1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "codegen.h"
34 #include "execution.h"
35 #include "ic-inl.h"
36 #include "runtime.h"
37 #include "stub-cache.h"
38
39 namespace v8 {
40 namespace internal {
41
42 #ifdef DEBUG
TransitionMarkFromState(IC::State state)43 char IC::TransitionMarkFromState(IC::State state) {
44 switch (state) {
45 case UNINITIALIZED: return '0';
46 case PREMONOMORPHIC: return '.';
47 case MONOMORPHIC: return '1';
48 case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
49 case POLYMORPHIC: return 'P';
50 case MEGAMORPHIC: return 'N';
51 case GENERIC: return 'G';
52
53 // We never see the debugger states here, because the state is
54 // computed from the original code - not the patched code. Let
55 // these cases fall through to the unreachable code below.
56 case DEBUG_STUB: break;
57 }
58 UNREACHABLE();
59 return 0;
60 }
61
62
GetTransitionMarkModifier(KeyedAccessStoreMode mode)63 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
64 if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
65 if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
66 return ".IGNORE_OOB";
67 }
68 if (IsGrowStoreMode(mode)) return ".GROW";
69 return "";
70 }
71
72
TraceIC(const char * type,Handle<Object> name)73 void IC::TraceIC(const char* type,
74 Handle<Object> name) {
75 if (FLAG_trace_ic) {
76 Code* new_target = raw_target();
77 State new_state = new_target->ic_state();
78 PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
79 StackFrameIterator it(isolate());
80 while (it.frame()->fp() != this->fp()) it.Advance();
81 StackFrame* raw_frame = it.frame();
82 if (raw_frame->is_internal()) {
83 Code* apply_builtin = isolate()->builtins()->builtin(
84 Builtins::kFunctionApply);
85 if (raw_frame->unchecked_code() == apply_builtin) {
86 PrintF("apply from ");
87 it.Advance();
88 raw_frame = it.frame();
89 }
90 }
91 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
92 ExtraICState extra_state = new_target->extra_ic_state();
93 const char* modifier =
94 GetTransitionMarkModifier(
95 KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
96 PrintF(" (%c->%c%s)",
97 TransitionMarkFromState(state()),
98 TransitionMarkFromState(new_state),
99 modifier);
100 name->Print();
101 PrintF("]\n");
102 }
103 }
104
105 #define TRACE_GENERIC_IC(isolate, type, reason) \
106 do { \
107 if (FLAG_trace_ic) { \
108 PrintF("[%s patching generic stub in ", type); \
109 JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
110 PrintF(" (%s)]\n", reason); \
111 } \
112 } while (false)
113
114 #else
115 #define TRACE_GENERIC_IC(isolate, type, reason)
116 #endif // DEBUG
117
118 #define TRACE_IC(type, name) \
119 ASSERT((TraceIC(type, name), true))
120
IC(FrameDepth depth,Isolate * isolate)121 IC::IC(FrameDepth depth, Isolate* isolate)
122 : isolate_(isolate),
123 target_set_(false) {
124 // To improve the performance of the (much used) IC code, we unfold a few
125 // levels of the stack frame iteration code. This yields a ~35% speedup when
126 // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
127 const Address entry =
128 Isolate::c_entry_fp(isolate->thread_local_top());
129 Address* pc_address =
130 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
131 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
132 // If there's another JavaScript frame on the stack or a
133 // StubFailureTrampoline, we need to look one frame further down the stack to
134 // find the frame pointer and the return address stack slot.
135 if (depth == EXTRA_CALL_FRAME) {
136 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
137 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
138 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
139 }
140 #ifdef DEBUG
141 StackFrameIterator it(isolate);
142 for (int i = 0; i < depth + 1; i++) it.Advance();
143 StackFrame* frame = it.frame();
144 ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
145 #endif
146 fp_ = fp;
147 pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
148 target_ = handle(raw_target(), isolate);
149 state_ = target_->ic_state();
150 }
151
152
153 #ifdef ENABLE_DEBUGGER_SUPPORT
OriginalCodeAddress() const154 Address IC::OriginalCodeAddress() const {
155 HandleScope scope(isolate());
156 // Compute the JavaScript frame for the frame pointer of this IC
157 // structure. We need this to be able to find the function
158 // corresponding to the frame.
159 StackFrameIterator it(isolate());
160 while (it.frame()->fp() != this->fp()) it.Advance();
161 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
162 // Find the function on the stack and both the active code for the
163 // function and the original code.
164 JSFunction* function = frame->function();
165 Handle<SharedFunctionInfo> shared(function->shared(), isolate());
166 Code* code = shared->code();
167 ASSERT(Debug::HasDebugInfo(shared));
168 Code* original_code = Debug::GetDebugInfo(shared)->original_code();
169 ASSERT(original_code->IsCode());
170 // Get the address of the call site in the active code. This is the
171 // place where the call to DebugBreakXXX is and where the IC
172 // normally would be.
173 Address addr = Assembler::target_address_from_return_address(pc());
174 // Return the address in the original code. This is the place where
175 // the call which has been overwritten by the DebugBreakXXX resides
176 // and the place where the inline cache system should look.
177 intptr_t delta =
178 original_code->instruction_start() - code->instruction_start();
179 return addr + delta;
180 }
181 #endif
182
183
HasInterceptorGetter(JSObject * object)184 static bool HasInterceptorGetter(JSObject* object) {
185 return !object->GetNamedInterceptor()->getter()->IsUndefined();
186 }
187
188
HasInterceptorSetter(JSObject * object)189 static bool HasInterceptorSetter(JSObject* object) {
190 return !object->GetNamedInterceptor()->setter()->IsUndefined();
191 }
192
193
LookupForRead(Handle<Object> object,Handle<String> name,LookupResult * lookup)194 static void LookupForRead(Handle<Object> object,
195 Handle<String> name,
196 LookupResult* lookup) {
197 // Skip all the objects with named interceptors, but
198 // without actual getter.
199 while (true) {
200 object->Lookup(*name, lookup);
201 // Besides normal conditions (property not found or it's not
202 // an interceptor), bail out if lookup is not cacheable: we won't
203 // be able to IC it anyway and regular lookup should work fine.
204 if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
205 return;
206 }
207
208 Handle<JSObject> holder(lookup->holder(), lookup->isolate());
209 if (HasInterceptorGetter(*holder)) {
210 return;
211 }
212
213 holder->LocalLookupRealNamedProperty(*name, lookup);
214 if (lookup->IsFound()) {
215 ASSERT(!lookup->IsInterceptor());
216 return;
217 }
218
219 Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
220 if (proto->IsNull()) {
221 ASSERT(!lookup->IsFound());
222 return;
223 }
224
225 object = proto;
226 }
227 }
228
229
TryUpdateExtraICState(LookupResult * lookup,Handle<Object> object)230 bool CallIC::TryUpdateExtraICState(LookupResult* lookup,
231 Handle<Object> object) {
232 if (!lookup->IsConstantFunction()) return false;
233 JSFunction* function = lookup->GetConstantFunction();
234 if (!function->shared()->HasBuiltinFunctionId()) return false;
235
236 // Fetch the arguments passed to the called function.
237 const int argc = target()->arguments_count();
238 Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
239 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
240 Arguments args(argc + 1,
241 &Memory::Object_at(fp +
242 StandardFrameConstants::kCallerSPOffset +
243 argc * kPointerSize));
244 switch (function->shared()->builtin_function_id()) {
245 case kStringCharCodeAt:
246 case kStringCharAt:
247 if (object->IsString()) {
248 String* string = String::cast(*object);
249 // Check there's the right string value or wrapper in the receiver slot.
250 ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
251 // If we're in the default (fastest) state and the index is
252 // out of bounds, update the state to record this fact.
253 if (StringStubState::decode(extra_ic_state()) == DEFAULT_STRING_STUB &&
254 argc >= 1 && args[1]->IsNumber()) {
255 double index = DoubleToInteger(args.number_at(1));
256 if (index < 0 || index >= string->length()) {
257 extra_ic_state_ =
258 StringStubState::update(extra_ic_state(),
259 STRING_INDEX_OUT_OF_BOUNDS);
260 return true;
261 }
262 }
263 }
264 break;
265 default:
266 return false;
267 }
268 return false;
269 }
270
271
TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,Handle<String> name)272 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
273 Handle<String> name) {
274 if (target()->is_call_stub()) {
275 LookupResult lookup(isolate());
276 LookupForRead(receiver, name, &lookup);
277 if (static_cast<CallIC*>(this)->TryUpdateExtraICState(&lookup, receiver)) {
278 return true;
279 }
280 }
281
282 if (target()->is_keyed_stub()) {
283 // Determine whether the failure is due to a name failure.
284 if (!name->IsName()) return false;
285 Name* stub_name = target()->FindFirstName();
286 if (*name != stub_name) return false;
287 }
288
289 InlineCacheHolderFlag cache_holder =
290 Code::ExtractCacheHolderFromFlags(target()->flags());
291
292 switch (cache_holder) {
293 case OWN_MAP:
294 // The stub was generated for JSObject but called for non-JSObject.
295 // IC::GetCodeCacheHolder is not applicable.
296 if (!receiver->IsJSObject()) return false;
297 break;
298 case PROTOTYPE_MAP:
299 // IC::GetCodeCacheHolder is not applicable.
300 if (receiver->GetPrototype(isolate())->IsNull()) return false;
301 break;
302 }
303
304 Handle<Map> map(
305 IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
306
307 // Decide whether the inline cache failed because of changes to the
308 // receiver itself or changes to one of its prototypes.
309 //
310 // If there are changes to the receiver itself, the map of the
311 // receiver will have changed and the current target will not be in
312 // the receiver map's code cache. Therefore, if the current target
313 // is in the receiver map's code cache, the inline cache failed due
314 // to prototype check failure.
315 int index = map->IndexInCodeCache(*name, *target());
316 if (index >= 0) {
317 map->RemoveFromCodeCache(*name, *target(), index);
318 // Handlers are stored in addition to the ICs on the map. Remove those, too.
319 TryRemoveInvalidHandlers(map, name);
320 return true;
321 }
322
323 // The stub is not in the cache. We've ruled out all other kinds of failure
324 // except for proptotype chain changes, a deprecated map, a map that's
325 // different from the one that the stub expects, elements kind changes, or a
326 // constant global property that will become mutable. Threat all those
327 // situations as prototype failures (stay monomorphic if possible).
328
329 // If the IC is shared between multiple receivers (slow dictionary mode), then
330 // the map cannot be deprecated and the stub invalidated.
331 if (cache_holder == OWN_MAP) {
332 Map* old_map = target()->FindFirstMap();
333 if (old_map == *map) return true;
334 if (old_map != NULL) {
335 if (old_map->is_deprecated()) return true;
336 if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
337 map->elements_kind())) {
338 return true;
339 }
340 }
341 }
342
343 if (receiver->IsGlobalObject()) {
344 LookupResult lookup(isolate());
345 GlobalObject* global = GlobalObject::cast(*receiver);
346 global->LocalLookupRealNamedProperty(*name, &lookup);
347 if (!lookup.IsFound()) return false;
348 PropertyCell* cell = global->GetPropertyCell(&lookup);
349 return cell->type()->IsConstant();
350 }
351
352 return false;
353 }
354
355
TryRemoveInvalidHandlers(Handle<Map> map,Handle<String> name)356 void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
357 CodeHandleList handlers;
358 target()->FindHandlers(&handlers);
359 for (int i = 0; i < handlers.length(); i++) {
360 Handle<Code> handler = handlers.at(i);
361 int index = map->IndexInCodeCache(*name, *handler);
362 if (index >= 0) {
363 map->RemoveFromCodeCache(*name, *handler, index);
364 return;
365 }
366 }
367 }
368
369
UpdateState(Handle<Object> receiver,Handle<Object> name)370 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
371 if (!name->IsString()) return;
372 if (state() != MONOMORPHIC) {
373 if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
374 TryRemoveInvalidHandlers(
375 handle(Handle<HeapObject>::cast(receiver)->map()),
376 Handle<String>::cast(name));
377 }
378 return;
379 }
380 if (receiver->IsUndefined() || receiver->IsNull()) return;
381
382 // Remove the target from the code cache if it became invalid
383 // because of changes in the prototype chain to avoid hitting it
384 // again.
385 if (TryRemoveInvalidPrototypeDependentStub(
386 receiver, Handle<String>::cast(name))) {
387 return MarkMonomorphicPrototypeFailure();
388 }
389
390 // The builtins object is special. It only changes when JavaScript
391 // builtins are loaded lazily. It is important to keep inline
392 // caches for the builtins object monomorphic. Therefore, if we get
393 // an inline cache miss for the builtins object after lazily loading
394 // JavaScript builtins, we return uninitialized as the state to
395 // force the inline cache back to monomorphic state.
396 if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
397 }
398
399
ComputeMode()400 RelocInfo::Mode IC::ComputeMode() {
401 Address addr = address();
402 Code* code = Code::cast(isolate()->FindCodeObject(addr));
403 for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
404 !it.done(); it.next()) {
405 RelocInfo* info = it.rinfo();
406 if (info->pc() == addr) return info->rmode();
407 }
408 UNREACHABLE();
409 return RelocInfo::NONE32;
410 }
411
412
TypeError(const char * type,Handle<Object> object,Handle<Object> key)413 Failure* IC::TypeError(const char* type,
414 Handle<Object> object,
415 Handle<Object> key) {
416 HandleScope scope(isolate());
417 Handle<Object> args[2] = { key, object };
418 Handle<Object> error = isolate()->factory()->NewTypeError(
419 type, HandleVector(args, 2));
420 return isolate()->Throw(*error);
421 }
422
423
ReferenceError(const char * type,Handle<String> name)424 Failure* IC::ReferenceError(const char* type, Handle<String> name) {
425 HandleScope scope(isolate());
426 Handle<Object> error = isolate()->factory()->NewReferenceError(
427 type, HandleVector(&name, 1));
428 return isolate()->Throw(*error);
429 }
430
431
ComputeTypeInfoCountDelta(IC::State old_state,IC::State new_state)432 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
433 bool was_uninitialized =
434 old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
435 bool is_uninitialized =
436 new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
437 return (was_uninitialized && !is_uninitialized) ? 1 :
438 (!was_uninitialized && is_uninitialized) ? -1 : 0;
439 }
440
441
PostPatching(Address address,Code * target,Code * old_target)442 void IC::PostPatching(Address address, Code* target, Code* old_target) {
443 if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
444 return;
445 }
446 Isolate* isolate = target->GetHeap()->isolate();
447 Code* host = isolate->
448 inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
449 if (host->kind() != Code::FUNCTION) return;
450
451 if (FLAG_type_info_threshold > 0 &&
452 old_target->is_inline_cache_stub() &&
453 target->is_inline_cache_stub()) {
454 int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
455 target->ic_state());
456 // Not all Code objects have TypeFeedbackInfo.
457 if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
458 TypeFeedbackInfo* info =
459 TypeFeedbackInfo::cast(host->type_feedback_info());
460 info->change_ic_with_type_info_count(delta);
461 }
462 }
463 if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
464 TypeFeedbackInfo* info =
465 TypeFeedbackInfo::cast(host->type_feedback_info());
466 info->change_own_type_change_checksum();
467 }
468 if (FLAG_watch_ic_patching) {
469 host->set_profiler_ticks(0);
470 isolate->runtime_profiler()->NotifyICChanged();
471 }
472 // TODO(2029): When an optimized function is patched, it would
473 // be nice to propagate the corresponding type information to its
474 // unoptimized version for the benefit of later inlining.
475 }
476
477
Clear(Isolate * isolate,Address address)478 void IC::Clear(Isolate* isolate, Address address) {
479 Code* target = GetTargetAtAddress(address);
480
481 // Don't clear debug break inline cache as it will remove the break point.
482 if (target->is_debug_stub()) return;
483
484 switch (target->kind()) {
485 case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target);
486 case Code::KEYED_LOAD_IC:
487 return KeyedLoadIC::Clear(isolate, address, target);
488 case Code::STORE_IC: return StoreIC::Clear(isolate, address, target);
489 case Code::KEYED_STORE_IC:
490 return KeyedStoreIC::Clear(isolate, address, target);
491 case Code::CALL_IC: return CallIC::Clear(address, target);
492 case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target);
493 case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target);
494 case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
495 case Code::BINARY_OP_IC:
496 case Code::TO_BOOLEAN_IC:
497 // Clearing these is tricky and does not
498 // make any performance difference.
499 return;
500 default: UNREACHABLE();
501 }
502 }
503
504
Clear(Address address,Code * target)505 void CallICBase::Clear(Address address, Code* target) {
506 if (IsCleared(target)) return;
507 bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
508 Code* code =
509 target->GetIsolate()->stub_cache()->FindCallInitialize(
510 target->arguments_count(),
511 contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
512 target->kind());
513 SetTargetAtAddress(address, code);
514 }
515
516
Clear(Isolate * isolate,Address address,Code * target)517 void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) {
518 if (IsCleared(target)) return;
519 // Make sure to also clear the map used in inline fast cases. If we
520 // do not clear these maps, cached code can keep objects alive
521 // through the embedded maps.
522 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
523 }
524
525
Clear(Isolate * isolate,Address address,Code * target)526 void LoadIC::Clear(Isolate* isolate, Address address, Code* target) {
527 if (IsCleared(target)) return;
528 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
529 }
530
531
Clear(Isolate * isolate,Address address,Code * target)532 void StoreIC::Clear(Isolate* isolate, Address address, Code* target) {
533 if (IsCleared(target)) return;
534 SetTargetAtAddress(address,
535 *pre_monomorphic_stub(
536 isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
537 }
538
539
Clear(Isolate * isolate,Address address,Code * target)540 void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) {
541 if (IsCleared(target)) return;
542 SetTargetAtAddress(address,
543 *pre_monomorphic_stub(
544 isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
545 }
546
547
Clear(Isolate * isolate,Address address,Code * target)548 void CompareIC::Clear(Isolate* isolate, Address address, Code* target) {
549 ASSERT(target->major_key() == CodeStub::CompareIC);
550 CompareIC::State handler_state;
551 Token::Value op;
552 ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
553 &handler_state, &op);
554 // Only clear CompareICs that can retain objects.
555 if (handler_state != KNOWN_OBJECT) return;
556 SetTargetAtAddress(address, GetRawUninitialized(isolate, op));
557 PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
558 }
559
560
TryCallAsFunction(Handle<Object> object)561 Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
562 Handle<Object> delegate = Execution::GetFunctionDelegate(isolate(), object);
563
564 if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
565 // Patch the receiver and use the delegate as the function to
566 // invoke. This is used for invoking objects as if they were functions.
567 const int argc = target()->arguments_count();
568 StackFrameLocator locator(isolate());
569 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
570 int index = frame->ComputeExpressionsCount() - (argc + 1);
571 frame->SetExpression(index, *object);
572 }
573
574 return delegate;
575 }
576
577
ReceiverToObjectIfRequired(Handle<Object> callee,Handle<Object> object)578 void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
579 Handle<Object> object) {
580 while (callee->IsJSFunctionProxy()) {
581 callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(),
582 isolate());
583 }
584
585 if (callee->IsJSFunction()) {
586 Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
587 if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
588 // Do not wrap receiver for strict mode functions or for builtins.
589 return;
590 }
591 }
592
593 // And only wrap string, number or boolean.
594 if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
595 // Change the receiver to the result of calling ToObject on it.
596 const int argc = this->target()->arguments_count();
597 StackFrameLocator locator(isolate());
598 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
599 int index = frame->ComputeExpressionsCount() - (argc + 1);
600 frame->SetExpression(index, *isolate()->factory()->ToObject(object));
601 }
602 }
603
604
MigrateDeprecated(Handle<Object> object)605 static bool MigrateDeprecated(Handle<Object> object) {
606 if (!object->IsJSObject()) return false;
607 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
608 if (!receiver->map()->is_deprecated()) return false;
609 JSObject::MigrateInstance(Handle<JSObject>::cast(object));
610 return true;
611 }
612
613
LoadFunction(Handle<Object> object,Handle<String> name)614 MaybeObject* CallICBase::LoadFunction(Handle<Object> object,
615 Handle<String> name) {
616 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
617
618 // If the object is undefined or null it's illegal to try to get any
619 // of its properties; throw a TypeError in that case.
620 if (object->IsUndefined() || object->IsNull()) {
621 return TypeError("non_object_property_call", object, name);
622 }
623
624 // Check if the name is trivially convertible to an index and get
625 // the element if so.
626 uint32_t index;
627 if (name->AsArrayIndex(&index)) {
628 Handle<Object> result = Object::GetElement(isolate(), object, index);
629 RETURN_IF_EMPTY_HANDLE(isolate(), result);
630 if (result->IsJSFunction()) return *result;
631
632 // Try to find a suitable function delegate for the object at hand.
633 result = TryCallAsFunction(result);
634 if (result->IsJSFunction()) return *result;
635
636 // Otherwise, it will fail in the lookup step.
637 }
638
639 // Lookup the property in the object.
640 LookupResult lookup(isolate());
641 LookupForRead(object, name, &lookup);
642
643 if (!lookup.IsFound()) {
644 // If the object does not have the requested property, check which
645 // exception we need to throw.
646 return IsUndeclaredGlobal(object)
647 ? ReferenceError("not_defined", name)
648 : TypeError("undefined_method", object, name);
649 }
650
651 // Lookup is valid: Update inline cache and stub cache.
652 if (use_ic) UpdateCaches(&lookup, object, name);
653
654 // Get the property.
655 PropertyAttributes attr;
656 Handle<Object> result =
657 Object::GetProperty(object, object, &lookup, name, &attr);
658 RETURN_IF_EMPTY_HANDLE(isolate(), result);
659
660 if (lookup.IsInterceptor() && attr == ABSENT) {
661 // If the object does not have the requested property, check which
662 // exception we need to throw.
663 return IsUndeclaredGlobal(object)
664 ? ReferenceError("not_defined", name)
665 : TypeError("undefined_method", object, name);
666 }
667
668 ASSERT(!result->IsTheHole());
669
670 // Make receiver an object if the callee requires it. Strict mode or builtin
671 // functions do not wrap the receiver, non-strict functions and objects
672 // called as functions do.
673 ReceiverToObjectIfRequired(result, object);
674
675 if (result->IsJSFunction()) {
676 Handle<JSFunction> function = Handle<JSFunction>::cast(result);
677 #ifdef ENABLE_DEBUGGER_SUPPORT
678 // Handle stepping into a function if step into is active.
679 Debug* debug = isolate()->debug();
680 if (debug->StepInActive()) {
681 // Protect the result in a handle as the debugger can allocate and might
682 // cause GC.
683 debug->HandleStepIn(function, object, fp(), false);
684 }
685 #endif
686 return *function;
687 }
688
689 // Try to find a suitable function delegate for the object at hand.
690 result = TryCallAsFunction(result);
691 if (result->IsJSFunction()) return *result;
692
693 return TypeError("property_not_function", object, name);
694 }
695
696
ComputeMonomorphicStub(LookupResult * lookup,Handle<Object> object,Handle<String> name)697 Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
698 Handle<Object> object,
699 Handle<String> name) {
700 int argc = target()->arguments_count();
701 Handle<JSObject> holder(lookup->holder(), isolate());
702 switch (lookup->type()) {
703 case FIELD: {
704 PropertyIndex index = lookup->GetFieldIndex();
705 return isolate()->stub_cache()->ComputeCallField(
706 argc, kind_, extra_ic_state(), name, object, holder, index);
707 }
708 case CONSTANT: {
709 if (!lookup->IsConstantFunction()) return Handle<Code>::null();
710 // Get the constant function and compute the code stub for this
711 // call; used for rewriting to monomorphic state and making sure
712 // that the code stub is in the stub cache.
713 Handle<JSFunction> function(lookup->GetConstantFunction(), isolate());
714 return isolate()->stub_cache()->ComputeCallConstant(
715 argc, kind_, extra_ic_state(), name, object, holder, function);
716 }
717 case NORMAL: {
718 // If we return a null handle, the IC will not be patched.
719 if (!object->IsJSObject()) return Handle<Code>::null();
720 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
721
722 if (holder->IsGlobalObject()) {
723 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
724 Handle<PropertyCell> cell(
725 global->GetPropertyCell(lookup), isolate());
726 if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
727 Handle<JSFunction> function(JSFunction::cast(cell->value()));
728 return isolate()->stub_cache()->ComputeCallGlobal(
729 argc, kind_, extra_ic_state(), name,
730 receiver, global, cell, function);
731 } else {
732 // There is only one shared stub for calling normalized
733 // properties. It does not traverse the prototype chain, so the
734 // property must be found in the receiver for the stub to be
735 // applicable.
736 if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
737 return isolate()->stub_cache()->ComputeCallNormal(
738 argc, kind_, extra_ic_state());
739 }
740 break;
741 }
742 case INTERCEPTOR:
743 ASSERT(HasInterceptorGetter(*holder));
744 return isolate()->stub_cache()->ComputeCallInterceptor(
745 argc, kind_, extra_ic_state(), name, object, holder);
746 default:
747 return Handle<Code>::null();
748 }
749 }
750
751
megamorphic_stub()752 Handle<Code> CallICBase::megamorphic_stub() {
753 return isolate()->stub_cache()->ComputeCallMegamorphic(
754 target()->arguments_count(), kind_, extra_ic_state());
755 }
756
757
pre_monomorphic_stub()758 Handle<Code> CallICBase::pre_monomorphic_stub() {
759 return isolate()->stub_cache()->ComputeCallPreMonomorphic(
760 target()->arguments_count(), kind_, extra_ic_state());
761 }
762
763
UpdateCaches(LookupResult * lookup,Handle<Object> object,Handle<String> name)764 void CallICBase::UpdateCaches(LookupResult* lookup,
765 Handle<Object> object,
766 Handle<String> name) {
767 // Bail out if we didn't find a result.
768 if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
769
770 if (state() == UNINITIALIZED) {
771 set_target(*pre_monomorphic_stub());
772 TRACE_IC("CallIC", name);
773 return;
774 }
775
776 Handle<Code> code = ComputeMonomorphicStub(lookup, object, name);
777 // If there's no appropriate stub we simply avoid updating the caches.
778 // TODO(verwaest): Install a slow fallback in this case to avoid not learning,
779 // and deopting Crankshaft code.
780 if (code.is_null()) return;
781
782 Handle<JSObject> cache_object = object->IsJSObject()
783 ? Handle<JSObject>::cast(object)
784 : Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())),
785 isolate());
786
787 PatchCache(CurrentTypeOf(cache_object, isolate()), name, code);
788 TRACE_IC("CallIC", name);
789 }
790
791
LoadFunction(Handle<Object> object,Handle<Object> key)792 MaybeObject* KeyedCallIC::LoadFunction(Handle<Object> object,
793 Handle<Object> key) {
794 if (key->IsInternalizedString()) {
795 return CallICBase::LoadFunction(object, Handle<String>::cast(key));
796 }
797
798 if (object->IsUndefined() || object->IsNull()) {
799 return TypeError("non_object_property_call", object, key);
800 }
801
802 bool use_ic = MigrateDeprecated(object)
803 ? false : FLAG_use_ic && !object->IsAccessCheckNeeded();
804
805 if (use_ic && state() != MEGAMORPHIC) {
806 ASSERT(!object->IsJSGlobalProxy());
807 int argc = target()->arguments_count();
808 Handle<Code> stub;
809
810 // Use the KeyedArrayCallStub if the call is of the form array[smi](...),
811 // where array is an instance of one of the initial array maps (without
812 // extra named properties).
813 // TODO(verwaest): Also support keyed calls on instances of other maps.
814 if (object->IsJSArray() && key->IsSmi()) {
815 Handle<JSArray> array = Handle<JSArray>::cast(object);
816 ElementsKind kind = array->map()->elements_kind();
817 if (IsFastObjectElementsKind(kind) &&
818 array->map() == isolate()->get_initial_js_array_map(kind)) {
819 KeyedArrayCallStub stub_gen(IsHoleyElementsKind(kind), argc);
820 stub = stub_gen.GetCode(isolate());
821 }
822 }
823
824 if (stub.is_null()) {
825 stub = isolate()->stub_cache()->ComputeCallMegamorphic(
826 argc, Code::KEYED_CALL_IC, kNoExtraICState);
827 if (object->IsJSObject()) {
828 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
829 if (receiver->elements()->map() ==
830 isolate()->heap()->non_strict_arguments_elements_map()) {
831 stub = isolate()->stub_cache()->ComputeCallArguments(argc);
832 }
833 }
834 ASSERT(!stub.is_null());
835 }
836 set_target(*stub);
837 TRACE_IC("CallIC", key);
838 }
839
840 Handle<Object> result = GetProperty(isolate(), object, key);
841 RETURN_IF_EMPTY_HANDLE(isolate(), result);
842
843 // Make receiver an object if the callee requires it. Strict mode or builtin
844 // functions do not wrap the receiver, non-strict functions and objects
845 // called as functions do.
846 ReceiverToObjectIfRequired(result, object);
847 if (result->IsJSFunction()) return *result;
848
849 result = TryCallAsFunction(result);
850 if (result->IsJSFunction()) return *result;
851
852 return TypeError("property_not_function", object, key);
853 }
854
855
Load(Handle<Object> object,Handle<String> name)856 MaybeObject* LoadIC::Load(Handle<Object> object,
857 Handle<String> name) {
858 // If the object is undefined or null it's illegal to try to get any
859 // of its properties; throw a TypeError in that case.
860 if (object->IsUndefined() || object->IsNull()) {
861 return TypeError("non_object_property_load", object, name);
862 }
863
864 if (FLAG_use_ic) {
865 // Use specialized code for getting the length of strings and
866 // string wrapper objects. The length property of string wrapper
867 // objects is read-only and therefore always returns the length of
868 // the underlying string value. See ECMA-262 15.5.5.1.
869 if (object->IsStringWrapper() &&
870 name->Equals(isolate()->heap()->length_string())) {
871 Handle<Code> stub;
872 if (state() == UNINITIALIZED) {
873 stub = pre_monomorphic_stub();
874 } else if (state() == PREMONOMORPHIC || state() == MONOMORPHIC) {
875 StringLengthStub string_length_stub(kind());
876 stub = string_length_stub.GetCode(isolate());
877 } else if (state() != MEGAMORPHIC) {
878 ASSERT(state() != GENERIC);
879 stub = megamorphic_stub();
880 }
881 if (!stub.is_null()) {
882 set_target(*stub);
883 if (FLAG_trace_ic) PrintF("[LoadIC : +#length /stringwrapper]\n");
884 }
885 // Get the string if we have a string wrapper object.
886 String* string = String::cast(JSValue::cast(*object)->value());
887 return Smi::FromInt(string->length());
888 }
889
890 // Use specialized code for getting prototype of functions.
891 if (object->IsJSFunction() &&
892 name->Equals(isolate()->heap()->prototype_string()) &&
893 Handle<JSFunction>::cast(object)->should_have_prototype()) {
894 Handle<Code> stub;
895 if (state() == UNINITIALIZED) {
896 stub = pre_monomorphic_stub();
897 } else if (state() == PREMONOMORPHIC) {
898 FunctionPrototypeStub function_prototype_stub(kind());
899 stub = function_prototype_stub.GetCode(isolate());
900 } else if (state() != MEGAMORPHIC) {
901 ASSERT(state() != GENERIC);
902 stub = megamorphic_stub();
903 }
904 if (!stub.is_null()) {
905 set_target(*stub);
906 if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
907 }
908 return *Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
909 }
910 }
911
912 // Check if the name is trivially convertible to an index and get
913 // the element or char if so.
914 uint32_t index;
915 if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
916 // Rewrite to the generic keyed load stub.
917 if (FLAG_use_ic) set_target(*generic_stub());
918 return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
919 }
920
921 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
922
923 // Named lookup in the object.
924 LookupResult lookup(isolate());
925 LookupForRead(object, name, &lookup);
926
927 // If we did not find a property, check if we need to throw an exception.
928 if (!lookup.IsFound()) {
929 if (IsUndeclaredGlobal(object)) {
930 return ReferenceError("not_defined", name);
931 }
932 LOG(isolate(), SuspectReadEvent(*name, *object));
933 }
934
935 // Update inline cache and stub cache.
936 if (use_ic) UpdateCaches(&lookup, object, name);
937
938 PropertyAttributes attr;
939 // Get the property.
940 Handle<Object> result =
941 Object::GetProperty(object, object, &lookup, name, &attr);
942 RETURN_IF_EMPTY_HANDLE(isolate(), result);
943 // If the property is not present, check if we need to throw an
944 // exception.
945 if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
946 attr == ABSENT && IsUndeclaredGlobal(object)) {
947 return ReferenceError("not_defined", name);
948 }
949 return *result;
950 }
951
952
AddOneReceiverMapIfMissing(MapHandleList * receiver_maps,Handle<Map> new_receiver_map)953 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
954 Handle<Map> new_receiver_map) {
955 ASSERT(!new_receiver_map.is_null());
956 for (int current = 0; current < receiver_maps->length(); ++current) {
957 if (!receiver_maps->at(current).is_null() &&
958 receiver_maps->at(current).is_identical_to(new_receiver_map)) {
959 return false;
960 }
961 }
962 receiver_maps->Add(new_receiver_map);
963 return true;
964 }
965
966
UpdatePolymorphicIC(Handle<Type> type,Handle<String> name,Handle<Code> code)967 bool IC::UpdatePolymorphicIC(Handle<Type> type,
968 Handle<String> name,
969 Handle<Code> code) {
970 if (!code->is_handler()) return false;
971 TypeHandleList types;
972 CodeHandleList handlers;
973
974 int number_of_valid_types;
975 int handler_to_overwrite = -1;
976
977 target()->FindAllTypes(&types);
978 int number_of_types = types.length();
979 number_of_valid_types = number_of_types;
980
981 for (int i = 0; i < number_of_types; i++) {
982 Handle<Type> current_type = types.at(i);
983 // Filter out deprecated maps to ensure their instances get migrated.
984 if (current_type->IsClass() && current_type->AsClass()->is_deprecated()) {
985 number_of_valid_types--;
986 // If the receiver type is already in the polymorphic IC, this indicates
987 // there was a prototoype chain failure. In that case, just overwrite the
988 // handler.
989 } else if (type->IsCurrently(current_type)) {
990 ASSERT(handler_to_overwrite == -1);
991 number_of_valid_types--;
992 handler_to_overwrite = i;
993 }
994 }
995
996 if (number_of_valid_types >= 4) return false;
997 if (number_of_types == 0) return false;
998 if (!target()->FindHandlers(&handlers, types.length())) return false;
999
1000 number_of_valid_types++;
1001 if (handler_to_overwrite >= 0) {
1002 handlers.Set(handler_to_overwrite, code);
1003 } else {
1004 types.Add(type);
1005 handlers.Add(code);
1006 }
1007
1008 Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
1009 &types, &handlers, number_of_valid_types, name, extra_ic_state());
1010 set_target(*ic);
1011 return true;
1012 }
1013
1014
CurrentTypeOf(Handle<Object> object,Isolate * isolate)1015 Handle<Type> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
1016 Type* type = object->IsJSGlobalObject()
1017 ? Type::Constant(Handle<JSGlobalObject>::cast(object))
1018 : Type::OfCurrently(object);
1019 return handle(type, isolate);
1020 }
1021
1022
TypeToMap(Type * type,Isolate * isolate)1023 Handle<Map> IC::TypeToMap(Type* type, Isolate* isolate) {
1024 if (type->Is(Type::Number())) return isolate->factory()->heap_number_map();
1025 if (type->Is(Type::Boolean())) return isolate->factory()->oddball_map();
1026 if (type->IsConstant()) {
1027 return handle(Handle<JSGlobalObject>::cast(type->AsConstant())->map());
1028 }
1029 ASSERT(type->IsClass());
1030 return type->AsClass();
1031 }
1032
1033
MapToType(Handle<Map> map)1034 Type* IC::MapToType(Handle<Map> map) {
1035 if (map->instance_type() == HEAP_NUMBER_TYPE) return Type::Number();
1036 // The only oddballs that can be recorded in ICs are booleans.
1037 if (map->instance_type() == ODDBALL_TYPE) return Type::Boolean();
1038 return Type::Class(map);
1039 }
1040
1041
UpdateMonomorphicIC(Handle<Type> type,Handle<Code> handler,Handle<String> name)1042 void IC::UpdateMonomorphicIC(Handle<Type> type,
1043 Handle<Code> handler,
1044 Handle<String> name) {
1045 if (!handler->is_handler()) return set_target(*handler);
1046 Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
1047 name, type, handler, extra_ic_state());
1048 set_target(*ic);
1049 }
1050
1051
CopyICToMegamorphicCache(Handle<String> name)1052 void IC::CopyICToMegamorphicCache(Handle<String> name) {
1053 TypeHandleList types;
1054 CodeHandleList handlers;
1055 target()->FindAllTypes(&types);
1056 if (!target()->FindHandlers(&handlers, types.length())) return;
1057 for (int i = 0; i < types.length(); i++) {
1058 UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
1059 }
1060 }
1061
1062
IsTransitionOfMonomorphicTarget(Type * type)1063 bool IC::IsTransitionOfMonomorphicTarget(Type* type) {
1064 if (!type->IsClass()) return false;
1065 Map* receiver_map = *type->AsClass();
1066 Map* current_map = target()->FindFirstMap();
1067 ElementsKind receiver_elements_kind = receiver_map->elements_kind();
1068 bool more_general_transition =
1069 IsMoreGeneralElementsKindTransition(
1070 current_map->elements_kind(), receiver_elements_kind);
1071 Map* transitioned_map = more_general_transition
1072 ? current_map->LookupElementsTransitionMap(receiver_elements_kind)
1073 : NULL;
1074
1075 return transitioned_map == receiver_map;
1076 }
1077
1078
PatchCache(Handle<Type> type,Handle<String> name,Handle<Code> code)1079 void IC::PatchCache(Handle<Type> type,
1080 Handle<String> name,
1081 Handle<Code> code) {
1082 switch (state()) {
1083 case UNINITIALIZED:
1084 case PREMONOMORPHIC:
1085 case MONOMORPHIC_PROTOTYPE_FAILURE:
1086 UpdateMonomorphicIC(type, code, name);
1087 break;
1088 case MONOMORPHIC: {
1089 // For now, call stubs are allowed to rewrite to the same stub. This
1090 // happens e.g., when the field does not contain a function.
1091 ASSERT(target()->is_call_stub() ||
1092 target()->is_keyed_call_stub() ||
1093 !target().is_identical_to(code));
1094 Code* old_handler = target()->FindFirstHandler();
1095 if (old_handler == *code && IsTransitionOfMonomorphicTarget(*type)) {
1096 UpdateMonomorphicIC(type, code, name);
1097 break;
1098 }
1099 // Fall through.
1100 }
1101 case POLYMORPHIC:
1102 if (!target()->is_keyed_stub()) {
1103 if (UpdatePolymorphicIC(type, name, code)) break;
1104 CopyICToMegamorphicCache(name);
1105 }
1106 set_target(*megamorphic_stub());
1107 // Fall through.
1108 case MEGAMORPHIC:
1109 UpdateMegamorphicCache(*type, *name, *code);
1110 break;
1111 case DEBUG_STUB:
1112 break;
1113 case GENERIC:
1114 UNREACHABLE();
1115 break;
1116 }
1117 }
1118
1119
SimpleFieldLoad(int offset,bool inobject,Representation representation)1120 Handle<Code> LoadIC::SimpleFieldLoad(int offset,
1121 bool inobject,
1122 Representation representation) {
1123 if (kind() == Code::LOAD_IC) {
1124 LoadFieldStub stub(inobject, offset, representation);
1125 return stub.GetCode(isolate());
1126 } else {
1127 KeyedLoadFieldStub stub(inobject, offset, representation);
1128 return stub.GetCode(isolate());
1129 }
1130 }
1131
1132
UpdateCaches(LookupResult * lookup,Handle<Object> object,Handle<String> name)1133 void LoadIC::UpdateCaches(LookupResult* lookup,
1134 Handle<Object> object,
1135 Handle<String> name) {
1136 if (state() == UNINITIALIZED) {
1137 // This is the first time we execute this inline cache.
1138 // Set the target to the pre monomorphic stub to delay
1139 // setting the monomorphic state.
1140 set_target(*pre_monomorphic_stub());
1141 TRACE_IC("LoadIC", name);
1142 return;
1143 }
1144
1145 Handle<Type> type = CurrentTypeOf(object, isolate());
1146 Handle<Code> code;
1147 if (!lookup->IsCacheable()) {
1148 // Bail out if the result is not cacheable.
1149 code = slow_stub();
1150 } else if (!lookup->IsProperty()) {
1151 if (kind() == Code::LOAD_IC) {
1152 code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
1153 } else {
1154 code = slow_stub();
1155 }
1156 } else {
1157 code = ComputeHandler(lookup, object, name);
1158 }
1159
1160 PatchCache(type, name, code);
1161 TRACE_IC("LoadIC", name);
1162 }
1163
1164
UpdateMegamorphicCache(Type * type,Name * name,Code * code)1165 void IC::UpdateMegamorphicCache(Type* type, Name* name, Code* code) {
1166 // Cache code holding map should be consistent with
1167 // GenerateMonomorphicCacheProbe.
1168 Map* map = *TypeToMap(type, isolate());
1169 isolate()->stub_cache()->Set(name, map, code);
1170 }
1171
1172
ComputeHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value)1173 Handle<Code> IC::ComputeHandler(LookupResult* lookup,
1174 Handle<Object> object,
1175 Handle<String> name,
1176 Handle<Object> value) {
1177 InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
1178 Handle<HeapObject> stub_holder(GetCodeCacheHolder(
1179 isolate(), *object, cache_holder));
1180
1181 Handle<Code> code = isolate()->stub_cache()->FindHandler(
1182 name, handle(stub_holder->map()), kind(), cache_holder);
1183 if (!code.is_null()) return code;
1184
1185 code = CompileHandler(lookup, object, name, value, cache_holder);
1186 ASSERT(code->is_handler());
1187
1188 if (code->type() != Code::NORMAL) {
1189 HeapObject::UpdateMapCodeCache(stub_holder, name, code);
1190 }
1191
1192 return code;
1193 }
1194
1195
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> unused,InlineCacheHolderFlag cache_holder)1196 Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
1197 Handle<Object> object,
1198 Handle<String> name,
1199 Handle<Object> unused,
1200 InlineCacheHolderFlag cache_holder) {
1201 if (object->IsString() && name->Equals(isolate()->heap()->length_string())) {
1202 int length_index = String::kLengthOffset / kPointerSize;
1203 return SimpleFieldLoad(length_index);
1204 }
1205
1206 Handle<Type> type = CurrentTypeOf(object, isolate());
1207 Handle<JSObject> holder(lookup->holder());
1208 LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
1209
1210 switch (lookup->type()) {
1211 case FIELD: {
1212 PropertyIndex field = lookup->GetFieldIndex();
1213 if (object.is_identical_to(holder)) {
1214 return SimpleFieldLoad(field.translate(holder),
1215 field.is_inobject(holder),
1216 lookup->representation());
1217 }
1218 return compiler.CompileLoadField(
1219 type, holder, name, field, lookup->representation());
1220 }
1221 case CONSTANT: {
1222 Handle<Object> constant(lookup->GetConstant(), isolate());
1223 // TODO(2803): Don't compute a stub for cons strings because they cannot
1224 // be embedded into code.
1225 if (constant->IsConsString()) break;
1226 return compiler.CompileLoadConstant(type, holder, name, constant);
1227 }
1228 case NORMAL:
1229 if (kind() != Code::LOAD_IC) break;
1230 if (holder->IsGlobalObject()) {
1231 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
1232 Handle<PropertyCell> cell(
1233 global->GetPropertyCell(lookup), isolate());
1234 Handle<Code> code = compiler.CompileLoadGlobal(
1235 type, global, cell, name, lookup->IsDontDelete());
1236 // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1237 Handle<HeapObject> stub_holder(GetCodeCacheHolder(
1238 isolate(), *object, cache_holder));
1239 HeapObject::UpdateMapCodeCache(stub_holder, name, code);
1240 return code;
1241 }
1242 // There is only one shared stub for loading normalized
1243 // properties. It does not traverse the prototype chain, so the
1244 // property must be found in the object for the stub to be
1245 // applicable.
1246 if (!object.is_identical_to(holder)) break;
1247 return isolate()->builtins()->LoadIC_Normal();
1248 case CALLBACKS: {
1249 // Use simple field loads for some well-known callback properties.
1250 if (object->IsJSObject()) {
1251 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1252 Handle<Map> map(receiver->map());
1253 int object_offset;
1254 if (Accessors::IsJSObjectFieldAccessor(map, name, &object_offset)) {
1255 return SimpleFieldLoad(object_offset / kPointerSize);
1256 }
1257 }
1258
1259 Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1260 if (callback->IsExecutableAccessorInfo()) {
1261 Handle<ExecutableAccessorInfo> info =
1262 Handle<ExecutableAccessorInfo>::cast(callback);
1263 if (v8::ToCData<Address>(info->getter()) == 0) break;
1264 if (!info->IsCompatibleReceiver(*object)) break;
1265 return compiler.CompileLoadCallback(type, holder, name, info);
1266 } else if (callback->IsAccessorPair()) {
1267 Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
1268 isolate());
1269 if (!getter->IsJSFunction()) break;
1270 if (holder->IsGlobalObject()) break;
1271 if (!holder->HasFastProperties()) break;
1272 Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1273 if (!object->IsJSObject() &&
1274 !function->IsBuiltin() &&
1275 function->shared()->is_classic_mode()) {
1276 // Calling non-strict non-builtins with a value as the receiver
1277 // requires boxing.
1278 break;
1279 }
1280 CallOptimization call_optimization(function);
1281 if (call_optimization.is_simple_api_call() &&
1282 call_optimization.IsCompatibleReceiver(*object)) {
1283 return compiler.CompileLoadCallback(
1284 type, holder, name, call_optimization);
1285 }
1286 return compiler.CompileLoadViaGetter(type, holder, name, function);
1287 }
1288 // TODO(dcarney): Handle correctly.
1289 if (callback->IsDeclaredAccessorInfo()) break;
1290 ASSERT(callback->IsForeign());
1291 // No IC support for old-style native accessors.
1292 break;
1293 }
1294 case INTERCEPTOR:
1295 ASSERT(HasInterceptorGetter(*holder));
1296 return compiler.CompileLoadInterceptor(type, holder, name);
1297 default:
1298 break;
1299 }
1300
1301 return slow_stub();
1302 }
1303
1304
TryConvertKey(Handle<Object> key,Isolate * isolate)1305 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1306 // This helper implements a few common fast cases for converting
1307 // non-smi keys of keyed loads/stores to a smi or a string.
1308 if (key->IsHeapNumber()) {
1309 double value = Handle<HeapNumber>::cast(key)->value();
1310 if (std::isnan(value)) {
1311 key = isolate->factory()->nan_string();
1312 } else {
1313 int int_value = FastD2I(value);
1314 if (value == int_value && Smi::IsValid(int_value)) {
1315 key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1316 }
1317 }
1318 } else if (key->IsUndefined()) {
1319 key = isolate->factory()->undefined_string();
1320 }
1321 return key;
1322 }
1323
1324
LoadElementStub(Handle<JSObject> receiver)1325 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1326 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1327 // via megamorphic stubs, since they don't have a map in their relocation info
1328 // and so the stubs can't be harvested for the object needed for a map check.
1329 if (target()->type() != Code::NORMAL) {
1330 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1331 return generic_stub();
1332 }
1333
1334 Handle<Map> receiver_map(receiver->map(), isolate());
1335 MapHandleList target_receiver_maps;
1336 if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1337 // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1338 // yet will do so and stay there.
1339 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1340 }
1341
1342 if (target().is_identical_to(string_stub())) {
1343 target_receiver_maps.Add(isolate()->factory()->string_map());
1344 } else {
1345 target()->FindAllMaps(&target_receiver_maps);
1346 if (target_receiver_maps.length() == 0) {
1347 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1348 }
1349 }
1350
1351 // The first time a receiver is seen that is a transitioned version of the
1352 // previous monomorphic receiver type, assume the new ElementsKind is the
1353 // monomorphic type. This benefits global arrays that only transition
1354 // once, and all call sites accessing them are faster if they remain
1355 // monomorphic. If this optimistic assumption is not true, the IC will
1356 // miss again and it will become polymorphic and support both the
1357 // untransitioned and transitioned maps.
1358 if (state() == MONOMORPHIC &&
1359 IsMoreGeneralElementsKindTransition(
1360 target_receiver_maps.at(0)->elements_kind(),
1361 receiver->GetElementsKind())) {
1362 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1363 }
1364
1365 ASSERT(state() != GENERIC);
1366
1367 // Determine the list of receiver maps that this call site has seen,
1368 // adding the map that was just encountered.
1369 if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1370 // If the miss wasn't due to an unseen map, a polymorphic stub
1371 // won't help, use the generic stub.
1372 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1373 return generic_stub();
1374 }
1375
1376 // If the maximum number of receiver maps has been exceeded, use the generic
1377 // version of the IC.
1378 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1379 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1380 return generic_stub();
1381 }
1382
1383 return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
1384 &target_receiver_maps);
1385 }
1386
1387
Load(Handle<Object> object,Handle<Object> key)1388 MaybeObject* KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) {
1389 if (MigrateDeprecated(object)) {
1390 return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1391 }
1392
1393 MaybeObject* maybe_object = NULL;
1394 Handle<Code> stub = generic_stub();
1395
1396 // Check for values that can be converted into an internalized string directly
1397 // or is representable as a smi.
1398 key = TryConvertKey(key, isolate());
1399
1400 if (key->IsInternalizedString()) {
1401 maybe_object = LoadIC::Load(object, Handle<String>::cast(key));
1402 if (maybe_object->IsFailure()) return maybe_object;
1403 } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1404 ASSERT(!object->IsJSGlobalProxy());
1405 if (object->IsString() && key->IsNumber()) {
1406 if (state() == UNINITIALIZED) stub = string_stub();
1407 } else if (object->IsJSObject()) {
1408 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1409 if (receiver->elements()->map() ==
1410 isolate()->heap()->non_strict_arguments_elements_map()) {
1411 stub = non_strict_arguments_stub();
1412 } else if (receiver->HasIndexedInterceptor()) {
1413 stub = indexed_interceptor_stub();
1414 } else if (!key->ToSmi()->IsFailure() &&
1415 (!target().is_identical_to(non_strict_arguments_stub()))) {
1416 stub = LoadElementStub(receiver);
1417 }
1418 }
1419 }
1420
1421 if (!is_target_set()) {
1422 if (*stub == *generic_stub()) {
1423 TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1424 }
1425 ASSERT(!stub.is_null());
1426 set_target(*stub);
1427 TRACE_IC("LoadIC", key);
1428 }
1429
1430 if (maybe_object != NULL) return maybe_object;
1431 return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1432 }
1433
1434
LookupForWrite(Handle<JSObject> receiver,Handle<String> name,Handle<Object> value,LookupResult * lookup,IC * ic)1435 static bool LookupForWrite(Handle<JSObject> receiver,
1436 Handle<String> name,
1437 Handle<Object> value,
1438 LookupResult* lookup,
1439 IC* ic) {
1440 Handle<JSObject> holder = receiver;
1441 receiver->Lookup(*name, lookup);
1442 if (lookup->IsFound()) {
1443 if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
1444
1445 if (lookup->holder() == *receiver) {
1446 if (lookup->IsInterceptor() && !HasInterceptorSetter(*receiver)) {
1447 receiver->LocalLookupRealNamedProperty(*name, lookup);
1448 return lookup->IsFound() &&
1449 !lookup->IsReadOnly() &&
1450 lookup->CanHoldValue(value) &&
1451 lookup->IsCacheable();
1452 }
1453 return lookup->CanHoldValue(value);
1454 }
1455
1456 if (lookup->IsPropertyCallbacks()) return true;
1457 // JSGlobalProxy always goes via the runtime, so it's safe to cache.
1458 if (receiver->IsJSGlobalProxy()) return true;
1459 // Currently normal holders in the prototype chain are not supported. They
1460 // would require a runtime positive lookup and verification that the details
1461 // have not changed.
1462 if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
1463 holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
1464 }
1465
1466 // While normally LookupTransition gets passed the receiver, in this case we
1467 // pass the holder of the property that we overwrite. This keeps the holder in
1468 // the LookupResult intact so we can later use it to generate a prototype
1469 // chain check. This avoids a double lookup, but requires us to pass in the
1470 // receiver when trying to fetch extra information from the transition.
1471 receiver->map()->LookupTransition(*holder, *name, lookup);
1472 if (!lookup->IsTransition()) return false;
1473 PropertyDetails target_details = lookup->GetTransitionDetails();
1474 if (target_details.IsReadOnly()) return false;
1475
1476 // If the value that's being stored does not fit in the field that the
1477 // instance would transition to, create a new transition that fits the value.
1478 // This has to be done before generating the IC, since that IC will embed the
1479 // transition target.
1480 // Ensure the instance and its map were migrated before trying to update the
1481 // transition target.
1482 ASSERT(!receiver->map()->is_deprecated());
1483 if (!value->FitsRepresentation(target_details.representation())) {
1484 Handle<Map> target(lookup->GetTransitionTarget());
1485 Map::GeneralizeRepresentation(
1486 target, target->LastAdded(),
1487 value->OptimalRepresentation(), FORCE_FIELD);
1488 // Lookup the transition again since the transition tree may have changed
1489 // entirely by the migration above.
1490 receiver->map()->LookupTransition(*holder, *name, lookup);
1491 if (!lookup->IsTransition()) return false;
1492 ic->MarkMonomorphicPrototypeFailure();
1493 }
1494 return true;
1495 }
1496
1497
Store(Handle<Object> object,Handle<String> name,Handle<Object> value,JSReceiver::StoreFromKeyed store_mode)1498 MaybeObject* StoreIC::Store(Handle<Object> object,
1499 Handle<String> name,
1500 Handle<Object> value,
1501 JSReceiver::StoreFromKeyed store_mode) {
1502 if (MigrateDeprecated(object) || object->IsJSProxy()) {
1503 Handle<Object> result = JSReceiver::SetProperty(
1504 Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode());
1505 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1506 return *result;
1507 }
1508
1509 // If the object is undefined or null it's illegal to try to set any
1510 // properties on it; throw a TypeError in that case.
1511 if (object->IsUndefined() || object->IsNull()) {
1512 return TypeError("non_object_property_store", object, name);
1513 }
1514
1515 // The length property of string values is read-only. Throw in strict mode.
1516 if (strict_mode() == kStrictMode && object->IsString() &&
1517 name->Equals(isolate()->heap()->length_string())) {
1518 return TypeError("strict_read_only_property", object, name);
1519 }
1520
1521 // Ignore other stores where the receiver is not a JSObject.
1522 // TODO(1475): Must check prototype chains of object wrappers.
1523 if (!object->IsJSObject()) return *value;
1524
1525 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1526
1527 // Check if the given name is an array index.
1528 uint32_t index;
1529 if (name->AsArrayIndex(&index)) {
1530 Handle<Object> result =
1531 JSObject::SetElement(receiver, index, value, NONE, strict_mode());
1532 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1533 return *value;
1534 }
1535
1536 // Observed objects are always modified through the runtime.
1537 if (FLAG_harmony_observation && receiver->map()->is_observed()) {
1538 Handle<Object> result = JSReceiver::SetProperty(
1539 receiver, name, value, NONE, strict_mode(), store_mode);
1540 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1541 return *result;
1542 }
1543
1544 // Use specialized code for setting the length of arrays with fast
1545 // properties. Slow properties might indicate redefinition of the length
1546 // property. Note that when redefined using Object.freeze, it's possible
1547 // to have fast properties but a read-only length.
1548 if (FLAG_use_ic &&
1549 receiver->IsJSArray() &&
1550 name->Equals(isolate()->heap()->length_string()) &&
1551 Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
1552 receiver->HasFastProperties() &&
1553 !receiver->map()->is_frozen()) {
1554 Handle<Code> stub =
1555 StoreArrayLengthStub(kind(), strict_mode()).GetCode(isolate());
1556 set_target(*stub);
1557 TRACE_IC("StoreIC", name);
1558 Handle<Object> result = JSReceiver::SetProperty(
1559 receiver, name, value, NONE, strict_mode(), store_mode);
1560 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1561 return *result;
1562 }
1563
1564 LookupResult lookup(isolate());
1565 bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
1566 if (!can_store &&
1567 strict_mode() == kStrictMode &&
1568 !(lookup.IsProperty() && lookup.IsReadOnly()) &&
1569 IsUndeclaredGlobal(object)) {
1570 // Strict mode doesn't allow setting non-existent global property.
1571 return ReferenceError("not_defined", name);
1572 }
1573 if (FLAG_use_ic) {
1574 if (state() == UNINITIALIZED) {
1575 Handle<Code> stub = pre_monomorphic_stub();
1576 set_target(*stub);
1577 TRACE_IC("StoreIC", name);
1578 } else if (can_store) {
1579 UpdateCaches(&lookup, receiver, name, value);
1580 } else if (!name->IsCacheable(isolate()) ||
1581 lookup.IsNormal() ||
1582 (lookup.IsField() && lookup.CanHoldValue(value))) {
1583 Handle<Code> stub = generic_stub();
1584 set_target(*stub);
1585 }
1586 }
1587
1588 // Set the property.
1589 Handle<Object> result = JSReceiver::SetProperty(
1590 receiver, name, value, NONE, strict_mode(), store_mode);
1591 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1592 return *result;
1593 }
1594
1595
UpdateCaches(LookupResult * lookup,Handle<JSObject> receiver,Handle<String> name,Handle<Object> value)1596 void StoreIC::UpdateCaches(LookupResult* lookup,
1597 Handle<JSObject> receiver,
1598 Handle<String> name,
1599 Handle<Object> value) {
1600 ASSERT(lookup->IsFound());
1601
1602 // These are not cacheable, so we never see such LookupResults here.
1603 ASSERT(!lookup->IsHandler());
1604
1605 Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
1606
1607 PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
1608 TRACE_IC("StoreIC", name);
1609 }
1610
1611
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value,InlineCacheHolderFlag cache_holder)1612 Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
1613 Handle<Object> object,
1614 Handle<String> name,
1615 Handle<Object> value,
1616 InlineCacheHolderFlag cache_holder) {
1617 if (object->IsJSGlobalProxy()) return slow_stub();
1618 ASSERT(cache_holder == OWN_MAP);
1619 // This is currently guaranteed by checks in StoreIC::Store.
1620 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1621
1622 Handle<JSObject> holder(lookup->holder());
1623 // Handlers do not use strict mode.
1624 StoreStubCompiler compiler(isolate(), kNonStrictMode, kind());
1625 switch (lookup->type()) {
1626 case FIELD:
1627 return compiler.CompileStoreField(receiver, lookup, name);
1628 case TRANSITION: {
1629 // Explicitly pass in the receiver map since LookupForWrite may have
1630 // stored something else than the receiver in the holder.
1631 Handle<Map> transition(lookup->GetTransitionTarget());
1632 PropertyDetails details = transition->GetLastDescriptorDetails();
1633
1634 if (details.type() == CALLBACKS || details.attributes() != NONE) break;
1635
1636 return compiler.CompileStoreTransition(
1637 receiver, lookup, transition, name);
1638 }
1639 case NORMAL:
1640 if (kind() == Code::KEYED_STORE_IC) break;
1641 if (receiver->IsGlobalObject()) {
1642 // The stub generated for the global object picks the value directly
1643 // from the property cell. So the property must be directly on the
1644 // global object.
1645 Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
1646 Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
1647 Handle<Type> union_type = PropertyCell::UpdatedType(cell, value);
1648 StoreGlobalStub stub(union_type->IsConstant());
1649
1650 Handle<Code> code = stub.GetCodeCopyFromTemplate(
1651 isolate(), receiver->map(), *cell);
1652 // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1653 HeapObject::UpdateMapCodeCache(receiver, name, code);
1654 return code;
1655 }
1656 ASSERT(holder.is_identical_to(receiver));
1657 return isolate()->builtins()->StoreIC_Normal();
1658 case CALLBACKS: {
1659 if (kind() == Code::KEYED_STORE_IC) break;
1660 Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1661 if (callback->IsExecutableAccessorInfo()) {
1662 Handle<ExecutableAccessorInfo> info =
1663 Handle<ExecutableAccessorInfo>::cast(callback);
1664 if (v8::ToCData<Address>(info->setter()) == 0) break;
1665 if (!holder->HasFastProperties()) break;
1666 if (!info->IsCompatibleReceiver(*receiver)) break;
1667 return compiler.CompileStoreCallback(receiver, holder, name, info);
1668 } else if (callback->IsAccessorPair()) {
1669 Handle<Object> setter(
1670 Handle<AccessorPair>::cast(callback)->setter(), isolate());
1671 if (!setter->IsJSFunction()) break;
1672 if (holder->IsGlobalObject()) break;
1673 if (!holder->HasFastProperties()) break;
1674 Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1675 CallOptimization call_optimization(function);
1676 if (call_optimization.is_simple_api_call() &&
1677 call_optimization.IsCompatibleReceiver(*receiver)) {
1678 return compiler.CompileStoreCallback(
1679 receiver, holder, name, call_optimization);
1680 }
1681 return compiler.CompileStoreViaSetter(
1682 receiver, holder, name, Handle<JSFunction>::cast(setter));
1683 }
1684 // TODO(dcarney): Handle correctly.
1685 if (callback->IsDeclaredAccessorInfo()) break;
1686 ASSERT(callback->IsForeign());
1687 // No IC support for old-style native accessors.
1688 break;
1689 }
1690 case INTERCEPTOR:
1691 if (kind() == Code::KEYED_STORE_IC) break;
1692 ASSERT(HasInterceptorSetter(*receiver));
1693 return compiler.CompileStoreInterceptor(receiver, name);
1694 case CONSTANT:
1695 break;
1696 case NONEXISTENT:
1697 case HANDLER:
1698 UNREACHABLE();
1699 break;
1700 }
1701 return slow_stub();
1702 }
1703
1704
StoreElementStub(Handle<JSObject> receiver,KeyedAccessStoreMode store_mode)1705 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1706 KeyedAccessStoreMode store_mode) {
1707 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1708 // via megamorphic stubs, since they don't have a map in their relocation info
1709 // and so the stubs can't be harvested for the object needed for a map check.
1710 if (target()->type() != Code::NORMAL) {
1711 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1712 return generic_stub();
1713 }
1714
1715 Handle<Map> receiver_map(receiver->map(), isolate());
1716 if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1717 // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1718 // yet will do so and stay there.
1719 Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
1720 store_mode = GetNonTransitioningStoreMode(store_mode);
1721 return isolate()->stub_cache()->ComputeKeyedStoreElement(
1722 monomorphic_map, strict_mode(), store_mode);
1723 }
1724
1725 MapHandleList target_receiver_maps;
1726 target()->FindAllMaps(&target_receiver_maps);
1727 if (target_receiver_maps.length() == 0) {
1728 // In the case that there is a non-map-specific IC is installed (e.g. keyed
1729 // stores into properties in dictionary mode), then there will be not
1730 // receiver maps in the target.
1731 return generic_stub();
1732 }
1733
1734 // There are several special cases where an IC that is MONOMORPHIC can still
1735 // transition to a different GetNonTransitioningStoreMode IC that handles a
1736 // superset of the original IC. Handle those here if the receiver map hasn't
1737 // changed or it has transitioned to a more general kind.
1738 KeyedAccessStoreMode old_store_mode =
1739 KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1740 Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1741 if (state() == MONOMORPHIC) {
1742 // If the "old" and "new" maps are in the same elements map family, stay
1743 // MONOMORPHIC and use the map for the most generic ElementsKind.
1744 Handle<Map> transitioned_receiver_map = receiver_map;
1745 if (IsTransitionStoreMode(store_mode)) {
1746 transitioned_receiver_map =
1747 ComputeTransitionedMap(receiver, store_mode);
1748 }
1749 if (IsTransitionOfMonomorphicTarget(MapToType(transitioned_receiver_map))) {
1750 // Element family is the same, use the "worst" case map.
1751 store_mode = GetNonTransitioningStoreMode(store_mode);
1752 return isolate()->stub_cache()->ComputeKeyedStoreElement(
1753 transitioned_receiver_map, strict_mode(), store_mode);
1754 } else if (*previous_receiver_map == receiver->map() &&
1755 old_store_mode == STANDARD_STORE &&
1756 (IsGrowStoreMode(store_mode) ||
1757 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1758 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1759 // A "normal" IC that handles stores can switch to a version that can
1760 // grow at the end of the array, handle OOB accesses or copy COW arrays
1761 // and still stay MONOMORPHIC.
1762 return isolate()->stub_cache()->ComputeKeyedStoreElement(
1763 receiver_map, strict_mode(), store_mode);
1764 }
1765 }
1766
1767 ASSERT(state() != GENERIC);
1768
1769 bool map_added =
1770 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1771
1772 if (IsTransitionStoreMode(store_mode)) {
1773 Handle<Map> transitioned_receiver_map =
1774 ComputeTransitionedMap(receiver, store_mode);
1775 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1776 transitioned_receiver_map);
1777 }
1778
1779 if (!map_added) {
1780 // If the miss wasn't due to an unseen map, a polymorphic stub
1781 // won't help, use the generic stub.
1782 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1783 return generic_stub();
1784 }
1785
1786 // If the maximum number of receiver maps has been exceeded, use the generic
1787 // version of the IC.
1788 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1789 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1790 return generic_stub();
1791 }
1792
1793 // Make sure all polymorphic handlers have the same store mode, otherwise the
1794 // generic stub must be used.
1795 store_mode = GetNonTransitioningStoreMode(store_mode);
1796 if (old_store_mode != STANDARD_STORE) {
1797 if (store_mode == STANDARD_STORE) {
1798 store_mode = old_store_mode;
1799 } else if (store_mode != old_store_mode) {
1800 TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1801 return generic_stub();
1802 }
1803 }
1804
1805 // If the store mode isn't the standard mode, make sure that all polymorphic
1806 // receivers are either external arrays, or all "normal" arrays. Otherwise,
1807 // use the generic stub.
1808 if (store_mode != STANDARD_STORE) {
1809 int external_arrays = 0;
1810 for (int i = 0; i < target_receiver_maps.length(); ++i) {
1811 if (target_receiver_maps[i]->has_external_array_elements()) {
1812 external_arrays++;
1813 }
1814 }
1815 if (external_arrays != 0 &&
1816 external_arrays != target_receiver_maps.length()) {
1817 TRACE_GENERIC_IC(isolate(), "KeyedIC",
1818 "unsupported combination of external and normal arrays");
1819 return generic_stub();
1820 }
1821 }
1822
1823 return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
1824 &target_receiver_maps, store_mode, strict_mode());
1825 }
1826
1827
ComputeTransitionedMap(Handle<JSObject> receiver,KeyedAccessStoreMode store_mode)1828 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1829 Handle<JSObject> receiver,
1830 KeyedAccessStoreMode store_mode) {
1831 switch (store_mode) {
1832 case STORE_TRANSITION_SMI_TO_OBJECT:
1833 case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1834 case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1835 case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1836 return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
1837 case STORE_TRANSITION_SMI_TO_DOUBLE:
1838 case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1839 return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
1840 case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1841 case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1842 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1843 case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1844 return JSObject::GetElementsTransitionMap(receiver,
1845 FAST_HOLEY_ELEMENTS);
1846 case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1847 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1848 return JSObject::GetElementsTransitionMap(receiver,
1849 FAST_HOLEY_DOUBLE_ELEMENTS);
1850 case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1851 ASSERT(receiver->map()->has_external_array_elements());
1852 // Fall through
1853 case STORE_NO_TRANSITION_HANDLE_COW:
1854 case STANDARD_STORE:
1855 case STORE_AND_GROW_NO_TRANSITION:
1856 return Handle<Map>(receiver->map(), isolate());
1857 }
1858 return Handle<Map>::null();
1859 }
1860
1861
IsOutOfBoundsAccess(Handle<JSObject> receiver,int index)1862 bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
1863 int index) {
1864 if (receiver->IsJSArray()) {
1865 return JSArray::cast(*receiver)->length()->IsSmi() &&
1866 index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1867 }
1868 return index >= receiver->elements()->length();
1869 }
1870
1871
GetStoreMode(Handle<JSObject> receiver,Handle<Object> key,Handle<Object> value)1872 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1873 Handle<Object> key,
1874 Handle<Object> value) {
1875 ASSERT(!key->ToSmi()->IsFailure());
1876 Smi* smi_key = NULL;
1877 key->ToSmi()->To(&smi_key);
1878 int index = smi_key->value();
1879 bool oob_access = IsOutOfBoundsAccess(receiver, index);
1880 bool allow_growth = receiver->IsJSArray() && oob_access;
1881 if (allow_growth) {
1882 // Handle growing array in stub if necessary.
1883 if (receiver->HasFastSmiElements()) {
1884 if (value->IsHeapNumber()) {
1885 if (receiver->HasFastHoleyElements()) {
1886 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1887 } else {
1888 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1889 }
1890 }
1891 if (value->IsHeapObject()) {
1892 if (receiver->HasFastHoleyElements()) {
1893 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1894 } else {
1895 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1896 }
1897 }
1898 } else if (receiver->HasFastDoubleElements()) {
1899 if (!value->IsSmi() && !value->IsHeapNumber()) {
1900 if (receiver->HasFastHoleyElements()) {
1901 return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1902 } else {
1903 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1904 }
1905 }
1906 }
1907 return STORE_AND_GROW_NO_TRANSITION;
1908 } else {
1909 // Handle only in-bounds elements accesses.
1910 if (receiver->HasFastSmiElements()) {
1911 if (value->IsHeapNumber()) {
1912 if (receiver->HasFastHoleyElements()) {
1913 return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1914 } else {
1915 return STORE_TRANSITION_SMI_TO_DOUBLE;
1916 }
1917 } else if (value->IsHeapObject()) {
1918 if (receiver->HasFastHoleyElements()) {
1919 return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1920 } else {
1921 return STORE_TRANSITION_SMI_TO_OBJECT;
1922 }
1923 }
1924 } else if (receiver->HasFastDoubleElements()) {
1925 if (!value->IsSmi() && !value->IsHeapNumber()) {
1926 if (receiver->HasFastHoleyElements()) {
1927 return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1928 } else {
1929 return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1930 }
1931 }
1932 }
1933 if (!FLAG_trace_external_array_abuse &&
1934 receiver->map()->has_external_array_elements() && oob_access) {
1935 return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1936 }
1937 Heap* heap = receiver->GetHeap();
1938 if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1939 return STORE_NO_TRANSITION_HANDLE_COW;
1940 } else {
1941 return STANDARD_STORE;
1942 }
1943 }
1944 }
1945
1946
Store(Handle<Object> object,Handle<Object> key,Handle<Object> value)1947 MaybeObject* KeyedStoreIC::Store(Handle<Object> object,
1948 Handle<Object> key,
1949 Handle<Object> value) {
1950 if (MigrateDeprecated(object)) {
1951 Handle<Object> result = Runtime::SetObjectProperty(isolate(), object,
1952 key,
1953 value,
1954 NONE,
1955 strict_mode());
1956 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1957 return *result;
1958 }
1959
1960 // Check for values that can be converted into an internalized string directly
1961 // or is representable as a smi.
1962 key = TryConvertKey(key, isolate());
1963
1964 MaybeObject* maybe_object = NULL;
1965 Handle<Code> stub = generic_stub();
1966
1967 if (key->IsInternalizedString()) {
1968 maybe_object = StoreIC::Store(object,
1969 Handle<String>::cast(key),
1970 value,
1971 JSReceiver::MAY_BE_STORE_FROM_KEYED);
1972 if (maybe_object->IsFailure()) return maybe_object;
1973 } else {
1974 bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
1975 !(FLAG_harmony_observation && object->IsJSObject() &&
1976 JSObject::cast(*object)->map()->is_observed());
1977 if (use_ic && !object->IsSmi()) {
1978 // Don't use ICs for maps of the objects in Array's prototype chain. We
1979 // expect to be able to trap element sets to objects with those maps in
1980 // the runtime to enable optimization of element hole access.
1981 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1982 if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1983 }
1984
1985 if (use_ic) {
1986 ASSERT(!object->IsJSGlobalProxy());
1987
1988 if (object->IsJSObject()) {
1989 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1990 bool key_is_smi_like = key->IsSmi() || !key->ToSmi()->IsFailure();
1991 if (receiver->elements()->map() ==
1992 isolate()->heap()->non_strict_arguments_elements_map()) {
1993 stub = non_strict_arguments_stub();
1994 } else if (key_is_smi_like &&
1995 !(target().is_identical_to(non_strict_arguments_stub()))) {
1996 // We should go generic if receiver isn't a dictionary, but our
1997 // prototype chain does have dictionary elements. This ensures that
1998 // other non-dictionary receivers in the polymorphic case benefit
1999 // from fast path keyed stores.
2000 if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
2001 KeyedAccessStoreMode store_mode =
2002 GetStoreMode(receiver, key, value);
2003 stub = StoreElementStub(receiver, store_mode);
2004 }
2005 }
2006 }
2007 }
2008 }
2009
2010 if (!is_target_set()) {
2011 if (*stub == *generic_stub()) {
2012 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
2013 }
2014 ASSERT(!stub.is_null());
2015 set_target(*stub);
2016 TRACE_IC("StoreIC", key);
2017 }
2018
2019 if (maybe_object) return maybe_object;
2020 Handle<Object> result = Runtime::SetObjectProperty(isolate(), object, key,
2021 value,
2022 NONE,
2023 strict_mode());
2024 RETURN_IF_EMPTY_HANDLE(isolate(), result);
2025 return *result;
2026 }
2027
2028
2029 #undef TRACE_IC
2030
2031
2032 // ----------------------------------------------------------------------------
2033 // Static IC stub generators.
2034 //
2035
2036 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,CallIC_Miss)2037 RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
2038 HandleScope scope(isolate);
2039 ASSERT(args.length() == 2);
2040 CallIC ic(isolate);
2041 Handle<Object> receiver = args.at<Object>(0);
2042 Handle<String> key = args.at<String>(1);
2043 ic.UpdateState(receiver, key);
2044 MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2045 JSFunction* raw_function;
2046 if (!maybe_result->To(&raw_function)) return maybe_result;
2047
2048 // The first time the inline cache is updated may be the first time the
2049 // function it references gets called. If the function is lazily compiled
2050 // then the first call will trigger a compilation. We check for this case
2051 // and we do the compilation immediately, instead of waiting for the stub
2052 // currently attached to the JSFunction object to trigger compilation.
2053 if (raw_function->is_compiled()) return raw_function;
2054
2055 Handle<JSFunction> function(raw_function);
2056 JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2057 return *function;
2058 }
2059
2060
2061 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,KeyedCallIC_Miss)2062 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
2063 HandleScope scope(isolate);
2064 ASSERT(args.length() == 2);
2065 KeyedCallIC ic(isolate);
2066 Handle<Object> receiver = args.at<Object>(0);
2067 Handle<Object> key = args.at<Object>(1);
2068 ic.UpdateState(receiver, key);
2069 MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2070 // Result could be a function or a failure.
2071 JSFunction* raw_function = NULL;
2072 if (!maybe_result->To(&raw_function)) return maybe_result;
2073
2074 if (raw_function->is_compiled()) return raw_function;
2075
2076 Handle<JSFunction> function(raw_function, isolate);
2077 JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2078 return *function;
2079 }
2080
2081
2082 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,LoadIC_Miss)2083 RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
2084 HandleScope scope(isolate);
2085 ASSERT(args.length() == 2);
2086 LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2087 Handle<Object> receiver = args.at<Object>(0);
2088 Handle<String> key = args.at<String>(1);
2089 ic.UpdateState(receiver, key);
2090 return ic.Load(receiver, key);
2091 }
2092
2093
2094 // Used from ic-<arch>.cc
RUNTIME_FUNCTION(MaybeObject *,KeyedLoadIC_Miss)2095 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
2096 HandleScope scope(isolate);
2097 ASSERT(args.length() == 2);
2098 KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2099 Handle<Object> receiver = args.at<Object>(0);
2100 Handle<Object> key = args.at<Object>(1);
2101 ic.UpdateState(receiver, key);
2102 return ic.Load(receiver, key);
2103 }
2104
2105
RUNTIME_FUNCTION(MaybeObject *,KeyedLoadIC_MissFromStubFailure)2106 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
2107 HandleScope scope(isolate);
2108 ASSERT(args.length() == 2);
2109 KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2110 Handle<Object> receiver = args.at<Object>(0);
2111 Handle<Object> key = args.at<Object>(1);
2112 ic.UpdateState(receiver, key);
2113 return ic.Load(receiver, key);
2114 }
2115
2116
2117 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,StoreIC_Miss)2118 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
2119 HandleScope scope(isolate);
2120 ASSERT(args.length() == 3);
2121 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2122 Handle<Object> receiver = args.at<Object>(0);
2123 Handle<String> key = args.at<String>(1);
2124 ic.UpdateState(receiver, key);
2125 return ic.Store(receiver, key, args.at<Object>(2));
2126 }
2127
2128
RUNTIME_FUNCTION(MaybeObject *,StoreIC_MissFromStubFailure)2129 RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure) {
2130 HandleScope scope(isolate);
2131 ASSERT(args.length() == 3);
2132 StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2133 Handle<Object> receiver = args.at<Object>(0);
2134 Handle<String> key = args.at<String>(1);
2135 ic.UpdateState(receiver, key);
2136 return ic.Store(receiver, key, args.at<Object>(2));
2137 }
2138
2139
RUNTIME_FUNCTION(MaybeObject *,KeyedCallIC_MissFromStubFailure)2140 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_MissFromStubFailure) {
2141 HandleScope scope(isolate);
2142 ASSERT(args.length() == 2);
2143 KeyedCallIC ic(isolate);
2144 Arguments* caller_args = reinterpret_cast<Arguments*>(args[0]);
2145 Handle<Object> key = args.at<Object>(1);
2146 Handle<Object> receiver((*caller_args)[0], isolate);
2147
2148 ic.UpdateState(receiver, key);
2149 MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2150 // Result could be a function or a failure.
2151 JSFunction* raw_function = NULL;
2152 if (!maybe_result->To(&raw_function)) return maybe_result;
2153
2154 if (raw_function->is_compiled()) return raw_function;
2155
2156 Handle<JSFunction> function(raw_function, isolate);
2157 JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2158 return *function;
2159 }
2160
2161
RUNTIME_FUNCTION(MaybeObject *,StoreIC_ArrayLength)2162 RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
2163 SealHandleScope shs(isolate);
2164
2165 ASSERT(args.length() == 2);
2166 JSArray* receiver = JSArray::cast(args[0]);
2167 Object* len = args[1];
2168
2169 // The generated code should filter out non-Smis before we get here.
2170 ASSERT(len->IsSmi());
2171
2172 #ifdef DEBUG
2173 // The length property has to be a writable callback property.
2174 LookupResult debug_lookup(isolate);
2175 receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
2176 ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
2177 #endif
2178
2179 Object* result;
2180 MaybeObject* maybe_result = receiver->SetElementsLength(len);
2181 if (!maybe_result->To(&result)) return maybe_result;
2182
2183 return len;
2184 }
2185
2186
2187 // Extend storage is called in a store inline cache when
2188 // it is necessary to extend the properties array of a
2189 // JSObject.
RUNTIME_FUNCTION(MaybeObject *,SharedStoreIC_ExtendStorage)2190 RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
2191 SealHandleScope shs(isolate);
2192 ASSERT(args.length() == 3);
2193
2194 // Convert the parameters
2195 JSObject* object = JSObject::cast(args[0]);
2196 Map* transition = Map::cast(args[1]);
2197 Object* value = args[2];
2198
2199 // Check the object has run out out property space.
2200 ASSERT(object->HasFastProperties());
2201 ASSERT(object->map()->unused_property_fields() == 0);
2202
2203 // Expand the properties array.
2204 FixedArray* old_storage = object->properties();
2205 int new_unused = transition->unused_property_fields();
2206 int new_size = old_storage->length() + new_unused + 1;
2207 Object* result;
2208 MaybeObject* maybe_result = old_storage->CopySize(new_size);
2209 if (!maybe_result->ToObject(&result)) return maybe_result;
2210
2211 FixedArray* new_storage = FixedArray::cast(result);
2212
2213 Object* to_store = value;
2214
2215 if (FLAG_track_double_fields) {
2216 DescriptorArray* descriptors = transition->instance_descriptors();
2217 PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
2218 if (details.representation().IsDouble()) {
2219 MaybeObject* maybe_storage =
2220 isolate->heap()->AllocateHeapNumber(value->Number());
2221 if (!maybe_storage->To(&to_store)) return maybe_storage;
2222 }
2223 }
2224
2225 new_storage->set(old_storage->length(), to_store);
2226
2227 // Set the new property value and do the map transition.
2228 object->set_properties(new_storage);
2229 object->set_map(transition);
2230
2231 // Return the stored value.
2232 return value;
2233 }
2234
2235
2236 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_Miss)2237 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
2238 HandleScope scope(isolate);
2239 ASSERT(args.length() == 3);
2240 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2241 Handle<Object> receiver = args.at<Object>(0);
2242 Handle<Object> key = args.at<Object>(1);
2243 ic.UpdateState(receiver, key);
2244 return ic.Store(receiver, key, args.at<Object>(2));
2245 }
2246
2247
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_MissFromStubFailure)2248 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
2249 HandleScope scope(isolate);
2250 ASSERT(args.length() == 3);
2251 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2252 Handle<Object> receiver = args.at<Object>(0);
2253 Handle<Object> key = args.at<Object>(1);
2254 ic.UpdateState(receiver, key);
2255 return ic.Store(receiver, key, args.at<Object>(2));
2256 }
2257
2258
RUNTIME_FUNCTION(MaybeObject *,StoreIC_Slow)2259 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
2260 HandleScope scope(isolate);
2261 ASSERT(args.length() == 3);
2262 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2263 Handle<Object> object = args.at<Object>(0);
2264 Handle<Object> key = args.at<Object>(1);
2265 Handle<Object> value = args.at<Object>(2);
2266 StrictModeFlag strict_mode = ic.strict_mode();
2267 Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2268 value,
2269 NONE,
2270 strict_mode);
2271 RETURN_IF_EMPTY_HANDLE(isolate, result);
2272 return *result;
2273 }
2274
2275
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_Slow)2276 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
2277 HandleScope scope(isolate);
2278 ASSERT(args.length() == 3);
2279 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2280 Handle<Object> object = args.at<Object>(0);
2281 Handle<Object> key = args.at<Object>(1);
2282 Handle<Object> value = args.at<Object>(2);
2283 StrictModeFlag strict_mode = ic.strict_mode();
2284 Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2285 value,
2286 NONE,
2287 strict_mode);
2288 RETURN_IF_EMPTY_HANDLE(isolate, result);
2289 return *result;
2290 }
2291
2292
RUNTIME_FUNCTION(MaybeObject *,ElementsTransitionAndStoreIC_Miss)2293 RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss) {
2294 HandleScope scope(isolate);
2295 ASSERT(args.length() == 4);
2296 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2297 Handle<Object> value = args.at<Object>(0);
2298 Handle<Map> map = args.at<Map>(1);
2299 Handle<Object> key = args.at<Object>(2);
2300 Handle<Object> object = args.at<Object>(3);
2301 StrictModeFlag strict_mode = ic.strict_mode();
2302 if (object->IsJSObject()) {
2303 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2304 map->elements_kind());
2305 }
2306 Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2307 value,
2308 NONE,
2309 strict_mode);
2310 RETURN_IF_EMPTY_HANDLE(isolate, result);
2311 return *result;
2312 }
2313
2314
State(ExtraICState extra_ic_state)2315 BinaryOpIC::State::State(ExtraICState extra_ic_state) {
2316 // We don't deserialize the SSE2 Field, since this is only used to be able
2317 // to include SSE2 as well as non-SSE2 versions in the snapshot. For code
2318 // generation we always want it to reflect the current state.
2319 op_ = static_cast<Token::Value>(
2320 FIRST_TOKEN + OpField::decode(extra_ic_state));
2321 mode_ = OverwriteModeField::decode(extra_ic_state);
2322 fixed_right_arg_ = Maybe<int>(
2323 HasFixedRightArgField::decode(extra_ic_state),
2324 1 << FixedRightArgValueField::decode(extra_ic_state));
2325 left_kind_ = LeftKindField::decode(extra_ic_state);
2326 if (fixed_right_arg_.has_value) {
2327 right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2328 } else {
2329 right_kind_ = RightKindField::decode(extra_ic_state);
2330 }
2331 result_kind_ = ResultKindField::decode(extra_ic_state);
2332 ASSERT_LE(FIRST_TOKEN, op_);
2333 ASSERT_LE(op_, LAST_TOKEN);
2334 }
2335
2336
GetExtraICState() const2337 ExtraICState BinaryOpIC::State::GetExtraICState() const {
2338 bool sse2 = (Max(result_kind_, Max(left_kind_, right_kind_)) > SMI &&
2339 CpuFeatures::IsSafeForSnapshot(SSE2));
2340 ExtraICState extra_ic_state =
2341 SSE2Field::encode(sse2) |
2342 OpField::encode(op_ - FIRST_TOKEN) |
2343 OverwriteModeField::encode(mode_) |
2344 LeftKindField::encode(left_kind_) |
2345 ResultKindField::encode(result_kind_) |
2346 HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2347 if (fixed_right_arg_.has_value) {
2348 extra_ic_state = FixedRightArgValueField::update(
2349 extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2350 } else {
2351 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2352 }
2353 return extra_ic_state;
2354 }
2355
2356
2357 // static
GenerateAheadOfTime(Isolate * isolate,void (* Generate)(Isolate *,const State &))2358 void BinaryOpIC::State::GenerateAheadOfTime(
2359 Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
2360 // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2361 // expensive at runtime. When solved we should be able to add most binops to
2362 // the snapshot instead of hand-picking them.
2363 // Generated list of commonly used stubs
2364 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \
2365 do { \
2366 State state(op, mode); \
2367 state.left_kind_ = left_kind; \
2368 state.fixed_right_arg_.has_value = false; \
2369 state.right_kind_ = right_kind; \
2370 state.result_kind_ = result_kind; \
2371 Generate(isolate, state); \
2372 } while (false)
2373 GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2374 GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2375 GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2376 GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2377 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2378 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2379 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2380 GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2381 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2382 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2383 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2384 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2385 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2386 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2387 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2388 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2389 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2390 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2391 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2392 GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2393 GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2394 GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2395 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2396 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2397 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2398 GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2399 GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2400 GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2401 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2402 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2403 GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2404 GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2405 GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2406 GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2407 GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2408 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2409 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2410 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2411 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2412 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2413 GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2414 GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2415 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2416 GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2417 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2418 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2419 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2420 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2421 GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2422 GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2423 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2424 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2425 GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2426 GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2427 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2428 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2429 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2430 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2431 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2432 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2433 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2434 GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2435 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2436 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2437 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2438 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2439 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2440 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2441 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2442 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2443 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2444 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2445 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2446 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2447 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2448 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2449 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2450 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2451 GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2452 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2453 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2454 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2455 GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2456 GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2457 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2458 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2459 GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2460 GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2461 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2462 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2463 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2464 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2465 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2466 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2467 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2468 GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2469 GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2470 GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2471 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2472 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2473 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2474 GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2475 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2476 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2477 GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2478 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2479 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2480 GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2481 GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2482 GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2483 GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2484 GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2485 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2486 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2487 GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2488 GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2489 GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2490 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2491 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2492 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2493 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2494 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2495 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2496 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2497 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2498 GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2499 GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2500 GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2501 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2502 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2503 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2504 GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2505 GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2506 GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2507 GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2508 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2509 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2510 GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2511 GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2512 GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2513 GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2514 GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2515 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2516 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2517 GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2518 GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2519 GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2520 GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2521 GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2522 GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2523 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2524 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2525 GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2526 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2527 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2528 GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2529 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2530 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2531 GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2532 GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2533 GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2534 GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2535 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2536 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2537 GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2538 GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2539 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2540 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2541 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2542 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2543 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2544 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2545 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2546 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2547 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2548 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2549 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2550 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2551 GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2552 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2553 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2554 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2555 GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2556 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2557 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2558 #undef GENERATE
2559 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2560 do { \
2561 State state(op, mode); \
2562 state.left_kind_ = left_kind; \
2563 state.fixed_right_arg_.has_value = true; \
2564 state.fixed_right_arg_.value = fixed_right_arg_value; \
2565 state.right_kind_ = SMI; \
2566 state.result_kind_ = result_kind; \
2567 Generate(isolate, state); \
2568 } while (false)
2569 GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2570 GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2571 GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2572 GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2573 GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2574 GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2575 GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2576 #undef GENERATE
2577 }
2578
2579
GetResultType(Isolate * isolate) const2580 Handle<Type> BinaryOpIC::State::GetResultType(Isolate* isolate) const {
2581 Kind result_kind = result_kind_;
2582 if (HasSideEffects()) {
2583 result_kind = NONE;
2584 } else if (result_kind == GENERIC && op_ == Token::ADD) {
2585 return handle(Type::Union(handle(Type::Number(), isolate),
2586 handle(Type::String(), isolate)), isolate);
2587 } else if (result_kind == NUMBER && op_ == Token::SHR) {
2588 return handle(Type::Unsigned32(), isolate);
2589 }
2590 ASSERT_NE(GENERIC, result_kind);
2591 return KindToType(result_kind, isolate);
2592 }
2593
2594
Print(StringStream * stream) const2595 void BinaryOpIC::State::Print(StringStream* stream) const {
2596 stream->Add("(%s", Token::Name(op_));
2597 if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft");
2598 else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight");
2599 stream->Add(":%s*", KindToString(left_kind_));
2600 if (fixed_right_arg_.has_value) {
2601 stream->Add("%d", fixed_right_arg_.value);
2602 } else {
2603 stream->Add("%s", KindToString(right_kind_));
2604 }
2605 stream->Add("->%s)", KindToString(result_kind_));
2606 }
2607
2608
Update(Handle<Object> left,Handle<Object> right,Handle<Object> result)2609 void BinaryOpIC::State::Update(Handle<Object> left,
2610 Handle<Object> right,
2611 Handle<Object> result) {
2612 ExtraICState old_extra_ic_state = GetExtraICState();
2613
2614 left_kind_ = UpdateKind(left, left_kind_);
2615 right_kind_ = UpdateKind(right, right_kind_);
2616
2617 int32_t fixed_right_arg_value = 0;
2618 bool has_fixed_right_arg =
2619 op_ == Token::MOD &&
2620 right->ToInt32(&fixed_right_arg_value) &&
2621 fixed_right_arg_value > 0 &&
2622 IsPowerOf2(fixed_right_arg_value) &&
2623 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2624 (left_kind_ == SMI || left_kind_ == INT32) &&
2625 (result_kind_ == NONE || !fixed_right_arg_.has_value);
2626 fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
2627 fixed_right_arg_value);
2628
2629 result_kind_ = UpdateKind(result, result_kind_);
2630
2631 if (!Token::IsTruncatingBinaryOp(op_)) {
2632 Kind input_kind = Max(left_kind_, right_kind_);
2633 if (result_kind_ < input_kind && input_kind <= NUMBER) {
2634 result_kind_ = input_kind;
2635 }
2636 }
2637
2638 // Reset overwrite mode unless we can actually make use of it, or may be able
2639 // to make use of it at some point in the future.
2640 if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2641 (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2642 result_kind_ > NUMBER) {
2643 mode_ = NO_OVERWRITE;
2644 }
2645
2646 if (old_extra_ic_state == GetExtraICState()) {
2647 // Tagged operations can lead to non-truncating HChanges
2648 if (left->IsUndefined() || left->IsBoolean()) {
2649 left_kind_ = GENERIC;
2650 } else if (right->IsUndefined() || right->IsBoolean()) {
2651 right_kind_ = GENERIC;
2652 } else {
2653 // Since the X87 is too precise, we might bail out on numbers which
2654 // actually would truncate with 64 bit precision.
2655 ASSERT(!CpuFeatures::IsSupported(SSE2));
2656 ASSERT(result_kind_ < NUMBER);
2657 result_kind_ = NUMBER;
2658 }
2659 }
2660 }
2661
2662
UpdateKind(Handle<Object> object,Kind kind) const2663 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2664 Kind kind) const {
2665 Kind new_kind = GENERIC;
2666 bool is_truncating = Token::IsTruncatingBinaryOp(op());
2667 if (object->IsBoolean() && is_truncating) {
2668 // Booleans will be automatically truncated by HChange.
2669 new_kind = INT32;
2670 } else if (object->IsUndefined()) {
2671 // Undefined will be automatically truncated by HChange.
2672 new_kind = is_truncating ? INT32 : NUMBER;
2673 } else if (object->IsSmi()) {
2674 new_kind = SMI;
2675 } else if (object->IsHeapNumber()) {
2676 double value = Handle<HeapNumber>::cast(object)->value();
2677 new_kind = TypeInfo::IsInt32Double(value) ? INT32 : NUMBER;
2678 } else if (object->IsString() && op() == Token::ADD) {
2679 new_kind = STRING;
2680 }
2681 if (new_kind == INT32 && SmiValuesAre32Bits()) {
2682 new_kind = NUMBER;
2683 }
2684 if (kind != NONE &&
2685 ((new_kind <= NUMBER && kind > NUMBER) ||
2686 (new_kind > NUMBER && kind <= NUMBER))) {
2687 new_kind = GENERIC;
2688 }
2689 return Max(kind, new_kind);
2690 }
2691
2692
2693 // static
KindToString(Kind kind)2694 const char* BinaryOpIC::State::KindToString(Kind kind) {
2695 switch (kind) {
2696 case NONE: return "None";
2697 case SMI: return "Smi";
2698 case INT32: return "Int32";
2699 case NUMBER: return "Number";
2700 case STRING: return "String";
2701 case GENERIC: return "Generic";
2702 }
2703 UNREACHABLE();
2704 return NULL;
2705 }
2706
2707
2708 // static
KindToType(Kind kind,Isolate * isolate)2709 Handle<Type> BinaryOpIC::State::KindToType(Kind kind, Isolate* isolate) {
2710 Type* type = NULL;
2711 switch (kind) {
2712 case NONE: type = Type::None(); break;
2713 case SMI: type = Type::Smi(); break;
2714 case INT32: type = Type::Signed32(); break;
2715 case NUMBER: type = Type::Number(); break;
2716 case STRING: type = Type::String(); break;
2717 case GENERIC: type = Type::Any(); break;
2718 }
2719 return handle(type, isolate);
2720 }
2721
2722
Transition(Handle<Object> left,Handle<Object> right)2723 MaybeObject* BinaryOpIC::Transition(Handle<Object> left, Handle<Object> right) {
2724 State state(target()->extended_extra_ic_state());
2725
2726 // Compute the actual result using the builtin for the binary operation.
2727 Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2728 TokenToJSBuiltin(state.op()));
2729 Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2730 bool caught_exception;
2731 Handle<Object> result = Execution::Call(
2732 isolate(), function, left, 1, &right, &caught_exception);
2733 if (caught_exception) return Failure::Exception();
2734
2735 // Compute the new state.
2736 State old_state = state;
2737 state.Update(left, right, result);
2738
2739 // Install the new stub.
2740 BinaryOpICStub stub(state);
2741 set_target(*stub.GetCode(isolate()));
2742
2743 if (FLAG_trace_ic) {
2744 char buffer[150];
2745 NoAllocationStringAllocator allocator(
2746 buffer, static_cast<unsigned>(sizeof(buffer)));
2747 StringStream stream(&allocator);
2748 stream.Add("[BinaryOpIC");
2749 old_state.Print(&stream);
2750 stream.Add(" => ");
2751 state.Print(&stream);
2752 stream.Add(" @ %p <- ", static_cast<void*>(*target()));
2753 stream.OutputToStdOut();
2754 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2755 PrintF("]\n");
2756 }
2757
2758 // Patch the inlined smi code as necessary.
2759 if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2760 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2761 } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2762 PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2763 }
2764
2765 return *result;
2766 }
2767
2768
RUNTIME_FUNCTION(MaybeObject *,BinaryOpIC_Miss)2769 RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_Miss) {
2770 HandleScope scope(isolate);
2771 Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2772 Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2773 BinaryOpIC ic(isolate);
2774 return ic.Transition(left, right);
2775 }
2776
2777
GetRawUninitialized(Isolate * isolate,Token::Value op)2778 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2779 ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2780 Code* code = NULL;
2781 CHECK(stub.FindCodeInCache(&code, isolate));
2782 return code;
2783 }
2784
2785
GetUninitialized(Isolate * isolate,Token::Value op)2786 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2787 ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2788 return stub.GetCode(isolate);
2789 }
2790
2791
GetStateName(State state)2792 const char* CompareIC::GetStateName(State state) {
2793 switch (state) {
2794 case UNINITIALIZED: return "UNINITIALIZED";
2795 case SMI: return "SMI";
2796 case NUMBER: return "NUMBER";
2797 case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
2798 case STRING: return "STRING";
2799 case UNIQUE_NAME: return "UNIQUE_NAME";
2800 case OBJECT: return "OBJECT";
2801 case KNOWN_OBJECT: return "KNOWN_OBJECT";
2802 case GENERIC: return "GENERIC";
2803 }
2804 UNREACHABLE();
2805 return NULL;
2806 }
2807
2808
StateToType(Isolate * isolate,CompareIC::State state,Handle<Map> map)2809 Handle<Type> CompareIC::StateToType(
2810 Isolate* isolate,
2811 CompareIC::State state,
2812 Handle<Map> map) {
2813 switch (state) {
2814 case CompareIC::UNINITIALIZED:
2815 return handle(Type::None(), isolate);
2816 case CompareIC::SMI:
2817 return handle(Type::Smi(), isolate);
2818 case CompareIC::NUMBER:
2819 return handle(Type::Number(), isolate);
2820 case CompareIC::STRING:
2821 return handle(Type::String(), isolate);
2822 case CompareIC::INTERNALIZED_STRING:
2823 return handle(Type::InternalizedString(), isolate);
2824 case CompareIC::UNIQUE_NAME:
2825 return handle(Type::UniqueName(), isolate);
2826 case CompareIC::OBJECT:
2827 return handle(Type::Receiver(), isolate);
2828 case CompareIC::KNOWN_OBJECT:
2829 return handle(
2830 map.is_null() ? Type::Receiver() : Type::Class(map), isolate);
2831 case CompareIC::GENERIC:
2832 return handle(Type::Any(), isolate);
2833 }
2834 UNREACHABLE();
2835 return Handle<Type>();
2836 }
2837
2838
StubInfoToType(int stub_minor_key,Handle<Type> * left_type,Handle<Type> * right_type,Handle<Type> * overall_type,Handle<Map> map,Isolate * isolate)2839 void CompareIC::StubInfoToType(int stub_minor_key,
2840 Handle<Type>* left_type,
2841 Handle<Type>* right_type,
2842 Handle<Type>* overall_type,
2843 Handle<Map> map,
2844 Isolate* isolate) {
2845 State left_state, right_state, handler_state;
2846 ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
2847 &handler_state, NULL);
2848 *left_type = StateToType(isolate, left_state);
2849 *right_type = StateToType(isolate, right_state);
2850 *overall_type = StateToType(isolate, handler_state, map);
2851 }
2852
2853
NewInputState(State old_state,Handle<Object> value)2854 CompareIC::State CompareIC::NewInputState(State old_state,
2855 Handle<Object> value) {
2856 switch (old_state) {
2857 case UNINITIALIZED:
2858 if (value->IsSmi()) return SMI;
2859 if (value->IsHeapNumber()) return NUMBER;
2860 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2861 if (value->IsString()) return STRING;
2862 if (value->IsSymbol()) return UNIQUE_NAME;
2863 if (value->IsJSObject()) return OBJECT;
2864 break;
2865 case SMI:
2866 if (value->IsSmi()) return SMI;
2867 if (value->IsHeapNumber()) return NUMBER;
2868 break;
2869 case NUMBER:
2870 if (value->IsNumber()) return NUMBER;
2871 break;
2872 case INTERNALIZED_STRING:
2873 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2874 if (value->IsString()) return STRING;
2875 if (value->IsSymbol()) return UNIQUE_NAME;
2876 break;
2877 case STRING:
2878 if (value->IsString()) return STRING;
2879 break;
2880 case UNIQUE_NAME:
2881 if (value->IsUniqueName()) return UNIQUE_NAME;
2882 break;
2883 case OBJECT:
2884 if (value->IsJSObject()) return OBJECT;
2885 break;
2886 case GENERIC:
2887 break;
2888 case KNOWN_OBJECT:
2889 UNREACHABLE();
2890 break;
2891 }
2892 return GENERIC;
2893 }
2894
2895
TargetState(State old_state,State old_left,State old_right,bool has_inlined_smi_code,Handle<Object> x,Handle<Object> y)2896 CompareIC::State CompareIC::TargetState(State old_state,
2897 State old_left,
2898 State old_right,
2899 bool has_inlined_smi_code,
2900 Handle<Object> x,
2901 Handle<Object> y) {
2902 switch (old_state) {
2903 case UNINITIALIZED:
2904 if (x->IsSmi() && y->IsSmi()) return SMI;
2905 if (x->IsNumber() && y->IsNumber()) return NUMBER;
2906 if (Token::IsOrderedRelationalCompareOp(op_)) {
2907 // Ordered comparisons treat undefined as NaN, so the
2908 // NUMBER stub will do the right thing.
2909 if ((x->IsNumber() && y->IsUndefined()) ||
2910 (y->IsNumber() && x->IsUndefined())) {
2911 return NUMBER;
2912 }
2913 }
2914 if (x->IsInternalizedString() && y->IsInternalizedString()) {
2915 // We compare internalized strings as plain ones if we need to determine
2916 // the order in a non-equality compare.
2917 return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2918 }
2919 if (x->IsString() && y->IsString()) return STRING;
2920 if (!Token::IsEqualityOp(op_)) return GENERIC;
2921 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2922 if (x->IsJSObject() && y->IsJSObject()) {
2923 if (Handle<JSObject>::cast(x)->map() ==
2924 Handle<JSObject>::cast(y)->map()) {
2925 return KNOWN_OBJECT;
2926 } else {
2927 return OBJECT;
2928 }
2929 }
2930 return GENERIC;
2931 case SMI:
2932 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2933 case INTERNALIZED_STRING:
2934 ASSERT(Token::IsEqualityOp(op_));
2935 if (x->IsString() && y->IsString()) return STRING;
2936 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2937 return GENERIC;
2938 case NUMBER:
2939 // If the failure was due to one side changing from smi to heap number,
2940 // then keep the state (if other changed at the same time, we will get
2941 // a second miss and then go to generic).
2942 if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2943 if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2944 return GENERIC;
2945 case KNOWN_OBJECT:
2946 ASSERT(Token::IsEqualityOp(op_));
2947 if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2948 return GENERIC;
2949 case STRING:
2950 case UNIQUE_NAME:
2951 case OBJECT:
2952 case GENERIC:
2953 return GENERIC;
2954 }
2955 UNREACHABLE();
2956 return GENERIC; // Make the compiler happy.
2957 }
2958
2959
UpdateCaches(Handle<Object> x,Handle<Object> y)2960 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2961 HandleScope scope(isolate());
2962 State previous_left, previous_right, previous_state;
2963 ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
2964 &previous_right, &previous_state, NULL);
2965 State new_left = NewInputState(previous_left, x);
2966 State new_right = NewInputState(previous_right, y);
2967 State state = TargetState(previous_state, previous_left, previous_right,
2968 HasInlinedSmiCode(address()), x, y);
2969 ICCompareStub stub(op_, new_left, new_right, state);
2970 if (state == KNOWN_OBJECT) {
2971 stub.set_known_map(
2972 Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2973 }
2974 Handle<Code> new_target = stub.GetCode(isolate());
2975 set_target(*new_target);
2976
2977 if (FLAG_trace_ic) {
2978 PrintF("[CompareIC in ");
2979 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2980 PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
2981 GetStateName(previous_left),
2982 GetStateName(previous_right),
2983 GetStateName(previous_state),
2984 GetStateName(new_left),
2985 GetStateName(new_right),
2986 GetStateName(state),
2987 Token::Name(op_),
2988 static_cast<void*>(*stub.GetCode(isolate())));
2989 }
2990
2991 // Activate inlined smi code.
2992 if (previous_state == UNINITIALIZED) {
2993 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2994 }
2995
2996 return *new_target;
2997 }
2998
2999
3000 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
RUNTIME_FUNCTION(Code *,CompareIC_Miss)3001 RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
3002 HandleScope scope(isolate);
3003 ASSERT(args.length() == 3);
3004 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
3005 return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
3006 }
3007
3008
Clear(Address address,Code * target)3009 void CompareNilIC::Clear(Address address, Code* target) {
3010 if (IsCleared(target)) return;
3011 ExtraICState state = target->extended_extra_ic_state();
3012
3013 CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED);
3014 stub.ClearState();
3015
3016 Code* code = NULL;
3017 CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
3018
3019 SetTargetAtAddress(address, code);
3020 }
3021
3022
DoCompareNilSlow(NilValue nil,Handle<Object> object)3023 MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil,
3024 Handle<Object> object) {
3025 if (object->IsNull() || object->IsUndefined()) {
3026 return Smi::FromInt(true);
3027 }
3028 return Smi::FromInt(object->IsUndetectableObject());
3029 }
3030
3031
CompareNil(Handle<Object> object)3032 MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
3033 ExtraICState extra_ic_state = target()->extended_extra_ic_state();
3034
3035 CompareNilICStub stub(extra_ic_state);
3036
3037 // Extract the current supported types from the patched IC and calculate what
3038 // types must be supported as a result of the miss.
3039 bool already_monomorphic = stub.IsMonomorphic();
3040
3041 stub.UpdateStatus(object);
3042
3043 NilValue nil = stub.GetNilValue();
3044
3045 // Find or create the specialized stub to support the new set of types.
3046 Handle<Code> code;
3047 if (stub.IsMonomorphic()) {
3048 Handle<Map> monomorphic_map(already_monomorphic
3049 ? target()->FindFirstMap()
3050 : HeapObject::cast(*object)->map());
3051 code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub);
3052 } else {
3053 code = stub.GetCode(isolate());
3054 }
3055 set_target(*code);
3056 return DoCompareNilSlow(nil, object);
3057 }
3058
3059
RUNTIME_FUNCTION(MaybeObject *,CompareNilIC_Miss)3060 RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
3061 HandleScope scope(isolate);
3062 Handle<Object> object = args.at<Object>(0);
3063 CompareNilIC ic(isolate);
3064 return ic.CompareNil(object);
3065 }
3066
3067
RUNTIME_FUNCTION(MaybeObject *,Unreachable)3068 RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
3069 UNREACHABLE();
3070 CHECK(false);
3071 return isolate->heap()->undefined_value();
3072 }
3073
3074
TokenToJSBuiltin(Token::Value op)3075 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
3076 switch (op) {
3077 default:
3078 UNREACHABLE();
3079 case Token::ADD:
3080 return Builtins::ADD;
3081 break;
3082 case Token::SUB:
3083 return Builtins::SUB;
3084 break;
3085 case Token::MUL:
3086 return Builtins::MUL;
3087 break;
3088 case Token::DIV:
3089 return Builtins::DIV;
3090 break;
3091 case Token::MOD:
3092 return Builtins::MOD;
3093 break;
3094 case Token::BIT_OR:
3095 return Builtins::BIT_OR;
3096 break;
3097 case Token::BIT_AND:
3098 return Builtins::BIT_AND;
3099 break;
3100 case Token::BIT_XOR:
3101 return Builtins::BIT_XOR;
3102 break;
3103 case Token::SAR:
3104 return Builtins::SAR;
3105 break;
3106 case Token::SHR:
3107 return Builtins::SHR;
3108 break;
3109 case Token::SHL:
3110 return Builtins::SHL;
3111 break;
3112 }
3113 }
3114
3115
ToBoolean(Handle<Object> object)3116 MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object) {
3117 ToBooleanStub stub(target()->extended_extra_ic_state());
3118 bool to_boolean_value = stub.UpdateStatus(object);
3119 Handle<Code> code = stub.GetCode(isolate());
3120 set_target(*code);
3121 return Smi::FromInt(to_boolean_value ? 1 : 0);
3122 }
3123
3124
RUNTIME_FUNCTION(MaybeObject *,ToBooleanIC_Miss)3125 RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) {
3126 ASSERT(args.length() == 1);
3127 HandleScope scope(isolate);
3128 Handle<Object> object = args.at<Object>(0);
3129 ToBooleanIC ic(isolate);
3130 return ic.ToBoolean(object);
3131 }
3132
3133
3134 static const Address IC_utilities[] = {
3135 #define ADDR(name) FUNCTION_ADDR(name),
3136 IC_UTIL_LIST(ADDR)
3137 NULL
3138 #undef ADDR
3139 };
3140
3141
AddressFromUtilityId(IC::UtilityId id)3142 Address IC::AddressFromUtilityId(IC::UtilityId id) {
3143 return IC_utilities[id];
3144 }
3145
3146
3147 } } // namespace v8::internal
3148