArgs, /*IsMemberFunction=*/false,
852             TheCall->getRParenLoc(),
853             TheCall->getCallee()->getSourceRange(), CallType);
854 
855   return false;
856 }
857 
858 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
859 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)860 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
861   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
862                                                   TheCall->getCallee());
863   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
864 
865   checkCall(/*FDecl=*/0,
866             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
867                                              TheCall->getNumArgs()),
868             NumProtoArgs, /*IsMemberFunction=*/false,
869             TheCall->getRParenLoc(),
870             TheCall->getCallee()->getSourceRange(), CallType);
871 
872   return false;
873 }
874 
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)875 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
876                                          AtomicExpr::AtomicOp Op) {
877   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
878   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
879 
880   // All these operations take one of the following forms:
881   enum {
882     // C    __c11_atomic_init(A *, C)
883     Init,
884     // C    __c11_atomic_load(A *, int)
885     Load,
886     // void __atomic_load(A *, CP, int)
887     Copy,
888     // C    __c11_atomic_add(A *, M, int)
889     Arithmetic,
890     // C    __atomic_exchange_n(A *, CP, int)
891     Xchg,
892     // void __atomic_exchange(A *, C *, CP, int)
893     GNUXchg,
894     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
895     C11CmpXchg,
896     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
897     GNUCmpXchg
898   } Form = Init;
899   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
900   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
901   // where:
902   //   C is an appropriate type,
903   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
904   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
905   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
906   //   the int parameters are for orderings.
907 
908   assert(AtomicExpr::AO__c11_atomic_init == 0 &&
909          AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
910          && "need to update code for modified C11 atomics");
911   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
912                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
913   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
914              Op == AtomicExpr::AO__atomic_store_n ||
915              Op == AtomicExpr::AO__atomic_exchange_n ||
916              Op == AtomicExpr::AO__atomic_compare_exchange_n;
917   bool IsAddSub = false;
918 
919   switch (Op) {
920   case AtomicExpr::AO__c11_atomic_init:
921     Form = Init;
922     break;
923 
924   case AtomicExpr::AO__c11_atomic_load:
925   case AtomicExpr::AO__atomic_load_n:
926     Form = Load;
927     break;
928 
929   case AtomicExpr::AO__c11_atomic_store:
930   case AtomicExpr::AO__atomic_load:
931   case AtomicExpr::AO__atomic_store:
932   case AtomicExpr::AO__atomic_store_n:
933     Form = Copy;
934     break;
935 
936   case AtomicExpr::AO__c11_atomic_fetch_add:
937   case AtomicExpr::AO__c11_atomic_fetch_sub:
938   case AtomicExpr::AO__atomic_fetch_add:
939   case AtomicExpr::AO__atomic_fetch_sub:
940   case AtomicExpr::AO__atomic_add_fetch:
941   case AtomicExpr::AO__atomic_sub_fetch:
942     IsAddSub = true;
943     // Fall through.
944   case AtomicExpr::AO__c11_atomic_fetch_and:
945   case AtomicExpr::AO__c11_atomic_fetch_or:
946   case AtomicExpr::AO__c11_atomic_fetch_xor:
947   case AtomicExpr::AO__atomic_fetch_and:
948   case AtomicExpr::AO__atomic_fetch_or:
949   case AtomicExpr::AO__atomic_fetch_xor:
950   case AtomicExpr::AO__atomic_fetch_nand:
951   case AtomicExpr::AO__atomic_and_fetch:
952   case AtomicExpr::AO__atomic_or_fetch:
953   case AtomicExpr::AO__atomic_xor_fetch:
954   case AtomicExpr::AO__atomic_nand_fetch:
955     Form = Arithmetic;
956     break;
957 
958   case AtomicExpr::AO__c11_atomic_exchange:
959   case AtomicExpr::AO__atomic_exchange_n:
960     Form = Xchg;
961     break;
962 
963   case AtomicExpr::AO__atomic_exchange:
964     Form = GNUXchg;
965     break;
966 
967   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
968   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
969     Form = C11CmpXchg;
970     break;
971 
972   case AtomicExpr::AO__atomic_compare_exchange:
973   case AtomicExpr::AO__atomic_compare_exchange_n:
974     Form = GNUCmpXchg;
975     break;
976   }
977 
978   // Check we have the right number of arguments.
979   if (TheCall->getNumArgs() < NumArgs[Form]) {
980     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
981       << 0 << NumArgs[Form] << TheCall->getNumArgs()
982       << TheCall->getCallee()->getSourceRange();
983     return ExprError();
984   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
985     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
986          diag::err_typecheck_call_too_many_args)
987       << 0 << NumArgs[Form] << TheCall->getNumArgs()
988       << TheCall->getCallee()->getSourceRange();
989     return ExprError();
990   }
991 
992   // Inspect the first argument of the atomic operation.
993   Expr *Ptr = TheCall->getArg(0);
994   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
995   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
996   if (!pointerType) {
997     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
998       << Ptr->getType() << Ptr->getSourceRange();
999     return ExprError();
1000   }
1001 
1002   // For a __c11 builtin, this should be a pointer to an _Atomic type.
1003   QualType AtomTy = pointerType->getPointeeType(); // 'A'
1004   QualType ValType = AtomTy; // 'C'
1005   if (IsC11) {
1006     if (!AtomTy->isAtomicType()) {
1007       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1008         << Ptr->getType() << Ptr->getSourceRange();
1009       return ExprError();
1010     }
1011     if (AtomTy.isConstQualified()) {
1012       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1013         << Ptr->getType() << Ptr->getSourceRange();
1014       return ExprError();
1015     }
1016     ValType = AtomTy->getAs<AtomicType>()->getValueType();
1017   }
1018 
1019   // For an arithmetic operation, the implied arithmetic must be well-formed.
1020   if (Form == Arithmetic) {
1021     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1022     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1023       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1024         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1025       return ExprError();
1026     }
1027     if (!IsAddSub && !ValType->isIntegerType()) {
1028       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1029         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1030       return ExprError();
1031     }
1032   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1033     // For __atomic_*_n operations, the value type must be a scalar integral or
1034     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1035     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1036       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1037     return ExprError();
1038   }
1039 
1040   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
1041     // For GNU atomics, require a trivially-copyable type. This is not part of
1042     // the GNU atomics specification, but we enforce it for sanity.
1043     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1044       << Ptr->getType() << Ptr->getSourceRange();
1045     return ExprError();
1046   }
1047 
1048   // FIXME: For any builtin other than a load, the ValType must not be
1049   // const-qualified.
1050 
1051   switch (ValType.getObjCLifetime()) {
1052   case Qualifiers::OCL_None:
1053   case Qualifiers::OCL_ExplicitNone:
1054     // okay
1055     break;
1056 
1057   case Qualifiers::OCL_Weak:
1058   case Qualifiers::OCL_Strong:
1059   case Qualifiers::OCL_Autoreleasing:
1060     // FIXME: Can this happen? By this point, ValType should be known
1061     // to be trivially copyable.
1062     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1063       << ValType << Ptr->getSourceRange();
1064     return ExprError();
1065   }
1066 
1067   QualType ResultType = ValType;
1068   if (Form == Copy || Form == GNUXchg || Form == Init)
1069     ResultType = Context.VoidTy;
1070   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1071     ResultType = Context.BoolTy;
1072 
1073   // The type of a parameter passed 'by value'. In the GNU atomics, such
1074   // arguments are actually passed as pointers.
1075   QualType ByValType = ValType; // 'CP'
1076   if (!IsC11 && !IsN)
1077     ByValType = Ptr->getType();
1078 
1079   // The first argument --- the pointer --- has a fixed type; we
1080   // deduce the types of the rest of the arguments accordingly.  Walk
1081   // the remaining arguments, converting them to the deduced value type.
1082   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1083     QualType Ty;
1084     if (i < NumVals[Form] + 1) {
1085       switch (i) {
1086       case 1:
1087         // The second argument is the non-atomic operand. For arithmetic, this
1088         // is always passed by value, and for a compare_exchange it is always
1089         // passed by address. For the rest, GNU uses by-address and C11 uses
1090         // by-value.
1091         assert(Form != Load);
1092         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1093           Ty = ValType;
1094         else if (Form == Copy || Form == Xchg)
1095           Ty = ByValType;
1096         else if (Form == Arithmetic)
1097           Ty = Context.getPointerDiffType();
1098         else
1099           Ty = Context.getPointerType(ValType.getUnqualifiedType());
1100         break;
1101       case 2:
1102         // The third argument to compare_exchange / GNU exchange is a
1103         // (pointer to a) desired value.
1104         Ty = ByValType;
1105         break;
1106       case 3:
1107         // The fourth argument to GNU compare_exchange is a 'weak' flag.
1108         Ty = Context.BoolTy;
1109         break;
1110       }
1111     } else {
1112       // The order(s) are always converted to int.
1113       Ty = Context.IntTy;
1114     }
1115 
1116     InitializedEntity Entity =
1117         InitializedEntity::InitializeParameter(Context, Ty, false);
1118     ExprResult Arg = TheCall->getArg(i);
1119     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1120     if (Arg.isInvalid())
1121       return true;
1122     TheCall->setArg(i, Arg.get());
1123   }
1124 
1125   // Permute the arguments into a 'consistent' order.
1126   SmallVector<Expr*, 5> SubExprs;
1127   SubExprs.push_back(Ptr);
1128   switch (Form) {
1129   case Init:
1130     // Note, AtomicExpr::getVal1() has a special case for this atomic.
1131     SubExprs.push_back(TheCall->getArg(1)); // Val1
1132     break;
1133   case Load:
1134     SubExprs.push_back(TheCall->getArg(1)); // Order
1135     break;
1136   case Copy:
1137   case Arithmetic:
1138   case Xchg:
1139     SubExprs.push_back(TheCall->getArg(2)); // Order
1140     SubExprs.push_back(TheCall->getArg(1)); // Val1
1141     break;
1142   case GNUXchg:
1143     // Note, AtomicExpr::getVal2() has a special case for this atomic.
1144     SubExprs.push_back(TheCall->getArg(3)); // Order
1145     SubExprs.push_back(TheCall->getArg(1)); // Val1
1146     SubExprs.push_back(TheCall->getArg(2)); // Val2
1147     break;
1148   case C11CmpXchg:
1149     SubExprs.push_back(TheCall->getArg(3)); // Order
1150     SubExprs.push_back(TheCall->getArg(1)); // Val1
1151     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1152     SubExprs.push_back(TheCall->getArg(2)); // Val2
1153     break;
1154   case GNUCmpXchg:
1155     SubExprs.push_back(TheCall->getArg(4)); // Order
1156     SubExprs.push_back(TheCall->getArg(1)); // Val1
1157     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1158     SubExprs.push_back(TheCall->getArg(2)); // Val2
1159     SubExprs.push_back(TheCall->getArg(3)); // Weak
1160     break;
1161   }
1162 
1163   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1164                                             SubExprs, ResultType, Op,
1165                                             TheCall->getRParenLoc());
1166 
1167   if ((Op == AtomicExpr::AO__c11_atomic_load ||
1168        (Op == AtomicExpr::AO__c11_atomic_store)) &&
1169       Context.AtomicUsesUnsupportedLibcall(AE))
1170     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1171     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1172 
1173   return Owned(AE);
1174 }
1175 
1176 
1177 /// checkBuiltinArgument - Given a call to a builtin function, perform
1178 /// normal type-checking on the given argument, updating the call in
1179 /// place.  This is useful when a builtin function requires custom
1180 /// type-checking for some of its arguments but not necessarily all of
1181 /// them.
1182 ///
1183 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)1184 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1185   FunctionDecl *Fn = E->getDirectCallee();
1186   assert(Fn && "builtin call without direct callee!");
1187 
1188   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1189   InitializedEntity Entity =
1190     InitializedEntity::InitializeParameter(S.Context, Param);
1191 
1192   ExprResult Arg = E->getArg(0);
1193   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1194   if (Arg.isInvalid())
1195     return true;
1196 
1197   E->setArg(ArgIndex, Arg.take());
1198   return false;
1199 }
1200 
1201 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
1202 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
1203 /// type of its first argument.  The main ActOnCallExpr routines have already
1204 /// promoted the types of arguments because all of these calls are prototyped as
1205 /// void(...).
1206 ///
1207 /// This function goes through and does final semantic checking for these
1208 /// builtins,
1209 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)1210 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1211   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1212   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1213   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1214 
1215   // Ensure that we have at least one argument to do type inference from.
1216   if (TheCall->getNumArgs() < 1) {
1217     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1218       << 0 << 1 << TheCall->getNumArgs()
1219       << TheCall->getCallee()->getSourceRange();
1220     return ExprError();
1221   }
1222 
1223   // Inspect the first argument of the atomic builtin.  This should always be
1224   // a pointer type, whose element is an integral scalar or pointer type.
1225   // Because it is a pointer type, we don't have to worry about any implicit
1226   // casts here.
1227   // FIXME: We don't allow floating point scalars as input.
1228   Expr *FirstArg = TheCall->getArg(0);
1229   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1230   if (FirstArgResult.isInvalid())
1231     return ExprError();
1232   FirstArg = FirstArgResult.take();
1233   TheCall->setArg(0, FirstArg);
1234 
1235   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1236   if (!pointerType) {
1237     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1238       << FirstArg->getType() << FirstArg->getSourceRange();
1239     return ExprError();
1240   }
1241 
1242   QualType ValType = pointerType->getPointeeType();
1243   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1244       !ValType->isBlockPointerType()) {
1245     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1246       << FirstArg->getType() << FirstArg->getSourceRange();
1247     return ExprError();
1248   }
1249 
1250   switch (ValType.getObjCLifetime()) {
1251   case Qualifiers::OCL_None:
1252   case Qualifiers::OCL_ExplicitNone:
1253     // okay
1254     break;
1255 
1256   case Qualifiers::OCL_Weak:
1257   case Qualifiers::OCL_Strong:
1258   case Qualifiers::OCL_Autoreleasing:
1259     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1260       << ValType << FirstArg->getSourceRange();
1261     return ExprError();
1262   }
1263 
1264   // Strip any qualifiers off ValType.
1265   ValType = ValType.getUnqualifiedType();
1266 
1267   // The majority of builtins return a value, but a few have special return
1268   // types, so allow them to override appropriately below.
1269   QualType ResultType = ValType;
1270 
1271   // We need to figure out which concrete builtin this maps onto.  For example,
1272   // __sync_fetch_and_add with a 2 byte object turns into
1273   // __sync_fetch_and_add_2.
1274 #define BUILTIN_ROW(x) \
1275   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1276     Builtin::BI##x##_8, Builtin::BI##x##_16 }
1277 
1278   static const unsigned BuiltinIndices[][5] = {
1279     BUILTIN_ROW(__sync_fetch_and_add),
1280     BUILTIN_ROW(__sync_fetch_and_sub),
1281     BUILTIN_ROW(__sync_fetch_and_or),
1282     BUILTIN_ROW(__sync_fetch_and_and),
1283     BUILTIN_ROW(__sync_fetch_and_xor),
1284 
1285     BUILTIN_ROW(__sync_add_and_fetch),
1286     BUILTIN_ROW(__sync_sub_and_fetch),
1287     BUILTIN_ROW(__sync_and_and_fetch),
1288     BUILTIN_ROW(__sync_or_and_fetch),
1289     BUILTIN_ROW(__sync_xor_and_fetch),
1290 
1291     BUILTIN_ROW(__sync_val_compare_and_swap),
1292     BUILTIN_ROW(__sync_bool_compare_and_swap),
1293     BUILTIN_ROW(__sync_lock_test_and_set),
1294     BUILTIN_ROW(__sync_lock_release),
1295     BUILTIN_ROW(__sync_swap)
1296   };
1297 #undef BUILTIN_ROW
1298 
1299   // Determine the index of the size.
1300   unsigned SizeIndex;
1301   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1302   case 1: SizeIndex = 0; break;
1303   case 2: SizeIndex = 1; break;
1304   case 4: SizeIndex = 2; break;
1305   case 8: SizeIndex = 3; break;
1306   case 16: SizeIndex = 4; break;
1307   default:
1308     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1309       << FirstArg->getType() << FirstArg->getSourceRange();
1310     return ExprError();
1311   }
1312 
1313   // Each of these builtins has one pointer argument, followed by some number of
1314   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1315   // that we ignore.  Find out which row of BuiltinIndices to read from as well
1316   // as the number of fixed args.
1317   unsigned BuiltinID = FDecl->getBuiltinID();
1318   unsigned BuiltinIndex, NumFixed = 1;
1319   switch (BuiltinID) {
1320   default: llvm_unreachable("Unknown overloaded atomic builtin!");
1321   case Builtin::BI__sync_fetch_and_add:
1322   case Builtin::BI__sync_fetch_and_add_1:
1323   case Builtin::BI__sync_fetch_and_add_2:
1324   case Builtin::BI__sync_fetch_and_add_4:
1325   case Builtin::BI__sync_fetch_and_add_8:
1326   case Builtin::BI__sync_fetch_and_add_16:
1327     BuiltinIndex = 0;
1328     break;
1329 
1330   case Builtin::BI__sync_fetch_and_sub:
1331   case Builtin::BI__sync_fetch_and_sub_1:
1332   case Builtin::BI__sync_fetch_and_sub_2:
1333   case Builtin::BI__sync_fetch_and_sub_4:
1334   case Builtin::BI__sync_fetch_and_sub_8:
1335   case Builtin::BI__sync_fetch_and_sub_16:
1336     BuiltinIndex = 1;
1337     break;
1338 
1339   case Builtin::BI__sync_fetch_and_or:
1340   case Builtin::BI__sync_fetch_and_or_1:
1341   case Builtin::BI__sync_fetch_and_or_2:
1342   case Builtin::BI__sync_fetch_and_or_4:
1343   case Builtin::BI__sync_fetch_and_or_8:
1344   case Builtin::BI__sync_fetch_and_or_16:
1345     BuiltinIndex = 2;
1346     break;
1347 
1348   case Builtin::BI__sync_fetch_and_and:
1349   case Builtin::BI__sync_fetch_and_and_1:
1350   case Builtin::BI__sync_fetch_and_and_2:
1351   case Builtin::BI__sync_fetch_and_and_4:
1352   case Builtin::BI__sync_fetch_and_and_8:
1353   case Builtin::BI__sync_fetch_and_and_16:
1354     BuiltinIndex = 3;
1355     break;
1356 
1357   case Builtin::BI__sync_fetch_and_xor:
1358   case Builtin::BI__sync_fetch_and_xor_1:
1359   case Builtin::BI__sync_fetch_and_xor_2:
1360   case Builtin::BI__sync_fetch_and_xor_4:
1361   case Builtin::BI__sync_fetch_and_xor_8:
1362   case Builtin::BI__sync_fetch_and_xor_16:
1363     BuiltinIndex = 4;
1364     break;
1365 
1366   case Builtin::BI__sync_add_and_fetch:
1367   case Builtin::BI__sync_add_and_fetch_1:
1368   case Builtin::BI__sync_add_and_fetch_2:
1369   case Builtin::BI__sync_add_and_fetch_4:
1370   case Builtin::BI__sync_add_and_fetch_8:
1371   case Builtin::BI__sync_add_and_fetch_16:
1372     BuiltinIndex = 5;
1373     break;
1374 
1375   case Builtin::BI__sync_sub_and_fetch:
1376   case Builtin::BI__sync_sub_and_fetch_1:
1377   case Builtin::BI__sync_sub_and_fetch_2:
1378   case Builtin::BI__sync_sub_and_fetch_4:
1379   case Builtin::BI__sync_sub_and_fetch_8:
1380   case Builtin::BI__sync_sub_and_fetch_16:
1381     BuiltinIndex = 6;
1382     break;
1383 
1384   case Builtin::BI__sync_and_and_fetch:
1385   case Builtin::BI__sync_and_and_fetch_1:
1386   case Builtin::BI__sync_and_and_fetch_2:
1387   case Builtin::BI__sync_and_and_fetch_4:
1388   case Builtin::BI__sync_and_and_fetch_8:
1389   case Builtin::BI__sync_and_and_fetch_16:
1390     BuiltinIndex = 7;
1391     break;
1392 
1393   case Builtin::BI__sync_or_and_fetch:
1394   case Builtin::BI__sync_or_and_fetch_1:
1395   case Builtin::BI__sync_or_and_fetch_2:
1396   case Builtin::BI__sync_or_and_fetch_4:
1397   case Builtin::BI__sync_or_and_fetch_8:
1398   case Builtin::BI__sync_or_and_fetch_16:
1399     BuiltinIndex = 8;
1400     break;
1401 
1402   case Builtin::BI__sync_xor_and_fetch:
1403   case Builtin::BI__sync_xor_and_fetch_1:
1404   case Builtin::BI__sync_xor_and_fetch_2:
1405   case Builtin::BI__sync_xor_and_fetch_4:
1406   case Builtin::BI__sync_xor_and_fetch_8:
1407   case Builtin::BI__sync_xor_and_fetch_16:
1408     BuiltinIndex = 9;
1409     break;
1410 
1411   case Builtin::BI__sync_val_compare_and_swap:
1412   case Builtin::BI__sync_val_compare_and_swap_1:
1413   case Builtin::BI__sync_val_compare_and_swap_2:
1414   case Builtin::BI__sync_val_compare_and_swap_4:
1415   case Builtin::BI__sync_val_compare_and_swap_8:
1416   case Builtin::BI__sync_val_compare_and_swap_16:
1417     BuiltinIndex = 10;
1418     NumFixed = 2;
1419     break;
1420 
1421   case Builtin::BI__sync_bool_compare_and_swap:
1422   case Builtin::BI__sync_bool_compare_and_swap_1:
1423   case Builtin::BI__sync_bool_compare_and_swap_2:
1424   case Builtin::BI__sync_bool_compare_and_swap_4:
1425   case Builtin::BI__sync_bool_compare_and_swap_8:
1426   case Builtin::BI__sync_bool_compare_and_swap_16:
1427     BuiltinIndex = 11;
1428     NumFixed = 2;
1429     ResultType = Context.BoolTy;
1430     break;
1431 
1432   case Builtin::BI__sync_lock_test_and_set:
1433   case Builtin::BI__sync_lock_test_and_set_1:
1434   case Builtin::BI__sync_lock_test_and_set_2:
1435   case Builtin::BI__sync_lock_test_and_set_4:
1436   case Builtin::BI__sync_lock_test_and_set_8:
1437   case Builtin::BI__sync_lock_test_and_set_16:
1438     BuiltinIndex = 12;
1439     break;
1440 
1441   case Builtin::BI__sync_lock_release:
1442   case Builtin::BI__sync_lock_release_1:
1443   case Builtin::BI__sync_lock_release_2:
1444   case Builtin::BI__sync_lock_release_4:
1445   case Builtin::BI__sync_lock_release_8:
1446   case Builtin::BI__sync_lock_release_16:
1447     BuiltinIndex = 13;
1448     NumFixed = 0;
1449     ResultType = Context.VoidTy;
1450     break;
1451 
1452   case Builtin::BI__sync_swap:
1453   case Builtin::BI__sync_swap_1:
1454   case Builtin::BI__sync_swap_2:
1455   case Builtin::BI__sync_swap_4:
1456   case Builtin::BI__sync_swap_8:
1457   case Builtin::BI__sync_swap_16:
1458     BuiltinIndex = 14;
1459     break;
1460   }
1461 
1462   // Now that we know how many fixed arguments we expect, first check that we
1463   // have at least that many.
1464   if (TheCall->getNumArgs() < 1+NumFixed) {
1465     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1466       << 0 << 1+NumFixed << TheCall->getNumArgs()
1467       << TheCall->getCallee()->getSourceRange();
1468     return ExprError();
1469   }
1470 
1471   // Get the decl for the concrete builtin from this, we can tell what the
1472   // concrete integer type we should convert to is.
1473   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1474   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1475   FunctionDecl *NewBuiltinDecl;
1476   if (NewBuiltinID == BuiltinID)
1477     NewBuiltinDecl = FDecl;
1478   else {
1479     // Perform builtin lookup to avoid redeclaring it.
1480     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1481     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1482     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1483     assert(Res.getFoundDecl());
1484     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1485     if (NewBuiltinDecl == 0)
1486       return ExprError();
1487   }
1488 
1489   // The first argument --- the pointer --- has a fixed type; we
1490   // deduce the types of the rest of the arguments accordingly.  Walk
1491   // the remaining arguments, converting them to the deduced value type.
1492   for (unsigned i = 0; i != NumFixed; ++i) {
1493     ExprResult Arg = TheCall->getArg(i+1);
1494 
1495     // GCC does an implicit conversion to the pointer or integer ValType.  This
1496     // can fail in some cases (1i -> int**), check for this error case now.
1497     // Initialize the argument.
1498     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1499                                                    ValType, /*consume*/ false);
1500     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1501     if (Arg.isInvalid())
1502       return ExprError();
1503 
1504     // Okay, we have something that *can* be converted to the right type.  Check
1505     // to see if there is a potentially weird extension going on here.  This can
1506     // happen when you do an atomic operation on something like an char* and
1507     // pass in 42.  The 42 gets converted to char.  This is even more strange
1508     // for things like 45.123 -> char, etc.
1509     // FIXME: Do this check.
1510     TheCall->setArg(i+1, Arg.take());
1511   }
1512 
1513   ASTContext& Context = this->getASTContext();
1514 
1515   // Create a new DeclRefExpr to refer to the new decl.
1516   DeclRefExpr* NewDRE = DeclRefExpr::Create(
1517       Context,
1518       DRE->getQualifierLoc(),
1519       SourceLocation(),
1520       NewBuiltinDecl,
1521       /*enclosing*/ false,
1522       DRE->getLocation(),
1523       Context.BuiltinFnTy,
1524       DRE->getValueKind());
1525 
1526   // Set the callee in the CallExpr.
1527   // FIXME: This loses syntactic information.
1528   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1529   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1530                                               CK_BuiltinFnToFnPtr);
1531   TheCall->setCallee(PromotedCall.take());
1532 
1533   // Change the result type of the call to match the original value type. This
1534   // is arbitrary, but the codegen for these builtins ins design to handle it
1535   // gracefully.
1536   TheCall->setType(ResultType);
1537 
1538   return TheCallResult;
1539 }
1540 
1541 /// CheckObjCString - Checks that the argument to the builtin
1542 /// CFString constructor is correct
1543 /// Note: It might also make sense to do the UTF-16 conversion here (would
1544 /// simplify the backend).
CheckObjCString(Expr * Arg)1545 bool Sema::CheckObjCString(Expr *Arg) {
1546   Arg = Arg->IgnoreParenCasts();
1547   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1548 
1549   if (!Literal || !Literal->isAscii()) {
1550     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1551       << Arg->getSourceRange();
1552     return true;
1553   }
1554 
1555   if (Literal->containsNonAsciiOrNull()) {
1556     StringRef String = Literal->getString();
1557     unsigned NumBytes = String.size();
1558     SmallVector<UTF16, 128> ToBuf(NumBytes);
1559     const UTF8 *FromPtr = (const UTF8 *)String.data();
1560     UTF16 *ToPtr = &ToBuf[0];
1561 
1562     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1563                                                  &ToPtr, ToPtr + NumBytes,
1564                                                  strictConversion);
1565     // Check for conversion failure.
1566     if (Result != conversionOK)
1567       Diag(Arg->getLocStart(),
1568            diag::warn_cfstring_truncated) << Arg->getSourceRange();
1569   }
1570   return false;
1571 }
1572 
1573 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1574 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)1575 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1576   Expr *Fn = TheCall->getCallee();
1577   if (TheCall->getNumArgs() > 2) {
1578     Diag(TheCall->getArg(2)->getLocStart(),
1579          diag::err_typecheck_call_too_many_args)
1580       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1581       << Fn->getSourceRange()
1582       << SourceRange(TheCall->getArg(2)->getLocStart(),
1583                      (*(TheCall->arg_end()-1))->getLocEnd());
1584     return true;
1585   }
1586 
1587   if (TheCall->getNumArgs() < 2) {
1588     return Diag(TheCall->getLocEnd(),
1589       diag::err_typecheck_call_too_few_args_at_least)
1590       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1591   }
1592 
1593   // Type-check the first argument normally.
1594   if (checkBuiltinArgument(*this, TheCall, 0))
1595     return true;
1596 
1597   // Determine whether the current function is variadic or not.
1598   BlockScopeInfo *CurBlock = getCurBlock();
1599   bool isVariadic;
1600   if (CurBlock)
1601     isVariadic = CurBlock->TheDecl->isVariadic();
1602   else if (FunctionDecl *FD = getCurFunctionDecl())
1603     isVariadic = FD->isVariadic();
1604   else
1605     isVariadic = getCurMethodDecl()->isVariadic();
1606 
1607   if (!isVariadic) {
1608     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1609     return true;
1610   }
1611 
1612   // Verify that the second argument to the builtin is the last argument of the
1613   // current function or method.
1614   bool SecondArgIsLastNamedArgument = false;
1615   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1616 
1617   // These are valid if SecondArgIsLastNamedArgument is false after the next
1618   // block.
1619   QualType Type;
1620   SourceLocation ParamLoc;
1621 
1622   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1623     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1624       // FIXME: This isn't correct for methods (results in bogus warning).
1625       // Get the last formal in the current function.
1626       const ParmVarDecl *LastArg;
1627       if (CurBlock)
1628         LastArg = *(CurBlock->TheDecl->param_end()-1);
1629       else if (FunctionDecl *FD = getCurFunctionDecl())
1630         LastArg = *(FD->param_end()-1);
1631       else
1632         LastArg = *(getCurMethodDecl()->param_end()-1);
1633       SecondArgIsLastNamedArgument = PV == LastArg;
1634 
1635       Type = PV->getType();
1636       ParamLoc = PV->getLocation();
1637     }
1638   }
1639 
1640   if (!SecondArgIsLastNamedArgument)
1641     Diag(TheCall->getArg(1)->getLocStart(),
1642          diag::warn_second_parameter_of_va_start_not_last_named_argument);
1643   else if (Type->isReferenceType()) {
1644     Diag(Arg->getLocStart(),
1645          diag::warn_va_start_of_reference_type_is_undefined);
1646     Diag(ParamLoc, diag::note_parameter_type) << Type;
1647   }
1648 
1649   return false;
1650 }
1651 
1652 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1653 /// friends.  This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)1654 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1655   if (TheCall->getNumArgs() < 2)
1656     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1657       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1658   if (TheCall->getNumArgs() > 2)
1659     return Diag(TheCall->getArg(2)->getLocStart(),
1660                 diag::err_typecheck_call_too_many_args)
1661       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1662       << SourceRange(TheCall->getArg(2)->getLocStart(),
1663                      (*(TheCall->arg_end()-1))->getLocEnd());
1664 
1665   ExprResult OrigArg0 = TheCall->getArg(0);
1666   ExprResult OrigArg1 = TheCall->getArg(1);
1667 
1668   // Do standard promotions between the two arguments, returning their common
1669   // type.
1670   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1671   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1672     return true;
1673 
1674   // Make sure any conversions are pushed back into the call; this is
1675   // type safe since unordered compare builtins are declared as "_Bool
1676   // foo(...)".
1677   TheCall->setArg(0, OrigArg0.get());
1678   TheCall->setArg(1, OrigArg1.get());
1679 
1680   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1681     return false;
1682 
1683   // If the common type isn't a real floating type, then the arguments were
1684   // invalid for this operation.
1685   if (Res.isNull() || !Res->isRealFloatingType())
1686     return Diag(OrigArg0.get()->getLocStart(),
1687                 diag::err_typecheck_call_invalid_ordered_compare)
1688       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1689       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1690 
1691   return false;
1692 }
1693 
1694 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1695 /// __builtin_isnan and friends.  This is declared to take (...), so we have
1696 /// to check everything. We expect the last argument to be a floating point
1697 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)1698 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1699   if (TheCall->getNumArgs() < NumArgs)
1700     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1701       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1702   if (TheCall->getNumArgs() > NumArgs)
1703     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1704                 diag::err_typecheck_call_too_many_args)
1705       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1706       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1707                      (*(TheCall->arg_end()-1))->getLocEnd());
1708 
1709   Expr *OrigArg = TheCall->getArg(NumArgs-1);
1710 
1711   if (OrigArg->isTypeDependent())
1712     return false;
1713 
1714   // This operation requires a non-_Complex floating-point number.
1715   if (!OrigArg->getType()->isRealFloatingType())
1716     return Diag(OrigArg->getLocStart(),
1717                 diag::err_typecheck_call_invalid_unary_fp)
1718       << OrigArg->getType() << OrigArg->getSourceRange();
1719 
1720   // If this is an implicit conversion from float -> double, remove it.
1721   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1722     Expr *CastArg = Cast->getSubExpr();
1723     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1724       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1725              "promotion from float to double is the only expected cast here");
1726       Cast->setSubExpr(0);
1727       TheCall->setArg(NumArgs-1, CastArg);
1728     }
1729   }
1730 
1731   return false;
1732 }
1733 
1734 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1735 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)1736 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1737   if (TheCall->getNumArgs() < 2)
1738     return ExprError(Diag(TheCall->getLocEnd(),
1739                           diag::err_typecheck_call_too_few_args_at_least)
1740                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1741                      << TheCall->getSourceRange());
1742 
1743   // Determine which of the following types of shufflevector we're checking:
1744   // 1) unary, vector mask: (lhs, mask)
1745   // 2) binary, vector mask: (lhs, rhs, mask)
1746   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1747   QualType resType = TheCall->getArg(0)->getType();
1748   unsigned numElements = 0;
1749 
1750   if (!TheCall->getArg(0)->isTypeDependent() &&
1751       !TheCall->getArg(1)->isTypeDependent()) {
1752     QualType LHSType = TheCall->getArg(0)->getType();
1753     QualType RHSType = TheCall->getArg(1)->getType();
1754 
1755     if (!LHSType->isVectorType() || !RHSType->isVectorType())
1756       return ExprError(Diag(TheCall->getLocStart(),
1757                             diag::err_shufflevector_non_vector)
1758                        << SourceRange(TheCall->getArg(0)->getLocStart(),
1759                                       TheCall->getArg(1)->getLocEnd()));
1760 
1761     numElements = LHSType->getAs<VectorType>()->getNumElements();
1762     unsigned numResElements = TheCall->getNumArgs() - 2;
1763 
1764     // Check to see if we have a call with 2 vector arguments, the unary shuffle
1765     // with mask.  If so, verify that RHS is an integer vector type with the
1766     // same number of elts as lhs.
1767     if (TheCall->getNumArgs() == 2) {
1768       if (!RHSType->hasIntegerRepresentation() ||
1769           RHSType->getAs<VectorType>()->getNumElements() != numElements)
1770         return ExprError(Diag(TheCall->getLocStart(),
1771                               diag::err_shufflevector_incompatible_vector)
1772                          << SourceRange(TheCall->getArg(1)->getLocStart(),
1773                                         TheCall->getArg(1)->getLocEnd()));
1774     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1775       return ExprError(Diag(TheCall->getLocStart(),
1776                             diag::err_shufflevector_incompatible_vector)
1777                        << SourceRange(TheCall->getArg(0)->getLocStart(),
1778                                       TheCall->getArg(1)->getLocEnd()));
1779     } else if (numElements != numResElements) {
1780       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1781       resType = Context.getVectorType(eltType, numResElements,
1782                                       VectorType::GenericVector);
1783     }
1784   }
1785 
1786   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1787     if (TheCall->getArg(i)->isTypeDependent() ||
1788         TheCall->getArg(i)->isValueDependent())
1789       continue;
1790 
1791     llvm::APSInt Result(32);
1792     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1793       return ExprError(Diag(TheCall->getLocStart(),
1794                             diag::err_shufflevector_nonconstant_argument)
1795                        << TheCall->getArg(i)->getSourceRange());
1796 
1797     // Allow -1 which will be translated to undef in the IR.
1798     if (Result.isSigned() && Result.isAllOnesValue())
1799       continue;
1800 
1801     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1802       return ExprError(Diag(TheCall->getLocStart(),
1803                             diag::err_shufflevector_argument_too_large)
1804                        << TheCall->getArg(i)->getSourceRange());
1805   }
1806 
1807   SmallVector<Expr*, 32> exprs;
1808 
1809   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1810     exprs.push_back(TheCall->getArg(i));
1811     TheCall->setArg(i, 0);
1812   }
1813 
1814   return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1815                                             TheCall->getCallee()->getLocStart(),
1816                                             TheCall->getRParenLoc()));
1817 }
1818 
1819 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1820 // This is declared to take (const void*, ...) and can take two
1821 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)1822 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1823   unsigned NumArgs = TheCall->getNumArgs();
1824 
1825   if (NumArgs > 3)
1826     return Diag(TheCall->getLocEnd(),
1827              diag::err_typecheck_call_too_many_args_at_most)
1828              << 0 /*function call*/ << 3 << NumArgs
1829              << TheCall->getSourceRange();
1830 
1831   // Argument 0 is checked for us and the remaining arguments must be
1832   // constant integers.
1833   for (unsigned i = 1; i != NumArgs; ++i) {
1834     Expr *Arg = TheCall->getArg(i);
1835 
1836     // We can't check the value of a dependent argument.
1837     if (Arg->isTypeDependent() || Arg->isValueDependent())
1838       continue;
1839 
1840     llvm::APSInt Result;
1841     if (SemaBuiltinConstantArg(TheCall, i, Result))
1842       return true;
1843 
1844     // FIXME: gcc issues a warning and rewrites these to 0. These
1845     // seems especially odd for the third argument since the default
1846     // is 3.
1847     if (i == 1) {
1848       if (Result.getLimitedValue() > 1)
1849         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1850              << "0" << "1" << Arg->getSourceRange();
1851     } else {
1852       if (Result.getLimitedValue() > 3)
1853         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1854             << "0" << "3" << Arg->getSourceRange();
1855     }
1856   }
1857 
1858   return false;
1859 }
1860 
1861 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1862 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)1863 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1864                                   llvm::APSInt &Result) {
1865   Expr *Arg = TheCall->getArg(ArgNum);
1866   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1867   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1868 
1869   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1870 
1871   if (!Arg->isIntegerConstantExpr(Result, Context))
1872     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1873                 << FDecl->getDeclName() <<  Arg->getSourceRange();
1874 
1875   return false;
1876 }
1877 
1878 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1879 /// int type). This simply type checks that type is one of the defined
1880 /// constants (0-3).
1881 // For compatibility check 0-3, llvm only handles 0 and 2.
SemaBuiltinObjectSize(CallExpr * TheCall)1882 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1883   llvm::APSInt Result;
1884 
1885   // We can't check the value of a dependent argument.
1886   if (TheCall->getArg(1)->isTypeDependent() ||
1887       TheCall->getArg(1)->isValueDependent())
1888     return false;
1889 
1890   // Check constant-ness first.
1891   if (SemaBuiltinConstantArg(TheCall, 1, Result))
1892     return true;
1893 
1894   Expr *Arg = TheCall->getArg(1);
1895   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1896     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1897              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1898   }
1899 
1900   return false;
1901 }
1902 
1903 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1904 /// This checks that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)1905 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1906   Expr *Arg = TheCall->getArg(1);
1907   llvm::APSInt Result;
1908 
1909   // TODO: This is less than ideal. Overload this to take a value.
1910   if (SemaBuiltinConstantArg(TheCall, 1, Result))
1911     return true;
1912 
1913   if (Result != 1)
1914     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1915              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1916 
1917   return false;
1918 }
1919 
1920 namespace {
1921 enum StringLiteralCheckType {
1922   SLCT_NotALiteral,
1923   SLCT_UncheckedLiteral,
1924   SLCT_CheckedLiteral
1925 };
1926 }
1927 
1928 // Determine if an expression is a string literal or constant string.
1929 // If this function returns false on the arguments to a function expecting a
1930 // format string, we will usually need to emit a warning.
1931 // True string literals are then checked by CheckFormatString.
1932 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs)1933 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
1934                       bool HasVAListArg, unsigned format_idx,
1935                       unsigned firstDataArg, Sema::FormatStringType Type,
1936                       Sema::VariadicCallType CallType, bool InFunctionCall,
1937                       llvm::SmallBitVector &CheckedVarArgs) {
1938  tryAgain:
1939   if (E->isTypeDependent() || E->isValueDependent())
1940     return SLCT_NotALiteral;
1941 
1942   E = E->IgnoreParenCasts();
1943 
1944   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
1945     // Technically -Wformat-nonliteral does not warn about this case.
1946     // The behavior of printf and friends in this case is implementation
1947     // dependent.  Ideally if the format string cannot be null then
1948     // it should have a 'nonnull' attribute in the function prototype.
1949     return SLCT_UncheckedLiteral;
1950 
1951   switch (E->getStmtClass()) {
1952   case Stmt::BinaryConditionalOperatorClass:
1953   case Stmt::ConditionalOperatorClass: {
1954     // The expression is a literal if both sub-expressions were, and it was
1955     // completely checked only if both sub-expressions were checked.
1956     const AbstractConditionalOperator *C =
1957         cast<AbstractConditionalOperator>(E);
1958     StringLiteralCheckType Left =
1959         checkFormatStringExpr(S, C->getTrueExpr(), Args,
1960                               HasVAListArg, format_idx, firstDataArg,
1961                               Type, CallType, InFunctionCall, CheckedVarArgs);
1962     if (Left == SLCT_NotALiteral)
1963       return SLCT_NotALiteral;
1964     StringLiteralCheckType Right =
1965         checkFormatStringExpr(S, C->getFalseExpr(), Args,
1966                               HasVAListArg, format_idx, firstDataArg,
1967                               Type, CallType, InFunctionCall, CheckedVarArgs);
1968     return Left < Right ? Left : Right;
1969   }
1970 
1971   case Stmt::ImplicitCastExprClass: {
1972     E = cast<ImplicitCastExpr>(E)->getSubExpr();
1973     goto tryAgain;
1974   }
1975 
1976   case Stmt::OpaqueValueExprClass:
1977     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1978       E = src;
1979       goto tryAgain;
1980     }
1981     return SLCT_NotALiteral;
1982 
1983   case Stmt::PredefinedExprClass:
1984     // While __func__, etc., are technically not string literals, they
1985     // cannot contain format specifiers and thus are not a security
1986     // liability.
1987     return SLCT_UncheckedLiteral;
1988 
1989   case Stmt::DeclRefExprClass: {
1990     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1991 
1992     // As an exception, do not flag errors for variables binding to
1993     // const string literals.
1994     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1995       bool isConstant = false;
1996       QualType T = DR->getType();
1997 
1998       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
1999         isConstant = AT->getElementType().isConstant(S.Context);
2000       } else if (const PointerType *PT = T->getAs<PointerType>()) {
2001         isConstant = T.isConstant(S.Context) &&
2002                      PT->getPointeeType().isConstant(S.Context);
2003       } else if (T->isObjCObjectPointerType()) {
2004         // In ObjC, there is usually no "const ObjectPointer" type,
2005         // so don't check if the pointee type is constant.
2006         isConstant = T.isConstant(S.Context);
2007       }
2008 
2009       if (isConstant) {
2010         if (const Expr *Init = VD->getAnyInitializer()) {
2011           // Look through initializers like const char c[] = { "foo" }
2012           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2013             if (InitList->isStringLiteralInit())
2014               Init = InitList->getInit(0)->IgnoreParenImpCasts();
2015           }
2016           return checkFormatStringExpr(S, Init, Args,
2017                                        HasVAListArg, format_idx,
2018                                        firstDataArg, Type, CallType,
2019                                        /*InFunctionCall*/false, CheckedVarArgs);
2020         }
2021       }
2022 
2023       // For vprintf* functions (i.e., HasVAListArg==true), we add a
2024       // special check to see if the format string is a function parameter
2025       // of the function calling the printf function.  If the function
2026       // has an attribute indicating it is a printf-like function, then we
2027       // should suppress warnings concerning non-literals being used in a call
2028       // to a vprintf function.  For example:
2029       //
2030       // void
2031       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2032       //      va_list ap;
2033       //      va_start(ap, fmt);
2034       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2035       //      ...
2036       // }
2037       if (HasVAListArg) {
2038         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2039           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2040             int PVIndex = PV->getFunctionScopeIndex() + 1;
2041             for (specific_attr_iterator<FormatAttr>
2042                  i = ND->specific_attr_begin<FormatAttr>(),
2043                  e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
2044               FormatAttr *PVFormat = *i;
2045               // adjust for implicit parameter
2046               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2047                 if (MD->isInstance())
2048                   ++PVIndex;
2049               // We also check if the formats are compatible.
2050               // We can't pass a 'scanf' string to a 'printf' function.
2051               if (PVIndex == PVFormat->getFormatIdx() &&
2052                   Type == S.GetFormatStringType(PVFormat))
2053                 return SLCT_UncheckedLiteral;
2054             }
2055           }
2056         }
2057       }
2058     }
2059 
2060     return SLCT_NotALiteral;
2061   }
2062 
2063   case Stmt::CallExprClass:
2064   case Stmt::CXXMemberCallExprClass: {
2065     const CallExpr *CE = cast<CallExpr>(E);
2066     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2067       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2068         unsigned ArgIndex = FA->getFormatIdx();
2069         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2070           if (MD->isInstance())
2071             --ArgIndex;
2072         const Expr *Arg = CE->getArg(ArgIndex - 1);
2073 
2074         return checkFormatStringExpr(S, Arg, Args,
2075                                      HasVAListArg, format_idx, firstDataArg,
2076                                      Type, CallType, InFunctionCall,
2077                                      CheckedVarArgs);
2078       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2079         unsigned BuiltinID = FD->getBuiltinID();
2080         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2081             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2082           const Expr *Arg = CE->getArg(0);
2083           return checkFormatStringExpr(S, Arg, Args,
2084                                        HasVAListArg, format_idx,
2085                                        firstDataArg, Type, CallType,
2086                                        InFunctionCall, CheckedVarArgs);
2087         }
2088       }
2089     }
2090 
2091     return SLCT_NotALiteral;
2092   }
2093   case Stmt::ObjCStringLiteralClass:
2094   case Stmt::StringLiteralClass: {
2095     const StringLiteral *StrE = NULL;
2096 
2097     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2098       StrE = ObjCFExpr->getString();
2099     else
2100       StrE = cast<StringLiteral>(E);
2101 
2102     if (StrE) {
2103       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2104                           Type, InFunctionCall, CallType, CheckedVarArgs);
2105       return SLCT_CheckedLiteral;
2106     }
2107 
2108     return SLCT_NotALiteral;
2109   }
2110 
2111   default:
2112     return SLCT_NotALiteral;
2113   }
2114 }
2115 
2116 void
CheckNonNullArguments(const NonNullAttr * NonNull,const Expr * const * ExprArgs,SourceLocation CallSiteLoc)2117 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
2118                             const Expr * const *ExprArgs,
2119                             SourceLocation CallSiteLoc) {
2120   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
2121                                   e = NonNull->args_end();
2122        i != e; ++i) {
2123     const Expr *ArgExpr = ExprArgs[*i];
2124 
2125     // As a special case, transparent unions initialized with zero are
2126     // considered null for the purposes of the nonnull attribute.
2127     if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
2128       if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
2129         if (const CompoundLiteralExpr *CLE =
2130             dyn_cast<CompoundLiteralExpr>(ArgExpr))
2131           if (const InitListExpr *ILE =
2132               dyn_cast<InitListExpr>(CLE->getInitializer()))
2133             ArgExpr = ILE->getInit(0);
2134     }
2135 
2136     bool Result;
2137     if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
2138       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
2139   }
2140 }
2141 
GetFormatStringType(const FormatAttr * Format)2142 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2143   return llvm::StringSwitch<FormatStringType>(Format->getType())
2144   .Case("scanf", FST_Scanf)
2145   .Cases("printf", "printf0", FST_Printf)
2146   .Cases("NSString", "CFString", FST_NSString)
2147   .Case("strftime", FST_Strftime)
2148   .Case("strfmon", FST_Strfmon)
2149   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2150   .Default(FST_Unknown);
2151 }
2152 
2153 /// CheckFormatArguments - Check calls to printf and scanf (and similar
2154 /// functions) for correct use of format strings.
2155 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)2156 bool Sema::CheckFormatArguments(const FormatAttr *Format,
2157                                 ArrayRef<const Expr *> Args,
2158                                 bool IsCXXMember,
2159                                 VariadicCallType CallType,
2160                                 SourceLocation Loc, SourceRange Range,
2161                                 llvm::SmallBitVector &CheckedVarArgs) {
2162   FormatStringInfo FSI;
2163   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2164     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2165                                 FSI.FirstDataArg, GetFormatStringType(Format),
2166                                 CallType, Loc, Range, CheckedVarArgs);
2167   return false;
2168 }
2169 
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)2170 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2171                                 bool HasVAListArg, unsigned format_idx,
2172                                 unsigned firstDataArg, FormatStringType Type,
2173                                 VariadicCallType CallType,
2174                                 SourceLocation Loc, SourceRange Range,
2175                                 llvm::SmallBitVector &CheckedVarArgs) {
2176   // CHECK: printf/scanf-like function is called with no format string.
2177   if (format_idx >= Args.size()) {
2178     Diag(Loc, diag::warn_missing_format_string) << Range;
2179     return false;
2180   }
2181 
2182   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2183 
2184   // CHECK: format string is not a string literal.
2185   //
2186   // Dynamically generated format strings are difficult to
2187   // automatically vet at compile time.  Requiring that format strings
2188   // are string literals: (1) permits the checking of format strings by
2189   // the compiler and thereby (2) can practically remove the source of
2190   // many format string exploits.
2191 
2192   // Format string can be either ObjC string (e.g. @"%d") or
2193   // C string (e.g. "%d")
2194   // ObjC string uses the same format specifiers as C string, so we can use
2195   // the same format string checking logic for both ObjC and C strings.
2196   StringLiteralCheckType CT =
2197       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2198                             format_idx, firstDataArg, Type, CallType,
2199                             /*IsFunctionCall*/true, CheckedVarArgs);
2200   if (CT != SLCT_NotALiteral)
2201     // Literal format string found, check done!
2202     return CT == SLCT_CheckedLiteral;
2203 
2204   // Strftime is particular as it always uses a single 'time' argument,
2205   // so it is safe to pass a non-literal string.
2206   if (Type == FST_Strftime)
2207     return false;
2208 
2209   // Do not emit diag when the string param is a macro expansion and the
2210   // format is either NSString or CFString. This is a hack to prevent
2211   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2212   // which are usually used in place of NS and CF string literals.
2213   if (Type == FST_NSString &&
2214       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2215     return false;
2216 
2217   // If there are no arguments specified, warn with -Wformat-security, otherwise
2218   // warn only with -Wformat-nonliteral.
2219   if (Args.size() == firstDataArg)
2220     Diag(Args[format_idx]->getLocStart(),
2221          diag::warn_format_nonliteral_noargs)
2222       << OrigFormatExpr->getSourceRange();
2223   else
2224     Diag(Args[format_idx]->getLocStart(),
2225          diag::warn_format_nonliteral)
2226            << OrigFormatExpr->getSourceRange();
2227   return false;
2228 }
2229 
2230 namespace {
2231 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2232 protected:
2233   Sema &S;
2234   const StringLiteral *FExpr;
2235   const Expr *OrigFormatExpr;
2236   const unsigned FirstDataArg;
2237   const unsigned NumDataArgs;
2238   const char *Beg; // Start of format string.
2239   const bool HasVAListArg;
2240   ArrayRef<const Expr *> Args;
2241   unsigned FormatIdx;
2242   llvm::SmallBitVector CoveredArgs;
2243   bool usesPositionalArgs;
2244   bool atFirstArg;
2245   bool inFunctionCall;
2246   Sema::VariadicCallType CallType;
2247   llvm::SmallBitVector &CheckedVarArgs;
2248 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs)2249   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2250                      const Expr *origFormatExpr, unsigned firstDataArg,
2251                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
2252                      ArrayRef<const Expr *> Args,
2253                      unsigned formatIdx, bool inFunctionCall,
2254                      Sema::VariadicCallType callType,
2255                      llvm::SmallBitVector &CheckedVarArgs)
2256     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2257       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2258       Beg(beg), HasVAListArg(hasVAListArg),
2259       Args(Args), FormatIdx(formatIdx),
2260       usesPositionalArgs(false), atFirstArg(true),
2261       inFunctionCall(inFunctionCall), CallType(callType),
2262       CheckedVarArgs(CheckedVarArgs) {
2263     CoveredArgs.resize(numDataArgs);
2264     CoveredArgs.reset();
2265   }
2266 
2267   void DoneProcessing();
2268 
2269   void HandleIncompleteSpecifier(const char *startSpecifier,
2270                                  unsigned specifierLen);
2271 
2272   void HandleInvalidLengthModifier(
2273       const analyze_format_string::FormatSpecifier &FS,
2274       const analyze_format_string::ConversionSpecifier &CS,
2275       const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2276 
2277   void HandleNonStandardLengthModifier(
2278       const analyze_format_string::FormatSpecifier &FS,
2279       const char *startSpecifier, unsigned specifierLen);
2280 
2281   void HandleNonStandardConversionSpecifier(
2282       const analyze_format_string::ConversionSpecifier &CS,
2283       const char *startSpecifier, unsigned specifierLen);
2284 
2285   virtual void HandlePosition(const char *startPos, unsigned posLen);
2286 
2287   virtual void HandleInvalidPosition(const char *startSpecifier,
2288                                      unsigned specifierLen,
2289                                      analyze_format_string::PositionContext p);
2290 
2291   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2292 
2293   void HandleNullChar(const char *nullCharacter);
2294 
2295   template <typename Range>
2296   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2297                                    const Expr *ArgumentExpr,
2298                                    PartialDiagnostic PDiag,
2299                                    SourceLocation StringLoc,
2300                                    bool IsStringLocation, Range StringRange,
2301                                    ArrayRef<FixItHint> Fixit = None);
2302 
2303 protected:
2304   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2305                                         const char *startSpec,
2306                                         unsigned specifierLen,
2307                                         const char *csStart, unsigned csLen);
2308 
2309   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2310                                          const char *startSpec,
2311                                          unsigned specifierLen);
2312 
2313   SourceRange getFormatStringRange();
2314   CharSourceRange getSpecifierRange(const char *startSpecifier,
2315                                     unsigned specifierLen);
2316   SourceLocation getLocationOfByte(const char *x);
2317 
2318   const Expr *getDataArg(unsigned i) const;
2319 
2320   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2321                     const analyze_format_string::ConversionSpecifier &CS,
2322                     const char *startSpecifier, unsigned specifierLen,
2323                     unsigned argIndex);
2324 
2325   template <typename Range>
2326   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2327                             bool IsStringLocation, Range StringRange,
2328                             ArrayRef<FixItHint> Fixit = None);
2329 
2330   void CheckPositionalAndNonpositionalArgs(
2331       const analyze_format_string::FormatSpecifier *FS);
2332 };
2333 }
2334 
getFormatStringRange()2335 SourceRange CheckFormatHandler::getFormatStringRange() {
2336   return OrigFormatExpr->getSourceRange();
2337 }
2338 
2339 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)2340 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2341   SourceLocation Start = getLocationOfByte(startSpecifier);
2342   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2343 
2344   // Advance the end SourceLocation by one due to half-open ranges.
2345   End = End.getLocWithOffset(1);
2346 
2347   return CharSourceRange::getCharRange(Start, End);
2348 }
2349 
getLocationOfByte(const char * x)2350 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2351   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2352 }
2353 
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)2354 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2355                                                    unsigned specifierLen){
2356   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2357                        getLocationOfByte(startSpecifier),
2358                        /*IsStringLocation*/true,
2359                        getSpecifierRange(startSpecifier, specifierLen));
2360 }
2361 
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)2362 void CheckFormatHandler::HandleInvalidLengthModifier(
2363     const analyze_format_string::FormatSpecifier &FS,
2364     const analyze_format_string::ConversionSpecifier &CS,
2365     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2366   using namespace analyze_format_string;
2367 
2368   const LengthModifier &LM = FS.getLengthModifier();
2369   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2370 
2371   // See if we know how to fix this length modifier.
2372   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2373   if (FixedLM) {
2374     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2375                          getLocationOfByte(LM.getStart()),
2376                          /*IsStringLocation*/true,
2377                          getSpecifierRange(startSpecifier, specifierLen));
2378 
2379     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2380       << FixedLM->toString()
2381       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2382 
2383   } else {
2384     FixItHint Hint;
2385     if (DiagID == diag::warn_format_nonsensical_length)
2386       Hint = FixItHint::CreateRemoval(LMRange);
2387 
2388     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2389                          getLocationOfByte(LM.getStart()),
2390                          /*IsStringLocation*/true,
2391                          getSpecifierRange(startSpecifier, specifierLen),
2392                          Hint);
2393   }
2394 }
2395 
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2396 void CheckFormatHandler::HandleNonStandardLengthModifier(
2397     const analyze_format_string::FormatSpecifier &FS,
2398     const char *startSpecifier, unsigned specifierLen) {
2399   using namespace analyze_format_string;
2400 
2401   const LengthModifier &LM = FS.getLengthModifier();
2402   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2403 
2404   // See if we know how to fix this length modifier.
2405   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2406   if (FixedLM) {
2407     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2408                            << LM.toString() << 0,
2409                          getLocationOfByte(LM.getStart()),
2410                          /*IsStringLocation*/true,
2411                          getSpecifierRange(startSpecifier, specifierLen));
2412 
2413     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2414       << FixedLM->toString()
2415       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2416 
2417   } else {
2418     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2419                            << LM.toString() << 0,
2420                          getLocationOfByte(LM.getStart()),
2421                          /*IsStringLocation*/true,
2422                          getSpecifierRange(startSpecifier, specifierLen));
2423   }
2424 }
2425 
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)2426 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2427     const analyze_format_string::ConversionSpecifier &CS,
2428     const char *startSpecifier, unsigned specifierLen) {
2429   using namespace analyze_format_string;
2430 
2431   // See if we know how to fix this conversion specifier.
2432   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2433   if (FixedCS) {
2434     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2435                           << CS.toString() << /*conversion specifier*/1,
2436                          getLocationOfByte(CS.getStart()),
2437                          /*IsStringLocation*/true,
2438                          getSpecifierRange(startSpecifier, specifierLen));
2439 
2440     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2441     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2442       << FixedCS->toString()
2443       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2444   } else {
2445     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2446                           << CS.toString() << /*conversion specifier*/1,
2447                          getLocationOfByte(CS.getStart()),
2448                          /*IsStringLocation*/true,
2449                          getSpecifierRange(startSpecifier, specifierLen));
2450   }
2451 }
2452 
HandlePosition(const char * startPos,unsigned posLen)2453 void CheckFormatHandler::HandlePosition(const char *startPos,
2454                                         unsigned posLen) {
2455   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2456                                getLocationOfByte(startPos),
2457                                /*IsStringLocation*/true,
2458                                getSpecifierRange(startPos, posLen));
2459 }
2460 
2461 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)2462 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2463                                      analyze_format_string::PositionContext p) {
2464   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2465                          << (unsigned) p,
2466                        getLocationOfByte(startPos), /*IsStringLocation*/true,
2467                        getSpecifierRange(startPos, posLen));
2468 }
2469 
HandleZeroPosition(const char * startPos,unsigned posLen)2470 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2471                                             unsigned posLen) {
2472   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2473                                getLocationOfByte(startPos),
2474                                /*IsStringLocation*/true,
2475                                getSpecifierRange(startPos, posLen));
2476 }
2477 
HandleNullChar(const char * nullCharacter)2478 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2479   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2480     // The presence of a null character is likely an error.
2481     EmitFormatDiagnostic(
2482       S.PDiag(diag::warn_printf_format_string_contains_null_char),
2483       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2484       getFormatStringRange());
2485   }
2486 }
2487 
2488 // Note that this may return NULL if there was an error parsing or building
2489 // one of the argument expressions.
getDataArg(unsigned i) const2490 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2491   return Args[FirstDataArg + i];
2492 }
2493 
DoneProcessing()2494 void CheckFormatHandler::DoneProcessing() {
2495     // Does the number of data arguments exceed the number of
2496     // format conversions in the format string?
2497   if (!HasVAListArg) {
2498       // Find any arguments that weren't covered.
2499     CoveredArgs.flip();
2500     signed notCoveredArg = CoveredArgs.find_first();
2501     if (notCoveredArg >= 0) {
2502       assert((unsigned)notCoveredArg < NumDataArgs);
2503       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2504         SourceLocation Loc = E->getLocStart();
2505         if (!S.getSourceManager().isInSystemMacro(Loc)) {
2506           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2507                                Loc, /*IsStringLocation*/false,
2508                                getFormatStringRange());
2509         }
2510       }
2511     }
2512   }
2513 }
2514 
2515 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)2516 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2517                                                      SourceLocation Loc,
2518                                                      const char *startSpec,
2519                                                      unsigned specifierLen,
2520                                                      const char *csStart,
2521                                                      unsigned csLen) {
2522 
2523   bool keepGoing = true;
2524   if (argIndex < NumDataArgs) {
2525     // Consider the argument coverered, even though the specifier doesn't
2526     // make sense.
2527     CoveredArgs.set(argIndex);
2528   }
2529   else {
2530     // If argIndex exceeds the number of data arguments we
2531     // don't issue a warning because that is just a cascade of warnings (and
2532     // they may have intended '%%' anyway). We don't want to continue processing
2533     // the format string after this point, however, as we will like just get
2534     // gibberish when trying to match arguments.
2535     keepGoing = false;
2536   }
2537 
2538   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2539                          << StringRef(csStart, csLen),
2540                        Loc, /*IsStringLocation*/true,
2541                        getSpecifierRange(startSpec, specifierLen));
2542 
2543   return keepGoing;
2544 }
2545 
2546 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)2547 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2548                                                       const char *startSpec,
2549                                                       unsigned specifierLen) {
2550   EmitFormatDiagnostic(
2551     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2552     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2553 }
2554 
2555 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)2556 CheckFormatHandler::CheckNumArgs(
2557   const analyze_format_string::FormatSpecifier &FS,
2558   const analyze_format_string::ConversionSpecifier &CS,
2559   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2560 
2561   if (argIndex >= NumDataArgs) {
2562     PartialDiagnostic PDiag = FS.usesPositionalArg()
2563       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2564            << (argIndex+1) << NumDataArgs)
2565       : S.PDiag(diag::warn_printf_insufficient_data_args);
2566     EmitFormatDiagnostic(
2567       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2568       getSpecifierRange(startSpecifier, specifierLen));
2569     return false;
2570   }
2571   return true;
2572 }
2573 
2574 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2575 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2576                                               SourceLocation Loc,
2577                                               bool IsStringLocation,
2578                                               Range StringRange,
2579                                               ArrayRef<FixItHint> FixIt) {
2580   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2581                        Loc, IsStringLocation, StringRange, FixIt);
2582 }
2583 
2584 /// \brief If the format string is not within the funcion call, emit a note
2585 /// so that the function call and string are in diagnostic messages.
2586 ///
2587 /// \param InFunctionCall if true, the format string is within the function
2588 /// call and only one diagnostic message will be produced.  Otherwise, an
2589 /// extra note will be emitted pointing to location of the format string.
2590 ///
2591 /// \param ArgumentExpr the expression that is passed as the format string
2592 /// argument in the function call.  Used for getting locations when two
2593 /// diagnostics are emitted.
2594 ///
2595 /// \param PDiag the callee should already have provided any strings for the
2596 /// diagnostic message.  This function only adds locations and fixits
2597 /// to diagnostics.
2598 ///
2599 /// \param Loc primary location for diagnostic.  If two diagnostics are
2600 /// required, one will be at Loc and a new SourceLocation will be created for
2601 /// the other one.
2602 ///
2603 /// \param IsStringLocation if true, Loc points to the format string should be
2604 /// used for the note.  Otherwise, Loc points to the argument list and will
2605 /// be used with PDiag.
2606 ///
2607 /// \param StringRange some or all of the string to highlight.  This is
2608 /// templated so it can accept either a CharSourceRange or a SourceRange.
2609 ///
2610 /// \param FixIt optional fix it hint for the format string.
2611 template<typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2612 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2613                                               const Expr *ArgumentExpr,
2614                                               PartialDiagnostic PDiag,
2615                                               SourceLocation Loc,
2616                                               bool IsStringLocation,
2617                                               Range StringRange,
2618                                               ArrayRef<FixItHint> FixIt) {
2619   if (InFunctionCall) {
2620     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2621     D << StringRange;
2622     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2623          I != E; ++I) {
2624       D << *I;
2625     }
2626   } else {
2627     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2628       << ArgumentExpr->getSourceRange();
2629 
2630     const Sema::SemaDiagnosticBuilder &Note =
2631       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2632              diag::note_format_string_defined);
2633 
2634     Note << StringRange;
2635     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2636          I != E; ++I) {
2637       Note << *I;
2638     }
2639   }
2640 }
2641 
2642 //===--- CHECK: Printf format string checking ------------------------------===//
2643 
2644 namespace {
2645 class CheckPrintfHandler : public CheckFormatHandler {
2646   bool ObjCContext;
2647 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)2648   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2649                      const Expr *origFormatExpr, unsigned firstDataArg,
2650                      unsigned numDataArgs, bool isObjC,
2651                      const char *beg, bool hasVAListArg,
2652                      ArrayRef<const Expr *> Args,
2653                      unsigned formatIdx, bool inFunctionCall,
2654                      Sema::VariadicCallType CallType,
2655                      llvm::SmallBitVector &CheckedVarArgs)
2656     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2657                          numDataArgs, beg, hasVAListArg, Args,
2658                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
2659       ObjCContext(isObjC)
2660   {}
2661 
2662 
2663   bool HandleInvalidPrintfConversionSpecifier(
2664                                       const analyze_printf::PrintfSpecifier &FS,
2665                                       const char *startSpecifier,
2666                                       unsigned specifierLen);
2667 
2668   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2669                              const char *startSpecifier,
2670                              unsigned specifierLen);
2671   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2672                        const char *StartSpecifier,
2673                        unsigned SpecifierLen,
2674                        const Expr *E);
2675 
2676   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2677                     const char *startSpecifier, unsigned specifierLen);
2678   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2679                            const analyze_printf::OptionalAmount &Amt,
2680                            unsigned type,
2681                            const char *startSpecifier, unsigned specifierLen);
2682   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2683                   const analyze_printf::OptionalFlag &flag,
2684                   const char *startSpecifier, unsigned specifierLen);
2685   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2686                          const analyze_printf::OptionalFlag &ignoredFlag,
2687                          const analyze_printf::OptionalFlag &flag,
2688                          const char *startSpecifier, unsigned specifierLen);
2689   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2690                            const Expr *E, const CharSourceRange &CSR);
2691 
2692 };
2693 }
2694 
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2695 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2696                                       const analyze_printf::PrintfSpecifier &FS,
2697                                       const char *startSpecifier,
2698                                       unsigned specifierLen) {
2699   const analyze_printf::PrintfConversionSpecifier &CS =
2700     FS.getConversionSpecifier();
2701 
2702   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2703                                           getLocationOfByte(CS.getStart()),
2704                                           startSpecifier, specifierLen,
2705                                           CS.getStart(), CS.getLength());
2706 }
2707 
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)2708 bool CheckPrintfHandler::HandleAmount(
2709                                const analyze_format_string::OptionalAmount &Amt,
2710                                unsigned k, const char *startSpecifier,
2711                                unsigned specifierLen) {
2712 
2713   if (Amt.hasDataArgument()) {
2714     if (!HasVAListArg) {
2715       unsigned argIndex = Amt.getArgIndex();
2716       if (argIndex >= NumDataArgs) {
2717         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2718                                << k,
2719                              getLocationOfByte(Amt.getStart()),
2720                              /*IsStringLocation*/true,
2721                              getSpecifierRange(startSpecifier, specifierLen));
2722         // Don't do any more checking.  We will just emit
2723         // spurious errors.
2724         return false;
2725       }
2726 
2727       // Type check the data argument.  It should be an 'int'.
2728       // Although not in conformance with C99, we also allow the argument to be
2729       // an 'unsigned int' as that is a reasonably safe case.  GCC also
2730       // doesn't emit a warning for that case.
2731       CoveredArgs.set(argIndex);
2732       const Expr *Arg = getDataArg(argIndex);
2733       if (!Arg)
2734         return false;
2735 
2736       QualType T = Arg->getType();
2737 
2738       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2739       assert(AT.isValid());
2740 
2741       if (!AT.matchesType(S.Context, T)) {
2742         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2743                                << k << AT.getRepresentativeTypeName(S.Context)
2744                                << T << Arg->getSourceRange(),
2745                              getLocationOfByte(Amt.getStart()),
2746                              /*IsStringLocation*/true,
2747                              getSpecifierRange(startSpecifier, specifierLen));
2748         // Don't do any more checking.  We will just emit
2749         // spurious errors.
2750         return false;
2751       }
2752     }
2753   }
2754   return true;
2755 }
2756 
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)2757 void CheckPrintfHandler::HandleInvalidAmount(
2758                                       const analyze_printf::PrintfSpecifier &FS,
2759                                       const analyze_printf::OptionalAmount &Amt,
2760                                       unsigned type,
2761                                       const char *startSpecifier,
2762                                       unsigned specifierLen) {
2763   const analyze_printf::PrintfConversionSpecifier &CS =
2764     FS.getConversionSpecifier();
2765 
2766   FixItHint fixit =
2767     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2768       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2769                                  Amt.getConstantLength()))
2770       : FixItHint();
2771 
2772   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2773                          << type << CS.toString(),
2774                        getLocationOfByte(Amt.getStart()),
2775                        /*IsStringLocation*/true,
2776                        getSpecifierRange(startSpecifier, specifierLen),
2777                        fixit);
2778 }
2779 
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2780 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2781                                     const analyze_printf::OptionalFlag &flag,
2782                                     const char *startSpecifier,
2783                                     unsigned specifierLen) {
2784   // Warn about pointless flag with a fixit removal.
2785   const analyze_printf::PrintfConversionSpecifier &CS =
2786     FS.getConversionSpecifier();
2787   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2788                          << flag.toString() << CS.toString(),
2789                        getLocationOfByte(flag.getPosition()),
2790                        /*IsStringLocation*/true,
2791                        getSpecifierRange(startSpecifier, specifierLen),
2792                        FixItHint::CreateRemoval(
2793                          getSpecifierRange(flag.getPosition(), 1)));
2794 }
2795 
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2796 void CheckPrintfHandler::HandleIgnoredFlag(
2797                                 const analyze_printf::PrintfSpecifier &FS,
2798                                 const analyze_printf::OptionalFlag &ignoredFlag,
2799                                 const analyze_printf::OptionalFlag &flag,
2800                                 const char *startSpecifier,
2801                                 unsigned specifierLen) {
2802   // Warn about ignored flag with a fixit removal.
2803   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2804                          << ignoredFlag.toString() << flag.toString(),
2805                        getLocationOfByte(ignoredFlag.getPosition()),
2806                        /*IsStringLocation*/true,
2807                        getSpecifierRange(startSpecifier, specifierLen),
2808                        FixItHint::CreateRemoval(
2809                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
2810 }
2811 
2812 // Determines if the specified is a C++ class or struct containing
2813 // a member with the specified name and kind (e.g. a CXXMethodDecl named
2814 // "c_str()").
2815 template<typename MemberKind>
2816 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)2817 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2818   const RecordType *RT = Ty->getAs<RecordType>();
2819   llvm::SmallPtrSet<MemberKind*, 1> Results;
2820 
2821   if (!RT)
2822     return Results;
2823   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2824   if (!RD)
2825     return Results;
2826 
2827   LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2828                  Sema::LookupMemberName);
2829 
2830   // We just need to include all members of the right kind turned up by the
2831   // filter, at this point.
2832   if (S.LookupQualifiedName(R, RT->getDecl()))
2833     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2834       NamedDecl *decl = (*I)->getUnderlyingDecl();
2835       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2836         Results.insert(FK);
2837     }
2838   return Results;
2839 }
2840 
2841 // Check if a (w)string was passed when a (w)char* was needed, and offer a
2842 // better diagnostic if so. AT is assumed to be valid.
2843 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E,const CharSourceRange & CSR)2844 bool CheckPrintfHandler::checkForCStrMembers(
2845     const analyze_printf::ArgType &AT, const Expr *E,
2846     const CharSourceRange &CSR) {
2847   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2848 
2849   MethodSet Results =
2850       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2851 
2852   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2853        MI != ME; ++MI) {
2854     const CXXMethodDecl *Method = *MI;
2855     if (Method->getNumParams() == 0 &&
2856           AT.matchesType(S.Context, Method->getResultType())) {
2857       // FIXME: Suggest parens if the expression needs them.
2858       SourceLocation EndLoc =
2859           S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2860       S.Diag(E->getLocStart(), diag::note_printf_c_str)
2861           << "c_str()"
2862           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2863       return true;
2864     }
2865   }
2866 
2867   return false;
2868 }
2869 
2870 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2871 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2872                                             &FS,
2873                                           const char *startSpecifier,
2874                                           unsigned specifierLen) {
2875 
2876   using namespace analyze_format_string;
2877   using namespace analyze_printf;
2878   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2879 
2880   if (FS.consumesDataArgument()) {
2881     if (atFirstArg) {
2882         atFirstArg = false;
2883         usesPositionalArgs = FS.usesPositionalArg();
2884     }
2885     else if (usesPositionalArgs != FS.usesPositionalArg()) {
2886       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2887                                         startSpecifier, specifierLen);
2888       return false;
2889     }
2890   }
2891 
2892   // First check if the field width, precision, and conversion specifier
2893   // have matching data arguments.
2894   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2895                     startSpecifier, specifierLen)) {
2896     return false;
2897   }
2898 
2899   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2900                     startSpecifier, specifierLen)) {
2901     return false;
2902   }
2903 
2904   if (!CS.consumesDataArgument()) {
2905     // FIXME: Technically specifying a precision or field width here
2906     // makes no sense.  Worth issuing a warning at some point.
2907     return true;
2908   }
2909 
2910   // Consume the argument.
2911   unsigned argIndex = FS.getArgIndex();
2912   if (argIndex < NumDataArgs) {
2913     // The check to see if the argIndex is valid will come later.
2914     // We set the bit here because we may exit early from this
2915     // function if we encounter some other error.
2916     CoveredArgs.set(argIndex);
2917   }
2918 
2919   // Check for using an Objective-C specific conversion specifier
2920   // in a non-ObjC literal.
2921   if (!ObjCContext && CS.isObjCArg()) {
2922     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2923                                                   specifierLen);
2924   }
2925 
2926   // Check for invalid use of field width
2927   if (!FS.hasValidFieldWidth()) {
2928     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2929         startSpecifier, specifierLen);
2930   }
2931 
2932   // Check for invalid use of precision
2933   if (!FS.hasValidPrecision()) {
2934     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2935         startSpecifier, specifierLen);
2936   }
2937 
2938   // Check each flag does not conflict with any other component.
2939   if (!FS.hasValidThousandsGroupingPrefix())
2940     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2941   if (!FS.hasValidLeadingZeros())
2942     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2943   if (!FS.hasValidPlusPrefix())
2944     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2945   if (!FS.hasValidSpacePrefix())
2946     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2947   if (!FS.hasValidAlternativeForm())
2948     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2949   if (!FS.hasValidLeftJustified())
2950     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2951 
2952   // Check that flags are not ignored by another flag
2953   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2954     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2955         startSpecifier, specifierLen);
2956   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2957     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2958             startSpecifier, specifierLen);
2959 
2960   // Check the length modifier is valid with the given conversion specifier.
2961   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2962     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2963                                 diag::warn_format_nonsensical_length);
2964   else if (!FS.hasStandardLengthModifier())
2965     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2966   else if (!FS.hasStandardLengthConversionCombination())
2967     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2968                                 diag::warn_format_non_standard_conversion_spec);
2969 
2970   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2971     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2972 
2973   // The remaining checks depend on the data arguments.
2974   if (HasVAListArg)
2975     return true;
2976 
2977   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2978     return false;
2979 
2980   const Expr *Arg = getDataArg(argIndex);
2981   if (!Arg)
2982     return true;
2983 
2984   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2985 }
2986 
requiresParensToAddCast(const Expr * E)2987 static bool requiresParensToAddCast(const Expr *E) {
2988   // FIXME: We should have a general way to reason about operator
2989   // precedence and whether parens are actually needed here.
2990   // Take care of a few common cases where they aren't.
2991   const Expr *Inside = E->IgnoreImpCasts();
2992   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2993     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2994 
2995   switch (Inside->getStmtClass()) {
2996   case Stmt::ArraySubscriptExprClass:
2997   case Stmt::CallExprClass:
2998   case Stmt::CharacterLiteralClass:
2999   case Stmt::CXXBoolLiteralExprClass:
3000   case Stmt::DeclRefExprClass:
3001   case Stmt::FloatingLiteralClass:
3002   case Stmt::IntegerLiteralClass:
3003   case Stmt::MemberExprClass:
3004   case Stmt::ObjCArrayLiteralClass:
3005   case Stmt::ObjCBoolLiteralExprClass:
3006   case Stmt::ObjCBoxedExprClass:
3007   case Stmt::ObjCDictionaryLiteralClass:
3008   case Stmt::ObjCEncodeExprClass:
3009   case Stmt::ObjCIvarRefExprClass:
3010   case Stmt::ObjCMessageExprClass:
3011   case Stmt::ObjCPropertyRefExprClass:
3012   case Stmt::ObjCStringLiteralClass:
3013   case Stmt::ObjCSubscriptRefExprClass:
3014   case Stmt::ParenExprClass:
3015   case Stmt::StringLiteralClass:
3016   case Stmt::UnaryOperatorClass:
3017     return false;
3018   default:
3019     return true;
3020   }
3021 }
3022 
3023 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)3024 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3025                                     const char *StartSpecifier,
3026                                     unsigned SpecifierLen,
3027                                     const Expr *E) {
3028   using namespace analyze_format_string;
3029   using namespace analyze_printf;
3030   // Now type check the data expression that matches the
3031   // format specifier.
3032   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3033                                                     ObjCContext);
3034   if (!AT.isValid())
3035     return true;
3036 
3037   QualType ExprTy = E->getType();
3038   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3039     ExprTy = TET->getUnderlyingExpr()->getType();
3040   }
3041 
3042   if (AT.matchesType(S.Context, ExprTy))
3043     return true;
3044 
3045   // Look through argument promotions for our error message's reported type.
3046   // This includes the integral and floating promotions, but excludes array
3047   // and function pointer decay; seeing that an argument intended to be a
3048   // string has type 'char [6]' is probably more confusing than 'char *'.
3049   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3050     if (ICE->getCastKind() == CK_IntegralCast ||
3051         ICE->getCastKind() == CK_FloatingCast) {
3052       E = ICE->getSubExpr();
3053       ExprTy = E->getType();
3054 
3055       // Check if we didn't match because of an implicit cast from a 'char'
3056       // or 'short' to an 'int'.  This is done because printf is a varargs
3057       // function.
3058       if (ICE->getType() == S.Context.IntTy ||
3059           ICE->getType() == S.Context.UnsignedIntTy) {
3060         // All further checking is done on the subexpression.
3061         if (AT.matchesType(S.Context, ExprTy))
3062           return true;
3063       }
3064     }
3065   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3066     // Special case for 'a', which has type 'int' in C.
3067     // Note, however, that we do /not/ want to treat multibyte constants like
3068     // 'MooV' as characters! This form is deprecated but still exists.
3069     if (ExprTy == S.Context.IntTy)
3070       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3071         ExprTy = S.Context.CharTy;
3072   }
3073 
3074   // %C in an Objective-C context prints a unichar, not a wchar_t.
3075   // If the argument is an integer of some kind, believe the %C and suggest
3076   // a cast instead of changing the conversion specifier.
3077   QualType IntendedTy = ExprTy;
3078   if (ObjCContext &&
3079       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3080     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3081         !ExprTy->isCharType()) {
3082       // 'unichar' is defined as a typedef of unsigned short, but we should
3083       // prefer using the typedef if it is visible.
3084       IntendedTy = S.Context.UnsignedShortTy;
3085 
3086       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3087                           Sema::LookupOrdinaryName);
3088       if (S.LookupName(Result, S.getCurScope())) {
3089         NamedDecl *ND = Result.getFoundDecl();
3090         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3091           if (TD->getUnderlyingType() == IntendedTy)
3092             IntendedTy = S.Context.getTypedefType(TD);
3093       }
3094     }
3095   }
3096 
3097   // Special-case some of Darwin's platform-independence types by suggesting
3098   // casts to primitive types that are known to be large enough.
3099   bool ShouldNotPrintDirectly = false;
3100   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3101     // Use a 'while' to peel off layers of typedefs.
3102     QualType TyTy = IntendedTy;
3103     while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3104       StringRef Name = UserTy->getDecl()->getName();
3105       QualType CastTy = llvm::StringSwitch<QualType>(Name)
3106         .Case("NSInteger", S.Context.LongTy)
3107         .Case("NSUInteger", S.Context.UnsignedLongTy)
3108         .Case("SInt32", S.Context.IntTy)
3109         .Case("UInt32", S.Context.UnsignedIntTy)
3110         .Default(QualType());
3111 
3112       if (!CastTy.isNull()) {
3113         ShouldNotPrintDirectly = true;
3114         IntendedTy = CastTy;
3115         break;
3116       }
3117       TyTy = UserTy->desugar();
3118     }
3119   }
3120 
3121   // We may be able to offer a FixItHint if it is a supported type.
3122   PrintfSpecifier fixedFS = FS;
3123   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3124                                  S.Context, ObjCContext);
3125 
3126   if (success) {
3127     // Get the fix string from the fixed format specifier
3128     SmallString<16> buf;
3129     llvm::raw_svector_ostream os(buf);
3130     fixedFS.toString(os);
3131 
3132     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3133 
3134     if (IntendedTy == ExprTy) {
3135       // In this case, the specifier is wrong and should be changed to match
3136       // the argument.
3137       EmitFormatDiagnostic(
3138         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3139           << AT.getRepresentativeTypeName(S.Context) << IntendedTy
3140           << E->getSourceRange(),
3141         E->getLocStart(),
3142         /*IsStringLocation*/false,
3143         SpecRange,
3144         FixItHint::CreateReplacement(SpecRange, os.str()));
3145 
3146     } else {
3147       // The canonical type for formatting this value is different from the
3148       // actual type of the expression. (This occurs, for example, with Darwin's
3149       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3150       // should be printed as 'long' for 64-bit compatibility.)
3151       // Rather than emitting a normal format/argument mismatch, we want to
3152       // add a cast to the recommended type (and correct the format string
3153       // if necessary).
3154       SmallString<16> CastBuf;
3155       llvm::raw_svector_ostream CastFix(CastBuf);
3156       CastFix << "(";
3157       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3158       CastFix << ")";
3159 
3160       SmallVector<FixItHint,4> Hints;
3161       if (!AT.matchesType(S.Context, IntendedTy))
3162         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3163 
3164       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3165         // If there's already a cast present, just replace it.
3166         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3167         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3168 
3169       } else if (!requiresParensToAddCast(E)) {
3170         // If the expression has high enough precedence,
3171         // just write the C-style cast.
3172         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3173                                                    CastFix.str()));
3174       } else {
3175         // Otherwise, add parens around the expression as well as the cast.
3176         CastFix << "(";
3177         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3178                                                    CastFix.str()));
3179 
3180         SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
3181         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3182       }
3183 
3184       if (ShouldNotPrintDirectly) {
3185         // The expression has a type that should not be printed directly.
3186         // We extract the name from the typedef because we don't want to show
3187         // the underlying type in the diagnostic.
3188         StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
3189 
3190         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3191                                << Name << IntendedTy
3192                                << E->getSourceRange(),
3193                              E->getLocStart(), /*IsStringLocation=*/false,
3194                              SpecRange, Hints);
3195       } else {
3196         // In this case, the expression could be printed using a different
3197         // specifier, but we've decided that the specifier is probably correct
3198         // and we should cast instead. Just use the normal warning message.
3199         EmitFormatDiagnostic(
3200           S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3201             << AT.getRepresentativeTypeName(S.Context) << ExprTy
3202             << E->getSourceRange(),
3203           E->getLocStart(), /*IsStringLocation*/false,
3204           SpecRange, Hints);
3205       }
3206     }
3207   } else {
3208     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3209                                                    SpecifierLen);
3210     // Since the warning for passing non-POD types to variadic functions
3211     // was deferred until now, we emit a warning for non-POD
3212     // arguments here.
3213     switch (S.isValidVarArgType(ExprTy)) {
3214     case Sema::VAK_Valid:
3215     case Sema::VAK_ValidInCXX11:
3216       EmitFormatDiagnostic(
3217         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3218           << AT.getRepresentativeTypeName(S.Context) << ExprTy
3219           << CSR
3220           << E->getSourceRange(),
3221         E->getLocStart(), /*IsStringLocation*/false, CSR);
3222       break;
3223 
3224     case Sema::VAK_Undefined:
3225       EmitFormatDiagnostic(
3226         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3227           << S.getLangOpts().CPlusPlus11
3228           << ExprTy
3229           << CallType
3230           << AT.getRepresentativeTypeName(S.Context)
3231           << CSR
3232           << E->getSourceRange(),
3233         E->getLocStart(), /*IsStringLocation*/false, CSR);
3234       checkForCStrMembers(AT, E, CSR);
3235       break;
3236 
3237     case Sema::VAK_Invalid:
3238       if (ExprTy->isObjCObjectType())
3239         EmitFormatDiagnostic(
3240           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3241             << S.getLangOpts().CPlusPlus11
3242             << ExprTy
3243             << CallType
3244             << AT.getRepresentativeTypeName(S.Context)
3245             << CSR
3246             << E->getSourceRange(),
3247           E->getLocStart(), /*IsStringLocation*/false, CSR);
3248       else
3249         // FIXME: If this is an initializer list, suggest removing the braces
3250         // or inserting a cast to the target type.
3251         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3252           << isa<InitListExpr>(E) << ExprTy << CallType
3253           << AT.getRepresentativeTypeName(S.Context)
3254           << E->getSourceRange();
3255       break;
3256     }
3257 
3258     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3259            "format string specifier index out of range");
3260     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3261   }
3262 
3263   return true;
3264 }
3265 
3266 //===--- CHECK: Scanf format string checking ------------------------------===//
3267 
3268 namespace {
3269 class CheckScanfHandler : public CheckFormatHandler {
3270 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)3271   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3272                     const Expr *origFormatExpr, unsigned firstDataArg,
3273                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
3274                     ArrayRef<const Expr *> Args,
3275                     unsigned formatIdx, bool inFunctionCall,
3276                     Sema::VariadicCallType CallType,
3277                     llvm::SmallBitVector &CheckedVarArgs)
3278     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3279                          numDataArgs, beg, hasVAListArg,
3280                          Args, formatIdx, inFunctionCall, CallType,
3281                          CheckedVarArgs)
3282   {}
3283 
3284   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3285                             const char *startSpecifier,
3286                             unsigned specifierLen);
3287 
3288   bool HandleInvalidScanfConversionSpecifier(
3289           const analyze_scanf::ScanfSpecifier &FS,
3290           const char *startSpecifier,
3291           unsigned specifierLen);
3292 
3293   void HandleIncompleteScanList(const char *start, const char *end);
3294 };
3295 }
3296 
HandleIncompleteScanList(const char * start,const char * end)3297 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3298                                                  const char *end) {
3299   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3300                        getLocationOfByte(end), /*IsStringLocation*/true,
3301                        getSpecifierRange(start, end - start));
3302 }
3303 
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3304 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3305                                         const analyze_scanf::ScanfSpecifier &FS,
3306                                         const char *startSpecifier,
3307                                         unsigned specifierLen) {
3308 
3309   const analyze_scanf::ScanfConversionSpecifier &CS =
3310     FS.getConversionSpecifier();
3311 
3312   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3313                                           getLocationOfByte(CS.getStart()),
3314                                           startSpecifier, specifierLen,
3315                                           CS.getStart(), CS.getLength());
3316 }
3317 
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3318 bool CheckScanfHandler::HandleScanfSpecifier(
3319                                        const analyze_scanf::ScanfSpecifier &FS,
3320                                        const char *startSpecifier,
3321                                        unsigned specifierLen) {
3322 
3323   using namespace analyze_scanf;
3324   using namespace analyze_format_string;
3325 
3326   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3327 
3328   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3329   // be used to decide if we are using positional arguments consistently.
3330   if (FS.consumesDataArgument()) {
3331     if (atFirstArg) {
3332       atFirstArg = false;
3333       usesPositionalArgs = FS.usesPositionalArg();
3334     }
3335     else if (usesPositionalArgs != FS.usesPositionalArg()) {
3336       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3337                                         startSpecifier, specifierLen);
3338       return false;
3339     }
3340   }
3341 
3342   // Check if the field with is non-zero.
3343   const OptionalAmount &Amt = FS.getFieldWidth();
3344   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3345     if (Amt.getConstantAmount() == 0) {
3346       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3347                                                    Amt.getConstantLength());
3348       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3349                            getLocationOfByte(Amt.getStart()),
3350                            /*IsStringLocation*/true, R,
3351                            FixItHint::CreateRemoval(R));
3352     }
3353   }
3354 
3355   if (!FS.consumesDataArgument()) {
3356     // FIXME: Technically specifying a precision or field width here
3357     // makes no sense.  Worth issuing a warning at some point.
3358     return true;
3359   }
3360 
3361   // Consume the argument.
3362   unsigned argIndex = FS.getArgIndex();
3363   if (argIndex < NumDataArgs) {
3364       // The check to see if the argIndex is valid will come later.
3365       // We set the bit here because we may exit early from this
3366       // function if we encounter some other error.
3367     CoveredArgs.set(argIndex);
3368   }
3369 
3370   // Check the length modifier is valid with the given conversion specifier.
3371   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3372     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3373                                 diag::warn_format_nonsensical_length);
3374   else if (!FS.hasStandardLengthModifier())
3375     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3376   else if (!FS.hasStandardLengthConversionCombination())
3377     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3378                                 diag::warn_format_non_standard_conversion_spec);
3379 
3380   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3381     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3382 
3383   // The remaining checks depend on the data arguments.
3384   if (HasVAListArg)
3385     return true;
3386 
3387   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3388     return false;
3389 
3390   // Check that the argument type matches the format specifier.
3391   const Expr *Ex = getDataArg(argIndex);
3392   if (!Ex)
3393     return true;
3394 
3395   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3396   if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3397     ScanfSpecifier fixedFS = FS;
3398     bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3399                                    S.Context);
3400 
3401     if (success) {
3402       // Get the fix string from the fixed format specifier.
3403       SmallString<128> buf;
3404       llvm::raw_svector_ostream os(buf);
3405       fixedFS.toString(os);
3406 
3407       EmitFormatDiagnostic(
3408         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3409           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3410           << Ex->getSourceRange(),
3411         Ex->getLocStart(),
3412         /*IsStringLocation*/false,
3413         getSpecifierRange(startSpecifier, specifierLen),
3414         FixItHint::CreateReplacement(
3415           getSpecifierRange(startSpecifier, specifierLen),
3416           os.str()));
3417     } else {
3418       EmitFormatDiagnostic(
3419         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3420           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3421           << Ex->getSourceRange(),
3422         Ex->getLocStart(),
3423         /*IsStringLocation*/false,
3424         getSpecifierRange(startSpecifier, specifierLen));
3425     }
3426   }
3427 
3428   return true;
3429 }
3430 
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,bool inFunctionCall,VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)3431 void Sema::CheckFormatString(const StringLiteral *FExpr,
3432                              const Expr *OrigFormatExpr,
3433                              ArrayRef<const Expr *> Args,
3434                              bool HasVAListArg, unsigned format_idx,
3435                              unsigned firstDataArg, FormatStringType Type,
3436                              bool inFunctionCall, VariadicCallType CallType,
3437                              llvm::SmallBitVector &CheckedVarArgs) {
3438 
3439   // CHECK: is the format string a wide literal?
3440   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3441     CheckFormatHandler::EmitFormatDiagnostic(
3442       *this, inFunctionCall, Args[format_idx],
3443       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3444       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3445     return;
3446   }
3447 
3448   // Str - The format string.  NOTE: this is NOT null-terminated!
3449   StringRef StrRef = FExpr->getString();
3450   const char *Str = StrRef.data();
3451   unsigned StrLen = StrRef.size();
3452   const unsigned numDataArgs = Args.size() - firstDataArg;
3453 
3454   // CHECK: empty format string?
3455   if (StrLen == 0 && numDataArgs > 0) {
3456     CheckFormatHandler::EmitFormatDiagnostic(
3457       *this, inFunctionCall, Args[format_idx],
3458       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3459       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3460     return;
3461   }
3462 
3463   if (Type == FST_Printf || Type == FST_NSString) {
3464     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3465                          numDataArgs, (Type == FST_NSString),
3466                          Str, HasVAListArg, Args, format_idx,
3467                          inFunctionCall, CallType, CheckedVarArgs);
3468 
3469     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3470                                                   getLangOpts(),
3471                                                   Context.getTargetInfo()))
3472       H.DoneProcessing();
3473   } else if (Type == FST_Scanf) {
3474     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3475                         Str, HasVAListArg, Args, format_idx,
3476                         inFunctionCall, CallType, CheckedVarArgs);
3477 
3478     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3479                                                  getLangOpts(),
3480                                                  Context.getTargetInfo()))
3481       H.DoneProcessing();
3482   } // TODO: handle other formats
3483 }
3484 
3485 //===--- CHECK: Standard memory functions ---------------------------------===//
3486 
3487 /// \brief Determine whether the given type is a dynamic class type (e.g.,
3488 /// whether it has a vtable).
isDynamicClassType(QualType T)3489 static bool isDynamicClassType(QualType T) {
3490   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3491     if (CXXRecordDecl *Definition = Record->getDefinition())
3492       if (Definition->isDynamicClass())
3493         return true;
3494 
3495   return false;
3496 }
3497 
3498 /// \brief If E is a sizeof expression, returns its argument expression,
3499 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)3500 static const Expr *getSizeOfExprArg(const Expr* E) {
3501   if (const UnaryExprOrTypeTraitExpr *SizeOf =
3502       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3503     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3504       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3505 
3506   return 0;
3507 }
3508 
3509 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)3510 static QualType getSizeOfArgType(const Expr* E) {
3511   if (const UnaryExprOrTypeTraitExpr *SizeOf =
3512       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3513     if (SizeOf->getKind() == clang::UETT_SizeOf)
3514       return SizeOf->getTypeOfArgument();
3515 
3516   return QualType();
3517 }
3518 
3519 /// \brief Check for dangerous or invalid arguments to memset().
3520 ///
3521 /// This issues warnings on known problematic, dangerous or unspecified
3522 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3523 /// function calls.
3524 ///
3525 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)3526 void Sema::CheckMemaccessArguments(const CallExpr *Call,
3527                                    unsigned BId,
3528                                    IdentifierInfo *FnName) {
3529   assert(BId != 0);
3530 
3531   // It is possible to have a non-standard definition of memset.  Validate
3532   // we have enough arguments, and if not, abort further checking.
3533   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3534   if (Call->getNumArgs() < ExpectedNumArgs)
3535     return;
3536 
3537   unsigned LastArg = (BId == Builtin::BImemset ||
3538                       BId == Builtin::BIstrndup ? 1 : 2);
3539   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3540   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3541 
3542   // We have special checking when the length is a sizeof expression.
3543   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3544   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3545   llvm::FoldingSetNodeID SizeOfArgID;
3546 
3547   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3548     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3549     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3550 
3551     QualType DestTy = Dest->getType();
3552     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3553       QualType PointeeTy = DestPtrTy->getPointeeType();
3554 
3555       // Never warn about void type pointers. This can be used to suppress
3556       // false positives.
3557       if (PointeeTy->isVoidType())
3558         continue;
3559 
3560       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3561       // actually comparing the expressions for equality. Because computing the
3562       // expression IDs can be expensive, we only do this if the diagnostic is
3563       // enabled.
3564       if (SizeOfArg &&
3565           Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3566                                    SizeOfArg->getExprLoc())) {
3567         // We only compute IDs for expressions if the warning is enabled, and
3568         // cache the sizeof arg's ID.
3569         if (SizeOfArgID == llvm::FoldingSetNodeID())
3570           SizeOfArg->Profile(SizeOfArgID, Context, true);
3571         llvm::FoldingSetNodeID DestID;
3572         Dest->Profile(DestID, Context, true);
3573         if (DestID == SizeOfArgID) {
3574           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3575           //       over sizeof(src) as well.
3576           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3577           StringRef ReadableName = FnName->getName();
3578 
3579           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3580             if (UnaryOp->getOpcode() == UO_AddrOf)
3581               ActionIdx = 1; // If its an address-of operator, just remove it.
3582           if (!PointeeTy->isIncompleteType() &&
3583               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3584             ActionIdx = 2; // If the pointee's size is sizeof(char),
3585                            // suggest an explicit length.
3586 
3587           // If the function is defined as a builtin macro, do not show macro
3588           // expansion.
3589           SourceLocation SL = SizeOfArg->getExprLoc();
3590           SourceRange DSR = Dest->getSourceRange();
3591           SourceRange SSR = SizeOfArg->getSourceRange();
3592           SourceManager &SM  = PP.getSourceManager();
3593 
3594           if (SM.isMacroArgExpansion(SL)) {
3595             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3596             SL = SM.getSpellingLoc(SL);
3597             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3598                              SM.getSpellingLoc(DSR.getEnd()));
3599             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3600                              SM.getSpellingLoc(SSR.getEnd()));
3601           }
3602 
3603           DiagRuntimeBehavior(SL, SizeOfArg,
3604                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3605                                 << ReadableName
3606                                 << PointeeTy
3607                                 << DestTy
3608                                 << DSR
3609                                 << SSR);
3610           DiagRuntimeBehavior(SL, SizeOfArg,
3611                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3612                                 << ActionIdx
3613                                 << SSR);
3614 
3615           break;
3616         }
3617       }
3618 
3619       // Also check for cases where the sizeof argument is the exact same
3620       // type as the memory argument, and where it points to a user-defined
3621       // record type.
3622       if (SizeOfArgTy != QualType()) {
3623         if (PointeeTy->isRecordType() &&
3624             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3625           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3626                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
3627                                 << FnName << SizeOfArgTy << ArgIdx
3628                                 << PointeeTy << Dest->getSourceRange()
3629                                 << LenExpr->getSourceRange());
3630           break;
3631         }
3632       }
3633 
3634       // Always complain about dynamic classes.
3635       if (isDynamicClassType(PointeeTy)) {
3636 
3637         unsigned OperationType = 0;
3638         // "overwritten" if we're warning about the destination for any call
3639         // but memcmp; otherwise a verb appropriate to the call.
3640         if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3641           if (BId == Builtin::BImemcpy)
3642             OperationType = 1;
3643           else if(BId == Builtin::BImemmove)
3644             OperationType = 2;
3645           else if (BId == Builtin::BImemcmp)
3646             OperationType = 3;
3647         }
3648 
3649         DiagRuntimeBehavior(
3650           Dest->getExprLoc(), Dest,
3651           PDiag(diag::warn_dyn_class_memaccess)
3652             << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3653             << FnName << PointeeTy
3654             << OperationType
3655             << Call->getCallee()->getSourceRange());
3656       } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3657                BId != Builtin::BImemset)
3658         DiagRuntimeBehavior(
3659           Dest->getExprLoc(), Dest,
3660           PDiag(diag::warn_arc_object_memaccess)
3661             << ArgIdx << FnName << PointeeTy
3662             << Call->getCallee()->getSourceRange());
3663       else
3664         continue;
3665 
3666       DiagRuntimeBehavior(
3667         Dest->getExprLoc(), Dest,
3668         PDiag(diag::note_bad_memaccess_silence)
3669           << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3670       break;
3671     }
3672   }
3673 }
3674 
3675 // A little helper routine: ignore addition and subtraction of integer literals.
3676 // This intentionally does not ignore all integer constant expressions because
3677 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)3678 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3679   Ex = Ex->IgnoreParenCasts();
3680 
3681   for (;;) {
3682     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3683     if (!BO || !BO->isAdditiveOp())
3684       break;
3685 
3686     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3687     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3688 
3689     if (isa<IntegerLiteral>(RHS))
3690       Ex = LHS;
3691     else if (isa<IntegerLiteral>(LHS))
3692       Ex = RHS;
3693     else
3694       break;
3695   }
3696 
3697   return Ex;
3698 }
3699 
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)3700 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3701                                                       ASTContext &Context) {
3702   // Only handle constant-sized or VLAs, but not flexible members.
3703   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3704     // Only issue the FIXIT for arrays of size > 1.
3705     if (CAT->getSize().getSExtValue() <= 1)
3706       return false;
3707   } else if (!Ty->isVariableArrayType()) {
3708     return false;
3709   }
3710   return true;
3711 }
3712 
3713 // Warn if the user has made the 'size' argument to strlcpy or strlcat
3714 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)3715 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3716                                     IdentifierInfo *FnName) {
3717 
3718   // Don't crash if the user has the wrong number of arguments
3719   if (Call->getNumArgs() != 3)
3720     return;
3721 
3722   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3723   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3724   const Expr *CompareWithSrc = NULL;
3725 
3726   // Look for 'strlcpy(dst, x, sizeof(x))'
3727   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3728     CompareWithSrc = Ex;
3729   else {
3730     // Look for 'strlcpy(dst, x, strlen(x))'
3731     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3732       if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3733           && SizeCall->getNumArgs() == 1)
3734         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3735     }
3736   }
3737 
3738   if (!CompareWithSrc)
3739     return;
3740 
3741   // Determine if the argument to sizeof/strlen is equal to the source
3742   // argument.  In principle there's all kinds of things you could do
3743   // here, for instance creating an == expression and evaluating it with
3744   // EvaluateAsBooleanCondition, but this uses a more direct technique:
3745   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3746   if (!SrcArgDRE)
3747     return;
3748 
3749   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3750   if (!CompareWithSrcDRE ||
3751       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3752     return;
3753 
3754   const Expr *OriginalSizeArg = Call->getArg(2);
3755   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3756     << OriginalSizeArg->getSourceRange() << FnName;
3757 
3758   // Output a FIXIT hint if the destination is an array (rather than a
3759   // pointer to an array).  This could be enhanced to handle some
3760   // pointers if we know the actual size, like if DstArg is 'array+2'
3761   // we could say 'sizeof(array)-2'.
3762   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3763   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3764     return;
3765 
3766   SmallString<128> sizeString;
3767   llvm::raw_svector_ostream OS(sizeString);
3768   OS << "sizeof(";
3769   DstArg->printPretty(OS, 0, getPrintingPolicy());
3770   OS << ")";
3771 
3772   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3773     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3774                                     OS.str());
3775 }
3776 
3777 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)3778 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3779   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3780     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3781       return D1->getDecl() == D2->getDecl();
3782   return false;
3783 }
3784 
getStrlenExprArg(const Expr * E)3785 static const Expr *getStrlenExprArg(const Expr *E) {
3786   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3787     const FunctionDecl *FD = CE->getDirectCallee();
3788     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3789       return 0;
3790     return CE->getArg(0)->IgnoreParenCasts();
3791   }
3792   return 0;
3793 }
3794 
3795 // Warn on anti-patterns as the 'size' argument to strncat.
3796 // The correct size argument should look like following:
3797 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)3798 void Sema::CheckStrncatArguments(const CallExpr *CE,
3799                                  IdentifierInfo *FnName) {
3800   // Don't crash if the user has the wrong number of arguments.
3801   if (CE->getNumArgs() < 3)
3802     return;
3803   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3804   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3805   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3806 
3807   // Identify common expressions, which are wrongly used as the size argument
3808   // to strncat and may lead to buffer overflows.
3809   unsigned PatternType = 0;
3810   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3811     // - sizeof(dst)
3812     if (referToTheSameDecl(SizeOfArg, DstArg))
3813       PatternType = 1;
3814     // - sizeof(src)
3815     else if (referToTheSameDecl(SizeOfArg, SrcArg))
3816       PatternType = 2;
3817   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3818     if (BE->getOpcode() == BO_Sub) {
3819       const Expr *L = BE->getLHS()->IgnoreParenCasts();
3820       const Expr *R = BE->getRHS()->IgnoreParenCasts();
3821       // - sizeof(dst) - strlen(dst)
3822       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3823           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3824         PatternType = 1;
3825       // - sizeof(src) - (anything)
3826       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3827         PatternType = 2;
3828     }
3829   }
3830 
3831   if (PatternType == 0)
3832     return;
3833 
3834   // Generate the diagnostic.
3835   SourceLocation SL = LenArg->getLocStart();
3836   SourceRange SR = LenArg->getSourceRange();
3837   SourceManager &SM  = PP.getSourceManager();
3838 
3839   // If the function is defined as a builtin macro, do not show macro expansion.
3840   if (SM.isMacroArgExpansion(SL)) {
3841     SL = SM.getSpellingLoc(SL);
3842     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3843                      SM.getSpellingLoc(SR.getEnd()));
3844   }
3845 
3846   // Check if the destination is an array (rather than a pointer to an array).
3847   QualType DstTy = DstArg->getType();
3848   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3849                                                                     Context);
3850   if (!isKnownSizeArray) {
3851     if (PatternType == 1)
3852       Diag(SL, diag::warn_strncat_wrong_size) << SR;
3853     else
3854       Diag(SL, diag::warn_strncat_src_size) << SR;
3855     return;
3856   }
3857 
3858   if (PatternType == 1)
3859     Diag(SL, diag::warn_strncat_large_size) << SR;
3860   else
3861     Diag(SL, diag::warn_strncat_src_size) << SR;
3862 
3863   SmallString<128> sizeString;
3864   llvm::raw_svector_ostream OS(sizeString);
3865   OS << "sizeof(";
3866   DstArg->printPretty(OS, 0, getPrintingPolicy());
3867   OS << ") - ";
3868   OS << "strlen(";
3869   DstArg->printPretty(OS, 0, getPrintingPolicy());
3870   OS << ") - 1";
3871 
3872   Diag(SL, diag::note_strncat_wrong_size)
3873     << FixItHint::CreateReplacement(SR, OS.str());
3874 }
3875 
3876 //===--- CHECK: Return Address of Stack Variable --------------------------===//
3877 
3878 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3879                      Decl *ParentDecl);
3880 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3881                       Decl *ParentDecl);
3882 
3883 /// CheckReturnStackAddr - Check if a return statement returns the address
3884 ///   of a stack variable.
3885 void
CheckReturnStackAddr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)3886 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3887                            SourceLocation ReturnLoc) {
3888 
3889   Expr *stackE = 0;
3890   SmallVector<DeclRefExpr *, 8> refVars;
3891 
3892   // Perform checking for returned stack addresses, local blocks,
3893   // label addresses or references to temporaries.
3894   if (lhsType->isPointerType() ||
3895       (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3896     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3897   } else if (lhsType->isReferenceType()) {
3898     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3899   }
3900 
3901   if (stackE == 0)
3902     return; // Nothing suspicious was found.
3903 
3904   SourceLocation diagLoc;
3905   SourceRange diagRange;
3906   if (refVars.empty()) {
3907     diagLoc = stackE->getLocStart();
3908     diagRange = stackE->getSourceRange();
3909   } else {
3910     // We followed through a reference variable. 'stackE' contains the
3911     // problematic expression but we will warn at the return statement pointing
3912     // at the reference variable. We will later display the "trail" of
3913     // reference variables using notes.
3914     diagLoc = refVars[0]->getLocStart();
3915     diagRange = refVars[0]->getSourceRange();
3916   }
3917 
3918   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3919     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3920                                              : diag::warn_ret_stack_addr)
3921      << DR->getDecl()->getDeclName() << diagRange;
3922   } else if (isa<BlockExpr>(stackE)) { // local block.
3923     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3924   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3925     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3926   } else { // local temporary.
3927     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3928                                              : diag::warn_ret_local_temp_addr)
3929      << diagRange;
3930   }
3931 
3932   // Display the "trail" of reference variables that we followed until we
3933   // found the problematic expression using notes.
3934   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3935     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3936     // If this var binds to another reference var, show the range of the next
3937     // var, otherwise the var binds to the problematic expression, in which case
3938     // show the range of the expression.
3939     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3940                                   : stackE->getSourceRange();
3941     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3942       << VD->getDeclName() << range;
3943   }
3944 }
3945 
3946 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3947 ///  check if the expression in a return statement evaluates to an address
3948 ///  to a location on the stack, a local block, an address of a label, or a
3949 ///  reference to local temporary. The recursion is used to traverse the
3950 ///  AST of the return expression, with recursion backtracking when we
3951 ///  encounter a subexpression that (1) clearly does not lead to one of the
3952 ///  above problematic expressions (2) is something we cannot determine leads to
3953 ///  a problematic expression based on such local checking.
3954 ///
3955 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3956 ///  the expression that they point to. Such variables are added to the
3957 ///  'refVars' vector so that we know what the reference variable "trail" was.
3958 ///
3959 ///  EvalAddr processes expressions that are pointers that are used as
3960 ///  references (and not L-values).  EvalVal handles all other values.
3961 ///  At the base case of the recursion is a check for the above problematic
3962 ///  expressions.
3963 ///
3964 ///  This implementation handles:
3965 ///
3966 ///   * pointer-to-pointer casts
3967 ///   * implicit conversions from array references to pointers
3968 ///   * taking the address of fields
3969 ///   * arbitrary interplay between "&" and "*" operators
3970 ///   * pointer arithmetic from an address of a stack variable
3971 ///   * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)3972 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3973                       Decl *ParentDecl) {
3974   if (E->isTypeDependent())
3975     return NULL;
3976 
3977   // We should only be called for evaluating pointer expressions.
3978   assert((E->getType()->isAnyPointerType() ||
3979           E->getType()->isBlockPointerType() ||
3980           E->getType()->isObjCQualifiedIdType()) &&
3981          "EvalAddr only works on pointers");
3982 
3983   E = E->IgnoreParens();
3984 
3985   // Our "symbolic interpreter" is just a dispatch off the currently
3986   // viewed AST node.  We then recursively traverse the AST by calling
3987   // EvalAddr and EvalVal appropriately.
3988   switch (E->getStmtClass()) {
3989   case Stmt::DeclRefExprClass: {
3990     DeclRefExpr *DR = cast<DeclRefExpr>(E);
3991 
3992     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3993       // If this is a reference variable, follow through to the expression that
3994       // it points to.
3995       if (V->hasLocalStorage() &&
3996           V->getType()->isReferenceType() && V->hasInit()) {
3997         // Add the reference variable to the "trail".
3998         refVars.push_back(DR);
3999         return EvalAddr(V->getInit(), refVars, ParentDecl);
4000       }
4001 
4002     return NULL;
4003   }
4004 
4005   case Stmt::UnaryOperatorClass: {
4006     // The only unary operator that make sense to handle here
4007     // is AddrOf.  All others don't make sense as pointers.
4008     UnaryOperator *U = cast<UnaryOperator>(E);
4009 
4010     if (U->getOpcode() == UO_AddrOf)
4011       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
4012     else
4013       return NULL;
4014   }
4015 
4016   case Stmt::BinaryOperatorClass: {
4017     // Handle pointer arithmetic.  All other binary operators are not valid
4018     // in this context.
4019     BinaryOperator *B = cast<BinaryOperator>(E);
4020     BinaryOperatorKind op = B->getOpcode();
4021 
4022     if (op != BO_Add && op != BO_Sub)
4023       return NULL;
4024 
4025     Expr *Base = B->getLHS();
4026 
4027     // Determine which argument is the real pointer base.  It could be
4028     // the RHS argument instead of the LHS.
4029     if (!Base->getType()->isPointerType()) Base = B->getRHS();
4030 
4031     assert (Base->getType()->isPointerType());
4032     return EvalAddr(Base, refVars, ParentDecl);
4033   }
4034 
4035   // For conditional operators we need to see if either the LHS or RHS are
4036   // valid DeclRefExpr*s.  If one of them is valid, we return it.
4037   case Stmt::ConditionalOperatorClass: {
4038     ConditionalOperator *C = cast<ConditionalOperator>(E);
4039 
4040     // Handle the GNU extension for missing LHS.
4041     if (Expr *lhsExpr = C->getLHS()) {
4042     // In C++, we can have a throw-expression, which has 'void' type.
4043       if (!lhsExpr->getType()->isVoidType())
4044         if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
4045           return LHS;
4046     }
4047 
4048     // In C++, we can have a throw-expression, which has 'void' type.
4049     if (C->getRHS()->getType()->isVoidType())
4050       return NULL;
4051 
4052     return EvalAddr(C->getRHS(), refVars, ParentDecl);
4053   }
4054 
4055   case Stmt::BlockExprClass:
4056     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
4057       return E; // local block.
4058     return NULL;
4059 
4060   case Stmt::AddrLabelExprClass:
4061     return E; // address of label.
4062 
4063   case Stmt::ExprWithCleanupsClass:
4064     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
4065                     ParentDecl);
4066 
4067   // For casts, we need to handle conversions from arrays to
4068   // pointer values, and pointer-to-pointer conversions.
4069   case Stmt::ImplicitCastExprClass:
4070   case Stmt::CStyleCastExprClass:
4071   case Stmt::CXXFunctionalCastExprClass:
4072   case Stmt::ObjCBridgedCastExprClass:
4073   case Stmt::CXXStaticCastExprClass:
4074   case Stmt::CXXDynamicCastExprClass:
4075   case Stmt::CXXConstCastExprClass:
4076   case Stmt::CXXReinterpretCastExprClass: {
4077     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
4078     switch (cast<CastExpr>(E)->getCastKind()) {
4079     case CK_BitCast:
4080     case CK_LValueToRValue:
4081     case CK_NoOp:
4082     case CK_BaseToDerived:
4083     case CK_DerivedToBase:
4084     case CK_UncheckedDerivedToBase:
4085     case CK_Dynamic:
4086     case CK_CPointerToObjCPointerCast:
4087     case CK_BlockPointerToObjCPointerCast:
4088     case CK_AnyPointerToBlockPointerCast:
4089       return EvalAddr(SubExpr, refVars, ParentDecl);
4090 
4091     case CK_ArrayToPointerDecay:
4092       return EvalVal(SubExpr, refVars, ParentDecl);
4093 
4094     default:
4095       return 0;
4096     }
4097   }
4098 
4099   case Stmt::MaterializeTemporaryExprClass:
4100     if (Expr *Result = EvalAddr(
4101                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4102                                 refVars, ParentDecl))
4103       return Result;
4104 
4105     return E;
4106 
4107   // Everything else: we simply don't reason about them.
4108   default:
4109     return NULL;
4110   }
4111 }
4112 
4113 
4114 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
4115 ///   See the comments for EvalAddr for more details.
EvalVal(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)4116 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4117                      Decl *ParentDecl) {
4118 do {
4119   // We should only be called for evaluating non-pointer expressions, or
4120   // expressions with a pointer type that are not used as references but instead
4121   // are l-values (e.g., DeclRefExpr with a pointer type).
4122 
4123   // Our "symbolic interpreter" is just a dispatch off the currently
4124   // viewed AST node.  We then recursively traverse the AST by calling
4125   // EvalAddr and EvalVal appropriately.
4126 
4127   E = E->IgnoreParens();
4128   switch (E->getStmtClass()) {
4129   case Stmt::ImplicitCastExprClass: {
4130     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
4131     if (IE->getValueKind() == VK_LValue) {
4132       E = IE->getSubExpr();
4133       continue;
4134     }
4135     return NULL;
4136   }
4137 
4138   case Stmt::ExprWithCleanupsClass:
4139     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
4140 
4141   case Stmt::DeclRefExprClass: {
4142     // When we hit a DeclRefExpr we are looking at code that refers to a
4143     // variable's name. If it's not a reference variable we check if it has
4144     // local storage within the function, and if so, return the expression.
4145     DeclRefExpr *DR = cast<DeclRefExpr>(E);
4146 
4147     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
4148       // Check if it refers to itself, e.g. "int& i = i;".
4149       if (V == ParentDecl)
4150         return DR;
4151 
4152       if (V->hasLocalStorage()) {
4153         if (!V->getType()->isReferenceType())
4154           return DR;
4155 
4156         // Reference variable, follow through to the expression that
4157         // it points to.
4158         if (V->hasInit()) {
4159           // Add the reference variable to the "trail".
4160           refVars.push_back(DR);
4161           return EvalVal(V->getInit(), refVars, V);
4162         }
4163       }
4164     }
4165 
4166     return NULL;
4167   }
4168 
4169   case Stmt::UnaryOperatorClass: {
4170     // The only unary operator that make sense to handle here
4171     // is Deref.  All others don't resolve to a "name."  This includes
4172     // handling all sorts of rvalues passed to a unary operator.
4173     UnaryOperator *U = cast<UnaryOperator>(E);
4174 
4175     if (U->getOpcode() == UO_Deref)
4176       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
4177 
4178     return NULL;
4179   }
4180 
4181   case Stmt::ArraySubscriptExprClass: {
4182     // Array subscripts are potential references to data on the stack.  We
4183     // retrieve the DeclRefExpr* for the array variable if it indeed
4184     // has local storage.
4185     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
4186   }
4187 
4188   case Stmt::ConditionalOperatorClass: {
4189     // For conditional operators we need to see if either the LHS or RHS are
4190     // non-NULL Expr's.  If one is non-NULL, we return it.
4191     ConditionalOperator *C = cast<ConditionalOperator>(E);
4192 
4193     // Handle the GNU extension for missing LHS.
4194     if (Expr *lhsExpr = C->getLHS())
4195       if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
4196         return LHS;
4197 
4198     return EvalVal(C->getRHS(), refVars, ParentDecl);
4199   }
4200 
4201   // Accesses to members are potential references to data on the stack.
4202   case Stmt::MemberExprClass: {
4203     MemberExpr *M = cast<MemberExpr>(E);
4204 
4205     // Check for indirect access.  We only want direct field accesses.
4206     if (M->isArrow())
4207       return NULL;
4208 
4209     // Check whether the member type is itself a reference, in which case
4210     // we're not going to refer to the member, but to what the member refers to.
4211     if (M->getMemberDecl()->getType()->isReferenceType())
4212       return NULL;
4213 
4214     return EvalVal(M->getBase(), refVars, ParentDecl);
4215   }
4216 
4217   case Stmt::MaterializeTemporaryExprClass:
4218     if (Expr *Result = EvalVal(
4219                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
4220                                refVars, ParentDecl))
4221       return Result;
4222 
4223     return E;
4224 
4225   default:
4226     // Check that we don't return or take the address of a reference to a
4227     // temporary. This is only useful in C++.
4228     if (!E->isTypeDependent() && E->isRValue())
4229       return E;
4230 
4231     // Everything else: we simply don't reason about them.
4232     return NULL;
4233   }
4234 } while (true);
4235 }
4236 
4237 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
4238 
4239 /// Check for comparisons of floating point operands using != and ==.
4240 /// Issue a warning if these are no self-comparisons, as they are not likely
4241 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)4242 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
4243   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
4244   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
4245 
4246   // Special case: check for x == x (which is OK).
4247   // Do not emit warnings for such cases.
4248   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
4249     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
4250       if (DRL->getDecl() == DRR->getDecl())
4251         return;
4252 
4253 
4254   // Special case: check for comparisons against literals that can be exactly
4255   //  represented by APFloat.  In such cases, do not emit a warning.  This
4256   //  is a heuristic: often comparison against such literals are used to
4257   //  detect if a value in a variable has not changed.  This clearly can
4258   //  lead to false negatives.
4259   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
4260     if (FLL->isExact())
4261       return;
4262   } else
4263     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
4264       if (FLR->isExact())
4265         return;
4266 
4267   // Check for comparisons with builtin types.
4268   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
4269     if (CL->isBuiltinCall())
4270       return;
4271 
4272   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
4273     if (CR->isBuiltinCall())
4274       return;
4275 
4276   // Emit the diagnostic.
4277   Diag(Loc, diag::warn_floatingpoint_eq)
4278     << LHS->getSourceRange() << RHS->getSourceRange();
4279 }
4280 
4281 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
4282 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
4283 
4284 namespace {
4285 
4286 /// Structure recording the 'active' range of an integer-valued
4287 /// expression.
4288 struct IntRange {
4289   /// The number of bits active in the int.
4290   unsigned Width;
4291 
4292   /// True if the int is known not to have negative values.
4293   bool NonNegative;
4294 
IntRange__anon00dd1a5d0611::IntRange4295   IntRange(unsigned Width, bool NonNegative)
4296     : Width(Width), NonNegative(NonNegative)
4297   {}
4298 
4299   /// Returns the range of the bool type.
forBoolType__anon00dd1a5d0611::IntRange4300   static IntRange forBoolType() {
4301     return IntRange(1, true);
4302   }
4303 
4304   /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon00dd1a5d0611::IntRange4305   static IntRange forValueOfType(ASTContext &C, QualType T) {
4306     return forValueOfCanonicalType(C,
4307                           T->getCanonicalTypeInternal().getTypePtr());
4308   }
4309 
4310   /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon00dd1a5d0611::IntRange4311   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4312     assert(T->isCanonicalUnqualified());
4313 
4314     if (const VectorType *VT = dyn_cast<VectorType>(T))
4315       T = VT->getElementType().getTypePtr();
4316     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4317       T = CT->getElementType().getTypePtr();
4318 
4319     // For enum types, use the known bit width of the enumerators.
4320     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4321       EnumDecl *Enum = ET->getDecl();
4322       if (!Enum->isCompleteDefinition())
4323         return IntRange(C.getIntWidth(QualType(T, 0)), false);
4324 
4325       unsigned NumPositive = Enum->getNumPositiveBits();
4326       unsigned NumNegative = Enum->getNumNegativeBits();
4327 
4328       if (NumNegative == 0)
4329         return IntRange(NumPositive, true/*NonNegative*/);
4330       else
4331         return IntRange(std::max(NumPositive + 1, NumNegative),
4332                         false/*NonNegative*/);
4333     }
4334 
4335     const BuiltinType *BT = cast<BuiltinType>(T);
4336     assert(BT->isInteger());
4337 
4338     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4339   }
4340 
4341   /// Returns the "target" range of a canonical integral type, i.e.
4342   /// the range of values expressible in the type.
4343   ///
4344   /// This matches forValueOfCanonicalType except that enums have the
4345   /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon00dd1a5d0611::IntRange4346   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4347     assert(T->isCanonicalUnqualified());
4348 
4349     if (const VectorType *VT = dyn_cast<VectorType>(T))
4350       T = VT->getElementType().getTypePtr();
4351     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4352       T = CT->getElementType().getTypePtr();
4353     if (const EnumType *ET = dyn_cast<EnumType>(T))
4354       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4355 
4356     const BuiltinType *BT = cast<BuiltinType>(T);
4357     assert(BT->isInteger());
4358 
4359     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4360   }
4361 
4362   /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon00dd1a5d0611::IntRange4363   static IntRange join(IntRange L, IntRange R) {
4364     return IntRange(std::max(L.Width, R.Width),
4365                     L.NonNegative && R.NonNegative);
4366   }
4367 
4368   /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon00dd1a5d0611::IntRange4369   static IntRange meet(IntRange L, IntRange R) {
4370     return IntRange(std::min(L.Width, R.Width),
4371                     L.NonNegative || R.NonNegative);
4372   }
4373 };
4374 
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)4375 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4376                               unsigned MaxWidth) {
4377   if (value.isSigned() && value.isNegative())
4378     return IntRange(value.getMinSignedBits(), false);
4379 
4380   if (value.getBitWidth() > MaxWidth)
4381     value = value.trunc(MaxWidth);
4382 
4383   // isNonNegative() just checks the sign bit without considering
4384   // signedness.
4385   return IntRange(value.getActiveBits(), true);
4386 }
4387 
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)4388 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4389                               unsigned MaxWidth) {
4390   if (result.isInt())
4391     return GetValueRange(C, result.getInt(), MaxWidth);
4392 
4393   if (result.isVector()) {
4394     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4395     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4396       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4397       R = IntRange::join(R, El);
4398     }
4399     return R;
4400   }
4401 
4402   if (result.isComplexInt()) {
4403     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4404     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4405     return IntRange::join(R, I);
4406   }
4407 
4408   // This can happen with lossless casts to intptr_t of "based" lvalues.
4409   // Assume it might use arbitrary bits.
4410   // FIXME: The only reason we need to pass the type in here is to get
4411   // the sign right on this one case.  It would be nice if APValue
4412   // preserved this.
4413   assert(result.isLValue() || result.isAddrLabelDiff());
4414   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4415 }
4416 
GetExprType(Expr * E)4417 static QualType GetExprType(Expr *E) {
4418   QualType Ty = E->getType();
4419   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
4420     Ty = AtomicRHS->getValueType();
4421   return Ty;
4422 }
4423 
4424 /// Pseudo-evaluate the given integer expression, estimating the
4425 /// range of values it might take.
4426 ///
4427 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)4428 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4429   E = E->IgnoreParens();
4430 
4431   // Try a full evaluation first.
4432   Expr::EvalResult result;
4433   if (E->EvaluateAsRValue(result, C))
4434     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
4435 
4436   // I think we only want to look through implicit casts here; if the
4437   // user has an explicit widening cast, we should treat the value as
4438   // being of the new, wider type.
4439   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4440     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4441       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4442 
4443     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
4444 
4445     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4446 
4447     // Assume that non-integer casts can span the full range of the type.
4448     if (!isIntegerCast)
4449       return OutputTypeRange;
4450 
4451     IntRange SubRange
4452       = GetExprRange(C, CE->getSubExpr(),
4453                      std::min(MaxWidth, OutputTypeRange.Width));
4454 
4455     // Bail out if the subexpr's range is as wide as the cast type.
4456     if (SubRange.Width >= OutputTypeRange.Width)
4457       return OutputTypeRange;
4458 
4459     // Otherwise, we take the smaller width, and we're non-negative if
4460     // either the output type or the subexpr is.
4461     return IntRange(SubRange.Width,
4462                     SubRange.NonNegative || OutputTypeRange.NonNegative);
4463   }
4464 
4465   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4466     // If we can fold the condition, just take that operand.
4467     bool CondResult;
4468     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4469       return GetExprRange(C, CondResult ? CO->getTrueExpr()
4470                                         : CO->getFalseExpr(),
4471                           MaxWidth);
4472 
4473     // Otherwise, conservatively merge.
4474     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4475     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4476     return IntRange::join(L, R);
4477   }
4478 
4479   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4480     switch (BO->getOpcode()) {
4481 
4482     // Boolean-valued operations are single-bit and positive.
4483     case BO_LAnd:
4484     case BO_LOr:
4485     case BO_LT:
4486     case BO_GT:
4487     case BO_LE:
4488     case BO_GE:
4489     case BO_EQ:
4490     case BO_NE:
4491       return IntRange::forBoolType();
4492 
4493     // The type of the assignments is the type of the LHS, so the RHS
4494     // is not necessarily the same type.
4495     case BO_MulAssign:
4496     case BO_DivAssign:
4497     case BO_RemAssign:
4498     case BO_AddAssign:
4499     case BO_SubAssign:
4500     case BO_XorAssign:
4501     case BO_OrAssign:
4502       // TODO: bitfields?
4503       return IntRange::forValueOfType(C, GetExprType(E));
4504 
4505     // Simple assignments just pass through the RHS, which will have
4506     // been coerced to the LHS type.
4507     case BO_Assign:
4508       // TODO: bitfields?
4509       return GetExprRange(C, BO->getRHS(), MaxWidth);
4510 
4511     // Operations with opaque sources are black-listed.
4512     case BO_PtrMemD:
4513     case BO_PtrMemI:
4514       return IntRange::forValueOfType(C, GetExprType(E));
4515 
4516     // Bitwise-and uses the *infinum* of the two source ranges.
4517     case BO_And:
4518     case BO_AndAssign:
4519       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4520                             GetExprRange(C, BO->getRHS(), MaxWidth));
4521 
4522     // Left shift gets black-listed based on a judgement call.
4523     case BO_Shl:
4524       // ...except that we want to treat '1 << (blah)' as logically
4525       // positive.  It's an important idiom.
4526       if (IntegerLiteral *I
4527             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4528         if (I->getValue() == 1) {
4529           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
4530           return IntRange(R.Width, /*NonNegative*/ true);
4531         }
4532       }
4533       // fallthrough
4534 
4535     case BO_ShlAssign:
4536       return IntRange::forValueOfType(C, GetExprType(E));
4537 
4538     // Right shift by a constant can narrow its left argument.
4539     case BO_Shr:
4540     case BO_ShrAssign: {
4541       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4542 
4543       // If the shift amount is a positive constant, drop the width by
4544       // that much.
4545       llvm::APSInt shift;
4546       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4547           shift.isNonNegative()) {
4548         unsigned zext = shift.getZExtValue();
4549         if (zext >= L.Width)
4550           L.Width = (L.NonNegative ? 0 : 1);
4551         else
4552           L.Width -= zext;
4553       }
4554 
4555       return L;
4556     }
4557 
4558     // Comma acts as its right operand.
4559     case BO_Comma:
4560       return GetExprRange(C, BO->getRHS(), MaxWidth);
4561 
4562     // Black-list pointer subtractions.
4563     case BO_Sub:
4564       if (BO->getLHS()->getType()->isPointerType())
4565         return IntRange::forValueOfType(C, GetExprType(E));
4566       break;
4567 
4568     // The width of a division result is mostly determined by the size
4569     // of the LHS.
4570     case BO_Div: {
4571       // Don't 'pre-truncate' the operands.
4572       unsigned opWidth = C.getIntWidth(GetExprType(E));
4573       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4574 
4575       // If the divisor is constant, use that.
4576       llvm::APSInt divisor;
4577       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4578         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4579         if (log2 >= L.Width)
4580           L.Width = (L.NonNegative ? 0 : 1);
4581         else
4582           L.Width = std::min(L.Width - log2, MaxWidth);
4583         return L;
4584       }
4585 
4586       // Otherwise, just use the LHS's width.
4587       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4588       return IntRange(L.Width, L.NonNegative && R.NonNegative);
4589     }
4590 
4591     // The result of a remainder can't be larger than the result of
4592     // either side.
4593     case BO_Rem: {
4594       // Don't 'pre-truncate' the operands.
4595       unsigned opWidth = C.getIntWidth(GetExprType(E));
4596       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4597       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4598 
4599       IntRange meet = IntRange::meet(L, R);
4600       meet.Width = std::min(meet.Width, MaxWidth);
4601       return meet;
4602     }
4603 
4604     // The default behavior is okay for these.
4605     case BO_Mul:
4606     case BO_Add:
4607     case BO_Xor:
4608     case BO_Or:
4609       break;
4610     }
4611 
4612     // The default case is to treat the operation as if it were closed
4613     // on the narrowest type that encompasses both operands.
4614     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4615     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4616     return IntRange::join(L, R);
4617   }
4618 
4619   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4620     switch (UO->getOpcode()) {
4621     // Boolean-valued operations are white-listed.
4622     case UO_LNot:
4623       return IntRange::forBoolType();
4624 
4625     // Operations with opaque sources are black-listed.
4626     case UO_Deref:
4627     case UO_AddrOf: // should be impossible
4628       return IntRange::forValueOfType(C, GetExprType(E));
4629 
4630     default:
4631       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4632     }
4633   }
4634 
4635   if (FieldDecl *BitField = E->getSourceBitField())
4636     return IntRange(BitField->getBitWidthValue(C),
4637                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
4638 
4639   return IntRange::forValueOfType(C, GetExprType(E));
4640 }
4641 
GetExprRange(ASTContext & C,Expr * E)4642 static IntRange GetExprRange(ASTContext &C, Expr *E) {
4643   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
4644 }
4645 
4646 /// Checks whether the given value, which currently has the given
4647 /// source semantics, has the same value when coerced through the
4648 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)4649 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4650                                  const llvm::fltSemantics &Src,
4651                                  const llvm::fltSemantics &Tgt) {
4652   llvm::APFloat truncated = value;
4653 
4654   bool ignored;
4655   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4656   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4657 
4658   return truncated.bitwiseIsEqual(value);
4659 }
4660 
4661 /// Checks whether the given value, which currently has the given
4662 /// source semantics, has the same value when coerced through the
4663 /// target semantics.
4664 ///
4665 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)4666 static bool IsSameFloatAfterCast(const APValue &value,
4667                                  const llvm::fltSemantics &Src,
4668                                  const llvm::fltSemantics &Tgt) {
4669   if (value.isFloat())
4670     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4671 
4672   if (value.isVector()) {
4673     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4674       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4675         return false;
4676     return true;
4677   }
4678 
4679   assert(value.isComplexFloat());
4680   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4681           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4682 }
4683 
4684 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4685 
IsZero(Sema & S,Expr * E)4686 static bool IsZero(Sema &S, Expr *E) {
4687   // Suppress cases where we are comparing against an enum constant.
4688   if (const DeclRefExpr *DR =
4689       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4690     if (isa<EnumConstantDecl>(DR->getDecl()))
4691       return false;
4692 
4693   // Suppress cases where the '0' value is expanded from a macro.
4694   if (E->getLocStart().isMacroID())
4695     return false;
4696 
4697   llvm::APSInt Value;
4698   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4699 }
4700 
HasEnumType(Expr * E)4701 static bool HasEnumType(Expr *E) {
4702   // Strip off implicit integral promotions.
4703   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4704     if (ICE->getCastKind() != CK_IntegralCast &&
4705         ICE->getCastKind() != CK_NoOp)
4706       break;
4707     E = ICE->getSubExpr();
4708   }
4709 
4710   return E->getType()->isEnumeralType();
4711 }
4712 
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)4713 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4714   BinaryOperatorKind op = E->getOpcode();
4715   if (E->isValueDependent())
4716     return;
4717 
4718   if (op == BO_LT && IsZero(S, E->getRHS())) {
4719     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4720       << "< 0" << "false" << HasEnumType(E->getLHS())
4721       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4722   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4723     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4724       << ">= 0" << "true" << HasEnumType(E->getLHS())
4725       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4726   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4727     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4728       << "0 >" << "false" << HasEnumType(E->getRHS())
4729       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4730   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4731     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4732       << "0 <=" << "true" << HasEnumType(E->getRHS())
4733       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4734   }
4735 }
4736 
DiagnoseOutOfRangeComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,llvm::APSInt Value,bool RhsConstant)4737 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4738                                          Expr *Constant, Expr *Other,
4739                                          llvm::APSInt Value,
4740                                          bool RhsConstant) {
4741   // 0 values are handled later by CheckTrivialUnsignedComparison().
4742   if (Value == 0)
4743     return;
4744 
4745   BinaryOperatorKind op = E->getOpcode();
4746   QualType OtherT = Other->getType();
4747   QualType ConstantT = Constant->getType();
4748   QualType CommonT = E->getLHS()->getType();
4749   if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4750     return;
4751   assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4752          && "comparison with non-integer type");
4753 
4754   bool ConstantSigned = ConstantT->isSignedIntegerType();
4755   bool CommonSigned = CommonT->isSignedIntegerType();
4756 
4757   bool EqualityOnly = false;
4758 
4759   // TODO: Investigate using GetExprRange() to get tighter bounds on
4760   // on the bit ranges.
4761   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4762   unsigned OtherWidth = OtherRange.Width;
4763 
4764   if (CommonSigned) {
4765     // The common type is signed, therefore no signed to unsigned conversion.
4766     if (!OtherRange.NonNegative) {
4767       // Check that the constant is representable in type OtherT.
4768       if (ConstantSigned) {
4769         if (OtherWidth >= Value.getMinSignedBits())
4770           return;
4771       } else { // !ConstantSigned
4772         if (OtherWidth >= Value.getActiveBits() + 1)
4773           return;
4774       }
4775     } else { // !OtherSigned
4776       // Check that the constant is representable in type OtherT.
4777       // Negative values are out of range.
4778       if (ConstantSigned) {
4779         if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4780           return;
4781       } else { // !ConstantSigned
4782         if (OtherWidth >= Value.getActiveBits())
4783           return;
4784       }
4785     }
4786   } else {  // !CommonSigned
4787     if (OtherRange.NonNegative) {
4788       if (OtherWidth >= Value.getActiveBits())
4789         return;
4790     } else if (!OtherRange.NonNegative && !ConstantSigned) {
4791       // Check to see if the constant is representable in OtherT.
4792       if (OtherWidth > Value.getActiveBits())
4793         return;
4794       // Check to see if the constant is equivalent to a negative value
4795       // cast to CommonT.
4796       if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4797           Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4798         return;
4799       // The constant value rests between values that OtherT can represent after
4800       // conversion.  Relational comparison still works, but equality
4801       // comparisons will be tautological.
4802       EqualityOnly = true;
4803     } else { // OtherSigned && ConstantSigned
4804       assert(0 && "Two signed types converted to unsigned types.");
4805     }
4806   }
4807 
4808   bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4809 
4810   bool IsTrue = true;
4811   if (op == BO_EQ || op == BO_NE) {
4812     IsTrue = op == BO_NE;
4813   } else if (EqualityOnly) {
4814     return;
4815   } else if (RhsConstant) {
4816     if (op == BO_GT || op == BO_GE)
4817       IsTrue = !PositiveConstant;
4818     else // op == BO_LT || op == BO_LE
4819       IsTrue = PositiveConstant;
4820   } else {
4821     if (op == BO_LT || op == BO_LE)
4822       IsTrue = !PositiveConstant;
4823     else // op == BO_GT || op == BO_GE
4824       IsTrue = PositiveConstant;
4825   }
4826 
4827   // If this is a comparison to an enum constant, include that
4828   // constant in the diagnostic.
4829   const EnumConstantDecl *ED = 0;
4830   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4831     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4832 
4833   SmallString<64> PrettySourceValue;
4834   llvm::raw_svector_ostream OS(PrettySourceValue);
4835   if (ED)
4836     OS << '\'' << *ED << "' (" << Value << ")";
4837   else
4838     OS << Value;
4839 
4840   S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4841       << OS.str() << OtherT << IsTrue
4842       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4843 }
4844 
4845 /// Analyze the operands of the given comparison.  Implements the
4846 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)4847 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4848   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4849   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4850 }
4851 
4852 /// \brief Implements -Wsign-compare.
4853 ///
4854 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)4855 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4856   // The type the comparison is being performed in.
4857   QualType T = E->getLHS()->getType();
4858   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4859          && "comparison with mismatched types");
4860   if (E->isValueDependent())
4861     return AnalyzeImpConvsInComparison(S, E);
4862 
4863   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4864   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4865 
4866   bool IsComparisonConstant = false;
4867 
4868   // Check whether an integer constant comparison results in a value
4869   // of 'true' or 'false'.
4870   if (T->isIntegralType(S.Context)) {
4871     llvm::APSInt RHSValue;
4872     bool IsRHSIntegralLiteral =
4873       RHS->isIntegerConstantExpr(RHSValue, S.Context);
4874     llvm::APSInt LHSValue;
4875     bool IsLHSIntegralLiteral =
4876       LHS->isIntegerConstantExpr(LHSValue, S.Context);
4877     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4878         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4879     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4880       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4881     else
4882       IsComparisonConstant =
4883         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4884   } else if (!T->hasUnsignedIntegerRepresentation())
4885       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4886 
4887   // We don't do anything special if this isn't an unsigned integral
4888   // comparison:  we're only interested in integral comparisons, and
4889   // signed comparisons only happen in cases we don't care to warn about.
4890   //
4891   // We also don't care about value-dependent expressions or expressions
4892   // whose result is a constant.
4893   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4894     return AnalyzeImpConvsInComparison(S, E);
4895 
4896   // Check to see if one of the (unmodified) operands is of different
4897   // signedness.
4898   Expr *signedOperand, *unsignedOperand;
4899   if (LHS->getType()->hasSignedIntegerRepresentation()) {
4900     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4901            "unsigned comparison between two signed integer expressions?");
4902     signedOperand = LHS;
4903     unsignedOperand = RHS;
4904   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4905     signedOperand = RHS;
4906     unsignedOperand = LHS;
4907   } else {
4908     CheckTrivialUnsignedComparison(S, E);
4909     return AnalyzeImpConvsInComparison(S, E);
4910   }
4911 
4912   // Otherwise, calculate the effective range of the signed operand.
4913   IntRange signedRange = GetExprRange(S.Context, signedOperand);
4914 
4915   // Go ahead and analyze implicit conversions in the operands.  Note
4916   // that we skip the implicit conversions on both sides.
4917   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4918   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4919 
4920   // If the signed range is non-negative, -Wsign-compare won't fire,
4921   // but we should still check for comparisons which are always true
4922   // or false.
4923   if (signedRange.NonNegative)
4924     return CheckTrivialUnsignedComparison(S, E);
4925 
4926   // For (in)equality comparisons, if the unsigned operand is a
4927   // constant which cannot collide with a overflowed signed operand,
4928   // then reinterpreting the signed operand as unsigned will not
4929   // change the result of the comparison.
4930   if (E->isEqualityOp()) {
4931     unsigned comparisonWidth = S.Context.getIntWidth(T);
4932     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4933 
4934     // We should never be unable to prove that the unsigned operand is
4935     // non-negative.
4936     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4937 
4938     if (unsignedRange.Width < comparisonWidth)
4939       return;
4940   }
4941 
4942   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4943     S.PDiag(diag::warn_mixed_sign_comparison)
4944       << LHS->getType() << RHS->getType()
4945       << LHS->getSourceRange() << RHS->getSourceRange());
4946 }
4947 
4948 /// Analyzes an attempt to assign the given value to a bitfield.
4949 ///
4950 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)4951 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4952                                       SourceLocation InitLoc) {
4953   assert(Bitfield->isBitField());
4954   if (Bitfield->isInvalidDecl())
4955     return false;
4956 
4957   // White-list bool bitfields.
4958   if (Bitfield->getType()->isBooleanType())
4959     return false;
4960 
4961   // Ignore value- or type-dependent expressions.
4962   if (Bitfield->getBitWidth()->isValueDependent() ||
4963       Bitfield->getBitWidth()->isTypeDependent() ||
4964       Init->isValueDependent() ||
4965       Init->isTypeDependent())
4966     return false;
4967 
4968   Expr *OriginalInit = Init->IgnoreParenImpCasts();
4969 
4970   llvm::APSInt Value;
4971   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4972     return false;
4973 
4974   unsigned OriginalWidth = Value.getBitWidth();
4975   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4976 
4977   if (OriginalWidth <= FieldWidth)
4978     return false;
4979 
4980   // Compute the value which the bitfield will contain.
4981   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4982   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4983 
4984   // Check whether the stored value is equal to the original value.
4985   TruncatedValue = TruncatedValue.extend(OriginalWidth);
4986   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4987     return false;
4988 
4989   // Special-case bitfields of width 1: booleans are naturally 0/1, and
4990   // therefore don't strictly fit into a signed bitfield of width 1.
4991   if (FieldWidth == 1 && Value == 1)
4992     return false;
4993 
4994   std::string PrettyValue = Value.toString(10);
4995   std::string PrettyTrunc = TruncatedValue.toString(10);
4996 
4997   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4998     << PrettyValue << PrettyTrunc << OriginalInit->getType()
4999     << Init->getSourceRange();
5000 
5001   return true;
5002 }
5003 
5004 /// Analyze the given simple or compound assignment for warning-worthy
5005 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)5006 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
5007   // Just recurse on the LHS.
5008   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
5009 
5010   // We want to recurse on the RHS as normal unless we're assigning to
5011   // a bitfield.
5012   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
5013     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
5014                                   E->getOperatorLoc())) {
5015       // Recurse, ignoring any implicit conversions on the RHS.
5016       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
5017                                         E->getOperatorLoc());
5018     }
5019   }
5020 
5021   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
5022 }
5023 
5024 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)5025 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
5026                             SourceLocation CContext, unsigned diag,
5027                             bool pruneControlFlow = false) {
5028   if (pruneControlFlow) {
5029     S.DiagRuntimeBehavior(E->getExprLoc(), E,
5030                           S.PDiag(diag)
5031                             << SourceType << T << E->getSourceRange()
5032                             << SourceRange(CContext));
5033     return;
5034   }
5035   S.Diag(E->getExprLoc(), diag)
5036     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
5037 }
5038 
5039 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)5040 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
5041                             SourceLocation CContext, unsigned diag,
5042                             bool pruneControlFlow = false) {
5043   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
5044 }
5045 
5046 /// Diagnose an implicit cast from a literal expression. Does not warn when the
5047 /// cast wouldn't lose information.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)5048 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
5049                                     SourceLocation CContext) {
5050   // Try to convert the literal exactly to an integer. If we can, don't warn.
5051   bool isExact = false;
5052   const llvm::APFloat &Value = FL->getValue();
5053   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
5054                             T->hasUnsignedIntegerRepresentation());
5055   if (Value.convertToInteger(IntegerValue,
5056                              llvm::APFloat::rmTowardZero, &isExact)
5057       == llvm::APFloat::opOK && isExact)
5058     return;
5059 
5060   SmallString<16> PrettySourceValue;
5061   Value.toString(PrettySourceValue);
5062   SmallString<16> PrettyTargetValue;
5063   if (T->isSpecificBuiltinType(BuiltinType::Bool))
5064     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
5065   else
5066     IntegerValue.toString(PrettyTargetValue);
5067 
5068   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
5069     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
5070     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
5071 }
5072 
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)5073 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
5074   if (!Range.Width) return "0";
5075 
5076   llvm::APSInt ValueInRange = Value;
5077   ValueInRange.setIsSigned(!Range.NonNegative);
5078   ValueInRange = ValueInRange.trunc(Range.Width);
5079   return ValueInRange.toString(10);
5080 }
5081 
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)5082 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
5083   if (!isa<ImplicitCastExpr>(Ex))
5084     return false;
5085 
5086   Expr *InnerE = Ex->IgnoreParenImpCasts();
5087   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
5088   const Type *Source =
5089     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5090   if (Target->isDependentType())
5091     return false;
5092 
5093   const BuiltinType *FloatCandidateBT =
5094     dyn_cast<BuiltinType>(ToBool ? Source : Target);
5095   const Type *BoolCandidateType = ToBool ? Target : Source;
5096 
5097   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
5098           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
5099 }
5100 
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)5101 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
5102                                       SourceLocation CC) {
5103   unsigned NumArgs = TheCall->getNumArgs();
5104   for (unsigned i = 0; i < NumArgs; ++i) {
5105     Expr *CurrA = TheCall->getArg(i);
5106     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
5107       continue;
5108 
5109     bool IsSwapped = ((i > 0) &&
5110         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
5111     IsSwapped |= ((i < (NumArgs - 1)) &&
5112         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
5113     if (IsSwapped) {
5114       // Warn on this floating-point to bool conversion.
5115       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
5116                       CurrA->getType(), CC,
5117                       diag::warn_impcast_floating_point_to_bool);
5118     }
5119   }
5120 }
5121 
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=0)5122 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
5123                              SourceLocation CC, bool *ICContext = 0) {
5124   if (E->isTypeDependent() || E->isValueDependent()) return;
5125 
5126   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
5127   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
5128   if (Source == Target) return;
5129   if (Target->isDependentType()) return;
5130 
5131   // If the conversion context location is invalid don't complain. We also
5132   // don't want to emit a warning if the issue occurs from the expansion of
5133   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
5134   // delay this check as long as possible. Once we detect we are in that
5135   // scenario, we just return.
5136   if (CC.isInvalid())
5137     return;
5138 
5139   // Diagnose implicit casts to bool.
5140   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
5141     if (isa<StringLiteral>(E))
5142       // Warn on string literal to bool.  Checks for string literals in logical
5143       // expressions, for instances, assert(0 && "error here"), is prevented
5144       // by a check in AnalyzeImplicitConversions().
5145       return DiagnoseImpCast(S, E, T, CC,
5146                              diag::warn_impcast_string_literal_to_bool);
5147     if (Source->isFunctionType()) {
5148       // Warn on function to bool. Checks free functions and static member
5149       // functions. Weakly imported functions are excluded from the check,
5150       // since it's common to test their value to check whether the linker
5151       // found a definition for them.
5152       ValueDecl *D = 0;
5153       if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
5154         D = R->getDecl();
5155       } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
5156         D = M->getMemberDecl();
5157       }
5158 
5159       if (D && !D->isWeak()) {
5160         if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
5161           S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
5162             << F << E->getSourceRange() << SourceRange(CC);
5163           S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
5164             << FixItHint::CreateInsertion(E->getExprLoc(), "&");
5165           QualType ReturnType;
5166           UnresolvedSet<4> NonTemplateOverloads;
5167           S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
5168           if (!ReturnType.isNull()
5169               && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
5170             S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
5171               << FixItHint::CreateInsertion(
5172                  S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
5173           return;
5174         }
5175       }
5176     }
5177   }
5178 
5179   // Strip vector types.
5180   if (isa<VectorType>(Source)) {
5181     if (!isa<VectorType>(Target)) {
5182       if (S.SourceMgr.isInSystemMacro(CC))
5183         return;
5184       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
5185     }
5186 
5187     // If the vector cast is cast between two vectors of the same size, it is
5188     // a bitcast, not a conversion.
5189     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
5190       return;
5191 
5192     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
5193     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
5194   }
5195 
5196   // Strip complex types.
5197   if (isa<ComplexType>(Source)) {
5198     if (!isa<ComplexType>(Target)) {
5199       if (S.SourceMgr.isInSystemMacro(CC))
5200         return;
5201 
5202       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
5203     }
5204 
5205     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
5206     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
5207   }
5208 
5209   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
5210   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
5211 
5212   // If the source is floating point...
5213   if (SourceBT && SourceBT->isFloatingPoint()) {
5214     // ...and the target is floating point...
5215     if (TargetBT && TargetBT->isFloatingPoint()) {
5216       // ...then warn if we're dropping FP rank.
5217 
5218       // Builtin FP kinds are ordered by increasing FP rank.
5219       if (SourceBT->getKind() > TargetBT->getKind()) {
5220         // Don't warn about float constants that are precisely
5221         // representable in the target type.
5222         Expr::EvalResult result;
5223         if (E->EvaluateAsRValue(result, S.Context)) {
5224           // Value might be a float, a float vector, or a float complex.
5225           if (IsSameFloatAfterCast(result.Val,
5226                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
5227                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
5228             return;
5229         }
5230 
5231         if (S.SourceMgr.isInSystemMacro(CC))
5232           return;
5233 
5234         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
5235       }
5236       return;
5237     }
5238 
5239     // If the target is integral, always warn.
5240     if (TargetBT && TargetBT->isInteger()) {
5241       if (S.SourceMgr.isInSystemMacro(CC))
5242         return;
5243 
5244       Expr *InnerE = E->IgnoreParenImpCasts();
5245       // We also want to warn on, e.g., "int i = -1.234"
5246       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
5247         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
5248           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
5249 
5250       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
5251         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
5252       } else {
5253         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
5254       }
5255     }
5256 
5257     // If the target is bool, warn if expr is a function or method call.
5258     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
5259         isa<CallExpr>(E)) {
5260       // Check last argument of function call to see if it is an
5261       // implicit cast from a type matching the type the result
5262       // is being cast to.
5263       CallExpr *CEx = cast<CallExpr>(E);
5264       unsigned NumArgs = CEx->getNumArgs();
5265       if (NumArgs > 0) {
5266         Expr *LastA = CEx->getArg(NumArgs - 1);
5267         Expr *InnerE = LastA->IgnoreParenImpCasts();
5268         const Type *InnerType =
5269           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
5270         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
5271           // Warn on this floating-point to bool conversion
5272           DiagnoseImpCast(S, E, T, CC,
5273                           diag::warn_impcast_floating_point_to_bool);
5274         }
5275       }
5276     }
5277     return;
5278   }
5279 
5280   if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
5281            == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
5282       && !Target->isBlockPointerType() && !Target->isMemberPointerType()
5283       && Target->isScalarType() && !Target->isNullPtrType()) {
5284     SourceLocation Loc = E->getSourceRange().getBegin();
5285     if (Loc.isMacroID())
5286       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
5287     if (!Loc.isMacroID() || CC.isMacroID())
5288       S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
5289           << T << clang::SourceRange(CC)
5290           << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
5291   }
5292 
5293   if (!Source->isIntegerType() || !Target->isIntegerType())
5294     return;
5295 
5296   // TODO: remove this early return once the false positives for constant->bool
5297   // in templates, macros, etc, are reduced or removed.
5298   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
5299     return;
5300 
5301   IntRange SourceRange = GetExprRange(S.Context, E);
5302   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
5303 
5304   if (SourceRange.Width > TargetRange.Width) {
5305     // If the source is a constant, use a default-on diagnostic.
5306     // TODO: this should happen for bitfield stores, too.
5307     llvm::APSInt Value(32);
5308     if (E->isIntegerConstantExpr(Value, S.Context)) {
5309       if (S.SourceMgr.isInSystemMacro(CC))
5310         return;
5311 
5312       std::string PrettySourceValue = Value.toString(10);
5313       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5314 
5315       S.DiagRuntimeBehavior(E->getExprLoc(), E,
5316         S.PDiag(diag::warn_impcast_integer_precision_constant)
5317             << PrettySourceValue << PrettyTargetValue
5318             << E->getType() << T << E->getSourceRange()
5319             << clang::SourceRange(CC));
5320       return;
5321     }
5322 
5323     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5324     if (S.SourceMgr.isInSystemMacro(CC))
5325       return;
5326 
5327     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5328       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5329                              /* pruneControlFlow */ true);
5330     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5331   }
5332 
5333   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5334       (!TargetRange.NonNegative && SourceRange.NonNegative &&
5335        SourceRange.Width == TargetRange.Width)) {
5336 
5337     if (S.SourceMgr.isInSystemMacro(CC))
5338       return;
5339 
5340     unsigned DiagID = diag::warn_impcast_integer_sign;
5341 
5342     // Traditionally, gcc has warned about this under -Wsign-compare.
5343     // We also want to warn about it in -Wconversion.
5344     // So if -Wconversion is off, use a completely identical diagnostic
5345     // in the sign-compare group.
5346     // The conditional-checking code will
5347     if (ICContext) {
5348       DiagID = diag::warn_impcast_integer_sign_conditional;
5349       *ICContext = true;
5350     }
5351 
5352     return DiagnoseImpCast(S, E, T, CC, DiagID);
5353   }
5354 
5355   // Diagnose conversions between different enumeration types.
5356   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5357   // type, to give us better diagnostics.
5358   QualType SourceType = E->getType();
5359   if (!S.getLangOpts().CPlusPlus) {
5360     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5361       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5362         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5363         SourceType = S.Context.getTypeDeclType(Enum);
5364         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5365       }
5366   }
5367 
5368   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5369     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5370       if (SourceEnum->getDecl()->hasNameForLinkage() &&
5371           TargetEnum->getDecl()->hasNameForLinkage() &&
5372           SourceEnum != TargetEnum) {
5373         if (S.SourceMgr.isInSystemMacro(CC))
5374           return;
5375 
5376         return DiagnoseImpCast(S, E, SourceType, T, CC,
5377                                diag::warn_impcast_different_enum_types);
5378       }
5379 
5380   return;
5381 }
5382 
5383 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5384                               SourceLocation CC, QualType T);
5385 
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)5386 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5387                              SourceLocation CC, bool &ICContext) {
5388   E = E->IgnoreParenImpCasts();
5389 
5390   if (isa<ConditionalOperator>(E))
5391     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5392 
5393   AnalyzeImplicitConversions(S, E, CC);
5394   if (E->getType() != T)
5395     return CheckImplicitConversion(S, E, T, CC, &ICContext);
5396   return;
5397 }
5398 
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)5399 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5400                               SourceLocation CC, QualType T) {
5401   AnalyzeImplicitConversions(S, E->getCond(), CC);
5402 
5403   bool Suspicious = false;
5404   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5405   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5406 
5407   // If -Wconversion would have warned about either of the candidates
5408   // for a signedness conversion to the context type...
5409   if (!Suspicious) return;
5410 
5411   // ...but it's currently ignored...
5412   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5413                                  CC))
5414     return;
5415 
5416   // ...then check whether it would have warned about either of the
5417   // candidates for a signedness conversion to the condition type.
5418   if (E->getType() == T) return;
5419 
5420   Suspicious = false;
5421   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5422                           E->getType(), CC, &Suspicious);
5423   if (!Suspicious)
5424     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5425                             E->getType(), CC, &Suspicious);
5426 }
5427 
5428 /// AnalyzeImplicitConversions - Find and report any interesting
5429 /// implicit conversions in the given expression.  There are a couple
5430 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)5431 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5432   QualType T = OrigE->getType();
5433   Expr *E = OrigE->IgnoreParenImpCasts();
5434 
5435   if (E->isTypeDependent() || E->isValueDependent())
5436     return;
5437 
5438   // For conditional operators, we analyze the arguments as if they
5439   // were being fed directly into the output.
5440   if (isa<ConditionalOperator>(E)) {
5441     ConditionalOperator *CO = cast<ConditionalOperator>(E);
5442     CheckConditionalOperator(S, CO, CC, T);
5443     return;
5444   }
5445 
5446   // Check implicit argument conversions for function calls.
5447   if (CallExpr *Call = dyn_cast<CallExpr>(E))
5448     CheckImplicitArgumentConversions(S, Call, CC);
5449 
5450   // Go ahead and check any implicit conversions we might have skipped.
5451   // The non-canonical typecheck is just an optimization;
5452   // CheckImplicitConversion will filter out dead implicit conversions.
5453   if (E->getType() != T)
5454     CheckImplicitConversion(S, E, T, CC);
5455 
5456   // Now continue drilling into this expression.
5457 
5458   if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5459     if (POE->getResultExpr())
5460       E = POE->getResultExpr();
5461   }
5462 
5463   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5464     return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5465 
5466   // Skip past explicit casts.
5467   if (isa<ExplicitCastExpr>(E)) {
5468     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5469     return AnalyzeImplicitConversions(S, E, CC);
5470   }
5471 
5472   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5473     // Do a somewhat different check with comparison operators.
5474     if (BO->isComparisonOp())
5475       return AnalyzeComparison(S, BO);
5476 
5477     // And with simple assignments.
5478     if (BO->getOpcode() == BO_Assign)
5479       return AnalyzeAssignment(S, BO);
5480   }
5481 
5482   // These break the otherwise-useful invariant below.  Fortunately,
5483   // we don't really need to recurse into them, because any internal
5484   // expressions should have been analyzed already when they were
5485   // built into statements.
5486   if (isa<StmtExpr>(E)) return;
5487 
5488   // Don't descend into unevaluated contexts.
5489   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5490 
5491   // Now just recurse over the expression's children.
5492   CC = E->getExprLoc();
5493   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5494   bool IsLogicalOperator = BO && BO->isLogicalOp();
5495   for (Stmt::child_range I = E->children(); I; ++I) {
5496     Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5497     if (!ChildExpr)
5498       continue;
5499 
5500     if (IsLogicalOperator &&
5501         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5502       // Ignore checking string literals that are in logical operators.
5503       continue;
5504     AnalyzeImplicitConversions(S, ChildExpr, CC);
5505   }
5506 }
5507 
5508 } // end anonymous namespace
5509 
5510 /// Diagnoses "dangerous" implicit conversions within the given
5511 /// expression (which is a full expression).  Implements -Wconversion
5512 /// and -Wsign-compare.
5513 ///
5514 /// \param CC the "context" location of the implicit conversion, i.e.
5515 ///   the most location of the syntactic entity requiring the implicit
5516 ///   conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)5517 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5518   // Don't diagnose in unevaluated contexts.
5519   if (isUnevaluatedContext())
5520     return;
5521 
5522   // Don't diagnose for value- or type-dependent expressions.
5523   if (E->isTypeDependent() || E->isValueDependent())
5524     return;
5525 
5526   // Check for array bounds violations in cases where the check isn't triggered
5527   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5528   // ArraySubscriptExpr is on the RHS of a variable initialization.
5529   CheckArrayAccess(E);
5530 
5531   // This is not the right CC for (e.g.) a variable initialization.
5532   AnalyzeImplicitConversions(*this, E, CC);
5533 }
5534 
5535 /// Diagnose when expression is an integer constant expression and its evaluation
5536 /// results in integer overflow
CheckForIntOverflow(Expr * E)5537 void Sema::CheckForIntOverflow (Expr *E) {
5538   if (isa<BinaryOperator>(E->IgnoreParens())) {
5539     llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5540     E->EvaluateForOverflow(Context, &Diags);
5541   }
5542 }
5543 
5544 namespace {
5545 /// \brief Visitor for expressions which looks for unsequenced operations on the
5546 /// same object.
5547 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5548   typedef EvaluatedExprVisitor<SequenceChecker> Base;
5549 
5550   /// \brief A tree of sequenced regions within an expression. Two regions are
5551   /// unsequenced if one is an ancestor or a descendent of the other. When we
5552   /// finish processing an expression with sequencing, such as a comma
5553   /// expression, we fold its tree nodes into its parent, since they are
5554   /// unsequenced with respect to nodes we will visit later.
5555   class SequenceTree {
5556     struct Value {
Value__anon00dd1a5d0711::SequenceChecker::SequenceTree::Value5557       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5558       unsigned Parent : 31;
5559       bool Merged : 1;
5560     };
5561     llvm::SmallVector<Value, 8> Values;
5562 
5563   public:
5564     /// \brief A region within an expression which may be sequenced with respect
5565     /// to some other region.
5566     class Seq {
Seq(unsigned N)5567       explicit Seq(unsigned N) : Index(N) {}
5568       unsigned Index;
5569       friend class SequenceTree;
5570     public:
Seq()5571       Seq() : Index(0) {}
5572     };
5573 
SequenceTree()5574     SequenceTree() { Values.push_back(Value(0)); }
root() const5575     Seq root() const { return Seq(0); }
5576 
5577     /// \brief Create a new sequence of operations, which is an unsequenced
5578     /// subset of \p Parent. This sequence of operations is sequenced with
5579     /// respect to other children of \p Parent.
allocate(Seq Parent)5580     Seq allocate(Seq Parent) {
5581       Values.push_back(Value(Parent.Index));
5582       return Seq(Values.size() - 1);
5583     }
5584 
5585     /// \brief Merge a sequence of operations into its parent.
merge(Seq S)5586     void merge(Seq S) {
5587       Values[S.Index].Merged = true;
5588     }
5589 
5590     /// \brief Determine whether two operations are unsequenced. This operation
5591     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5592     /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)5593     bool isUnsequenced(Seq Cur, Seq Old) {
5594       unsigned C = representative(Cur.Index);
5595       unsigned Target = representative(Old.Index);
5596       while (C >= Target) {
5597         if (C == Target)
5598           return true;
5599         C = Values[C].Parent;
5600       }
5601       return false;
5602     }
5603 
5604   private:
5605     /// \brief Pick a representative for a sequence.
representative(unsigned K)5606     unsigned representative(unsigned K) {
5607       if (Values[K].Merged)
5608         // Perform path compression as we go.
5609         return Values[K].Parent = representative(Values[K].Parent);
5610       return K;
5611     }
5612   };
5613 
5614   /// An object for which we can track unsequenced uses.
5615   typedef NamedDecl *Object;
5616 
5617   /// Different flavors of object usage which we track. We only track the
5618   /// least-sequenced usage of each kind.
5619   enum UsageKind {
5620     /// A read of an object. Multiple unsequenced reads are OK.
5621     UK_Use,
5622     /// A modification of an object which is sequenced before the value
5623     /// computation of the expression, such as ++n in C++.
5624     UK_ModAsValue,
5625     /// A modification of an object which is not sequenced before the value
5626     /// computation of the expression, such as n++.
5627     UK_ModAsSideEffect,
5628 
5629     UK_Count = UK_ModAsSideEffect + 1
5630   };
5631 
5632   struct Usage {
Usage__anon00dd1a5d0711::SequenceChecker::Usage5633     Usage() : Use(0), Seq() {}
5634     Expr *Use;
5635     SequenceTree::Seq Seq;
5636   };
5637 
5638   struct UsageInfo {
UsageInfo__anon00dd1a5d0711::SequenceChecker::UsageInfo5639     UsageInfo() : Diagnosed(false) {}
5640     Usage Uses[UK_Count];
5641     /// Have we issued a diagnostic for this variable already?
5642     bool Diagnosed;
5643   };
5644   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5645 
5646   Sema &SemaRef;
5647   /// Sequenced regions within the expression.
5648   SequenceTree Tree;
5649   /// Declaration modifications and references which we have seen.
5650   UsageInfoMap UsageMap;
5651   /// The region we are currently within.
5652   SequenceTree::Seq Region;
5653   /// Filled in with declarations which were modified as a side-effect
5654   /// (that is, post-increment operations).
5655   llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5656   /// Expressions to check later. We defer checking these to reduce
5657   /// stack usage.
5658   llvm::SmallVectorImpl<Expr*> &WorkList;
5659 
5660   /// RAII object wrapping the visitation of a sequenced subexpression of an
5661   /// expression. At the end of this process, the side-effects of the evaluation
5662   /// become sequenced with respect to the value computation of the result, so
5663   /// we downgrade any UK_ModAsSideEffect within the evaluation to
5664   /// UK_ModAsValue.
5665   struct SequencedSubexpression {
SequencedSubexpression__anon00dd1a5d0711::SequenceChecker::SequencedSubexpression5666     SequencedSubexpression(SequenceChecker &Self)
5667       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5668       Self.ModAsSideEffect = &ModAsSideEffect;
5669     }
~SequencedSubexpression__anon00dd1a5d0711::SequenceChecker::SequencedSubexpression5670     ~SequencedSubexpression() {
5671       for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5672         UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5673         U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5674         Self.addUsage(U, ModAsSideEffect[I].first,
5675                       ModAsSideEffect[I].second.Use, UK_ModAsValue);
5676       }
5677       Self.ModAsSideEffect = OldModAsSideEffect;
5678     }
5679 
5680     SequenceChecker &Self;
5681     llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5682     llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5683   };
5684 
5685   /// RAII object wrapping the visitation of a subexpression which we might
5686   /// choose to evaluate as a constant. If any subexpression is evaluated and
5687   /// found to be non-constant, this allows us to suppress the evaluation of
5688   /// the outer expression.
5689   class EvaluationTracker {
5690   public:
EvaluationTracker(SequenceChecker & Self)5691     EvaluationTracker(SequenceChecker &Self)
5692         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
5693       Self.EvalTracker = this;
5694     }
~EvaluationTracker()5695     ~EvaluationTracker() {
5696       Self.EvalTracker = Prev;
5697       if (Prev)
5698         Prev->EvalOK &= EvalOK;
5699     }
5700 
evaluate(const Expr * E,bool & Result)5701     bool evaluate(const Expr *E, bool &Result) {
5702       if (!EvalOK || E->isValueDependent())
5703         return false;
5704       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
5705       return EvalOK;
5706     }
5707 
5708   private:
5709     SequenceChecker &Self;
5710     EvaluationTracker *Prev;
5711     bool EvalOK;
5712   } *EvalTracker;
5713 
5714   /// \brief Find the object which is produced by the specified expression,
5715   /// if any.
getObject(Expr * E,bool Mod) const5716   Object getObject(Expr *E, bool Mod) const {
5717     E = E->IgnoreParenCasts();
5718     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5719       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5720         return getObject(UO->getSubExpr(), Mod);
5721     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5722       if (BO->getOpcode() == BO_Comma)
5723         return getObject(BO->getRHS(), Mod);
5724       if (Mod && BO->isAssignmentOp())
5725         return getObject(BO->getLHS(), Mod);
5726     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5727       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5728       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5729         return ME->getMemberDecl();
5730     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5731       // FIXME: If this is a reference, map through to its value.
5732       return DRE->getDecl();
5733     return 0;
5734   }
5735 
5736   /// \brief Note that an object was modified or used by an expression.
addUsage(UsageInfo & UI,Object O,Expr * Ref,UsageKind UK)5737   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5738     Usage &U = UI.Uses[UK];
5739     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5740       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5741         ModAsSideEffect->push_back(std::make_pair(O, U));
5742       U.Use = Ref;
5743       U.Seq = Region;
5744     }
5745   }
5746   /// \brief Check whether a modification or use conflicts with a prior usage.
checkUsage(Object O,UsageInfo & UI,Expr * Ref,UsageKind OtherKind,bool IsModMod)5747   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5748                   bool IsModMod) {
5749     if (UI.Diagnosed)
5750       return;
5751 
5752     const Usage &U = UI.Uses[OtherKind];
5753     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5754       return;
5755 
5756     Expr *Mod = U.Use;
5757     Expr *ModOrUse = Ref;
5758     if (OtherKind == UK_Use)
5759       std::swap(Mod, ModOrUse);
5760 
5761     SemaRef.Diag(Mod->getExprLoc(),
5762                  IsModMod ? diag::warn_unsequenced_mod_mod
5763                           : diag::warn_unsequenced_mod_use)
5764       << O << SourceRange(ModOrUse->getExprLoc());
5765     UI.Diagnosed = true;
5766   }
5767 
notePreUse(Object O,Expr * Use)5768   void notePreUse(Object O, Expr *Use) {
5769     UsageInfo &U = UsageMap[O];
5770     // Uses conflict with other modifications.
5771     checkUsage(O, U, Use, UK_ModAsValue, false);
5772   }
notePostUse(Object O,Expr * Use)5773   void notePostUse(Object O, Expr *Use) {
5774     UsageInfo &U = UsageMap[O];
5775     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5776     addUsage(U, O, Use, UK_Use);
5777   }
5778 
notePreMod(Object O,Expr * Mod)5779   void notePreMod(Object O, Expr *Mod) {
5780     UsageInfo &U = UsageMap[O];
5781     // Modifications conflict with other modifications and with uses.
5782     checkUsage(O, U, Mod, UK_ModAsValue, true);
5783     checkUsage(O, U, Mod, UK_Use, false);
5784   }
notePostMod(Object O,Expr * Use,UsageKind UK)5785   void notePostMod(Object O, Expr *Use, UsageKind UK) {
5786     UsageInfo &U = UsageMap[O];
5787     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5788     addUsage(U, O, Use, UK);
5789   }
5790 
5791 public:
SequenceChecker(Sema & S,Expr * E,llvm::SmallVectorImpl<Expr * > & WorkList)5792   SequenceChecker(Sema &S, Expr *E,
5793                   llvm::SmallVectorImpl<Expr*> &WorkList)
5794     : Base(S.Context), SemaRef(S), Region(Tree.root()),
5795       ModAsSideEffect(0), WorkList(WorkList), EvalTracker(0) {
5796     Visit(E);
5797   }
5798 
VisitStmt(Stmt * S)5799   void VisitStmt(Stmt *S) {
5800     // Skip all statements which aren't expressions for now.
5801   }
5802 
VisitExpr(Expr * E)5803   void VisitExpr(Expr *E) {
5804     // By default, just recurse to evaluated subexpressions.
5805     Base::VisitStmt(E);
5806   }
5807 
VisitCastExpr(CastExpr * E)5808   void VisitCastExpr(CastExpr *E) {
5809     Object O = Object();
5810     if (E->getCastKind() == CK_LValueToRValue)
5811       O = getObject(E->getSubExpr(), false);
5812 
5813     if (O)
5814       notePreUse(O, E);
5815     VisitExpr(E);
5816     if (O)
5817       notePostUse(O, E);
5818   }
5819 
VisitBinComma(BinaryOperator * BO)5820   void VisitBinComma(BinaryOperator *BO) {
5821     // C++11 [expr.comma]p1:
5822     //   Every value computation and side effect associated with the left
5823     //   expression is sequenced before every value computation and side
5824     //   effect associated with the right expression.
5825     SequenceTree::Seq LHS = Tree.allocate(Region);
5826     SequenceTree::Seq RHS = Tree.allocate(Region);
5827     SequenceTree::Seq OldRegion = Region;
5828 
5829     {
5830       SequencedSubexpression SeqLHS(*this);
5831       Region = LHS;
5832       Visit(BO->getLHS());
5833     }
5834 
5835     Region = RHS;
5836     Visit(BO->getRHS());
5837 
5838     Region = OldRegion;
5839 
5840     // Forget that LHS and RHS are sequenced. They are both unsequenced
5841     // with respect to other stuff.
5842     Tree.merge(LHS);
5843     Tree.merge(RHS);
5844   }
5845 
VisitBinAssign(BinaryOperator * BO)5846   void VisitBinAssign(BinaryOperator *BO) {
5847     // The modification is sequenced after the value computation of the LHS
5848     // and RHS, so check it before inspecting the operands and update the
5849     // map afterwards.
5850     Object O = getObject(BO->getLHS(), true);
5851     if (!O)
5852       return VisitExpr(BO);
5853 
5854     notePreMod(O, BO);
5855 
5856     // C++11 [expr.ass]p7:
5857     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5858     //   only once.
5859     //
5860     // Therefore, for a compound assignment operator, O is considered used
5861     // everywhere except within the evaluation of E1 itself.
5862     if (isa<CompoundAssignOperator>(BO))
5863       notePreUse(O, BO);
5864 
5865     Visit(BO->getLHS());
5866 
5867     if (isa<CompoundAssignOperator>(BO))
5868       notePostUse(O, BO);
5869 
5870     Visit(BO->getRHS());
5871 
5872     // C++11 [expr.ass]p1:
5873     //   the assignment is sequenced [...] before the value computation of the
5874     //   assignment expression.
5875     // C11 6.5.16/3 has no such rule.
5876     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5877                                                        : UK_ModAsSideEffect);
5878   }
VisitCompoundAssignOperator(CompoundAssignOperator * CAO)5879   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5880     VisitBinAssign(CAO);
5881   }
5882 
VisitUnaryPreInc(UnaryOperator * UO)5883   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(UnaryOperator * UO)5884   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(UnaryOperator * UO)5885   void VisitUnaryPreIncDec(UnaryOperator *UO) {
5886     Object O = getObject(UO->getSubExpr(), true);
5887     if (!O)
5888       return VisitExpr(UO);
5889 
5890     notePreMod(O, UO);
5891     Visit(UO->getSubExpr());
5892     // C++11 [expr.pre.incr]p1:
5893     //   the expression ++x is equivalent to x+=1
5894     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
5895                                                        : UK_ModAsSideEffect);
5896   }
5897 
VisitUnaryPostInc(UnaryOperator * UO)5898   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(UnaryOperator * UO)5899   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(UnaryOperator * UO)5900   void VisitUnaryPostIncDec(UnaryOperator *UO) {
5901     Object O = getObject(UO->getSubExpr(), true);
5902     if (!O)
5903       return VisitExpr(UO);
5904 
5905     notePreMod(O, UO);
5906     Visit(UO->getSubExpr());
5907     notePostMod(O, UO, UK_ModAsSideEffect);
5908   }
5909 
5910   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
VisitBinLOr(BinaryOperator * BO)5911   void VisitBinLOr(BinaryOperator *BO) {
5912     // The side-effects of the LHS of an '&&' are sequenced before the
5913     // value computation of the RHS, and hence before the value computation
5914     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5915     // as if they were unconditionally sequenced.
5916     EvaluationTracker Eval(*this);
5917     {
5918       SequencedSubexpression Sequenced(*this);
5919       Visit(BO->getLHS());
5920     }
5921 
5922     bool Result;
5923     if (Eval.evaluate(BO->getLHS(), Result)) {
5924       if (!Result)
5925         Visit(BO->getRHS());
5926     } else {
5927       // Check for unsequenced operations in the RHS, treating it as an
5928       // entirely separate evaluation.
5929       //
5930       // FIXME: If there are operations in the RHS which are unsequenced
5931       // with respect to operations outside the RHS, and those operations
5932       // are unconditionally evaluated, diagnose them.
5933       WorkList.push_back(BO->getRHS());
5934     }
5935   }
VisitBinLAnd(BinaryOperator * BO)5936   void VisitBinLAnd(BinaryOperator *BO) {
5937     EvaluationTracker Eval(*this);
5938     {
5939       SequencedSubexpression Sequenced(*this);
5940       Visit(BO->getLHS());
5941     }
5942 
5943     bool Result;
5944     if (Eval.evaluate(BO->getLHS(), Result)) {
5945       if (Result)
5946         Visit(BO->getRHS());
5947     } else {
5948       WorkList.push_back(BO->getRHS());
5949     }
5950   }
5951 
5952   // Only visit the condition, unless we can be sure which subexpression will
5953   // be chosen.
VisitAbstractConditionalOperator(AbstractConditionalOperator * CO)5954   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5955     EvaluationTracker Eval(*this);
5956     {
5957       SequencedSubexpression Sequenced(*this);
5958       Visit(CO->getCond());
5959     }
5960 
5961     bool Result;
5962     if (Eval.evaluate(CO->getCond(), Result))
5963       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5964     else {
5965       WorkList.push_back(CO->getTrueExpr());
5966       WorkList.push_back(CO->getFalseExpr());
5967     }
5968   }
5969 
VisitCallExpr(CallExpr * CE)5970   void VisitCallExpr(CallExpr *CE) {
5971     // C++11 [intro.execution]p15:
5972     //   When calling a function [...], every value computation and side effect
5973     //   associated with any argument expression, or with the postfix expression
5974     //   designating the called function, is sequenced before execution of every
5975     //   expression or statement in the body of the function [and thus before
5976     //   the value computation of its result].
5977     SequencedSubexpression Sequenced(*this);
5978     Base::VisitCallExpr(CE);
5979 
5980     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
5981   }
5982 
VisitCXXConstructExpr(CXXConstructExpr * CCE)5983   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5984     // This is a call, so all subexpressions are sequenced before the result.
5985     SequencedSubexpression Sequenced(*this);
5986 
5987     if (!CCE->isListInitialization())
5988       return VisitExpr(CCE);
5989 
5990     // In C++11, list initializations are sequenced.
5991     llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5992     SequenceTree::Seq Parent = Region;
5993     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5994                                         E = CCE->arg_end();
5995          I != E; ++I) {
5996       Region = Tree.allocate(Parent);
5997       Elts.push_back(Region);
5998       Visit(*I);
5999     }
6000 
6001     // Forget that the initializers are sequenced.
6002     Region = Parent;
6003     for (unsigned I = 0; I < Elts.size(); ++I)
6004       Tree.merge(Elts[I]);
6005   }
6006 
VisitInitListExpr(InitListExpr * ILE)6007   void VisitInitListExpr(InitListExpr *ILE) {
6008     if (!SemaRef.getLangOpts().CPlusPlus11)
6009       return VisitExpr(ILE);
6010 
6011     // In C++11, list initializations are sequenced.
6012     llvm::SmallVector<SequenceTree::Seq, 32> Elts;
6013     SequenceTree::Seq Parent = Region;
6014     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
6015       Expr *E = ILE->getInit(I);
6016       if (!E) continue;
6017       Region = Tree.allocate(Parent);
6018       Elts.push_back(Region);
6019       Visit(E);
6020     }
6021 
6022     // Forget that the initializers are sequenced.
6023     Region = Parent;
6024     for (unsigned I = 0; I < Elts.size(); ++I)
6025       Tree.merge(Elts[I]);
6026   }
6027 };
6028 }
6029 
CheckUnsequencedOperations(Expr * E)6030 void Sema::CheckUnsequencedOperations(Expr *E) {
6031   llvm::SmallVector<Expr*, 8> WorkList;
6032   WorkList.push_back(E);
6033   while (!WorkList.empty()) {
6034     Expr *Item = WorkList.back();
6035     WorkList.pop_back();
6036     SequenceChecker(*this, Item, WorkList);
6037   }
6038 }
6039 
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)6040 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
6041                               bool IsConstexpr) {
6042   CheckImplicitConversions(E, CheckLoc);
6043   CheckUnsequencedOperations(E);
6044   if (!IsConstexpr && !E->isValueDependent())
6045     CheckForIntOverflow(E);
6046 }
6047 
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)6048 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
6049                                        FieldDecl *BitField,
6050                                        Expr *Init) {
6051   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
6052 }
6053 
6054 /// CheckParmsForFunctionDef - Check that the parameters of the given
6055 /// function are appropriate for the definition of a function. This
6056 /// takes care of any checks that cannot be performed on the
6057 /// declaration itself, e.g., that the types of each of the function
6058 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl * const * P,ParmVarDecl * const * PEnd,bool CheckParameterNames)6059 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
6060                                     ParmVarDecl *const *PEnd,
6061                                     bool CheckParameterNames) {
6062   bool HasInvalidParm = false;
6063   for (; P != PEnd; ++P) {
6064     ParmVarDecl *Param = *P;
6065 
6066     // C99 6.7.5.3p4: the parameters in a parameter type list in a
6067     // function declarator that is part of a function definition of
6068     // that function shall not have incomplete type.
6069     //
6070     // This is also C++ [dcl.fct]p6.
6071     if (!Param->isInvalidDecl() &&
6072         RequireCompleteType(Param->getLocation(), Param->getType(),
6073                             diag::err_typecheck_decl_incomplete_type)) {
6074       Param->setInvalidDecl();
6075       HasInvalidParm = true;
6076     }
6077 
6078     // C99 6.9.1p5: If the declarator includes a parameter type list, the
6079     // declaration of each parameter shall include an identifier.
6080     if (CheckParameterNames &&
6081         Param->getIdentifier() == 0 &&
6082         !Param->isImplicit() &&
6083         !getLangOpts().CPlusPlus)
6084       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6085 
6086     // C99 6.7.5.3p12:
6087     //   If the function declarator is not part of a definition of that
6088     //   function, parameters may have incomplete type and may use the [*]
6089     //   notation in their sequences of declarator specifiers to specify
6090     //   variable length array types.
6091     QualType PType = Param->getOriginalType();
6092     while (const ArrayType *AT = Context.getAsArrayType(PType)) {
6093       if (AT->getSizeModifier() == ArrayType::Star) {
6094         // FIXME: This diagnostic should point the '[*]' if source-location
6095         // information is added for it.
6096         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
6097         break;
6098       }
6099       PType= AT->getElementType();
6100     }
6101 
6102     // MSVC destroys objects passed by value in the callee.  Therefore a
6103     // function definition which takes such a parameter must be able to call the
6104     // object's destructor.
6105     if (getLangOpts().CPlusPlus &&
6106         Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
6107       if (const RecordType *RT = Param->getType()->getAs<RecordType>())
6108         FinalizeVarWithDestructor(Param, RT);
6109     }
6110   }
6111 
6112   return HasInvalidParm;
6113 }
6114 
6115 /// CheckCastAlign - Implements -Wcast-align, which warns when a
6116 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)6117 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
6118   // This is actually a lot of work to potentially be doing on every
6119   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
6120   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
6121                                           TRange.getBegin())
6122         == DiagnosticsEngine::Ignored)
6123     return;
6124 
6125   // Ignore dependent types.
6126   if (T->isDependentType() || Op->getType()->isDependentType())
6127     return;
6128 
6129   // Require that the destination be a pointer type.
6130   const PointerType *DestPtr = T->getAs<PointerType>();
6131   if (!DestPtr) return;
6132 
6133   // If the destination has alignment 1, we're done.
6134   QualType DestPointee = DestPtr->getPointeeType();
6135   if (DestPointee->isIncompleteType()) return;
6136   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
6137   if (DestAlign.isOne()) return;
6138 
6139   // Require that the source be a pointer type.
6140   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
6141   if (!SrcPtr) return;
6142   QualType SrcPointee = SrcPtr->getPointeeType();
6143 
6144   // Whitelist casts from cv void*.  We already implicitly
6145   // whitelisted casts to cv void*, since they have alignment 1.
6146   // Also whitelist casts involving incomplete types, which implicitly
6147   // includes 'void'.
6148   if (SrcPointee->isIncompleteType()) return;
6149 
6150   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
6151   if (SrcAlign >= DestAlign) return;
6152 
6153   Diag(TRange.getBegin(), diag::warn_cast_align)
6154     << Op->getType() << T
6155     << static_cast<unsigned>(SrcAlign.getQuantity())
6156     << static_cast<unsigned>(DestAlign.getQuantity())
6157     << TRange << Op->getSourceRange();
6158 }
6159 
getElementType(const Expr * BaseExpr)6160 static const Type* getElementType(const Expr *BaseExpr) {
6161   const Type* EltType = BaseExpr->getType().getTypePtr();
6162   if (EltType->isAnyPointerType())
6163     return EltType->getPointeeType().getTypePtr();
6164   else if (EltType->isArrayType())
6165     return EltType->getBaseElementTypeUnsafe();
6166   return EltType;
6167 }
6168 
6169 /// \brief Check whether this array fits the idiom of a size-one tail padded
6170 /// array member of a struct.
6171 ///
6172 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
6173 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,llvm::APInt Size,const NamedDecl * ND)6174 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
6175                                     const NamedDecl *ND) {
6176   if (Size != 1 || !ND) return false;
6177 
6178   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
6179   if (!FD) return false;
6180 
6181   // Don't consider sizes resulting from macro expansions or template argument
6182   // substitution to form C89 tail-padded arrays.
6183 
6184   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
6185   while (TInfo) {
6186     TypeLoc TL = TInfo->getTypeLoc();
6187     // Look through typedefs.
6188     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
6189       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
6190       TInfo = TDL->getTypeSourceInfo();
6191       continue;
6192     }
6193     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
6194       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
6195       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
6196         return false;
6197     }
6198     break;
6199   }
6200 
6201   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
6202   if (!RD) return false;
6203   if (RD->isUnion()) return false;
6204   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6205     if (!CRD->isStandardLayout()) return false;
6206   }
6207 
6208   // See if this is the last field decl in the record.
6209   const Decl *D = FD;
6210   while ((D = D->getNextDeclInContext()))
6211     if (isa<FieldDecl>(D))
6212       return false;
6213   return true;
6214 }
6215 
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)6216 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
6217                             const ArraySubscriptExpr *ASE,
6218                             bool AllowOnePastEnd, bool IndexNegated) {
6219   IndexExpr = IndexExpr->IgnoreParenImpCasts();
6220   if (IndexExpr->isValueDependent())
6221     return;
6222 
6223   const Type *EffectiveType = getElementType(BaseExpr);
6224   BaseExpr = BaseExpr->IgnoreParenCasts();
6225   const ConstantArrayType *ArrayTy =
6226     Context.getAsConstantArrayType(BaseExpr->getType());
6227   if (!ArrayTy)
6228     return;
6229 
6230   llvm::APSInt index;
6231   if (!IndexExpr->EvaluateAsInt(index, Context))
6232     return;
6233   if (IndexNegated)
6234     index = -index;
6235 
6236   const NamedDecl *ND = NULL;
6237   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6238     ND = dyn_cast<NamedDecl>(DRE->getDecl());
6239   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6240     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6241 
6242   if (index.isUnsigned() || !index.isNegative()) {
6243     llvm::APInt size = ArrayTy->getSize();
6244     if (!size.isStrictlyPositive())
6245       return;
6246 
6247     const Type* BaseType = getElementType(BaseExpr);
6248     if (BaseType != EffectiveType) {
6249       // Make sure we're comparing apples to apples when comparing index to size
6250       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
6251       uint64_t array_typesize = Context.getTypeSize(BaseType);
6252       // Handle ptrarith_typesize being zero, such as when casting to void*
6253       if (!ptrarith_typesize) ptrarith_typesize = 1;
6254       if (ptrarith_typesize != array_typesize) {
6255         // There's a cast to a different size type involved
6256         uint64_t ratio = array_typesize / ptrarith_typesize;
6257         // TODO: Be smarter about handling cases where array_typesize is not a
6258         // multiple of ptrarith_typesize
6259         if (ptrarith_typesize * ratio == array_typesize)
6260           size *= llvm::APInt(size.getBitWidth(), ratio);
6261       }
6262     }
6263 
6264     if (size.getBitWidth() > index.getBitWidth())
6265       index = index.zext(size.getBitWidth());
6266     else if (size.getBitWidth() < index.getBitWidth())
6267       size = size.zext(index.getBitWidth());
6268 
6269     // For array subscripting the index must be less than size, but for pointer
6270     // arithmetic also allow the index (offset) to be equal to size since
6271     // computing the next address after the end of the array is legal and
6272     // commonly done e.g. in C++ iterators and range-based for loops.
6273     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
6274       return;
6275 
6276     // Also don't warn for arrays of size 1 which are members of some
6277     // structure. These are often used to approximate flexible arrays in C89
6278     // code.
6279     if (IsTailPaddedMemberArray(*this, size, ND))
6280       return;
6281 
6282     // Suppress the warning if the subscript expression (as identified by the
6283     // ']' location) and the index expression are both from macro expansions
6284     // within a system header.
6285     if (ASE) {
6286       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
6287           ASE->getRBracketLoc());
6288       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
6289         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
6290             IndexExpr->getLocStart());
6291         if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
6292           return;
6293       }
6294     }
6295 
6296     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
6297     if (ASE)
6298       DiagID = diag::warn_array_index_exceeds_bounds;
6299 
6300     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6301                         PDiag(DiagID) << index.toString(10, true)
6302                           << size.toString(10, true)
6303                           << (unsigned)size.getLimitedValue(~0U)
6304                           << IndexExpr->getSourceRange());
6305   } else {
6306     unsigned DiagID = diag::warn_array_index_precedes_bounds;
6307     if (!ASE) {
6308       DiagID = diag::warn_ptr_arith_precedes_bounds;
6309       if (index.isNegative()) index = -index;
6310     }
6311 
6312     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
6313                         PDiag(DiagID) << index.toString(10, true)
6314                           << IndexExpr->getSourceRange());
6315   }
6316 
6317   if (!ND) {
6318     // Try harder to find a NamedDecl to point at in the note.
6319     while (const ArraySubscriptExpr *ASE =
6320            dyn_cast<ArraySubscriptExpr>(BaseExpr))
6321       BaseExpr = ASE->getBase()->IgnoreParenCasts();
6322     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
6323       ND = dyn_cast<NamedDecl>(DRE->getDecl());
6324     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
6325       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
6326   }
6327 
6328   if (ND)
6329     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
6330                         PDiag(diag::note_array_index_out_of_bounds)
6331                           << ND->getDeclName());
6332 }
6333 
CheckArrayAccess(const Expr * expr)6334 void Sema::CheckArrayAccess(const Expr *expr) {
6335   int AllowOnePastEnd = 0;
6336   while (expr) {
6337     expr = expr->IgnoreParenImpCasts();
6338     switch (expr->getStmtClass()) {
6339       case Stmt::ArraySubscriptExprClass: {
6340         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
6341         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
6342                          AllowOnePastEnd > 0);
6343         return;
6344       }
6345       case Stmt::UnaryOperatorClass: {
6346         // Only unwrap the * and & unary operators
6347         const UnaryOperator *UO = cast<UnaryOperator>(expr);
6348         expr = UO->getSubExpr();
6349         switch (UO->getOpcode()) {
6350           case UO_AddrOf:
6351             AllowOnePastEnd++;
6352             break;
6353           case UO_Deref:
6354             AllowOnePastEnd--;
6355             break;
6356           default:
6357             return;
6358         }
6359         break;
6360       }
6361       case Stmt::ConditionalOperatorClass: {
6362         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
6363         if (const Expr *lhs = cond->getLHS())
6364           CheckArrayAccess(lhs);
6365         if (const Expr *rhs = cond->getRHS())
6366           CheckArrayAccess(rhs);
6367         return;
6368       }
6369       default:
6370         return;
6371     }
6372   }
6373 }
6374 
6375 //===--- CHECK: Objective-C retain cycles ----------------------------------//
6376 
6377 namespace {
6378   struct RetainCycleOwner {
RetainCycleOwner__anon00dd1a5d0811::RetainCycleOwner6379     RetainCycleOwner() : Variable(0), Indirect(false) {}
6380     VarDecl *Variable;
6381     SourceRange Range;
6382     SourceLocation Loc;
6383     bool Indirect;
6384 
setLocsFrom__anon00dd1a5d0811::RetainCycleOwner6385     void setLocsFrom(Expr *e) {
6386       Loc = e->getExprLoc();
6387       Range = e->getSourceRange();
6388     }
6389   };
6390 }
6391 
6392 /// Consider whether capturing the given variable can possibly lead to
6393 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)6394 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6395   // In ARC, it's captured strongly iff the variable has __strong
6396   // lifetime.  In MRR, it's captured strongly if the variable is
6397   // __block and has an appropriate type.
6398   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6399     return false;
6400 
6401   owner.Variable = var;
6402   if (ref)
6403     owner.setLocsFrom(ref);
6404   return true;
6405 }
6406 
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)6407 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6408   while (true) {
6409     e = e->IgnoreParens();
6410     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6411       switch (cast->getCastKind()) {
6412       case CK_BitCast:
6413       case CK_LValueBitCast:
6414       case CK_LValueToRValue:
6415       case CK_ARCReclaimReturnedObject:
6416         e = cast->getSubExpr();
6417         continue;
6418 
6419       default:
6420         return false;
6421       }
6422     }
6423 
6424     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6425       ObjCIvarDecl *ivar = ref->getDecl();
6426       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6427         return false;
6428 
6429       // Try to find a retain cycle in the base.
6430       if (!findRetainCycleOwner(S, ref->getBase(), owner))
6431         return false;
6432 
6433       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6434       owner.Indirect = true;
6435       return true;
6436     }
6437 
6438     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6439       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6440       if (!var) return false;
6441       return considerVariable(var, ref, owner);
6442     }
6443 
6444     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6445       if (member->isArrow()) return false;
6446 
6447       // Don't count this as an indirect ownership.
6448       e = member->getBase();
6449       continue;
6450     }
6451 
6452     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6453       // Only pay attention to pseudo-objects on property references.
6454       ObjCPropertyRefExpr *pre
6455         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6456                                               ->IgnoreParens());
6457       if (!pre) return false;
6458       if (pre->isImplicitProperty()) return false;
6459       ObjCPropertyDecl *property = pre->getExplicitProperty();
6460       if (!property->isRetaining() &&
6461           !(property->getPropertyIvarDecl() &&
6462             property->getPropertyIvarDecl()->getType()
6463               .getObjCLifetime() == Qualifiers::OCL_Strong))
6464           return false;
6465 
6466       owner.Indirect = true;
6467       if (pre->isSuperReceiver()) {
6468         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6469         if (!owner.Variable)
6470           return false;
6471         owner.Loc = pre->getLocation();
6472         owner.Range = pre->getSourceRange();
6473         return true;
6474       }
6475       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6476                               ->getSourceExpr());
6477       continue;
6478     }
6479 
6480     // Array ivars?
6481 
6482     return false;
6483   }
6484 }
6485 
6486 namespace {
6487   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon00dd1a5d0911::FindCaptureVisitor6488     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6489       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6490         Variable(variable), Capturer(0) {}
6491 
6492     VarDecl *Variable;
6493     Expr *Capturer;
6494 
VisitDeclRefExpr__anon00dd1a5d0911::FindCaptureVisitor6495     void VisitDeclRefExpr(DeclRefExpr *ref) {
6496       if (ref->getDecl() == Variable && !Capturer)
6497         Capturer = ref;
6498     }
6499 
VisitObjCIvarRefExpr__anon00dd1a5d0911::FindCaptureVisitor6500     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6501       if (Capturer) return;
6502       Visit(ref->getBase());
6503       if (Capturer && ref->isFreeIvar())
6504         Capturer = ref;
6505     }
6506 
VisitBlockExpr__anon00dd1a5d0911::FindCaptureVisitor6507     void VisitBlockExpr(BlockExpr *block) {
6508       // Look inside nested blocks
6509       if (block->getBlockDecl()->capturesVariable(Variable))
6510         Visit(block->getBlockDecl()->getBody());
6511     }
6512 
VisitOpaqueValueExpr__anon00dd1a5d0911::FindCaptureVisitor6513     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6514       if (Capturer) return;
6515       if (OVE->getSourceExpr())
6516         Visit(OVE->getSourceExpr());
6517     }
6518   };
6519 }
6520 
6521 /// Check whether the given argument is a block which captures a
6522 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)6523 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6524   assert(owner.Variable && owner.Loc.isValid());
6525 
6526   e = e->IgnoreParenCasts();
6527 
6528   // Look through [^{...} copy] and Block_copy(^{...}).
6529   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6530     Selector Cmd = ME->getSelector();
6531     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6532       e = ME->getInstanceReceiver();
6533       if (!e)
6534         return 0;
6535       e = e->IgnoreParenCasts();
6536     }
6537   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6538     if (CE->getNumArgs() == 1) {
6539       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6540       if (Fn) {
6541         const IdentifierInfo *FnI = Fn->getIdentifier();
6542         if (FnI && FnI->isStr("_Block_copy")) {
6543           e = CE->getArg(0)->IgnoreParenCasts();
6544         }
6545       }
6546     }
6547   }
6548 
6549   BlockExpr *block = dyn_cast<BlockExpr>(e);
6550   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6551     return 0;
6552 
6553   FindCaptureVisitor visitor(S.Context, owner.Variable);
6554   visitor.Visit(block->getBlockDecl()->getBody());
6555   return visitor.Capturer;
6556 }
6557 
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)6558 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6559                                 RetainCycleOwner &owner) {
6560   assert(capturer);
6561   assert(owner.Variable && owner.Loc.isValid());
6562 
6563   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6564     << owner.Variable << capturer->getSourceRange();
6565   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6566     << owner.Indirect << owner.Range;
6567 }
6568 
6569 /// Check for a keyword selector that starts with the word 'add' or
6570 /// 'set'.
isSetterLikeSelector(Selector sel)6571 static bool isSetterLikeSelector(Selector sel) {
6572   if (sel.isUnarySelector()) return false;
6573 
6574   StringRef str = sel.getNameForSlot(0);
6575   while (!str.empty() && str.front() == '_') str = str.substr(1);
6576   if (str.startswith("set"))
6577     str = str.substr(3);
6578   else if (str.startswith("add")) {
6579     // Specially whitelist 'addOperationWithBlock:'.
6580     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6581       return false;
6582     str = str.substr(3);
6583   }
6584   else
6585     return false;
6586 
6587   if (str.empty()) return true;
6588   return !isLowercase(str.front());
6589 }
6590 
6591 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)6592 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6593   // Only check instance methods whose selector looks like a setter.
6594   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6595     return;
6596 
6597   // Try to find a variable that the receiver is strongly owned by.
6598   RetainCycleOwner owner;
6599   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6600     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6601       return;
6602   } else {
6603     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6604     owner.Variable = getCurMethodDecl()->getSelfDecl();
6605     owner.Loc = msg->getSuperLoc();
6606     owner.Range = msg->getSuperLoc();
6607   }
6608 
6609   // Check whether the receiver is captured by any of the arguments.
6610   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6611     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6612       return diagnoseRetainCycle(*this, capturer, owner);
6613 }
6614 
6615 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)6616 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6617   RetainCycleOwner owner;
6618   if (!findRetainCycleOwner(*this, receiver, owner))
6619     return;
6620 
6621   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6622     diagnoseRetainCycle(*this, capturer, owner);
6623 }
6624 
checkRetainCycles(VarDecl * Var,Expr * Init)6625 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6626   RetainCycleOwner Owner;
6627   if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6628     return;
6629 
6630   // Because we don't have an expression for the variable, we have to set the
6631   // location explicitly here.
6632   Owner.Loc = Var->getLocation();
6633   Owner.Range = Var->getSourceRange();
6634 
6635   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6636     diagnoseRetainCycle(*this, Capturer, Owner);
6637 }
6638 
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)6639 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6640                                      Expr *RHS, bool isProperty) {
6641   // Check if RHS is an Objective-C object literal, which also can get
6642   // immediately zapped in a weak reference.  Note that we explicitly
6643   // allow ObjCStringLiterals, since those are designed to never really die.
6644   RHS = RHS->IgnoreParenImpCasts();
6645 
6646   // This enum needs to match with the 'select' in
6647   // warn_objc_arc_literal_assign (off-by-1).
6648   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6649   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6650     return false;
6651 
6652   S.Diag(Loc, diag::warn_arc_literal_assign)
6653     << (unsigned) Kind
6654     << (isProperty ? 0 : 1)
6655     << RHS->getSourceRange();
6656 
6657   return true;
6658 }
6659 
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)6660 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6661                                     Qualifiers::ObjCLifetime LT,
6662                                     Expr *RHS, bool isProperty) {
6663   // Strip off any implicit cast added to get to the one ARC-specific.
6664   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6665     if (cast->getCastKind() == CK_ARCConsumeObject) {
6666       S.Diag(Loc, diag::warn_arc_retained_assign)
6667         << (LT == Qualifiers::OCL_ExplicitNone)
6668         << (isProperty ? 0 : 1)
6669         << RHS->getSourceRange();
6670       return true;
6671     }
6672     RHS = cast->getSubExpr();
6673   }
6674 
6675   if (LT == Qualifiers::OCL_Weak &&
6676       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6677     return true;
6678 
6679   return false;
6680 }
6681 
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)6682 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6683                               QualType LHS, Expr *RHS) {
6684   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6685 
6686   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6687     return false;
6688 
6689   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6690     return true;
6691 
6692   return false;
6693 }
6694 
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)6695 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6696                               Expr *LHS, Expr *RHS) {
6697   QualType LHSType;
6698   // PropertyRef on LHS type need be directly obtained from
6699   // its declaration as it has a PsuedoType.
6700   ObjCPropertyRefExpr *PRE
6701     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6702   if (PRE && !PRE->isImplicitProperty()) {
6703     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6704     if (PD)
6705       LHSType = PD->getType();
6706   }
6707 
6708   if (LHSType.isNull())
6709     LHSType = LHS->getType();
6710 
6711   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6712 
6713   if (LT == Qualifiers::OCL_Weak) {
6714     DiagnosticsEngine::Level Level =
6715       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6716     if (Level != DiagnosticsEngine::Ignored)
6717       getCurFunction()->markSafeWeakUse(LHS);
6718   }
6719 
6720   if (checkUnsafeAssigns(Loc, LHSType, RHS))
6721     return;
6722 
6723   // FIXME. Check for other life times.
6724   if (LT != Qualifiers::OCL_None)
6725     return;
6726 
6727   if (PRE) {
6728     if (PRE->isImplicitProperty())
6729       return;
6730     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6731     if (!PD)
6732       return;
6733 
6734     unsigned Attributes = PD->getPropertyAttributes();
6735     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6736       // when 'assign' attribute was not explicitly specified
6737       // by user, ignore it and rely on property type itself
6738       // for lifetime info.
6739       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6740       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6741           LHSType->isObjCRetainableType())
6742         return;
6743 
6744       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6745         if (cast->getCastKind() == CK_ARCConsumeObject) {
6746           Diag(Loc, diag::warn_arc_retained_property_assign)
6747           << RHS->getSourceRange();
6748           return;
6749         }
6750         RHS = cast->getSubExpr();
6751       }
6752     }
6753     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6754       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6755         return;
6756     }
6757   }
6758 }
6759 
6760 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6761 
6762 namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)6763 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6764                                  SourceLocation StmtLoc,
6765                                  const NullStmt *Body) {
6766   // Do not warn if the body is a macro that expands to nothing, e.g:
6767   //
6768   // #define CALL(x)
6769   // if (condition)
6770   //   CALL(0);
6771   //
6772   if (Body->hasLeadingEmptyMacro())
6773     return false;
6774 
6775   // Get line numbers of statement and body.
6776   bool StmtLineInvalid;
6777   unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6778                                                       &StmtLineInvalid);
6779   if (StmtLineInvalid)
6780     return false;
6781 
6782   bool BodyLineInvalid;
6783   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6784                                                       &BodyLineInvalid);
6785   if (BodyLineInvalid)
6786     return false;
6787 
6788   // Warn if null statement and body are on the same line.
6789   if (StmtLine != BodyLine)
6790     return false;
6791 
6792   return true;
6793 }
6794 } // Unnamed namespace
6795 
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)6796 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6797                                  const Stmt *Body,
6798                                  unsigned DiagID) {
6799   // Since this is a syntactic check, don't emit diagnostic for template
6800   // instantiations, this just adds noise.
6801   if (CurrentInstantiationScope)
6802     return;
6803 
6804   // The body should be a null statement.
6805   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6806   if (!NBody)
6807     return;
6808 
6809   // Do the usual checks.
6810   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6811     return;
6812 
6813   Diag(NBody->getSemiLoc(), DiagID);
6814   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6815 }
6816 
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)6817 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6818                                  const Stmt *PossibleBody) {
6819   assert(!CurrentInstantiationScope); // Ensured by caller
6820 
6821   SourceLocation StmtLoc;
6822   const Stmt *Body;
6823   unsigned DiagID;
6824   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6825     StmtLoc = FS->getRParenLoc();
6826     Body = FS->getBody();
6827     DiagID = diag::warn_empty_for_body;
6828   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6829     StmtLoc = WS->getCond()->getSourceRange().getEnd();
6830     Body = WS->getBody();
6831     DiagID = diag::warn_empty_while_body;
6832   } else
6833     return; // Neither `for' nor `while'.
6834 
6835   // The body should be a null statement.
6836   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6837   if (!NBody)
6838     return;
6839 
6840   // Skip expensive checks if diagnostic is disabled.
6841   if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6842           DiagnosticsEngine::Ignored)
6843     return;
6844 
6845   // Do the usual checks.
6846   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6847     return;
6848 
6849   // `for(...);' and `while(...);' are popular idioms, so in order to keep
6850   // noise level low, emit diagnostics only if for/while is followed by a
6851   // CompoundStmt, e.g.:
6852   //    for (int i = 0; i < n; i++);
6853   //    {
6854   //      a(i);
6855   //    }
6856   // or if for/while is followed by a statement with more indentation
6857   // than for/while itself:
6858   //    for (int i = 0; i < n; i++);
6859   //      a(i);
6860   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6861   if (!ProbableTypo) {
6862     bool BodyColInvalid;
6863     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6864                              PossibleBody->getLocStart(),
6865                              &BodyColInvalid);
6866     if (BodyColInvalid)
6867       return;
6868 
6869     bool StmtColInvalid;
6870     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6871                              S->getLocStart(),
6872                              &StmtColInvalid);
6873     if (StmtColInvalid)
6874       return;
6875 
6876     if (BodyCol > StmtCol)
6877       ProbableTypo = true;
6878   }
6879 
6880   if (ProbableTypo) {
6881     Diag(NBody->getSemiLoc(), DiagID);
6882     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6883   }
6884 }
6885 
6886 //===--- Layout compatibility ----------------------------------------------//
6887 
6888 namespace {
6889 
6890 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6891 
6892 /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)6893 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6894   // C++11 [dcl.enum] p8:
6895   // Two enumeration types are layout-compatible if they have the same
6896   // underlying type.
6897   return ED1->isComplete() && ED2->isComplete() &&
6898          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6899 }
6900 
6901 /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)6902 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6903   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6904     return false;
6905 
6906   if (Field1->isBitField() != Field2->isBitField())
6907     return false;
6908 
6909   if (Field1->isBitField()) {
6910     // Make sure that the bit-fields are the same length.
6911     unsigned Bits1 = Field1->getBitWidthValue(C);
6912     unsigned Bits2 = Field2->getBitWidthValue(C);
6913 
6914     if (Bits1 != Bits2)
6915       return false;
6916   }
6917 
6918   return true;
6919 }
6920 
6921 /// \brief Check if two standard-layout structs are layout-compatible.
6922 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)6923 bool isLayoutCompatibleStruct(ASTContext &C,
6924                               RecordDecl *RD1,
6925                               RecordDecl *RD2) {
6926   // If both records are C++ classes, check that base classes match.
6927   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6928     // If one of records is a CXXRecordDecl we are in C++ mode,
6929     // thus the other one is a CXXRecordDecl, too.
6930     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6931     // Check number of base classes.
6932     if (D1CXX->getNumBases() != D2CXX->getNumBases())
6933       return false;
6934 
6935     // Check the base classes.
6936     for (CXXRecordDecl::base_class_const_iterator
6937                Base1 = D1CXX->bases_begin(),
6938            BaseEnd1 = D1CXX->bases_end(),
6939               Base2 = D2CXX->bases_begin();
6940          Base1 != BaseEnd1;
6941          ++Base1, ++Base2) {
6942       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6943         return false;
6944     }
6945   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6946     // If only RD2 is a C++ class, it should have zero base classes.
6947     if (D2CXX->getNumBases() > 0)
6948       return false;
6949   }
6950 
6951   // Check the fields.
6952   RecordDecl::field_iterator Field2 = RD2->field_begin(),
6953                              Field2End = RD2->field_end(),
6954                              Field1 = RD1->field_begin(),
6955                              Field1End = RD1->field_end();
6956   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6957     if (!isLayoutCompatible(C, *Field1, *Field2))
6958       return false;
6959   }
6960   if (Field1 != Field1End || Field2 != Field2End)
6961     return false;
6962 
6963   return true;
6964 }
6965 
6966 /// \brief Check if two standard-layout unions are layout-compatible.
6967 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)6968 bool isLayoutCompatibleUnion(ASTContext &C,
6969                              RecordDecl *RD1,
6970                              RecordDecl *RD2) {
6971   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6972   for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6973                                   Field2End = RD2->field_end();
6974        Field2 != Field2End; ++Field2) {
6975     UnmatchedFields.insert(*Field2);
6976   }
6977 
6978   for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6979                                   Field1End = RD1->field_end();
6980        Field1 != Field1End; ++Field1) {
6981     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6982         I = UnmatchedFields.begin(),
6983         E = UnmatchedFields.end();
6984 
6985     for ( ; I != E; ++I) {
6986       if (isLayoutCompatible(C, *Field1, *I)) {
6987         bool Result = UnmatchedFields.erase(*I);
6988         (void) Result;
6989         assert(Result);
6990         break;
6991       }
6992     }
6993     if (I == E)
6994       return false;
6995   }
6996 
6997   return UnmatchedFields.empty();
6998 }
6999 
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)7000 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
7001   if (RD1->isUnion() != RD2->isUnion())
7002     return false;
7003 
7004   if (RD1->isUnion())
7005     return isLayoutCompatibleUnion(C, RD1, RD2);
7006   else
7007     return isLayoutCompatibleStruct(C, RD1, RD2);
7008 }
7009 
7010 /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)7011 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
7012   if (T1.isNull() || T2.isNull())
7013     return false;
7014 
7015   // C++11 [basic.types] p11:
7016   // If two types T1 and T2 are the same type, then T1 and T2 are
7017   // layout-compatible types.
7018   if (C.hasSameType(T1, T2))
7019     return true;
7020 
7021   T1 = T1.getCanonicalType().getUnqualifiedType();
7022   T2 = T2.getCanonicalType().getUnqualifiedType();
7023 
7024   const Type::TypeClass TC1 = T1->getTypeClass();
7025   const Type::TypeClass TC2 = T2->getTypeClass();
7026 
7027   if (TC1 != TC2)
7028     return false;
7029 
7030   if (TC1 == Type::Enum) {
7031     return isLayoutCompatible(C,
7032                               cast<EnumType>(T1)->getDecl(),
7033                               cast<EnumType>(T2)->getDecl());
7034   } else if (TC1 == Type::Record) {
7035     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
7036       return false;
7037 
7038     return isLayoutCompatible(C,
7039                               cast<RecordType>(T1)->getDecl(),
7040                               cast<RecordType>(T2)->getDecl());
7041   }
7042 
7043   return false;
7044 }
7045 }
7046 
7047 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
7048 
7049 namespace {
7050 /// \brief Given a type tag expression find the type tag itself.
7051 ///
7052 /// \param TypeExpr Type tag expression, as it appears in user's code.
7053 ///
7054 /// \param VD Declaration of an identifier that appears in a type tag.
7055 ///
7056 /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)7057 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
7058                      const ValueDecl **VD, uint64_t *MagicValue) {
7059   while(true) {
7060     if (!TypeExpr)
7061       return false;
7062 
7063     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
7064 
7065     switch (TypeExpr->getStmtClass()) {
7066     case Stmt::UnaryOperatorClass: {
7067       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
7068       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
7069         TypeExpr = UO->getSubExpr();
7070         continue;
7071       }
7072       return false;
7073     }
7074 
7075     case Stmt::DeclRefExprClass: {
7076       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
7077       *VD = DRE->getDecl();
7078       return true;
7079     }
7080 
7081     case Stmt::IntegerLiteralClass: {
7082       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
7083       llvm::APInt MagicValueAPInt = IL->getValue();
7084       if (MagicValueAPInt.getActiveBits() <= 64) {
7085         *MagicValue = MagicValueAPInt.getZExtValue();
7086         return true;
7087       } else
7088         return false;
7089     }
7090 
7091     case Stmt::BinaryConditionalOperatorClass:
7092     case Stmt::ConditionalOperatorClass: {
7093       const AbstractConditionalOperator *ACO =
7094           cast<AbstractConditionalOperator>(TypeExpr);
7095       bool Result;
7096       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
7097         if (Result)
7098           TypeExpr = ACO->getTrueExpr();
7099         else
7100           TypeExpr = ACO->getFalseExpr();
7101         continue;
7102       }
7103       return false;
7104     }
7105 
7106     case Stmt::BinaryOperatorClass: {
7107       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
7108       if (BO->getOpcode() == BO_Comma) {
7109         TypeExpr = BO->getRHS();
7110         continue;
7111       }
7112       return false;
7113     }
7114 
7115     default:
7116       return false;
7117     }
7118   }
7119 }
7120 
7121 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
7122 ///
7123 /// \param TypeExpr Expression that specifies a type tag.
7124 ///
7125 /// \param MagicValues Registered magic values.
7126 ///
7127 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
7128 ///        kind.
7129 ///
7130 /// \param TypeInfo Information about the corresponding C type.
7131 ///
7132 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)7133 bool GetMatchingCType(
7134         const IdentifierInfo *ArgumentKind,
7135         const Expr *TypeExpr, const ASTContext &Ctx,
7136         const llvm::DenseMap<Sema::TypeTagMagicValue,
7137                              Sema::TypeTagData> *MagicValues,
7138         bool &FoundWrongKind,
7139         Sema::TypeTagData &TypeInfo) {
7140   FoundWrongKind = false;
7141 
7142   // Variable declaration that has type_tag_for_datatype attribute.
7143   const ValueDecl *VD = NULL;
7144 
7145   uint64_t MagicValue;
7146 
7147   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
7148     return false;
7149 
7150   if (VD) {
7151     for (specific_attr_iterator<TypeTagForDatatypeAttr>
7152              I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
7153              E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
7154          I != E; ++I) {
7155       if (I->getArgumentKind() != ArgumentKind) {
7156         FoundWrongKind = true;
7157         return false;
7158       }
7159       TypeInfo.Type = I->getMatchingCType();
7160       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
7161       TypeInfo.MustBeNull = I->getMustBeNull();
7162       return true;
7163     }
7164     return false;
7165   }
7166 
7167   if (!MagicValues)
7168     return false;
7169 
7170   llvm::DenseMap<Sema::TypeTagMagicValue,
7171                  Sema::TypeTagData>::const_iterator I =
7172       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
7173   if (I == MagicValues->end())
7174     return false;
7175 
7176   TypeInfo = I->second;
7177   return true;
7178 }
7179 } // unnamed namespace
7180 
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)7181 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
7182                                       uint64_t MagicValue, QualType Type,
7183                                       bool LayoutCompatible,
7184                                       bool MustBeNull) {
7185   if (!TypeTagForDatatypeMagicValues)
7186     TypeTagForDatatypeMagicValues.reset(
7187         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
7188 
7189   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
7190   (*TypeTagForDatatypeMagicValues)[Magic] =
7191       TypeTagData(Type, LayoutCompatible, MustBeNull);
7192 }
7193 
7194 namespace {
IsSameCharType(QualType T1,QualType T2)7195 bool IsSameCharType(QualType T1, QualType T2) {
7196   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
7197   if (!BT1)
7198     return false;
7199 
7200   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
7201   if (!BT2)
7202     return false;
7203 
7204   BuiltinType::Kind T1Kind = BT1->getKind();
7205   BuiltinType::Kind T2Kind = BT2->getKind();
7206 
7207   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
7208          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
7209          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
7210          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
7211 }
7212 } // unnamed namespace
7213 
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)7214 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
7215                                     const Expr * const *ExprArgs) {
7216   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
7217   bool IsPointerAttr = Attr->getIsPointer();
7218 
7219   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
7220   bool FoundWrongKind;
7221   TypeTagData TypeInfo;
7222   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
7223                         TypeTagForDatatypeMagicValues.get(),
7224                         FoundWrongKind, TypeInfo)) {
7225     if (FoundWrongKind)
7226       Diag(TypeTagExpr->getExprLoc(),
7227            diag::warn_type_tag_for_datatype_wrong_kind)
7228         << TypeTagExpr->getSourceRange();
7229     return;
7230   }
7231 
7232   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
7233   if (IsPointerAttr) {
7234     // Skip implicit cast of pointer to `void *' (as a function argument).
7235     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
7236       if (ICE->getType()->isVoidPointerType() &&
7237           ICE->getCastKind() == CK_BitCast)
7238         ArgumentExpr = ICE->getSubExpr();
7239   }
7240   QualType ArgumentType = ArgumentExpr->getType();
7241 
7242   // Passing a `void*' pointer shouldn't trigger a warning.
7243   if (IsPointerAttr && ArgumentType->isVoidPointerType())
7244     return;
7245 
7246   if (TypeInfo.MustBeNull) {
7247     // Type tag with matching void type requires a null pointer.
7248     if (!ArgumentExpr->isNullPointerConstant(Context,
7249                                              Expr::NPC_ValueDependentIsNotNull)) {
7250       Diag(ArgumentExpr->getExprLoc(),
7251            diag::warn_type_safety_null_pointer_required)
7252           << ArgumentKind->getName()
7253           << ArgumentExpr->getSourceRange()
7254           << TypeTagExpr->getSourceRange();
7255     }
7256     return;
7257   }
7258 
7259   QualType RequiredType = TypeInfo.Type;
7260   if (IsPointerAttr)
7261     RequiredType = Context.getPointerType(RequiredType);
7262 
7263   bool mismatch = false;
7264   if (!TypeInfo.LayoutCompatible) {
7265     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
7266 
7267     // C++11 [basic.fundamental] p1:
7268     // Plain char, signed char, and unsigned char are three distinct types.
7269     //
7270     // But we treat plain `char' as equivalent to `signed char' or `unsigned
7271     // char' depending on the current char signedness mode.
7272     if (mismatch)
7273       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
7274                                            RequiredType->getPointeeType())) ||
7275           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
7276         mismatch = false;
7277   } else
7278     if (IsPointerAttr)
7279       mismatch = !isLayoutCompatible(Context,
7280                                      ArgumentType->getPointeeType(),
7281                                      RequiredType->getPointeeType());
7282     else
7283       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
7284 
7285   if (mismatch)
7286     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
7287         << ArgumentType << ArgumentKind->getName()
7288         << TypeInfo.LayoutCompatible << RequiredType
7289         << ArgumentExpr->getSourceRange()
7290         << TypeTagExpr->getSourceRange();
7291 }
7292