1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TreeTransform.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/AnalysisBasedWarnings.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Designator.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 using namespace clang;
45 using namespace sema;
46
47 /// \brief Determine whether the use of this declaration is valid, without
48 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)49 bool Sema::CanUseDecl(NamedDecl *D) {
50 // See if this is an auto-typed variable whose initializer we are parsing.
51 if (ParsingInitForAutoVars.count(D))
52 return false;
53
54 // See if this is a deleted function.
55 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
56 if (FD->isDeleted())
57 return false;
58
59 // If the function has a deduced return type, and we can't deduce it,
60 // then we can't use it either.
61 if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
62 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/false))
63 return false;
64 }
65
66 // See if this function is unavailable.
67 if (D->getAvailability() == AR_Unavailable &&
68 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
69 return false;
70
71 return true;
72 }
73
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)74 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
75 // Warn if this is used but marked unused.
76 if (D->hasAttr<UnusedAttr>()) {
77 const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
78 if (!DC->hasAttr<UnusedAttr>())
79 S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
80 }
81 }
82
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)83 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
84 NamedDecl *D, SourceLocation Loc,
85 const ObjCInterfaceDecl *UnknownObjCClass) {
86 // See if this declaration is unavailable or deprecated.
87 std::string Message;
88 AvailabilityResult Result = D->getAvailability(&Message);
89 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
90 if (Result == AR_Available) {
91 const DeclContext *DC = ECD->getDeclContext();
92 if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
93 Result = TheEnumDecl->getAvailability(&Message);
94 }
95
96 const ObjCPropertyDecl *ObjCPDecl = 0;
97 if (Result == AR_Deprecated || Result == AR_Unavailable) {
98 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
99 if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
100 AvailabilityResult PDeclResult = PD->getAvailability(0);
101 if (PDeclResult == Result)
102 ObjCPDecl = PD;
103 }
104 }
105 }
106
107 switch (Result) {
108 case AR_Available:
109 case AR_NotYetIntroduced:
110 break;
111
112 case AR_Deprecated:
113 S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
114 break;
115
116 case AR_Unavailable:
117 if (S.getCurContextAvailability() != AR_Unavailable) {
118 if (Message.empty()) {
119 if (!UnknownObjCClass) {
120 S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
121 if (ObjCPDecl)
122 S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
123 << ObjCPDecl->getDeclName() << 1;
124 }
125 else
126 S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
127 << D->getDeclName();
128 }
129 else
130 S.Diag(Loc, diag::err_unavailable_message)
131 << D->getDeclName() << Message;
132 S.Diag(D->getLocation(), diag::note_unavailable_here)
133 << isa<FunctionDecl>(D) << false;
134 if (ObjCPDecl)
135 S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
136 << ObjCPDecl->getDeclName() << 1;
137 }
138 break;
139 }
140 return Result;
141 }
142
143 /// \brief Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)144 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
145 assert(Decl->isDeleted());
146
147 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
148
149 if (Method && Method->isDeleted() && Method->isDefaulted()) {
150 // If the method was explicitly defaulted, point at that declaration.
151 if (!Method->isImplicit())
152 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
153
154 // Try to diagnose why this special member function was implicitly
155 // deleted. This might fail, if that reason no longer applies.
156 CXXSpecialMember CSM = getSpecialMember(Method);
157 if (CSM != CXXInvalid)
158 ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
159
160 return;
161 }
162
163 if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
164 if (CXXConstructorDecl *BaseCD =
165 const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
166 Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
167 if (BaseCD->isDeleted()) {
168 NoteDeletedFunction(BaseCD);
169 } else {
170 // FIXME: An explanation of why exactly it can't be inherited
171 // would be nice.
172 Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
173 }
174 return;
175 }
176 }
177
178 Diag(Decl->getLocation(), diag::note_unavailable_here)
179 << 1 << true;
180 }
181
182 /// \brief Determine whether a FunctionDecl was ever declared with an
183 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)184 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
185 for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
186 E = D->redecls_end();
187 I != E; ++I) {
188 if (I->getStorageClass() != SC_None)
189 return true;
190 }
191 return false;
192 }
193
194 /// \brief Check whether we're in an extern inline function and referring to a
195 /// variable or function with internal linkage (C11 6.7.4p3).
196 ///
197 /// This is only a warning because we used to silently accept this code, but
198 /// in many cases it will not behave correctly. This is not enabled in C++ mode
199 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
200 /// and so while there may still be user mistakes, most of the time we can't
201 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)202 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
203 const NamedDecl *D,
204 SourceLocation Loc) {
205 // This is disabled under C++; there are too many ways for this to fire in
206 // contexts where the warning is a false positive, or where it is technically
207 // correct but benign.
208 if (S.getLangOpts().CPlusPlus)
209 return;
210
211 // Check if this is an inlined function or method.
212 FunctionDecl *Current = S.getCurFunctionDecl();
213 if (!Current)
214 return;
215 if (!Current->isInlined())
216 return;
217 if (!Current->isExternallyVisible())
218 return;
219
220 // Check if the decl has internal linkage.
221 if (D->getFormalLinkage() != InternalLinkage)
222 return;
223
224 // Downgrade from ExtWarn to Extension if
225 // (1) the supposedly external inline function is in the main file,
226 // and probably won't be included anywhere else.
227 // (2) the thing we're referencing is a pure function.
228 // (3) the thing we're referencing is another inline function.
229 // This last can give us false negatives, but it's better than warning on
230 // wrappers for simple C library functions.
231 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
232 bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
233 if (!DowngradeWarning && UsedFn)
234 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
235
236 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
237 : diag::warn_internal_in_extern_inline)
238 << /*IsVar=*/!UsedFn << D;
239
240 S.MaybeSuggestAddingStaticToDecl(Current);
241
242 S.Diag(D->getCanonicalDecl()->getLocation(),
243 diag::note_internal_decl_declared_here)
244 << D;
245 }
246
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)247 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
248 const FunctionDecl *First = Cur->getFirstDeclaration();
249
250 // Suggest "static" on the function, if possible.
251 if (!hasAnyExplicitStorageClass(First)) {
252 SourceLocation DeclBegin = First->getSourceRange().getBegin();
253 Diag(DeclBegin, diag::note_convert_inline_to_static)
254 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
255 }
256 }
257
258 /// \brief Determine whether the use of this declaration is valid, and
259 /// emit any corresponding diagnostics.
260 ///
261 /// This routine diagnoses various problems with referencing
262 /// declarations that can occur when using a declaration. For example,
263 /// it might warn if a deprecated or unavailable declaration is being
264 /// used, or produce an error (and return true) if a C++0x deleted
265 /// function is being used.
266 ///
267 /// \returns true if there was an error (this declaration cannot be
268 /// referenced), false otherwise.
269 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)270 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
271 const ObjCInterfaceDecl *UnknownObjCClass) {
272 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
273 // If there were any diagnostics suppressed by template argument deduction,
274 // emit them now.
275 SuppressedDiagnosticsMap::iterator
276 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
277 if (Pos != SuppressedDiagnostics.end()) {
278 SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
279 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
280 Diag(Suppressed[I].first, Suppressed[I].second);
281
282 // Clear out the list of suppressed diagnostics, so that we don't emit
283 // them again for this specialization. However, we don't obsolete this
284 // entry from the table, because we want to avoid ever emitting these
285 // diagnostics again.
286 Suppressed.clear();
287 }
288 }
289
290 // See if this is an auto-typed variable whose initializer we are parsing.
291 if (ParsingInitForAutoVars.count(D)) {
292 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
293 << D->getDeclName();
294 return true;
295 }
296
297 // See if this is a deleted function.
298 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
299 if (FD->isDeleted()) {
300 Diag(Loc, diag::err_deleted_function_use);
301 NoteDeletedFunction(FD);
302 return true;
303 }
304
305 // If the function has a deduced return type, and we can't deduce it,
306 // then we can't use it either.
307 if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
308 DeduceReturnType(FD, Loc))
309 return true;
310 }
311 DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
312
313 DiagnoseUnusedOfDecl(*this, D, Loc);
314
315 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
316
317 return false;
318 }
319
320 /// \brief Retrieve the message suffix that should be added to a
321 /// diagnostic complaining about the given function being deleted or
322 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)323 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
324 std::string Message;
325 if (FD->getAvailability(&Message))
326 return ": " + Message;
327
328 return std::string();
329 }
330
331 /// DiagnoseSentinelCalls - This routine checks whether a call or
332 /// message-send is to a declaration with the sentinel attribute, and
333 /// if so, it checks that the requirements of the sentinel are
334 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)335 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
336 ArrayRef<Expr *> Args) {
337 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
338 if (!attr)
339 return;
340
341 // The number of formal parameters of the declaration.
342 unsigned numFormalParams;
343
344 // The kind of declaration. This is also an index into a %select in
345 // the diagnostic.
346 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
347
348 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
349 numFormalParams = MD->param_size();
350 calleeType = CT_Method;
351 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
352 numFormalParams = FD->param_size();
353 calleeType = CT_Function;
354 } else if (isa<VarDecl>(D)) {
355 QualType type = cast<ValueDecl>(D)->getType();
356 const FunctionType *fn = 0;
357 if (const PointerType *ptr = type->getAs<PointerType>()) {
358 fn = ptr->getPointeeType()->getAs<FunctionType>();
359 if (!fn) return;
360 calleeType = CT_Function;
361 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
362 fn = ptr->getPointeeType()->castAs<FunctionType>();
363 calleeType = CT_Block;
364 } else {
365 return;
366 }
367
368 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
369 numFormalParams = proto->getNumArgs();
370 } else {
371 numFormalParams = 0;
372 }
373 } else {
374 return;
375 }
376
377 // "nullPos" is the number of formal parameters at the end which
378 // effectively count as part of the variadic arguments. This is
379 // useful if you would prefer to not have *any* formal parameters,
380 // but the language forces you to have at least one.
381 unsigned nullPos = attr->getNullPos();
382 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
383 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
384
385 // The number of arguments which should follow the sentinel.
386 unsigned numArgsAfterSentinel = attr->getSentinel();
387
388 // If there aren't enough arguments for all the formal parameters,
389 // the sentinel, and the args after the sentinel, complain.
390 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
391 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
392 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
393 return;
394 }
395
396 // Otherwise, find the sentinel expression.
397 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
398 if (!sentinelExpr) return;
399 if (sentinelExpr->isValueDependent()) return;
400 if (Context.isSentinelNullExpr(sentinelExpr)) return;
401
402 // Pick a reasonable string to insert. Optimistically use 'nil' or
403 // 'NULL' if those are actually defined in the context. Only use
404 // 'nil' for ObjC methods, where it's much more likely that the
405 // variadic arguments form a list of object pointers.
406 SourceLocation MissingNilLoc
407 = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
408 std::string NullValue;
409 if (calleeType == CT_Method &&
410 PP.getIdentifierInfo("nil")->hasMacroDefinition())
411 NullValue = "nil";
412 else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
413 NullValue = "NULL";
414 else
415 NullValue = "(void*) 0";
416
417 if (MissingNilLoc.isInvalid())
418 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
419 else
420 Diag(MissingNilLoc, diag::warn_missing_sentinel)
421 << int(calleeType)
422 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
423 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
424 }
425
getExprRange(Expr * E) const426 SourceRange Sema::getExprRange(Expr *E) const {
427 return E ? E->getSourceRange() : SourceRange();
428 }
429
430 //===----------------------------------------------------------------------===//
431 // Standard Promotions and Conversions
432 //===----------------------------------------------------------------------===//
433
434 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)435 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
436 // Handle any placeholder expressions which made it here.
437 if (E->getType()->isPlaceholderType()) {
438 ExprResult result = CheckPlaceholderExpr(E);
439 if (result.isInvalid()) return ExprError();
440 E = result.take();
441 }
442
443 QualType Ty = E->getType();
444 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
445
446 if (Ty->isFunctionType())
447 E = ImpCastExprToType(E, Context.getPointerType(Ty),
448 CK_FunctionToPointerDecay).take();
449 else if (Ty->isArrayType()) {
450 // In C90 mode, arrays only promote to pointers if the array expression is
451 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
452 // type 'array of type' is converted to an expression that has type 'pointer
453 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
454 // that has type 'array of type' ...". The relevant change is "an lvalue"
455 // (C90) to "an expression" (C99).
456 //
457 // C++ 4.2p1:
458 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
459 // T" can be converted to an rvalue of type "pointer to T".
460 //
461 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
462 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
463 CK_ArrayToPointerDecay).take();
464 }
465 return Owned(E);
466 }
467
CheckForNullPointerDereference(Sema & S,Expr * E)468 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
469 // Check to see if we are dereferencing a null pointer. If so,
470 // and if not volatile-qualified, this is undefined behavior that the
471 // optimizer will delete, so warn about it. People sometimes try to use this
472 // to get a deterministic trap and are surprised by clang's behavior. This
473 // only handles the pattern "*null", which is a very syntactic check.
474 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
475 if (UO->getOpcode() == UO_Deref &&
476 UO->getSubExpr()->IgnoreParenCasts()->
477 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
478 !UO->getType().isVolatileQualified()) {
479 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
480 S.PDiag(diag::warn_indirection_through_null)
481 << UO->getSubExpr()->getSourceRange());
482 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
483 S.PDiag(diag::note_indirection_through_null));
484 }
485 }
486
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)487 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
488 SourceLocation AssignLoc,
489 const Expr* RHS) {
490 const ObjCIvarDecl *IV = OIRE->getDecl();
491 if (!IV)
492 return;
493
494 DeclarationName MemberName = IV->getDeclName();
495 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
496 if (!Member || !Member->isStr("isa"))
497 return;
498
499 const Expr *Base = OIRE->getBase();
500 QualType BaseType = Base->getType();
501 if (OIRE->isArrow())
502 BaseType = BaseType->getPointeeType();
503 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
504 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
505 ObjCInterfaceDecl *ClassDeclared = 0;
506 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
507 if (!ClassDeclared->getSuperClass()
508 && (*ClassDeclared->ivar_begin()) == IV) {
509 if (RHS) {
510 NamedDecl *ObjectSetClass =
511 S.LookupSingleName(S.TUScope,
512 &S.Context.Idents.get("object_setClass"),
513 SourceLocation(), S.LookupOrdinaryName);
514 if (ObjectSetClass) {
515 SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
516 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
517 FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
518 FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
519 AssignLoc), ",") <<
520 FixItHint::CreateInsertion(RHSLocEnd, ")");
521 }
522 else
523 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
524 } else {
525 NamedDecl *ObjectGetClass =
526 S.LookupSingleName(S.TUScope,
527 &S.Context.Idents.get("object_getClass"),
528 SourceLocation(), S.LookupOrdinaryName);
529 if (ObjectGetClass)
530 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
531 FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
532 FixItHint::CreateReplacement(
533 SourceRange(OIRE->getOpLoc(),
534 OIRE->getLocEnd()), ")");
535 else
536 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
537 }
538 S.Diag(IV->getLocation(), diag::note_ivar_decl);
539 }
540 }
541 }
542
DefaultLvalueConversion(Expr * E)543 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
544 // Handle any placeholder expressions which made it here.
545 if (E->getType()->isPlaceholderType()) {
546 ExprResult result = CheckPlaceholderExpr(E);
547 if (result.isInvalid()) return ExprError();
548 E = result.take();
549 }
550
551 // C++ [conv.lval]p1:
552 // A glvalue of a non-function, non-array type T can be
553 // converted to a prvalue.
554 if (!E->isGLValue()) return Owned(E);
555
556 QualType T = E->getType();
557 assert(!T.isNull() && "r-value conversion on typeless expression?");
558
559 // We don't want to throw lvalue-to-rvalue casts on top of
560 // expressions of certain types in C++.
561 if (getLangOpts().CPlusPlus &&
562 (E->getType() == Context.OverloadTy ||
563 T->isDependentType() ||
564 T->isRecordType()))
565 return Owned(E);
566
567 // The C standard is actually really unclear on this point, and
568 // DR106 tells us what the result should be but not why. It's
569 // generally best to say that void types just doesn't undergo
570 // lvalue-to-rvalue at all. Note that expressions of unqualified
571 // 'void' type are never l-values, but qualified void can be.
572 if (T->isVoidType())
573 return Owned(E);
574
575 // OpenCL usually rejects direct accesses to values of 'half' type.
576 if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
577 T->isHalfType()) {
578 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
579 << 0 << T;
580 return ExprError();
581 }
582
583 CheckForNullPointerDereference(*this, E);
584 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
585 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
586 &Context.Idents.get("object_getClass"),
587 SourceLocation(), LookupOrdinaryName);
588 if (ObjectGetClass)
589 Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
590 FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
591 FixItHint::CreateReplacement(
592 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
593 else
594 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
595 }
596 else if (const ObjCIvarRefExpr *OIRE =
597 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
598 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/0);
599
600 // C++ [conv.lval]p1:
601 // [...] If T is a non-class type, the type of the prvalue is the
602 // cv-unqualified version of T. Otherwise, the type of the
603 // rvalue is T.
604 //
605 // C99 6.3.2.1p2:
606 // If the lvalue has qualified type, the value has the unqualified
607 // version of the type of the lvalue; otherwise, the value has the
608 // type of the lvalue.
609 if (T.hasQualifiers())
610 T = T.getUnqualifiedType();
611
612 UpdateMarkingForLValueToRValue(E);
613
614 // Loading a __weak object implicitly retains the value, so we need a cleanup to
615 // balance that.
616 if (getLangOpts().ObjCAutoRefCount &&
617 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
618 ExprNeedsCleanups = true;
619
620 ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
621 E, 0, VK_RValue));
622
623 // C11 6.3.2.1p2:
624 // ... if the lvalue has atomic type, the value has the non-atomic version
625 // of the type of the lvalue ...
626 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
627 T = Atomic->getValueType().getUnqualifiedType();
628 Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
629 Res.get(), 0, VK_RValue));
630 }
631
632 return Res;
633 }
634
DefaultFunctionArrayLvalueConversion(Expr * E)635 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
636 ExprResult Res = DefaultFunctionArrayConversion(E);
637 if (Res.isInvalid())
638 return ExprError();
639 Res = DefaultLvalueConversion(Res.take());
640 if (Res.isInvalid())
641 return ExprError();
642 return Res;
643 }
644
645
646 /// UsualUnaryConversions - Performs various conversions that are common to most
647 /// operators (C99 6.3). The conversions of array and function types are
648 /// sometimes suppressed. For example, the array->pointer conversion doesn't
649 /// apply if the array is an argument to the sizeof or address (&) operators.
650 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)651 ExprResult Sema::UsualUnaryConversions(Expr *E) {
652 // First, convert to an r-value.
653 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
654 if (Res.isInvalid())
655 return ExprError();
656 E = Res.take();
657
658 QualType Ty = E->getType();
659 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
660
661 // Half FP have to be promoted to float unless it is natively supported
662 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
663 return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
664
665 // Try to perform integral promotions if the object has a theoretically
666 // promotable type.
667 if (Ty->isIntegralOrUnscopedEnumerationType()) {
668 // C99 6.3.1.1p2:
669 //
670 // The following may be used in an expression wherever an int or
671 // unsigned int may be used:
672 // - an object or expression with an integer type whose integer
673 // conversion rank is less than or equal to the rank of int
674 // and unsigned int.
675 // - A bit-field of type _Bool, int, signed int, or unsigned int.
676 //
677 // If an int can represent all values of the original type, the
678 // value is converted to an int; otherwise, it is converted to an
679 // unsigned int. These are called the integer promotions. All
680 // other types are unchanged by the integer promotions.
681
682 QualType PTy = Context.isPromotableBitField(E);
683 if (!PTy.isNull()) {
684 E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
685 return Owned(E);
686 }
687 if (Ty->isPromotableIntegerType()) {
688 QualType PT = Context.getPromotedIntegerType(Ty);
689 E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
690 return Owned(E);
691 }
692 }
693 return Owned(E);
694 }
695
696 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
697 /// do not have a prototype. Arguments that have type float or __fp16
698 /// are promoted to double. All other argument types are converted by
699 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)700 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
701 QualType Ty = E->getType();
702 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
703
704 ExprResult Res = UsualUnaryConversions(E);
705 if (Res.isInvalid())
706 return ExprError();
707 E = Res.take();
708
709 // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
710 // double.
711 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
712 if (BTy && (BTy->getKind() == BuiltinType::Half ||
713 BTy->getKind() == BuiltinType::Float))
714 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
715
716 // C++ performs lvalue-to-rvalue conversion as a default argument
717 // promotion, even on class types, but note:
718 // C++11 [conv.lval]p2:
719 // When an lvalue-to-rvalue conversion occurs in an unevaluated
720 // operand or a subexpression thereof the value contained in the
721 // referenced object is not accessed. Otherwise, if the glvalue
722 // has a class type, the conversion copy-initializes a temporary
723 // of type T from the glvalue and the result of the conversion
724 // is a prvalue for the temporary.
725 // FIXME: add some way to gate this entire thing for correctness in
726 // potentially potentially evaluated contexts.
727 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
728 ExprResult Temp = PerformCopyInitialization(
729 InitializedEntity::InitializeTemporary(E->getType()),
730 E->getExprLoc(),
731 Owned(E));
732 if (Temp.isInvalid())
733 return ExprError();
734 E = Temp.get();
735 }
736
737 return Owned(E);
738 }
739
740 /// Determine the degree of POD-ness for an expression.
741 /// Incomplete types are considered POD, since this check can be performed
742 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)743 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
744 if (Ty->isIncompleteType()) {
745 // C++11 [expr.call]p7:
746 // After these conversions, if the argument does not have arithmetic,
747 // enumeration, pointer, pointer to member, or class type, the program
748 // is ill-formed.
749 //
750 // Since we've already performed array-to-pointer and function-to-pointer
751 // decay, the only such type in C++ is cv void. This also handles
752 // initializer lists as variadic arguments.
753 if (Ty->isVoidType())
754 return VAK_Invalid;
755
756 if (Ty->isObjCObjectType())
757 return VAK_Invalid;
758 return VAK_Valid;
759 }
760
761 if (Ty.isCXX98PODType(Context))
762 return VAK_Valid;
763
764 // C++11 [expr.call]p7:
765 // Passing a potentially-evaluated argument of class type (Clause 9)
766 // having a non-trivial copy constructor, a non-trivial move constructor,
767 // or a non-trivial destructor, with no corresponding parameter,
768 // is conditionally-supported with implementation-defined semantics.
769 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
770 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
771 if (!Record->hasNonTrivialCopyConstructor() &&
772 !Record->hasNonTrivialMoveConstructor() &&
773 !Record->hasNonTrivialDestructor())
774 return VAK_ValidInCXX11;
775
776 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
777 return VAK_Valid;
778
779 if (Ty->isObjCObjectType())
780 return VAK_Invalid;
781
782 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
783 // permitted to reject them. We should consider doing so.
784 return VAK_Undefined;
785 }
786
checkVariadicArgument(const Expr * E,VariadicCallType CT)787 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
788 // Don't allow one to pass an Objective-C interface to a vararg.
789 const QualType &Ty = E->getType();
790 VarArgKind VAK = isValidVarArgType(Ty);
791
792 // Complain about passing non-POD types through varargs.
793 switch (VAK) {
794 case VAK_Valid:
795 break;
796
797 case VAK_ValidInCXX11:
798 DiagRuntimeBehavior(
799 E->getLocStart(), 0,
800 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
801 << E->getType() << CT);
802 break;
803
804 case VAK_Undefined:
805 DiagRuntimeBehavior(
806 E->getLocStart(), 0,
807 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
808 << getLangOpts().CPlusPlus11 << Ty << CT);
809 break;
810
811 case VAK_Invalid:
812 if (Ty->isObjCObjectType())
813 DiagRuntimeBehavior(
814 E->getLocStart(), 0,
815 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
816 << Ty << CT);
817 else
818 Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
819 << isa<InitListExpr>(E) << Ty << CT;
820 break;
821 }
822 }
823
824 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
825 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)826 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
827 FunctionDecl *FDecl) {
828 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
829 // Strip the unbridged-cast placeholder expression off, if applicable.
830 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
831 (CT == VariadicMethod ||
832 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
833 E = stripARCUnbridgedCast(E);
834
835 // Otherwise, do normal placeholder checking.
836 } else {
837 ExprResult ExprRes = CheckPlaceholderExpr(E);
838 if (ExprRes.isInvalid())
839 return ExprError();
840 E = ExprRes.take();
841 }
842 }
843
844 ExprResult ExprRes = DefaultArgumentPromotion(E);
845 if (ExprRes.isInvalid())
846 return ExprError();
847 E = ExprRes.take();
848
849 // Diagnostics regarding non-POD argument types are
850 // emitted along with format string checking in Sema::CheckFunctionCall().
851 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
852 // Turn this into a trap.
853 CXXScopeSpec SS;
854 SourceLocation TemplateKWLoc;
855 UnqualifiedId Name;
856 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
857 E->getLocStart());
858 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
859 Name, true, false);
860 if (TrapFn.isInvalid())
861 return ExprError();
862
863 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
864 E->getLocStart(), None,
865 E->getLocEnd());
866 if (Call.isInvalid())
867 return ExprError();
868
869 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
870 Call.get(), E);
871 if (Comma.isInvalid())
872 return ExprError();
873 return Comma.get();
874 }
875
876 if (!getLangOpts().CPlusPlus &&
877 RequireCompleteType(E->getExprLoc(), E->getType(),
878 diag::err_call_incomplete_argument))
879 return ExprError();
880
881 return Owned(E);
882 }
883
884 /// \brief Converts an integer to complex float type. Helper function of
885 /// UsualArithmeticConversions()
886 ///
887 /// \return false if the integer expression is an integer type and is
888 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)889 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
890 ExprResult &ComplexExpr,
891 QualType IntTy,
892 QualType ComplexTy,
893 bool SkipCast) {
894 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
895 if (SkipCast) return false;
896 if (IntTy->isIntegerType()) {
897 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
898 IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
899 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
900 CK_FloatingRealToComplex);
901 } else {
902 assert(IntTy->isComplexIntegerType());
903 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
904 CK_IntegralComplexToFloatingComplex);
905 }
906 return false;
907 }
908
909 /// \brief Takes two complex float types and converts them to the same type.
910 /// Helper function of UsualArithmeticConversions()
911 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)912 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
913 ExprResult &RHS, QualType LHSType,
914 QualType RHSType,
915 bool IsCompAssign) {
916 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
917
918 if (order < 0) {
919 // _Complex float -> _Complex double
920 if (!IsCompAssign)
921 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
922 return RHSType;
923 }
924 if (order > 0)
925 // _Complex float -> _Complex double
926 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
927 return LHSType;
928 }
929
930 /// \brief Converts otherExpr to complex float and promotes complexExpr if
931 /// necessary. Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)932 static QualType handleOtherComplexFloatConversion(Sema &S,
933 ExprResult &ComplexExpr,
934 ExprResult &OtherExpr,
935 QualType ComplexTy,
936 QualType OtherTy,
937 bool ConvertComplexExpr,
938 bool ConvertOtherExpr) {
939 int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
940
941 // If just the complexExpr is complex, the otherExpr needs to be converted,
942 // and the complexExpr might need to be promoted.
943 if (order > 0) { // complexExpr is wider
944 // float -> _Complex double
945 if (ConvertOtherExpr) {
946 QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
947 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
948 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
949 CK_FloatingRealToComplex);
950 }
951 return ComplexTy;
952 }
953
954 // otherTy is at least as wide. Find its corresponding complex type.
955 QualType result = (order == 0 ? ComplexTy :
956 S.Context.getComplexType(OtherTy));
957
958 // double -> _Complex double
959 if (ConvertOtherExpr)
960 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
961 CK_FloatingRealToComplex);
962
963 // _Complex float -> _Complex double
964 if (ConvertComplexExpr && order < 0)
965 ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
966 CK_FloatingComplexCast);
967
968 return result;
969 }
970
971 /// \brief Handle arithmetic conversion with complex types. Helper function of
972 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)973 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
974 ExprResult &RHS, QualType LHSType,
975 QualType RHSType,
976 bool IsCompAssign) {
977 // if we have an integer operand, the result is the complex type.
978 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
979 /*skipCast*/false))
980 return LHSType;
981 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
982 /*skipCast*/IsCompAssign))
983 return RHSType;
984
985 // This handles complex/complex, complex/float, or float/complex.
986 // When both operands are complex, the shorter operand is converted to the
987 // type of the longer, and that is the type of the result. This corresponds
988 // to what is done when combining two real floating-point operands.
989 // The fun begins when size promotion occur across type domains.
990 // From H&S 6.3.4: When one operand is complex and the other is a real
991 // floating-point type, the less precise type is converted, within it's
992 // real or complex domain, to the precision of the other type. For example,
993 // when combining a "long double" with a "double _Complex", the
994 // "double _Complex" is promoted to "long double _Complex".
995
996 bool LHSComplexFloat = LHSType->isComplexType();
997 bool RHSComplexFloat = RHSType->isComplexType();
998
999 // If both are complex, just cast to the more precise type.
1000 if (LHSComplexFloat && RHSComplexFloat)
1001 return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
1002 LHSType, RHSType,
1003 IsCompAssign);
1004
1005 // If only one operand is complex, promote it if necessary and convert the
1006 // other operand to complex.
1007 if (LHSComplexFloat)
1008 return handleOtherComplexFloatConversion(
1009 S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
1010 /*convertOtherExpr*/ true);
1011
1012 assert(RHSComplexFloat);
1013 return handleOtherComplexFloatConversion(
1014 S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
1015 /*convertOtherExpr*/ !IsCompAssign);
1016 }
1017
1018 /// \brief Hande arithmetic conversion from integer to float. Helper function
1019 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1020 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1021 ExprResult &IntExpr,
1022 QualType FloatTy, QualType IntTy,
1023 bool ConvertFloat, bool ConvertInt) {
1024 if (IntTy->isIntegerType()) {
1025 if (ConvertInt)
1026 // Convert intExpr to the lhs floating point type.
1027 IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
1028 CK_IntegralToFloating);
1029 return FloatTy;
1030 }
1031
1032 // Convert both sides to the appropriate complex float.
1033 assert(IntTy->isComplexIntegerType());
1034 QualType result = S.Context.getComplexType(FloatTy);
1035
1036 // _Complex int -> _Complex float
1037 if (ConvertInt)
1038 IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
1039 CK_IntegralComplexToFloatingComplex);
1040
1041 // float -> _Complex float
1042 if (ConvertFloat)
1043 FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
1044 CK_FloatingRealToComplex);
1045
1046 return result;
1047 }
1048
1049 /// \brief Handle arithmethic conversion with floating point types. Helper
1050 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1051 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1052 ExprResult &RHS, QualType LHSType,
1053 QualType RHSType, bool IsCompAssign) {
1054 bool LHSFloat = LHSType->isRealFloatingType();
1055 bool RHSFloat = RHSType->isRealFloatingType();
1056
1057 // If we have two real floating types, convert the smaller operand
1058 // to the bigger result.
1059 if (LHSFloat && RHSFloat) {
1060 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1061 if (order > 0) {
1062 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
1063 return LHSType;
1064 }
1065
1066 assert(order < 0 && "illegal float comparison");
1067 if (!IsCompAssign)
1068 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
1069 return RHSType;
1070 }
1071
1072 if (LHSFloat)
1073 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1074 /*convertFloat=*/!IsCompAssign,
1075 /*convertInt=*/ true);
1076 assert(RHSFloat);
1077 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1078 /*convertInt=*/ true,
1079 /*convertFloat=*/!IsCompAssign);
1080 }
1081
1082 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1083
1084 namespace {
1085 /// These helper callbacks are placed in an anonymous namespace to
1086 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1087 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1088 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1089 }
1090
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1091 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1092 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1093 CK_IntegralComplexCast);
1094 }
1095 }
1096
1097 /// \brief Handle integer arithmetic conversions. Helper function of
1098 /// UsualArithmeticConversions()
1099 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1100 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1101 ExprResult &RHS, QualType LHSType,
1102 QualType RHSType, bool IsCompAssign) {
1103 // The rules for this case are in C99 6.3.1.8
1104 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1105 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1106 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1107 if (LHSSigned == RHSSigned) {
1108 // Same signedness; use the higher-ranked type
1109 if (order >= 0) {
1110 RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1111 return LHSType;
1112 } else if (!IsCompAssign)
1113 LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1114 return RHSType;
1115 } else if (order != (LHSSigned ? 1 : -1)) {
1116 // The unsigned type has greater than or equal rank to the
1117 // signed type, so use the unsigned type
1118 if (RHSSigned) {
1119 RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1120 return LHSType;
1121 } else if (!IsCompAssign)
1122 LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1123 return RHSType;
1124 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1125 // The two types are different widths; if we are here, that
1126 // means the signed type is larger than the unsigned type, so
1127 // use the signed type.
1128 if (LHSSigned) {
1129 RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1130 return LHSType;
1131 } else if (!IsCompAssign)
1132 LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1133 return RHSType;
1134 } else {
1135 // The signed type is higher-ranked than the unsigned type,
1136 // but isn't actually any bigger (like unsigned int and long
1137 // on most 32-bit systems). Use the unsigned type corresponding
1138 // to the signed type.
1139 QualType result =
1140 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1141 RHS = (*doRHSCast)(S, RHS.take(), result);
1142 if (!IsCompAssign)
1143 LHS = (*doLHSCast)(S, LHS.take(), result);
1144 return result;
1145 }
1146 }
1147
1148 /// \brief Handle conversions with GCC complex int extension. Helper function
1149 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1150 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1151 ExprResult &RHS, QualType LHSType,
1152 QualType RHSType,
1153 bool IsCompAssign) {
1154 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1155 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1156
1157 if (LHSComplexInt && RHSComplexInt) {
1158 QualType LHSEltType = LHSComplexInt->getElementType();
1159 QualType RHSEltType = RHSComplexInt->getElementType();
1160 QualType ScalarType =
1161 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1162 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1163
1164 return S.Context.getComplexType(ScalarType);
1165 }
1166
1167 if (LHSComplexInt) {
1168 QualType LHSEltType = LHSComplexInt->getElementType();
1169 QualType ScalarType =
1170 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1171 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1172 QualType ComplexType = S.Context.getComplexType(ScalarType);
1173 RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
1174 CK_IntegralRealToComplex);
1175
1176 return ComplexType;
1177 }
1178
1179 assert(RHSComplexInt);
1180
1181 QualType RHSEltType = RHSComplexInt->getElementType();
1182 QualType ScalarType =
1183 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1184 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1185 QualType ComplexType = S.Context.getComplexType(ScalarType);
1186
1187 if (!IsCompAssign)
1188 LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
1189 CK_IntegralRealToComplex);
1190 return ComplexType;
1191 }
1192
1193 /// UsualArithmeticConversions - Performs various conversions that are common to
1194 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1195 /// routine returns the first non-arithmetic type found. The client is
1196 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)1197 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1198 bool IsCompAssign) {
1199 if (!IsCompAssign) {
1200 LHS = UsualUnaryConversions(LHS.take());
1201 if (LHS.isInvalid())
1202 return QualType();
1203 }
1204
1205 RHS = UsualUnaryConversions(RHS.take());
1206 if (RHS.isInvalid())
1207 return QualType();
1208
1209 // For conversion purposes, we ignore any qualifiers.
1210 // For example, "const float" and "float" are equivalent.
1211 QualType LHSType =
1212 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1213 QualType RHSType =
1214 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1215
1216 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1217 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1218 LHSType = AtomicLHS->getValueType();
1219
1220 // If both types are identical, no conversion is needed.
1221 if (LHSType == RHSType)
1222 return LHSType;
1223
1224 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1225 // The caller can deal with this (e.g. pointer + int).
1226 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1227 return QualType();
1228
1229 // Apply unary and bitfield promotions to the LHS's type.
1230 QualType LHSUnpromotedType = LHSType;
1231 if (LHSType->isPromotableIntegerType())
1232 LHSType = Context.getPromotedIntegerType(LHSType);
1233 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1234 if (!LHSBitfieldPromoteTy.isNull())
1235 LHSType = LHSBitfieldPromoteTy;
1236 if (LHSType != LHSUnpromotedType && !IsCompAssign)
1237 LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1238
1239 // If both types are identical, no conversion is needed.
1240 if (LHSType == RHSType)
1241 return LHSType;
1242
1243 // At this point, we have two different arithmetic types.
1244
1245 // Handle complex types first (C99 6.3.1.8p1).
1246 if (LHSType->isComplexType() || RHSType->isComplexType())
1247 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1248 IsCompAssign);
1249
1250 // Now handle "real" floating types (i.e. float, double, long double).
1251 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1252 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1253 IsCompAssign);
1254
1255 // Handle GCC complex int extension.
1256 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1257 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1258 IsCompAssign);
1259
1260 // Finally, we have two differing integer types.
1261 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1262 (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1263 }
1264
1265
1266 //===----------------------------------------------------------------------===//
1267 // Semantic Analysis for various Expression Types
1268 //===----------------------------------------------------------------------===//
1269
1270
1271 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1272 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1273 SourceLocation DefaultLoc,
1274 SourceLocation RParenLoc,
1275 Expr *ControllingExpr,
1276 ArrayRef<ParsedType> ArgTypes,
1277 ArrayRef<Expr *> ArgExprs) {
1278 unsigned NumAssocs = ArgTypes.size();
1279 assert(NumAssocs == ArgExprs.size());
1280
1281 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1282 for (unsigned i = 0; i < NumAssocs; ++i) {
1283 if (ArgTypes[i])
1284 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1285 else
1286 Types[i] = 0;
1287 }
1288
1289 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1290 ControllingExpr,
1291 llvm::makeArrayRef(Types, NumAssocs),
1292 ArgExprs);
1293 delete [] Types;
1294 return ER;
1295 }
1296
1297 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1298 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1299 SourceLocation DefaultLoc,
1300 SourceLocation RParenLoc,
1301 Expr *ControllingExpr,
1302 ArrayRef<TypeSourceInfo *> Types,
1303 ArrayRef<Expr *> Exprs) {
1304 unsigned NumAssocs = Types.size();
1305 assert(NumAssocs == Exprs.size());
1306 if (ControllingExpr->getType()->isPlaceholderType()) {
1307 ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1308 if (result.isInvalid()) return ExprError();
1309 ControllingExpr = result.take();
1310 }
1311
1312 bool TypeErrorFound = false,
1313 IsResultDependent = ControllingExpr->isTypeDependent(),
1314 ContainsUnexpandedParameterPack
1315 = ControllingExpr->containsUnexpandedParameterPack();
1316
1317 for (unsigned i = 0; i < NumAssocs; ++i) {
1318 if (Exprs[i]->containsUnexpandedParameterPack())
1319 ContainsUnexpandedParameterPack = true;
1320
1321 if (Types[i]) {
1322 if (Types[i]->getType()->containsUnexpandedParameterPack())
1323 ContainsUnexpandedParameterPack = true;
1324
1325 if (Types[i]->getType()->isDependentType()) {
1326 IsResultDependent = true;
1327 } else {
1328 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1329 // complete object type other than a variably modified type."
1330 unsigned D = 0;
1331 if (Types[i]->getType()->isIncompleteType())
1332 D = diag::err_assoc_type_incomplete;
1333 else if (!Types[i]->getType()->isObjectType())
1334 D = diag::err_assoc_type_nonobject;
1335 else if (Types[i]->getType()->isVariablyModifiedType())
1336 D = diag::err_assoc_type_variably_modified;
1337
1338 if (D != 0) {
1339 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1340 << Types[i]->getTypeLoc().getSourceRange()
1341 << Types[i]->getType();
1342 TypeErrorFound = true;
1343 }
1344
1345 // C11 6.5.1.1p2 "No two generic associations in the same generic
1346 // selection shall specify compatible types."
1347 for (unsigned j = i+1; j < NumAssocs; ++j)
1348 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1349 Context.typesAreCompatible(Types[i]->getType(),
1350 Types[j]->getType())) {
1351 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1352 diag::err_assoc_compatible_types)
1353 << Types[j]->getTypeLoc().getSourceRange()
1354 << Types[j]->getType()
1355 << Types[i]->getType();
1356 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1357 diag::note_compat_assoc)
1358 << Types[i]->getTypeLoc().getSourceRange()
1359 << Types[i]->getType();
1360 TypeErrorFound = true;
1361 }
1362 }
1363 }
1364 }
1365 if (TypeErrorFound)
1366 return ExprError();
1367
1368 // If we determined that the generic selection is result-dependent, don't
1369 // try to compute the result expression.
1370 if (IsResultDependent)
1371 return Owned(new (Context) GenericSelectionExpr(
1372 Context, KeyLoc, ControllingExpr,
1373 Types, Exprs,
1374 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1375
1376 SmallVector<unsigned, 1> CompatIndices;
1377 unsigned DefaultIndex = -1U;
1378 for (unsigned i = 0; i < NumAssocs; ++i) {
1379 if (!Types[i])
1380 DefaultIndex = i;
1381 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1382 Types[i]->getType()))
1383 CompatIndices.push_back(i);
1384 }
1385
1386 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1387 // type compatible with at most one of the types named in its generic
1388 // association list."
1389 if (CompatIndices.size() > 1) {
1390 // We strip parens here because the controlling expression is typically
1391 // parenthesized in macro definitions.
1392 ControllingExpr = ControllingExpr->IgnoreParens();
1393 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1394 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1395 << (unsigned) CompatIndices.size();
1396 for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
1397 E = CompatIndices.end(); I != E; ++I) {
1398 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1399 diag::note_compat_assoc)
1400 << Types[*I]->getTypeLoc().getSourceRange()
1401 << Types[*I]->getType();
1402 }
1403 return ExprError();
1404 }
1405
1406 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1407 // its controlling expression shall have type compatible with exactly one of
1408 // the types named in its generic association list."
1409 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1410 // We strip parens here because the controlling expression is typically
1411 // parenthesized in macro definitions.
1412 ControllingExpr = ControllingExpr->IgnoreParens();
1413 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1414 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1415 return ExprError();
1416 }
1417
1418 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1419 // type name that is compatible with the type of the controlling expression,
1420 // then the result expression of the generic selection is the expression
1421 // in that generic association. Otherwise, the result expression of the
1422 // generic selection is the expression in the default generic association."
1423 unsigned ResultIndex =
1424 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1425
1426 return Owned(new (Context) GenericSelectionExpr(
1427 Context, KeyLoc, ControllingExpr,
1428 Types, Exprs,
1429 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1430 ResultIndex));
1431 }
1432
1433 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1434 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1435 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1436 unsigned Offset) {
1437 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1438 S.getLangOpts());
1439 }
1440
1441 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1442 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1443 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1444 IdentifierInfo *UDSuffix,
1445 SourceLocation UDSuffixLoc,
1446 ArrayRef<Expr*> Args,
1447 SourceLocation LitEndLoc) {
1448 assert(Args.size() <= 2 && "too many arguments for literal operator");
1449
1450 QualType ArgTy[2];
1451 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1452 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1453 if (ArgTy[ArgIdx]->isArrayType())
1454 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1455 }
1456
1457 DeclarationName OpName =
1458 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1459 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1460 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1461
1462 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1463 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1464 /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1465 return ExprError();
1466
1467 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1468 }
1469
1470 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1471 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1472 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1473 /// multiple tokens. However, the common case is that StringToks points to one
1474 /// string.
1475 ///
1476 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1477 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1478 Scope *UDLScope) {
1479 assert(NumStringToks && "Must have at least one string!");
1480
1481 StringLiteralParser Literal(StringToks, NumStringToks, PP);
1482 if (Literal.hadError)
1483 return ExprError();
1484
1485 SmallVector<SourceLocation, 4> StringTokLocs;
1486 for (unsigned i = 0; i != NumStringToks; ++i)
1487 StringTokLocs.push_back(StringToks[i].getLocation());
1488
1489 QualType StrTy = Context.CharTy;
1490 if (Literal.isWide())
1491 StrTy = Context.getWideCharType();
1492 else if (Literal.isUTF16())
1493 StrTy = Context.Char16Ty;
1494 else if (Literal.isUTF32())
1495 StrTy = Context.Char32Ty;
1496 else if (Literal.isPascal())
1497 StrTy = Context.UnsignedCharTy;
1498
1499 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1500 if (Literal.isWide())
1501 Kind = StringLiteral::Wide;
1502 else if (Literal.isUTF8())
1503 Kind = StringLiteral::UTF8;
1504 else if (Literal.isUTF16())
1505 Kind = StringLiteral::UTF16;
1506 else if (Literal.isUTF32())
1507 Kind = StringLiteral::UTF32;
1508
1509 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1510 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1511 StrTy.addConst();
1512
1513 // Get an array type for the string, according to C99 6.4.5. This includes
1514 // the nul terminator character as well as the string length for pascal
1515 // strings.
1516 StrTy = Context.getConstantArrayType(StrTy,
1517 llvm::APInt(32, Literal.GetNumStringChars()+1),
1518 ArrayType::Normal, 0);
1519
1520 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1521 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1522 Kind, Literal.Pascal, StrTy,
1523 &StringTokLocs[0],
1524 StringTokLocs.size());
1525 if (Literal.getUDSuffix().empty())
1526 return Owned(Lit);
1527
1528 // We're building a user-defined literal.
1529 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1530 SourceLocation UDSuffixLoc =
1531 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1532 Literal.getUDSuffixOffset());
1533
1534 // Make sure we're allowed user-defined literals here.
1535 if (!UDLScope)
1536 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1537
1538 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1539 // operator "" X (str, len)
1540 QualType SizeType = Context.getSizeType();
1541 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1542 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1543 StringTokLocs[0]);
1544 Expr *Args[] = { Lit, LenArg };
1545 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1546 Args, StringTokLocs.back());
1547 }
1548
1549 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1550 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1551 SourceLocation Loc,
1552 const CXXScopeSpec *SS) {
1553 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1554 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1555 }
1556
1557 /// BuildDeclRefExpr - Build an expression that references a
1558 /// declaration that does not require a closure capture.
1559 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)1560 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1561 const DeclarationNameInfo &NameInfo,
1562 const CXXScopeSpec *SS, NamedDecl *FoundD,
1563 const TemplateArgumentListInfo *TemplateArgs) {
1564 if (getLangOpts().CUDA)
1565 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1566 if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1567 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1568 CalleeTarget = IdentifyCUDATarget(Callee);
1569 if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1570 Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1571 << CalleeTarget << D->getIdentifier() << CallerTarget;
1572 Diag(D->getLocation(), diag::note_previous_decl)
1573 << D->getIdentifier();
1574 return ExprError();
1575 }
1576 }
1577
1578 bool refersToEnclosingScope =
1579 (CurContext != D->getDeclContext() &&
1580 D->getDeclContext()->isFunctionOrMethod());
1581
1582 DeclRefExpr *E;
1583 if (isa<VarTemplateSpecializationDecl>(D)) {
1584 VarTemplateSpecializationDecl *VarSpec =
1585 cast<VarTemplateSpecializationDecl>(D);
1586
1587 E = DeclRefExpr::Create(
1588 Context,
1589 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1590 VarSpec->getTemplateKeywordLoc(), D, refersToEnclosingScope,
1591 NameInfo.getLoc(), Ty, VK, FoundD, TemplateArgs);
1592 } else {
1593 assert(!TemplateArgs && "No template arguments for non-variable"
1594 " template specialization referrences");
1595 E = DeclRefExpr::Create(
1596 Context,
1597 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1598 SourceLocation(), D, refersToEnclosingScope, NameInfo, Ty, VK, FoundD);
1599 }
1600
1601 MarkDeclRefReferenced(E);
1602
1603 if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1604 Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1605 DiagnosticsEngine::Level Level =
1606 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1607 E->getLocStart());
1608 if (Level != DiagnosticsEngine::Ignored)
1609 recordUseOfEvaluatedWeak(E);
1610 }
1611
1612 // Just in case we're building an illegal pointer-to-member.
1613 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1614 if (FD && FD->isBitField())
1615 E->setObjectKind(OK_BitField);
1616
1617 return Owned(E);
1618 }
1619
1620 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1621 /// possibly a list of template arguments.
1622 ///
1623 /// If this produces template arguments, it is permitted to call
1624 /// DecomposeTemplateName.
1625 ///
1626 /// This actually loses a lot of source location information for
1627 /// non-standard name kinds; we should consider preserving that in
1628 /// some way.
1629 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1630 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1631 TemplateArgumentListInfo &Buffer,
1632 DeclarationNameInfo &NameInfo,
1633 const TemplateArgumentListInfo *&TemplateArgs) {
1634 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1635 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1636 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1637
1638 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1639 Id.TemplateId->NumArgs);
1640 translateTemplateArguments(TemplateArgsPtr, Buffer);
1641
1642 TemplateName TName = Id.TemplateId->Template.get();
1643 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1644 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1645 TemplateArgs = &Buffer;
1646 } else {
1647 NameInfo = GetNameFromUnqualifiedId(Id);
1648 TemplateArgs = 0;
1649 }
1650 }
1651
1652 /// Diagnose an empty lookup.
1653 ///
1654 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1655 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1656 CorrectionCandidateCallback &CCC,
1657 TemplateArgumentListInfo *ExplicitTemplateArgs,
1658 llvm::ArrayRef<Expr *> Args) {
1659 DeclarationName Name = R.getLookupName();
1660
1661 unsigned diagnostic = diag::err_undeclared_var_use;
1662 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1663 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1664 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1665 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1666 diagnostic = diag::err_undeclared_use;
1667 diagnostic_suggest = diag::err_undeclared_use_suggest;
1668 }
1669
1670 // If the original lookup was an unqualified lookup, fake an
1671 // unqualified lookup. This is useful when (for example) the
1672 // original lookup would not have found something because it was a
1673 // dependent name.
1674 DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1675 ? CurContext : 0;
1676 while (DC) {
1677 if (isa<CXXRecordDecl>(DC)) {
1678 LookupQualifiedName(R, DC);
1679
1680 if (!R.empty()) {
1681 // Don't give errors about ambiguities in this lookup.
1682 R.suppressDiagnostics();
1683
1684 // During a default argument instantiation the CurContext points
1685 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1686 // function parameter list, hence add an explicit check.
1687 bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1688 ActiveTemplateInstantiations.back().Kind ==
1689 ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1690 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1691 bool isInstance = CurMethod &&
1692 CurMethod->isInstance() &&
1693 DC == CurMethod->getParent() && !isDefaultArgument;
1694
1695
1696 // Give a code modification hint to insert 'this->'.
1697 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1698 // Actually quite difficult!
1699 if (getLangOpts().MicrosoftMode)
1700 diagnostic = diag::warn_found_via_dependent_bases_lookup;
1701 if (isInstance) {
1702 Diag(R.getNameLoc(), diagnostic) << Name
1703 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1704 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1705 CallsUndergoingInstantiation.back()->getCallee());
1706
1707 CXXMethodDecl *DepMethod;
1708 if (CurMethod->isDependentContext())
1709 DepMethod = CurMethod;
1710 else if (CurMethod->getTemplatedKind() ==
1711 FunctionDecl::TK_FunctionTemplateSpecialization)
1712 DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1713 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1714 else
1715 DepMethod = cast<CXXMethodDecl>(
1716 CurMethod->getInstantiatedFromMemberFunction());
1717 assert(DepMethod && "No template pattern found");
1718
1719 QualType DepThisType = DepMethod->getThisType(Context);
1720 CheckCXXThisCapture(R.getNameLoc());
1721 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1722 R.getNameLoc(), DepThisType, false);
1723 TemplateArgumentListInfo TList;
1724 if (ULE->hasExplicitTemplateArgs())
1725 ULE->copyTemplateArgumentsInto(TList);
1726
1727 CXXScopeSpec SS;
1728 SS.Adopt(ULE->getQualifierLoc());
1729 CXXDependentScopeMemberExpr *DepExpr =
1730 CXXDependentScopeMemberExpr::Create(
1731 Context, DepThis, DepThisType, true, SourceLocation(),
1732 SS.getWithLocInContext(Context),
1733 ULE->getTemplateKeywordLoc(), 0,
1734 R.getLookupNameInfo(),
1735 ULE->hasExplicitTemplateArgs() ? &TList : 0);
1736 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1737 } else {
1738 Diag(R.getNameLoc(), diagnostic) << Name;
1739 }
1740
1741 // Do we really want to note all of these?
1742 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1743 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1744
1745 // Return true if we are inside a default argument instantiation
1746 // and the found name refers to an instance member function, otherwise
1747 // the function calling DiagnoseEmptyLookup will try to create an
1748 // implicit member call and this is wrong for default argument.
1749 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1750 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1751 return true;
1752 }
1753
1754 // Tell the callee to try to recover.
1755 return false;
1756 }
1757
1758 R.clear();
1759 }
1760
1761 // In Microsoft mode, if we are performing lookup from within a friend
1762 // function definition declared at class scope then we must set
1763 // DC to the lexical parent to be able to search into the parent
1764 // class.
1765 if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1766 cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1767 DC->getLexicalParent()->isRecord())
1768 DC = DC->getLexicalParent();
1769 else
1770 DC = DC->getParent();
1771 }
1772
1773 // We didn't find anything, so try to correct for a typo.
1774 TypoCorrection Corrected;
1775 if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1776 S, &SS, CCC))) {
1777 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1778 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1779 bool droppedSpecifier =
1780 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1781 R.setLookupName(Corrected.getCorrection());
1782
1783 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1784 if (Corrected.isOverloaded()) {
1785 OverloadCandidateSet OCS(R.getNameLoc());
1786 OverloadCandidateSet::iterator Best;
1787 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1788 CDEnd = Corrected.end();
1789 CD != CDEnd; ++CD) {
1790 if (FunctionTemplateDecl *FTD =
1791 dyn_cast<FunctionTemplateDecl>(*CD))
1792 AddTemplateOverloadCandidate(
1793 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1794 Args, OCS);
1795 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1796 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1797 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1798 Args, OCS);
1799 }
1800 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1801 case OR_Success:
1802 ND = Best->Function;
1803 break;
1804 default:
1805 break;
1806 }
1807 }
1808 R.addDecl(ND);
1809 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1810 if (SS.isEmpty())
1811 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1812 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1813 else
1814 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1815 << Name << computeDeclContext(SS, false) << droppedSpecifier
1816 << CorrectedQuotedStr << SS.getRange()
1817 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
1818 CorrectedStr);
1819
1820 unsigned diag = isa<ImplicitParamDecl>(ND)
1821 ? diag::note_implicit_param_decl
1822 : diag::note_previous_decl;
1823
1824 Diag(ND->getLocation(), diag)
1825 << CorrectedQuotedStr;
1826
1827 // Tell the callee to try to recover.
1828 return false;
1829 }
1830
1831 if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1832 // FIXME: If we ended up with a typo for a type name or
1833 // Objective-C class name, we're in trouble because the parser
1834 // is in the wrong place to recover. Suggest the typo
1835 // correction, but don't make it a fix-it since we're not going
1836 // to recover well anyway.
1837 if (SS.isEmpty())
1838 Diag(R.getNameLoc(), diagnostic_suggest)
1839 << Name << CorrectedQuotedStr;
1840 else
1841 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1842 << Name << computeDeclContext(SS, false) << droppedSpecifier
1843 << CorrectedQuotedStr << SS.getRange();
1844
1845 // Don't try to recover; it won't work.
1846 return true;
1847 }
1848 } else {
1849 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1850 // because we aren't able to recover.
1851 if (SS.isEmpty())
1852 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1853 else
1854 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1855 << Name << computeDeclContext(SS, false) << droppedSpecifier
1856 << CorrectedQuotedStr << SS.getRange();
1857 return true;
1858 }
1859 }
1860 R.clear();
1861
1862 // Emit a special diagnostic for failed member lookups.
1863 // FIXME: computing the declaration context might fail here (?)
1864 if (!SS.isEmpty()) {
1865 Diag(R.getNameLoc(), diag::err_no_member)
1866 << Name << computeDeclContext(SS, false)
1867 << SS.getRange();
1868 return true;
1869 }
1870
1871 // Give up, we can't recover.
1872 Diag(R.getNameLoc(), diagnostic) << Name;
1873 return true;
1874 }
1875
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC,bool IsInlineAsmIdentifier)1876 ExprResult Sema::ActOnIdExpression(Scope *S,
1877 CXXScopeSpec &SS,
1878 SourceLocation TemplateKWLoc,
1879 UnqualifiedId &Id,
1880 bool HasTrailingLParen,
1881 bool IsAddressOfOperand,
1882 CorrectionCandidateCallback *CCC,
1883 bool IsInlineAsmIdentifier) {
1884 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1885 "cannot be direct & operand and have a trailing lparen");
1886 if (SS.isInvalid())
1887 return ExprError();
1888
1889 TemplateArgumentListInfo TemplateArgsBuffer;
1890
1891 // Decompose the UnqualifiedId into the following data.
1892 DeclarationNameInfo NameInfo;
1893 const TemplateArgumentListInfo *TemplateArgs;
1894 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1895
1896 DeclarationName Name = NameInfo.getName();
1897 IdentifierInfo *II = Name.getAsIdentifierInfo();
1898 SourceLocation NameLoc = NameInfo.getLoc();
1899
1900 // C++ [temp.dep.expr]p3:
1901 // An id-expression is type-dependent if it contains:
1902 // -- an identifier that was declared with a dependent type,
1903 // (note: handled after lookup)
1904 // -- a template-id that is dependent,
1905 // (note: handled in BuildTemplateIdExpr)
1906 // -- a conversion-function-id that specifies a dependent type,
1907 // -- a nested-name-specifier that contains a class-name that
1908 // names a dependent type.
1909 // Determine whether this is a member of an unknown specialization;
1910 // we need to handle these differently.
1911 bool DependentID = false;
1912 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1913 Name.getCXXNameType()->isDependentType()) {
1914 DependentID = true;
1915 } else if (SS.isSet()) {
1916 if (DeclContext *DC = computeDeclContext(SS, false)) {
1917 if (RequireCompleteDeclContext(SS, DC))
1918 return ExprError();
1919 } else {
1920 DependentID = true;
1921 }
1922 }
1923
1924 if (DependentID)
1925 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1926 IsAddressOfOperand, TemplateArgs);
1927
1928 // Perform the required lookup.
1929 LookupResult R(*this, NameInfo,
1930 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1931 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1932 if (TemplateArgs) {
1933 // Lookup the template name again to correctly establish the context in
1934 // which it was found. This is really unfortunate as we already did the
1935 // lookup to determine that it was a template name in the first place. If
1936 // this becomes a performance hit, we can work harder to preserve those
1937 // results until we get here but it's likely not worth it.
1938 bool MemberOfUnknownSpecialization;
1939 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1940 MemberOfUnknownSpecialization);
1941
1942 if (MemberOfUnknownSpecialization ||
1943 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1944 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1945 IsAddressOfOperand, TemplateArgs);
1946 } else {
1947 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1948 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1949
1950 // If the result might be in a dependent base class, this is a dependent
1951 // id-expression.
1952 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1953 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1954 IsAddressOfOperand, TemplateArgs);
1955
1956 // If this reference is in an Objective-C method, then we need to do
1957 // some special Objective-C lookup, too.
1958 if (IvarLookupFollowUp) {
1959 ExprResult E(LookupInObjCMethod(R, S, II, true));
1960 if (E.isInvalid())
1961 return ExprError();
1962
1963 if (Expr *Ex = E.takeAs<Expr>())
1964 return Owned(Ex);
1965 }
1966 }
1967
1968 if (R.isAmbiguous())
1969 return ExprError();
1970
1971 // Determine whether this name might be a candidate for
1972 // argument-dependent lookup.
1973 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1974
1975 if (R.empty() && !ADL) {
1976
1977 // Otherwise, this could be an implicitly declared function reference (legal
1978 // in C90, extension in C99, forbidden in C++).
1979 if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1980 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1981 if (D) R.addDecl(D);
1982 }
1983
1984 // If this name wasn't predeclared and if this is not a function
1985 // call, diagnose the problem.
1986 if (R.empty()) {
1987 // In Microsoft mode, if we are inside a template class member function
1988 // whose parent class has dependent base classes, and we can't resolve
1989 // an identifier, then assume the identifier is type dependent. The
1990 // goal is to postpone name lookup to instantiation time to be able to
1991 // search into the type dependent base classes.
1992 if (getLangOpts().MicrosoftMode) {
1993 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext);
1994 if (MD && MD->getParent()->hasAnyDependentBases())
1995 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1996 IsAddressOfOperand, TemplateArgs);
1997 }
1998
1999 // Don't diagnose an empty lookup for inline assmebly.
2000 if (IsInlineAsmIdentifier)
2001 return ExprError();
2002
2003 CorrectionCandidateCallback DefaultValidator;
2004 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
2005 return ExprError();
2006
2007 assert(!R.empty() &&
2008 "DiagnoseEmptyLookup returned false but added no results");
2009
2010 // If we found an Objective-C instance variable, let
2011 // LookupInObjCMethod build the appropriate expression to
2012 // reference the ivar.
2013 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2014 R.clear();
2015 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2016 // In a hopelessly buggy code, Objective-C instance variable
2017 // lookup fails and no expression will be built to reference it.
2018 if (!E.isInvalid() && !E.get())
2019 return ExprError();
2020 return E;
2021 }
2022 }
2023 }
2024
2025 // This is guaranteed from this point on.
2026 assert(!R.empty() || ADL);
2027
2028 // Check whether this might be a C++ implicit instance member access.
2029 // C++ [class.mfct.non-static]p3:
2030 // When an id-expression that is not part of a class member access
2031 // syntax and not used to form a pointer to member is used in the
2032 // body of a non-static member function of class X, if name lookup
2033 // resolves the name in the id-expression to a non-static non-type
2034 // member of some class C, the id-expression is transformed into a
2035 // class member access expression using (*this) as the
2036 // postfix-expression to the left of the . operator.
2037 //
2038 // But we don't actually need to do this for '&' operands if R
2039 // resolved to a function or overloaded function set, because the
2040 // expression is ill-formed if it actually works out to be a
2041 // non-static member function:
2042 //
2043 // C++ [expr.ref]p4:
2044 // Otherwise, if E1.E2 refers to a non-static member function. . .
2045 // [t]he expression can be used only as the left-hand operand of a
2046 // member function call.
2047 //
2048 // There are other safeguards against such uses, but it's important
2049 // to get this right here so that we don't end up making a
2050 // spuriously dependent expression if we're inside a dependent
2051 // instance method.
2052 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2053 bool MightBeImplicitMember;
2054 if (!IsAddressOfOperand)
2055 MightBeImplicitMember = true;
2056 else if (!SS.isEmpty())
2057 MightBeImplicitMember = false;
2058 else if (R.isOverloadedResult())
2059 MightBeImplicitMember = false;
2060 else if (R.isUnresolvableResult())
2061 MightBeImplicitMember = true;
2062 else
2063 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2064 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2065 isa<MSPropertyDecl>(R.getFoundDecl());
2066
2067 if (MightBeImplicitMember)
2068 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2069 R, TemplateArgs);
2070 }
2071
2072 if (TemplateArgs || TemplateKWLoc.isValid()) {
2073
2074 // In C++1y, if this is a variable template id, then check it
2075 // in BuildTemplateIdExpr().
2076 // The single lookup result must be a variable template declaration.
2077 if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2078 Id.TemplateId->Kind == TNK_Var_template) {
2079 assert(R.getAsSingle<VarTemplateDecl>() &&
2080 "There should only be one declaration found.");
2081 }
2082
2083 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2084 }
2085
2086 return BuildDeclarationNameExpr(SS, R, ADL);
2087 }
2088
2089 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2090 /// declaration name, generally during template instantiation.
2091 /// There's a large number of things which don't need to be done along
2092 /// this path.
2093 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand)2094 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2095 const DeclarationNameInfo &NameInfo,
2096 bool IsAddressOfOperand) {
2097 DeclContext *DC = computeDeclContext(SS, false);
2098 if (!DC)
2099 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2100 NameInfo, /*TemplateArgs=*/0);
2101
2102 if (RequireCompleteDeclContext(SS, DC))
2103 return ExprError();
2104
2105 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2106 LookupQualifiedName(R, DC);
2107
2108 if (R.isAmbiguous())
2109 return ExprError();
2110
2111 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2112 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2113 NameInfo, /*TemplateArgs=*/0);
2114
2115 if (R.empty()) {
2116 Diag(NameInfo.getLoc(), diag::err_no_member)
2117 << NameInfo.getName() << DC << SS.getRange();
2118 return ExprError();
2119 }
2120
2121 // Defend against this resolving to an implicit member access. We usually
2122 // won't get here if this might be a legitimate a class member (we end up in
2123 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2124 // a pointer-to-member or in an unevaluated context in C++11.
2125 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2126 return BuildPossibleImplicitMemberExpr(SS,
2127 /*TemplateKWLoc=*/SourceLocation(),
2128 R, /*TemplateArgs=*/0);
2129
2130 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2131 }
2132
2133 /// LookupInObjCMethod - The parser has read a name in, and Sema has
2134 /// detected that we're currently inside an ObjC method. Perform some
2135 /// additional lookup.
2136 ///
2137 /// Ideally, most of this would be done by lookup, but there's
2138 /// actually quite a lot of extra work involved.
2139 ///
2140 /// Returns a null sentinel to indicate trivial success.
2141 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)2142 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2143 IdentifierInfo *II, bool AllowBuiltinCreation) {
2144 SourceLocation Loc = Lookup.getNameLoc();
2145 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2146
2147 // Check for error condition which is already reported.
2148 if (!CurMethod)
2149 return ExprError();
2150
2151 // There are two cases to handle here. 1) scoped lookup could have failed,
2152 // in which case we should look for an ivar. 2) scoped lookup could have
2153 // found a decl, but that decl is outside the current instance method (i.e.
2154 // a global variable). In these two cases, we do a lookup for an ivar with
2155 // this name, if the lookup sucedes, we replace it our current decl.
2156
2157 // If we're in a class method, we don't normally want to look for
2158 // ivars. But if we don't find anything else, and there's an
2159 // ivar, that's an error.
2160 bool IsClassMethod = CurMethod->isClassMethod();
2161
2162 bool LookForIvars;
2163 if (Lookup.empty())
2164 LookForIvars = true;
2165 else if (IsClassMethod)
2166 LookForIvars = false;
2167 else
2168 LookForIvars = (Lookup.isSingleResult() &&
2169 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2170 ObjCInterfaceDecl *IFace = 0;
2171 if (LookForIvars) {
2172 IFace = CurMethod->getClassInterface();
2173 ObjCInterfaceDecl *ClassDeclared;
2174 ObjCIvarDecl *IV = 0;
2175 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2176 // Diagnose using an ivar in a class method.
2177 if (IsClassMethod)
2178 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2179 << IV->getDeclName());
2180
2181 // If we're referencing an invalid decl, just return this as a silent
2182 // error node. The error diagnostic was already emitted on the decl.
2183 if (IV->isInvalidDecl())
2184 return ExprError();
2185
2186 // Check if referencing a field with __attribute__((deprecated)).
2187 if (DiagnoseUseOfDecl(IV, Loc))
2188 return ExprError();
2189
2190 // Diagnose the use of an ivar outside of the declaring class.
2191 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2192 !declaresSameEntity(ClassDeclared, IFace) &&
2193 !getLangOpts().DebuggerSupport)
2194 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2195
2196 // FIXME: This should use a new expr for a direct reference, don't
2197 // turn this into Self->ivar, just return a BareIVarExpr or something.
2198 IdentifierInfo &II = Context.Idents.get("self");
2199 UnqualifiedId SelfName;
2200 SelfName.setIdentifier(&II, SourceLocation());
2201 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2202 CXXScopeSpec SelfScopeSpec;
2203 SourceLocation TemplateKWLoc;
2204 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2205 SelfName, false, false);
2206 if (SelfExpr.isInvalid())
2207 return ExprError();
2208
2209 SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2210 if (SelfExpr.isInvalid())
2211 return ExprError();
2212
2213 MarkAnyDeclReferenced(Loc, IV, true);
2214
2215 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2216 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2217 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2218 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2219
2220 ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2221 Loc, IV->getLocation(),
2222 SelfExpr.take(),
2223 true, true);
2224
2225 if (getLangOpts().ObjCAutoRefCount) {
2226 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2227 DiagnosticsEngine::Level Level =
2228 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2229 if (Level != DiagnosticsEngine::Ignored)
2230 recordUseOfEvaluatedWeak(Result);
2231 }
2232 if (CurContext->isClosure())
2233 Diag(Loc, diag::warn_implicitly_retains_self)
2234 << FixItHint::CreateInsertion(Loc, "self->");
2235 }
2236
2237 return Owned(Result);
2238 }
2239 } else if (CurMethod->isInstanceMethod()) {
2240 // We should warn if a local variable hides an ivar.
2241 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2242 ObjCInterfaceDecl *ClassDeclared;
2243 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2244 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2245 declaresSameEntity(IFace, ClassDeclared))
2246 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2247 }
2248 }
2249 } else if (Lookup.isSingleResult() &&
2250 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2251 // If accessing a stand-alone ivar in a class method, this is an error.
2252 if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2253 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2254 << IV->getDeclName());
2255 }
2256
2257 if (Lookup.empty() && II && AllowBuiltinCreation) {
2258 // FIXME. Consolidate this with similar code in LookupName.
2259 if (unsigned BuiltinID = II->getBuiltinID()) {
2260 if (!(getLangOpts().CPlusPlus &&
2261 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2262 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2263 S, Lookup.isForRedeclaration(),
2264 Lookup.getNameLoc());
2265 if (D) Lookup.addDecl(D);
2266 }
2267 }
2268 }
2269 // Sentinel value saying that we didn't do anything special.
2270 return Owned((Expr*) 0);
2271 }
2272
2273 /// \brief Cast a base object to a member's actual type.
2274 ///
2275 /// Logically this happens in three phases:
2276 ///
2277 /// * First we cast from the base type to the naming class.
2278 /// The naming class is the class into which we were looking
2279 /// when we found the member; it's the qualifier type if a
2280 /// qualifier was provided, and otherwise it's the base type.
2281 ///
2282 /// * Next we cast from the naming class to the declaring class.
2283 /// If the member we found was brought into a class's scope by
2284 /// a using declaration, this is that class; otherwise it's
2285 /// the class declaring the member.
2286 ///
2287 /// * Finally we cast from the declaring class to the "true"
2288 /// declaring class of the member. This conversion does not
2289 /// obey access control.
2290 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2291 Sema::PerformObjectMemberConversion(Expr *From,
2292 NestedNameSpecifier *Qualifier,
2293 NamedDecl *FoundDecl,
2294 NamedDecl *Member) {
2295 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2296 if (!RD)
2297 return Owned(From);
2298
2299 QualType DestRecordType;
2300 QualType DestType;
2301 QualType FromRecordType;
2302 QualType FromType = From->getType();
2303 bool PointerConversions = false;
2304 if (isa<FieldDecl>(Member)) {
2305 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2306
2307 if (FromType->getAs<PointerType>()) {
2308 DestType = Context.getPointerType(DestRecordType);
2309 FromRecordType = FromType->getPointeeType();
2310 PointerConversions = true;
2311 } else {
2312 DestType = DestRecordType;
2313 FromRecordType = FromType;
2314 }
2315 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2316 if (Method->isStatic())
2317 return Owned(From);
2318
2319 DestType = Method->getThisType(Context);
2320 DestRecordType = DestType->getPointeeType();
2321
2322 if (FromType->getAs<PointerType>()) {
2323 FromRecordType = FromType->getPointeeType();
2324 PointerConversions = true;
2325 } else {
2326 FromRecordType = FromType;
2327 DestType = DestRecordType;
2328 }
2329 } else {
2330 // No conversion necessary.
2331 return Owned(From);
2332 }
2333
2334 if (DestType->isDependentType() || FromType->isDependentType())
2335 return Owned(From);
2336
2337 // If the unqualified types are the same, no conversion is necessary.
2338 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2339 return Owned(From);
2340
2341 SourceRange FromRange = From->getSourceRange();
2342 SourceLocation FromLoc = FromRange.getBegin();
2343
2344 ExprValueKind VK = From->getValueKind();
2345
2346 // C++ [class.member.lookup]p8:
2347 // [...] Ambiguities can often be resolved by qualifying a name with its
2348 // class name.
2349 //
2350 // If the member was a qualified name and the qualified referred to a
2351 // specific base subobject type, we'll cast to that intermediate type
2352 // first and then to the object in which the member is declared. That allows
2353 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2354 //
2355 // class Base { public: int x; };
2356 // class Derived1 : public Base { };
2357 // class Derived2 : public Base { };
2358 // class VeryDerived : public Derived1, public Derived2 { void f(); };
2359 //
2360 // void VeryDerived::f() {
2361 // x = 17; // error: ambiguous base subobjects
2362 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
2363 // }
2364 if (Qualifier && Qualifier->getAsType()) {
2365 QualType QType = QualType(Qualifier->getAsType(), 0);
2366 assert(QType->isRecordType() && "lookup done with non-record type");
2367
2368 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2369
2370 // In C++98, the qualifier type doesn't actually have to be a base
2371 // type of the object type, in which case we just ignore it.
2372 // Otherwise build the appropriate casts.
2373 if (IsDerivedFrom(FromRecordType, QRecordType)) {
2374 CXXCastPath BasePath;
2375 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2376 FromLoc, FromRange, &BasePath))
2377 return ExprError();
2378
2379 if (PointerConversions)
2380 QType = Context.getPointerType(QType);
2381 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2382 VK, &BasePath).take();
2383
2384 FromType = QType;
2385 FromRecordType = QRecordType;
2386
2387 // If the qualifier type was the same as the destination type,
2388 // we're done.
2389 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2390 return Owned(From);
2391 }
2392 }
2393
2394 bool IgnoreAccess = false;
2395
2396 // If we actually found the member through a using declaration, cast
2397 // down to the using declaration's type.
2398 //
2399 // Pointer equality is fine here because only one declaration of a
2400 // class ever has member declarations.
2401 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2402 assert(isa<UsingShadowDecl>(FoundDecl));
2403 QualType URecordType = Context.getTypeDeclType(
2404 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2405
2406 // We only need to do this if the naming-class to declaring-class
2407 // conversion is non-trivial.
2408 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2409 assert(IsDerivedFrom(FromRecordType, URecordType));
2410 CXXCastPath BasePath;
2411 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2412 FromLoc, FromRange, &BasePath))
2413 return ExprError();
2414
2415 QualType UType = URecordType;
2416 if (PointerConversions)
2417 UType = Context.getPointerType(UType);
2418 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2419 VK, &BasePath).take();
2420 FromType = UType;
2421 FromRecordType = URecordType;
2422 }
2423
2424 // We don't do access control for the conversion from the
2425 // declaring class to the true declaring class.
2426 IgnoreAccess = true;
2427 }
2428
2429 CXXCastPath BasePath;
2430 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2431 FromLoc, FromRange, &BasePath,
2432 IgnoreAccess))
2433 return ExprError();
2434
2435 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2436 VK, &BasePath);
2437 }
2438
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2439 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2440 const LookupResult &R,
2441 bool HasTrailingLParen) {
2442 // Only when used directly as the postfix-expression of a call.
2443 if (!HasTrailingLParen)
2444 return false;
2445
2446 // Never if a scope specifier was provided.
2447 if (SS.isSet())
2448 return false;
2449
2450 // Only in C++ or ObjC++.
2451 if (!getLangOpts().CPlusPlus)
2452 return false;
2453
2454 // Turn off ADL when we find certain kinds of declarations during
2455 // normal lookup:
2456 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2457 NamedDecl *D = *I;
2458
2459 // C++0x [basic.lookup.argdep]p3:
2460 // -- a declaration of a class member
2461 // Since using decls preserve this property, we check this on the
2462 // original decl.
2463 if (D->isCXXClassMember())
2464 return false;
2465
2466 // C++0x [basic.lookup.argdep]p3:
2467 // -- a block-scope function declaration that is not a
2468 // using-declaration
2469 // NOTE: we also trigger this for function templates (in fact, we
2470 // don't check the decl type at all, since all other decl types
2471 // turn off ADL anyway).
2472 if (isa<UsingShadowDecl>(D))
2473 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2474 else if (D->getDeclContext()->isFunctionOrMethod())
2475 return false;
2476
2477 // C++0x [basic.lookup.argdep]p3:
2478 // -- a declaration that is neither a function or a function
2479 // template
2480 // And also for builtin functions.
2481 if (isa<FunctionDecl>(D)) {
2482 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2483
2484 // But also builtin functions.
2485 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2486 return false;
2487 } else if (!isa<FunctionTemplateDecl>(D))
2488 return false;
2489 }
2490
2491 return true;
2492 }
2493
2494
2495 /// Diagnoses obvious problems with the use of the given declaration
2496 /// as an expression. This is only actually called for lookups that
2497 /// were not overloaded, and it doesn't promise that the declaration
2498 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2499 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2500 if (isa<TypedefNameDecl>(D)) {
2501 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2502 return true;
2503 }
2504
2505 if (isa<ObjCInterfaceDecl>(D)) {
2506 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2507 return true;
2508 }
2509
2510 if (isa<NamespaceDecl>(D)) {
2511 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2512 return true;
2513 }
2514
2515 return false;
2516 }
2517
2518 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2519 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2520 LookupResult &R,
2521 bool NeedsADL) {
2522 // If this is a single, fully-resolved result and we don't need ADL,
2523 // just build an ordinary singleton decl ref.
2524 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2525 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2526 R.getRepresentativeDecl());
2527
2528 // We only need to check the declaration if there's exactly one
2529 // result, because in the overloaded case the results can only be
2530 // functions and function templates.
2531 if (R.isSingleResult() &&
2532 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2533 return ExprError();
2534
2535 // Otherwise, just build an unresolved lookup expression. Suppress
2536 // any lookup-related diagnostics; we'll hash these out later, when
2537 // we've picked a target.
2538 R.suppressDiagnostics();
2539
2540 UnresolvedLookupExpr *ULE
2541 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2542 SS.getWithLocInContext(Context),
2543 R.getLookupNameInfo(),
2544 NeedsADL, R.isOverloadedResult(),
2545 R.begin(), R.end());
2546
2547 return Owned(ULE);
2548 }
2549
2550 /// \brief Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)2551 ExprResult Sema::BuildDeclarationNameExpr(
2552 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2553 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) {
2554 assert(D && "Cannot refer to a NULL declaration");
2555 assert(!isa<FunctionTemplateDecl>(D) &&
2556 "Cannot refer unambiguously to a function template");
2557
2558 SourceLocation Loc = NameInfo.getLoc();
2559 if (CheckDeclInExpr(*this, Loc, D))
2560 return ExprError();
2561
2562 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2563 // Specifically diagnose references to class templates that are missing
2564 // a template argument list.
2565 Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2566 << Template << SS.getRange();
2567 Diag(Template->getLocation(), diag::note_template_decl_here);
2568 return ExprError();
2569 }
2570
2571 // Make sure that we're referring to a value.
2572 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2573 if (!VD) {
2574 Diag(Loc, diag::err_ref_non_value)
2575 << D << SS.getRange();
2576 Diag(D->getLocation(), diag::note_declared_at);
2577 return ExprError();
2578 }
2579
2580 // Check whether this declaration can be used. Note that we suppress
2581 // this check when we're going to perform argument-dependent lookup
2582 // on this function name, because this might not be the function
2583 // that overload resolution actually selects.
2584 if (DiagnoseUseOfDecl(VD, Loc))
2585 return ExprError();
2586
2587 // Only create DeclRefExpr's for valid Decl's.
2588 if (VD->isInvalidDecl())
2589 return ExprError();
2590
2591 // Handle members of anonymous structs and unions. If we got here,
2592 // and the reference is to a class member indirect field, then this
2593 // must be the subject of a pointer-to-member expression.
2594 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2595 if (!indirectField->isCXXClassMember())
2596 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2597 indirectField);
2598
2599 {
2600 QualType type = VD->getType();
2601 ExprValueKind valueKind = VK_RValue;
2602
2603 switch (D->getKind()) {
2604 // Ignore all the non-ValueDecl kinds.
2605 #define ABSTRACT_DECL(kind)
2606 #define VALUE(type, base)
2607 #define DECL(type, base) \
2608 case Decl::type:
2609 #include "clang/AST/DeclNodes.inc"
2610 llvm_unreachable("invalid value decl kind");
2611
2612 // These shouldn't make it here.
2613 case Decl::ObjCAtDefsField:
2614 case Decl::ObjCIvar:
2615 llvm_unreachable("forming non-member reference to ivar?");
2616
2617 // Enum constants are always r-values and never references.
2618 // Unresolved using declarations are dependent.
2619 case Decl::EnumConstant:
2620 case Decl::UnresolvedUsingValue:
2621 valueKind = VK_RValue;
2622 break;
2623
2624 // Fields and indirect fields that got here must be for
2625 // pointer-to-member expressions; we just call them l-values for
2626 // internal consistency, because this subexpression doesn't really
2627 // exist in the high-level semantics.
2628 case Decl::Field:
2629 case Decl::IndirectField:
2630 assert(getLangOpts().CPlusPlus &&
2631 "building reference to field in C?");
2632
2633 // These can't have reference type in well-formed programs, but
2634 // for internal consistency we do this anyway.
2635 type = type.getNonReferenceType();
2636 valueKind = VK_LValue;
2637 break;
2638
2639 // Non-type template parameters are either l-values or r-values
2640 // depending on the type.
2641 case Decl::NonTypeTemplateParm: {
2642 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2643 type = reftype->getPointeeType();
2644 valueKind = VK_LValue; // even if the parameter is an r-value reference
2645 break;
2646 }
2647
2648 // For non-references, we need to strip qualifiers just in case
2649 // the template parameter was declared as 'const int' or whatever.
2650 valueKind = VK_RValue;
2651 type = type.getUnqualifiedType();
2652 break;
2653 }
2654
2655 case Decl::Var:
2656 case Decl::VarTemplateSpecialization:
2657 case Decl::VarTemplatePartialSpecialization:
2658 // In C, "extern void blah;" is valid and is an r-value.
2659 if (!getLangOpts().CPlusPlus &&
2660 !type.hasQualifiers() &&
2661 type->isVoidType()) {
2662 valueKind = VK_RValue;
2663 break;
2664 }
2665 // fallthrough
2666
2667 case Decl::ImplicitParam:
2668 case Decl::ParmVar: {
2669 // These are always l-values.
2670 valueKind = VK_LValue;
2671 type = type.getNonReferenceType();
2672
2673 // FIXME: Does the addition of const really only apply in
2674 // potentially-evaluated contexts? Since the variable isn't actually
2675 // captured in an unevaluated context, it seems that the answer is no.
2676 if (!isUnevaluatedContext()) {
2677 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2678 if (!CapturedType.isNull())
2679 type = CapturedType;
2680 }
2681
2682 break;
2683 }
2684
2685 case Decl::Function: {
2686 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2687 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2688 type = Context.BuiltinFnTy;
2689 valueKind = VK_RValue;
2690 break;
2691 }
2692 }
2693
2694 const FunctionType *fty = type->castAs<FunctionType>();
2695
2696 // If we're referring to a function with an __unknown_anytype
2697 // result type, make the entire expression __unknown_anytype.
2698 if (fty->getResultType() == Context.UnknownAnyTy) {
2699 type = Context.UnknownAnyTy;
2700 valueKind = VK_RValue;
2701 break;
2702 }
2703
2704 // Functions are l-values in C++.
2705 if (getLangOpts().CPlusPlus) {
2706 valueKind = VK_LValue;
2707 break;
2708 }
2709
2710 // C99 DR 316 says that, if a function type comes from a
2711 // function definition (without a prototype), that type is only
2712 // used for checking compatibility. Therefore, when referencing
2713 // the function, we pretend that we don't have the full function
2714 // type.
2715 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2716 isa<FunctionProtoType>(fty))
2717 type = Context.getFunctionNoProtoType(fty->getResultType(),
2718 fty->getExtInfo());
2719
2720 // Functions are r-values in C.
2721 valueKind = VK_RValue;
2722 break;
2723 }
2724
2725 case Decl::MSProperty:
2726 valueKind = VK_LValue;
2727 break;
2728
2729 case Decl::CXXMethod:
2730 // If we're referring to a method with an __unknown_anytype
2731 // result type, make the entire expression __unknown_anytype.
2732 // This should only be possible with a type written directly.
2733 if (const FunctionProtoType *proto
2734 = dyn_cast<FunctionProtoType>(VD->getType()))
2735 if (proto->getResultType() == Context.UnknownAnyTy) {
2736 type = Context.UnknownAnyTy;
2737 valueKind = VK_RValue;
2738 break;
2739 }
2740
2741 // C++ methods are l-values if static, r-values if non-static.
2742 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2743 valueKind = VK_LValue;
2744 break;
2745 }
2746 // fallthrough
2747
2748 case Decl::CXXConversion:
2749 case Decl::CXXDestructor:
2750 case Decl::CXXConstructor:
2751 valueKind = VK_RValue;
2752 break;
2753 }
2754
2755 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2756 TemplateArgs);
2757 }
2758 }
2759
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2760 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2761 PredefinedExpr::IdentType IT;
2762
2763 switch (Kind) {
2764 default: llvm_unreachable("Unknown simple primary expr!");
2765 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2766 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2767 case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2768 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2769 }
2770
2771 // Pre-defined identifiers are of type char[x], where x is the length of the
2772 // string.
2773
2774 Decl *currentDecl = getCurFunctionOrMethodDecl();
2775 // Blocks and lambdas can occur at global scope. Don't emit a warning.
2776 if (!currentDecl) {
2777 if (const BlockScopeInfo *BSI = getCurBlock())
2778 currentDecl = BSI->TheDecl;
2779 else if (const LambdaScopeInfo *LSI = getCurLambda())
2780 currentDecl = LSI->CallOperator;
2781 }
2782
2783 if (!currentDecl) {
2784 Diag(Loc, diag::ext_predef_outside_function);
2785 currentDecl = Context.getTranslationUnitDecl();
2786 }
2787
2788 QualType ResTy;
2789 if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2790 ResTy = Context.DependentTy;
2791 } else {
2792 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2793
2794 llvm::APInt LengthI(32, Length + 1);
2795 if (IT == PredefinedExpr::LFunction)
2796 ResTy = Context.WideCharTy.withConst();
2797 else
2798 ResTy = Context.CharTy.withConst();
2799 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2800 }
2801 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2802 }
2803
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2804 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2805 SmallString<16> CharBuffer;
2806 bool Invalid = false;
2807 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2808 if (Invalid)
2809 return ExprError();
2810
2811 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2812 PP, Tok.getKind());
2813 if (Literal.hadError())
2814 return ExprError();
2815
2816 QualType Ty;
2817 if (Literal.isWide())
2818 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
2819 else if (Literal.isUTF16())
2820 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2821 else if (Literal.isUTF32())
2822 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2823 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2824 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
2825 else
2826 Ty = Context.CharTy; // 'x' -> char in C++
2827
2828 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2829 if (Literal.isWide())
2830 Kind = CharacterLiteral::Wide;
2831 else if (Literal.isUTF16())
2832 Kind = CharacterLiteral::UTF16;
2833 else if (Literal.isUTF32())
2834 Kind = CharacterLiteral::UTF32;
2835
2836 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2837 Tok.getLocation());
2838
2839 if (Literal.getUDSuffix().empty())
2840 return Owned(Lit);
2841
2842 // We're building a user-defined literal.
2843 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2844 SourceLocation UDSuffixLoc =
2845 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2846
2847 // Make sure we're allowed user-defined literals here.
2848 if (!UDLScope)
2849 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2850
2851 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2852 // operator "" X (ch)
2853 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2854 Lit, Tok.getLocation());
2855 }
2856
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2857 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2858 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2859 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2860 Context.IntTy, Loc));
2861 }
2862
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2863 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2864 QualType Ty, SourceLocation Loc) {
2865 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2866
2867 using llvm::APFloat;
2868 APFloat Val(Format);
2869
2870 APFloat::opStatus result = Literal.GetFloatValue(Val);
2871
2872 // Overflow is always an error, but underflow is only an error if
2873 // we underflowed to zero (APFloat reports denormals as underflow).
2874 if ((result & APFloat::opOverflow) ||
2875 ((result & APFloat::opUnderflow) && Val.isZero())) {
2876 unsigned diagnostic;
2877 SmallString<20> buffer;
2878 if (result & APFloat::opOverflow) {
2879 diagnostic = diag::warn_float_overflow;
2880 APFloat::getLargest(Format).toString(buffer);
2881 } else {
2882 diagnostic = diag::warn_float_underflow;
2883 APFloat::getSmallest(Format).toString(buffer);
2884 }
2885
2886 S.Diag(Loc, diagnostic)
2887 << Ty
2888 << StringRef(buffer.data(), buffer.size());
2889 }
2890
2891 bool isExact = (result == APFloat::opOK);
2892 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2893 }
2894
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2895 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2896 // Fast path for a single digit (which is quite common). A single digit
2897 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2898 if (Tok.getLength() == 1) {
2899 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2900 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2901 }
2902
2903 SmallString<128> SpellingBuffer;
2904 // NumericLiteralParser wants to overread by one character. Add padding to
2905 // the buffer in case the token is copied to the buffer. If getSpelling()
2906 // returns a StringRef to the memory buffer, it should have a null char at
2907 // the EOF, so it is also safe.
2908 SpellingBuffer.resize(Tok.getLength() + 1);
2909
2910 // Get the spelling of the token, which eliminates trigraphs, etc.
2911 bool Invalid = false;
2912 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2913 if (Invalid)
2914 return ExprError();
2915
2916 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2917 if (Literal.hadError)
2918 return ExprError();
2919
2920 if (Literal.hasUDSuffix()) {
2921 // We're building a user-defined literal.
2922 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2923 SourceLocation UDSuffixLoc =
2924 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2925
2926 // Make sure we're allowed user-defined literals here.
2927 if (!UDLScope)
2928 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2929
2930 QualType CookedTy;
2931 if (Literal.isFloatingLiteral()) {
2932 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2933 // long double, the literal is treated as a call of the form
2934 // operator "" X (f L)
2935 CookedTy = Context.LongDoubleTy;
2936 } else {
2937 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2938 // unsigned long long, the literal is treated as a call of the form
2939 // operator "" X (n ULL)
2940 CookedTy = Context.UnsignedLongLongTy;
2941 }
2942
2943 DeclarationName OpName =
2944 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2945 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2946 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2947
2948 // Perform literal operator lookup to determine if we're building a raw
2949 // literal or a cooked one.
2950 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2951 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
2952 /*AllowRawAndTemplate*/true)) {
2953 case LOLR_Error:
2954 return ExprError();
2955
2956 case LOLR_Cooked: {
2957 Expr *Lit;
2958 if (Literal.isFloatingLiteral()) {
2959 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2960 } else {
2961 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2962 if (Literal.GetIntegerValue(ResultVal))
2963 Diag(Tok.getLocation(), diag::err_integer_too_large);
2964 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2965 Tok.getLocation());
2966 }
2967 return BuildLiteralOperatorCall(R, OpNameInfo, Lit,
2968 Tok.getLocation());
2969 }
2970
2971 case LOLR_Raw: {
2972 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2973 // literal is treated as a call of the form
2974 // operator "" X ("n")
2975 SourceLocation TokLoc = Tok.getLocation();
2976 unsigned Length = Literal.getUDSuffixOffset();
2977 QualType StrTy = Context.getConstantArrayType(
2978 Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
2979 ArrayType::Normal, 0);
2980 Expr *Lit = StringLiteral::Create(
2981 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
2982 /*Pascal*/false, StrTy, &TokLoc, 1);
2983 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
2984 }
2985
2986 case LOLR_Template:
2987 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2988 // template), L is treated as a call fo the form
2989 // operator "" X <'c1', 'c2', ... 'ck'>()
2990 // where n is the source character sequence c1 c2 ... ck.
2991 TemplateArgumentListInfo ExplicitArgs;
2992 unsigned CharBits = Context.getIntWidth(Context.CharTy);
2993 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2994 llvm::APSInt Value(CharBits, CharIsUnsigned);
2995 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2996 Value = TokSpelling[I];
2997 TemplateArgument Arg(Context, Value, Context.CharTy);
2998 TemplateArgumentLocInfo ArgInfo;
2999 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3000 }
3001 return BuildLiteralOperatorCall(R, OpNameInfo, None, Tok.getLocation(),
3002 &ExplicitArgs);
3003 }
3004
3005 llvm_unreachable("unexpected literal operator lookup result");
3006 }
3007
3008 Expr *Res;
3009
3010 if (Literal.isFloatingLiteral()) {
3011 QualType Ty;
3012 if (Literal.isFloat)
3013 Ty = Context.FloatTy;
3014 else if (!Literal.isLong)
3015 Ty = Context.DoubleTy;
3016 else
3017 Ty = Context.LongDoubleTy;
3018
3019 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3020
3021 if (Ty == Context.DoubleTy) {
3022 if (getLangOpts().SinglePrecisionConstants) {
3023 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
3024 } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
3025 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3026 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
3027 }
3028 }
3029 } else if (!Literal.isIntegerLiteral()) {
3030 return ExprError();
3031 } else {
3032 QualType Ty;
3033
3034 // 'long long' is a C99 or C++11 feature.
3035 if (!getLangOpts().C99 && Literal.isLongLong) {
3036 if (getLangOpts().CPlusPlus)
3037 Diag(Tok.getLocation(),
3038 getLangOpts().CPlusPlus11 ?
3039 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3040 else
3041 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3042 }
3043
3044 // Get the value in the widest-possible width.
3045 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3046 // The microsoft literal suffix extensions support 128-bit literals, which
3047 // may be wider than [u]intmax_t.
3048 // FIXME: Actually, they don't. We seem to have accidentally invented the
3049 // i128 suffix.
3050 if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
3051 PP.getTargetInfo().hasInt128Type())
3052 MaxWidth = 128;
3053 llvm::APInt ResultVal(MaxWidth, 0);
3054
3055 if (Literal.GetIntegerValue(ResultVal)) {
3056 // If this value didn't fit into uintmax_t, error and force to ull.
3057 Diag(Tok.getLocation(), diag::err_integer_too_large);
3058 Ty = Context.UnsignedLongLongTy;
3059 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3060 "long long is not intmax_t?");
3061 } else {
3062 // If this value fits into a ULL, try to figure out what else it fits into
3063 // according to the rules of C99 6.4.4.1p5.
3064
3065 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3066 // be an unsigned int.
3067 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3068
3069 // Check from smallest to largest, picking the smallest type we can.
3070 unsigned Width = 0;
3071 if (!Literal.isLong && !Literal.isLongLong) {
3072 // Are int/unsigned possibilities?
3073 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3074
3075 // Does it fit in a unsigned int?
3076 if (ResultVal.isIntN(IntSize)) {
3077 // Does it fit in a signed int?
3078 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3079 Ty = Context.IntTy;
3080 else if (AllowUnsigned)
3081 Ty = Context.UnsignedIntTy;
3082 Width = IntSize;
3083 }
3084 }
3085
3086 // Are long/unsigned long possibilities?
3087 if (Ty.isNull() && !Literal.isLongLong) {
3088 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3089
3090 // Does it fit in a unsigned long?
3091 if (ResultVal.isIntN(LongSize)) {
3092 // Does it fit in a signed long?
3093 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3094 Ty = Context.LongTy;
3095 else if (AllowUnsigned)
3096 Ty = Context.UnsignedLongTy;
3097 Width = LongSize;
3098 }
3099 }
3100
3101 // Check long long if needed.
3102 if (Ty.isNull()) {
3103 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3104
3105 // Does it fit in a unsigned long long?
3106 if (ResultVal.isIntN(LongLongSize)) {
3107 // Does it fit in a signed long long?
3108 // To be compatible with MSVC, hex integer literals ending with the
3109 // LL or i64 suffix are always signed in Microsoft mode.
3110 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3111 (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3112 Ty = Context.LongLongTy;
3113 else if (AllowUnsigned)
3114 Ty = Context.UnsignedLongLongTy;
3115 Width = LongLongSize;
3116 }
3117 }
3118
3119 // If it doesn't fit in unsigned long long, and we're using Microsoft
3120 // extensions, then its a 128-bit integer literal.
3121 if (Ty.isNull() && Literal.isMicrosoftInteger &&
3122 PP.getTargetInfo().hasInt128Type()) {
3123 if (Literal.isUnsigned)
3124 Ty = Context.UnsignedInt128Ty;
3125 else
3126 Ty = Context.Int128Ty;
3127 Width = 128;
3128 }
3129
3130 // If we still couldn't decide a type, we probably have something that
3131 // does not fit in a signed long long, but has no U suffix.
3132 if (Ty.isNull()) {
3133 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
3134 Ty = Context.UnsignedLongLongTy;
3135 Width = Context.getTargetInfo().getLongLongWidth();
3136 }
3137
3138 if (ResultVal.getBitWidth() != Width)
3139 ResultVal = ResultVal.trunc(Width);
3140 }
3141 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3142 }
3143
3144 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3145 if (Literal.isImaginary)
3146 Res = new (Context) ImaginaryLiteral(Res,
3147 Context.getComplexType(Res->getType()));
3148
3149 return Owned(Res);
3150 }
3151
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)3152 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3153 assert((E != 0) && "ActOnParenExpr() missing expr");
3154 return Owned(new (Context) ParenExpr(L, R, E));
3155 }
3156
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)3157 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3158 SourceLocation Loc,
3159 SourceRange ArgRange) {
3160 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3161 // scalar or vector data type argument..."
3162 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3163 // type (C99 6.2.5p18) or void.
3164 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3165 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3166 << T << ArgRange;
3167 return true;
3168 }
3169
3170 assert((T->isVoidType() || !T->isIncompleteType()) &&
3171 "Scalar types should always be complete");
3172 return false;
3173 }
3174
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3175 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3176 SourceLocation Loc,
3177 SourceRange ArgRange,
3178 UnaryExprOrTypeTrait TraitKind) {
3179 // C99 6.5.3.4p1:
3180 if (T->isFunctionType() &&
3181 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3182 // sizeof(function)/alignof(function) is allowed as an extension.
3183 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3184 << TraitKind << ArgRange;
3185 return false;
3186 }
3187
3188 // Allow sizeof(void)/alignof(void) as an extension.
3189 if (T->isVoidType()) {
3190 S.Diag(Loc, diag::ext_sizeof_alignof_void_type) << TraitKind << ArgRange;
3191 return false;
3192 }
3193
3194 return true;
3195 }
3196
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3197 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3198 SourceLocation Loc,
3199 SourceRange ArgRange,
3200 UnaryExprOrTypeTrait TraitKind) {
3201 // Reject sizeof(interface) and sizeof(interface<proto>) if the
3202 // runtime doesn't allow it.
3203 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3204 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3205 << T << (TraitKind == UETT_SizeOf)
3206 << ArgRange;
3207 return true;
3208 }
3209
3210 return false;
3211 }
3212
3213 /// \brief Check whether E is a pointer from a decayed array type (the decayed
3214 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,Expr * E)3215 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3216 Expr *E) {
3217 // Don't warn if the operation changed the type.
3218 if (T != E->getType())
3219 return;
3220
3221 // Now look for array decays.
3222 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3223 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3224 return;
3225
3226 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3227 << ICE->getType()
3228 << ICE->getSubExpr()->getType();
3229 }
3230
3231 /// \brief Check the constrains on expression operands to unary type expression
3232 /// and type traits.
3233 ///
3234 /// Completes any types necessary and validates the constraints on the operand
3235 /// expression. The logic mostly mirrors the type-based overload, but may modify
3236 /// the expression as it completes the type for that expression through template
3237 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)3238 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3239 UnaryExprOrTypeTrait ExprKind) {
3240 QualType ExprTy = E->getType();
3241 assert(!ExprTy->isReferenceType());
3242
3243 if (ExprKind == UETT_VecStep)
3244 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3245 E->getSourceRange());
3246
3247 // Whitelist some types as extensions
3248 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3249 E->getSourceRange(), ExprKind))
3250 return false;
3251
3252 if (RequireCompleteExprType(E,
3253 diag::err_sizeof_alignof_incomplete_type,
3254 ExprKind, E->getSourceRange()))
3255 return true;
3256
3257 // Completing the expression's type may have changed it.
3258 ExprTy = E->getType();
3259 assert(!ExprTy->isReferenceType());
3260
3261 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3262 E->getSourceRange(), ExprKind))
3263 return true;
3264
3265 if (ExprKind == UETT_SizeOf) {
3266 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3267 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3268 QualType OType = PVD->getOriginalType();
3269 QualType Type = PVD->getType();
3270 if (Type->isPointerType() && OType->isArrayType()) {
3271 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3272 << Type << OType;
3273 Diag(PVD->getLocation(), diag::note_declared_at);
3274 }
3275 }
3276 }
3277
3278 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3279 // decays into a pointer and returns an unintended result. This is most
3280 // likely a typo for "sizeof(array) op x".
3281 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3282 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3283 BO->getLHS());
3284 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3285 BO->getRHS());
3286 }
3287 }
3288
3289 return false;
3290 }
3291
3292 /// \brief Check the constraints on operands to unary expression and type
3293 /// traits.
3294 ///
3295 /// This will complete any types necessary, and validate the various constraints
3296 /// on those operands.
3297 ///
3298 /// The UsualUnaryConversions() function is *not* called by this routine.
3299 /// C99 6.3.2.1p[2-4] all state:
3300 /// Except when it is the operand of the sizeof operator ...
3301 ///
3302 /// C++ [expr.sizeof]p4
3303 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3304 /// standard conversions are not applied to the operand of sizeof.
3305 ///
3306 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)3307 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3308 SourceLocation OpLoc,
3309 SourceRange ExprRange,
3310 UnaryExprOrTypeTrait ExprKind) {
3311 if (ExprType->isDependentType())
3312 return false;
3313
3314 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3315 // the result is the size of the referenced type."
3316 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3317 // result shall be the alignment of the referenced type."
3318 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3319 ExprType = Ref->getPointeeType();
3320
3321 if (ExprKind == UETT_VecStep)
3322 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3323
3324 // Whitelist some types as extensions
3325 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3326 ExprKind))
3327 return false;
3328
3329 if (RequireCompleteType(OpLoc, ExprType,
3330 diag::err_sizeof_alignof_incomplete_type,
3331 ExprKind, ExprRange))
3332 return true;
3333
3334 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3335 ExprKind))
3336 return true;
3337
3338 return false;
3339 }
3340
CheckAlignOfExpr(Sema & S,Expr * E)3341 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3342 E = E->IgnoreParens();
3343
3344 // Cannot know anything else if the expression is dependent.
3345 if (E->isTypeDependent())
3346 return false;
3347
3348 if (E->getObjectKind() == OK_BitField) {
3349 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3350 << 1 << E->getSourceRange();
3351 return true;
3352 }
3353
3354 ValueDecl *D = 0;
3355 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3356 D = DRE->getDecl();
3357 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3358 D = ME->getMemberDecl();
3359 }
3360
3361 // If it's a field, require the containing struct to have a
3362 // complete definition so that we can compute the layout.
3363 //
3364 // This requires a very particular set of circumstances. For a
3365 // field to be contained within an incomplete type, we must in the
3366 // process of parsing that type. To have an expression refer to a
3367 // field, it must be an id-expression or a member-expression, but
3368 // the latter are always ill-formed when the base type is
3369 // incomplete, including only being partially complete. An
3370 // id-expression can never refer to a field in C because fields
3371 // are not in the ordinary namespace. In C++, an id-expression
3372 // can implicitly be a member access, but only if there's an
3373 // implicit 'this' value, and all such contexts are subject to
3374 // delayed parsing --- except for trailing return types in C++11.
3375 // And if an id-expression referring to a field occurs in a
3376 // context that lacks a 'this' value, it's ill-formed --- except,
3377 // agian, in C++11, where such references are allowed in an
3378 // unevaluated context. So C++11 introduces some new complexity.
3379 //
3380 // For the record, since __alignof__ on expressions is a GCC
3381 // extension, GCC seems to permit this but always gives the
3382 // nonsensical answer 0.
3383 //
3384 // We don't really need the layout here --- we could instead just
3385 // directly check for all the appropriate alignment-lowing
3386 // attributes --- but that would require duplicating a lot of
3387 // logic that just isn't worth duplicating for such a marginal
3388 // use-case.
3389 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3390 // Fast path this check, since we at least know the record has a
3391 // definition if we can find a member of it.
3392 if (!FD->getParent()->isCompleteDefinition()) {
3393 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3394 << E->getSourceRange();
3395 return true;
3396 }
3397
3398 // Otherwise, if it's a field, and the field doesn't have
3399 // reference type, then it must have a complete type (or be a
3400 // flexible array member, which we explicitly want to
3401 // white-list anyway), which makes the following checks trivial.
3402 if (!FD->getType()->isReferenceType())
3403 return false;
3404 }
3405
3406 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3407 }
3408
CheckVecStepExpr(Expr * E)3409 bool Sema::CheckVecStepExpr(Expr *E) {
3410 E = E->IgnoreParens();
3411
3412 // Cannot know anything else if the expression is dependent.
3413 if (E->isTypeDependent())
3414 return false;
3415
3416 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3417 }
3418
3419 /// \brief Build a sizeof or alignof expression given a type operand.
3420 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)3421 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3422 SourceLocation OpLoc,
3423 UnaryExprOrTypeTrait ExprKind,
3424 SourceRange R) {
3425 if (!TInfo)
3426 return ExprError();
3427
3428 QualType T = TInfo->getType();
3429
3430 if (!T->isDependentType() &&
3431 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3432 return ExprError();
3433
3434 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3435 return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3436 Context.getSizeType(),
3437 OpLoc, R.getEnd()));
3438 }
3439
3440 /// \brief Build a sizeof or alignof expression given an expression
3441 /// operand.
3442 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)3443 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3444 UnaryExprOrTypeTrait ExprKind) {
3445 ExprResult PE = CheckPlaceholderExpr(E);
3446 if (PE.isInvalid())
3447 return ExprError();
3448
3449 E = PE.get();
3450
3451 // Verify that the operand is valid.
3452 bool isInvalid = false;
3453 if (E->isTypeDependent()) {
3454 // Delay type-checking for type-dependent expressions.
3455 } else if (ExprKind == UETT_AlignOf) {
3456 isInvalid = CheckAlignOfExpr(*this, E);
3457 } else if (ExprKind == UETT_VecStep) {
3458 isInvalid = CheckVecStepExpr(E);
3459 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
3460 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3461 isInvalid = true;
3462 } else {
3463 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3464 }
3465
3466 if (isInvalid)
3467 return ExprError();
3468
3469 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3470 PE = TransformToPotentiallyEvaluated(E);
3471 if (PE.isInvalid()) return ExprError();
3472 E = PE.take();
3473 }
3474
3475 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3476 return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3477 ExprKind, E, Context.getSizeType(), OpLoc,
3478 E->getSourceRange().getEnd()));
3479 }
3480
3481 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3482 /// expr and the same for @c alignof and @c __alignof
3483 /// Note that the ArgRange is invalid if isType is false.
3484 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3485 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3486 UnaryExprOrTypeTrait ExprKind, bool IsType,
3487 void *TyOrEx, const SourceRange &ArgRange) {
3488 // If error parsing type, ignore.
3489 if (TyOrEx == 0) return ExprError();
3490
3491 if (IsType) {
3492 TypeSourceInfo *TInfo;
3493 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3494 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3495 }
3496
3497 Expr *ArgEx = (Expr *)TyOrEx;
3498 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3499 return Result;
3500 }
3501
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3502 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3503 bool IsReal) {
3504 if (V.get()->isTypeDependent())
3505 return S.Context.DependentTy;
3506
3507 // _Real and _Imag are only l-values for normal l-values.
3508 if (V.get()->getObjectKind() != OK_Ordinary) {
3509 V = S.DefaultLvalueConversion(V.take());
3510 if (V.isInvalid())
3511 return QualType();
3512 }
3513
3514 // These operators return the element type of a complex type.
3515 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3516 return CT->getElementType();
3517
3518 // Otherwise they pass through real integer and floating point types here.
3519 if (V.get()->getType()->isArithmeticType())
3520 return V.get()->getType();
3521
3522 // Test for placeholders.
3523 ExprResult PR = S.CheckPlaceholderExpr(V.get());
3524 if (PR.isInvalid()) return QualType();
3525 if (PR.get() != V.get()) {
3526 V = PR;
3527 return CheckRealImagOperand(S, V, Loc, IsReal);
3528 }
3529
3530 // Reject anything else.
3531 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3532 << (IsReal ? "__real" : "__imag");
3533 return QualType();
3534 }
3535
3536
3537
3538 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3539 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3540 tok::TokenKind Kind, Expr *Input) {
3541 UnaryOperatorKind Opc;
3542 switch (Kind) {
3543 default: llvm_unreachable("Unknown unary op!");
3544 case tok::plusplus: Opc = UO_PostInc; break;
3545 case tok::minusminus: Opc = UO_PostDec; break;
3546 }
3547
3548 // Since this might is a postfix expression, get rid of ParenListExprs.
3549 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3550 if (Result.isInvalid()) return ExprError();
3551 Input = Result.take();
3552
3553 return BuildUnaryOp(S, OpLoc, Opc, Input);
3554 }
3555
3556 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3557 ///
3558 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)3559 static bool checkArithmeticOnObjCPointer(Sema &S,
3560 SourceLocation opLoc,
3561 Expr *op) {
3562 assert(op->getType()->isObjCObjectPointerType());
3563 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3564 return false;
3565
3566 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3567 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3568 << op->getSourceRange();
3569 return true;
3570 }
3571
3572 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,Expr * idx,SourceLocation rbLoc)3573 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3574 Expr *idx, SourceLocation rbLoc) {
3575 // Since this might be a postfix expression, get rid of ParenListExprs.
3576 if (isa<ParenListExpr>(base)) {
3577 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3578 if (result.isInvalid()) return ExprError();
3579 base = result.take();
3580 }
3581
3582 // Handle any non-overload placeholder types in the base and index
3583 // expressions. We can't handle overloads here because the other
3584 // operand might be an overloadable type, in which case the overload
3585 // resolution for the operator overload should get the first crack
3586 // at the overload.
3587 if (base->getType()->isNonOverloadPlaceholderType()) {
3588 ExprResult result = CheckPlaceholderExpr(base);
3589 if (result.isInvalid()) return ExprError();
3590 base = result.take();
3591 }
3592 if (idx->getType()->isNonOverloadPlaceholderType()) {
3593 ExprResult result = CheckPlaceholderExpr(idx);
3594 if (result.isInvalid()) return ExprError();
3595 idx = result.take();
3596 }
3597
3598 // Build an unanalyzed expression if either operand is type-dependent.
3599 if (getLangOpts().CPlusPlus &&
3600 (base->isTypeDependent() || idx->isTypeDependent())) {
3601 return Owned(new (Context) ArraySubscriptExpr(base, idx,
3602 Context.DependentTy,
3603 VK_LValue, OK_Ordinary,
3604 rbLoc));
3605 }
3606
3607 // Use C++ overloaded-operator rules if either operand has record
3608 // type. The spec says to do this if either type is *overloadable*,
3609 // but enum types can't declare subscript operators or conversion
3610 // operators, so there's nothing interesting for overload resolution
3611 // to do if there aren't any record types involved.
3612 //
3613 // ObjC pointers have their own subscripting logic that is not tied
3614 // to overload resolution and so should not take this path.
3615 if (getLangOpts().CPlusPlus &&
3616 (base->getType()->isRecordType() ||
3617 (!base->getType()->isObjCObjectPointerType() &&
3618 idx->getType()->isRecordType()))) {
3619 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3620 }
3621
3622 return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3623 }
3624
3625 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3626 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3627 Expr *Idx, SourceLocation RLoc) {
3628 Expr *LHSExp = Base;
3629 Expr *RHSExp = Idx;
3630
3631 // Perform default conversions.
3632 if (!LHSExp->getType()->getAs<VectorType>()) {
3633 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3634 if (Result.isInvalid())
3635 return ExprError();
3636 LHSExp = Result.take();
3637 }
3638 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3639 if (Result.isInvalid())
3640 return ExprError();
3641 RHSExp = Result.take();
3642
3643 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3644 ExprValueKind VK = VK_LValue;
3645 ExprObjectKind OK = OK_Ordinary;
3646
3647 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3648 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3649 // in the subscript position. As a result, we need to derive the array base
3650 // and index from the expression types.
3651 Expr *BaseExpr, *IndexExpr;
3652 QualType ResultType;
3653 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3654 BaseExpr = LHSExp;
3655 IndexExpr = RHSExp;
3656 ResultType = Context.DependentTy;
3657 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3658 BaseExpr = LHSExp;
3659 IndexExpr = RHSExp;
3660 ResultType = PTy->getPointeeType();
3661 } else if (const ObjCObjectPointerType *PTy =
3662 LHSTy->getAs<ObjCObjectPointerType>()) {
3663 BaseExpr = LHSExp;
3664 IndexExpr = RHSExp;
3665
3666 // Use custom logic if this should be the pseudo-object subscript
3667 // expression.
3668 if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3669 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3670
3671 ResultType = PTy->getPointeeType();
3672 if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3673 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3674 << ResultType << BaseExpr->getSourceRange();
3675 return ExprError();
3676 }
3677 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3678 // Handle the uncommon case of "123[Ptr]".
3679 BaseExpr = RHSExp;
3680 IndexExpr = LHSExp;
3681 ResultType = PTy->getPointeeType();
3682 } else if (const ObjCObjectPointerType *PTy =
3683 RHSTy->getAs<ObjCObjectPointerType>()) {
3684 // Handle the uncommon case of "123[Ptr]".
3685 BaseExpr = RHSExp;
3686 IndexExpr = LHSExp;
3687 ResultType = PTy->getPointeeType();
3688 if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3689 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3690 << ResultType << BaseExpr->getSourceRange();
3691 return ExprError();
3692 }
3693 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3694 BaseExpr = LHSExp; // vectors: V[123]
3695 IndexExpr = RHSExp;
3696 VK = LHSExp->getValueKind();
3697 if (VK != VK_RValue)
3698 OK = OK_VectorComponent;
3699
3700 // FIXME: need to deal with const...
3701 ResultType = VTy->getElementType();
3702 } else if (LHSTy->isArrayType()) {
3703 // If we see an array that wasn't promoted by
3704 // DefaultFunctionArrayLvalueConversion, it must be an array that
3705 // wasn't promoted because of the C90 rule that doesn't
3706 // allow promoting non-lvalue arrays. Warn, then
3707 // force the promotion here.
3708 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3709 LHSExp->getSourceRange();
3710 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3711 CK_ArrayToPointerDecay).take();
3712 LHSTy = LHSExp->getType();
3713
3714 BaseExpr = LHSExp;
3715 IndexExpr = RHSExp;
3716 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3717 } else if (RHSTy->isArrayType()) {
3718 // Same as previous, except for 123[f().a] case
3719 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3720 RHSExp->getSourceRange();
3721 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3722 CK_ArrayToPointerDecay).take();
3723 RHSTy = RHSExp->getType();
3724
3725 BaseExpr = RHSExp;
3726 IndexExpr = LHSExp;
3727 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3728 } else {
3729 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3730 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3731 }
3732 // C99 6.5.2.1p1
3733 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3734 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3735 << IndexExpr->getSourceRange());
3736
3737 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3738 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3739 && !IndexExpr->isTypeDependent())
3740 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3741
3742 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3743 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3744 // type. Note that Functions are not objects, and that (in C99 parlance)
3745 // incomplete types are not object types.
3746 if (ResultType->isFunctionType()) {
3747 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3748 << ResultType << BaseExpr->getSourceRange();
3749 return ExprError();
3750 }
3751
3752 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3753 // GNU extension: subscripting on pointer to void
3754 Diag(LLoc, diag::ext_gnu_subscript_void_type)
3755 << BaseExpr->getSourceRange();
3756
3757 // C forbids expressions of unqualified void type from being l-values.
3758 // See IsCForbiddenLValueType.
3759 if (!ResultType.hasQualifiers()) VK = VK_RValue;
3760 } else if (!ResultType->isDependentType() &&
3761 RequireCompleteType(LLoc, ResultType,
3762 diag::err_subscript_incomplete_type, BaseExpr))
3763 return ExprError();
3764
3765 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3766 !ResultType.isCForbiddenLValueType());
3767
3768 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3769 ResultType, VK, OK, RLoc));
3770 }
3771
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3772 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3773 FunctionDecl *FD,
3774 ParmVarDecl *Param) {
3775 if (Param->hasUnparsedDefaultArg()) {
3776 Diag(CallLoc,
3777 diag::err_use_of_default_argument_to_function_declared_later) <<
3778 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3779 Diag(UnparsedDefaultArgLocs[Param],
3780 diag::note_default_argument_declared_here);
3781 return ExprError();
3782 }
3783
3784 if (Param->hasUninstantiatedDefaultArg()) {
3785 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3786
3787 EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3788 Param);
3789
3790 // Instantiate the expression.
3791 MultiLevelTemplateArgumentList MutiLevelArgList
3792 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3793
3794 InstantiatingTemplate Inst(*this, CallLoc, Param,
3795 MutiLevelArgList.getInnermost());
3796 if (Inst)
3797 return ExprError();
3798
3799 ExprResult Result;
3800 {
3801 // C++ [dcl.fct.default]p5:
3802 // The names in the [default argument] expression are bound, and
3803 // the semantic constraints are checked, at the point where the
3804 // default argument expression appears.
3805 ContextRAII SavedContext(*this, FD);
3806 LocalInstantiationScope Local(*this);
3807 Result = SubstExpr(UninstExpr, MutiLevelArgList);
3808 }
3809 if (Result.isInvalid())
3810 return ExprError();
3811
3812 // Check the expression as an initializer for the parameter.
3813 InitializedEntity Entity
3814 = InitializedEntity::InitializeParameter(Context, Param);
3815 InitializationKind Kind
3816 = InitializationKind::CreateCopy(Param->getLocation(),
3817 /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3818 Expr *ResultE = Result.takeAs<Expr>();
3819
3820 InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
3821 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3822 if (Result.isInvalid())
3823 return ExprError();
3824
3825 Expr *Arg = Result.takeAs<Expr>();
3826 CheckCompletedExpr(Arg, Param->getOuterLocStart());
3827 // Build the default argument expression.
3828 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3829 }
3830
3831 // If the default expression creates temporaries, we need to
3832 // push them to the current stack of expression temporaries so they'll
3833 // be properly destroyed.
3834 // FIXME: We should really be rebuilding the default argument with new
3835 // bound temporaries; see the comment in PR5810.
3836 // We don't need to do that with block decls, though, because
3837 // blocks in default argument expression can never capture anything.
3838 if (isa<ExprWithCleanups>(Param->getInit())) {
3839 // Set the "needs cleanups" bit regardless of whether there are
3840 // any explicit objects.
3841 ExprNeedsCleanups = true;
3842
3843 // Append all the objects to the cleanup list. Right now, this
3844 // should always be a no-op, because blocks in default argument
3845 // expressions should never be able to capture anything.
3846 assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3847 "default argument expression has capturing blocks?");
3848 }
3849
3850 // We already type-checked the argument, so we know it works.
3851 // Just mark all of the declarations in this potentially-evaluated expression
3852 // as being "referenced".
3853 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3854 /*SkipLocalVariables=*/true);
3855 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3856 }
3857
3858
3859 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)3860 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3861 Expr *Fn) {
3862 if (Proto && Proto->isVariadic()) {
3863 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3864 return VariadicConstructor;
3865 else if (Fn && Fn->getType()->isBlockPointerType())
3866 return VariadicBlock;
3867 else if (FDecl) {
3868 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3869 if (Method->isInstance())
3870 return VariadicMethod;
3871 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
3872 return VariadicMethod;
3873 return VariadicFunction;
3874 }
3875 return VariadicDoesNotApply;
3876 }
3877
3878 namespace {
3879 class FunctionCallCCC : public FunctionCallFilterCCC {
3880 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,bool HasExplicitTemplateArgs)3881 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
3882 unsigned NumArgs, bool HasExplicitTemplateArgs)
3883 : FunctionCallFilterCCC(SemaRef, NumArgs, HasExplicitTemplateArgs),
3884 FunctionName(FuncName) {}
3885
ValidateCandidate(const TypoCorrection & candidate)3886 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
3887 if (!candidate.getCorrectionSpecifier() ||
3888 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
3889 return false;
3890 }
3891
3892 return FunctionCallFilterCCC::ValidateCandidate(candidate);
3893 }
3894
3895 private:
3896 const IdentifierInfo *const FunctionName;
3897 };
3898 }
3899
TryTypoCorrectionForCall(Sema & S,DeclarationNameInfo FuncName,ArrayRef<Expr * > Args)3900 static TypoCorrection TryTypoCorrectionForCall(Sema &S,
3901 DeclarationNameInfo FuncName,
3902 ArrayRef<Expr *> Args) {
3903 FunctionCallCCC CCC(S, FuncName.getName().getAsIdentifierInfo(),
3904 Args.size(), false);
3905 if (TypoCorrection Corrected =
3906 S.CorrectTypo(FuncName, Sema::LookupOrdinaryName,
3907 S.getScopeForContext(S.CurContext), NULL, CCC)) {
3908 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
3909 if (Corrected.isOverloaded()) {
3910 OverloadCandidateSet OCS(FuncName.getLoc());
3911 OverloadCandidateSet::iterator Best;
3912 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
3913 CDEnd = Corrected.end();
3914 CD != CDEnd; ++CD) {
3915 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
3916 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
3917 OCS);
3918 }
3919 switch (OCS.BestViableFunction(S, FuncName.getLoc(), Best)) {
3920 case OR_Success:
3921 ND = Best->Function;
3922 Corrected.setCorrectionDecl(ND);
3923 break;
3924 default:
3925 break;
3926 }
3927 }
3928 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
3929 return Corrected;
3930 }
3931 }
3932 }
3933 return TypoCorrection();
3934 }
3935
3936 /// ConvertArgumentsForCall - Converts the arguments specified in
3937 /// Args/NumArgs to the parameter types of the function FDecl with
3938 /// function prototype Proto. Call is the call expression itself, and
3939 /// Fn is the function expression. For a C++ member function, this
3940 /// routine does not attempt to convert the object argument. Returns
3941 /// true if the call is ill-formed.
3942 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)3943 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3944 FunctionDecl *FDecl,
3945 const FunctionProtoType *Proto,
3946 ArrayRef<Expr *> Args,
3947 SourceLocation RParenLoc,
3948 bool IsExecConfig) {
3949 // Bail out early if calling a builtin with custom typechecking.
3950 // We don't need to do this in the
3951 if (FDecl)
3952 if (unsigned ID = FDecl->getBuiltinID())
3953 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3954 return false;
3955
3956 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3957 // assignment, to the types of the corresponding parameter, ...
3958 unsigned NumArgsInProto = Proto->getNumArgs();
3959 bool Invalid = false;
3960 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3961 unsigned FnKind = Fn->getType()->isBlockPointerType()
3962 ? 1 /* block */
3963 : (IsExecConfig ? 3 /* kernel function (exec config) */
3964 : 0 /* function */);
3965
3966 // If too few arguments are available (and we don't have default
3967 // arguments for the remaining parameters), don't make the call.
3968 if (Args.size() < NumArgsInProto) {
3969 if (Args.size() < MinArgs) {
3970 TypoCorrection TC;
3971 if (FDecl && (TC = TryTypoCorrectionForCall(
3972 *this, DeclarationNameInfo(FDecl->getDeclName(),
3973 Fn->getLocStart()),
3974 Args))) {
3975 std::string CorrectedStr(TC.getAsString(getLangOpts()));
3976 std::string CorrectedQuotedStr(TC.getQuoted(getLangOpts()));
3977 unsigned diag_id =
3978 MinArgs == NumArgsInProto && !Proto->isVariadic()
3979 ? diag::err_typecheck_call_too_few_args_suggest
3980 : diag::err_typecheck_call_too_few_args_at_least_suggest;
3981 Diag(RParenLoc, diag_id)
3982 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
3983 << Fn->getSourceRange() << CorrectedQuotedStr
3984 << FixItHint::CreateReplacement(TC.getCorrectionRange(),
3985 CorrectedStr);
3986 Diag(TC.getCorrectionDecl()->getLocStart(),
3987 diag::note_previous_decl) << CorrectedQuotedStr;
3988 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3989 Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3990 ? diag::err_typecheck_call_too_few_args_one
3991 : diag::err_typecheck_call_too_few_args_at_least_one)
3992 << FnKind
3993 << FDecl->getParamDecl(0) << Fn->getSourceRange();
3994 else
3995 Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3996 ? diag::err_typecheck_call_too_few_args
3997 : diag::err_typecheck_call_too_few_args_at_least)
3998 << FnKind
3999 << MinArgs << static_cast<unsigned>(Args.size())
4000 << Fn->getSourceRange();
4001
4002 // Emit the location of the prototype.
4003 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4004 Diag(FDecl->getLocStart(), diag::note_callee_decl)
4005 << FDecl;
4006
4007 return true;
4008 }
4009 Call->setNumArgs(Context, NumArgsInProto);
4010 }
4011
4012 // If too many are passed and not variadic, error on the extras and drop
4013 // them.
4014 if (Args.size() > NumArgsInProto) {
4015 if (!Proto->isVariadic()) {
4016 TypoCorrection TC;
4017 if (FDecl && (TC = TryTypoCorrectionForCall(
4018 *this, DeclarationNameInfo(FDecl->getDeclName(),
4019 Fn->getLocStart()),
4020 Args))) {
4021 std::string CorrectedStr(TC.getAsString(getLangOpts()));
4022 std::string CorrectedQuotedStr(TC.getQuoted(getLangOpts()));
4023 unsigned diag_id =
4024 MinArgs == NumArgsInProto && !Proto->isVariadic()
4025 ? diag::err_typecheck_call_too_many_args_suggest
4026 : diag::err_typecheck_call_too_many_args_at_most_suggest;
4027 Diag(Args[NumArgsInProto]->getLocStart(), diag_id)
4028 << FnKind << NumArgsInProto << static_cast<unsigned>(Args.size())
4029 << Fn->getSourceRange() << CorrectedQuotedStr
4030 << FixItHint::CreateReplacement(TC.getCorrectionRange(),
4031 CorrectedStr);
4032 Diag(TC.getCorrectionDecl()->getLocStart(),
4033 diag::note_previous_decl) << CorrectedQuotedStr;
4034 } else if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4035 Diag(Args[NumArgsInProto]->getLocStart(),
4036 MinArgs == NumArgsInProto
4037 ? diag::err_typecheck_call_too_many_args_one
4038 : diag::err_typecheck_call_too_many_args_at_most_one)
4039 << FnKind
4040 << FDecl->getParamDecl(0) << static_cast<unsigned>(Args.size())
4041 << Fn->getSourceRange()
4042 << SourceRange(Args[NumArgsInProto]->getLocStart(),
4043 Args.back()->getLocEnd());
4044 else
4045 Diag(Args[NumArgsInProto]->getLocStart(),
4046 MinArgs == NumArgsInProto
4047 ? diag::err_typecheck_call_too_many_args
4048 : diag::err_typecheck_call_too_many_args_at_most)
4049 << FnKind
4050 << NumArgsInProto << static_cast<unsigned>(Args.size())
4051 << Fn->getSourceRange()
4052 << SourceRange(Args[NumArgsInProto]->getLocStart(),
4053 Args.back()->getLocEnd());
4054
4055 // Emit the location of the prototype.
4056 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4057 Diag(FDecl->getLocStart(), diag::note_callee_decl)
4058 << FDecl;
4059
4060 // This deletes the extra arguments.
4061 Call->setNumArgs(Context, NumArgsInProto);
4062 return true;
4063 }
4064 }
4065 SmallVector<Expr *, 8> AllArgs;
4066 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4067
4068 Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4069 Proto, 0, Args, AllArgs, CallType);
4070 if (Invalid)
4071 return true;
4072 unsigned TotalNumArgs = AllArgs.size();
4073 for (unsigned i = 0; i < TotalNumArgs; ++i)
4074 Call->setArg(i, AllArgs[i]);
4075
4076 return false;
4077 }
4078
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)4079 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
4080 FunctionDecl *FDecl,
4081 const FunctionProtoType *Proto,
4082 unsigned FirstProtoArg,
4083 ArrayRef<Expr *> Args,
4084 SmallVectorImpl<Expr *> &AllArgs,
4085 VariadicCallType CallType,
4086 bool AllowExplicit,
4087 bool IsListInitialization) {
4088 unsigned NumArgsInProto = Proto->getNumArgs();
4089 unsigned NumArgsToCheck = Args.size();
4090 bool Invalid = false;
4091 if (Args.size() != NumArgsInProto)
4092 // Use default arguments for missing arguments
4093 NumArgsToCheck = NumArgsInProto;
4094 unsigned ArgIx = 0;
4095 // Continue to check argument types (even if we have too few/many args).
4096 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
4097 QualType ProtoArgType = Proto->getArgType(i);
4098
4099 Expr *Arg;
4100 ParmVarDecl *Param;
4101 if (ArgIx < Args.size()) {
4102 Arg = Args[ArgIx++];
4103
4104 if (RequireCompleteType(Arg->getLocStart(),
4105 ProtoArgType,
4106 diag::err_call_incomplete_argument, Arg))
4107 return true;
4108
4109 // Pass the argument
4110 Param = 0;
4111 if (FDecl && i < FDecl->getNumParams())
4112 Param = FDecl->getParamDecl(i);
4113
4114 // Strip the unbridged-cast placeholder expression off, if applicable.
4115 bool CFAudited = false;
4116 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4117 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4118 (!Param || !Param->hasAttr<CFConsumedAttr>()))
4119 Arg = stripARCUnbridgedCast(Arg);
4120 else if (getLangOpts().ObjCAutoRefCount &&
4121 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4122 (!Param || !Param->hasAttr<CFConsumedAttr>()))
4123 CFAudited = true;
4124
4125 InitializedEntity Entity = Param ?
4126 InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
4127 : InitializedEntity::InitializeParameter(Context, ProtoArgType,
4128 Proto->isArgConsumed(i));
4129
4130 // Remember that parameter belongs to a CF audited API.
4131 if (CFAudited)
4132 Entity.setParameterCFAudited();
4133
4134 ExprResult ArgE = PerformCopyInitialization(Entity,
4135 SourceLocation(),
4136 Owned(Arg),
4137 IsListInitialization,
4138 AllowExplicit);
4139 if (ArgE.isInvalid())
4140 return true;
4141
4142 Arg = ArgE.takeAs<Expr>();
4143 } else {
4144 assert(FDecl && "can't use default arguments without a known callee");
4145 Param = FDecl->getParamDecl(i);
4146
4147 ExprResult ArgExpr =
4148 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4149 if (ArgExpr.isInvalid())
4150 return true;
4151
4152 Arg = ArgExpr.takeAs<Expr>();
4153 }
4154
4155 // Check for array bounds violations for each argument to the call. This
4156 // check only triggers warnings when the argument isn't a more complex Expr
4157 // with its own checking, such as a BinaryOperator.
4158 CheckArrayAccess(Arg);
4159
4160 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4161 CheckStaticArrayArgument(CallLoc, Param, Arg);
4162
4163 AllArgs.push_back(Arg);
4164 }
4165
4166 // If this is a variadic call, handle args passed through "...".
4167 if (CallType != VariadicDoesNotApply) {
4168 // Assume that extern "C" functions with variadic arguments that
4169 // return __unknown_anytype aren't *really* variadic.
4170 if (Proto->getResultType() == Context.UnknownAnyTy &&
4171 FDecl && FDecl->isExternC()) {
4172 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4173 QualType paramType; // ignored
4174 ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
4175 Invalid |= arg.isInvalid();
4176 AllArgs.push_back(arg.take());
4177 }
4178
4179 // Otherwise do argument promotion, (C99 6.5.2.2p7).
4180 } else {
4181 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4182 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
4183 FDecl);
4184 Invalid |= Arg.isInvalid();
4185 AllArgs.push_back(Arg.take());
4186 }
4187 }
4188
4189 // Check for array bounds violations.
4190 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
4191 CheckArrayAccess(Args[i]);
4192 }
4193 return Invalid;
4194 }
4195
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)4196 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4197 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4198 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4199 TL = DTL.getOriginalLoc();
4200 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4201 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4202 << ATL.getLocalSourceRange();
4203 }
4204
4205 /// CheckStaticArrayArgument - If the given argument corresponds to a static
4206 /// array parameter, check that it is non-null, and that if it is formed by
4207 /// array-to-pointer decay, the underlying array is sufficiently large.
4208 ///
4209 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4210 /// array type derivation, then for each call to the function, the value of the
4211 /// corresponding actual argument shall provide access to the first element of
4212 /// an array with at least as many elements as specified by the size expression.
4213 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)4214 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4215 ParmVarDecl *Param,
4216 const Expr *ArgExpr) {
4217 // Static array parameters are not supported in C++.
4218 if (!Param || getLangOpts().CPlusPlus)
4219 return;
4220
4221 QualType OrigTy = Param->getOriginalType();
4222
4223 const ArrayType *AT = Context.getAsArrayType(OrigTy);
4224 if (!AT || AT->getSizeModifier() != ArrayType::Static)
4225 return;
4226
4227 if (ArgExpr->isNullPointerConstant(Context,
4228 Expr::NPC_NeverValueDependent)) {
4229 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4230 DiagnoseCalleeStaticArrayParam(*this, Param);
4231 return;
4232 }
4233
4234 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4235 if (!CAT)
4236 return;
4237
4238 const ConstantArrayType *ArgCAT =
4239 Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4240 if (!ArgCAT)
4241 return;
4242
4243 if (ArgCAT->getSize().ult(CAT->getSize())) {
4244 Diag(CallLoc, diag::warn_static_array_too_small)
4245 << ArgExpr->getSourceRange()
4246 << (unsigned) ArgCAT->getSize().getZExtValue()
4247 << (unsigned) CAT->getSize().getZExtValue();
4248 DiagnoseCalleeStaticArrayParam(*this, Param);
4249 }
4250 }
4251
4252 /// Given a function expression of unknown-any type, try to rebuild it
4253 /// to have a function type.
4254 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4255
4256 /// Is the given type a placeholder that we need to lower out
4257 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)4258 static bool isPlaceholderToRemoveAsArg(QualType type) {
4259 // Placeholders are never sugared.
4260 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4261 if (!placeholder) return false;
4262
4263 switch (placeholder->getKind()) {
4264 // Ignore all the non-placeholder types.
4265 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4266 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4267 #include "clang/AST/BuiltinTypes.def"
4268 return false;
4269
4270 // We cannot lower out overload sets; they might validly be resolved
4271 // by the call machinery.
4272 case BuiltinType::Overload:
4273 return false;
4274
4275 // Unbridged casts in ARC can be handled in some call positions and
4276 // should be left in place.
4277 case BuiltinType::ARCUnbridgedCast:
4278 return false;
4279
4280 // Pseudo-objects should be converted as soon as possible.
4281 case BuiltinType::PseudoObject:
4282 return true;
4283
4284 // The debugger mode could theoretically but currently does not try
4285 // to resolve unknown-typed arguments based on known parameter types.
4286 case BuiltinType::UnknownAny:
4287 return true;
4288
4289 // These are always invalid as call arguments and should be reported.
4290 case BuiltinType::BoundMember:
4291 case BuiltinType::BuiltinFn:
4292 return true;
4293 }
4294 llvm_unreachable("bad builtin type kind");
4295 }
4296
4297 /// Check an argument list for placeholders that we won't try to
4298 /// handle later.
checkArgsForPlaceholders(Sema & S,MultiExprArg args)4299 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4300 // Apply this processing to all the arguments at once instead of
4301 // dying at the first failure.
4302 bool hasInvalid = false;
4303 for (size_t i = 0, e = args.size(); i != e; i++) {
4304 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4305 ExprResult result = S.CheckPlaceholderExpr(args[i]);
4306 if (result.isInvalid()) hasInvalid = true;
4307 else args[i] = result.take();
4308 }
4309 }
4310 return hasInvalid;
4311 }
4312
4313 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4314 /// This provides the location of the left/right parens and a list of comma
4315 /// locations.
4316 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)4317 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4318 MultiExprArg ArgExprs, SourceLocation RParenLoc,
4319 Expr *ExecConfig, bool IsExecConfig) {
4320 // Since this might be a postfix expression, get rid of ParenListExprs.
4321 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4322 if (Result.isInvalid()) return ExprError();
4323 Fn = Result.take();
4324
4325 if (checkArgsForPlaceholders(*this, ArgExprs))
4326 return ExprError();
4327
4328 if (getLangOpts().CPlusPlus) {
4329 // If this is a pseudo-destructor expression, build the call immediately.
4330 if (isa<CXXPseudoDestructorExpr>(Fn)) {
4331 if (!ArgExprs.empty()) {
4332 // Pseudo-destructor calls should not have any arguments.
4333 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4334 << FixItHint::CreateRemoval(
4335 SourceRange(ArgExprs[0]->getLocStart(),
4336 ArgExprs.back()->getLocEnd()));
4337 }
4338
4339 return Owned(new (Context) CallExpr(Context, Fn, None,
4340 Context.VoidTy, VK_RValue,
4341 RParenLoc));
4342 }
4343 if (Fn->getType() == Context.PseudoObjectTy) {
4344 ExprResult result = CheckPlaceholderExpr(Fn);
4345 if (result.isInvalid()) return ExprError();
4346 Fn = result.take();
4347 }
4348
4349 // Determine whether this is a dependent call inside a C++ template,
4350 // in which case we won't do any semantic analysis now.
4351 // FIXME: Will need to cache the results of name lookup (including ADL) in
4352 // Fn.
4353 bool Dependent = false;
4354 if (Fn->isTypeDependent())
4355 Dependent = true;
4356 else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4357 Dependent = true;
4358
4359 if (Dependent) {
4360 if (ExecConfig) {
4361 return Owned(new (Context) CUDAKernelCallExpr(
4362 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4363 Context.DependentTy, VK_RValue, RParenLoc));
4364 } else {
4365 return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
4366 Context.DependentTy, VK_RValue,
4367 RParenLoc));
4368 }
4369 }
4370
4371 // Determine whether this is a call to an object (C++ [over.call.object]).
4372 if (Fn->getType()->isRecordType())
4373 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
4374 ArgExprs, RParenLoc));
4375
4376 if (Fn->getType() == Context.UnknownAnyTy) {
4377 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4378 if (result.isInvalid()) return ExprError();
4379 Fn = result.take();
4380 }
4381
4382 if (Fn->getType() == Context.BoundMemberTy) {
4383 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4384 }
4385 }
4386
4387 // Check for overloaded calls. This can happen even in C due to extensions.
4388 if (Fn->getType() == Context.OverloadTy) {
4389 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4390
4391 // We aren't supposed to apply this logic for if there's an '&' involved.
4392 if (!find.HasFormOfMemberPointer) {
4393 OverloadExpr *ovl = find.Expression;
4394 if (isa<UnresolvedLookupExpr>(ovl)) {
4395 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4396 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4397 RParenLoc, ExecConfig);
4398 } else {
4399 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4400 RParenLoc);
4401 }
4402 }
4403 }
4404
4405 // If we're directly calling a function, get the appropriate declaration.
4406 if (Fn->getType() == Context.UnknownAnyTy) {
4407 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4408 if (result.isInvalid()) return ExprError();
4409 Fn = result.take();
4410 }
4411
4412 Expr *NakedFn = Fn->IgnoreParens();
4413
4414 NamedDecl *NDecl = 0;
4415 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4416 if (UnOp->getOpcode() == UO_AddrOf)
4417 NakedFn = UnOp->getSubExpr()->IgnoreParens();
4418
4419 if (isa<DeclRefExpr>(NakedFn))
4420 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4421 else if (isa<MemberExpr>(NakedFn))
4422 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4423
4424 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4425 ExecConfig, IsExecConfig);
4426 }
4427
4428 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)4429 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
4430 MultiExprArg ExecConfig, SourceLocation GGGLoc) {
4431 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
4432 if (!ConfigDecl)
4433 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
4434 << "cudaConfigureCall");
4435 QualType ConfigQTy = ConfigDecl->getType();
4436
4437 DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
4438 ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
4439 MarkFunctionReferenced(LLLLoc, ConfigDecl);
4440
4441 return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
4442 /*IsExecConfig=*/true);
4443 }
4444
4445 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4446 ///
4447 /// __builtin_astype( value, dst type )
4448 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)4449 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4450 SourceLocation BuiltinLoc,
4451 SourceLocation RParenLoc) {
4452 ExprValueKind VK = VK_RValue;
4453 ExprObjectKind OK = OK_Ordinary;
4454 QualType DstTy = GetTypeFromParser(ParsedDestTy);
4455 QualType SrcTy = E->getType();
4456 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4457 return ExprError(Diag(BuiltinLoc,
4458 diag::err_invalid_astype_of_different_size)
4459 << DstTy
4460 << SrcTy
4461 << E->getSourceRange());
4462 return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4463 RParenLoc));
4464 }
4465
4466 /// BuildResolvedCallExpr - Build a call to a resolved expression,
4467 /// i.e. an expression not of \p OverloadTy. The expression should
4468 /// unary-convert to an expression of function-pointer or
4469 /// block-pointer type.
4470 ///
4471 /// \param NDecl the declaration being called, if available
4472 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)4473 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4474 SourceLocation LParenLoc,
4475 ArrayRef<Expr *> Args,
4476 SourceLocation RParenLoc,
4477 Expr *Config, bool IsExecConfig) {
4478 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4479 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4480
4481 // Promote the function operand.
4482 // We special-case function promotion here because we only allow promoting
4483 // builtin functions to function pointers in the callee of a call.
4484 ExprResult Result;
4485 if (BuiltinID &&
4486 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4487 Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4488 CK_BuiltinFnToFnPtr).take();
4489 } else {
4490 Result = UsualUnaryConversions(Fn);
4491 }
4492 if (Result.isInvalid())
4493 return ExprError();
4494 Fn = Result.take();
4495
4496 // Make the call expr early, before semantic checks. This guarantees cleanup
4497 // of arguments and function on error.
4498 CallExpr *TheCall;
4499 if (Config)
4500 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4501 cast<CallExpr>(Config), Args,
4502 Context.BoolTy, VK_RValue,
4503 RParenLoc);
4504 else
4505 TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
4506 VK_RValue, RParenLoc);
4507
4508 // Bail out early if calling a builtin with custom typechecking.
4509 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4510 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4511
4512 retry:
4513 const FunctionType *FuncT;
4514 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4515 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4516 // have type pointer to function".
4517 FuncT = PT->getPointeeType()->getAs<FunctionType>();
4518 if (FuncT == 0)
4519 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4520 << Fn->getType() << Fn->getSourceRange());
4521 } else if (const BlockPointerType *BPT =
4522 Fn->getType()->getAs<BlockPointerType>()) {
4523 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4524 } else {
4525 // Handle calls to expressions of unknown-any type.
4526 if (Fn->getType() == Context.UnknownAnyTy) {
4527 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4528 if (rewrite.isInvalid()) return ExprError();
4529 Fn = rewrite.take();
4530 TheCall->setCallee(Fn);
4531 goto retry;
4532 }
4533
4534 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4535 << Fn->getType() << Fn->getSourceRange());
4536 }
4537
4538 if (getLangOpts().CUDA) {
4539 if (Config) {
4540 // CUDA: Kernel calls must be to global functions
4541 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4542 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4543 << FDecl->getName() << Fn->getSourceRange());
4544
4545 // CUDA: Kernel function must have 'void' return type
4546 if (!FuncT->getResultType()->isVoidType())
4547 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4548 << Fn->getType() << Fn->getSourceRange());
4549 } else {
4550 // CUDA: Calls to global functions must be configured
4551 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4552 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4553 << FDecl->getName() << Fn->getSourceRange());
4554 }
4555 }
4556
4557 // Check for a valid return type
4558 if (CheckCallReturnType(FuncT->getResultType(),
4559 Fn->getLocStart(), TheCall,
4560 FDecl))
4561 return ExprError();
4562
4563 // We know the result type of the call, set it.
4564 TheCall->setType(FuncT->getCallResultType(Context));
4565 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4566
4567 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4568 if (Proto) {
4569 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
4570 IsExecConfig))
4571 return ExprError();
4572 } else {
4573 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4574
4575 if (FDecl) {
4576 // Check if we have too few/too many template arguments, based
4577 // on our knowledge of the function definition.
4578 const FunctionDecl *Def = 0;
4579 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
4580 Proto = Def->getType()->getAs<FunctionProtoType>();
4581 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
4582 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4583 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
4584 }
4585
4586 // If the function we're calling isn't a function prototype, but we have
4587 // a function prototype from a prior declaratiom, use that prototype.
4588 if (!FDecl->hasPrototype())
4589 Proto = FDecl->getType()->getAs<FunctionProtoType>();
4590 }
4591
4592 // Promote the arguments (C99 6.5.2.2p6).
4593 for (unsigned i = 0, e = Args.size(); i != e; i++) {
4594 Expr *Arg = Args[i];
4595
4596 if (Proto && i < Proto->getNumArgs()) {
4597 InitializedEntity Entity
4598 = InitializedEntity::InitializeParameter(Context,
4599 Proto->getArgType(i),
4600 Proto->isArgConsumed(i));
4601 ExprResult ArgE = PerformCopyInitialization(Entity,
4602 SourceLocation(),
4603 Owned(Arg));
4604 if (ArgE.isInvalid())
4605 return true;
4606
4607 Arg = ArgE.takeAs<Expr>();
4608
4609 } else {
4610 ExprResult ArgE = DefaultArgumentPromotion(Arg);
4611
4612 if (ArgE.isInvalid())
4613 return true;
4614
4615 Arg = ArgE.takeAs<Expr>();
4616 }
4617
4618 if (RequireCompleteType(Arg->getLocStart(),
4619 Arg->getType(),
4620 diag::err_call_incomplete_argument, Arg))
4621 return ExprError();
4622
4623 TheCall->setArg(i, Arg);
4624 }
4625 }
4626
4627 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4628 if (!Method->isStatic())
4629 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4630 << Fn->getSourceRange());
4631
4632 // Check for sentinels
4633 if (NDecl)
4634 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
4635
4636 // Do special checking on direct calls to functions.
4637 if (FDecl) {
4638 if (CheckFunctionCall(FDecl, TheCall, Proto))
4639 return ExprError();
4640
4641 if (BuiltinID)
4642 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4643 } else if (NDecl) {
4644 if (CheckPointerCall(NDecl, TheCall, Proto))
4645 return ExprError();
4646 } else {
4647 if (CheckOtherCall(TheCall, Proto))
4648 return ExprError();
4649 }
4650
4651 return MaybeBindToTemporary(TheCall);
4652 }
4653
4654 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)4655 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4656 SourceLocation RParenLoc, Expr *InitExpr) {
4657 assert(Ty && "ActOnCompoundLiteral(): missing type");
4658 // FIXME: put back this assert when initializers are worked out.
4659 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4660
4661 TypeSourceInfo *TInfo;
4662 QualType literalType = GetTypeFromParser(Ty, &TInfo);
4663 if (!TInfo)
4664 TInfo = Context.getTrivialTypeSourceInfo(literalType);
4665
4666 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4667 }
4668
4669 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)4670 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4671 SourceLocation RParenLoc, Expr *LiteralExpr) {
4672 QualType literalType = TInfo->getType();
4673
4674 if (literalType->isArrayType()) {
4675 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4676 diag::err_illegal_decl_array_incomplete_type,
4677 SourceRange(LParenLoc,
4678 LiteralExpr->getSourceRange().getEnd())))
4679 return ExprError();
4680 if (literalType->isVariableArrayType())
4681 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4682 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4683 } else if (!literalType->isDependentType() &&
4684 RequireCompleteType(LParenLoc, literalType,
4685 diag::err_typecheck_decl_incomplete_type,
4686 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4687 return ExprError();
4688
4689 InitializedEntity Entity
4690 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
4691 InitializationKind Kind
4692 = InitializationKind::CreateCStyleCast(LParenLoc,
4693 SourceRange(LParenLoc, RParenLoc),
4694 /*InitList=*/true);
4695 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
4696 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4697 &literalType);
4698 if (Result.isInvalid())
4699 return ExprError();
4700 LiteralExpr = Result.get();
4701
4702 bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4703 if (!getLangOpts().CPlusPlus && isFileScope) { // 6.5.2.5p3
4704 if (CheckForConstantInitializer(LiteralExpr, literalType))
4705 return ExprError();
4706 }
4707
4708 // In C, compound literals are l-values for some reason.
4709 ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4710
4711 return MaybeBindToTemporary(
4712 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4713 VK, LiteralExpr, isFileScope));
4714 }
4715
4716 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)4717 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4718 SourceLocation RBraceLoc) {
4719 // Immediately handle non-overload placeholders. Overloads can be
4720 // resolved contextually, but everything else here can't.
4721 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4722 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4723 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4724
4725 // Ignore failures; dropping the entire initializer list because
4726 // of one failure would be terrible for indexing/etc.
4727 if (result.isInvalid()) continue;
4728
4729 InitArgList[I] = result.take();
4730 }
4731 }
4732
4733 // Semantic analysis for initializers is done by ActOnDeclarator() and
4734 // CheckInitializer() - it requires knowledge of the object being intialized.
4735
4736 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4737 RBraceLoc);
4738 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4739 return Owned(E);
4740 }
4741
4742 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4743 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4744 assert(E.get()->getType()->isBlockPointerType());
4745 assert(E.get()->isRValue());
4746
4747 // Only do this in an r-value context.
4748 if (!S.getLangOpts().ObjCAutoRefCount) return;
4749
4750 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4751 CK_ARCExtendBlockObject, E.get(),
4752 /*base path*/ 0, VK_RValue);
4753 S.ExprNeedsCleanups = true;
4754 }
4755
4756 /// Prepare a conversion of the given expression to an ObjC object
4757 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4758 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4759 QualType type = E.get()->getType();
4760 if (type->isObjCObjectPointerType()) {
4761 return CK_BitCast;
4762 } else if (type->isBlockPointerType()) {
4763 maybeExtendBlockObject(*this, E);
4764 return CK_BlockPointerToObjCPointerCast;
4765 } else {
4766 assert(type->isPointerType());
4767 return CK_CPointerToObjCPointerCast;
4768 }
4769 }
4770
4771 /// Prepares for a scalar cast, performing all the necessary stages
4772 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4773 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4774 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4775 // Also, callers should have filtered out the invalid cases with
4776 // pointers. Everything else should be possible.
4777
4778 QualType SrcTy = Src.get()->getType();
4779 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4780 return CK_NoOp;
4781
4782 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4783 case Type::STK_MemberPointer:
4784 llvm_unreachable("member pointer type in C");
4785
4786 case Type::STK_CPointer:
4787 case Type::STK_BlockPointer:
4788 case Type::STK_ObjCObjectPointer:
4789 switch (DestTy->getScalarTypeKind()) {
4790 case Type::STK_CPointer:
4791 return CK_BitCast;
4792 case Type::STK_BlockPointer:
4793 return (SrcKind == Type::STK_BlockPointer
4794 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4795 case Type::STK_ObjCObjectPointer:
4796 if (SrcKind == Type::STK_ObjCObjectPointer)
4797 return CK_BitCast;
4798 if (SrcKind == Type::STK_CPointer)
4799 return CK_CPointerToObjCPointerCast;
4800 maybeExtendBlockObject(*this, Src);
4801 return CK_BlockPointerToObjCPointerCast;
4802 case Type::STK_Bool:
4803 return CK_PointerToBoolean;
4804 case Type::STK_Integral:
4805 return CK_PointerToIntegral;
4806 case Type::STK_Floating:
4807 case Type::STK_FloatingComplex:
4808 case Type::STK_IntegralComplex:
4809 case Type::STK_MemberPointer:
4810 llvm_unreachable("illegal cast from pointer");
4811 }
4812 llvm_unreachable("Should have returned before this");
4813
4814 case Type::STK_Bool: // casting from bool is like casting from an integer
4815 case Type::STK_Integral:
4816 switch (DestTy->getScalarTypeKind()) {
4817 case Type::STK_CPointer:
4818 case Type::STK_ObjCObjectPointer:
4819 case Type::STK_BlockPointer:
4820 if (Src.get()->isNullPointerConstant(Context,
4821 Expr::NPC_ValueDependentIsNull))
4822 return CK_NullToPointer;
4823 return CK_IntegralToPointer;
4824 case Type::STK_Bool:
4825 return CK_IntegralToBoolean;
4826 case Type::STK_Integral:
4827 return CK_IntegralCast;
4828 case Type::STK_Floating:
4829 return CK_IntegralToFloating;
4830 case Type::STK_IntegralComplex:
4831 Src = ImpCastExprToType(Src.take(),
4832 DestTy->castAs<ComplexType>()->getElementType(),
4833 CK_IntegralCast);
4834 return CK_IntegralRealToComplex;
4835 case Type::STK_FloatingComplex:
4836 Src = ImpCastExprToType(Src.take(),
4837 DestTy->castAs<ComplexType>()->getElementType(),
4838 CK_IntegralToFloating);
4839 return CK_FloatingRealToComplex;
4840 case Type::STK_MemberPointer:
4841 llvm_unreachable("member pointer type in C");
4842 }
4843 llvm_unreachable("Should have returned before this");
4844
4845 case Type::STK_Floating:
4846 switch (DestTy->getScalarTypeKind()) {
4847 case Type::STK_Floating:
4848 return CK_FloatingCast;
4849 case Type::STK_Bool:
4850 return CK_FloatingToBoolean;
4851 case Type::STK_Integral:
4852 return CK_FloatingToIntegral;
4853 case Type::STK_FloatingComplex:
4854 Src = ImpCastExprToType(Src.take(),
4855 DestTy->castAs<ComplexType>()->getElementType(),
4856 CK_FloatingCast);
4857 return CK_FloatingRealToComplex;
4858 case Type::STK_IntegralComplex:
4859 Src = ImpCastExprToType(Src.take(),
4860 DestTy->castAs<ComplexType>()->getElementType(),
4861 CK_FloatingToIntegral);
4862 return CK_IntegralRealToComplex;
4863 case Type::STK_CPointer:
4864 case Type::STK_ObjCObjectPointer:
4865 case Type::STK_BlockPointer:
4866 llvm_unreachable("valid float->pointer cast?");
4867 case Type::STK_MemberPointer:
4868 llvm_unreachable("member pointer type in C");
4869 }
4870 llvm_unreachable("Should have returned before this");
4871
4872 case Type::STK_FloatingComplex:
4873 switch (DestTy->getScalarTypeKind()) {
4874 case Type::STK_FloatingComplex:
4875 return CK_FloatingComplexCast;
4876 case Type::STK_IntegralComplex:
4877 return CK_FloatingComplexToIntegralComplex;
4878 case Type::STK_Floating: {
4879 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4880 if (Context.hasSameType(ET, DestTy))
4881 return CK_FloatingComplexToReal;
4882 Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4883 return CK_FloatingCast;
4884 }
4885 case Type::STK_Bool:
4886 return CK_FloatingComplexToBoolean;
4887 case Type::STK_Integral:
4888 Src = ImpCastExprToType(Src.take(),
4889 SrcTy->castAs<ComplexType>()->getElementType(),
4890 CK_FloatingComplexToReal);
4891 return CK_FloatingToIntegral;
4892 case Type::STK_CPointer:
4893 case Type::STK_ObjCObjectPointer:
4894 case Type::STK_BlockPointer:
4895 llvm_unreachable("valid complex float->pointer cast?");
4896 case Type::STK_MemberPointer:
4897 llvm_unreachable("member pointer type in C");
4898 }
4899 llvm_unreachable("Should have returned before this");
4900
4901 case Type::STK_IntegralComplex:
4902 switch (DestTy->getScalarTypeKind()) {
4903 case Type::STK_FloatingComplex:
4904 return CK_IntegralComplexToFloatingComplex;
4905 case Type::STK_IntegralComplex:
4906 return CK_IntegralComplexCast;
4907 case Type::STK_Integral: {
4908 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4909 if (Context.hasSameType(ET, DestTy))
4910 return CK_IntegralComplexToReal;
4911 Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4912 return CK_IntegralCast;
4913 }
4914 case Type::STK_Bool:
4915 return CK_IntegralComplexToBoolean;
4916 case Type::STK_Floating:
4917 Src = ImpCastExprToType(Src.take(),
4918 SrcTy->castAs<ComplexType>()->getElementType(),
4919 CK_IntegralComplexToReal);
4920 return CK_IntegralToFloating;
4921 case Type::STK_CPointer:
4922 case Type::STK_ObjCObjectPointer:
4923 case Type::STK_BlockPointer:
4924 llvm_unreachable("valid complex int->pointer cast?");
4925 case Type::STK_MemberPointer:
4926 llvm_unreachable("member pointer type in C");
4927 }
4928 llvm_unreachable("Should have returned before this");
4929 }
4930
4931 llvm_unreachable("Unhandled scalar cast");
4932 }
4933
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4934 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4935 CastKind &Kind) {
4936 assert(VectorTy->isVectorType() && "Not a vector type!");
4937
4938 if (Ty->isVectorType() || Ty->isIntegerType()) {
4939 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4940 return Diag(R.getBegin(),
4941 Ty->isVectorType() ?
4942 diag::err_invalid_conversion_between_vectors :
4943 diag::err_invalid_conversion_between_vector_and_integer)
4944 << VectorTy << Ty << R;
4945 } else
4946 return Diag(R.getBegin(),
4947 diag::err_invalid_conversion_between_vector_and_scalar)
4948 << VectorTy << Ty << R;
4949
4950 Kind = CK_BitCast;
4951 return false;
4952 }
4953
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4954 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4955 Expr *CastExpr, CastKind &Kind) {
4956 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4957
4958 QualType SrcTy = CastExpr->getType();
4959
4960 // If SrcTy is a VectorType, the total size must match to explicitly cast to
4961 // an ExtVectorType.
4962 // In OpenCL, casts between vectors of different types are not allowed.
4963 // (See OpenCL 6.2).
4964 if (SrcTy->isVectorType()) {
4965 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4966 || (getLangOpts().OpenCL &&
4967 (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4968 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4969 << DestTy << SrcTy << R;
4970 return ExprError();
4971 }
4972 Kind = CK_BitCast;
4973 return Owned(CastExpr);
4974 }
4975
4976 // All non-pointer scalars can be cast to ExtVector type. The appropriate
4977 // conversion will take place first from scalar to elt type, and then
4978 // splat from elt type to vector.
4979 if (SrcTy->isPointerType())
4980 return Diag(R.getBegin(),
4981 diag::err_invalid_conversion_between_vector_and_scalar)
4982 << DestTy << SrcTy << R;
4983
4984 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4985 ExprResult CastExprRes = Owned(CastExpr);
4986 CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4987 if (CastExprRes.isInvalid())
4988 return ExprError();
4989 CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4990
4991 Kind = CK_VectorSplat;
4992 return Owned(CastExpr);
4993 }
4994
4995 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4996 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4997 Declarator &D, ParsedType &Ty,
4998 SourceLocation RParenLoc, Expr *CastExpr) {
4999 assert(!D.isInvalidType() && (CastExpr != 0) &&
5000 "ActOnCastExpr(): missing type or expr");
5001
5002 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5003 if (D.isInvalidType())
5004 return ExprError();
5005
5006 if (getLangOpts().CPlusPlus) {
5007 // Check that there are no default arguments (C++ only).
5008 CheckExtraCXXDefaultArguments(D);
5009 }
5010
5011 checkUnusedDeclAttributes(D);
5012
5013 QualType castType = castTInfo->getType();
5014 Ty = CreateParsedType(castType, castTInfo);
5015
5016 bool isVectorLiteral = false;
5017
5018 // Check for an altivec or OpenCL literal,
5019 // i.e. all the elements are integer constants.
5020 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5021 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5022 if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
5023 && castType->isVectorType() && (PE || PLE)) {
5024 if (PLE && PLE->getNumExprs() == 0) {
5025 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5026 return ExprError();
5027 }
5028 if (PE || PLE->getNumExprs() == 1) {
5029 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5030 if (!E->getType()->isVectorType())
5031 isVectorLiteral = true;
5032 }
5033 else
5034 isVectorLiteral = true;
5035 }
5036
5037 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5038 // then handle it as such.
5039 if (isVectorLiteral)
5040 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5041
5042 // If the Expr being casted is a ParenListExpr, handle it specially.
5043 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5044 // sequence of BinOp comma operators.
5045 if (isa<ParenListExpr>(CastExpr)) {
5046 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5047 if (Result.isInvalid()) return ExprError();
5048 CastExpr = Result.take();
5049 }
5050
5051 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5052 }
5053
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)5054 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5055 SourceLocation RParenLoc, Expr *E,
5056 TypeSourceInfo *TInfo) {
5057 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5058 "Expected paren or paren list expression");
5059
5060 Expr **exprs;
5061 unsigned numExprs;
5062 Expr *subExpr;
5063 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5064 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5065 LiteralLParenLoc = PE->getLParenLoc();
5066 LiteralRParenLoc = PE->getRParenLoc();
5067 exprs = PE->getExprs();
5068 numExprs = PE->getNumExprs();
5069 } else { // isa<ParenExpr> by assertion at function entrance
5070 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5071 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5072 subExpr = cast<ParenExpr>(E)->getSubExpr();
5073 exprs = &subExpr;
5074 numExprs = 1;
5075 }
5076
5077 QualType Ty = TInfo->getType();
5078 assert(Ty->isVectorType() && "Expected vector type");
5079
5080 SmallVector<Expr *, 8> initExprs;
5081 const VectorType *VTy = Ty->getAs<VectorType>();
5082 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5083
5084 // '(...)' form of vector initialization in AltiVec: the number of
5085 // initializers must be one or must match the size of the vector.
5086 // If a single value is specified in the initializer then it will be
5087 // replicated to all the components of the vector
5088 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5089 // The number of initializers must be one or must match the size of the
5090 // vector. If a single value is specified in the initializer then it will
5091 // be replicated to all the components of the vector
5092 if (numExprs == 1) {
5093 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5094 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5095 if (Literal.isInvalid())
5096 return ExprError();
5097 Literal = ImpCastExprToType(Literal.take(), ElemTy,
5098 PrepareScalarCast(Literal, ElemTy));
5099 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5100 }
5101 else if (numExprs < numElems) {
5102 Diag(E->getExprLoc(),
5103 diag::err_incorrect_number_of_vector_initializers);
5104 return ExprError();
5105 }
5106 else
5107 initExprs.append(exprs, exprs + numExprs);
5108 }
5109 else {
5110 // For OpenCL, when the number of initializers is a single value,
5111 // it will be replicated to all components of the vector.
5112 if (getLangOpts().OpenCL &&
5113 VTy->getVectorKind() == VectorType::GenericVector &&
5114 numExprs == 1) {
5115 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5116 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5117 if (Literal.isInvalid())
5118 return ExprError();
5119 Literal = ImpCastExprToType(Literal.take(), ElemTy,
5120 PrepareScalarCast(Literal, ElemTy));
5121 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5122 }
5123
5124 initExprs.append(exprs, exprs + numExprs);
5125 }
5126 // FIXME: This means that pretty-printing the final AST will produce curly
5127 // braces instead of the original commas.
5128 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5129 initExprs, LiteralRParenLoc);
5130 initE->setType(Ty);
5131 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5132 }
5133
5134 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5135 /// the ParenListExpr into a sequence of comma binary operators.
5136 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)5137 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5138 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5139 if (!E)
5140 return Owned(OrigExpr);
5141
5142 ExprResult Result(E->getExpr(0));
5143
5144 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5145 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5146 E->getExpr(i));
5147
5148 if (Result.isInvalid()) return ExprError();
5149
5150 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5151 }
5152
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)5153 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5154 SourceLocation R,
5155 MultiExprArg Val) {
5156 Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5157 return Owned(expr);
5158 }
5159
5160 /// \brief Emit a specialized diagnostic when one expression is a null pointer
5161 /// constant and the other is not a pointer. Returns true if a diagnostic is
5162 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)5163 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5164 SourceLocation QuestionLoc) {
5165 Expr *NullExpr = LHSExpr;
5166 Expr *NonPointerExpr = RHSExpr;
5167 Expr::NullPointerConstantKind NullKind =
5168 NullExpr->isNullPointerConstant(Context,
5169 Expr::NPC_ValueDependentIsNotNull);
5170
5171 if (NullKind == Expr::NPCK_NotNull) {
5172 NullExpr = RHSExpr;
5173 NonPointerExpr = LHSExpr;
5174 NullKind =
5175 NullExpr->isNullPointerConstant(Context,
5176 Expr::NPC_ValueDependentIsNotNull);
5177 }
5178
5179 if (NullKind == Expr::NPCK_NotNull)
5180 return false;
5181
5182 if (NullKind == Expr::NPCK_ZeroExpression)
5183 return false;
5184
5185 if (NullKind == Expr::NPCK_ZeroLiteral) {
5186 // In this case, check to make sure that we got here from a "NULL"
5187 // string in the source code.
5188 NullExpr = NullExpr->IgnoreParenImpCasts();
5189 SourceLocation loc = NullExpr->getExprLoc();
5190 if (!findMacroSpelling(loc, "NULL"))
5191 return false;
5192 }
5193
5194 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5195 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5196 << NonPointerExpr->getType() << DiagType
5197 << NonPointerExpr->getSourceRange();
5198 return true;
5199 }
5200
5201 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)5202 static bool checkCondition(Sema &S, Expr *Cond) {
5203 QualType CondTy = Cond->getType();
5204
5205 // C99 6.5.15p2
5206 if (CondTy->isScalarType()) return false;
5207
5208 // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
5209 if (S.getLangOpts().OpenCL && CondTy->isVectorType())
5210 return false;
5211
5212 // Emit the proper error message.
5213 S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
5214 diag::err_typecheck_cond_expect_scalar :
5215 diag::err_typecheck_cond_expect_scalar_or_vector)
5216 << CondTy;
5217 return true;
5218 }
5219
5220 /// \brief Return false if the two expressions can be converted to a vector,
5221 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)5222 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
5223 ExprResult &RHS,
5224 QualType CondTy) {
5225 // Both operands should be of scalar type.
5226 if (!LHS.get()->getType()->isScalarType()) {
5227 S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5228 << CondTy;
5229 return true;
5230 }
5231 if (!RHS.get()->getType()->isScalarType()) {
5232 S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5233 << CondTy;
5234 return true;
5235 }
5236
5237 // Implicity convert these scalars to the type of the condition.
5238 LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
5239 RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
5240 return false;
5241 }
5242
5243 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)5244 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5245 ExprResult &RHS) {
5246 Expr *LHSExpr = LHS.get();
5247 Expr *RHSExpr = RHS.get();
5248
5249 if (!LHSExpr->getType()->isVoidType())
5250 S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5251 << RHSExpr->getSourceRange();
5252 if (!RHSExpr->getType()->isVoidType())
5253 S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5254 << LHSExpr->getSourceRange();
5255 LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
5256 RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
5257 return S.Context.VoidTy;
5258 }
5259
5260 /// \brief Return false if the NullExpr can be promoted to PointerTy,
5261 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)5262 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5263 QualType PointerTy) {
5264 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5265 !NullExpr.get()->isNullPointerConstant(S.Context,
5266 Expr::NPC_ValueDependentIsNull))
5267 return true;
5268
5269 NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
5270 return false;
5271 }
5272
5273 /// \brief Checks compatibility between two pointers and return the resulting
5274 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)5275 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5276 ExprResult &RHS,
5277 SourceLocation Loc) {
5278 QualType LHSTy = LHS.get()->getType();
5279 QualType RHSTy = RHS.get()->getType();
5280
5281 if (S.Context.hasSameType(LHSTy, RHSTy)) {
5282 // Two identical pointers types are always compatible.
5283 return LHSTy;
5284 }
5285
5286 QualType lhptee, rhptee;
5287
5288 // Get the pointee types.
5289 bool IsBlockPointer = false;
5290 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5291 lhptee = LHSBTy->getPointeeType();
5292 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5293 IsBlockPointer = true;
5294 } else {
5295 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5296 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5297 }
5298
5299 // C99 6.5.15p6: If both operands are pointers to compatible types or to
5300 // differently qualified versions of compatible types, the result type is
5301 // a pointer to an appropriately qualified version of the composite
5302 // type.
5303
5304 // Only CVR-qualifiers exist in the standard, and the differently-qualified
5305 // clause doesn't make sense for our extensions. E.g. address space 2 should
5306 // be incompatible with address space 3: they may live on different devices or
5307 // anything.
5308 Qualifiers lhQual = lhptee.getQualifiers();
5309 Qualifiers rhQual = rhptee.getQualifiers();
5310
5311 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5312 lhQual.removeCVRQualifiers();
5313 rhQual.removeCVRQualifiers();
5314
5315 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5316 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5317
5318 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5319
5320 if (CompositeTy.isNull()) {
5321 S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
5322 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5323 << RHS.get()->getSourceRange();
5324 // In this situation, we assume void* type. No especially good
5325 // reason, but this is what gcc does, and we do have to pick
5326 // to get a consistent AST.
5327 QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5328 LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5329 RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5330 return incompatTy;
5331 }
5332
5333 // The pointer types are compatible.
5334 QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5335 if (IsBlockPointer)
5336 ResultTy = S.Context.getBlockPointerType(ResultTy);
5337 else
5338 ResultTy = S.Context.getPointerType(ResultTy);
5339
5340 LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
5341 RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
5342 return ResultTy;
5343 }
5344
5345 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)5346 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5347 ExprResult &LHS,
5348 ExprResult &RHS,
5349 SourceLocation Loc) {
5350 QualType LHSTy = LHS.get()->getType();
5351 QualType RHSTy = RHS.get()->getType();
5352
5353 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5354 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5355 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5356 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5357 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5358 return destType;
5359 }
5360 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5361 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5362 << RHS.get()->getSourceRange();
5363 return QualType();
5364 }
5365
5366 // We have 2 block pointer types.
5367 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5368 }
5369
5370 /// \brief Return the resulting type when the operands are both pointers.
5371 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)5372 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
5373 ExprResult &RHS,
5374 SourceLocation Loc) {
5375 // get the pointer types
5376 QualType LHSTy = LHS.get()->getType();
5377 QualType RHSTy = RHS.get()->getType();
5378
5379 // get the "pointed to" types
5380 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5381 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5382
5383 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5384 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5385 // Figure out necessary qualifiers (C99 6.5.15p6)
5386 QualType destPointee
5387 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5388 QualType destType = S.Context.getPointerType(destPointee);
5389 // Add qualifiers if necessary.
5390 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5391 // Promote to void*.
5392 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5393 return destType;
5394 }
5395 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5396 QualType destPointee
5397 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5398 QualType destType = S.Context.getPointerType(destPointee);
5399 // Add qualifiers if necessary.
5400 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5401 // Promote to void*.
5402 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5403 return destType;
5404 }
5405
5406 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5407 }
5408
5409 /// \brief Return false if the first expression is not an integer and the second
5410 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)5411 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5412 Expr* PointerExpr, SourceLocation Loc,
5413 bool IsIntFirstExpr) {
5414 if (!PointerExpr->getType()->isPointerType() ||
5415 !Int.get()->getType()->isIntegerType())
5416 return false;
5417
5418 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5419 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5420
5421 S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5422 << Expr1->getType() << Expr2->getType()
5423 << Expr1->getSourceRange() << Expr2->getSourceRange();
5424 Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
5425 CK_IntegralToPointer);
5426 return true;
5427 }
5428
5429 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5430 /// In that case, LHS = cond.
5431 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)5432 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5433 ExprResult &RHS, ExprValueKind &VK,
5434 ExprObjectKind &OK,
5435 SourceLocation QuestionLoc) {
5436
5437 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5438 if (!LHSResult.isUsable()) return QualType();
5439 LHS = LHSResult;
5440
5441 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5442 if (!RHSResult.isUsable()) return QualType();
5443 RHS = RHSResult;
5444
5445 // C++ is sufficiently different to merit its own checker.
5446 if (getLangOpts().CPlusPlus)
5447 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5448
5449 VK = VK_RValue;
5450 OK = OK_Ordinary;
5451
5452 Cond = UsualUnaryConversions(Cond.take());
5453 if (Cond.isInvalid())
5454 return QualType();
5455 UsualArithmeticConversions(LHS, RHS);
5456 if (LHS.isInvalid() || RHS.isInvalid())
5457 return QualType();
5458
5459 QualType CondTy = Cond.get()->getType();
5460 QualType LHSTy = LHS.get()->getType();
5461 QualType RHSTy = RHS.get()->getType();
5462
5463 // first, check the condition.
5464 if (checkCondition(*this, Cond.get()))
5465 return QualType();
5466
5467 // Now check the two expressions.
5468 if (LHSTy->isVectorType() || RHSTy->isVectorType())
5469 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5470
5471 // If the condition is a vector, and both operands are scalar,
5472 // attempt to implicity convert them to the vector type to act like the
5473 // built in select. (OpenCL v1.1 s6.3.i)
5474 if (getLangOpts().OpenCL && CondTy->isVectorType())
5475 if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5476 return QualType();
5477
5478 // If both operands have arithmetic type, do the usual arithmetic conversions
5479 // to find a common type: C99 6.5.15p3,5.
5480 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType())
5481 return LHS.get()->getType();
5482
5483 // If both operands are the same structure or union type, the result is that
5484 // type.
5485 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
5486 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5487 if (LHSRT->getDecl() == RHSRT->getDecl())
5488 // "If both the operands have structure or union type, the result has
5489 // that type." This implies that CV qualifiers are dropped.
5490 return LHSTy.getUnqualifiedType();
5491 // FIXME: Type of conditional expression must be complete in C mode.
5492 }
5493
5494 // C99 6.5.15p5: "If both operands have void type, the result has void type."
5495 // The following || allows only one side to be void (a GCC-ism).
5496 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5497 return checkConditionalVoidType(*this, LHS, RHS);
5498 }
5499
5500 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5501 // the type of the other operand."
5502 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5503 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5504
5505 // All objective-c pointer type analysis is done here.
5506 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5507 QuestionLoc);
5508 if (LHS.isInvalid() || RHS.isInvalid())
5509 return QualType();
5510 if (!compositeType.isNull())
5511 return compositeType;
5512
5513
5514 // Handle block pointer types.
5515 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5516 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5517 QuestionLoc);
5518
5519 // Check constraints for C object pointers types (C99 6.5.15p3,6).
5520 if (LHSTy->isPointerType() && RHSTy->isPointerType())
5521 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5522 QuestionLoc);
5523
5524 // GCC compatibility: soften pointer/integer mismatch. Note that
5525 // null pointers have been filtered out by this point.
5526 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5527 /*isIntFirstExpr=*/true))
5528 return RHSTy;
5529 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5530 /*isIntFirstExpr=*/false))
5531 return LHSTy;
5532
5533 // Emit a better diagnostic if one of the expressions is a null pointer
5534 // constant and the other is not a pointer type. In this case, the user most
5535 // likely forgot to take the address of the other expression.
5536 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5537 return QualType();
5538
5539 // Otherwise, the operands are not compatible.
5540 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5541 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5542 << RHS.get()->getSourceRange();
5543 return QualType();
5544 }
5545
5546 /// FindCompositeObjCPointerType - Helper method to find composite type of
5547 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5548 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5549 SourceLocation QuestionLoc) {
5550 QualType LHSTy = LHS.get()->getType();
5551 QualType RHSTy = RHS.get()->getType();
5552
5553 // Handle things like Class and struct objc_class*. Here we case the result
5554 // to the pseudo-builtin, because that will be implicitly cast back to the
5555 // redefinition type if an attempt is made to access its fields.
5556 if (LHSTy->isObjCClassType() &&
5557 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5558 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5559 return LHSTy;
5560 }
5561 if (RHSTy->isObjCClassType() &&
5562 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5563 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5564 return RHSTy;
5565 }
5566 // And the same for struct objc_object* / id
5567 if (LHSTy->isObjCIdType() &&
5568 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5569 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5570 return LHSTy;
5571 }
5572 if (RHSTy->isObjCIdType() &&
5573 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5574 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5575 return RHSTy;
5576 }
5577 // And the same for struct objc_selector* / SEL
5578 if (Context.isObjCSelType(LHSTy) &&
5579 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5580 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5581 return LHSTy;
5582 }
5583 if (Context.isObjCSelType(RHSTy) &&
5584 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5585 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5586 return RHSTy;
5587 }
5588 // Check constraints for Objective-C object pointers types.
5589 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5590
5591 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5592 // Two identical object pointer types are always compatible.
5593 return LHSTy;
5594 }
5595 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5596 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5597 QualType compositeType = LHSTy;
5598
5599 // If both operands are interfaces and either operand can be
5600 // assigned to the other, use that type as the composite
5601 // type. This allows
5602 // xxx ? (A*) a : (B*) b
5603 // where B is a subclass of A.
5604 //
5605 // Additionally, as for assignment, if either type is 'id'
5606 // allow silent coercion. Finally, if the types are
5607 // incompatible then make sure to use 'id' as the composite
5608 // type so the result is acceptable for sending messages to.
5609
5610 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5611 // It could return the composite type.
5612 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5613 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5614 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5615 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5616 } else if ((LHSTy->isObjCQualifiedIdType() ||
5617 RHSTy->isObjCQualifiedIdType()) &&
5618 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5619 // Need to handle "id<xx>" explicitly.
5620 // GCC allows qualified id and any Objective-C type to devolve to
5621 // id. Currently localizing to here until clear this should be
5622 // part of ObjCQualifiedIdTypesAreCompatible.
5623 compositeType = Context.getObjCIdType();
5624 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5625 compositeType = Context.getObjCIdType();
5626 } else if (!(compositeType =
5627 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5628 ;
5629 else {
5630 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5631 << LHSTy << RHSTy
5632 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5633 QualType incompatTy = Context.getObjCIdType();
5634 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5635 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5636 return incompatTy;
5637 }
5638 // The object pointer types are compatible.
5639 LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5640 RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5641 return compositeType;
5642 }
5643 // Check Objective-C object pointer types and 'void *'
5644 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5645 if (getLangOpts().ObjCAutoRefCount) {
5646 // ARC forbids the implicit conversion of object pointers to 'void *',
5647 // so these types are not compatible.
5648 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5649 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5650 LHS = RHS = true;
5651 return QualType();
5652 }
5653 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5654 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5655 QualType destPointee
5656 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5657 QualType destType = Context.getPointerType(destPointee);
5658 // Add qualifiers if necessary.
5659 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5660 // Promote to void*.
5661 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5662 return destType;
5663 }
5664 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5665 if (getLangOpts().ObjCAutoRefCount) {
5666 // ARC forbids the implicit conversion of object pointers to 'void *',
5667 // so these types are not compatible.
5668 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5669 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5670 LHS = RHS = true;
5671 return QualType();
5672 }
5673 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5674 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5675 QualType destPointee
5676 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5677 QualType destType = Context.getPointerType(destPointee);
5678 // Add qualifiers if necessary.
5679 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5680 // Promote to void*.
5681 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5682 return destType;
5683 }
5684 return QualType();
5685 }
5686
5687 /// SuggestParentheses - Emit a note with a fixit hint that wraps
5688 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)5689 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5690 const PartialDiagnostic &Note,
5691 SourceRange ParenRange) {
5692 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5693 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5694 EndLoc.isValid()) {
5695 Self.Diag(Loc, Note)
5696 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5697 << FixItHint::CreateInsertion(EndLoc, ")");
5698 } else {
5699 // We can't display the parentheses, so just show the bare note.
5700 Self.Diag(Loc, Note) << ParenRange;
5701 }
5702 }
5703
IsArithmeticOp(BinaryOperatorKind Opc)5704 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5705 return Opc >= BO_Mul && Opc <= BO_Shr;
5706 }
5707
5708 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5709 /// expression, either using a built-in or overloaded operator,
5710 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5711 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)5712 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5713 Expr **RHSExprs) {
5714 // Don't strip parenthesis: we should not warn if E is in parenthesis.
5715 E = E->IgnoreImpCasts();
5716 E = E->IgnoreConversionOperator();
5717 E = E->IgnoreImpCasts();
5718
5719 // Built-in binary operator.
5720 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5721 if (IsArithmeticOp(OP->getOpcode())) {
5722 *Opcode = OP->getOpcode();
5723 *RHSExprs = OP->getRHS();
5724 return true;
5725 }
5726 }
5727
5728 // Overloaded operator.
5729 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5730 if (Call->getNumArgs() != 2)
5731 return false;
5732
5733 // Make sure this is really a binary operator that is safe to pass into
5734 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5735 OverloadedOperatorKind OO = Call->getOperator();
5736 if (OO < OO_Plus || OO > OO_Arrow ||
5737 OO == OO_PlusPlus || OO == OO_MinusMinus)
5738 return false;
5739
5740 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5741 if (IsArithmeticOp(OpKind)) {
5742 *Opcode = OpKind;
5743 *RHSExprs = Call->getArg(1);
5744 return true;
5745 }
5746 }
5747
5748 return false;
5749 }
5750
IsLogicOp(BinaryOperatorKind Opc)5751 static bool IsLogicOp(BinaryOperatorKind Opc) {
5752 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5753 }
5754
5755 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5756 /// or is a logical expression such as (x==y) which has int type, but is
5757 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5758 static bool ExprLooksBoolean(Expr *E) {
5759 E = E->IgnoreParenImpCasts();
5760
5761 if (E->getType()->isBooleanType())
5762 return true;
5763 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5764 return IsLogicOp(OP->getOpcode());
5765 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5766 return OP->getOpcode() == UO_LNot;
5767
5768 return false;
5769 }
5770
5771 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5772 /// and binary operator are mixed in a way that suggests the programmer assumed
5773 /// the conditional operator has higher precedence, for example:
5774 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5775 static void DiagnoseConditionalPrecedence(Sema &Self,
5776 SourceLocation OpLoc,
5777 Expr *Condition,
5778 Expr *LHSExpr,
5779 Expr *RHSExpr) {
5780 BinaryOperatorKind CondOpcode;
5781 Expr *CondRHS;
5782
5783 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5784 return;
5785 if (!ExprLooksBoolean(CondRHS))
5786 return;
5787
5788 // The condition is an arithmetic binary expression, with a right-
5789 // hand side that looks boolean, so warn.
5790
5791 Self.Diag(OpLoc, diag::warn_precedence_conditional)
5792 << Condition->getSourceRange()
5793 << BinaryOperator::getOpcodeStr(CondOpcode);
5794
5795 SuggestParentheses(Self, OpLoc,
5796 Self.PDiag(diag::note_precedence_silence)
5797 << BinaryOperator::getOpcodeStr(CondOpcode),
5798 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5799
5800 SuggestParentheses(Self, OpLoc,
5801 Self.PDiag(diag::note_precedence_conditional_first),
5802 SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5803 }
5804
5805 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5806 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5807 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5808 SourceLocation ColonLoc,
5809 Expr *CondExpr, Expr *LHSExpr,
5810 Expr *RHSExpr) {
5811 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5812 // was the condition.
5813 OpaqueValueExpr *opaqueValue = 0;
5814 Expr *commonExpr = 0;
5815 if (LHSExpr == 0) {
5816 commonExpr = CondExpr;
5817 // Lower out placeholder types first. This is important so that we don't
5818 // try to capture a placeholder. This happens in few cases in C++; such
5819 // as Objective-C++'s dictionary subscripting syntax.
5820 if (commonExpr->hasPlaceholderType()) {
5821 ExprResult result = CheckPlaceholderExpr(commonExpr);
5822 if (!result.isUsable()) return ExprError();
5823 commonExpr = result.take();
5824 }
5825 // We usually want to apply unary conversions *before* saving, except
5826 // in the special case of a C++ l-value conditional.
5827 if (!(getLangOpts().CPlusPlus
5828 && !commonExpr->isTypeDependent()
5829 && commonExpr->getValueKind() == RHSExpr->getValueKind()
5830 && commonExpr->isGLValue()
5831 && commonExpr->isOrdinaryOrBitFieldObject()
5832 && RHSExpr->isOrdinaryOrBitFieldObject()
5833 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5834 ExprResult commonRes = UsualUnaryConversions(commonExpr);
5835 if (commonRes.isInvalid())
5836 return ExprError();
5837 commonExpr = commonRes.take();
5838 }
5839
5840 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5841 commonExpr->getType(),
5842 commonExpr->getValueKind(),
5843 commonExpr->getObjectKind(),
5844 commonExpr);
5845 LHSExpr = CondExpr = opaqueValue;
5846 }
5847
5848 ExprValueKind VK = VK_RValue;
5849 ExprObjectKind OK = OK_Ordinary;
5850 ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5851 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5852 VK, OK, QuestionLoc);
5853 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5854 RHS.isInvalid())
5855 return ExprError();
5856
5857 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5858 RHS.get());
5859
5860 if (!commonExpr)
5861 return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5862 LHS.take(), ColonLoc,
5863 RHS.take(), result, VK, OK));
5864
5865 return Owned(new (Context)
5866 BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5867 RHS.take(), QuestionLoc, ColonLoc, result, VK,
5868 OK));
5869 }
5870
5871 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5872 // being closely modeled after the C99 spec:-). The odd characteristic of this
5873 // routine is it effectively iqnores the qualifiers on the top level pointee.
5874 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5875 // FIXME: add a couple examples in this comment.
5876 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5877 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5878 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5879 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5880
5881 // get the "pointed to" type (ignoring qualifiers at the top level)
5882 const Type *lhptee, *rhptee;
5883 Qualifiers lhq, rhq;
5884 llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5885 llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5886
5887 Sema::AssignConvertType ConvTy = Sema::Compatible;
5888
5889 // C99 6.5.16.1p1: This following citation is common to constraints
5890 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5891 // qualifiers of the type *pointed to* by the right;
5892 Qualifiers lq;
5893
5894 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5895 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5896 lhq.compatiblyIncludesObjCLifetime(rhq)) {
5897 // Ignore lifetime for further calculation.
5898 lhq.removeObjCLifetime();
5899 rhq.removeObjCLifetime();
5900 }
5901
5902 if (!lhq.compatiblyIncludes(rhq)) {
5903 // Treat address-space mismatches as fatal. TODO: address subspaces
5904 if (lhq.getAddressSpace() != rhq.getAddressSpace())
5905 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5906
5907 // It's okay to add or remove GC or lifetime qualifiers when converting to
5908 // and from void*.
5909 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5910 .compatiblyIncludes(
5911 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5912 && (lhptee->isVoidType() || rhptee->isVoidType()))
5913 ; // keep old
5914
5915 // Treat lifetime mismatches as fatal.
5916 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5917 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5918
5919 // For GCC compatibility, other qualifier mismatches are treated
5920 // as still compatible in C.
5921 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5922 }
5923
5924 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5925 // incomplete type and the other is a pointer to a qualified or unqualified
5926 // version of void...
5927 if (lhptee->isVoidType()) {
5928 if (rhptee->isIncompleteOrObjectType())
5929 return ConvTy;
5930
5931 // As an extension, we allow cast to/from void* to function pointer.
5932 assert(rhptee->isFunctionType());
5933 return Sema::FunctionVoidPointer;
5934 }
5935
5936 if (rhptee->isVoidType()) {
5937 if (lhptee->isIncompleteOrObjectType())
5938 return ConvTy;
5939
5940 // As an extension, we allow cast to/from void* to function pointer.
5941 assert(lhptee->isFunctionType());
5942 return Sema::FunctionVoidPointer;
5943 }
5944
5945 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5946 // unqualified versions of compatible types, ...
5947 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5948 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5949 // Check if the pointee types are compatible ignoring the sign.
5950 // We explicitly check for char so that we catch "char" vs
5951 // "unsigned char" on systems where "char" is unsigned.
5952 if (lhptee->isCharType())
5953 ltrans = S.Context.UnsignedCharTy;
5954 else if (lhptee->hasSignedIntegerRepresentation())
5955 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5956
5957 if (rhptee->isCharType())
5958 rtrans = S.Context.UnsignedCharTy;
5959 else if (rhptee->hasSignedIntegerRepresentation())
5960 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5961
5962 if (ltrans == rtrans) {
5963 // Types are compatible ignoring the sign. Qualifier incompatibility
5964 // takes priority over sign incompatibility because the sign
5965 // warning can be disabled.
5966 if (ConvTy != Sema::Compatible)
5967 return ConvTy;
5968
5969 return Sema::IncompatiblePointerSign;
5970 }
5971
5972 // If we are a multi-level pointer, it's possible that our issue is simply
5973 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5974 // the eventual target type is the same and the pointers have the same
5975 // level of indirection, this must be the issue.
5976 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5977 do {
5978 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5979 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5980 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5981
5982 if (lhptee == rhptee)
5983 return Sema::IncompatibleNestedPointerQualifiers;
5984 }
5985
5986 // General pointer incompatibility takes priority over qualifiers.
5987 return Sema::IncompatiblePointer;
5988 }
5989 if (!S.getLangOpts().CPlusPlus &&
5990 S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5991 return Sema::IncompatiblePointer;
5992 return ConvTy;
5993 }
5994
5995 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5996 /// block pointer types are compatible or whether a block and normal pointer
5997 /// are compatible. It is more restrict than comparing two function pointer
5998 // types.
5999 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)6000 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6001 QualType RHSType) {
6002 assert(LHSType.isCanonical() && "LHS not canonicalized!");
6003 assert(RHSType.isCanonical() && "RHS not canonicalized!");
6004
6005 QualType lhptee, rhptee;
6006
6007 // get the "pointed to" type (ignoring qualifiers at the top level)
6008 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6009 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6010
6011 // In C++, the types have to match exactly.
6012 if (S.getLangOpts().CPlusPlus)
6013 return Sema::IncompatibleBlockPointer;
6014
6015 Sema::AssignConvertType ConvTy = Sema::Compatible;
6016
6017 // For blocks we enforce that qualifiers are identical.
6018 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6019 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6020
6021 if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6022 return Sema::IncompatibleBlockPointer;
6023
6024 return ConvTy;
6025 }
6026
6027 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6028 /// for assignment compatibility.
6029 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)6030 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6031 QualType RHSType) {
6032 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6033 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6034
6035 if (LHSType->isObjCBuiltinType()) {
6036 // Class is not compatible with ObjC object pointers.
6037 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6038 !RHSType->isObjCQualifiedClassType())
6039 return Sema::IncompatiblePointer;
6040 return Sema::Compatible;
6041 }
6042 if (RHSType->isObjCBuiltinType()) {
6043 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6044 !LHSType->isObjCQualifiedClassType())
6045 return Sema::IncompatiblePointer;
6046 return Sema::Compatible;
6047 }
6048 QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6049 QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6050
6051 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6052 // make an exception for id<P>
6053 !LHSType->isObjCQualifiedIdType())
6054 return Sema::CompatiblePointerDiscardsQualifiers;
6055
6056 if (S.Context.typesAreCompatible(LHSType, RHSType))
6057 return Sema::Compatible;
6058 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6059 return Sema::IncompatibleObjCQualifiedId;
6060 return Sema::IncompatiblePointer;
6061 }
6062
6063 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)6064 Sema::CheckAssignmentConstraints(SourceLocation Loc,
6065 QualType LHSType, QualType RHSType) {
6066 // Fake up an opaque expression. We don't actually care about what
6067 // cast operations are required, so if CheckAssignmentConstraints
6068 // adds casts to this they'll be wasted, but fortunately that doesn't
6069 // usually happen on valid code.
6070 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6071 ExprResult RHSPtr = &RHSExpr;
6072 CastKind K = CK_Invalid;
6073
6074 return CheckAssignmentConstraints(LHSType, RHSPtr, K);
6075 }
6076
6077 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6078 /// has code to accommodate several GCC extensions when type checking
6079 /// pointers. Here are some objectionable examples that GCC considers warnings:
6080 ///
6081 /// int a, *pint;
6082 /// short *pshort;
6083 /// struct foo *pfoo;
6084 ///
6085 /// pint = pshort; // warning: assignment from incompatible pointer type
6086 /// a = pint; // warning: assignment makes integer from pointer without a cast
6087 /// pint = a; // warning: assignment makes pointer from integer without a cast
6088 /// pint = pfoo; // warning: assignment from incompatible pointer type
6089 ///
6090 /// As a result, the code for dealing with pointers is more complex than the
6091 /// C99 spec dictates.
6092 ///
6093 /// Sets 'Kind' for any result kind except Incompatible.
6094 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)6095 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6096 CastKind &Kind) {
6097 QualType RHSType = RHS.get()->getType();
6098 QualType OrigLHSType = LHSType;
6099
6100 // Get canonical types. We're not formatting these types, just comparing
6101 // them.
6102 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6103 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6104
6105 // Common case: no conversion required.
6106 if (LHSType == RHSType) {
6107 Kind = CK_NoOp;
6108 return Compatible;
6109 }
6110
6111 // If we have an atomic type, try a non-atomic assignment, then just add an
6112 // atomic qualification step.
6113 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6114 Sema::AssignConvertType result =
6115 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6116 if (result != Compatible)
6117 return result;
6118 if (Kind != CK_NoOp)
6119 RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
6120 Kind = CK_NonAtomicToAtomic;
6121 return Compatible;
6122 }
6123
6124 // If the left-hand side is a reference type, then we are in a
6125 // (rare!) case where we've allowed the use of references in C,
6126 // e.g., as a parameter type in a built-in function. In this case,
6127 // just make sure that the type referenced is compatible with the
6128 // right-hand side type. The caller is responsible for adjusting
6129 // LHSType so that the resulting expression does not have reference
6130 // type.
6131 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6132 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6133 Kind = CK_LValueBitCast;
6134 return Compatible;
6135 }
6136 return Incompatible;
6137 }
6138
6139 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6140 // to the same ExtVector type.
6141 if (LHSType->isExtVectorType()) {
6142 if (RHSType->isExtVectorType())
6143 return Incompatible;
6144 if (RHSType->isArithmeticType()) {
6145 // CK_VectorSplat does T -> vector T, so first cast to the
6146 // element type.
6147 QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6148 if (elType != RHSType) {
6149 Kind = PrepareScalarCast(RHS, elType);
6150 RHS = ImpCastExprToType(RHS.take(), elType, Kind);
6151 }
6152 Kind = CK_VectorSplat;
6153 return Compatible;
6154 }
6155 }
6156
6157 // Conversions to or from vector type.
6158 if (LHSType->isVectorType() || RHSType->isVectorType()) {
6159 if (LHSType->isVectorType() && RHSType->isVectorType()) {
6160 // Allow assignments of an AltiVec vector type to an equivalent GCC
6161 // vector type and vice versa
6162 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6163 Kind = CK_BitCast;
6164 return Compatible;
6165 }
6166
6167 // If we are allowing lax vector conversions, and LHS and RHS are both
6168 // vectors, the total size only needs to be the same. This is a bitcast;
6169 // no bits are changed but the result type is different.
6170 if (getLangOpts().LaxVectorConversions &&
6171 (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
6172 Kind = CK_BitCast;
6173 return IncompatibleVectors;
6174 }
6175 }
6176 return Incompatible;
6177 }
6178
6179 // Arithmetic conversions.
6180 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
6181 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
6182 Kind = PrepareScalarCast(RHS, LHSType);
6183 return Compatible;
6184 }
6185
6186 // Conversions to normal pointers.
6187 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
6188 // U* -> T*
6189 if (isa<PointerType>(RHSType)) {
6190 Kind = CK_BitCast;
6191 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
6192 }
6193
6194 // int -> T*
6195 if (RHSType->isIntegerType()) {
6196 Kind = CK_IntegralToPointer; // FIXME: null?
6197 return IntToPointer;
6198 }
6199
6200 // C pointers are not compatible with ObjC object pointers,
6201 // with two exceptions:
6202 if (isa<ObjCObjectPointerType>(RHSType)) {
6203 // - conversions to void*
6204 if (LHSPointer->getPointeeType()->isVoidType()) {
6205 Kind = CK_BitCast;
6206 return Compatible;
6207 }
6208
6209 // - conversions from 'Class' to the redefinition type
6210 if (RHSType->isObjCClassType() &&
6211 Context.hasSameType(LHSType,
6212 Context.getObjCClassRedefinitionType())) {
6213 Kind = CK_BitCast;
6214 return Compatible;
6215 }
6216
6217 Kind = CK_BitCast;
6218 return IncompatiblePointer;
6219 }
6220
6221 // U^ -> void*
6222 if (RHSType->getAs<BlockPointerType>()) {
6223 if (LHSPointer->getPointeeType()->isVoidType()) {
6224 Kind = CK_BitCast;
6225 return Compatible;
6226 }
6227 }
6228
6229 return Incompatible;
6230 }
6231
6232 // Conversions to block pointers.
6233 if (isa<BlockPointerType>(LHSType)) {
6234 // U^ -> T^
6235 if (RHSType->isBlockPointerType()) {
6236 Kind = CK_BitCast;
6237 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
6238 }
6239
6240 // int or null -> T^
6241 if (RHSType->isIntegerType()) {
6242 Kind = CK_IntegralToPointer; // FIXME: null
6243 return IntToBlockPointer;
6244 }
6245
6246 // id -> T^
6247 if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
6248 Kind = CK_AnyPointerToBlockPointerCast;
6249 return Compatible;
6250 }
6251
6252 // void* -> T^
6253 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
6254 if (RHSPT->getPointeeType()->isVoidType()) {
6255 Kind = CK_AnyPointerToBlockPointerCast;
6256 return Compatible;
6257 }
6258
6259 return Incompatible;
6260 }
6261
6262 // Conversions to Objective-C pointers.
6263 if (isa<ObjCObjectPointerType>(LHSType)) {
6264 // A* -> B*
6265 if (RHSType->isObjCObjectPointerType()) {
6266 Kind = CK_BitCast;
6267 Sema::AssignConvertType result =
6268 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
6269 if (getLangOpts().ObjCAutoRefCount &&
6270 result == Compatible &&
6271 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
6272 result = IncompatibleObjCWeakRef;
6273 return result;
6274 }
6275
6276 // int or null -> A*
6277 if (RHSType->isIntegerType()) {
6278 Kind = CK_IntegralToPointer; // FIXME: null
6279 return IntToPointer;
6280 }
6281
6282 // In general, C pointers are not compatible with ObjC object pointers,
6283 // with two exceptions:
6284 if (isa<PointerType>(RHSType)) {
6285 Kind = CK_CPointerToObjCPointerCast;
6286
6287 // - conversions from 'void*'
6288 if (RHSType->isVoidPointerType()) {
6289 return Compatible;
6290 }
6291
6292 // - conversions to 'Class' from its redefinition type
6293 if (LHSType->isObjCClassType() &&
6294 Context.hasSameType(RHSType,
6295 Context.getObjCClassRedefinitionType())) {
6296 return Compatible;
6297 }
6298
6299 return IncompatiblePointer;
6300 }
6301
6302 // T^ -> A*
6303 if (RHSType->isBlockPointerType()) {
6304 maybeExtendBlockObject(*this, RHS);
6305 Kind = CK_BlockPointerToObjCPointerCast;
6306 return Compatible;
6307 }
6308
6309 return Incompatible;
6310 }
6311
6312 // Conversions from pointers that are not covered by the above.
6313 if (isa<PointerType>(RHSType)) {
6314 // T* -> _Bool
6315 if (LHSType == Context.BoolTy) {
6316 Kind = CK_PointerToBoolean;
6317 return Compatible;
6318 }
6319
6320 // T* -> int
6321 if (LHSType->isIntegerType()) {
6322 Kind = CK_PointerToIntegral;
6323 return PointerToInt;
6324 }
6325
6326 return Incompatible;
6327 }
6328
6329 // Conversions from Objective-C pointers that are not covered by the above.
6330 if (isa<ObjCObjectPointerType>(RHSType)) {
6331 // T* -> _Bool
6332 if (LHSType == Context.BoolTy) {
6333 Kind = CK_PointerToBoolean;
6334 return Compatible;
6335 }
6336
6337 // T* -> int
6338 if (LHSType->isIntegerType()) {
6339 Kind = CK_PointerToIntegral;
6340 return PointerToInt;
6341 }
6342
6343 return Incompatible;
6344 }
6345
6346 // struct A -> struct B
6347 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
6348 if (Context.typesAreCompatible(LHSType, RHSType)) {
6349 Kind = CK_NoOp;
6350 return Compatible;
6351 }
6352 }
6353
6354 return Incompatible;
6355 }
6356
6357 /// \brief Constructs a transparent union from an expression that is
6358 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)6359 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
6360 ExprResult &EResult, QualType UnionType,
6361 FieldDecl *Field) {
6362 // Build an initializer list that designates the appropriate member
6363 // of the transparent union.
6364 Expr *E = EResult.take();
6365 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6366 E, SourceLocation());
6367 Initializer->setType(UnionType);
6368 Initializer->setInitializedFieldInUnion(Field);
6369
6370 // Build a compound literal constructing a value of the transparent
6371 // union type from this initializer list.
6372 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6373 EResult = S.Owned(
6374 new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6375 VK_RValue, Initializer, false));
6376 }
6377
6378 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)6379 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
6380 ExprResult &RHS) {
6381 QualType RHSType = RHS.get()->getType();
6382
6383 // If the ArgType is a Union type, we want to handle a potential
6384 // transparent_union GCC extension.
6385 const RecordType *UT = ArgType->getAsUnionType();
6386 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6387 return Incompatible;
6388
6389 // The field to initialize within the transparent union.
6390 RecordDecl *UD = UT->getDecl();
6391 FieldDecl *InitField = 0;
6392 // It's compatible if the expression matches any of the fields.
6393 for (RecordDecl::field_iterator it = UD->field_begin(),
6394 itend = UD->field_end();
6395 it != itend; ++it) {
6396 if (it->getType()->isPointerType()) {
6397 // If the transparent union contains a pointer type, we allow:
6398 // 1) void pointer
6399 // 2) null pointer constant
6400 if (RHSType->isPointerType())
6401 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6402 RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
6403 InitField = *it;
6404 break;
6405 }
6406
6407 if (RHS.get()->isNullPointerConstant(Context,
6408 Expr::NPC_ValueDependentIsNull)) {
6409 RHS = ImpCastExprToType(RHS.take(), it->getType(),
6410 CK_NullToPointer);
6411 InitField = *it;
6412 break;
6413 }
6414 }
6415
6416 CastKind Kind = CK_Invalid;
6417 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6418 == Compatible) {
6419 RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
6420 InitField = *it;
6421 break;
6422 }
6423 }
6424
6425 if (!InitField)
6426 return Incompatible;
6427
6428 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6429 return Compatible;
6430 }
6431
6432 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose,bool DiagnoseCFAudited)6433 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6434 bool Diagnose,
6435 bool DiagnoseCFAudited) {
6436 if (getLangOpts().CPlusPlus) {
6437 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6438 // C++ 5.17p3: If the left operand is not of class type, the
6439 // expression is implicitly converted (C++ 4) to the
6440 // cv-unqualified type of the left operand.
6441 ExprResult Res;
6442 if (Diagnose) {
6443 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6444 AA_Assigning);
6445 } else {
6446 ImplicitConversionSequence ICS =
6447 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6448 /*SuppressUserConversions=*/false,
6449 /*AllowExplicit=*/false,
6450 /*InOverloadResolution=*/false,
6451 /*CStyle=*/false,
6452 /*AllowObjCWritebackConversion=*/false);
6453 if (ICS.isFailure())
6454 return Incompatible;
6455 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6456 ICS, AA_Assigning);
6457 }
6458 if (Res.isInvalid())
6459 return Incompatible;
6460 Sema::AssignConvertType result = Compatible;
6461 if (getLangOpts().ObjCAutoRefCount &&
6462 !CheckObjCARCUnavailableWeakConversion(LHSType,
6463 RHS.get()->getType()))
6464 result = IncompatibleObjCWeakRef;
6465 RHS = Res;
6466 return result;
6467 }
6468
6469 // FIXME: Currently, we fall through and treat C++ classes like C
6470 // structures.
6471 // FIXME: We also fall through for atomics; not sure what should
6472 // happen there, though.
6473 }
6474
6475 // C99 6.5.16.1p1: the left operand is a pointer and the right is
6476 // a null pointer constant.
6477 if ((LHSType->isPointerType() ||
6478 LHSType->isObjCObjectPointerType() ||
6479 LHSType->isBlockPointerType())
6480 && RHS.get()->isNullPointerConstant(Context,
6481 Expr::NPC_ValueDependentIsNull)) {
6482 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6483 return Compatible;
6484 }
6485
6486 // This check seems unnatural, however it is necessary to ensure the proper
6487 // conversion of functions/arrays. If the conversion were done for all
6488 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6489 // expressions that suppress this implicit conversion (&, sizeof).
6490 //
6491 // Suppress this for references: C++ 8.5.3p5.
6492 if (!LHSType->isReferenceType()) {
6493 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6494 if (RHS.isInvalid())
6495 return Incompatible;
6496 }
6497
6498 CastKind Kind = CK_Invalid;
6499 Sema::AssignConvertType result =
6500 CheckAssignmentConstraints(LHSType, RHS, Kind);
6501
6502 // C99 6.5.16.1p2: The value of the right operand is converted to the
6503 // type of the assignment expression.
6504 // CheckAssignmentConstraints allows the left-hand side to be a reference,
6505 // so that we can use references in built-in functions even in C.
6506 // The getNonReferenceType() call makes sure that the resulting expression
6507 // does not have reference type.
6508 if (result != Incompatible && RHS.get()->getType() != LHSType) {
6509 QualType Ty = LHSType.getNonLValueExprType(Context);
6510 Expr *E = RHS.take();
6511 if (getLangOpts().ObjCAutoRefCount)
6512 CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
6513 DiagnoseCFAudited);
6514 RHS = ImpCastExprToType(E, Ty, Kind);
6515 }
6516 return result;
6517 }
6518
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6519 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6520 ExprResult &RHS) {
6521 Diag(Loc, diag::err_typecheck_invalid_operands)
6522 << LHS.get()->getType() << RHS.get()->getType()
6523 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6524 return QualType();
6525 }
6526
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6527 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6528 SourceLocation Loc, bool IsCompAssign) {
6529 if (!IsCompAssign) {
6530 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6531 if (LHS.isInvalid())
6532 return QualType();
6533 }
6534 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6535 if (RHS.isInvalid())
6536 return QualType();
6537
6538 // For conversion purposes, we ignore any qualifiers.
6539 // For example, "const float" and "float" are equivalent.
6540 QualType LHSType =
6541 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6542 QualType RHSType =
6543 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6544
6545 // If the vector types are identical, return.
6546 if (LHSType == RHSType)
6547 return LHSType;
6548
6549 // Handle the case of equivalent AltiVec and GCC vector types
6550 if (LHSType->isVectorType() && RHSType->isVectorType() &&
6551 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6552 if (LHSType->isExtVectorType()) {
6553 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6554 return LHSType;
6555 }
6556
6557 if (!IsCompAssign)
6558 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6559 return RHSType;
6560 }
6561
6562 if (getLangOpts().LaxVectorConversions &&
6563 Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6564 // If we are allowing lax vector conversions, and LHS and RHS are both
6565 // vectors, the total size only needs to be the same. This is a
6566 // bitcast; no bits are changed but the result type is different.
6567 // FIXME: Should we really be allowing this?
6568 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6569 return LHSType;
6570 }
6571
6572 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6573 // swap back (so that we don't reverse the inputs to a subtract, for instance.
6574 bool swapped = false;
6575 if (RHSType->isExtVectorType() && !IsCompAssign) {
6576 swapped = true;
6577 std::swap(RHS, LHS);
6578 std::swap(RHSType, LHSType);
6579 }
6580
6581 // Handle the case of an ext vector and scalar.
6582 if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6583 QualType EltTy = LV->getElementType();
6584 if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6585 int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6586 if (order > 0)
6587 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6588 if (order >= 0) {
6589 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6590 if (swapped) std::swap(RHS, LHS);
6591 return LHSType;
6592 }
6593 }
6594 if (EltTy->isRealFloatingType() && RHSType->isScalarType()) {
6595 if (RHSType->isRealFloatingType()) {
6596 int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6597 if (order > 0)
6598 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6599 if (order >= 0) {
6600 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6601 if (swapped) std::swap(RHS, LHS);
6602 return LHSType;
6603 }
6604 }
6605 if (RHSType->isIntegralType(Context)) {
6606 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralToFloating);
6607 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6608 if (swapped) std::swap(RHS, LHS);
6609 return LHSType;
6610 }
6611 }
6612 }
6613
6614 // Vectors of different size or scalar and non-ext-vector are errors.
6615 if (swapped) std::swap(RHS, LHS);
6616 Diag(Loc, diag::err_typecheck_vector_not_convertable)
6617 << LHS.get()->getType() << RHS.get()->getType()
6618 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6619 return QualType();
6620 }
6621
6622 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
6623 // expression. These are mainly cases where the null pointer is used as an
6624 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)6625 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6626 SourceLocation Loc, bool IsCompare) {
6627 // The canonical way to check for a GNU null is with isNullPointerConstant,
6628 // but we use a bit of a hack here for speed; this is a relatively
6629 // hot path, and isNullPointerConstant is slow.
6630 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6631 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6632
6633 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6634
6635 // Avoid analyzing cases where the result will either be invalid (and
6636 // diagnosed as such) or entirely valid and not something to warn about.
6637 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6638 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6639 return;
6640
6641 // Comparison operations would not make sense with a null pointer no matter
6642 // what the other expression is.
6643 if (!IsCompare) {
6644 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6645 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6646 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6647 return;
6648 }
6649
6650 // The rest of the operations only make sense with a null pointer
6651 // if the other expression is a pointer.
6652 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6653 NonNullType->canDecayToPointerType())
6654 return;
6655
6656 S.Diag(Loc, diag::warn_null_in_comparison_operation)
6657 << LHSNull /* LHS is NULL */ << NonNullType
6658 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6659 }
6660
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)6661 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6662 SourceLocation Loc,
6663 bool IsCompAssign, bool IsDiv) {
6664 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6665
6666 if (LHS.get()->getType()->isVectorType() ||
6667 RHS.get()->getType()->isVectorType())
6668 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6669
6670 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6671 if (LHS.isInvalid() || RHS.isInvalid())
6672 return QualType();
6673
6674
6675 if (compType.isNull() || !compType->isArithmeticType())
6676 return InvalidOperands(Loc, LHS, RHS);
6677
6678 // Check for division by zero.
6679 llvm::APSInt RHSValue;
6680 if (IsDiv && !RHS.get()->isValueDependent() &&
6681 RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
6682 DiagRuntimeBehavior(Loc, RHS.get(),
6683 PDiag(diag::warn_division_by_zero)
6684 << RHS.get()->getSourceRange());
6685
6686 return compType;
6687 }
6688
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6689 QualType Sema::CheckRemainderOperands(
6690 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6691 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6692
6693 if (LHS.get()->getType()->isVectorType() ||
6694 RHS.get()->getType()->isVectorType()) {
6695 if (LHS.get()->getType()->hasIntegerRepresentation() &&
6696 RHS.get()->getType()->hasIntegerRepresentation())
6697 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6698 return InvalidOperands(Loc, LHS, RHS);
6699 }
6700
6701 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6702 if (LHS.isInvalid() || RHS.isInvalid())
6703 return QualType();
6704
6705 if (compType.isNull() || !compType->isIntegerType())
6706 return InvalidOperands(Loc, LHS, RHS);
6707
6708 // Check for remainder by zero.
6709 llvm::APSInt RHSValue;
6710 if (!RHS.get()->isValueDependent() &&
6711 RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
6712 DiagRuntimeBehavior(Loc, RHS.get(),
6713 PDiag(diag::warn_remainder_by_zero)
6714 << RHS.get()->getSourceRange());
6715
6716 return compType;
6717 }
6718
6719 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6720 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6721 Expr *LHSExpr, Expr *RHSExpr) {
6722 S.Diag(Loc, S.getLangOpts().CPlusPlus
6723 ? diag::err_typecheck_pointer_arith_void_type
6724 : diag::ext_gnu_void_ptr)
6725 << 1 /* two pointers */ << LHSExpr->getSourceRange()
6726 << RHSExpr->getSourceRange();
6727 }
6728
6729 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6730 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6731 Expr *Pointer) {
6732 S.Diag(Loc, S.getLangOpts().CPlusPlus
6733 ? diag::err_typecheck_pointer_arith_void_type
6734 : diag::ext_gnu_void_ptr)
6735 << 0 /* one pointer */ << Pointer->getSourceRange();
6736 }
6737
6738 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6739 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6740 Expr *LHS, Expr *RHS) {
6741 assert(LHS->getType()->isAnyPointerType());
6742 assert(RHS->getType()->isAnyPointerType());
6743 S.Diag(Loc, S.getLangOpts().CPlusPlus
6744 ? diag::err_typecheck_pointer_arith_function_type
6745 : diag::ext_gnu_ptr_func_arith)
6746 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6747 // We only show the second type if it differs from the first.
6748 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6749 RHS->getType())
6750 << RHS->getType()->getPointeeType()
6751 << LHS->getSourceRange() << RHS->getSourceRange();
6752 }
6753
6754 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6755 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6756 Expr *Pointer) {
6757 assert(Pointer->getType()->isAnyPointerType());
6758 S.Diag(Loc, S.getLangOpts().CPlusPlus
6759 ? diag::err_typecheck_pointer_arith_function_type
6760 : diag::ext_gnu_ptr_func_arith)
6761 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6762 << 0 /* one pointer, so only one type */
6763 << Pointer->getSourceRange();
6764 }
6765
6766 /// \brief Emit error if Operand is incomplete pointer type
6767 ///
6768 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6769 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6770 Expr *Operand) {
6771 assert(Operand->getType()->isAnyPointerType() &&
6772 !Operand->getType()->isDependentType());
6773 QualType PointeeTy = Operand->getType()->getPointeeType();
6774 return S.RequireCompleteType(Loc, PointeeTy,
6775 diag::err_typecheck_arithmetic_incomplete_type,
6776 PointeeTy, Operand->getSourceRange());
6777 }
6778
6779 /// \brief Check the validity of an arithmetic pointer operand.
6780 ///
6781 /// If the operand has pointer type, this code will check for pointer types
6782 /// which are invalid in arithmetic operations. These will be diagnosed
6783 /// appropriately, including whether or not the use is supported as an
6784 /// extension.
6785 ///
6786 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6787 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6788 Expr *Operand) {
6789 if (!Operand->getType()->isAnyPointerType()) return true;
6790
6791 QualType PointeeTy = Operand->getType()->getPointeeType();
6792 if (PointeeTy->isVoidType()) {
6793 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6794 return !S.getLangOpts().CPlusPlus;
6795 }
6796 if (PointeeTy->isFunctionType()) {
6797 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6798 return !S.getLangOpts().CPlusPlus;
6799 }
6800
6801 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6802
6803 return true;
6804 }
6805
6806 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6807 /// operands.
6808 ///
6809 /// This routine will diagnose any invalid arithmetic on pointer operands much
6810 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6811 /// for emitting a single diagnostic even for operations where both LHS and RHS
6812 /// are (potentially problematic) pointers.
6813 ///
6814 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6815 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6816 Expr *LHSExpr, Expr *RHSExpr) {
6817 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6818 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6819 if (!isLHSPointer && !isRHSPointer) return true;
6820
6821 QualType LHSPointeeTy, RHSPointeeTy;
6822 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6823 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6824
6825 // Check for arithmetic on pointers to incomplete types.
6826 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6827 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6828 if (isLHSVoidPtr || isRHSVoidPtr) {
6829 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6830 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6831 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6832
6833 return !S.getLangOpts().CPlusPlus;
6834 }
6835
6836 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6837 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6838 if (isLHSFuncPtr || isRHSFuncPtr) {
6839 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6840 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6841 RHSExpr);
6842 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6843
6844 return !S.getLangOpts().CPlusPlus;
6845 }
6846
6847 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6848 return false;
6849 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6850 return false;
6851
6852 return true;
6853 }
6854
6855 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6856 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6857 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6858 Expr *LHSExpr, Expr *RHSExpr) {
6859 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6860 Expr* IndexExpr = RHSExpr;
6861 if (!StrExpr) {
6862 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6863 IndexExpr = LHSExpr;
6864 }
6865
6866 bool IsStringPlusInt = StrExpr &&
6867 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6868 if (!IsStringPlusInt)
6869 return;
6870
6871 llvm::APSInt index;
6872 if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6873 unsigned StrLenWithNull = StrExpr->getLength() + 1;
6874 if (index.isNonNegative() &&
6875 index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6876 index.isUnsigned()))
6877 return;
6878 }
6879
6880 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6881 Self.Diag(OpLoc, diag::warn_string_plus_int)
6882 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6883
6884 // Only print a fixit for "str" + int, not for int + "str".
6885 if (IndexExpr == RHSExpr) {
6886 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6887 Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6888 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6889 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6890 << FixItHint::CreateInsertion(EndLoc, "]");
6891 } else
6892 Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6893 }
6894
6895 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6896 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6897 Expr *LHSExpr, Expr *RHSExpr) {
6898 assert(LHSExpr->getType()->isAnyPointerType());
6899 assert(RHSExpr->getType()->isAnyPointerType());
6900 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6901 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6902 << RHSExpr->getSourceRange();
6903 }
6904
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6905 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6906 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6907 QualType* CompLHSTy) {
6908 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6909
6910 if (LHS.get()->getType()->isVectorType() ||
6911 RHS.get()->getType()->isVectorType()) {
6912 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6913 if (CompLHSTy) *CompLHSTy = compType;
6914 return compType;
6915 }
6916
6917 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6918 if (LHS.isInvalid() || RHS.isInvalid())
6919 return QualType();
6920
6921 // Diagnose "string literal" '+' int.
6922 if (Opc == BO_Add)
6923 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6924
6925 // handle the common case first (both operands are arithmetic).
6926 if (!compType.isNull() && compType->isArithmeticType()) {
6927 if (CompLHSTy) *CompLHSTy = compType;
6928 return compType;
6929 }
6930
6931 // Type-checking. Ultimately the pointer's going to be in PExp;
6932 // note that we bias towards the LHS being the pointer.
6933 Expr *PExp = LHS.get(), *IExp = RHS.get();
6934
6935 bool isObjCPointer;
6936 if (PExp->getType()->isPointerType()) {
6937 isObjCPointer = false;
6938 } else if (PExp->getType()->isObjCObjectPointerType()) {
6939 isObjCPointer = true;
6940 } else {
6941 std::swap(PExp, IExp);
6942 if (PExp->getType()->isPointerType()) {
6943 isObjCPointer = false;
6944 } else if (PExp->getType()->isObjCObjectPointerType()) {
6945 isObjCPointer = true;
6946 } else {
6947 return InvalidOperands(Loc, LHS, RHS);
6948 }
6949 }
6950 assert(PExp->getType()->isAnyPointerType());
6951
6952 if (!IExp->getType()->isIntegerType())
6953 return InvalidOperands(Loc, LHS, RHS);
6954
6955 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6956 return QualType();
6957
6958 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6959 return QualType();
6960
6961 // Check array bounds for pointer arithemtic
6962 CheckArrayAccess(PExp, IExp);
6963
6964 if (CompLHSTy) {
6965 QualType LHSTy = Context.isPromotableBitField(LHS.get());
6966 if (LHSTy.isNull()) {
6967 LHSTy = LHS.get()->getType();
6968 if (LHSTy->isPromotableIntegerType())
6969 LHSTy = Context.getPromotedIntegerType(LHSTy);
6970 }
6971 *CompLHSTy = LHSTy;
6972 }
6973
6974 return PExp->getType();
6975 }
6976
6977 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6978 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6979 SourceLocation Loc,
6980 QualType* CompLHSTy) {
6981 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6982
6983 if (LHS.get()->getType()->isVectorType() ||
6984 RHS.get()->getType()->isVectorType()) {
6985 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6986 if (CompLHSTy) *CompLHSTy = compType;
6987 return compType;
6988 }
6989
6990 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6991 if (LHS.isInvalid() || RHS.isInvalid())
6992 return QualType();
6993
6994 // Enforce type constraints: C99 6.5.6p3.
6995
6996 // Handle the common case first (both operands are arithmetic).
6997 if (!compType.isNull() && compType->isArithmeticType()) {
6998 if (CompLHSTy) *CompLHSTy = compType;
6999 return compType;
7000 }
7001
7002 // Either ptr - int or ptr - ptr.
7003 if (LHS.get()->getType()->isAnyPointerType()) {
7004 QualType lpointee = LHS.get()->getType()->getPointeeType();
7005
7006 // Diagnose bad cases where we step over interface counts.
7007 if (LHS.get()->getType()->isObjCObjectPointerType() &&
7008 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
7009 return QualType();
7010
7011 // The result type of a pointer-int computation is the pointer type.
7012 if (RHS.get()->getType()->isIntegerType()) {
7013 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
7014 return QualType();
7015
7016 // Check array bounds for pointer arithemtic
7017 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
7018 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
7019
7020 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7021 return LHS.get()->getType();
7022 }
7023
7024 // Handle pointer-pointer subtractions.
7025 if (const PointerType *RHSPTy
7026 = RHS.get()->getType()->getAs<PointerType>()) {
7027 QualType rpointee = RHSPTy->getPointeeType();
7028
7029 if (getLangOpts().CPlusPlus) {
7030 // Pointee types must be the same: C++ [expr.add]
7031 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
7032 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7033 }
7034 } else {
7035 // Pointee types must be compatible C99 6.5.6p3
7036 if (!Context.typesAreCompatible(
7037 Context.getCanonicalType(lpointee).getUnqualifiedType(),
7038 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
7039 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7040 return QualType();
7041 }
7042 }
7043
7044 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
7045 LHS.get(), RHS.get()))
7046 return QualType();
7047
7048 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7049 return Context.getPointerDiffType();
7050 }
7051 }
7052
7053 return InvalidOperands(Loc, LHS, RHS);
7054 }
7055
isScopedEnumerationType(QualType T)7056 static bool isScopedEnumerationType(QualType T) {
7057 if (const EnumType *ET = dyn_cast<EnumType>(T))
7058 return ET->getDecl()->isScoped();
7059 return false;
7060 }
7061
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)7062 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
7063 SourceLocation Loc, unsigned Opc,
7064 QualType LHSType) {
7065 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
7066 // so skip remaining warnings as we don't want to modify values within Sema.
7067 if (S.getLangOpts().OpenCL)
7068 return;
7069
7070 llvm::APSInt Right;
7071 // Check right/shifter operand
7072 if (RHS.get()->isValueDependent() ||
7073 !RHS.get()->isIntegerConstantExpr(Right, S.Context))
7074 return;
7075
7076 if (Right.isNegative()) {
7077 S.DiagRuntimeBehavior(Loc, RHS.get(),
7078 S.PDiag(diag::warn_shift_negative)
7079 << RHS.get()->getSourceRange());
7080 return;
7081 }
7082 llvm::APInt LeftBits(Right.getBitWidth(),
7083 S.Context.getTypeSize(LHS.get()->getType()));
7084 if (Right.uge(LeftBits)) {
7085 S.DiagRuntimeBehavior(Loc, RHS.get(),
7086 S.PDiag(diag::warn_shift_gt_typewidth)
7087 << RHS.get()->getSourceRange());
7088 return;
7089 }
7090 if (Opc != BO_Shl)
7091 return;
7092
7093 // When left shifting an ICE which is signed, we can check for overflow which
7094 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
7095 // integers have defined behavior modulo one more than the maximum value
7096 // representable in the result type, so never warn for those.
7097 llvm::APSInt Left;
7098 if (LHS.get()->isValueDependent() ||
7099 !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
7100 LHSType->hasUnsignedIntegerRepresentation())
7101 return;
7102 llvm::APInt ResultBits =
7103 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
7104 if (LeftBits.uge(ResultBits))
7105 return;
7106 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
7107 Result = Result.shl(Right);
7108
7109 // Print the bit representation of the signed integer as an unsigned
7110 // hexadecimal number.
7111 SmallString<40> HexResult;
7112 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
7113
7114 // If we are only missing a sign bit, this is less likely to result in actual
7115 // bugs -- if the result is cast back to an unsigned type, it will have the
7116 // expected value. Thus we place this behind a different warning that can be
7117 // turned off separately if needed.
7118 if (LeftBits == ResultBits - 1) {
7119 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
7120 << HexResult.str() << LHSType
7121 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7122 return;
7123 }
7124
7125 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
7126 << HexResult.str() << Result.getMinSignedBits() << LHSType
7127 << Left.getBitWidth() << LHS.get()->getSourceRange()
7128 << RHS.get()->getSourceRange();
7129 }
7130
7131 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)7132 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
7133 SourceLocation Loc, unsigned Opc,
7134 bool IsCompAssign) {
7135 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7136
7137 // Vector shifts promote their scalar inputs to vector type.
7138 if (LHS.get()->getType()->isVectorType() ||
7139 RHS.get()->getType()->isVectorType())
7140 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7141
7142 // Shifts don't perform usual arithmetic conversions, they just do integer
7143 // promotions on each operand. C99 6.5.7p3
7144
7145 // For the LHS, do usual unary conversions, but then reset them away
7146 // if this is a compound assignment.
7147 ExprResult OldLHS = LHS;
7148 LHS = UsualUnaryConversions(LHS.take());
7149 if (LHS.isInvalid())
7150 return QualType();
7151 QualType LHSType = LHS.get()->getType();
7152 if (IsCompAssign) LHS = OldLHS;
7153
7154 // The RHS is simpler.
7155 RHS = UsualUnaryConversions(RHS.take());
7156 if (RHS.isInvalid())
7157 return QualType();
7158 QualType RHSType = RHS.get()->getType();
7159
7160 // C99 6.5.7p2: Each of the operands shall have integer type.
7161 if (!LHSType->hasIntegerRepresentation() ||
7162 !RHSType->hasIntegerRepresentation())
7163 return InvalidOperands(Loc, LHS, RHS);
7164
7165 // C++0x: Don't allow scoped enums. FIXME: Use something better than
7166 // hasIntegerRepresentation() above instead of this.
7167 if (isScopedEnumerationType(LHSType) ||
7168 isScopedEnumerationType(RHSType)) {
7169 return InvalidOperands(Loc, LHS, RHS);
7170 }
7171 // Sanity-check shift operands
7172 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
7173
7174 // "The type of the result is that of the promoted left operand."
7175 return LHSType;
7176 }
7177
IsWithinTemplateSpecialization(Decl * D)7178 static bool IsWithinTemplateSpecialization(Decl *D) {
7179 if (DeclContext *DC = D->getDeclContext()) {
7180 if (isa<ClassTemplateSpecializationDecl>(DC))
7181 return true;
7182 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
7183 return FD->isFunctionTemplateSpecialization();
7184 }
7185 return false;
7186 }
7187
7188 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)7189 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
7190 Expr *RHS) {
7191 QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
7192 QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
7193
7194 const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
7195 if (!LHSEnumType)
7196 return;
7197 const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
7198 if (!RHSEnumType)
7199 return;
7200
7201 // Ignore anonymous enums.
7202 if (!LHSEnumType->getDecl()->getIdentifier())
7203 return;
7204 if (!RHSEnumType->getDecl()->getIdentifier())
7205 return;
7206
7207 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
7208 return;
7209
7210 S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
7211 << LHSStrippedType << RHSStrippedType
7212 << LHS->getSourceRange() << RHS->getSourceRange();
7213 }
7214
7215 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)7216 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
7217 ExprResult &LHS, ExprResult &RHS,
7218 bool IsError) {
7219 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
7220 : diag::ext_typecheck_comparison_of_distinct_pointers)
7221 << LHS.get()->getType() << RHS.get()->getType()
7222 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7223 }
7224
7225 /// \brief Returns false if the pointers are converted to a composite type,
7226 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)7227 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
7228 ExprResult &LHS, ExprResult &RHS) {
7229 // C++ [expr.rel]p2:
7230 // [...] Pointer conversions (4.10) and qualification
7231 // conversions (4.4) are performed on pointer operands (or on
7232 // a pointer operand and a null pointer constant) to bring
7233 // them to their composite pointer type. [...]
7234 //
7235 // C++ [expr.eq]p1 uses the same notion for (in)equality
7236 // comparisons of pointers.
7237
7238 // C++ [expr.eq]p2:
7239 // In addition, pointers to members can be compared, or a pointer to
7240 // member and a null pointer constant. Pointer to member conversions
7241 // (4.11) and qualification conversions (4.4) are performed to bring
7242 // them to a common type. If one operand is a null pointer constant,
7243 // the common type is the type of the other operand. Otherwise, the
7244 // common type is a pointer to member type similar (4.4) to the type
7245 // of one of the operands, with a cv-qualification signature (4.4)
7246 // that is the union of the cv-qualification signatures of the operand
7247 // types.
7248
7249 QualType LHSType = LHS.get()->getType();
7250 QualType RHSType = RHS.get()->getType();
7251 assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
7252 (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
7253
7254 bool NonStandardCompositeType = false;
7255 bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
7256 QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
7257 if (T.isNull()) {
7258 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
7259 return true;
7260 }
7261
7262 if (NonStandardCompositeType)
7263 S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7264 << LHSType << RHSType << T << LHS.get()->getSourceRange()
7265 << RHS.get()->getSourceRange();
7266
7267 LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
7268 RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
7269 return false;
7270 }
7271
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)7272 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
7273 ExprResult &LHS,
7274 ExprResult &RHS,
7275 bool IsError) {
7276 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
7277 : diag::ext_typecheck_comparison_of_fptr_to_void)
7278 << LHS.get()->getType() << RHS.get()->getType()
7279 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7280 }
7281
isObjCObjectLiteral(ExprResult & E)7282 static bool isObjCObjectLiteral(ExprResult &E) {
7283 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
7284 case Stmt::ObjCArrayLiteralClass:
7285 case Stmt::ObjCDictionaryLiteralClass:
7286 case Stmt::ObjCStringLiteralClass:
7287 case Stmt::ObjCBoxedExprClass:
7288 return true;
7289 default:
7290 // Note that ObjCBoolLiteral is NOT an object literal!
7291 return false;
7292 }
7293 }
7294
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)7295 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
7296 const ObjCObjectPointerType *Type =
7297 LHS->getType()->getAs<ObjCObjectPointerType>();
7298
7299 // If this is not actually an Objective-C object, bail out.
7300 if (!Type)
7301 return false;
7302
7303 // Get the LHS object's interface type.
7304 QualType InterfaceType = Type->getPointeeType();
7305 if (const ObjCObjectType *iQFaceTy =
7306 InterfaceType->getAsObjCQualifiedInterfaceType())
7307 InterfaceType = iQFaceTy->getBaseType();
7308
7309 // If the RHS isn't an Objective-C object, bail out.
7310 if (!RHS->getType()->isObjCObjectPointerType())
7311 return false;
7312
7313 // Try to find the -isEqual: method.
7314 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
7315 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
7316 InterfaceType,
7317 /*instance=*/true);
7318 if (!Method) {
7319 if (Type->isObjCIdType()) {
7320 // For 'id', just check the global pool.
7321 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
7322 /*receiverId=*/true,
7323 /*warn=*/false);
7324 } else {
7325 // Check protocols.
7326 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
7327 /*instance=*/true);
7328 }
7329 }
7330
7331 if (!Method)
7332 return false;
7333
7334 QualType T = Method->param_begin()[0]->getType();
7335 if (!T->isObjCObjectPointerType())
7336 return false;
7337
7338 QualType R = Method->getResultType();
7339 if (!R->isScalarType())
7340 return false;
7341
7342 return true;
7343 }
7344
CheckLiteralKind(Expr * FromE)7345 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
7346 FromE = FromE->IgnoreParenImpCasts();
7347 switch (FromE->getStmtClass()) {
7348 default:
7349 break;
7350 case Stmt::ObjCStringLiteralClass:
7351 // "string literal"
7352 return LK_String;
7353 case Stmt::ObjCArrayLiteralClass:
7354 // "array literal"
7355 return LK_Array;
7356 case Stmt::ObjCDictionaryLiteralClass:
7357 // "dictionary literal"
7358 return LK_Dictionary;
7359 case Stmt::BlockExprClass:
7360 return LK_Block;
7361 case Stmt::ObjCBoxedExprClass: {
7362 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
7363 switch (Inner->getStmtClass()) {
7364 case Stmt::IntegerLiteralClass:
7365 case Stmt::FloatingLiteralClass:
7366 case Stmt::CharacterLiteralClass:
7367 case Stmt::ObjCBoolLiteralExprClass:
7368 case Stmt::CXXBoolLiteralExprClass:
7369 // "numeric literal"
7370 return LK_Numeric;
7371 case Stmt::ImplicitCastExprClass: {
7372 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
7373 // Boolean literals can be represented by implicit casts.
7374 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
7375 return LK_Numeric;
7376 break;
7377 }
7378 default:
7379 break;
7380 }
7381 return LK_Boxed;
7382 }
7383 }
7384 return LK_None;
7385 }
7386
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)7387 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
7388 ExprResult &LHS, ExprResult &RHS,
7389 BinaryOperator::Opcode Opc){
7390 Expr *Literal;
7391 Expr *Other;
7392 if (isObjCObjectLiteral(LHS)) {
7393 Literal = LHS.get();
7394 Other = RHS.get();
7395 } else {
7396 Literal = RHS.get();
7397 Other = LHS.get();
7398 }
7399
7400 // Don't warn on comparisons against nil.
7401 Other = Other->IgnoreParenCasts();
7402 if (Other->isNullPointerConstant(S.getASTContext(),
7403 Expr::NPC_ValueDependentIsNotNull))
7404 return;
7405
7406 // This should be kept in sync with warn_objc_literal_comparison.
7407 // LK_String should always be after the other literals, since it has its own
7408 // warning flag.
7409 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
7410 assert(LiteralKind != Sema::LK_Block);
7411 if (LiteralKind == Sema::LK_None) {
7412 llvm_unreachable("Unknown Objective-C object literal kind");
7413 }
7414
7415 if (LiteralKind == Sema::LK_String)
7416 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
7417 << Literal->getSourceRange();
7418 else
7419 S.Diag(Loc, diag::warn_objc_literal_comparison)
7420 << LiteralKind << Literal->getSourceRange();
7421
7422 if (BinaryOperator::isEqualityOp(Opc) &&
7423 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7424 SourceLocation Start = LHS.get()->getLocStart();
7425 SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7426 CharSourceRange OpRange =
7427 CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7428
7429 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7430 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7431 << FixItHint::CreateReplacement(OpRange, " isEqual:")
7432 << FixItHint::CreateInsertion(End, "]");
7433 }
7434 }
7435
diagnoseLogicalNotOnLHSofComparison(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc)7436 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
7437 ExprResult &RHS,
7438 SourceLocation Loc,
7439 unsigned OpaqueOpc) {
7440 // This checking requires bools.
7441 if (!S.getLangOpts().Bool) return;
7442
7443 // Check that left hand side is !something.
7444 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
7445 if (!UO || UO->getOpcode() != UO_LNot) return;
7446
7447 // Only check if the right hand side is non-bool arithmetic type.
7448 if (RHS.get()->getType()->isBooleanType()) return;
7449
7450 // Make sure that the something in !something is not bool.
7451 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
7452 if (SubExpr->getType()->isBooleanType()) return;
7453
7454 // Emit warning.
7455 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
7456 << Loc;
7457
7458 // First note suggest !(x < y)
7459 SourceLocation FirstOpen = SubExpr->getLocStart();
7460 SourceLocation FirstClose = RHS.get()->getLocEnd();
7461 FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
7462 if (FirstClose.isInvalid())
7463 FirstOpen = SourceLocation();
7464 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
7465 << FixItHint::CreateInsertion(FirstOpen, "(")
7466 << FixItHint::CreateInsertion(FirstClose, ")");
7467
7468 // Second note suggests (!x) < y
7469 SourceLocation SecondOpen = LHS.get()->getLocStart();
7470 SourceLocation SecondClose = LHS.get()->getLocEnd();
7471 SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
7472 if (SecondClose.isInvalid())
7473 SecondOpen = SourceLocation();
7474 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
7475 << FixItHint::CreateInsertion(SecondOpen, "(")
7476 << FixItHint::CreateInsertion(SecondClose, ")");
7477 }
7478
7479 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)7480 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7481 SourceLocation Loc, unsigned OpaqueOpc,
7482 bool IsRelational) {
7483 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7484
7485 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7486
7487 // Handle vector comparisons separately.
7488 if (LHS.get()->getType()->isVectorType() ||
7489 RHS.get()->getType()->isVectorType())
7490 return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7491
7492 QualType LHSType = LHS.get()->getType();
7493 QualType RHSType = RHS.get()->getType();
7494
7495 Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
7496 Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
7497
7498 checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
7499 diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
7500
7501 if (!LHSType->hasFloatingRepresentation() &&
7502 !(LHSType->isBlockPointerType() && IsRelational) &&
7503 !LHS.get()->getLocStart().isMacroID() &&
7504 !RHS.get()->getLocStart().isMacroID()) {
7505 // For non-floating point types, check for self-comparisons of the form
7506 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
7507 // often indicate logic errors in the program.
7508 //
7509 // NOTE: Don't warn about comparison expressions resulting from macro
7510 // expansion. Also don't warn about comparisons which are only self
7511 // comparisons within a template specialization. The warnings should catch
7512 // obvious cases in the definition of the template anyways. The idea is to
7513 // warn when the typed comparison operator will always evaluate to the same
7514 // result.
7515 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
7516 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
7517 if (DRL->getDecl() == DRR->getDecl() &&
7518 !IsWithinTemplateSpecialization(DRL->getDecl())) {
7519 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7520 << 0 // self-
7521 << (Opc == BO_EQ
7522 || Opc == BO_LE
7523 || Opc == BO_GE));
7524 } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
7525 !DRL->getDecl()->getType()->isReferenceType() &&
7526 !DRR->getDecl()->getType()->isReferenceType()) {
7527 // what is it always going to eval to?
7528 char always_evals_to;
7529 switch(Opc) {
7530 case BO_EQ: // e.g. array1 == array2
7531 always_evals_to = 0; // false
7532 break;
7533 case BO_NE: // e.g. array1 != array2
7534 always_evals_to = 1; // true
7535 break;
7536 default:
7537 // best we can say is 'a constant'
7538 always_evals_to = 2; // e.g. array1 <= array2
7539 break;
7540 }
7541 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7542 << 1 // array
7543 << always_evals_to);
7544 }
7545 }
7546 }
7547
7548 if (isa<CastExpr>(LHSStripped))
7549 LHSStripped = LHSStripped->IgnoreParenCasts();
7550 if (isa<CastExpr>(RHSStripped))
7551 RHSStripped = RHSStripped->IgnoreParenCasts();
7552
7553 // Warn about comparisons against a string constant (unless the other
7554 // operand is null), the user probably wants strcmp.
7555 Expr *literalString = 0;
7556 Expr *literalStringStripped = 0;
7557 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7558 !RHSStripped->isNullPointerConstant(Context,
7559 Expr::NPC_ValueDependentIsNull)) {
7560 literalString = LHS.get();
7561 literalStringStripped = LHSStripped;
7562 } else if ((isa<StringLiteral>(RHSStripped) ||
7563 isa<ObjCEncodeExpr>(RHSStripped)) &&
7564 !LHSStripped->isNullPointerConstant(Context,
7565 Expr::NPC_ValueDependentIsNull)) {
7566 literalString = RHS.get();
7567 literalStringStripped = RHSStripped;
7568 }
7569
7570 if (literalString) {
7571 DiagRuntimeBehavior(Loc, 0,
7572 PDiag(diag::warn_stringcompare)
7573 << isa<ObjCEncodeExpr>(literalStringStripped)
7574 << literalString->getSourceRange());
7575 }
7576 }
7577
7578 // C99 6.5.8p3 / C99 6.5.9p4
7579 UsualArithmeticConversions(LHS, RHS);
7580 if (LHS.isInvalid() || RHS.isInvalid())
7581 return QualType();
7582
7583 LHSType = LHS.get()->getType();
7584 RHSType = RHS.get()->getType();
7585
7586 // The result of comparisons is 'bool' in C++, 'int' in C.
7587 QualType ResultTy = Context.getLogicalOperationType();
7588
7589 if (IsRelational) {
7590 if (LHSType->isRealType() && RHSType->isRealType())
7591 return ResultTy;
7592 } else {
7593 // Check for comparisons of floating point operands using != and ==.
7594 if (LHSType->hasFloatingRepresentation())
7595 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7596
7597 if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7598 return ResultTy;
7599 }
7600
7601 bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7602 Expr::NPC_ValueDependentIsNull);
7603 bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7604 Expr::NPC_ValueDependentIsNull);
7605
7606 // All of the following pointer-related warnings are GCC extensions, except
7607 // when handling null pointer constants.
7608 if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7609 QualType LCanPointeeTy =
7610 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7611 QualType RCanPointeeTy =
7612 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7613
7614 if (getLangOpts().CPlusPlus) {
7615 if (LCanPointeeTy == RCanPointeeTy)
7616 return ResultTy;
7617 if (!IsRelational &&
7618 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7619 // Valid unless comparison between non-null pointer and function pointer
7620 // This is a gcc extension compatibility comparison.
7621 // In a SFINAE context, we treat this as a hard error to maintain
7622 // conformance with the C++ standard.
7623 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7624 && !LHSIsNull && !RHSIsNull) {
7625 diagnoseFunctionPointerToVoidComparison(
7626 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
7627
7628 if (isSFINAEContext())
7629 return QualType();
7630
7631 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7632 return ResultTy;
7633 }
7634 }
7635
7636 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7637 return QualType();
7638 else
7639 return ResultTy;
7640 }
7641 // C99 6.5.9p2 and C99 6.5.8p2
7642 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7643 RCanPointeeTy.getUnqualifiedType())) {
7644 // Valid unless a relational comparison of function pointers
7645 if (IsRelational && LCanPointeeTy->isFunctionType()) {
7646 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7647 << LHSType << RHSType << LHS.get()->getSourceRange()
7648 << RHS.get()->getSourceRange();
7649 }
7650 } else if (!IsRelational &&
7651 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7652 // Valid unless comparison between non-null pointer and function pointer
7653 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7654 && !LHSIsNull && !RHSIsNull)
7655 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7656 /*isError*/false);
7657 } else {
7658 // Invalid
7659 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7660 }
7661 if (LCanPointeeTy != RCanPointeeTy) {
7662 if (LHSIsNull && !RHSIsNull)
7663 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7664 else
7665 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7666 }
7667 return ResultTy;
7668 }
7669
7670 if (getLangOpts().CPlusPlus) {
7671 // Comparison of nullptr_t with itself.
7672 if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7673 return ResultTy;
7674
7675 // Comparison of pointers with null pointer constants and equality
7676 // comparisons of member pointers to null pointer constants.
7677 if (RHSIsNull &&
7678 ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7679 (!IsRelational &&
7680 (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7681 RHS = ImpCastExprToType(RHS.take(), LHSType,
7682 LHSType->isMemberPointerType()
7683 ? CK_NullToMemberPointer
7684 : CK_NullToPointer);
7685 return ResultTy;
7686 }
7687 if (LHSIsNull &&
7688 ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7689 (!IsRelational &&
7690 (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7691 LHS = ImpCastExprToType(LHS.take(), RHSType,
7692 RHSType->isMemberPointerType()
7693 ? CK_NullToMemberPointer
7694 : CK_NullToPointer);
7695 return ResultTy;
7696 }
7697
7698 // Comparison of member pointers.
7699 if (!IsRelational &&
7700 LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7701 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7702 return QualType();
7703 else
7704 return ResultTy;
7705 }
7706
7707 // Handle scoped enumeration types specifically, since they don't promote
7708 // to integers.
7709 if (LHS.get()->getType()->isEnumeralType() &&
7710 Context.hasSameUnqualifiedType(LHS.get()->getType(),
7711 RHS.get()->getType()))
7712 return ResultTy;
7713 }
7714
7715 // Handle block pointer types.
7716 if (!IsRelational && LHSType->isBlockPointerType() &&
7717 RHSType->isBlockPointerType()) {
7718 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7719 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7720
7721 if (!LHSIsNull && !RHSIsNull &&
7722 !Context.typesAreCompatible(lpointee, rpointee)) {
7723 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7724 << LHSType << RHSType << LHS.get()->getSourceRange()
7725 << RHS.get()->getSourceRange();
7726 }
7727 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7728 return ResultTy;
7729 }
7730
7731 // Allow block pointers to be compared with null pointer constants.
7732 if (!IsRelational
7733 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7734 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7735 if (!LHSIsNull && !RHSIsNull) {
7736 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7737 ->getPointeeType()->isVoidType())
7738 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7739 ->getPointeeType()->isVoidType())))
7740 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7741 << LHSType << RHSType << LHS.get()->getSourceRange()
7742 << RHS.get()->getSourceRange();
7743 }
7744 if (LHSIsNull && !RHSIsNull)
7745 LHS = ImpCastExprToType(LHS.take(), RHSType,
7746 RHSType->isPointerType() ? CK_BitCast
7747 : CK_AnyPointerToBlockPointerCast);
7748 else
7749 RHS = ImpCastExprToType(RHS.take(), LHSType,
7750 LHSType->isPointerType() ? CK_BitCast
7751 : CK_AnyPointerToBlockPointerCast);
7752 return ResultTy;
7753 }
7754
7755 if (LHSType->isObjCObjectPointerType() ||
7756 RHSType->isObjCObjectPointerType()) {
7757 const PointerType *LPT = LHSType->getAs<PointerType>();
7758 const PointerType *RPT = RHSType->getAs<PointerType>();
7759 if (LPT || RPT) {
7760 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7761 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7762
7763 if (!LPtrToVoid && !RPtrToVoid &&
7764 !Context.typesAreCompatible(LHSType, RHSType)) {
7765 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7766 /*isError*/false);
7767 }
7768 if (LHSIsNull && !RHSIsNull) {
7769 Expr *E = LHS.take();
7770 if (getLangOpts().ObjCAutoRefCount)
7771 CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
7772 LHS = ImpCastExprToType(E, RHSType,
7773 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7774 }
7775 else {
7776 Expr *E = RHS.take();
7777 if (getLangOpts().ObjCAutoRefCount)
7778 CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion);
7779 RHS = ImpCastExprToType(E, LHSType,
7780 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7781 }
7782 return ResultTy;
7783 }
7784 if (LHSType->isObjCObjectPointerType() &&
7785 RHSType->isObjCObjectPointerType()) {
7786 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7787 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7788 /*isError*/false);
7789 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7790 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7791
7792 if (LHSIsNull && !RHSIsNull)
7793 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7794 else
7795 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7796 return ResultTy;
7797 }
7798 }
7799 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7800 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7801 unsigned DiagID = 0;
7802 bool isError = false;
7803 if (LangOpts.DebuggerSupport) {
7804 // Under a debugger, allow the comparison of pointers to integers,
7805 // since users tend to want to compare addresses.
7806 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7807 (RHSIsNull && RHSType->isIntegerType())) {
7808 if (IsRelational && !getLangOpts().CPlusPlus)
7809 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7810 } else if (IsRelational && !getLangOpts().CPlusPlus)
7811 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7812 else if (getLangOpts().CPlusPlus) {
7813 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7814 isError = true;
7815 } else
7816 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7817
7818 if (DiagID) {
7819 Diag(Loc, DiagID)
7820 << LHSType << RHSType << LHS.get()->getSourceRange()
7821 << RHS.get()->getSourceRange();
7822 if (isError)
7823 return QualType();
7824 }
7825
7826 if (LHSType->isIntegerType())
7827 LHS = ImpCastExprToType(LHS.take(), RHSType,
7828 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7829 else
7830 RHS = ImpCastExprToType(RHS.take(), LHSType,
7831 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7832 return ResultTy;
7833 }
7834
7835 // Handle block pointers.
7836 if (!IsRelational && RHSIsNull
7837 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7838 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7839 return ResultTy;
7840 }
7841 if (!IsRelational && LHSIsNull
7842 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7843 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7844 return ResultTy;
7845 }
7846
7847 return InvalidOperands(Loc, LHS, RHS);
7848 }
7849
7850
7851 // Return a signed type that is of identical size and number of elements.
7852 // For floating point vectors, return an integer type of identical size
7853 // and number of elements.
GetSignedVectorType(QualType V)7854 QualType Sema::GetSignedVectorType(QualType V) {
7855 const VectorType *VTy = V->getAs<VectorType>();
7856 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7857 if (TypeSize == Context.getTypeSize(Context.CharTy))
7858 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7859 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7860 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7861 else if (TypeSize == Context.getTypeSize(Context.IntTy))
7862 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7863 else if (TypeSize == Context.getTypeSize(Context.LongTy))
7864 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7865 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7866 "Unhandled vector element size in vector compare");
7867 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7868 }
7869
7870 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
7871 /// operates on extended vector types. Instead of producing an IntTy result,
7872 /// like a scalar comparison, a vector comparison produces a vector of integer
7873 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)7874 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7875 SourceLocation Loc,
7876 bool IsRelational) {
7877 // Check to make sure we're operating on vectors of the same type and width,
7878 // Allowing one side to be a scalar of element type.
7879 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7880 if (vType.isNull())
7881 return vType;
7882
7883 QualType LHSType = LHS.get()->getType();
7884
7885 // If AltiVec, the comparison results in a numeric type, i.e.
7886 // bool for C++, int for C
7887 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7888 return Context.getLogicalOperationType();
7889
7890 // For non-floating point types, check for self-comparisons of the form
7891 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
7892 // often indicate logic errors in the program.
7893 if (!LHSType->hasFloatingRepresentation()) {
7894 if (DeclRefExpr* DRL
7895 = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7896 if (DeclRefExpr* DRR
7897 = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7898 if (DRL->getDecl() == DRR->getDecl())
7899 DiagRuntimeBehavior(Loc, 0,
7900 PDiag(diag::warn_comparison_always)
7901 << 0 // self-
7902 << 2 // "a constant"
7903 );
7904 }
7905
7906 // Check for comparisons of floating point operands using != and ==.
7907 if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7908 assert (RHS.get()->getType()->hasFloatingRepresentation());
7909 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7910 }
7911
7912 // Return a signed type for the vector.
7913 return GetSignedVectorType(LHSType);
7914 }
7915
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7916 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7917 SourceLocation Loc) {
7918 // Ensure that either both operands are of the same vector type, or
7919 // one operand is of a vector type and the other is of its element type.
7920 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7921 if (vType.isNull())
7922 return InvalidOperands(Loc, LHS, RHS);
7923 if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
7924 vType->hasFloatingRepresentation())
7925 return InvalidOperands(Loc, LHS, RHS);
7926
7927 return GetSignedVectorType(LHS.get()->getType());
7928 }
7929
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7930 inline QualType Sema::CheckBitwiseOperands(
7931 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7932 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7933
7934 if (LHS.get()->getType()->isVectorType() ||
7935 RHS.get()->getType()->isVectorType()) {
7936 if (LHS.get()->getType()->hasIntegerRepresentation() &&
7937 RHS.get()->getType()->hasIntegerRepresentation())
7938 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7939
7940 return InvalidOperands(Loc, LHS, RHS);
7941 }
7942
7943 ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7944 QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7945 IsCompAssign);
7946 if (LHSResult.isInvalid() || RHSResult.isInvalid())
7947 return QualType();
7948 LHS = LHSResult.take();
7949 RHS = RHSResult.take();
7950
7951 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7952 return compType;
7953 return InvalidOperands(Loc, LHS, RHS);
7954 }
7955
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7956 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7957 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7958
7959 // Check vector operands differently.
7960 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7961 return CheckVectorLogicalOperands(LHS, RHS, Loc);
7962
7963 // Diagnose cases where the user write a logical and/or but probably meant a
7964 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
7965 // is a constant.
7966 if (LHS.get()->getType()->isIntegerType() &&
7967 !LHS.get()->getType()->isBooleanType() &&
7968 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7969 // Don't warn in macros or template instantiations.
7970 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7971 // If the RHS can be constant folded, and if it constant folds to something
7972 // that isn't 0 or 1 (which indicate a potential logical operation that
7973 // happened to fold to true/false) then warn.
7974 // Parens on the RHS are ignored.
7975 llvm::APSInt Result;
7976 if (RHS.get()->EvaluateAsInt(Result, Context))
7977 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7978 (Result != 0 && Result != 1)) {
7979 Diag(Loc, diag::warn_logical_instead_of_bitwise)
7980 << RHS.get()->getSourceRange()
7981 << (Opc == BO_LAnd ? "&&" : "||");
7982 // Suggest replacing the logical operator with the bitwise version
7983 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7984 << (Opc == BO_LAnd ? "&" : "|")
7985 << FixItHint::CreateReplacement(SourceRange(
7986 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7987 getLangOpts())),
7988 Opc == BO_LAnd ? "&" : "|");
7989 if (Opc == BO_LAnd)
7990 // Suggest replacing "Foo() && kNonZero" with "Foo()"
7991 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7992 << FixItHint::CreateRemoval(
7993 SourceRange(
7994 Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7995 0, getSourceManager(),
7996 getLangOpts()),
7997 RHS.get()->getLocEnd()));
7998 }
7999 }
8000
8001 if (!Context.getLangOpts().CPlusPlus) {
8002 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
8003 // not operate on the built-in scalar and vector float types.
8004 if (Context.getLangOpts().OpenCL &&
8005 Context.getLangOpts().OpenCLVersion < 120) {
8006 if (LHS.get()->getType()->isFloatingType() ||
8007 RHS.get()->getType()->isFloatingType())
8008 return InvalidOperands(Loc, LHS, RHS);
8009 }
8010
8011 LHS = UsualUnaryConversions(LHS.take());
8012 if (LHS.isInvalid())
8013 return QualType();
8014
8015 RHS = UsualUnaryConversions(RHS.take());
8016 if (RHS.isInvalid())
8017 return QualType();
8018
8019 if (!LHS.get()->getType()->isScalarType() ||
8020 !RHS.get()->getType()->isScalarType())
8021 return InvalidOperands(Loc, LHS, RHS);
8022
8023 return Context.IntTy;
8024 }
8025
8026 // The following is safe because we only use this method for
8027 // non-overloadable operands.
8028
8029 // C++ [expr.log.and]p1
8030 // C++ [expr.log.or]p1
8031 // The operands are both contextually converted to type bool.
8032 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
8033 if (LHSRes.isInvalid())
8034 return InvalidOperands(Loc, LHS, RHS);
8035 LHS = LHSRes;
8036
8037 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
8038 if (RHSRes.isInvalid())
8039 return InvalidOperands(Loc, LHS, RHS);
8040 RHS = RHSRes;
8041
8042 // C++ [expr.log.and]p2
8043 // C++ [expr.log.or]p2
8044 // The result is a bool.
8045 return Context.BoolTy;
8046 }
8047
IsReadonlyMessage(Expr * E,Sema & S)8048 static bool IsReadonlyMessage(Expr *E, Sema &S) {
8049 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
8050 if (!ME) return false;
8051 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
8052 ObjCMessageExpr *Base =
8053 dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
8054 if (!Base) return false;
8055 return Base->getMethodDecl() != 0;
8056 }
8057
8058 /// Is the given expression (which must be 'const') a reference to a
8059 /// variable which was originally non-const, but which has become
8060 /// 'const' due to being captured within a block?
8061 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)8062 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
8063 assert(E->isLValue() && E->getType().isConstQualified());
8064 E = E->IgnoreParens();
8065
8066 // Must be a reference to a declaration from an enclosing scope.
8067 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
8068 if (!DRE) return NCCK_None;
8069 if (!DRE->refersToEnclosingLocal()) return NCCK_None;
8070
8071 // The declaration must be a variable which is not declared 'const'.
8072 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
8073 if (!var) return NCCK_None;
8074 if (var->getType().isConstQualified()) return NCCK_None;
8075 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
8076
8077 // Decide whether the first capture was for a block or a lambda.
8078 DeclContext *DC = S.CurContext;
8079 while (DC->getParent() != var->getDeclContext())
8080 DC = DC->getParent();
8081 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
8082 }
8083
8084 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
8085 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)8086 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
8087 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
8088 SourceLocation OrigLoc = Loc;
8089 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
8090 &Loc);
8091 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
8092 IsLV = Expr::MLV_InvalidMessageExpression;
8093 if (IsLV == Expr::MLV_Valid)
8094 return false;
8095
8096 unsigned Diag = 0;
8097 bool NeedType = false;
8098 switch (IsLV) { // C99 6.5.16p2
8099 case Expr::MLV_ConstQualified:
8100 Diag = diag::err_typecheck_assign_const;
8101
8102 // Use a specialized diagnostic when we're assigning to an object
8103 // from an enclosing function or block.
8104 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
8105 if (NCCK == NCCK_Block)
8106 Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
8107 else
8108 Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
8109 break;
8110 }
8111
8112 // In ARC, use some specialized diagnostics for occasions where we
8113 // infer 'const'. These are always pseudo-strong variables.
8114 if (S.getLangOpts().ObjCAutoRefCount) {
8115 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
8116 if (declRef && isa<VarDecl>(declRef->getDecl())) {
8117 VarDecl *var = cast<VarDecl>(declRef->getDecl());
8118
8119 // Use the normal diagnostic if it's pseudo-__strong but the
8120 // user actually wrote 'const'.
8121 if (var->isARCPseudoStrong() &&
8122 (!var->getTypeSourceInfo() ||
8123 !var->getTypeSourceInfo()->getType().isConstQualified())) {
8124 // There are two pseudo-strong cases:
8125 // - self
8126 ObjCMethodDecl *method = S.getCurMethodDecl();
8127 if (method && var == method->getSelfDecl())
8128 Diag = method->isClassMethod()
8129 ? diag::err_typecheck_arc_assign_self_class_method
8130 : diag::err_typecheck_arc_assign_self;
8131
8132 // - fast enumeration variables
8133 else
8134 Diag = diag::err_typecheck_arr_assign_enumeration;
8135
8136 SourceRange Assign;
8137 if (Loc != OrigLoc)
8138 Assign = SourceRange(OrigLoc, OrigLoc);
8139 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8140 // We need to preserve the AST regardless, so migration tool
8141 // can do its job.
8142 return false;
8143 }
8144 }
8145 }
8146
8147 break;
8148 case Expr::MLV_ArrayType:
8149 case Expr::MLV_ArrayTemporary:
8150 Diag = diag::err_typecheck_array_not_modifiable_lvalue;
8151 NeedType = true;
8152 break;
8153 case Expr::MLV_NotObjectType:
8154 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
8155 NeedType = true;
8156 break;
8157 case Expr::MLV_LValueCast:
8158 Diag = diag::err_typecheck_lvalue_casts_not_supported;
8159 break;
8160 case Expr::MLV_Valid:
8161 llvm_unreachable("did not take early return for MLV_Valid");
8162 case Expr::MLV_InvalidExpression:
8163 case Expr::MLV_MemberFunction:
8164 case Expr::MLV_ClassTemporary:
8165 Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
8166 break;
8167 case Expr::MLV_IncompleteType:
8168 case Expr::MLV_IncompleteVoidType:
8169 return S.RequireCompleteType(Loc, E->getType(),
8170 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
8171 case Expr::MLV_DuplicateVectorComponents:
8172 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
8173 break;
8174 case Expr::MLV_NoSetterProperty:
8175 llvm_unreachable("readonly properties should be processed differently");
8176 case Expr::MLV_InvalidMessageExpression:
8177 Diag = diag::error_readonly_message_assignment;
8178 break;
8179 case Expr::MLV_SubObjCPropertySetting:
8180 Diag = diag::error_no_subobject_property_setting;
8181 break;
8182 }
8183
8184 SourceRange Assign;
8185 if (Loc != OrigLoc)
8186 Assign = SourceRange(OrigLoc, OrigLoc);
8187 if (NeedType)
8188 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
8189 else
8190 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8191 return true;
8192 }
8193
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)8194 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
8195 SourceLocation Loc,
8196 Sema &Sema) {
8197 // C / C++ fields
8198 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
8199 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
8200 if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
8201 if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
8202 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
8203 }
8204
8205 // Objective-C instance variables
8206 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
8207 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
8208 if (OL && OR && OL->getDecl() == OR->getDecl()) {
8209 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
8210 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
8211 if (RL && RR && RL->getDecl() == RR->getDecl())
8212 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
8213 }
8214 }
8215
8216 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)8217 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
8218 SourceLocation Loc,
8219 QualType CompoundType) {
8220 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
8221
8222 // Verify that LHS is a modifiable lvalue, and emit error if not.
8223 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
8224 return QualType();
8225
8226 QualType LHSType = LHSExpr->getType();
8227 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
8228 CompoundType;
8229 AssignConvertType ConvTy;
8230 if (CompoundType.isNull()) {
8231 Expr *RHSCheck = RHS.get();
8232
8233 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
8234
8235 QualType LHSTy(LHSType);
8236 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
8237 if (RHS.isInvalid())
8238 return QualType();
8239 // Special case of NSObject attributes on c-style pointer types.
8240 if (ConvTy == IncompatiblePointer &&
8241 ((Context.isObjCNSObjectType(LHSType) &&
8242 RHSType->isObjCObjectPointerType()) ||
8243 (Context.isObjCNSObjectType(RHSType) &&
8244 LHSType->isObjCObjectPointerType())))
8245 ConvTy = Compatible;
8246
8247 if (ConvTy == Compatible &&
8248 LHSType->isObjCObjectType())
8249 Diag(Loc, diag::err_objc_object_assignment)
8250 << LHSType;
8251
8252 // If the RHS is a unary plus or minus, check to see if they = and + are
8253 // right next to each other. If so, the user may have typo'd "x =+ 4"
8254 // instead of "x += 4".
8255 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
8256 RHSCheck = ICE->getSubExpr();
8257 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
8258 if ((UO->getOpcode() == UO_Plus ||
8259 UO->getOpcode() == UO_Minus) &&
8260 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
8261 // Only if the two operators are exactly adjacent.
8262 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
8263 // And there is a space or other character before the subexpr of the
8264 // unary +/-. We don't want to warn on "x=-1".
8265 Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
8266 UO->getSubExpr()->getLocStart().isFileID()) {
8267 Diag(Loc, diag::warn_not_compound_assign)
8268 << (UO->getOpcode() == UO_Plus ? "+" : "-")
8269 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
8270 }
8271 }
8272
8273 if (ConvTy == Compatible) {
8274 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
8275 // Warn about retain cycles where a block captures the LHS, but
8276 // not if the LHS is a simple variable into which the block is
8277 // being stored...unless that variable can be captured by reference!
8278 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
8279 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
8280 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
8281 checkRetainCycles(LHSExpr, RHS.get());
8282
8283 // It is safe to assign a weak reference into a strong variable.
8284 // Although this code can still have problems:
8285 // id x = self.weakProp;
8286 // id y = self.weakProp;
8287 // we do not warn to warn spuriously when 'x' and 'y' are on separate
8288 // paths through the function. This should be revisited if
8289 // -Wrepeated-use-of-weak is made flow-sensitive.
8290 DiagnosticsEngine::Level Level =
8291 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8292 RHS.get()->getLocStart());
8293 if (Level != DiagnosticsEngine::Ignored)
8294 getCurFunction()->markSafeWeakUse(RHS.get());
8295
8296 } else if (getLangOpts().ObjCAutoRefCount) {
8297 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
8298 }
8299 }
8300 } else {
8301 // Compound assignment "x += y"
8302 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
8303 }
8304
8305 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
8306 RHS.get(), AA_Assigning))
8307 return QualType();
8308
8309 CheckForNullPointerDereference(*this, LHSExpr);
8310
8311 // C99 6.5.16p3: The type of an assignment expression is the type of the
8312 // left operand unless the left operand has qualified type, in which case
8313 // it is the unqualified version of the type of the left operand.
8314 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8315 // is converted to the type of the assignment expression (above).
8316 // C++ 5.17p1: the type of the assignment expression is that of its left
8317 // operand.
8318 return (getLangOpts().CPlusPlus
8319 ? LHSType : LHSType.getUnqualifiedType());
8320 }
8321
8322 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8323 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8324 SourceLocation Loc) {
8325 LHS = S.CheckPlaceholderExpr(LHS.take());
8326 RHS = S.CheckPlaceholderExpr(RHS.take());
8327 if (LHS.isInvalid() || RHS.isInvalid())
8328 return QualType();
8329
8330 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8331 // operands, but not unary promotions.
8332 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8333
8334 // So we treat the LHS as a ignored value, and in C++ we allow the
8335 // containing site to determine what should be done with the RHS.
8336 LHS = S.IgnoredValueConversions(LHS.take());
8337 if (LHS.isInvalid())
8338 return QualType();
8339
8340 S.DiagnoseUnusedExprResult(LHS.get());
8341
8342 if (!S.getLangOpts().CPlusPlus) {
8343 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
8344 if (RHS.isInvalid())
8345 return QualType();
8346 if (!RHS.get()->getType()->isVoidType())
8347 S.RequireCompleteType(Loc, RHS.get()->getType(),
8348 diag::err_incomplete_type);
8349 }
8350
8351 return RHS.get()->getType();
8352 }
8353
8354 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8355 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)8356 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8357 ExprValueKind &VK,
8358 SourceLocation OpLoc,
8359 bool IsInc, bool IsPrefix) {
8360 if (Op->isTypeDependent())
8361 return S.Context.DependentTy;
8362
8363 QualType ResType = Op->getType();
8364 // Atomic types can be used for increment / decrement where the non-atomic
8365 // versions can, so ignore the _Atomic() specifier for the purpose of
8366 // checking.
8367 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8368 ResType = ResAtomicType->getValueType();
8369
8370 assert(!ResType.isNull() && "no type for increment/decrement expression");
8371
8372 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
8373 // Decrement of bool is not allowed.
8374 if (!IsInc) {
8375 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8376 return QualType();
8377 }
8378 // Increment of bool sets it to true, but is deprecated.
8379 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8380 } else if (ResType->isRealType()) {
8381 // OK!
8382 } else if (ResType->isPointerType()) {
8383 // C99 6.5.2.4p2, 6.5.6p2
8384 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
8385 return QualType();
8386 } else if (ResType->isObjCObjectPointerType()) {
8387 // On modern runtimes, ObjC pointer arithmetic is forbidden.
8388 // Otherwise, we just need a complete type.
8389 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
8390 checkArithmeticOnObjCPointer(S, OpLoc, Op))
8391 return QualType();
8392 } else if (ResType->isAnyComplexType()) {
8393 // C99 does not support ++/-- on complex types, we allow as an extension.
8394 S.Diag(OpLoc, diag::ext_integer_increment_complex)
8395 << ResType << Op->getSourceRange();
8396 } else if (ResType->isPlaceholderType()) {
8397 ExprResult PR = S.CheckPlaceholderExpr(Op);
8398 if (PR.isInvalid()) return QualType();
8399 return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
8400 IsInc, IsPrefix);
8401 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
8402 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8403 } else {
8404 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8405 << ResType << int(IsInc) << Op->getSourceRange();
8406 return QualType();
8407 }
8408 // At this point, we know we have a real, complex or pointer type.
8409 // Now make sure the operand is a modifiable lvalue.
8410 if (CheckForModifiableLvalue(Op, OpLoc, S))
8411 return QualType();
8412 // In C++, a prefix increment is the same type as the operand. Otherwise
8413 // (in C or with postfix), the increment is the unqualified type of the
8414 // operand.
8415 if (IsPrefix && S.getLangOpts().CPlusPlus) {
8416 VK = VK_LValue;
8417 return ResType;
8418 } else {
8419 VK = VK_RValue;
8420 return ResType.getUnqualifiedType();
8421 }
8422 }
8423
8424
8425 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8426 /// This routine allows us to typecheck complex/recursive expressions
8427 /// where the declaration is needed for type checking. We only need to
8428 /// handle cases when the expression references a function designator
8429 /// or is an lvalue. Here are some examples:
8430 /// - &(x) => x
8431 /// - &*****f => f for f a function designator.
8432 /// - &s.xx => s
8433 /// - &s.zz[1].yy -> s, if zz is an array
8434 /// - *(x + 1) -> x, if x is an array
8435 /// - &"123"[2] -> 0
8436 /// - & __real__ x -> x
getPrimaryDecl(Expr * E)8437 static ValueDecl *getPrimaryDecl(Expr *E) {
8438 switch (E->getStmtClass()) {
8439 case Stmt::DeclRefExprClass:
8440 return cast<DeclRefExpr>(E)->getDecl();
8441 case Stmt::MemberExprClass:
8442 // If this is an arrow operator, the address is an offset from
8443 // the base's value, so the object the base refers to is
8444 // irrelevant.
8445 if (cast<MemberExpr>(E)->isArrow())
8446 return 0;
8447 // Otherwise, the expression refers to a part of the base
8448 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8449 case Stmt::ArraySubscriptExprClass: {
8450 // FIXME: This code shouldn't be necessary! We should catch the implicit
8451 // promotion of register arrays earlier.
8452 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8453 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8454 if (ICE->getSubExpr()->getType()->isArrayType())
8455 return getPrimaryDecl(ICE->getSubExpr());
8456 }
8457 return 0;
8458 }
8459 case Stmt::UnaryOperatorClass: {
8460 UnaryOperator *UO = cast<UnaryOperator>(E);
8461
8462 switch(UO->getOpcode()) {
8463 case UO_Real:
8464 case UO_Imag:
8465 case UO_Extension:
8466 return getPrimaryDecl(UO->getSubExpr());
8467 default:
8468 return 0;
8469 }
8470 }
8471 case Stmt::ParenExprClass:
8472 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8473 case Stmt::ImplicitCastExprClass:
8474 // If the result of an implicit cast is an l-value, we care about
8475 // the sub-expression; otherwise, the result here doesn't matter.
8476 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8477 default:
8478 return 0;
8479 }
8480 }
8481
8482 namespace {
8483 enum {
8484 AO_Bit_Field = 0,
8485 AO_Vector_Element = 1,
8486 AO_Property_Expansion = 2,
8487 AO_Register_Variable = 3,
8488 AO_No_Error = 4
8489 };
8490 }
8491 /// \brief Diagnose invalid operand for address of operations.
8492 ///
8493 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)8494 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
8495 Expr *E, unsigned Type) {
8496 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
8497 }
8498
8499 /// CheckAddressOfOperand - The operand of & must be either a function
8500 /// designator or an lvalue designating an object. If it is an lvalue, the
8501 /// object cannot be declared with storage class register or be a bit field.
8502 /// Note: The usual conversions are *not* applied to the operand of the &
8503 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8504 /// In C++, the operand might be an overloaded function name, in which case
8505 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)8506 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
8507 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8508 if (PTy->getKind() == BuiltinType::Overload) {
8509 Expr *E = OrigOp.get()->IgnoreParens();
8510 if (!isa<OverloadExpr>(E)) {
8511 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
8512 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
8513 << OrigOp.get()->getSourceRange();
8514 return QualType();
8515 }
8516
8517 OverloadExpr *Ovl = cast<OverloadExpr>(E);
8518 if (isa<UnresolvedMemberExpr>(Ovl))
8519 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
8520 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8521 << OrigOp.get()->getSourceRange();
8522 return QualType();
8523 }
8524
8525 return Context.OverloadTy;
8526 }
8527
8528 if (PTy->getKind() == BuiltinType::UnknownAny)
8529 return Context.UnknownAnyTy;
8530
8531 if (PTy->getKind() == BuiltinType::BoundMember) {
8532 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8533 << OrigOp.get()->getSourceRange();
8534 return QualType();
8535 }
8536
8537 OrigOp = CheckPlaceholderExpr(OrigOp.take());
8538 if (OrigOp.isInvalid()) return QualType();
8539 }
8540
8541 if (OrigOp.get()->isTypeDependent())
8542 return Context.DependentTy;
8543
8544 assert(!OrigOp.get()->getType()->isPlaceholderType());
8545
8546 // Make sure to ignore parentheses in subsequent checks
8547 Expr *op = OrigOp.get()->IgnoreParens();
8548
8549 if (getLangOpts().C99) {
8550 // Implement C99-only parts of addressof rules.
8551 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8552 if (uOp->getOpcode() == UO_Deref)
8553 // Per C99 6.5.3.2, the address of a deref always returns a valid result
8554 // (assuming the deref expression is valid).
8555 return uOp->getSubExpr()->getType();
8556 }
8557 // Technically, there should be a check for array subscript
8558 // expressions here, but the result of one is always an lvalue anyway.
8559 }
8560 ValueDecl *dcl = getPrimaryDecl(op);
8561 Expr::LValueClassification lval = op->ClassifyLValue(Context);
8562 unsigned AddressOfError = AO_No_Error;
8563
8564 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
8565 bool sfinae = (bool)isSFINAEContext();
8566 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
8567 : diag::ext_typecheck_addrof_temporary)
8568 << op->getType() << op->getSourceRange();
8569 if (sfinae)
8570 return QualType();
8571 // Materialize the temporary as an lvalue so that we can take its address.
8572 OrigOp = op = new (Context)
8573 MaterializeTemporaryExpr(op->getType(), OrigOp.take(), true, 0);
8574 } else if (isa<ObjCSelectorExpr>(op)) {
8575 return Context.getPointerType(op->getType());
8576 } else if (lval == Expr::LV_MemberFunction) {
8577 // If it's an instance method, make a member pointer.
8578 // The expression must have exactly the form &A::foo.
8579
8580 // If the underlying expression isn't a decl ref, give up.
8581 if (!isa<DeclRefExpr>(op)) {
8582 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8583 << OrigOp.get()->getSourceRange();
8584 return QualType();
8585 }
8586 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8587 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8588
8589 // The id-expression was parenthesized.
8590 if (OrigOp.get() != DRE) {
8591 Diag(OpLoc, diag::err_parens_pointer_member_function)
8592 << OrigOp.get()->getSourceRange();
8593
8594 // The method was named without a qualifier.
8595 } else if (!DRE->getQualifier()) {
8596 if (MD->getParent()->getName().empty())
8597 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8598 << op->getSourceRange();
8599 else {
8600 SmallString<32> Str;
8601 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8602 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8603 << op->getSourceRange()
8604 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8605 }
8606 }
8607
8608 return Context.getMemberPointerType(op->getType(),
8609 Context.getTypeDeclType(MD->getParent()).getTypePtr());
8610 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8611 // C99 6.5.3.2p1
8612 // The operand must be either an l-value or a function designator
8613 if (!op->getType()->isFunctionType()) {
8614 // Use a special diagnostic for loads from property references.
8615 if (isa<PseudoObjectExpr>(op)) {
8616 AddressOfError = AO_Property_Expansion;
8617 } else {
8618 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8619 << op->getType() << op->getSourceRange();
8620 return QualType();
8621 }
8622 }
8623 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8624 // The operand cannot be a bit-field
8625 AddressOfError = AO_Bit_Field;
8626 } else if (op->getObjectKind() == OK_VectorComponent) {
8627 // The operand cannot be an element of a vector
8628 AddressOfError = AO_Vector_Element;
8629 } else if (dcl) { // C99 6.5.3.2p1
8630 // We have an lvalue with a decl. Make sure the decl is not declared
8631 // with the register storage-class specifier.
8632 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8633 // in C++ it is not error to take address of a register
8634 // variable (c++03 7.1.1P3)
8635 if (vd->getStorageClass() == SC_Register &&
8636 !getLangOpts().CPlusPlus) {
8637 AddressOfError = AO_Register_Variable;
8638 }
8639 } else if (isa<FunctionTemplateDecl>(dcl)) {
8640 return Context.OverloadTy;
8641 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8642 // Okay: we can take the address of a field.
8643 // Could be a pointer to member, though, if there is an explicit
8644 // scope qualifier for the class.
8645 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8646 DeclContext *Ctx = dcl->getDeclContext();
8647 if (Ctx && Ctx->isRecord()) {
8648 if (dcl->getType()->isReferenceType()) {
8649 Diag(OpLoc,
8650 diag::err_cannot_form_pointer_to_member_of_reference_type)
8651 << dcl->getDeclName() << dcl->getType();
8652 return QualType();
8653 }
8654
8655 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8656 Ctx = Ctx->getParent();
8657 return Context.getMemberPointerType(op->getType(),
8658 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8659 }
8660 }
8661 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8662 llvm_unreachable("Unknown/unexpected decl type");
8663 }
8664
8665 if (AddressOfError != AO_No_Error) {
8666 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
8667 return QualType();
8668 }
8669
8670 if (lval == Expr::LV_IncompleteVoidType) {
8671 // Taking the address of a void variable is technically illegal, but we
8672 // allow it in cases which are otherwise valid.
8673 // Example: "extern void x; void* y = &x;".
8674 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8675 }
8676
8677 // If the operand has type "type", the result has type "pointer to type".
8678 if (op->getType()->isObjCObjectType())
8679 return Context.getObjCObjectPointerType(op->getType());
8680 return Context.getPointerType(op->getType());
8681 }
8682
8683 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)8684 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8685 SourceLocation OpLoc) {
8686 if (Op->isTypeDependent())
8687 return S.Context.DependentTy;
8688
8689 ExprResult ConvResult = S.UsualUnaryConversions(Op);
8690 if (ConvResult.isInvalid())
8691 return QualType();
8692 Op = ConvResult.take();
8693 QualType OpTy = Op->getType();
8694 QualType Result;
8695
8696 if (isa<CXXReinterpretCastExpr>(Op)) {
8697 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8698 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8699 Op->getSourceRange());
8700 }
8701
8702 // Note that per both C89 and C99, indirection is always legal, even if OpTy
8703 // is an incomplete type or void. It would be possible to warn about
8704 // dereferencing a void pointer, but it's completely well-defined, and such a
8705 // warning is unlikely to catch any mistakes.
8706 if (const PointerType *PT = OpTy->getAs<PointerType>())
8707 Result = PT->getPointeeType();
8708 else if (const ObjCObjectPointerType *OPT =
8709 OpTy->getAs<ObjCObjectPointerType>())
8710 Result = OPT->getPointeeType();
8711 else {
8712 ExprResult PR = S.CheckPlaceholderExpr(Op);
8713 if (PR.isInvalid()) return QualType();
8714 if (PR.take() != Op)
8715 return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8716 }
8717
8718 if (Result.isNull()) {
8719 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8720 << OpTy << Op->getSourceRange();
8721 return QualType();
8722 }
8723
8724 // Dereferences are usually l-values...
8725 VK = VK_LValue;
8726
8727 // ...except that certain expressions are never l-values in C.
8728 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8729 VK = VK_RValue;
8730
8731 return Result;
8732 }
8733
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)8734 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8735 tok::TokenKind Kind) {
8736 BinaryOperatorKind Opc;
8737 switch (Kind) {
8738 default: llvm_unreachable("Unknown binop!");
8739 case tok::periodstar: Opc = BO_PtrMemD; break;
8740 case tok::arrowstar: Opc = BO_PtrMemI; break;
8741 case tok::star: Opc = BO_Mul; break;
8742 case tok::slash: Opc = BO_Div; break;
8743 case tok::percent: Opc = BO_Rem; break;
8744 case tok::plus: Opc = BO_Add; break;
8745 case tok::minus: Opc = BO_Sub; break;
8746 case tok::lessless: Opc = BO_Shl; break;
8747 case tok::greatergreater: Opc = BO_Shr; break;
8748 case tok::lessequal: Opc = BO_LE; break;
8749 case tok::less: Opc = BO_LT; break;
8750 case tok::greaterequal: Opc = BO_GE; break;
8751 case tok::greater: Opc = BO_GT; break;
8752 case tok::exclaimequal: Opc = BO_NE; break;
8753 case tok::equalequal: Opc = BO_EQ; break;
8754 case tok::amp: Opc = BO_And; break;
8755 case tok::caret: Opc = BO_Xor; break;
8756 case tok::pipe: Opc = BO_Or; break;
8757 case tok::ampamp: Opc = BO_LAnd; break;
8758 case tok::pipepipe: Opc = BO_LOr; break;
8759 case tok::equal: Opc = BO_Assign; break;
8760 case tok::starequal: Opc = BO_MulAssign; break;
8761 case tok::slashequal: Opc = BO_DivAssign; break;
8762 case tok::percentequal: Opc = BO_RemAssign; break;
8763 case tok::plusequal: Opc = BO_AddAssign; break;
8764 case tok::minusequal: Opc = BO_SubAssign; break;
8765 case tok::lesslessequal: Opc = BO_ShlAssign; break;
8766 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
8767 case tok::ampequal: Opc = BO_AndAssign; break;
8768 case tok::caretequal: Opc = BO_XorAssign; break;
8769 case tok::pipeequal: Opc = BO_OrAssign; break;
8770 case tok::comma: Opc = BO_Comma; break;
8771 }
8772 return Opc;
8773 }
8774
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)8775 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8776 tok::TokenKind Kind) {
8777 UnaryOperatorKind Opc;
8778 switch (Kind) {
8779 default: llvm_unreachable("Unknown unary op!");
8780 case tok::plusplus: Opc = UO_PreInc; break;
8781 case tok::minusminus: Opc = UO_PreDec; break;
8782 case tok::amp: Opc = UO_AddrOf; break;
8783 case tok::star: Opc = UO_Deref; break;
8784 case tok::plus: Opc = UO_Plus; break;
8785 case tok::minus: Opc = UO_Minus; break;
8786 case tok::tilde: Opc = UO_Not; break;
8787 case tok::exclaim: Opc = UO_LNot; break;
8788 case tok::kw___real: Opc = UO_Real; break;
8789 case tok::kw___imag: Opc = UO_Imag; break;
8790 case tok::kw___extension__: Opc = UO_Extension; break;
8791 }
8792 return Opc;
8793 }
8794
8795 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8796 /// This warning is only emitted for builtin assignment operations. It is also
8797 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)8798 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8799 SourceLocation OpLoc) {
8800 if (!S.ActiveTemplateInstantiations.empty())
8801 return;
8802 if (OpLoc.isInvalid() || OpLoc.isMacroID())
8803 return;
8804 LHSExpr = LHSExpr->IgnoreParenImpCasts();
8805 RHSExpr = RHSExpr->IgnoreParenImpCasts();
8806 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8807 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8808 if (!LHSDeclRef || !RHSDeclRef ||
8809 LHSDeclRef->getLocation().isMacroID() ||
8810 RHSDeclRef->getLocation().isMacroID())
8811 return;
8812 const ValueDecl *LHSDecl =
8813 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8814 const ValueDecl *RHSDecl =
8815 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8816 if (LHSDecl != RHSDecl)
8817 return;
8818 if (LHSDecl->getType().isVolatileQualified())
8819 return;
8820 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8821 if (RefTy->getPointeeType().isVolatileQualified())
8822 return;
8823
8824 S.Diag(OpLoc, diag::warn_self_assignment)
8825 << LHSDeclRef->getType()
8826 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8827 }
8828
8829 /// Check if a bitwise-& is performed on an Objective-C pointer. This
8830 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)8831 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
8832 SourceLocation OpLoc) {
8833 if (!S.getLangOpts().ObjC1)
8834 return;
8835
8836 const Expr *ObjCPointerExpr = 0, *OtherExpr = 0;
8837 const Expr *LHS = L.get();
8838 const Expr *RHS = R.get();
8839
8840 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
8841 ObjCPointerExpr = LHS;
8842 OtherExpr = RHS;
8843 }
8844 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
8845 ObjCPointerExpr = RHS;
8846 OtherExpr = LHS;
8847 }
8848
8849 // This warning is deliberately made very specific to reduce false
8850 // positives with logic that uses '&' for hashing. This logic mainly
8851 // looks for code trying to introspect into tagged pointers, which
8852 // code should generally never do.
8853 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
8854 unsigned Diag = diag::warn_objc_pointer_masking;
8855 // Determine if we are introspecting the result of performSelectorXXX.
8856 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
8857 // Special case messages to -performSelector and friends, which
8858 // can return non-pointer values boxed in a pointer value.
8859 // Some clients may wish to silence warnings in this subcase.
8860 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
8861 Selector S = ME->getSelector();
8862 StringRef SelArg0 = S.getNameForSlot(0);
8863 if (SelArg0.startswith("performSelector"))
8864 Diag = diag::warn_objc_pointer_masking_performSelector;
8865 }
8866
8867 S.Diag(OpLoc, Diag)
8868 << ObjCPointerExpr->getSourceRange();
8869 }
8870 }
8871
8872 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
8873 /// operator @p Opc at location @c TokLoc. This routine only supports
8874 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8875 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8876 BinaryOperatorKind Opc,
8877 Expr *LHSExpr, Expr *RHSExpr) {
8878 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
8879 // The syntax only allows initializer lists on the RHS of assignment,
8880 // so we don't need to worry about accepting invalid code for
8881 // non-assignment operators.
8882 // C++11 5.17p9:
8883 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8884 // of x = {} is x = T().
8885 InitializationKind Kind =
8886 InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8887 InitializedEntity Entity =
8888 InitializedEntity::InitializeTemporary(LHSExpr->getType());
8889 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
8890 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8891 if (Init.isInvalid())
8892 return Init;
8893 RHSExpr = Init.take();
8894 }
8895
8896 ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8897 QualType ResultTy; // Result type of the binary operator.
8898 // The following two variables are used for compound assignment operators
8899 QualType CompLHSTy; // Type of LHS after promotions for computation
8900 QualType CompResultTy; // Type of computation result
8901 ExprValueKind VK = VK_RValue;
8902 ExprObjectKind OK = OK_Ordinary;
8903
8904 switch (Opc) {
8905 case BO_Assign:
8906 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8907 if (getLangOpts().CPlusPlus &&
8908 LHS.get()->getObjectKind() != OK_ObjCProperty) {
8909 VK = LHS.get()->getValueKind();
8910 OK = LHS.get()->getObjectKind();
8911 }
8912 if (!ResultTy.isNull())
8913 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8914 break;
8915 case BO_PtrMemD:
8916 case BO_PtrMemI:
8917 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8918 Opc == BO_PtrMemI);
8919 break;
8920 case BO_Mul:
8921 case BO_Div:
8922 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8923 Opc == BO_Div);
8924 break;
8925 case BO_Rem:
8926 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8927 break;
8928 case BO_Add:
8929 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8930 break;
8931 case BO_Sub:
8932 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8933 break;
8934 case BO_Shl:
8935 case BO_Shr:
8936 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8937 break;
8938 case BO_LE:
8939 case BO_LT:
8940 case BO_GE:
8941 case BO_GT:
8942 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8943 break;
8944 case BO_EQ:
8945 case BO_NE:
8946 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8947 break;
8948 case BO_And:
8949 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
8950 case BO_Xor:
8951 case BO_Or:
8952 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8953 break;
8954 case BO_LAnd:
8955 case BO_LOr:
8956 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8957 break;
8958 case BO_MulAssign:
8959 case BO_DivAssign:
8960 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8961 Opc == BO_DivAssign);
8962 CompLHSTy = CompResultTy;
8963 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8964 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8965 break;
8966 case BO_RemAssign:
8967 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8968 CompLHSTy = CompResultTy;
8969 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8970 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8971 break;
8972 case BO_AddAssign:
8973 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8974 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8975 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8976 break;
8977 case BO_SubAssign:
8978 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8979 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8980 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8981 break;
8982 case BO_ShlAssign:
8983 case BO_ShrAssign:
8984 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8985 CompLHSTy = CompResultTy;
8986 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8987 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8988 break;
8989 case BO_AndAssign:
8990 case BO_XorAssign:
8991 case BO_OrAssign:
8992 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8993 CompLHSTy = CompResultTy;
8994 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8995 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8996 break;
8997 case BO_Comma:
8998 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8999 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
9000 VK = RHS.get()->getValueKind();
9001 OK = RHS.get()->getObjectKind();
9002 }
9003 break;
9004 }
9005 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
9006 return ExprError();
9007
9008 // Check for array bounds violations for both sides of the BinaryOperator
9009 CheckArrayAccess(LHS.get());
9010 CheckArrayAccess(RHS.get());
9011
9012 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
9013 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
9014 &Context.Idents.get("object_setClass"),
9015 SourceLocation(), LookupOrdinaryName);
9016 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
9017 SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
9018 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
9019 FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
9020 FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
9021 FixItHint::CreateInsertion(RHSLocEnd, ")");
9022 }
9023 else
9024 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
9025 }
9026 else if (const ObjCIvarRefExpr *OIRE =
9027 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
9028 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
9029
9030 if (CompResultTy.isNull())
9031 return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
9032 ResultTy, VK, OK, OpLoc,
9033 FPFeatures.fp_contract));
9034 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
9035 OK_ObjCProperty) {
9036 VK = VK_LValue;
9037 OK = LHS.get()->getObjectKind();
9038 }
9039 return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
9040 ResultTy, VK, OK, CompLHSTy,
9041 CompResultTy, OpLoc,
9042 FPFeatures.fp_contract));
9043 }
9044
9045 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
9046 /// operators are mixed in a way that suggests that the programmer forgot that
9047 /// comparison operators have higher precedence. The most typical example of
9048 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)9049 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
9050 SourceLocation OpLoc, Expr *LHSExpr,
9051 Expr *RHSExpr) {
9052 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
9053 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
9054
9055 // Check that one of the sides is a comparison operator.
9056 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
9057 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
9058 if (!isLeftComp && !isRightComp)
9059 return;
9060
9061 // Bitwise operations are sometimes used as eager logical ops.
9062 // Don't diagnose this.
9063 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
9064 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
9065 if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
9066 return;
9067
9068 SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
9069 OpLoc)
9070 : SourceRange(OpLoc, RHSExpr->getLocEnd());
9071 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
9072 SourceRange ParensRange = isLeftComp ?
9073 SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
9074 : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
9075
9076 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
9077 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
9078 SuggestParentheses(Self, OpLoc,
9079 Self.PDiag(diag::note_precedence_silence) << OpStr,
9080 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
9081 SuggestParentheses(Self, OpLoc,
9082 Self.PDiag(diag::note_precedence_bitwise_first)
9083 << BinaryOperator::getOpcodeStr(Opc),
9084 ParensRange);
9085 }
9086
9087 /// \brief It accepts a '&' expr that is inside a '|' one.
9088 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
9089 /// in parentheses.
9090 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)9091 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
9092 BinaryOperator *Bop) {
9093 assert(Bop->getOpcode() == BO_And);
9094 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
9095 << Bop->getSourceRange() << OpLoc;
9096 SuggestParentheses(Self, Bop->getOperatorLoc(),
9097 Self.PDiag(diag::note_precedence_silence)
9098 << Bop->getOpcodeStr(),
9099 Bop->getSourceRange());
9100 }
9101
9102 /// \brief It accepts a '&&' expr that is inside a '||' one.
9103 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
9104 /// in parentheses.
9105 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)9106 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
9107 BinaryOperator *Bop) {
9108 assert(Bop->getOpcode() == BO_LAnd);
9109 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
9110 << Bop->getSourceRange() << OpLoc;
9111 SuggestParentheses(Self, Bop->getOperatorLoc(),
9112 Self.PDiag(diag::note_precedence_silence)
9113 << Bop->getOpcodeStr(),
9114 Bop->getSourceRange());
9115 }
9116
9117 /// \brief Returns true if the given expression can be evaluated as a constant
9118 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)9119 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
9120 bool Res;
9121 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
9122 }
9123
9124 /// \brief Returns true if the given expression can be evaluated as a constant
9125 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)9126 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
9127 bool Res;
9128 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
9129 }
9130
9131 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)9132 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
9133 Expr *LHSExpr, Expr *RHSExpr) {
9134 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
9135 if (Bop->getOpcode() == BO_LAnd) {
9136 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
9137 if (EvaluatesAsFalse(S, RHSExpr))
9138 return;
9139 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
9140 if (!EvaluatesAsTrue(S, Bop->getLHS()))
9141 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9142 } else if (Bop->getOpcode() == BO_LOr) {
9143 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
9144 // If it's "a || b && 1 || c" we didn't warn earlier for
9145 // "a || b && 1", but warn now.
9146 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
9147 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
9148 }
9149 }
9150 }
9151 }
9152
9153 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)9154 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
9155 Expr *LHSExpr, Expr *RHSExpr) {
9156 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
9157 if (Bop->getOpcode() == BO_LAnd) {
9158 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
9159 if (EvaluatesAsFalse(S, LHSExpr))
9160 return;
9161 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
9162 if (!EvaluatesAsTrue(S, Bop->getRHS()))
9163 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9164 }
9165 }
9166 }
9167
9168 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)9169 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
9170 Expr *OrArg) {
9171 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
9172 if (Bop->getOpcode() == BO_And)
9173 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
9174 }
9175 }
9176
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)9177 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
9178 Expr *SubExpr, StringRef Shift) {
9179 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
9180 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
9181 StringRef Op = Bop->getOpcodeStr();
9182 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
9183 << Bop->getSourceRange() << OpLoc << Shift << Op;
9184 SuggestParentheses(S, Bop->getOperatorLoc(),
9185 S.PDiag(diag::note_precedence_silence) << Op,
9186 Bop->getSourceRange());
9187 }
9188 }
9189 }
9190
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)9191 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
9192 Expr *LHSExpr, Expr *RHSExpr) {
9193 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
9194 if (!OCE)
9195 return;
9196
9197 FunctionDecl *FD = OCE->getDirectCallee();
9198 if (!FD || !FD->isOverloadedOperator())
9199 return;
9200
9201 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
9202 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
9203 return;
9204
9205 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
9206 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
9207 << (Kind == OO_LessLess);
9208 SuggestParentheses(S, OCE->getOperatorLoc(),
9209 S.PDiag(diag::note_precedence_silence)
9210 << (Kind == OO_LessLess ? "<<" : ">>"),
9211 OCE->getSourceRange());
9212 SuggestParentheses(S, OpLoc,
9213 S.PDiag(diag::note_evaluate_comparison_first),
9214 SourceRange(OCE->getArg(1)->getLocStart(),
9215 RHSExpr->getLocEnd()));
9216 }
9217
9218 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
9219 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)9220 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
9221 SourceLocation OpLoc, Expr *LHSExpr,
9222 Expr *RHSExpr){
9223 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
9224 if (BinaryOperator::isBitwiseOp(Opc))
9225 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
9226
9227 // Diagnose "arg1 & arg2 | arg3"
9228 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9229 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
9230 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
9231 }
9232
9233 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
9234 // We don't warn for 'assert(a || b && "bad")' since this is safe.
9235 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9236 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
9237 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
9238 }
9239
9240 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
9241 || Opc == BO_Shr) {
9242 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
9243 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
9244 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
9245 }
9246
9247 // Warn on overloaded shift operators and comparisons, such as:
9248 // cout << 5 == 4;
9249 if (BinaryOperator::isComparisonOp(Opc))
9250 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
9251 }
9252
9253 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)9254 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
9255 tok::TokenKind Kind,
9256 Expr *LHSExpr, Expr *RHSExpr) {
9257 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
9258 assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
9259 assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
9260
9261 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
9262 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
9263
9264 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
9265 }
9266
9267 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)9268 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
9269 BinaryOperatorKind Opc,
9270 Expr *LHS, Expr *RHS) {
9271 // Find all of the overloaded operators visible from this
9272 // point. We perform both an operator-name lookup from the local
9273 // scope and an argument-dependent lookup based on the types of
9274 // the arguments.
9275 UnresolvedSet<16> Functions;
9276 OverloadedOperatorKind OverOp
9277 = BinaryOperator::getOverloadedOperator(Opc);
9278 if (Sc && OverOp != OO_None)
9279 S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
9280 RHS->getType(), Functions);
9281
9282 // Build the (potentially-overloaded, potentially-dependent)
9283 // binary operation.
9284 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
9285 }
9286
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)9287 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
9288 BinaryOperatorKind Opc,
9289 Expr *LHSExpr, Expr *RHSExpr) {
9290 // We want to end up calling one of checkPseudoObjectAssignment
9291 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
9292 // both expressions are overloadable or either is type-dependent),
9293 // or CreateBuiltinBinOp (in any other case). We also want to get
9294 // any placeholder types out of the way.
9295
9296 // Handle pseudo-objects in the LHS.
9297 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
9298 // Assignments with a pseudo-object l-value need special analysis.
9299 if (pty->getKind() == BuiltinType::PseudoObject &&
9300 BinaryOperator::isAssignmentOp(Opc))
9301 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
9302
9303 // Don't resolve overloads if the other type is overloadable.
9304 if (pty->getKind() == BuiltinType::Overload) {
9305 // We can't actually test that if we still have a placeholder,
9306 // though. Fortunately, none of the exceptions we see in that
9307 // code below are valid when the LHS is an overload set. Note
9308 // that an overload set can be dependently-typed, but it never
9309 // instantiates to having an overloadable type.
9310 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9311 if (resolvedRHS.isInvalid()) return ExprError();
9312 RHSExpr = resolvedRHS.take();
9313
9314 if (RHSExpr->isTypeDependent() ||
9315 RHSExpr->getType()->isOverloadableType())
9316 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9317 }
9318
9319 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
9320 if (LHS.isInvalid()) return ExprError();
9321 LHSExpr = LHS.take();
9322 }
9323
9324 // Handle pseudo-objects in the RHS.
9325 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
9326 // An overload in the RHS can potentially be resolved by the type
9327 // being assigned to.
9328 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
9329 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9330 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9331
9332 if (LHSExpr->getType()->isOverloadableType())
9333 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9334
9335 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9336 }
9337
9338 // Don't resolve overloads if the other type is overloadable.
9339 if (pty->getKind() == BuiltinType::Overload &&
9340 LHSExpr->getType()->isOverloadableType())
9341 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9342
9343 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9344 if (!resolvedRHS.isUsable()) return ExprError();
9345 RHSExpr = resolvedRHS.take();
9346 }
9347
9348 if (getLangOpts().CPlusPlus) {
9349 // If either expression is type-dependent, always build an
9350 // overloaded op.
9351 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9352 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9353
9354 // Otherwise, build an overloaded op if either expression has an
9355 // overloadable type.
9356 if (LHSExpr->getType()->isOverloadableType() ||
9357 RHSExpr->getType()->isOverloadableType())
9358 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9359 }
9360
9361 // Build a built-in binary operation.
9362 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9363 }
9364
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)9365 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
9366 UnaryOperatorKind Opc,
9367 Expr *InputExpr) {
9368 ExprResult Input = Owned(InputExpr);
9369 ExprValueKind VK = VK_RValue;
9370 ExprObjectKind OK = OK_Ordinary;
9371 QualType resultType;
9372 switch (Opc) {
9373 case UO_PreInc:
9374 case UO_PreDec:
9375 case UO_PostInc:
9376 case UO_PostDec:
9377 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
9378 Opc == UO_PreInc ||
9379 Opc == UO_PostInc,
9380 Opc == UO_PreInc ||
9381 Opc == UO_PreDec);
9382 break;
9383 case UO_AddrOf:
9384 resultType = CheckAddressOfOperand(Input, OpLoc);
9385 break;
9386 case UO_Deref: {
9387 Input = DefaultFunctionArrayLvalueConversion(Input.take());
9388 if (Input.isInvalid()) return ExprError();
9389 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
9390 break;
9391 }
9392 case UO_Plus:
9393 case UO_Minus:
9394 Input = UsualUnaryConversions(Input.take());
9395 if (Input.isInvalid()) return ExprError();
9396 resultType = Input.get()->getType();
9397 if (resultType->isDependentType())
9398 break;
9399 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
9400 resultType->isVectorType())
9401 break;
9402 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
9403 resultType->isEnumeralType())
9404 break;
9405 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
9406 Opc == UO_Plus &&
9407 resultType->isPointerType())
9408 break;
9409
9410 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9411 << resultType << Input.get()->getSourceRange());
9412
9413 case UO_Not: // bitwise complement
9414 Input = UsualUnaryConversions(Input.take());
9415 if (Input.isInvalid())
9416 return ExprError();
9417 resultType = Input.get()->getType();
9418 if (resultType->isDependentType())
9419 break;
9420 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
9421 if (resultType->isComplexType() || resultType->isComplexIntegerType())
9422 // C99 does not support '~' for complex conjugation.
9423 Diag(OpLoc, diag::ext_integer_complement_complex)
9424 << resultType << Input.get()->getSourceRange();
9425 else if (resultType->hasIntegerRepresentation())
9426 break;
9427 else if (resultType->isExtVectorType()) {
9428 if (Context.getLangOpts().OpenCL) {
9429 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
9430 // on vector float types.
9431 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9432 if (!T->isIntegerType())
9433 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9434 << resultType << Input.get()->getSourceRange());
9435 }
9436 break;
9437 } else {
9438 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9439 << resultType << Input.get()->getSourceRange());
9440 }
9441 break;
9442
9443 case UO_LNot: // logical negation
9444 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
9445 Input = DefaultFunctionArrayLvalueConversion(Input.take());
9446 if (Input.isInvalid()) return ExprError();
9447 resultType = Input.get()->getType();
9448
9449 // Though we still have to promote half FP to float...
9450 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
9451 Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
9452 resultType = Context.FloatTy;
9453 }
9454
9455 if (resultType->isDependentType())
9456 break;
9457 if (resultType->isScalarType()) {
9458 // C99 6.5.3.3p1: ok, fallthrough;
9459 if (Context.getLangOpts().CPlusPlus) {
9460 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
9461 // operand contextually converted to bool.
9462 Input = ImpCastExprToType(Input.take(), Context.BoolTy,
9463 ScalarTypeToBooleanCastKind(resultType));
9464 } else if (Context.getLangOpts().OpenCL &&
9465 Context.getLangOpts().OpenCLVersion < 120) {
9466 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9467 // operate on scalar float types.
9468 if (!resultType->isIntegerType())
9469 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9470 << resultType << Input.get()->getSourceRange());
9471 }
9472 } else if (resultType->isExtVectorType()) {
9473 if (Context.getLangOpts().OpenCL &&
9474 Context.getLangOpts().OpenCLVersion < 120) {
9475 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9476 // operate on vector float types.
9477 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9478 if (!T->isIntegerType())
9479 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9480 << resultType << Input.get()->getSourceRange());
9481 }
9482 // Vector logical not returns the signed variant of the operand type.
9483 resultType = GetSignedVectorType(resultType);
9484 break;
9485 } else {
9486 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9487 << resultType << Input.get()->getSourceRange());
9488 }
9489
9490 // LNot always has type int. C99 6.5.3.3p5.
9491 // In C++, it's bool. C++ 5.3.1p8
9492 resultType = Context.getLogicalOperationType();
9493 break;
9494 case UO_Real:
9495 case UO_Imag:
9496 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
9497 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
9498 // complex l-values to ordinary l-values and all other values to r-values.
9499 if (Input.isInvalid()) return ExprError();
9500 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
9501 if (Input.get()->getValueKind() != VK_RValue &&
9502 Input.get()->getObjectKind() == OK_Ordinary)
9503 VK = Input.get()->getValueKind();
9504 } else if (!getLangOpts().CPlusPlus) {
9505 // In C, a volatile scalar is read by __imag. In C++, it is not.
9506 Input = DefaultLvalueConversion(Input.take());
9507 }
9508 break;
9509 case UO_Extension:
9510 resultType = Input.get()->getType();
9511 VK = Input.get()->getValueKind();
9512 OK = Input.get()->getObjectKind();
9513 break;
9514 }
9515 if (resultType.isNull() || Input.isInvalid())
9516 return ExprError();
9517
9518 // Check for array bounds violations in the operand of the UnaryOperator,
9519 // except for the '*' and '&' operators that have to be handled specially
9520 // by CheckArrayAccess (as there are special cases like &array[arraysize]
9521 // that are explicitly defined as valid by the standard).
9522 if (Opc != UO_AddrOf && Opc != UO_Deref)
9523 CheckArrayAccess(Input.get());
9524
9525 return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9526 VK, OK, OpLoc));
9527 }
9528
9529 /// \brief Determine whether the given expression is a qualified member
9530 /// access expression, of a form that could be turned into a pointer to member
9531 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)9532 static bool isQualifiedMemberAccess(Expr *E) {
9533 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9534 if (!DRE->getQualifier())
9535 return false;
9536
9537 ValueDecl *VD = DRE->getDecl();
9538 if (!VD->isCXXClassMember())
9539 return false;
9540
9541 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
9542 return true;
9543 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
9544 return Method->isInstance();
9545
9546 return false;
9547 }
9548
9549 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9550 if (!ULE->getQualifier())
9551 return false;
9552
9553 for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
9554 DEnd = ULE->decls_end();
9555 D != DEnd; ++D) {
9556 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
9557 if (Method->isInstance())
9558 return true;
9559 } else {
9560 // Overload set does not contain methods.
9561 break;
9562 }
9563 }
9564
9565 return false;
9566 }
9567
9568 return false;
9569 }
9570
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)9571 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9572 UnaryOperatorKind Opc, Expr *Input) {
9573 // First things first: handle placeholders so that the
9574 // overloaded-operator check considers the right type.
9575 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
9576 // Increment and decrement of pseudo-object references.
9577 if (pty->getKind() == BuiltinType::PseudoObject &&
9578 UnaryOperator::isIncrementDecrementOp(Opc))
9579 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
9580
9581 // extension is always a builtin operator.
9582 if (Opc == UO_Extension)
9583 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9584
9585 // & gets special logic for several kinds of placeholder.
9586 // The builtin code knows what to do.
9587 if (Opc == UO_AddrOf &&
9588 (pty->getKind() == BuiltinType::Overload ||
9589 pty->getKind() == BuiltinType::UnknownAny ||
9590 pty->getKind() == BuiltinType::BoundMember))
9591 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9592
9593 // Anything else needs to be handled now.
9594 ExprResult Result = CheckPlaceholderExpr(Input);
9595 if (Result.isInvalid()) return ExprError();
9596 Input = Result.take();
9597 }
9598
9599 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
9600 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
9601 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
9602 // Find all of the overloaded operators visible from this
9603 // point. We perform both an operator-name lookup from the local
9604 // scope and an argument-dependent lookup based on the types of
9605 // the arguments.
9606 UnresolvedSet<16> Functions;
9607 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9608 if (S && OverOp != OO_None)
9609 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9610 Functions);
9611
9612 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9613 }
9614
9615 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9616 }
9617
9618 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)9619 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9620 tok::TokenKind Op, Expr *Input) {
9621 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9622 }
9623
9624 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)9625 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9626 LabelDecl *TheDecl) {
9627 TheDecl->setUsed();
9628 // Create the AST node. The address of a label always has type 'void*'.
9629 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9630 Context.getPointerType(Context.VoidTy)));
9631 }
9632
9633 /// Given the last statement in a statement-expression, check whether
9634 /// the result is a producing expression (like a call to an
9635 /// ns_returns_retained function) and, if so, rebuild it to hoist the
9636 /// release out of the full-expression. Otherwise, return null.
9637 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)9638 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9639 // Should always be wrapped with one of these.
9640 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9641 if (!cleanups) return 0;
9642
9643 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9644 if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9645 return 0;
9646
9647 // Splice out the cast. This shouldn't modify any interesting
9648 // features of the statement.
9649 Expr *producer = cast->getSubExpr();
9650 assert(producer->getType() == cast->getType());
9651 assert(producer->getValueKind() == cast->getValueKind());
9652 cleanups->setSubExpr(producer);
9653 return cleanups;
9654 }
9655
ActOnStartStmtExpr()9656 void Sema::ActOnStartStmtExpr() {
9657 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9658 }
9659
ActOnStmtExprError()9660 void Sema::ActOnStmtExprError() {
9661 // Note that function is also called by TreeTransform when leaving a
9662 // StmtExpr scope without rebuilding anything.
9663
9664 DiscardCleanupsInEvaluationContext();
9665 PopExpressionEvaluationContext();
9666 }
9667
9668 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)9669 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9670 SourceLocation RPLoc) { // "({..})"
9671 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9672 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9673
9674 if (hasAnyUnrecoverableErrorsInThisFunction())
9675 DiscardCleanupsInEvaluationContext();
9676 assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9677 PopExpressionEvaluationContext();
9678
9679 bool isFileScope
9680 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9681 if (isFileScope)
9682 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9683
9684 // FIXME: there are a variety of strange constraints to enforce here, for
9685 // example, it is not possible to goto into a stmt expression apparently.
9686 // More semantic analysis is needed.
9687
9688 // If there are sub stmts in the compound stmt, take the type of the last one
9689 // as the type of the stmtexpr.
9690 QualType Ty = Context.VoidTy;
9691 bool StmtExprMayBindToTemp = false;
9692 if (!Compound->body_empty()) {
9693 Stmt *LastStmt = Compound->body_back();
9694 LabelStmt *LastLabelStmt = 0;
9695 // If LastStmt is a label, skip down through into the body.
9696 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9697 LastLabelStmt = Label;
9698 LastStmt = Label->getSubStmt();
9699 }
9700
9701 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9702 // Do function/array conversion on the last expression, but not
9703 // lvalue-to-rvalue. However, initialize an unqualified type.
9704 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9705 if (LastExpr.isInvalid())
9706 return ExprError();
9707 Ty = LastExpr.get()->getType().getUnqualifiedType();
9708
9709 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9710 // In ARC, if the final expression ends in a consume, splice
9711 // the consume out and bind it later. In the alternate case
9712 // (when dealing with a retainable type), the result
9713 // initialization will create a produce. In both cases the
9714 // result will be +1, and we'll need to balance that out with
9715 // a bind.
9716 if (Expr *rebuiltLastStmt
9717 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9718 LastExpr = rebuiltLastStmt;
9719 } else {
9720 LastExpr = PerformCopyInitialization(
9721 InitializedEntity::InitializeResult(LPLoc,
9722 Ty,
9723 false),
9724 SourceLocation(),
9725 LastExpr);
9726 }
9727
9728 if (LastExpr.isInvalid())
9729 return ExprError();
9730 if (LastExpr.get() != 0) {
9731 if (!LastLabelStmt)
9732 Compound->setLastStmt(LastExpr.take());
9733 else
9734 LastLabelStmt->setSubStmt(LastExpr.take());
9735 StmtExprMayBindToTemp = true;
9736 }
9737 }
9738 }
9739 }
9740
9741 // FIXME: Check that expression type is complete/non-abstract; statement
9742 // expressions are not lvalues.
9743 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9744 if (StmtExprMayBindToTemp)
9745 return MaybeBindToTemporary(ResStmtExpr);
9746 return Owned(ResStmtExpr);
9747 }
9748
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9749 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9750 TypeSourceInfo *TInfo,
9751 OffsetOfComponent *CompPtr,
9752 unsigned NumComponents,
9753 SourceLocation RParenLoc) {
9754 QualType ArgTy = TInfo->getType();
9755 bool Dependent = ArgTy->isDependentType();
9756 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9757
9758 // We must have at least one component that refers to the type, and the first
9759 // one is known to be a field designator. Verify that the ArgTy represents
9760 // a struct/union/class.
9761 if (!Dependent && !ArgTy->isRecordType())
9762 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9763 << ArgTy << TypeRange);
9764
9765 // Type must be complete per C99 7.17p3 because a declaring a variable
9766 // with an incomplete type would be ill-formed.
9767 if (!Dependent
9768 && RequireCompleteType(BuiltinLoc, ArgTy,
9769 diag::err_offsetof_incomplete_type, TypeRange))
9770 return ExprError();
9771
9772 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9773 // GCC extension, diagnose them.
9774 // FIXME: This diagnostic isn't actually visible because the location is in
9775 // a system header!
9776 if (NumComponents != 1)
9777 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9778 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9779
9780 bool DidWarnAboutNonPOD = false;
9781 QualType CurrentType = ArgTy;
9782 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9783 SmallVector<OffsetOfNode, 4> Comps;
9784 SmallVector<Expr*, 4> Exprs;
9785 for (unsigned i = 0; i != NumComponents; ++i) {
9786 const OffsetOfComponent &OC = CompPtr[i];
9787 if (OC.isBrackets) {
9788 // Offset of an array sub-field. TODO: Should we allow vector elements?
9789 if (!CurrentType->isDependentType()) {
9790 const ArrayType *AT = Context.getAsArrayType(CurrentType);
9791 if(!AT)
9792 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9793 << CurrentType);
9794 CurrentType = AT->getElementType();
9795 } else
9796 CurrentType = Context.DependentTy;
9797
9798 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9799 if (IdxRval.isInvalid())
9800 return ExprError();
9801 Expr *Idx = IdxRval.take();
9802
9803 // The expression must be an integral expression.
9804 // FIXME: An integral constant expression?
9805 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9806 !Idx->getType()->isIntegerType())
9807 return ExprError(Diag(Idx->getLocStart(),
9808 diag::err_typecheck_subscript_not_integer)
9809 << Idx->getSourceRange());
9810
9811 // Record this array index.
9812 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9813 Exprs.push_back(Idx);
9814 continue;
9815 }
9816
9817 // Offset of a field.
9818 if (CurrentType->isDependentType()) {
9819 // We have the offset of a field, but we can't look into the dependent
9820 // type. Just record the identifier of the field.
9821 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9822 CurrentType = Context.DependentTy;
9823 continue;
9824 }
9825
9826 // We need to have a complete type to look into.
9827 if (RequireCompleteType(OC.LocStart, CurrentType,
9828 diag::err_offsetof_incomplete_type))
9829 return ExprError();
9830
9831 // Look for the designated field.
9832 const RecordType *RC = CurrentType->getAs<RecordType>();
9833 if (!RC)
9834 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9835 << CurrentType);
9836 RecordDecl *RD = RC->getDecl();
9837
9838 // C++ [lib.support.types]p5:
9839 // The macro offsetof accepts a restricted set of type arguments in this
9840 // International Standard. type shall be a POD structure or a POD union
9841 // (clause 9).
9842 // C++11 [support.types]p4:
9843 // If type is not a standard-layout class (Clause 9), the results are
9844 // undefined.
9845 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9846 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
9847 unsigned DiagID =
9848 LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
9849 : diag::warn_offsetof_non_pod_type;
9850
9851 if (!IsSafe && !DidWarnAboutNonPOD &&
9852 DiagRuntimeBehavior(BuiltinLoc, 0,
9853 PDiag(DiagID)
9854 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9855 << CurrentType))
9856 DidWarnAboutNonPOD = true;
9857 }
9858
9859 // Look for the field.
9860 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9861 LookupQualifiedName(R, RD);
9862 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9863 IndirectFieldDecl *IndirectMemberDecl = 0;
9864 if (!MemberDecl) {
9865 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9866 MemberDecl = IndirectMemberDecl->getAnonField();
9867 }
9868
9869 if (!MemberDecl)
9870 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9871 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9872 OC.LocEnd));
9873
9874 // C99 7.17p3:
9875 // (If the specified member is a bit-field, the behavior is undefined.)
9876 //
9877 // We diagnose this as an error.
9878 if (MemberDecl->isBitField()) {
9879 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9880 << MemberDecl->getDeclName()
9881 << SourceRange(BuiltinLoc, RParenLoc);
9882 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9883 return ExprError();
9884 }
9885
9886 RecordDecl *Parent = MemberDecl->getParent();
9887 if (IndirectMemberDecl)
9888 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9889
9890 // If the member was found in a base class, introduce OffsetOfNodes for
9891 // the base class indirections.
9892 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9893 /*DetectVirtual=*/false);
9894 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9895 CXXBasePath &Path = Paths.front();
9896 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9897 B != BEnd; ++B)
9898 Comps.push_back(OffsetOfNode(B->Base));
9899 }
9900
9901 if (IndirectMemberDecl) {
9902 for (IndirectFieldDecl::chain_iterator FI =
9903 IndirectMemberDecl->chain_begin(),
9904 FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9905 assert(isa<FieldDecl>(*FI));
9906 Comps.push_back(OffsetOfNode(OC.LocStart,
9907 cast<FieldDecl>(*FI), OC.LocEnd));
9908 }
9909 } else
9910 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9911
9912 CurrentType = MemberDecl->getType().getNonReferenceType();
9913 }
9914
9915 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9916 TInfo, Comps, Exprs, RParenLoc));
9917 }
9918
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9919 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9920 SourceLocation BuiltinLoc,
9921 SourceLocation TypeLoc,
9922 ParsedType ParsedArgTy,
9923 OffsetOfComponent *CompPtr,
9924 unsigned NumComponents,
9925 SourceLocation RParenLoc) {
9926
9927 TypeSourceInfo *ArgTInfo;
9928 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9929 if (ArgTy.isNull())
9930 return ExprError();
9931
9932 if (!ArgTInfo)
9933 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9934
9935 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9936 RParenLoc);
9937 }
9938
9939
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)9940 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9941 Expr *CondExpr,
9942 Expr *LHSExpr, Expr *RHSExpr,
9943 SourceLocation RPLoc) {
9944 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9945
9946 ExprValueKind VK = VK_RValue;
9947 ExprObjectKind OK = OK_Ordinary;
9948 QualType resType;
9949 bool ValueDependent = false;
9950 bool CondIsTrue = false;
9951 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9952 resType = Context.DependentTy;
9953 ValueDependent = true;
9954 } else {
9955 // The conditional expression is required to be a constant expression.
9956 llvm::APSInt condEval(32);
9957 ExprResult CondICE
9958 = VerifyIntegerConstantExpression(CondExpr, &condEval,
9959 diag::err_typecheck_choose_expr_requires_constant, false);
9960 if (CondICE.isInvalid())
9961 return ExprError();
9962 CondExpr = CondICE.take();
9963 CondIsTrue = condEval.getZExtValue();
9964
9965 // If the condition is > zero, then the AST type is the same as the LSHExpr.
9966 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
9967
9968 resType = ActiveExpr->getType();
9969 ValueDependent = ActiveExpr->isValueDependent();
9970 VK = ActiveExpr->getValueKind();
9971 OK = ActiveExpr->getObjectKind();
9972 }
9973
9974 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9975 resType, VK, OK, RPLoc, CondIsTrue,
9976 resType->isDependentType(),
9977 ValueDependent));
9978 }
9979
9980 //===----------------------------------------------------------------------===//
9981 // Clang Extensions.
9982 //===----------------------------------------------------------------------===//
9983
9984 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)9985 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9986 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9987
9988 {
9989 Decl *ManglingContextDecl;
9990 if (MangleNumberingContext *MCtx =
9991 getCurrentMangleNumberContext(Block->getDeclContext(),
9992 ManglingContextDecl)) {
9993 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
9994 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
9995 }
9996 }
9997
9998 PushBlockScope(CurScope, Block);
9999 CurContext->addDecl(Block);
10000 if (CurScope)
10001 PushDeclContext(CurScope, Block);
10002 else
10003 CurContext = Block;
10004
10005 getCurBlock()->HasImplicitReturnType = true;
10006
10007 // Enter a new evaluation context to insulate the block from any
10008 // cleanups from the enclosing full-expression.
10009 PushExpressionEvaluationContext(PotentiallyEvaluated);
10010 }
10011
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)10012 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
10013 Scope *CurScope) {
10014 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
10015 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
10016 BlockScopeInfo *CurBlock = getCurBlock();
10017
10018 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
10019 QualType T = Sig->getType();
10020
10021 // FIXME: We should allow unexpanded parameter packs here, but that would,
10022 // in turn, make the block expression contain unexpanded parameter packs.
10023 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
10024 // Drop the parameters.
10025 FunctionProtoType::ExtProtoInfo EPI;
10026 EPI.HasTrailingReturn = false;
10027 EPI.TypeQuals |= DeclSpec::TQ_const;
10028 T = Context.getFunctionType(Context.DependentTy, None, EPI);
10029 Sig = Context.getTrivialTypeSourceInfo(T);
10030 }
10031
10032 // GetTypeForDeclarator always produces a function type for a block
10033 // literal signature. Furthermore, it is always a FunctionProtoType
10034 // unless the function was written with a typedef.
10035 assert(T->isFunctionType() &&
10036 "GetTypeForDeclarator made a non-function block signature");
10037
10038 // Look for an explicit signature in that function type.
10039 FunctionProtoTypeLoc ExplicitSignature;
10040
10041 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
10042 if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
10043
10044 // Check whether that explicit signature was synthesized by
10045 // GetTypeForDeclarator. If so, don't save that as part of the
10046 // written signature.
10047 if (ExplicitSignature.getLocalRangeBegin() ==
10048 ExplicitSignature.getLocalRangeEnd()) {
10049 // This would be much cheaper if we stored TypeLocs instead of
10050 // TypeSourceInfos.
10051 TypeLoc Result = ExplicitSignature.getResultLoc();
10052 unsigned Size = Result.getFullDataSize();
10053 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
10054 Sig->getTypeLoc().initializeFullCopy(Result, Size);
10055
10056 ExplicitSignature = FunctionProtoTypeLoc();
10057 }
10058 }
10059
10060 CurBlock->TheDecl->setSignatureAsWritten(Sig);
10061 CurBlock->FunctionType = T;
10062
10063 const FunctionType *Fn = T->getAs<FunctionType>();
10064 QualType RetTy = Fn->getResultType();
10065 bool isVariadic =
10066 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
10067
10068 CurBlock->TheDecl->setIsVariadic(isVariadic);
10069
10070 // Context.DependentTy is used as a placeholder for a missing block
10071 // return type. TODO: what should we do with declarators like:
10072 // ^ * { ... }
10073 // If the answer is "apply template argument deduction"....
10074 if (RetTy != Context.DependentTy) {
10075 CurBlock->ReturnType = RetTy;
10076 CurBlock->TheDecl->setBlockMissingReturnType(false);
10077 CurBlock->HasImplicitReturnType = false;
10078 }
10079
10080 // Push block parameters from the declarator if we had them.
10081 SmallVector<ParmVarDecl*, 8> Params;
10082 if (ExplicitSignature) {
10083 for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
10084 ParmVarDecl *Param = ExplicitSignature.getArg(I);
10085 if (Param->getIdentifier() == 0 &&
10086 !Param->isImplicit() &&
10087 !Param->isInvalidDecl() &&
10088 !getLangOpts().CPlusPlus)
10089 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
10090 Params.push_back(Param);
10091 }
10092
10093 // Fake up parameter variables if we have a typedef, like
10094 // ^ fntype { ... }
10095 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
10096 for (FunctionProtoType::arg_type_iterator
10097 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
10098 ParmVarDecl *Param =
10099 BuildParmVarDeclForTypedef(CurBlock->TheDecl,
10100 ParamInfo.getLocStart(),
10101 *I);
10102 Params.push_back(Param);
10103 }
10104 }
10105
10106 // Set the parameters on the block decl.
10107 if (!Params.empty()) {
10108 CurBlock->TheDecl->setParams(Params);
10109 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
10110 CurBlock->TheDecl->param_end(),
10111 /*CheckParameterNames=*/false);
10112 }
10113
10114 // Finally we can process decl attributes.
10115 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
10116
10117 // Put the parameter variables in scope.
10118 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
10119 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
10120 (*AI)->setOwningFunction(CurBlock->TheDecl);
10121
10122 // If this has an identifier, add it to the scope stack.
10123 if ((*AI)->getIdentifier()) {
10124 CheckShadow(CurBlock->TheScope, *AI);
10125
10126 PushOnScopeChains(*AI, CurBlock->TheScope);
10127 }
10128 }
10129 }
10130
10131 /// ActOnBlockError - If there is an error parsing a block, this callback
10132 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)10133 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
10134 // Leave the expression-evaluation context.
10135 DiscardCleanupsInEvaluationContext();
10136 PopExpressionEvaluationContext();
10137
10138 // Pop off CurBlock, handle nested blocks.
10139 PopDeclContext();
10140 PopFunctionScopeInfo();
10141 }
10142
10143 /// ActOnBlockStmtExpr - This is called when the body of a block statement
10144 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)10145 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
10146 Stmt *Body, Scope *CurScope) {
10147 // If blocks are disabled, emit an error.
10148 if (!LangOpts.Blocks)
10149 Diag(CaretLoc, diag::err_blocks_disable);
10150
10151 // Leave the expression-evaluation context.
10152 if (hasAnyUnrecoverableErrorsInThisFunction())
10153 DiscardCleanupsInEvaluationContext();
10154 assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
10155 PopExpressionEvaluationContext();
10156
10157 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
10158
10159 if (BSI->HasImplicitReturnType)
10160 deduceClosureReturnType(*BSI);
10161
10162 PopDeclContext();
10163
10164 QualType RetTy = Context.VoidTy;
10165 if (!BSI->ReturnType.isNull())
10166 RetTy = BSI->ReturnType;
10167
10168 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
10169 QualType BlockTy;
10170
10171 // Set the captured variables on the block.
10172 // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
10173 SmallVector<BlockDecl::Capture, 4> Captures;
10174 for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
10175 CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
10176 if (Cap.isThisCapture())
10177 continue;
10178 BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
10179 Cap.isNested(), Cap.getInitExpr());
10180 Captures.push_back(NewCap);
10181 }
10182 BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
10183 BSI->CXXThisCaptureIndex != 0);
10184
10185 // If the user wrote a function type in some form, try to use that.
10186 if (!BSI->FunctionType.isNull()) {
10187 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
10188
10189 FunctionType::ExtInfo Ext = FTy->getExtInfo();
10190 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
10191
10192 // Turn protoless block types into nullary block types.
10193 if (isa<FunctionNoProtoType>(FTy)) {
10194 FunctionProtoType::ExtProtoInfo EPI;
10195 EPI.ExtInfo = Ext;
10196 BlockTy = Context.getFunctionType(RetTy, None, EPI);
10197
10198 // Otherwise, if we don't need to change anything about the function type,
10199 // preserve its sugar structure.
10200 } else if (FTy->getResultType() == RetTy &&
10201 (!NoReturn || FTy->getNoReturnAttr())) {
10202 BlockTy = BSI->FunctionType;
10203
10204 // Otherwise, make the minimal modifications to the function type.
10205 } else {
10206 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
10207 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10208 EPI.TypeQuals = 0; // FIXME: silently?
10209 EPI.ExtInfo = Ext;
10210 BlockTy = Context.getFunctionType(RetTy, FPT->getArgTypes(), EPI);
10211 }
10212
10213 // If we don't have a function type, just build one from nothing.
10214 } else {
10215 FunctionProtoType::ExtProtoInfo EPI;
10216 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
10217 BlockTy = Context.getFunctionType(RetTy, None, EPI);
10218 }
10219
10220 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
10221 BSI->TheDecl->param_end());
10222 BlockTy = Context.getBlockPointerType(BlockTy);
10223
10224 // If needed, diagnose invalid gotos and switches in the block.
10225 if (getCurFunction()->NeedsScopeChecking() &&
10226 !hasAnyUnrecoverableErrorsInThisFunction() &&
10227 !PP.isCodeCompletionEnabled())
10228 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
10229
10230 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
10231
10232 // Try to apply the named return value optimization. We have to check again
10233 // if we can do this, though, because blocks keep return statements around
10234 // to deduce an implicit return type.
10235 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
10236 !BSI->TheDecl->isDependentContext())
10237 computeNRVO(Body, getCurBlock());
10238
10239 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
10240 const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
10241 PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
10242
10243 // If the block isn't obviously global, i.e. it captures anything at
10244 // all, then we need to do a few things in the surrounding context:
10245 if (Result->getBlockDecl()->hasCaptures()) {
10246 // First, this expression has a new cleanup object.
10247 ExprCleanupObjects.push_back(Result->getBlockDecl());
10248 ExprNeedsCleanups = true;
10249
10250 // It also gets a branch-protected scope if any of the captured
10251 // variables needs destruction.
10252 for (BlockDecl::capture_const_iterator
10253 ci = Result->getBlockDecl()->capture_begin(),
10254 ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
10255 const VarDecl *var = ci->getVariable();
10256 if (var->getType().isDestructedType() != QualType::DK_none) {
10257 getCurFunction()->setHasBranchProtectedScope();
10258 break;
10259 }
10260 }
10261 }
10262
10263 return Owned(Result);
10264 }
10265
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)10266 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
10267 Expr *E, ParsedType Ty,
10268 SourceLocation RPLoc) {
10269 TypeSourceInfo *TInfo;
10270 GetTypeFromParser(Ty, &TInfo);
10271 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
10272 }
10273
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)10274 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
10275 Expr *E, TypeSourceInfo *TInfo,
10276 SourceLocation RPLoc) {
10277 Expr *OrigExpr = E;
10278
10279 // Get the va_list type
10280 QualType VaListType = Context.getBuiltinVaListType();
10281 if (VaListType->isArrayType()) {
10282 // Deal with implicit array decay; for example, on x86-64,
10283 // va_list is an array, but it's supposed to decay to
10284 // a pointer for va_arg.
10285 VaListType = Context.getArrayDecayedType(VaListType);
10286 // Make sure the input expression also decays appropriately.
10287 ExprResult Result = UsualUnaryConversions(E);
10288 if (Result.isInvalid())
10289 return ExprError();
10290 E = Result.take();
10291 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
10292 // If va_list is a record type and we are compiling in C++ mode,
10293 // check the argument using reference binding.
10294 InitializedEntity Entity
10295 = InitializedEntity::InitializeParameter(Context,
10296 Context.getLValueReferenceType(VaListType), false);
10297 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
10298 if (Init.isInvalid())
10299 return ExprError();
10300 E = Init.takeAs<Expr>();
10301 } else {
10302 // Otherwise, the va_list argument must be an l-value because
10303 // it is modified by va_arg.
10304 if (!E->isTypeDependent() &&
10305 CheckForModifiableLvalue(E, BuiltinLoc, *this))
10306 return ExprError();
10307 }
10308
10309 if (!E->isTypeDependent() &&
10310 !Context.hasSameType(VaListType, E->getType())) {
10311 return ExprError(Diag(E->getLocStart(),
10312 diag::err_first_argument_to_va_arg_not_of_type_va_list)
10313 << OrigExpr->getType() << E->getSourceRange());
10314 }
10315
10316 if (!TInfo->getType()->isDependentType()) {
10317 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
10318 diag::err_second_parameter_to_va_arg_incomplete,
10319 TInfo->getTypeLoc()))
10320 return ExprError();
10321
10322 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
10323 TInfo->getType(),
10324 diag::err_second_parameter_to_va_arg_abstract,
10325 TInfo->getTypeLoc()))
10326 return ExprError();
10327
10328 if (!TInfo->getType().isPODType(Context)) {
10329 Diag(TInfo->getTypeLoc().getBeginLoc(),
10330 TInfo->getType()->isObjCLifetimeType()
10331 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
10332 : diag::warn_second_parameter_to_va_arg_not_pod)
10333 << TInfo->getType()
10334 << TInfo->getTypeLoc().getSourceRange();
10335 }
10336
10337 // Check for va_arg where arguments of the given type will be promoted
10338 // (i.e. this va_arg is guaranteed to have undefined behavior).
10339 QualType PromoteType;
10340 if (TInfo->getType()->isPromotableIntegerType()) {
10341 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
10342 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
10343 PromoteType = QualType();
10344 }
10345 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
10346 PromoteType = Context.DoubleTy;
10347 if (!PromoteType.isNull())
10348 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
10349 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
10350 << TInfo->getType()
10351 << PromoteType
10352 << TInfo->getTypeLoc().getSourceRange());
10353 }
10354
10355 QualType T = TInfo->getType().getNonLValueExprType(Context);
10356 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
10357 }
10358
ActOnGNUNullExpr(SourceLocation TokenLoc)10359 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
10360 // The type of __null will be int or long, depending on the size of
10361 // pointers on the target.
10362 QualType Ty;
10363 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
10364 if (pw == Context.getTargetInfo().getIntWidth())
10365 Ty = Context.IntTy;
10366 else if (pw == Context.getTargetInfo().getLongWidth())
10367 Ty = Context.LongTy;
10368 else if (pw == Context.getTargetInfo().getLongLongWidth())
10369 Ty = Context.LongLongTy;
10370 else {
10371 llvm_unreachable("I don't know size of pointer!");
10372 }
10373
10374 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
10375 }
10376
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint,bool & IsNSString)10377 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
10378 Expr *SrcExpr, FixItHint &Hint,
10379 bool &IsNSString) {
10380 if (!SemaRef.getLangOpts().ObjC1)
10381 return;
10382
10383 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
10384 if (!PT)
10385 return;
10386
10387 // Check if the destination is of type 'id'.
10388 if (!PT->isObjCIdType()) {
10389 // Check if the destination is the 'NSString' interface.
10390 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
10391 if (!ID || !ID->getIdentifier()->isStr("NSString"))
10392 return;
10393 IsNSString = true;
10394 }
10395
10396 // Ignore any parens, implicit casts (should only be
10397 // array-to-pointer decays), and not-so-opaque values. The last is
10398 // important for making this trigger for property assignments.
10399 SrcExpr = SrcExpr->IgnoreParenImpCasts();
10400 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
10401 if (OV->getSourceExpr())
10402 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
10403
10404 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
10405 if (!SL || !SL->isAscii())
10406 return;
10407
10408 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
10409 }
10410
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)10411 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
10412 SourceLocation Loc,
10413 QualType DstType, QualType SrcType,
10414 Expr *SrcExpr, AssignmentAction Action,
10415 bool *Complained) {
10416 if (Complained)
10417 *Complained = false;
10418
10419 // Decode the result (notice that AST's are still created for extensions).
10420 bool CheckInferredResultType = false;
10421 bool isInvalid = false;
10422 unsigned DiagKind = 0;
10423 FixItHint Hint;
10424 ConversionFixItGenerator ConvHints;
10425 bool MayHaveConvFixit = false;
10426 bool MayHaveFunctionDiff = false;
10427 bool IsNSString = false;
10428
10429 switch (ConvTy) {
10430 case Compatible:
10431 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
10432 return false;
10433
10434 case PointerToInt:
10435 DiagKind = diag::ext_typecheck_convert_pointer_int;
10436 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10437 MayHaveConvFixit = true;
10438 break;
10439 case IntToPointer:
10440 DiagKind = diag::ext_typecheck_convert_int_pointer;
10441 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10442 MayHaveConvFixit = true;
10443 break;
10444 case IncompatiblePointer:
10445 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint, IsNSString);
10446 DiagKind =
10447 (Action == AA_Passing_CFAudited ?
10448 diag::err_arc_typecheck_convert_incompatible_pointer :
10449 diag::ext_typecheck_convert_incompatible_pointer);
10450 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
10451 SrcType->isObjCObjectPointerType();
10452 if (Hint.isNull() && !CheckInferredResultType) {
10453 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10454 }
10455 else if (CheckInferredResultType) {
10456 SrcType = SrcType.getUnqualifiedType();
10457 DstType = DstType.getUnqualifiedType();
10458 }
10459 else if (IsNSString && !Hint.isNull())
10460 DiagKind = diag::warn_missing_atsign_prefix;
10461 MayHaveConvFixit = true;
10462 break;
10463 case IncompatiblePointerSign:
10464 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
10465 break;
10466 case FunctionVoidPointer:
10467 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
10468 break;
10469 case IncompatiblePointerDiscardsQualifiers: {
10470 // Perform array-to-pointer decay if necessary.
10471 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
10472
10473 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
10474 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
10475 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
10476 DiagKind = diag::err_typecheck_incompatible_address_space;
10477 break;
10478
10479
10480 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
10481 DiagKind = diag::err_typecheck_incompatible_ownership;
10482 break;
10483 }
10484
10485 llvm_unreachable("unknown error case for discarding qualifiers!");
10486 // fallthrough
10487 }
10488 case CompatiblePointerDiscardsQualifiers:
10489 // If the qualifiers lost were because we were applying the
10490 // (deprecated) C++ conversion from a string literal to a char*
10491 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
10492 // Ideally, this check would be performed in
10493 // checkPointerTypesForAssignment. However, that would require a
10494 // bit of refactoring (so that the second argument is an
10495 // expression, rather than a type), which should be done as part
10496 // of a larger effort to fix checkPointerTypesForAssignment for
10497 // C++ semantics.
10498 if (getLangOpts().CPlusPlus &&
10499 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
10500 return false;
10501 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
10502 break;
10503 case IncompatibleNestedPointerQualifiers:
10504 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
10505 break;
10506 case IntToBlockPointer:
10507 DiagKind = diag::err_int_to_block_pointer;
10508 break;
10509 case IncompatibleBlockPointer:
10510 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
10511 break;
10512 case IncompatibleObjCQualifiedId:
10513 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
10514 // it can give a more specific diagnostic.
10515 DiagKind = diag::warn_incompatible_qualified_id;
10516 break;
10517 case IncompatibleVectors:
10518 DiagKind = diag::warn_incompatible_vectors;
10519 break;
10520 case IncompatibleObjCWeakRef:
10521 DiagKind = diag::err_arc_weak_unavailable_assign;
10522 break;
10523 case Incompatible:
10524 DiagKind = diag::err_typecheck_convert_incompatible;
10525 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10526 MayHaveConvFixit = true;
10527 isInvalid = true;
10528 MayHaveFunctionDiff = true;
10529 break;
10530 }
10531
10532 QualType FirstType, SecondType;
10533 switch (Action) {
10534 case AA_Assigning:
10535 case AA_Initializing:
10536 // The destination type comes first.
10537 FirstType = DstType;
10538 SecondType = SrcType;
10539 break;
10540
10541 case AA_Returning:
10542 case AA_Passing:
10543 case AA_Passing_CFAudited:
10544 case AA_Converting:
10545 case AA_Sending:
10546 case AA_Casting:
10547 // The source type comes first.
10548 FirstType = SrcType;
10549 SecondType = DstType;
10550 break;
10551 }
10552
10553 PartialDiagnostic FDiag = PDiag(DiagKind);
10554 if (Action == AA_Passing_CFAudited)
10555 FDiag << FirstType << SecondType << SrcExpr->getSourceRange();
10556 else
10557 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
10558
10559 // If we can fix the conversion, suggest the FixIts.
10560 assert(ConvHints.isNull() || Hint.isNull());
10561 if (!ConvHints.isNull()) {
10562 for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
10563 HE = ConvHints.Hints.end(); HI != HE; ++HI)
10564 FDiag << *HI;
10565 } else {
10566 FDiag << Hint;
10567 }
10568 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
10569
10570 if (MayHaveFunctionDiff)
10571 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
10572
10573 Diag(Loc, FDiag);
10574
10575 if (SecondType == Context.OverloadTy)
10576 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
10577 FirstType);
10578
10579 if (CheckInferredResultType)
10580 EmitRelatedResultTypeNote(SrcExpr);
10581
10582 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
10583 EmitRelatedResultTypeNoteForReturn(DstType);
10584
10585 if (Complained)
10586 *Complained = true;
10587 return isInvalid;
10588 }
10589
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)10590 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10591 llvm::APSInt *Result) {
10592 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
10593 public:
10594 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10595 S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
10596 }
10597 } Diagnoser;
10598
10599 return VerifyIntegerConstantExpression(E, Result, Diagnoser);
10600 }
10601
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,bool AllowFold)10602 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10603 llvm::APSInt *Result,
10604 unsigned DiagID,
10605 bool AllowFold) {
10606 class IDDiagnoser : public VerifyICEDiagnoser {
10607 unsigned DiagID;
10608
10609 public:
10610 IDDiagnoser(unsigned DiagID)
10611 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
10612
10613 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10614 S.Diag(Loc, DiagID) << SR;
10615 }
10616 } Diagnoser(DiagID);
10617
10618 return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
10619 }
10620
diagnoseFold(Sema & S,SourceLocation Loc,SourceRange SR)10621 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
10622 SourceRange SR) {
10623 S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
10624 }
10625
10626 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,bool AllowFold)10627 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
10628 VerifyICEDiagnoser &Diagnoser,
10629 bool AllowFold) {
10630 SourceLocation DiagLoc = E->getLocStart();
10631
10632 if (getLangOpts().CPlusPlus11) {
10633 // C++11 [expr.const]p5:
10634 // If an expression of literal class type is used in a context where an
10635 // integral constant expression is required, then that class type shall
10636 // have a single non-explicit conversion function to an integral or
10637 // unscoped enumeration type
10638 ExprResult Converted;
10639 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
10640 public:
10641 CXX11ConvertDiagnoser(bool Silent)
10642 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
10643 Silent, true) {}
10644
10645 virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10646 QualType T) {
10647 return S.Diag(Loc, diag::err_ice_not_integral) << T;
10648 }
10649
10650 virtual SemaDiagnosticBuilder diagnoseIncomplete(
10651 Sema &S, SourceLocation Loc, QualType T) {
10652 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10653 }
10654
10655 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
10656 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
10657 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10658 }
10659
10660 virtual SemaDiagnosticBuilder noteExplicitConv(
10661 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
10662 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10663 << ConvTy->isEnumeralType() << ConvTy;
10664 }
10665
10666 virtual SemaDiagnosticBuilder diagnoseAmbiguous(
10667 Sema &S, SourceLocation Loc, QualType T) {
10668 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10669 }
10670
10671 virtual SemaDiagnosticBuilder noteAmbiguous(
10672 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
10673 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10674 << ConvTy->isEnumeralType() << ConvTy;
10675 }
10676
10677 virtual SemaDiagnosticBuilder diagnoseConversion(
10678 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
10679 llvm_unreachable("conversion functions are permitted");
10680 }
10681 } ConvertDiagnoser(Diagnoser.Suppress);
10682
10683 Converted = PerformContextualImplicitConversion(DiagLoc, E,
10684 ConvertDiagnoser);
10685 if (Converted.isInvalid())
10686 return Converted;
10687 E = Converted.take();
10688 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10689 return ExprError();
10690 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10691 // An ICE must be of integral or unscoped enumeration type.
10692 if (!Diagnoser.Suppress)
10693 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10694 return ExprError();
10695 }
10696
10697 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10698 // in the non-ICE case.
10699 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
10700 if (Result)
10701 *Result = E->EvaluateKnownConstInt(Context);
10702 return Owned(E);
10703 }
10704
10705 Expr::EvalResult EvalResult;
10706 SmallVector<PartialDiagnosticAt, 8> Notes;
10707 EvalResult.Diag = &Notes;
10708
10709 // Try to evaluate the expression, and produce diagnostics explaining why it's
10710 // not a constant expression as a side-effect.
10711 bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10712 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10713
10714 // In C++11, we can rely on diagnostics being produced for any expression
10715 // which is not a constant expression. If no diagnostics were produced, then
10716 // this is a constant expression.
10717 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
10718 if (Result)
10719 *Result = EvalResult.Val.getInt();
10720 return Owned(E);
10721 }
10722
10723 // If our only note is the usual "invalid subexpression" note, just point
10724 // the caret at its location rather than producing an essentially
10725 // redundant note.
10726 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10727 diag::note_invalid_subexpr_in_const_expr) {
10728 DiagLoc = Notes[0].first;
10729 Notes.clear();
10730 }
10731
10732 if (!Folded || !AllowFold) {
10733 if (!Diagnoser.Suppress) {
10734 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10735 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10736 Diag(Notes[I].first, Notes[I].second);
10737 }
10738
10739 return ExprError();
10740 }
10741
10742 Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10743 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10744 Diag(Notes[I].first, Notes[I].second);
10745
10746 if (Result)
10747 *Result = EvalResult.Val.getInt();
10748 return Owned(E);
10749 }
10750
10751 namespace {
10752 // Handle the case where we conclude a expression which we speculatively
10753 // considered to be unevaluated is actually evaluated.
10754 class TransformToPE : public TreeTransform<TransformToPE> {
10755 typedef TreeTransform<TransformToPE> BaseTransform;
10756
10757 public:
TransformToPE(Sema & SemaRef)10758 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10759
10760 // Make sure we redo semantic analysis
AlwaysRebuild()10761 bool AlwaysRebuild() { return true; }
10762
10763 // Make sure we handle LabelStmts correctly.
10764 // FIXME: This does the right thing, but maybe we need a more general
10765 // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)10766 StmtResult TransformLabelStmt(LabelStmt *S) {
10767 S->getDecl()->setStmt(0);
10768 return BaseTransform::TransformLabelStmt(S);
10769 }
10770
10771 // We need to special-case DeclRefExprs referring to FieldDecls which
10772 // are not part of a member pointer formation; normal TreeTransforming
10773 // doesn't catch this case because of the way we represent them in the AST.
10774 // FIXME: This is a bit ugly; is it really the best way to handle this
10775 // case?
10776 //
10777 // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)10778 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10779 if (isa<FieldDecl>(E->getDecl()) &&
10780 !SemaRef.isUnevaluatedContext())
10781 return SemaRef.Diag(E->getLocation(),
10782 diag::err_invalid_non_static_member_use)
10783 << E->getDecl() << E->getSourceRange();
10784
10785 return BaseTransform::TransformDeclRefExpr(E);
10786 }
10787
10788 // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)10789 ExprResult TransformUnaryOperator(UnaryOperator *E) {
10790 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10791 return E;
10792
10793 return BaseTransform::TransformUnaryOperator(E);
10794 }
10795
TransformLambdaExpr(LambdaExpr * E)10796 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10797 // Lambdas never need to be transformed.
10798 return E;
10799 }
10800 };
10801 }
10802
TransformToPotentiallyEvaluated(Expr * E)10803 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10804 assert(isUnevaluatedContext() &&
10805 "Should only transform unevaluated expressions");
10806 ExprEvalContexts.back().Context =
10807 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10808 if (isUnevaluatedContext())
10809 return E;
10810 return TransformToPE(*this).TransformExpr(E);
10811 }
10812
10813 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)10814 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10815 Decl *LambdaContextDecl,
10816 bool IsDecltype) {
10817 ExprEvalContexts.push_back(
10818 ExpressionEvaluationContextRecord(NewContext,
10819 ExprCleanupObjects.size(),
10820 ExprNeedsCleanups,
10821 LambdaContextDecl,
10822 IsDecltype));
10823 ExprNeedsCleanups = false;
10824 if (!MaybeODRUseExprs.empty())
10825 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10826 }
10827
10828 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,bool IsDecltype)10829 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10830 ReuseLambdaContextDecl_t,
10831 bool IsDecltype) {
10832 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
10833 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
10834 }
10835
PopExpressionEvaluationContext()10836 void Sema::PopExpressionEvaluationContext() {
10837 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10838
10839 if (!Rec.Lambdas.empty()) {
10840 if (Rec.isUnevaluated()) {
10841 // C++11 [expr.prim.lambda]p2:
10842 // A lambda-expression shall not appear in an unevaluated operand
10843 // (Clause 5).
10844 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10845 Diag(Rec.Lambdas[I]->getLocStart(),
10846 diag::err_lambda_unevaluated_operand);
10847 } else {
10848 // Mark the capture expressions odr-used. This was deferred
10849 // during lambda expression creation.
10850 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10851 LambdaExpr *Lambda = Rec.Lambdas[I];
10852 for (LambdaExpr::capture_init_iterator
10853 C = Lambda->capture_init_begin(),
10854 CEnd = Lambda->capture_init_end();
10855 C != CEnd; ++C) {
10856 MarkDeclarationsReferencedInExpr(*C);
10857 }
10858 }
10859 }
10860 }
10861
10862 // When are coming out of an unevaluated context, clear out any
10863 // temporaries that we may have created as part of the evaluation of
10864 // the expression in that context: they aren't relevant because they
10865 // will never be constructed.
10866 if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
10867 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10868 ExprCleanupObjects.end());
10869 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10870 CleanupVarDeclMarking();
10871 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10872 // Otherwise, merge the contexts together.
10873 } else {
10874 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10875 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10876 Rec.SavedMaybeODRUseExprs.end());
10877 }
10878
10879 // Pop the current expression evaluation context off the stack.
10880 ExprEvalContexts.pop_back();
10881 }
10882
DiscardCleanupsInEvaluationContext()10883 void Sema::DiscardCleanupsInEvaluationContext() {
10884 ExprCleanupObjects.erase(
10885 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10886 ExprCleanupObjects.end());
10887 ExprNeedsCleanups = false;
10888 MaybeODRUseExprs.clear();
10889 }
10890
HandleExprEvaluationContextForTypeof(Expr * E)10891 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10892 if (!E->getType()->isVariablyModifiedType())
10893 return E;
10894 return TransformToPotentiallyEvaluated(E);
10895 }
10896
IsPotentiallyEvaluatedContext(Sema & SemaRef)10897 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10898 // Do not mark anything as "used" within a dependent context; wait for
10899 // an instantiation.
10900 if (SemaRef.CurContext->isDependentContext())
10901 return false;
10902
10903 switch (SemaRef.ExprEvalContexts.back().Context) {
10904 case Sema::Unevaluated:
10905 case Sema::UnevaluatedAbstract:
10906 // We are in an expression that is not potentially evaluated; do nothing.
10907 // (Depending on how you read the standard, we actually do need to do
10908 // something here for null pointer constants, but the standard's
10909 // definition of a null pointer constant is completely crazy.)
10910 return false;
10911
10912 case Sema::ConstantEvaluated:
10913 case Sema::PotentiallyEvaluated:
10914 // We are in a potentially evaluated expression (or a constant-expression
10915 // in C++03); we need to do implicit template instantiation, implicitly
10916 // define class members, and mark most declarations as used.
10917 return true;
10918
10919 case Sema::PotentiallyEvaluatedIfUsed:
10920 // Referenced declarations will only be used if the construct in the
10921 // containing expression is used.
10922 return false;
10923 }
10924 llvm_unreachable("Invalid context");
10925 }
10926
10927 /// \brief Mark a function referenced, and check whether it is odr-used
10928 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)10929 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10930 assert(Func && "No function?");
10931
10932 Func->setReferenced();
10933
10934 // C++11 [basic.def.odr]p3:
10935 // A function whose name appears as a potentially-evaluated expression is
10936 // odr-used if it is the unique lookup result or the selected member of a
10937 // set of overloaded functions [...].
10938 //
10939 // We (incorrectly) mark overload resolution as an unevaluated context, so we
10940 // can just check that here. Skip the rest of this function if we've already
10941 // marked the function as used.
10942 if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
10943 // C++11 [temp.inst]p3:
10944 // Unless a function template specialization has been explicitly
10945 // instantiated or explicitly specialized, the function template
10946 // specialization is implicitly instantiated when the specialization is
10947 // referenced in a context that requires a function definition to exist.
10948 //
10949 // We consider constexpr function templates to be referenced in a context
10950 // that requires a definition to exist whenever they are referenced.
10951 //
10952 // FIXME: This instantiates constexpr functions too frequently. If this is
10953 // really an unevaluated context (and we're not just in the definition of a
10954 // function template or overload resolution or other cases which we
10955 // incorrectly consider to be unevaluated contexts), and we're not in a
10956 // subexpression which we actually need to evaluate (for instance, a
10957 // template argument, array bound or an expression in a braced-init-list),
10958 // we are not permitted to instantiate this constexpr function definition.
10959 //
10960 // FIXME: This also implicitly defines special members too frequently. They
10961 // are only supposed to be implicitly defined if they are odr-used, but they
10962 // are not odr-used from constant expressions in unevaluated contexts.
10963 // However, they cannot be referenced if they are deleted, and they are
10964 // deleted whenever the implicit definition of the special member would
10965 // fail.
10966 if (!Func->isConstexpr() || Func->getBody())
10967 return;
10968 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
10969 if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
10970 return;
10971 }
10972
10973 // Note that this declaration has been used.
10974 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10975 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10976 if (Constructor->isDefaultConstructor()) {
10977 if (Constructor->isTrivial())
10978 return;
10979 if (!Constructor->isUsed(false))
10980 DefineImplicitDefaultConstructor(Loc, Constructor);
10981 } else if (Constructor->isCopyConstructor()) {
10982 if (!Constructor->isUsed(false))
10983 DefineImplicitCopyConstructor(Loc, Constructor);
10984 } else if (Constructor->isMoveConstructor()) {
10985 if (!Constructor->isUsed(false))
10986 DefineImplicitMoveConstructor(Loc, Constructor);
10987 }
10988 } else if (Constructor->getInheritedConstructor()) {
10989 if (!Constructor->isUsed(false))
10990 DefineInheritingConstructor(Loc, Constructor);
10991 }
10992
10993 MarkVTableUsed(Loc, Constructor->getParent());
10994 } else if (CXXDestructorDecl *Destructor =
10995 dyn_cast<CXXDestructorDecl>(Func)) {
10996 if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10997 !Destructor->isUsed(false))
10998 DefineImplicitDestructor(Loc, Destructor);
10999 if (Destructor->isVirtual())
11000 MarkVTableUsed(Loc, Destructor->getParent());
11001 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
11002 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
11003 MethodDecl->isOverloadedOperator() &&
11004 MethodDecl->getOverloadedOperator() == OO_Equal) {
11005 if (!MethodDecl->isUsed(false)) {
11006 if (MethodDecl->isCopyAssignmentOperator())
11007 DefineImplicitCopyAssignment(Loc, MethodDecl);
11008 else
11009 DefineImplicitMoveAssignment(Loc, MethodDecl);
11010 }
11011 } else if (isa<CXXConversionDecl>(MethodDecl) &&
11012 MethodDecl->getParent()->isLambda()) {
11013 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
11014 if (Conversion->isLambdaToBlockPointerConversion())
11015 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
11016 else
11017 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
11018 } else if (MethodDecl->isVirtual())
11019 MarkVTableUsed(Loc, MethodDecl->getParent());
11020 }
11021
11022 // Recursive functions should be marked when used from another function.
11023 // FIXME: Is this really right?
11024 if (CurContext == Func) return;
11025
11026 // Resolve the exception specification for any function which is
11027 // used: CodeGen will need it.
11028 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
11029 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
11030 ResolveExceptionSpec(Loc, FPT);
11031
11032 // Implicit instantiation of function templates and member functions of
11033 // class templates.
11034 if (Func->isImplicitlyInstantiable()) {
11035 bool AlreadyInstantiated = false;
11036 SourceLocation PointOfInstantiation = Loc;
11037 if (FunctionTemplateSpecializationInfo *SpecInfo
11038 = Func->getTemplateSpecializationInfo()) {
11039 if (SpecInfo->getPointOfInstantiation().isInvalid())
11040 SpecInfo->setPointOfInstantiation(Loc);
11041 else if (SpecInfo->getTemplateSpecializationKind()
11042 == TSK_ImplicitInstantiation) {
11043 AlreadyInstantiated = true;
11044 PointOfInstantiation = SpecInfo->getPointOfInstantiation();
11045 }
11046 } else if (MemberSpecializationInfo *MSInfo
11047 = Func->getMemberSpecializationInfo()) {
11048 if (MSInfo->getPointOfInstantiation().isInvalid())
11049 MSInfo->setPointOfInstantiation(Loc);
11050 else if (MSInfo->getTemplateSpecializationKind()
11051 == TSK_ImplicitInstantiation) {
11052 AlreadyInstantiated = true;
11053 PointOfInstantiation = MSInfo->getPointOfInstantiation();
11054 }
11055 }
11056
11057 if (!AlreadyInstantiated || Func->isConstexpr()) {
11058 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
11059 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
11060 ActiveTemplateInstantiations.size())
11061 PendingLocalImplicitInstantiations.push_back(
11062 std::make_pair(Func, PointOfInstantiation));
11063 else if (Func->isConstexpr())
11064 // Do not defer instantiations of constexpr functions, to avoid the
11065 // expression evaluator needing to call back into Sema if it sees a
11066 // call to such a function.
11067 InstantiateFunctionDefinition(PointOfInstantiation, Func);
11068 else {
11069 PendingInstantiations.push_back(std::make_pair(Func,
11070 PointOfInstantiation));
11071 // Notify the consumer that a function was implicitly instantiated.
11072 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
11073 }
11074 }
11075 } else {
11076 // Walk redefinitions, as some of them may be instantiable.
11077 for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
11078 e(Func->redecls_end()); i != e; ++i) {
11079 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
11080 MarkFunctionReferenced(Loc, *i);
11081 }
11082 }
11083
11084 // Keep track of used but undefined functions.
11085 if (!Func->isDefined()) {
11086 if (mightHaveNonExternalLinkage(Func))
11087 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11088 else if (Func->getMostRecentDecl()->isInlined() &&
11089 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
11090 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
11091 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11092 }
11093
11094 // Normally the must current decl is marked used while processing the use and
11095 // any subsequent decls are marked used by decl merging. This fails with
11096 // template instantiation since marking can happen at the end of the file
11097 // and, because of the two phase lookup, this function is called with at
11098 // decl in the middle of a decl chain. We loop to maintain the invariant
11099 // that once a decl is used, all decls after it are also used.
11100 for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
11101 F->setUsed(true);
11102 if (F == Func)
11103 break;
11104 }
11105 }
11106
11107 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)11108 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
11109 VarDecl *var, DeclContext *DC) {
11110 DeclContext *VarDC = var->getDeclContext();
11111
11112 // If the parameter still belongs to the translation unit, then
11113 // we're actually just using one parameter in the declaration of
11114 // the next.
11115 if (isa<ParmVarDecl>(var) &&
11116 isa<TranslationUnitDecl>(VarDC))
11117 return;
11118
11119 // For C code, don't diagnose about capture if we're not actually in code
11120 // right now; it's impossible to write a non-constant expression outside of
11121 // function context, so we'll get other (more useful) diagnostics later.
11122 //
11123 // For C++, things get a bit more nasty... it would be nice to suppress this
11124 // diagnostic for certain cases like using a local variable in an array bound
11125 // for a member of a local class, but the correct predicate is not obvious.
11126 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
11127 return;
11128
11129 if (isa<CXXMethodDecl>(VarDC) &&
11130 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
11131 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
11132 << var->getIdentifier();
11133 } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
11134 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
11135 << var->getIdentifier() << fn->getDeclName();
11136 } else if (isa<BlockDecl>(VarDC)) {
11137 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
11138 << var->getIdentifier();
11139 } else {
11140 // FIXME: Is there any other context where a local variable can be
11141 // declared?
11142 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
11143 << var->getIdentifier();
11144 }
11145
11146 S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
11147 << var->getIdentifier();
11148
11149 // FIXME: Add additional diagnostic info about class etc. which prevents
11150 // capture.
11151 }
11152
11153 /// \brief Capture the given variable in the captured region.
captureInCapturedRegion(Sema & S,CapturedRegionScopeInfo * RSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToEnclosingLocal)11154 static ExprResult captureInCapturedRegion(Sema &S, CapturedRegionScopeInfo *RSI,
11155 VarDecl *Var, QualType FieldType,
11156 QualType DeclRefType,
11157 SourceLocation Loc,
11158 bool RefersToEnclosingLocal) {
11159 // The current implemention assumes that all variables are captured
11160 // by references. Since there is no capture by copy, no expression evaluation
11161 // will be needed.
11162 //
11163 RecordDecl *RD = RSI->TheRecordDecl;
11164
11165 FieldDecl *Field
11166 = FieldDecl::Create(S.Context, RD, Loc, Loc, 0, FieldType,
11167 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
11168 0, false, ICIS_NoInit);
11169 Field->setImplicit(true);
11170 Field->setAccess(AS_private);
11171 RD->addDecl(Field);
11172
11173 Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
11174 DeclRefType, VK_LValue, Loc);
11175 Var->setReferenced(true);
11176 Var->setUsed(true);
11177
11178 return Ref;
11179 }
11180
11181 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToEnclosingLocal)11182 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
11183 VarDecl *Var, QualType FieldType,
11184 QualType DeclRefType,
11185 SourceLocation Loc,
11186 bool RefersToEnclosingLocal) {
11187 CXXRecordDecl *Lambda = LSI->Lambda;
11188
11189 // Build the non-static data member.
11190 FieldDecl *Field
11191 = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
11192 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
11193 0, false, ICIS_NoInit);
11194 Field->setImplicit(true);
11195 Field->setAccess(AS_private);
11196 Lambda->addDecl(Field);
11197
11198 // C++11 [expr.prim.lambda]p21:
11199 // When the lambda-expression is evaluated, the entities that
11200 // are captured by copy are used to direct-initialize each
11201 // corresponding non-static data member of the resulting closure
11202 // object. (For array members, the array elements are
11203 // direct-initialized in increasing subscript order.) These
11204 // initializations are performed in the (unspecified) order in
11205 // which the non-static data members are declared.
11206
11207 // Introduce a new evaluation context for the initialization, so
11208 // that temporaries introduced as part of the capture are retained
11209 // to be re-"exported" from the lambda expression itself.
11210 EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
11211
11212 // C++ [expr.prim.labda]p12:
11213 // An entity captured by a lambda-expression is odr-used (3.2) in
11214 // the scope containing the lambda-expression.
11215 Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
11216 DeclRefType, VK_LValue, Loc);
11217 Var->setReferenced(true);
11218 Var->setUsed(true);
11219
11220 // When the field has array type, create index variables for each
11221 // dimension of the array. We use these index variables to subscript
11222 // the source array, and other clients (e.g., CodeGen) will perform
11223 // the necessary iteration with these index variables.
11224 SmallVector<VarDecl *, 4> IndexVariables;
11225 QualType BaseType = FieldType;
11226 QualType SizeType = S.Context.getSizeType();
11227 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
11228 while (const ConstantArrayType *Array
11229 = S.Context.getAsConstantArrayType(BaseType)) {
11230 // Create the iteration variable for this array index.
11231 IdentifierInfo *IterationVarName = 0;
11232 {
11233 SmallString<8> Str;
11234 llvm::raw_svector_ostream OS(Str);
11235 OS << "__i" << IndexVariables.size();
11236 IterationVarName = &S.Context.Idents.get(OS.str());
11237 }
11238 VarDecl *IterationVar
11239 = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
11240 IterationVarName, SizeType,
11241 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
11242 SC_None);
11243 IndexVariables.push_back(IterationVar);
11244 LSI->ArrayIndexVars.push_back(IterationVar);
11245
11246 // Create a reference to the iteration variable.
11247 ExprResult IterationVarRef
11248 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
11249 assert(!IterationVarRef.isInvalid() &&
11250 "Reference to invented variable cannot fail!");
11251 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
11252 assert(!IterationVarRef.isInvalid() &&
11253 "Conversion of invented variable cannot fail!");
11254
11255 // Subscript the array with this iteration variable.
11256 ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
11257 Ref, Loc, IterationVarRef.take(), Loc);
11258 if (Subscript.isInvalid()) {
11259 S.CleanupVarDeclMarking();
11260 S.DiscardCleanupsInEvaluationContext();
11261 return ExprError();
11262 }
11263
11264 Ref = Subscript.take();
11265 BaseType = Array->getElementType();
11266 }
11267
11268 // Construct the entity that we will be initializing. For an array, this
11269 // will be first element in the array, which may require several levels
11270 // of array-subscript entities.
11271 SmallVector<InitializedEntity, 4> Entities;
11272 Entities.reserve(1 + IndexVariables.size());
11273 Entities.push_back(
11274 InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
11275 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
11276 Entities.push_back(InitializedEntity::InitializeElement(S.Context,
11277 0,
11278 Entities.back()));
11279
11280 InitializationKind InitKind
11281 = InitializationKind::CreateDirect(Loc, Loc, Loc);
11282 InitializationSequence Init(S, Entities.back(), InitKind, Ref);
11283 ExprResult Result(true);
11284 if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
11285 Result = Init.Perform(S, Entities.back(), InitKind, Ref);
11286
11287 // If this initialization requires any cleanups (e.g., due to a
11288 // default argument to a copy constructor), note that for the
11289 // lambda.
11290 if (S.ExprNeedsCleanups)
11291 LSI->ExprNeedsCleanups = true;
11292
11293 // Exit the expression evaluation context used for the capture.
11294 S.CleanupVarDeclMarking();
11295 S.DiscardCleanupsInEvaluationContext();
11296 return Result;
11297 }
11298
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)11299 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11300 TryCaptureKind Kind, SourceLocation EllipsisLoc,
11301 bool BuildAndDiagnose,
11302 QualType &CaptureType,
11303 QualType &DeclRefType) {
11304 bool Nested = false;
11305
11306 DeclContext *DC = CurContext;
11307 if (Var->getDeclContext() == DC) return true;
11308 if (!Var->hasLocalStorage()) return true;
11309
11310 bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11311
11312 // Walk up the stack to determine whether we can capture the variable,
11313 // performing the "simple" checks that don't depend on type. We stop when
11314 // we've either hit the declared scope of the variable or find an existing
11315 // capture of that variable.
11316 CaptureType = Var->getType();
11317 DeclRefType = CaptureType.getNonReferenceType();
11318 bool Explicit = (Kind != TryCapture_Implicit);
11319 unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
11320 do {
11321 // Only block literals, captured statements, and lambda expressions can
11322 // capture; other scopes don't work.
11323 DeclContext *ParentDC;
11324 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC))
11325 ParentDC = DC->getParent();
11326 else if (isa<CXXMethodDecl>(DC) &&
11327 cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
11328 cast<CXXRecordDecl>(DC->getParent())->isLambda())
11329 ParentDC = DC->getParent()->getParent();
11330 else {
11331 if (BuildAndDiagnose)
11332 diagnoseUncapturableValueReference(*this, Loc, Var, DC);
11333 return true;
11334 }
11335
11336 CapturingScopeInfo *CSI =
11337 cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
11338
11339 // Check whether we've already captured it.
11340 if (CSI->isCaptured(Var)) {
11341 const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
11342
11343 // If we found a capture, any subcaptures are nested.
11344 Nested = true;
11345
11346 // Retrieve the capture type for this variable.
11347 CaptureType = Cap.getCaptureType();
11348
11349 // Compute the type of an expression that refers to this variable.
11350 DeclRefType = CaptureType.getNonReferenceType();
11351
11352 if (Cap.isCopyCapture() &&
11353 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
11354 DeclRefType.addConst();
11355 break;
11356 }
11357
11358 bool IsBlock = isa<BlockScopeInfo>(CSI);
11359 bool IsLambda = isa<LambdaScopeInfo>(CSI);
11360
11361 // Lambdas are not allowed to capture unnamed variables
11362 // (e.g. anonymous unions).
11363 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
11364 // assuming that's the intent.
11365 if (IsLambda && !Var->getDeclName()) {
11366 if (BuildAndDiagnose) {
11367 Diag(Loc, diag::err_lambda_capture_anonymous_var);
11368 Diag(Var->getLocation(), diag::note_declared_at);
11369 }
11370 return true;
11371 }
11372
11373 // Prohibit variably-modified types; they're difficult to deal with.
11374 if (Var->getType()->isVariablyModifiedType()) {
11375 if (BuildAndDiagnose) {
11376 if (IsBlock)
11377 Diag(Loc, diag::err_ref_vm_type);
11378 else
11379 Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
11380 Diag(Var->getLocation(), diag::note_previous_decl)
11381 << Var->getDeclName();
11382 }
11383 return true;
11384 }
11385 // Prohibit structs with flexible array members too.
11386 // We cannot capture what is in the tail end of the struct.
11387 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
11388 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
11389 if (BuildAndDiagnose) {
11390 if (IsBlock)
11391 Diag(Loc, diag::err_ref_flexarray_type);
11392 else
11393 Diag(Loc, diag::err_lambda_capture_flexarray_type)
11394 << Var->getDeclName();
11395 Diag(Var->getLocation(), diag::note_previous_decl)
11396 << Var->getDeclName();
11397 }
11398 return true;
11399 }
11400 }
11401 // Lambdas and captured statements are not allowed to capture __block
11402 // variables; they don't support the expected semantics.
11403 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
11404 if (BuildAndDiagnose) {
11405 Diag(Loc, diag::err_capture_block_variable)
11406 << Var->getDeclName() << !IsLambda;
11407 Diag(Var->getLocation(), diag::note_previous_decl)
11408 << Var->getDeclName();
11409 }
11410 return true;
11411 }
11412
11413 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
11414 // No capture-default
11415 if (BuildAndDiagnose) {
11416 Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
11417 Diag(Var->getLocation(), diag::note_previous_decl)
11418 << Var->getDeclName();
11419 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
11420 diag::note_lambda_decl);
11421 }
11422 return true;
11423 }
11424
11425 FunctionScopesIndex--;
11426 DC = ParentDC;
11427 Explicit = false;
11428 } while (!Var->getDeclContext()->Equals(DC));
11429
11430 // Walk back down the scope stack, computing the type of the capture at
11431 // each step, checking type-specific requirements, and adding captures if
11432 // requested.
11433 for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
11434 ++I) {
11435 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
11436
11437 // Compute the type of the capture and of a reference to the capture within
11438 // this scope.
11439 if (isa<BlockScopeInfo>(CSI)) {
11440 Expr *CopyExpr = 0;
11441 bool ByRef = false;
11442
11443 // Blocks are not allowed to capture arrays.
11444 if (CaptureType->isArrayType()) {
11445 if (BuildAndDiagnose) {
11446 Diag(Loc, diag::err_ref_array_type);
11447 Diag(Var->getLocation(), diag::note_previous_decl)
11448 << Var->getDeclName();
11449 }
11450 return true;
11451 }
11452
11453 // Forbid the block-capture of autoreleasing variables.
11454 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11455 if (BuildAndDiagnose) {
11456 Diag(Loc, diag::err_arc_autoreleasing_capture)
11457 << /*block*/ 0;
11458 Diag(Var->getLocation(), diag::note_previous_decl)
11459 << Var->getDeclName();
11460 }
11461 return true;
11462 }
11463
11464 if (HasBlocksAttr || CaptureType->isReferenceType()) {
11465 // Block capture by reference does not change the capture or
11466 // declaration reference types.
11467 ByRef = true;
11468 } else {
11469 // Block capture by copy introduces 'const'.
11470 CaptureType = CaptureType.getNonReferenceType().withConst();
11471 DeclRefType = CaptureType;
11472
11473 if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
11474 if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
11475 // The capture logic needs the destructor, so make sure we mark it.
11476 // Usually this is unnecessary because most local variables have
11477 // their destructors marked at declaration time, but parameters are
11478 // an exception because it's technically only the call site that
11479 // actually requires the destructor.
11480 if (isa<ParmVarDecl>(Var))
11481 FinalizeVarWithDestructor(Var, Record);
11482
11483 // Enter a new evaluation context to insulate the copy
11484 // full-expression.
11485 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11486
11487 // According to the blocks spec, the capture of a variable from
11488 // the stack requires a const copy constructor. This is not true
11489 // of the copy/move done to move a __block variable to the heap.
11490 Expr *DeclRef = new (Context) DeclRefExpr(Var, Nested,
11491 DeclRefType.withConst(),
11492 VK_LValue, Loc);
11493
11494 ExprResult Result
11495 = PerformCopyInitialization(
11496 InitializedEntity::InitializeBlock(Var->getLocation(),
11497 CaptureType, false),
11498 Loc, Owned(DeclRef));
11499
11500 // Build a full-expression copy expression if initialization
11501 // succeeded and used a non-trivial constructor. Recover from
11502 // errors by pretending that the copy isn't necessary.
11503 if (!Result.isInvalid() &&
11504 !cast<CXXConstructExpr>(Result.get())->getConstructor()
11505 ->isTrivial()) {
11506 Result = MaybeCreateExprWithCleanups(Result);
11507 CopyExpr = Result.take();
11508 }
11509 }
11510 }
11511 }
11512
11513 // Actually capture the variable.
11514 if (BuildAndDiagnose)
11515 CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11516 SourceLocation(), CaptureType, CopyExpr);
11517 Nested = true;
11518 continue;
11519 }
11520
11521 if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
11522 // By default, capture variables by reference.
11523 bool ByRef = true;
11524 // Using an LValue reference type is consistent with Lambdas (see below).
11525 CaptureType = Context.getLValueReferenceType(DeclRefType);
11526
11527 Expr *CopyExpr = 0;
11528 if (BuildAndDiagnose) {
11529 ExprResult Result = captureInCapturedRegion(*this, RSI, Var,
11530 CaptureType, DeclRefType,
11531 Loc, Nested);
11532 if (!Result.isInvalid())
11533 CopyExpr = Result.take();
11534 }
11535
11536 // Actually capture the variable.
11537 if (BuildAndDiagnose)
11538 CSI->addCapture(Var, /*isBlock*/false, ByRef, Nested, Loc,
11539 SourceLocation(), CaptureType, CopyExpr);
11540 Nested = true;
11541 continue;
11542 }
11543
11544 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11545
11546 // Determine whether we are capturing by reference or by value.
11547 bool ByRef = false;
11548 if (I == N - 1 && Kind != TryCapture_Implicit) {
11549 ByRef = (Kind == TryCapture_ExplicitByRef);
11550 } else {
11551 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
11552 }
11553
11554 // Compute the type of the field that will capture this variable.
11555 if (ByRef) {
11556 // C++11 [expr.prim.lambda]p15:
11557 // An entity is captured by reference if it is implicitly or
11558 // explicitly captured but not captured by copy. It is
11559 // unspecified whether additional unnamed non-static data
11560 // members are declared in the closure type for entities
11561 // captured by reference.
11562 //
11563 // FIXME: It is not clear whether we want to build an lvalue reference
11564 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
11565 // to do the former, while EDG does the latter. Core issue 1249 will
11566 // clarify, but for now we follow GCC because it's a more permissive and
11567 // easily defensible position.
11568 CaptureType = Context.getLValueReferenceType(DeclRefType);
11569 } else {
11570 // C++11 [expr.prim.lambda]p14:
11571 // For each entity captured by copy, an unnamed non-static
11572 // data member is declared in the closure type. The
11573 // declaration order of these members is unspecified. The type
11574 // of such a data member is the type of the corresponding
11575 // captured entity if the entity is not a reference to an
11576 // object, or the referenced type otherwise. [Note: If the
11577 // captured entity is a reference to a function, the
11578 // corresponding data member is also a reference to a
11579 // function. - end note ]
11580 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
11581 if (!RefType->getPointeeType()->isFunctionType())
11582 CaptureType = RefType->getPointeeType();
11583 }
11584
11585 // Forbid the lambda copy-capture of autoreleasing variables.
11586 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11587 if (BuildAndDiagnose) {
11588 Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
11589 Diag(Var->getLocation(), diag::note_previous_decl)
11590 << Var->getDeclName();
11591 }
11592 return true;
11593 }
11594 }
11595
11596 // Capture this variable in the lambda.
11597 Expr *CopyExpr = 0;
11598 if (BuildAndDiagnose) {
11599 ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
11600 DeclRefType, Loc,
11601 Nested);
11602 if (!Result.isInvalid())
11603 CopyExpr = Result.take();
11604 }
11605
11606 // Compute the type of a reference to this captured variable.
11607 if (ByRef)
11608 DeclRefType = CaptureType.getNonReferenceType();
11609 else {
11610 // C++ [expr.prim.lambda]p5:
11611 // The closure type for a lambda-expression has a public inline
11612 // function call operator [...]. This function call operator is
11613 // declared const (9.3.1) if and only if the lambda-expression’s
11614 // parameter-declaration-clause is not followed by mutable.
11615 DeclRefType = CaptureType.getNonReferenceType();
11616 if (!LSI->Mutable && !CaptureType->isReferenceType())
11617 DeclRefType.addConst();
11618 }
11619
11620 // Add the capture.
11621 if (BuildAndDiagnose)
11622 CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
11623 EllipsisLoc, CaptureType, CopyExpr);
11624 Nested = true;
11625 }
11626
11627 return false;
11628 }
11629
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)11630 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11631 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
11632 QualType CaptureType;
11633 QualType DeclRefType;
11634 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
11635 /*BuildAndDiagnose=*/true, CaptureType,
11636 DeclRefType);
11637 }
11638
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)11639 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
11640 QualType CaptureType;
11641 QualType DeclRefType;
11642
11643 // Determine whether we can capture this variable.
11644 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
11645 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
11646 return QualType();
11647
11648 return DeclRefType;
11649 }
11650
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)11651 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
11652 SourceLocation Loc) {
11653 // Keep track of used but undefined variables.
11654 // FIXME: We shouldn't suppress this warning for static data members.
11655 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
11656 !Var->isExternallyVisible() &&
11657 !(Var->isStaticDataMember() && Var->hasInit())) {
11658 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
11659 if (old.isInvalid()) old = Loc;
11660 }
11661
11662 SemaRef.tryCaptureVariable(Var, Loc);
11663
11664 Var->setUsed(true);
11665 }
11666
UpdateMarkingForLValueToRValue(Expr * E)11667 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
11668 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
11669 // an object that satisfies the requirements for appearing in a
11670 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
11671 // is immediately applied." This function handles the lvalue-to-rvalue
11672 // conversion part.
11673 MaybeODRUseExprs.erase(E->IgnoreParens());
11674 }
11675
ActOnConstantExpression(ExprResult Res)11676 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
11677 if (!Res.isUsable())
11678 return Res;
11679
11680 // If a constant-expression is a reference to a variable where we delay
11681 // deciding whether it is an odr-use, just assume we will apply the
11682 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
11683 // (a non-type template argument), we have special handling anyway.
11684 UpdateMarkingForLValueToRValue(Res.get());
11685 return Res;
11686 }
11687
CleanupVarDeclMarking()11688 void Sema::CleanupVarDeclMarking() {
11689 for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
11690 e = MaybeODRUseExprs.end();
11691 i != e; ++i) {
11692 VarDecl *Var;
11693 SourceLocation Loc;
11694 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
11695 Var = cast<VarDecl>(DRE->getDecl());
11696 Loc = DRE->getLocation();
11697 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
11698 Var = cast<VarDecl>(ME->getMemberDecl());
11699 Loc = ME->getMemberLoc();
11700 } else {
11701 llvm_unreachable("Unexpcted expression");
11702 }
11703
11704 MarkVarDeclODRUsed(*this, Var, Loc);
11705 }
11706
11707 MaybeODRUseExprs.clear();
11708 }
11709
11710 // Mark a VarDecl referenced, and perform the necessary handling to compute
11711 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)11712 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
11713 VarDecl *Var, Expr *E) {
11714 Var->setReferenced();
11715
11716 if (!IsPotentiallyEvaluatedContext(SemaRef))
11717 return;
11718
11719 VarTemplateSpecializationDecl *VarSpec =
11720 dyn_cast<VarTemplateSpecializationDecl>(Var);
11721
11722 // Implicit instantiation of static data members, static data member
11723 // templates of class templates, and variable template specializations.
11724 // Delay instantiations of variable templates, except for those
11725 // that could be used in a constant expression.
11726 if (VarSpec || (Var->isStaticDataMember() &&
11727 Var->getInstantiatedFromStaticDataMember())) {
11728 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
11729 if (VarSpec)
11730 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
11731 "Can't instantiate a partial template specialization.");
11732 if (Var->isStaticDataMember())
11733 assert(MSInfo && "Missing member specialization information?");
11734
11735 SourceLocation PointOfInstantiation;
11736 bool InstantiationIsOkay = true;
11737 if (MSInfo) {
11738 bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
11739 TemplateSpecializationKind TSK = MSInfo->getTemplateSpecializationKind();
11740
11741 if (TSK == TSK_ImplicitInstantiation &&
11742 (!AlreadyInstantiated ||
11743 Var->isUsableInConstantExpressions(SemaRef.Context))) {
11744 if (!AlreadyInstantiated) {
11745 // This is a modification of an existing AST node. Notify listeners.
11746 if (ASTMutationListener *L = SemaRef.getASTMutationListener())
11747 L->StaticDataMemberInstantiated(Var);
11748 MSInfo->setPointOfInstantiation(Loc);
11749 }
11750 PointOfInstantiation = MSInfo->getPointOfInstantiation();
11751 } else
11752 InstantiationIsOkay = false;
11753 } else {
11754 if (VarSpec->getPointOfInstantiation().isInvalid())
11755 VarSpec->setPointOfInstantiation(Loc);
11756 PointOfInstantiation = VarSpec->getPointOfInstantiation();
11757 }
11758
11759 if (InstantiationIsOkay) {
11760 bool InstantiationDependent = false;
11761 bool IsNonDependent =
11762 VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
11763 VarSpec->getTemplateArgsInfo(), InstantiationDependent)
11764 : true;
11765
11766 // Do not instantiate specializations that are still type-dependent.
11767 if (IsNonDependent) {
11768 if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
11769 // Do not defer instantiations of variables which could be used in a
11770 // constant expression.
11771 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
11772 } else {
11773 SemaRef.PendingInstantiations
11774 .push_back(std::make_pair(Var, PointOfInstantiation));
11775 }
11776 }
11777 }
11778 }
11779
11780 // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
11781 // the requirements for appearing in a constant expression (5.19) and, if
11782 // it is an object, the lvalue-to-rvalue conversion (4.1)
11783 // is immediately applied." We check the first part here, and
11784 // Sema::UpdateMarkingForLValueToRValue deals with the second part.
11785 // Note that we use the C++11 definition everywhere because nothing in
11786 // C++03 depends on whether we get the C++03 version correct. The second
11787 // part does not apply to references, since they are not objects.
11788 const VarDecl *DefVD;
11789 if (E && !isa<ParmVarDecl>(Var) &&
11790 Var->isUsableInConstantExpressions(SemaRef.Context) &&
11791 Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
11792 if (!Var->getType()->isReferenceType())
11793 SemaRef.MaybeODRUseExprs.insert(E);
11794 } else
11795 MarkVarDeclODRUsed(SemaRef, Var, Loc);
11796 }
11797
11798 /// \brief Mark a variable referenced, and check whether it is odr-used
11799 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
11800 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)11801 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
11802 DoMarkVarDeclReferenced(*this, Loc, Var, 0);
11803 }
11804
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool OdrUse)11805 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
11806 Decl *D, Expr *E, bool OdrUse) {
11807 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
11808 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
11809 return;
11810 }
11811
11812 SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
11813
11814 // If this is a call to a method via a cast, also mark the method in the
11815 // derived class used in case codegen can devirtualize the call.
11816 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11817 if (!ME)
11818 return;
11819 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
11820 if (!MD)
11821 return;
11822 const Expr *Base = ME->getBase();
11823 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
11824 if (!MostDerivedClassDecl)
11825 return;
11826 CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
11827 if (!DM || DM->isPure())
11828 return;
11829 SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
11830 }
11831
11832 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)11833 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
11834 // TODO: update this with DR# once a defect report is filed.
11835 // C++11 defect. The address of a pure member should not be an ODR use, even
11836 // if it's a qualified reference.
11837 bool OdrUse = true;
11838 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
11839 if (Method->isVirtual())
11840 OdrUse = false;
11841 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
11842 }
11843
11844 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)11845 void Sema::MarkMemberReferenced(MemberExpr *E) {
11846 // C++11 [basic.def.odr]p2:
11847 // A non-overloaded function whose name appears as a potentially-evaluated
11848 // expression or a member of a set of candidate functions, if selected by
11849 // overload resolution when referred to from a potentially-evaluated
11850 // expression, is odr-used, unless it is a pure virtual function and its
11851 // name is not explicitly qualified.
11852 bool OdrUse = true;
11853 if (!E->hasQualifier()) {
11854 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
11855 if (Method->isPure())
11856 OdrUse = false;
11857 }
11858 SourceLocation Loc = E->getMemberLoc().isValid() ?
11859 E->getMemberLoc() : E->getLocStart();
11860 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
11861 }
11862
11863 /// \brief Perform marking for a reference to an arbitrary declaration. It
11864 /// marks the declaration referenced, and performs odr-use checking for functions
11865 /// and variables. This method should not be used when building an normal
11866 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool OdrUse)11867 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
11868 if (OdrUse) {
11869 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
11870 MarkVariableReferenced(Loc, VD);
11871 return;
11872 }
11873 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
11874 MarkFunctionReferenced(Loc, FD);
11875 return;
11876 }
11877 }
11878 D->setReferenced();
11879 }
11880
11881 namespace {
11882 // Mark all of the declarations referenced
11883 // FIXME: Not fully implemented yet! We need to have a better understanding
11884 // of when we're entering
11885 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
11886 Sema &S;
11887 SourceLocation Loc;
11888
11889 public:
11890 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
11891
MarkReferencedDecls(Sema & S,SourceLocation Loc)11892 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
11893
11894 bool TraverseTemplateArgument(const TemplateArgument &Arg);
11895 bool TraverseRecordType(RecordType *T);
11896 };
11897 }
11898
TraverseTemplateArgument(const TemplateArgument & Arg)11899 bool MarkReferencedDecls::TraverseTemplateArgument(
11900 const TemplateArgument &Arg) {
11901 if (Arg.getKind() == TemplateArgument::Declaration) {
11902 if (Decl *D = Arg.getAsDecl())
11903 S.MarkAnyDeclReferenced(Loc, D, true);
11904 }
11905
11906 return Inherited::TraverseTemplateArgument(Arg);
11907 }
11908
TraverseRecordType(RecordType * T)11909 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11910 if (ClassTemplateSpecializationDecl *Spec
11911 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11912 const TemplateArgumentList &Args = Spec->getTemplateArgs();
11913 return TraverseTemplateArguments(Args.data(), Args.size());
11914 }
11915
11916 return true;
11917 }
11918
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)11919 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11920 MarkReferencedDecls Marker(*this, Loc);
11921 Marker.TraverseType(Context.getCanonicalType(T));
11922 }
11923
11924 namespace {
11925 /// \brief Helper class that marks all of the declarations referenced by
11926 /// potentially-evaluated subexpressions as "referenced".
11927 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11928 Sema &S;
11929 bool SkipLocalVariables;
11930
11931 public:
11932 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11933
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)11934 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11935 : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11936
VisitDeclRefExpr(DeclRefExpr * E)11937 void VisitDeclRefExpr(DeclRefExpr *E) {
11938 // If we were asked not to visit local variables, don't.
11939 if (SkipLocalVariables) {
11940 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11941 if (VD->hasLocalStorage())
11942 return;
11943 }
11944
11945 S.MarkDeclRefReferenced(E);
11946 }
11947
VisitMemberExpr(MemberExpr * E)11948 void VisitMemberExpr(MemberExpr *E) {
11949 S.MarkMemberReferenced(E);
11950 Inherited::VisitMemberExpr(E);
11951 }
11952
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)11953 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11954 S.MarkFunctionReferenced(E->getLocStart(),
11955 const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11956 Visit(E->getSubExpr());
11957 }
11958
VisitCXXNewExpr(CXXNewExpr * E)11959 void VisitCXXNewExpr(CXXNewExpr *E) {
11960 if (E->getOperatorNew())
11961 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11962 if (E->getOperatorDelete())
11963 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11964 Inherited::VisitCXXNewExpr(E);
11965 }
11966
VisitCXXDeleteExpr(CXXDeleteExpr * E)11967 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11968 if (E->getOperatorDelete())
11969 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11970 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11971 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11972 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11973 S.MarkFunctionReferenced(E->getLocStart(),
11974 S.LookupDestructor(Record));
11975 }
11976
11977 Inherited::VisitCXXDeleteExpr(E);
11978 }
11979
VisitCXXConstructExpr(CXXConstructExpr * E)11980 void VisitCXXConstructExpr(CXXConstructExpr *E) {
11981 S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11982 Inherited::VisitCXXConstructExpr(E);
11983 }
11984
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)11985 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11986 Visit(E->getExpr());
11987 }
11988
VisitImplicitCastExpr(ImplicitCastExpr * E)11989 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11990 Inherited::VisitImplicitCastExpr(E);
11991
11992 if (E->getCastKind() == CK_LValueToRValue)
11993 S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11994 }
11995 };
11996 }
11997
11998 /// \brief Mark any declarations that appear within this expression or any
11999 /// potentially-evaluated subexpressions as "referenced".
12000 ///
12001 /// \param SkipLocalVariables If true, don't mark local variables as
12002 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)12003 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
12004 bool SkipLocalVariables) {
12005 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
12006 }
12007
12008 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
12009 /// of the program being compiled.
12010 ///
12011 /// This routine emits the given diagnostic when the code currently being
12012 /// type-checked is "potentially evaluated", meaning that there is a
12013 /// possibility that the code will actually be executable. Code in sizeof()
12014 /// expressions, code used only during overload resolution, etc., are not
12015 /// potentially evaluated. This routine will suppress such diagnostics or,
12016 /// in the absolutely nutty case of potentially potentially evaluated
12017 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
12018 /// later.
12019 ///
12020 /// This routine should be used for all diagnostics that describe the run-time
12021 /// behavior of a program, such as passing a non-POD value through an ellipsis.
12022 /// Failure to do so will likely result in spurious diagnostics or failures
12023 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)12024 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
12025 const PartialDiagnostic &PD) {
12026 switch (ExprEvalContexts.back().Context) {
12027 case Unevaluated:
12028 case UnevaluatedAbstract:
12029 // The argument will never be evaluated, so don't complain.
12030 break;
12031
12032 case ConstantEvaluated:
12033 // Relevant diagnostics should be produced by constant evaluation.
12034 break;
12035
12036 case PotentiallyEvaluated:
12037 case PotentiallyEvaluatedIfUsed:
12038 if (Statement && getCurFunctionOrMethodDecl()) {
12039 FunctionScopes.back()->PossiblyUnreachableDiags.
12040 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
12041 }
12042 else
12043 Diag(Loc, PD);
12044
12045 return true;
12046 }
12047
12048 return false;
12049 }
12050
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)12051 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
12052 CallExpr *CE, FunctionDecl *FD) {
12053 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
12054 return false;
12055
12056 // If we're inside a decltype's expression, don't check for a valid return
12057 // type or construct temporaries until we know whether this is the last call.
12058 if (ExprEvalContexts.back().IsDecltype) {
12059 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
12060 return false;
12061 }
12062
12063 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
12064 FunctionDecl *FD;
12065 CallExpr *CE;
12066
12067 public:
12068 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
12069 : FD(FD), CE(CE) { }
12070
12071 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
12072 if (!FD) {
12073 S.Diag(Loc, diag::err_call_incomplete_return)
12074 << T << CE->getSourceRange();
12075 return;
12076 }
12077
12078 S.Diag(Loc, diag::err_call_function_incomplete_return)
12079 << CE->getSourceRange() << FD->getDeclName() << T;
12080 S.Diag(FD->getLocation(),
12081 diag::note_function_with_incomplete_return_type_declared_here)
12082 << FD->getDeclName();
12083 }
12084 } Diagnoser(FD, CE);
12085
12086 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
12087 return true;
12088
12089 return false;
12090 }
12091
12092 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
12093 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)12094 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
12095 SourceLocation Loc;
12096
12097 unsigned diagnostic = diag::warn_condition_is_assignment;
12098 bool IsOrAssign = false;
12099
12100 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
12101 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
12102 return;
12103
12104 IsOrAssign = Op->getOpcode() == BO_OrAssign;
12105
12106 // Greylist some idioms by putting them into a warning subcategory.
12107 if (ObjCMessageExpr *ME
12108 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
12109 Selector Sel = ME->getSelector();
12110
12111 // self = [<foo> init...]
12112 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
12113 diagnostic = diag::warn_condition_is_idiomatic_assignment;
12114
12115 // <foo> = [<bar> nextObject]
12116 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
12117 diagnostic = diag::warn_condition_is_idiomatic_assignment;
12118 }
12119
12120 Loc = Op->getOperatorLoc();
12121 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
12122 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
12123 return;
12124
12125 IsOrAssign = Op->getOperator() == OO_PipeEqual;
12126 Loc = Op->getOperatorLoc();
12127 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
12128 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
12129 else {
12130 // Not an assignment.
12131 return;
12132 }
12133
12134 Diag(Loc, diagnostic) << E->getSourceRange();
12135
12136 SourceLocation Open = E->getLocStart();
12137 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
12138 Diag(Loc, diag::note_condition_assign_silence)
12139 << FixItHint::CreateInsertion(Open, "(")
12140 << FixItHint::CreateInsertion(Close, ")");
12141
12142 if (IsOrAssign)
12143 Diag(Loc, diag::note_condition_or_assign_to_comparison)
12144 << FixItHint::CreateReplacement(Loc, "!=");
12145 else
12146 Diag(Loc, diag::note_condition_assign_to_comparison)
12147 << FixItHint::CreateReplacement(Loc, "==");
12148 }
12149
12150 /// \brief Redundant parentheses over an equality comparison can indicate
12151 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)12152 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
12153 // Don't warn if the parens came from a macro.
12154 SourceLocation parenLoc = ParenE->getLocStart();
12155 if (parenLoc.isInvalid() || parenLoc.isMacroID())
12156 return;
12157 // Don't warn for dependent expressions.
12158 if (ParenE->isTypeDependent())
12159 return;
12160
12161 Expr *E = ParenE->IgnoreParens();
12162
12163 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
12164 if (opE->getOpcode() == BO_EQ &&
12165 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
12166 == Expr::MLV_Valid) {
12167 SourceLocation Loc = opE->getOperatorLoc();
12168
12169 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
12170 SourceRange ParenERange = ParenE->getSourceRange();
12171 Diag(Loc, diag::note_equality_comparison_silence)
12172 << FixItHint::CreateRemoval(ParenERange.getBegin())
12173 << FixItHint::CreateRemoval(ParenERange.getEnd());
12174 Diag(Loc, diag::note_equality_comparison_to_assign)
12175 << FixItHint::CreateReplacement(Loc, "=");
12176 }
12177 }
12178
CheckBooleanCondition(Expr * E,SourceLocation Loc)12179 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
12180 DiagnoseAssignmentAsCondition(E);
12181 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
12182 DiagnoseEqualityWithExtraParens(parenE);
12183
12184 ExprResult result = CheckPlaceholderExpr(E);
12185 if (result.isInvalid()) return ExprError();
12186 E = result.take();
12187
12188 if (!E->isTypeDependent()) {
12189 if (getLangOpts().CPlusPlus)
12190 return CheckCXXBooleanCondition(E); // C++ 6.4p4
12191
12192 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
12193 if (ERes.isInvalid())
12194 return ExprError();
12195 E = ERes.take();
12196
12197 QualType T = E->getType();
12198 if (!T->isScalarType()) { // C99 6.8.4.1p1
12199 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
12200 << T << E->getSourceRange();
12201 return ExprError();
12202 }
12203 }
12204
12205 return Owned(E);
12206 }
12207
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)12208 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
12209 Expr *SubExpr) {
12210 if (!SubExpr)
12211 return ExprError();
12212
12213 return CheckBooleanCondition(SubExpr, Loc);
12214 }
12215
12216 namespace {
12217 /// A visitor for rebuilding a call to an __unknown_any expression
12218 /// to have an appropriate type.
12219 struct RebuildUnknownAnyFunction
12220 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
12221
12222 Sema &S;
12223
RebuildUnknownAnyFunction__anonfc76aee00811::RebuildUnknownAnyFunction12224 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
12225
VisitStmt__anonfc76aee00811::RebuildUnknownAnyFunction12226 ExprResult VisitStmt(Stmt *S) {
12227 llvm_unreachable("unexpected statement!");
12228 }
12229
VisitExpr__anonfc76aee00811::RebuildUnknownAnyFunction12230 ExprResult VisitExpr(Expr *E) {
12231 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
12232 << E->getSourceRange();
12233 return ExprError();
12234 }
12235
12236 /// Rebuild an expression which simply semantically wraps another
12237 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anonfc76aee00811::RebuildUnknownAnyFunction12238 template <class T> ExprResult rebuildSugarExpr(T *E) {
12239 ExprResult SubResult = Visit(E->getSubExpr());
12240 if (SubResult.isInvalid()) return ExprError();
12241
12242 Expr *SubExpr = SubResult.take();
12243 E->setSubExpr(SubExpr);
12244 E->setType(SubExpr->getType());
12245 E->setValueKind(SubExpr->getValueKind());
12246 assert(E->getObjectKind() == OK_Ordinary);
12247 return E;
12248 }
12249
VisitParenExpr__anonfc76aee00811::RebuildUnknownAnyFunction12250 ExprResult VisitParenExpr(ParenExpr *E) {
12251 return rebuildSugarExpr(E);
12252 }
12253
VisitUnaryExtension__anonfc76aee00811::RebuildUnknownAnyFunction12254 ExprResult VisitUnaryExtension(UnaryOperator *E) {
12255 return rebuildSugarExpr(E);
12256 }
12257
VisitUnaryAddrOf__anonfc76aee00811::RebuildUnknownAnyFunction12258 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
12259 ExprResult SubResult = Visit(E->getSubExpr());
12260 if (SubResult.isInvalid()) return ExprError();
12261
12262 Expr *SubExpr = SubResult.take();
12263 E->setSubExpr(SubExpr);
12264 E->setType(S.Context.getPointerType(SubExpr->getType()));
12265 assert(E->getValueKind() == VK_RValue);
12266 assert(E->getObjectKind() == OK_Ordinary);
12267 return E;
12268 }
12269
resolveDecl__anonfc76aee00811::RebuildUnknownAnyFunction12270 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
12271 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
12272
12273 E->setType(VD->getType());
12274
12275 assert(E->getValueKind() == VK_RValue);
12276 if (S.getLangOpts().CPlusPlus &&
12277 !(isa<CXXMethodDecl>(VD) &&
12278 cast<CXXMethodDecl>(VD)->isInstance()))
12279 E->setValueKind(VK_LValue);
12280
12281 return E;
12282 }
12283
VisitMemberExpr__anonfc76aee00811::RebuildUnknownAnyFunction12284 ExprResult VisitMemberExpr(MemberExpr *E) {
12285 return resolveDecl(E, E->getMemberDecl());
12286 }
12287
VisitDeclRefExpr__anonfc76aee00811::RebuildUnknownAnyFunction12288 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
12289 return resolveDecl(E, E->getDecl());
12290 }
12291 };
12292 }
12293
12294 /// Given a function expression of unknown-any type, try to rebuild it
12295 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)12296 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
12297 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
12298 if (Result.isInvalid()) return ExprError();
12299 return S.DefaultFunctionArrayConversion(Result.take());
12300 }
12301
12302 namespace {
12303 /// A visitor for rebuilding an expression of type __unknown_anytype
12304 /// into one which resolves the type directly on the referring
12305 /// expression. Strict preservation of the original source
12306 /// structure is not a goal.
12307 struct RebuildUnknownAnyExpr
12308 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
12309
12310 Sema &S;
12311
12312 /// The current destination type.
12313 QualType DestType;
12314
RebuildUnknownAnyExpr__anonfc76aee00911::RebuildUnknownAnyExpr12315 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
12316 : S(S), DestType(CastType) {}
12317
VisitStmt__anonfc76aee00911::RebuildUnknownAnyExpr12318 ExprResult VisitStmt(Stmt *S) {
12319 llvm_unreachable("unexpected statement!");
12320 }
12321
VisitExpr__anonfc76aee00911::RebuildUnknownAnyExpr12322 ExprResult VisitExpr(Expr *E) {
12323 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12324 << E->getSourceRange();
12325 return ExprError();
12326 }
12327
12328 ExprResult VisitCallExpr(CallExpr *E);
12329 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
12330
12331 /// Rebuild an expression which simply semantically wraps another
12332 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anonfc76aee00911::RebuildUnknownAnyExpr12333 template <class T> ExprResult rebuildSugarExpr(T *E) {
12334 ExprResult SubResult = Visit(E->getSubExpr());
12335 if (SubResult.isInvalid()) return ExprError();
12336 Expr *SubExpr = SubResult.take();
12337 E->setSubExpr(SubExpr);
12338 E->setType(SubExpr->getType());
12339 E->setValueKind(SubExpr->getValueKind());
12340 assert(E->getObjectKind() == OK_Ordinary);
12341 return E;
12342 }
12343
VisitParenExpr__anonfc76aee00911::RebuildUnknownAnyExpr12344 ExprResult VisitParenExpr(ParenExpr *E) {
12345 return rebuildSugarExpr(E);
12346 }
12347
VisitUnaryExtension__anonfc76aee00911::RebuildUnknownAnyExpr12348 ExprResult VisitUnaryExtension(UnaryOperator *E) {
12349 return rebuildSugarExpr(E);
12350 }
12351
VisitUnaryAddrOf__anonfc76aee00911::RebuildUnknownAnyExpr12352 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
12353 const PointerType *Ptr = DestType->getAs<PointerType>();
12354 if (!Ptr) {
12355 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
12356 << E->getSourceRange();
12357 return ExprError();
12358 }
12359 assert(E->getValueKind() == VK_RValue);
12360 assert(E->getObjectKind() == OK_Ordinary);
12361 E->setType(DestType);
12362
12363 // Build the sub-expression as if it were an object of the pointee type.
12364 DestType = Ptr->getPointeeType();
12365 ExprResult SubResult = Visit(E->getSubExpr());
12366 if (SubResult.isInvalid()) return ExprError();
12367 E->setSubExpr(SubResult.take());
12368 return E;
12369 }
12370
12371 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
12372
12373 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
12374
VisitMemberExpr__anonfc76aee00911::RebuildUnknownAnyExpr12375 ExprResult VisitMemberExpr(MemberExpr *E) {
12376 return resolveDecl(E, E->getMemberDecl());
12377 }
12378
VisitDeclRefExpr__anonfc76aee00911::RebuildUnknownAnyExpr12379 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
12380 return resolveDecl(E, E->getDecl());
12381 }
12382 };
12383 }
12384
12385 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)12386 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
12387 Expr *CalleeExpr = E->getCallee();
12388
12389 enum FnKind {
12390 FK_MemberFunction,
12391 FK_FunctionPointer,
12392 FK_BlockPointer
12393 };
12394
12395 FnKind Kind;
12396 QualType CalleeType = CalleeExpr->getType();
12397 if (CalleeType == S.Context.BoundMemberTy) {
12398 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
12399 Kind = FK_MemberFunction;
12400 CalleeType = Expr::findBoundMemberType(CalleeExpr);
12401 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
12402 CalleeType = Ptr->getPointeeType();
12403 Kind = FK_FunctionPointer;
12404 } else {
12405 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
12406 Kind = FK_BlockPointer;
12407 }
12408 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
12409
12410 // Verify that this is a legal result type of a function.
12411 if (DestType->isArrayType() || DestType->isFunctionType()) {
12412 unsigned diagID = diag::err_func_returning_array_function;
12413 if (Kind == FK_BlockPointer)
12414 diagID = diag::err_block_returning_array_function;
12415
12416 S.Diag(E->getExprLoc(), diagID)
12417 << DestType->isFunctionType() << DestType;
12418 return ExprError();
12419 }
12420
12421 // Otherwise, go ahead and set DestType as the call's result.
12422 E->setType(DestType.getNonLValueExprType(S.Context));
12423 E->setValueKind(Expr::getValueKindForType(DestType));
12424 assert(E->getObjectKind() == OK_Ordinary);
12425
12426 // Rebuild the function type, replacing the result type with DestType.
12427 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
12428 if (Proto) {
12429 // __unknown_anytype(...) is a special case used by the debugger when
12430 // it has no idea what a function's signature is.
12431 //
12432 // We want to build this call essentially under the K&R
12433 // unprototyped rules, but making a FunctionNoProtoType in C++
12434 // would foul up all sorts of assumptions. However, we cannot
12435 // simply pass all arguments as variadic arguments, nor can we
12436 // portably just call the function under a non-variadic type; see
12437 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
12438 // However, it turns out that in practice it is generally safe to
12439 // call a function declared as "A foo(B,C,D);" under the prototype
12440 // "A foo(B,C,D,...);". The only known exception is with the
12441 // Windows ABI, where any variadic function is implicitly cdecl
12442 // regardless of its normal CC. Therefore we change the parameter
12443 // types to match the types of the arguments.
12444 //
12445 // This is a hack, but it is far superior to moving the
12446 // corresponding target-specific code from IR-gen to Sema/AST.
12447
12448 ArrayRef<QualType> ParamTypes = Proto->getArgTypes();
12449 SmallVector<QualType, 8> ArgTypes;
12450 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
12451 ArgTypes.reserve(E->getNumArgs());
12452 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
12453 Expr *Arg = E->getArg(i);
12454 QualType ArgType = Arg->getType();
12455 if (E->isLValue()) {
12456 ArgType = S.Context.getLValueReferenceType(ArgType);
12457 } else if (E->isXValue()) {
12458 ArgType = S.Context.getRValueReferenceType(ArgType);
12459 }
12460 ArgTypes.push_back(ArgType);
12461 }
12462 ParamTypes = ArgTypes;
12463 }
12464 DestType = S.Context.getFunctionType(DestType, ParamTypes,
12465 Proto->getExtProtoInfo());
12466 } else {
12467 DestType = S.Context.getFunctionNoProtoType(DestType,
12468 FnType->getExtInfo());
12469 }
12470
12471 // Rebuild the appropriate pointer-to-function type.
12472 switch (Kind) {
12473 case FK_MemberFunction:
12474 // Nothing to do.
12475 break;
12476
12477 case FK_FunctionPointer:
12478 DestType = S.Context.getPointerType(DestType);
12479 break;
12480
12481 case FK_BlockPointer:
12482 DestType = S.Context.getBlockPointerType(DestType);
12483 break;
12484 }
12485
12486 // Finally, we can recurse.
12487 ExprResult CalleeResult = Visit(CalleeExpr);
12488 if (!CalleeResult.isUsable()) return ExprError();
12489 E->setCallee(CalleeResult.take());
12490
12491 // Bind a temporary if necessary.
12492 return S.MaybeBindToTemporary(E);
12493 }
12494
VisitObjCMessageExpr(ObjCMessageExpr * E)12495 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
12496 // Verify that this is a legal result type of a call.
12497 if (DestType->isArrayType() || DestType->isFunctionType()) {
12498 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
12499 << DestType->isFunctionType() << DestType;
12500 return ExprError();
12501 }
12502
12503 // Rewrite the method result type if available.
12504 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
12505 assert(Method->getResultType() == S.Context.UnknownAnyTy);
12506 Method->setResultType(DestType);
12507 }
12508
12509 // Change the type of the message.
12510 E->setType(DestType.getNonReferenceType());
12511 E->setValueKind(Expr::getValueKindForType(DestType));
12512
12513 return S.MaybeBindToTemporary(E);
12514 }
12515
VisitImplicitCastExpr(ImplicitCastExpr * E)12516 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
12517 // The only case we should ever see here is a function-to-pointer decay.
12518 if (E->getCastKind() == CK_FunctionToPointerDecay) {
12519 assert(E->getValueKind() == VK_RValue);
12520 assert(E->getObjectKind() == OK_Ordinary);
12521
12522 E->setType(DestType);
12523
12524 // Rebuild the sub-expression as the pointee (function) type.
12525 DestType = DestType->castAs<PointerType>()->getPointeeType();
12526
12527 ExprResult Result = Visit(E->getSubExpr());
12528 if (!Result.isUsable()) return ExprError();
12529
12530 E->setSubExpr(Result.take());
12531 return S.Owned(E);
12532 } else if (E->getCastKind() == CK_LValueToRValue) {
12533 assert(E->getValueKind() == VK_RValue);
12534 assert(E->getObjectKind() == OK_Ordinary);
12535
12536 assert(isa<BlockPointerType>(E->getType()));
12537
12538 E->setType(DestType);
12539
12540 // The sub-expression has to be a lvalue reference, so rebuild it as such.
12541 DestType = S.Context.getLValueReferenceType(DestType);
12542
12543 ExprResult Result = Visit(E->getSubExpr());
12544 if (!Result.isUsable()) return ExprError();
12545
12546 E->setSubExpr(Result.take());
12547 return S.Owned(E);
12548 } else {
12549 llvm_unreachable("Unhandled cast type!");
12550 }
12551 }
12552
resolveDecl(Expr * E,ValueDecl * VD)12553 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
12554 ExprValueKind ValueKind = VK_LValue;
12555 QualType Type = DestType;
12556
12557 // We know how to make this work for certain kinds of decls:
12558
12559 // - functions
12560 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
12561 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
12562 DestType = Ptr->getPointeeType();
12563 ExprResult Result = resolveDecl(E, VD);
12564 if (Result.isInvalid()) return ExprError();
12565 return S.ImpCastExprToType(Result.take(), Type,
12566 CK_FunctionToPointerDecay, VK_RValue);
12567 }
12568
12569 if (!Type->isFunctionType()) {
12570 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
12571 << VD << E->getSourceRange();
12572 return ExprError();
12573 }
12574
12575 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
12576 if (MD->isInstance()) {
12577 ValueKind = VK_RValue;
12578 Type = S.Context.BoundMemberTy;
12579 }
12580
12581 // Function references aren't l-values in C.
12582 if (!S.getLangOpts().CPlusPlus)
12583 ValueKind = VK_RValue;
12584
12585 // - variables
12586 } else if (isa<VarDecl>(VD)) {
12587 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
12588 Type = RefTy->getPointeeType();
12589 } else if (Type->isFunctionType()) {
12590 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
12591 << VD << E->getSourceRange();
12592 return ExprError();
12593 }
12594
12595 // - nothing else
12596 } else {
12597 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
12598 << VD << E->getSourceRange();
12599 return ExprError();
12600 }
12601
12602 // Modifying the declaration like this is friendly to IR-gen but
12603 // also really dangerous.
12604 VD->setType(DestType);
12605 E->setType(Type);
12606 E->setValueKind(ValueKind);
12607 return S.Owned(E);
12608 }
12609
12610 /// Check a cast of an unknown-any type. We intentionally only
12611 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)12612 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
12613 Expr *CastExpr, CastKind &CastKind,
12614 ExprValueKind &VK, CXXCastPath &Path) {
12615 // Rewrite the casted expression from scratch.
12616 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
12617 if (!result.isUsable()) return ExprError();
12618
12619 CastExpr = result.take();
12620 VK = CastExpr->getValueKind();
12621 CastKind = CK_NoOp;
12622
12623 return CastExpr;
12624 }
12625
forceUnknownAnyToType(Expr * E,QualType ToType)12626 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
12627 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
12628 }
12629
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)12630 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
12631 Expr *arg, QualType ¶mType) {
12632 // If the syntactic form of the argument is not an explicit cast of
12633 // any sort, just do default argument promotion.
12634 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
12635 if (!castArg) {
12636 ExprResult result = DefaultArgumentPromotion(arg);
12637 if (result.isInvalid()) return ExprError();
12638 paramType = result.get()->getType();
12639 return result;
12640 }
12641
12642 // Otherwise, use the type that was written in the explicit cast.
12643 assert(!arg->hasPlaceholderType());
12644 paramType = castArg->getTypeAsWritten();
12645
12646 // Copy-initialize a parameter of that type.
12647 InitializedEntity entity =
12648 InitializedEntity::InitializeParameter(Context, paramType,
12649 /*consumed*/ false);
12650 return PerformCopyInitialization(entity, callLoc, Owned(arg));
12651 }
12652
diagnoseUnknownAnyExpr(Sema & S,Expr * E)12653 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
12654 Expr *orig = E;
12655 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
12656 while (true) {
12657 E = E->IgnoreParenImpCasts();
12658 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
12659 E = call->getCallee();
12660 diagID = diag::err_uncasted_call_of_unknown_any;
12661 } else {
12662 break;
12663 }
12664 }
12665
12666 SourceLocation loc;
12667 NamedDecl *d;
12668 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
12669 loc = ref->getLocation();
12670 d = ref->getDecl();
12671 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
12672 loc = mem->getMemberLoc();
12673 d = mem->getMemberDecl();
12674 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
12675 diagID = diag::err_uncasted_call_of_unknown_any;
12676 loc = msg->getSelectorStartLoc();
12677 d = msg->getMethodDecl();
12678 if (!d) {
12679 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
12680 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
12681 << orig->getSourceRange();
12682 return ExprError();
12683 }
12684 } else {
12685 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12686 << E->getSourceRange();
12687 return ExprError();
12688 }
12689
12690 S.Diag(loc, diagID) << d << orig->getSourceRange();
12691
12692 // Never recoverable.
12693 return ExprError();
12694 }
12695
12696 /// Check for operands with placeholder types and complain if found.
12697 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)12698 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
12699 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
12700 if (!placeholderType) return Owned(E);
12701
12702 switch (placeholderType->getKind()) {
12703
12704 // Overloaded expressions.
12705 case BuiltinType::Overload: {
12706 // Try to resolve a single function template specialization.
12707 // This is obligatory.
12708 ExprResult result = Owned(E);
12709 if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
12710 return result;
12711
12712 // If that failed, try to recover with a call.
12713 } else {
12714 tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
12715 /*complain*/ true);
12716 return result;
12717 }
12718 }
12719
12720 // Bound member functions.
12721 case BuiltinType::BoundMember: {
12722 ExprResult result = Owned(E);
12723 tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
12724 /*complain*/ true);
12725 return result;
12726 }
12727
12728 // ARC unbridged casts.
12729 case BuiltinType::ARCUnbridgedCast: {
12730 Expr *realCast = stripARCUnbridgedCast(E);
12731 diagnoseARCUnbridgedCast(realCast);
12732 return Owned(realCast);
12733 }
12734
12735 // Expressions of unknown type.
12736 case BuiltinType::UnknownAny:
12737 return diagnoseUnknownAnyExpr(*this, E);
12738
12739 // Pseudo-objects.
12740 case BuiltinType::PseudoObject:
12741 return checkPseudoObjectRValue(E);
12742
12743 case BuiltinType::BuiltinFn:
12744 Diag(E->getLocStart(), diag::err_builtin_fn_use);
12745 return ExprError();
12746
12747 // Everything else should be impossible.
12748 #define BUILTIN_TYPE(Id, SingletonId) \
12749 case BuiltinType::Id:
12750 #define PLACEHOLDER_TYPE(Id, SingletonId)
12751 #include "clang/AST/BuiltinTypes.def"
12752 break;
12753 }
12754
12755 llvm_unreachable("invalid placeholder type!");
12756 }
12757
CheckCaseExpression(Expr * E)12758 bool Sema::CheckCaseExpression(Expr *E) {
12759 if (E->isTypeDependent())
12760 return true;
12761 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
12762 return E->getType()->isIntegralOrEnumerationType();
12763 return false;
12764 }
12765
12766 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
12767 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)12768 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
12769 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
12770 "Unknown Objective-C Boolean value!");
12771 QualType BoolT = Context.ObjCBuiltinBoolTy;
12772 if (!Context.getBOOLDecl()) {
12773 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
12774 Sema::LookupOrdinaryName);
12775 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
12776 NamedDecl *ND = Result.getFoundDecl();
12777 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
12778 Context.setBOOLDecl(TD);
12779 }
12780 }
12781 if (Context.getBOOLDecl())
12782 BoolT = Context.getBOOLType();
12783 return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
12784 BoolT, OpLoc));
12785 }
12786