• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "codegen.h"
34 #include "execution.h"
35 #include "ic-inl.h"
36 #include "runtime.h"
37 #include "stub-cache.h"
38 
39 namespace v8 {
40 namespace internal {
41 
42 #ifdef DEBUG
TransitionMarkFromState(IC::State state)43 char IC::TransitionMarkFromState(IC::State state) {
44   switch (state) {
45     case UNINITIALIZED: return '0';
46     case PREMONOMORPHIC: return '.';
47     case MONOMORPHIC: return '1';
48     case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
49     case POLYMORPHIC: return 'P';
50     case MEGAMORPHIC: return 'N';
51     case GENERIC: return 'G';
52 
53     // We never see the debugger states here, because the state is
54     // computed from the original code - not the patched code. Let
55     // these cases fall through to the unreachable code below.
56     case DEBUG_STUB: break;
57   }
58   UNREACHABLE();
59   return 0;
60 }
61 
62 
GetTransitionMarkModifier(KeyedAccessStoreMode mode)63 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
64   if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
65   if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
66     return ".IGNORE_OOB";
67   }
68   if (IsGrowStoreMode(mode)) return ".GROW";
69   return "";
70 }
71 
72 
TraceIC(const char * type,Handle<Object> name)73 void IC::TraceIC(const char* type,
74                  Handle<Object> name) {
75   if (FLAG_trace_ic) {
76     Code* new_target = raw_target();
77     State new_state = new_target->ic_state();
78     PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
79     StackFrameIterator it(isolate());
80     while (it.frame()->fp() != this->fp()) it.Advance();
81     StackFrame* raw_frame = it.frame();
82     if (raw_frame->is_internal()) {
83       Code* apply_builtin = isolate()->builtins()->builtin(
84           Builtins::kFunctionApply);
85       if (raw_frame->unchecked_code() == apply_builtin) {
86         PrintF("apply from ");
87         it.Advance();
88         raw_frame = it.frame();
89       }
90     }
91     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
92     ExtraICState extra_state = new_target->extra_ic_state();
93     const char* modifier =
94         GetTransitionMarkModifier(
95             KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
96     PrintF(" (%c->%c%s)",
97            TransitionMarkFromState(state()),
98            TransitionMarkFromState(new_state),
99            modifier);
100     name->Print();
101     PrintF("]\n");
102   }
103 }
104 
105 #define TRACE_GENERIC_IC(isolate, type, reason)                 \
106   do {                                                          \
107     if (FLAG_trace_ic) {                                        \
108       PrintF("[%s patching generic stub in ", type);            \
109       JavaScriptFrame::PrintTop(isolate, stdout, false, true);  \
110       PrintF(" (%s)]\n", reason);                               \
111     }                                                           \
112   } while (false)
113 
114 #else
115 #define TRACE_GENERIC_IC(isolate, type, reason)
116 #endif  // DEBUG
117 
118 #define TRACE_IC(type, name)             \
119   ASSERT((TraceIC(type, name), true))
120 
IC(FrameDepth depth,Isolate * isolate)121 IC::IC(FrameDepth depth, Isolate* isolate)
122     : isolate_(isolate),
123       target_set_(false) {
124   // To improve the performance of the (much used) IC code, we unfold a few
125   // levels of the stack frame iteration code. This yields a ~35% speedup when
126   // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
127   const Address entry =
128       Isolate::c_entry_fp(isolate->thread_local_top());
129   Address* pc_address =
130       reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
131   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
132   // If there's another JavaScript frame on the stack or a
133   // StubFailureTrampoline, we need to look one frame further down the stack to
134   // find the frame pointer and the return address stack slot.
135   if (depth == EXTRA_CALL_FRAME) {
136     const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
137     pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
138     fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
139   }
140 #ifdef DEBUG
141   StackFrameIterator it(isolate);
142   for (int i = 0; i < depth + 1; i++) it.Advance();
143   StackFrame* frame = it.frame();
144   ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
145 #endif
146   fp_ = fp;
147   pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
148   target_ = handle(raw_target(), isolate);
149   state_ = target_->ic_state();
150 }
151 
152 
153 #ifdef ENABLE_DEBUGGER_SUPPORT
OriginalCodeAddress() const154 Address IC::OriginalCodeAddress() const {
155   HandleScope scope(isolate());
156   // Compute the JavaScript frame for the frame pointer of this IC
157   // structure. We need this to be able to find the function
158   // corresponding to the frame.
159   StackFrameIterator it(isolate());
160   while (it.frame()->fp() != this->fp()) it.Advance();
161   JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
162   // Find the function on the stack and both the active code for the
163   // function and the original code.
164   JSFunction* function = frame->function();
165   Handle<SharedFunctionInfo> shared(function->shared(), isolate());
166   Code* code = shared->code();
167   ASSERT(Debug::HasDebugInfo(shared));
168   Code* original_code = Debug::GetDebugInfo(shared)->original_code();
169   ASSERT(original_code->IsCode());
170   // Get the address of the call site in the active code. This is the
171   // place where the call to DebugBreakXXX is and where the IC
172   // normally would be.
173   Address addr = Assembler::target_address_from_return_address(pc());
174   // Return the address in the original code. This is the place where
175   // the call which has been overwritten by the DebugBreakXXX resides
176   // and the place where the inline cache system should look.
177   intptr_t delta =
178       original_code->instruction_start() - code->instruction_start();
179   return addr + delta;
180 }
181 #endif
182 
183 
HasInterceptorGetter(JSObject * object)184 static bool HasInterceptorGetter(JSObject* object) {
185   return !object->GetNamedInterceptor()->getter()->IsUndefined();
186 }
187 
188 
HasInterceptorSetter(JSObject * object)189 static bool HasInterceptorSetter(JSObject* object) {
190   return !object->GetNamedInterceptor()->setter()->IsUndefined();
191 }
192 
193 
LookupForRead(Handle<Object> object,Handle<String> name,LookupResult * lookup)194 static void LookupForRead(Handle<Object> object,
195                           Handle<String> name,
196                           LookupResult* lookup) {
197   // Skip all the objects with named interceptors, but
198   // without actual getter.
199   while (true) {
200     object->Lookup(*name, lookup);
201     // Besides normal conditions (property not found or it's not
202     // an interceptor), bail out if lookup is not cacheable: we won't
203     // be able to IC it anyway and regular lookup should work fine.
204     if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
205       return;
206     }
207 
208     Handle<JSObject> holder(lookup->holder(), lookup->isolate());
209     if (HasInterceptorGetter(*holder)) {
210       return;
211     }
212 
213     holder->LocalLookupRealNamedProperty(*name, lookup);
214     if (lookup->IsFound()) {
215       ASSERT(!lookup->IsInterceptor());
216       return;
217     }
218 
219     Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
220     if (proto->IsNull()) {
221       ASSERT(!lookup->IsFound());
222       return;
223     }
224 
225     object = proto;
226   }
227 }
228 
229 
TryUpdateExtraICState(LookupResult * lookup,Handle<Object> object)230 bool CallIC::TryUpdateExtraICState(LookupResult* lookup,
231                                    Handle<Object> object) {
232   if (!lookup->IsConstantFunction()) return false;
233   JSFunction* function = lookup->GetConstantFunction();
234   if (!function->shared()->HasBuiltinFunctionId()) return false;
235 
236   // Fetch the arguments passed to the called function.
237   const int argc = target()->arguments_count();
238   Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
239   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
240   Arguments args(argc + 1,
241                  &Memory::Object_at(fp +
242                                     StandardFrameConstants::kCallerSPOffset +
243                                     argc * kPointerSize));
244   switch (function->shared()->builtin_function_id()) {
245     case kStringCharCodeAt:
246     case kStringCharAt:
247       if (object->IsString()) {
248         String* string = String::cast(*object);
249         // Check there's the right string value or wrapper in the receiver slot.
250         ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
251         // If we're in the default (fastest) state and the index is
252         // out of bounds, update the state to record this fact.
253         if (StringStubState::decode(extra_ic_state()) == DEFAULT_STRING_STUB &&
254             argc >= 1 && args[1]->IsNumber()) {
255           double index = DoubleToInteger(args.number_at(1));
256           if (index < 0 || index >= string->length()) {
257             extra_ic_state_ =
258                 StringStubState::update(extra_ic_state(),
259                                         STRING_INDEX_OUT_OF_BOUNDS);
260             return true;
261           }
262         }
263       }
264       break;
265     default:
266       return false;
267   }
268   return false;
269 }
270 
271 
TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,Handle<String> name)272 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
273                                                 Handle<String> name) {
274   if (target()->is_call_stub()) {
275     LookupResult lookup(isolate());
276     LookupForRead(receiver, name, &lookup);
277     if (static_cast<CallIC*>(this)->TryUpdateExtraICState(&lookup, receiver)) {
278       return true;
279     }
280   }
281 
282   if (target()->is_keyed_stub()) {
283     // Determine whether the failure is due to a name failure.
284     if (!name->IsName()) return false;
285     Name* stub_name = target()->FindFirstName();
286     if (*name != stub_name) return false;
287   }
288 
289   InlineCacheHolderFlag cache_holder =
290       Code::ExtractCacheHolderFromFlags(target()->flags());
291 
292   switch (cache_holder) {
293     case OWN_MAP:
294       // The stub was generated for JSObject but called for non-JSObject.
295       // IC::GetCodeCacheHolder is not applicable.
296       if (!receiver->IsJSObject()) return false;
297       break;
298     case PROTOTYPE_MAP:
299       // IC::GetCodeCacheHolder is not applicable.
300       if (receiver->GetPrototype(isolate())->IsNull()) return false;
301       break;
302   }
303 
304   Handle<Map> map(
305       IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
306 
307   // Decide whether the inline cache failed because of changes to the
308   // receiver itself or changes to one of its prototypes.
309   //
310   // If there are changes to the receiver itself, the map of the
311   // receiver will have changed and the current target will not be in
312   // the receiver map's code cache.  Therefore, if the current target
313   // is in the receiver map's code cache, the inline cache failed due
314   // to prototype check failure.
315   int index = map->IndexInCodeCache(*name, *target());
316   if (index >= 0) {
317     map->RemoveFromCodeCache(*name, *target(), index);
318     // Handlers are stored in addition to the ICs on the map. Remove those, too.
319     TryRemoveInvalidHandlers(map, name);
320     return true;
321   }
322 
323   // The stub is not in the cache. We've ruled out all other kinds of failure
324   // except for proptotype chain changes, a deprecated map, a map that's
325   // different from the one that the stub expects, elements kind changes, or a
326   // constant global property that will become mutable. Threat all those
327   // situations as prototype failures (stay monomorphic if possible).
328 
329   // If the IC is shared between multiple receivers (slow dictionary mode), then
330   // the map cannot be deprecated and the stub invalidated.
331   if (cache_holder == OWN_MAP) {
332     Map* old_map = target()->FindFirstMap();
333     if (old_map == *map) return true;
334     if (old_map != NULL) {
335       if (old_map->is_deprecated()) return true;
336       if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
337                                               map->elements_kind())) {
338         return true;
339       }
340     }
341   }
342 
343   if (receiver->IsGlobalObject()) {
344     LookupResult lookup(isolate());
345     GlobalObject* global = GlobalObject::cast(*receiver);
346     global->LocalLookupRealNamedProperty(*name, &lookup);
347     if (!lookup.IsFound()) return false;
348     PropertyCell* cell = global->GetPropertyCell(&lookup);
349     return cell->type()->IsConstant();
350   }
351 
352   return false;
353 }
354 
355 
TryRemoveInvalidHandlers(Handle<Map> map,Handle<String> name)356 void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
357   CodeHandleList handlers;
358   target()->FindHandlers(&handlers);
359   for (int i = 0; i < handlers.length(); i++) {
360     Handle<Code> handler = handlers.at(i);
361     int index = map->IndexInCodeCache(*name, *handler);
362     if (index >= 0) {
363       map->RemoveFromCodeCache(*name, *handler, index);
364       return;
365     }
366   }
367 }
368 
369 
UpdateState(Handle<Object> receiver,Handle<Object> name)370 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
371   if (!name->IsString()) return;
372   if (state() != MONOMORPHIC) {
373     if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
374       TryRemoveInvalidHandlers(
375           handle(Handle<HeapObject>::cast(receiver)->map()),
376           Handle<String>::cast(name));
377     }
378     return;
379   }
380   if (receiver->IsUndefined() || receiver->IsNull()) return;
381 
382   // Remove the target from the code cache if it became invalid
383   // because of changes in the prototype chain to avoid hitting it
384   // again.
385   if (TryRemoveInvalidPrototypeDependentStub(
386           receiver, Handle<String>::cast(name))) {
387     return MarkMonomorphicPrototypeFailure();
388   }
389 
390   // The builtins object is special.  It only changes when JavaScript
391   // builtins are loaded lazily.  It is important to keep inline
392   // caches for the builtins object monomorphic.  Therefore, if we get
393   // an inline cache miss for the builtins object after lazily loading
394   // JavaScript builtins, we return uninitialized as the state to
395   // force the inline cache back to monomorphic state.
396   if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
397 }
398 
399 
ComputeMode()400 RelocInfo::Mode IC::ComputeMode() {
401   Address addr = address();
402   Code* code = Code::cast(isolate()->FindCodeObject(addr));
403   for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
404        !it.done(); it.next()) {
405     RelocInfo* info = it.rinfo();
406     if (info->pc() == addr) return info->rmode();
407   }
408   UNREACHABLE();
409   return RelocInfo::NONE32;
410 }
411 
412 
TypeError(const char * type,Handle<Object> object,Handle<Object> key)413 Failure* IC::TypeError(const char* type,
414                        Handle<Object> object,
415                        Handle<Object> key) {
416   HandleScope scope(isolate());
417   Handle<Object> args[2] = { key, object };
418   Handle<Object> error = isolate()->factory()->NewTypeError(
419       type, HandleVector(args, 2));
420   return isolate()->Throw(*error);
421 }
422 
423 
ReferenceError(const char * type,Handle<String> name)424 Failure* IC::ReferenceError(const char* type, Handle<String> name) {
425   HandleScope scope(isolate());
426   Handle<Object> error = isolate()->factory()->NewReferenceError(
427       type, HandleVector(&name, 1));
428   return isolate()->Throw(*error);
429 }
430 
431 
ComputeTypeInfoCountDelta(IC::State old_state,IC::State new_state)432 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
433   bool was_uninitialized =
434       old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
435   bool is_uninitialized =
436       new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
437   return (was_uninitialized && !is_uninitialized) ?  1 :
438          (!was_uninitialized && is_uninitialized) ? -1 : 0;
439 }
440 
441 
PostPatching(Address address,Code * target,Code * old_target)442 void IC::PostPatching(Address address, Code* target, Code* old_target) {
443   if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
444     return;
445   }
446   Isolate* isolate = target->GetHeap()->isolate();
447   Code* host = isolate->
448       inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
449   if (host->kind() != Code::FUNCTION) return;
450 
451   if (FLAG_type_info_threshold > 0 &&
452       old_target->is_inline_cache_stub() &&
453       target->is_inline_cache_stub()) {
454     int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
455                                           target->ic_state());
456     // Not all Code objects have TypeFeedbackInfo.
457     if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
458       TypeFeedbackInfo* info =
459           TypeFeedbackInfo::cast(host->type_feedback_info());
460       info->change_ic_with_type_info_count(delta);
461     }
462   }
463   if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
464     TypeFeedbackInfo* info =
465         TypeFeedbackInfo::cast(host->type_feedback_info());
466     info->change_own_type_change_checksum();
467   }
468   if (FLAG_watch_ic_patching) {
469     host->set_profiler_ticks(0);
470     isolate->runtime_profiler()->NotifyICChanged();
471   }
472   // TODO(2029): When an optimized function is patched, it would
473   // be nice to propagate the corresponding type information to its
474   // unoptimized version for the benefit of later inlining.
475 }
476 
477 
Clear(Isolate * isolate,Address address)478 void IC::Clear(Isolate* isolate, Address address) {
479   Code* target = GetTargetAtAddress(address);
480 
481   // Don't clear debug break inline cache as it will remove the break point.
482   if (target->is_debug_stub()) return;
483 
484   switch (target->kind()) {
485     case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target);
486     case Code::KEYED_LOAD_IC:
487       return KeyedLoadIC::Clear(isolate, address, target);
488     case Code::STORE_IC: return StoreIC::Clear(isolate, address, target);
489     case Code::KEYED_STORE_IC:
490       return KeyedStoreIC::Clear(isolate, address, target);
491     case Code::CALL_IC: return CallIC::Clear(address, target);
492     case Code::KEYED_CALL_IC:  return KeyedCallIC::Clear(address, target);
493     case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target);
494     case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
495     case Code::BINARY_OP_IC:
496     case Code::TO_BOOLEAN_IC:
497       // Clearing these is tricky and does not
498       // make any performance difference.
499       return;
500     default: UNREACHABLE();
501   }
502 }
503 
504 
Clear(Address address,Code * target)505 void CallICBase::Clear(Address address, Code* target) {
506   if (IsCleared(target)) return;
507   bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
508   Code* code =
509       target->GetIsolate()->stub_cache()->FindCallInitialize(
510           target->arguments_count(),
511           contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
512           target->kind());
513   SetTargetAtAddress(address, code);
514 }
515 
516 
Clear(Isolate * isolate,Address address,Code * target)517 void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) {
518   if (IsCleared(target)) return;
519   // Make sure to also clear the map used in inline fast cases.  If we
520   // do not clear these maps, cached code can keep objects alive
521   // through the embedded maps.
522   SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
523 }
524 
525 
Clear(Isolate * isolate,Address address,Code * target)526 void LoadIC::Clear(Isolate* isolate, Address address, Code* target) {
527   if (IsCleared(target)) return;
528   SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
529 }
530 
531 
Clear(Isolate * isolate,Address address,Code * target)532 void StoreIC::Clear(Isolate* isolate, Address address, Code* target) {
533   if (IsCleared(target)) return;
534   SetTargetAtAddress(address,
535       *pre_monomorphic_stub(
536           isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
537 }
538 
539 
Clear(Isolate * isolate,Address address,Code * target)540 void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) {
541   if (IsCleared(target)) return;
542   SetTargetAtAddress(address,
543       *pre_monomorphic_stub(
544           isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
545 }
546 
547 
Clear(Isolate * isolate,Address address,Code * target)548 void CompareIC::Clear(Isolate* isolate, Address address, Code* target) {
549   ASSERT(target->major_key() == CodeStub::CompareIC);
550   CompareIC::State handler_state;
551   Token::Value op;
552   ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
553                                 &handler_state, &op);
554   // Only clear CompareICs that can retain objects.
555   if (handler_state != KNOWN_OBJECT) return;
556   SetTargetAtAddress(address, GetRawUninitialized(isolate, op));
557   PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
558 }
559 
560 
TryCallAsFunction(Handle<Object> object)561 Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
562   Handle<Object> delegate = Execution::GetFunctionDelegate(isolate(), object);
563 
564   if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
565     // Patch the receiver and use the delegate as the function to
566     // invoke. This is used for invoking objects as if they were functions.
567     const int argc = target()->arguments_count();
568     StackFrameLocator locator(isolate());
569     JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
570     int index = frame->ComputeExpressionsCount() - (argc + 1);
571     frame->SetExpression(index, *object);
572   }
573 
574   return delegate;
575 }
576 
577 
ReceiverToObjectIfRequired(Handle<Object> callee,Handle<Object> object)578 void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
579                                             Handle<Object> object) {
580   while (callee->IsJSFunctionProxy()) {
581     callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(),
582                             isolate());
583   }
584 
585   if (callee->IsJSFunction()) {
586     Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
587     if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
588       // Do not wrap receiver for strict mode functions or for builtins.
589       return;
590     }
591   }
592 
593   // And only wrap string, number or boolean.
594   if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
595     // Change the receiver to the result of calling ToObject on it.
596     const int argc = this->target()->arguments_count();
597     StackFrameLocator locator(isolate());
598     JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
599     int index = frame->ComputeExpressionsCount() - (argc + 1);
600     frame->SetExpression(index, *isolate()->factory()->ToObject(object));
601   }
602 }
603 
604 
MigrateDeprecated(Handle<Object> object)605 static bool MigrateDeprecated(Handle<Object> object) {
606   if (!object->IsJSObject()) return false;
607   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
608   if (!receiver->map()->is_deprecated()) return false;
609   JSObject::MigrateInstance(Handle<JSObject>::cast(object));
610   return true;
611 }
612 
613 
LoadFunction(Handle<Object> object,Handle<String> name)614 MaybeObject* CallICBase::LoadFunction(Handle<Object> object,
615                                       Handle<String> name) {
616   bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
617 
618   // If the object is undefined or null it's illegal to try to get any
619   // of its properties; throw a TypeError in that case.
620   if (object->IsUndefined() || object->IsNull()) {
621     return TypeError("non_object_property_call", object, name);
622   }
623 
624   // Check if the name is trivially convertible to an index and get
625   // the element if so.
626   uint32_t index;
627   if (name->AsArrayIndex(&index)) {
628     Handle<Object> result = Object::GetElement(isolate(), object, index);
629     RETURN_IF_EMPTY_HANDLE(isolate(), result);
630     if (result->IsJSFunction()) return *result;
631 
632     // Try to find a suitable function delegate for the object at hand.
633     result = TryCallAsFunction(result);
634     if (result->IsJSFunction()) return *result;
635 
636     // Otherwise, it will fail in the lookup step.
637   }
638 
639   // Lookup the property in the object.
640   LookupResult lookup(isolate());
641   LookupForRead(object, name, &lookup);
642 
643   if (!lookup.IsFound()) {
644     // If the object does not have the requested property, check which
645     // exception we need to throw.
646     return IsUndeclaredGlobal(object)
647         ? ReferenceError("not_defined", name)
648         : TypeError("undefined_method", object, name);
649   }
650 
651   // Lookup is valid: Update inline cache and stub cache.
652   if (use_ic) UpdateCaches(&lookup, object, name);
653 
654   // Get the property.
655   PropertyAttributes attr;
656   Handle<Object> result =
657       Object::GetProperty(object, object, &lookup, name, &attr);
658   RETURN_IF_EMPTY_HANDLE(isolate(), result);
659 
660   if (lookup.IsInterceptor() && attr == ABSENT) {
661     // If the object does not have the requested property, check which
662     // exception we need to throw.
663     return IsUndeclaredGlobal(object)
664         ? ReferenceError("not_defined", name)
665         : TypeError("undefined_method", object, name);
666   }
667 
668   ASSERT(!result->IsTheHole());
669 
670   // Make receiver an object if the callee requires it. Strict mode or builtin
671   // functions do not wrap the receiver, non-strict functions and objects
672   // called as functions do.
673   ReceiverToObjectIfRequired(result, object);
674 
675   if (result->IsJSFunction()) {
676     Handle<JSFunction> function = Handle<JSFunction>::cast(result);
677 #ifdef ENABLE_DEBUGGER_SUPPORT
678     // Handle stepping into a function if step into is active.
679     Debug* debug = isolate()->debug();
680     if (debug->StepInActive()) {
681       // Protect the result in a handle as the debugger can allocate and might
682       // cause GC.
683       debug->HandleStepIn(function, object, fp(), false);
684     }
685 #endif
686     return *function;
687   }
688 
689   // Try to find a suitable function delegate for the object at hand.
690   result = TryCallAsFunction(result);
691   if (result->IsJSFunction()) return *result;
692 
693   return TypeError("property_not_function", object, name);
694 }
695 
696 
ComputeMonomorphicStub(LookupResult * lookup,Handle<Object> object,Handle<String> name)697 Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
698                                                 Handle<Object> object,
699                                                 Handle<String> name) {
700   int argc = target()->arguments_count();
701   Handle<JSObject> holder(lookup->holder(), isolate());
702   switch (lookup->type()) {
703     case FIELD: {
704       PropertyIndex index = lookup->GetFieldIndex();
705       return isolate()->stub_cache()->ComputeCallField(
706           argc, kind_, extra_ic_state(), name, object, holder, index);
707     }
708     case CONSTANT: {
709       if (!lookup->IsConstantFunction()) return Handle<Code>::null();
710       // Get the constant function and compute the code stub for this
711       // call; used for rewriting to monomorphic state and making sure
712       // that the code stub is in the stub cache.
713       Handle<JSFunction> function(lookup->GetConstantFunction(), isolate());
714       return isolate()->stub_cache()->ComputeCallConstant(
715           argc, kind_, extra_ic_state(), name, object, holder, function);
716     }
717     case NORMAL: {
718       // If we return a null handle, the IC will not be patched.
719       if (!object->IsJSObject()) return Handle<Code>::null();
720       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
721 
722       if (holder->IsGlobalObject()) {
723         Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
724         Handle<PropertyCell> cell(
725             global->GetPropertyCell(lookup), isolate());
726         if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
727         Handle<JSFunction> function(JSFunction::cast(cell->value()));
728         return isolate()->stub_cache()->ComputeCallGlobal(
729             argc, kind_, extra_ic_state(), name,
730             receiver, global, cell, function);
731       } else {
732         // There is only one shared stub for calling normalized
733         // properties. It does not traverse the prototype chain, so the
734         // property must be found in the receiver for the stub to be
735         // applicable.
736         if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
737         return isolate()->stub_cache()->ComputeCallNormal(
738             argc, kind_, extra_ic_state());
739       }
740       break;
741     }
742     case INTERCEPTOR:
743       ASSERT(HasInterceptorGetter(*holder));
744       return isolate()->stub_cache()->ComputeCallInterceptor(
745           argc, kind_, extra_ic_state(), name, object, holder);
746     default:
747       return Handle<Code>::null();
748   }
749 }
750 
751 
megamorphic_stub()752 Handle<Code> CallICBase::megamorphic_stub() {
753   return isolate()->stub_cache()->ComputeCallMegamorphic(
754       target()->arguments_count(), kind_, extra_ic_state());
755 }
756 
757 
pre_monomorphic_stub()758 Handle<Code> CallICBase::pre_monomorphic_stub() {
759   return isolate()->stub_cache()->ComputeCallPreMonomorphic(
760       target()->arguments_count(), kind_, extra_ic_state());
761 }
762 
763 
UpdateCaches(LookupResult * lookup,Handle<Object> object,Handle<String> name)764 void CallICBase::UpdateCaches(LookupResult* lookup,
765                               Handle<Object> object,
766                               Handle<String> name) {
767   // Bail out if we didn't find a result.
768   if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
769 
770   if (state() == UNINITIALIZED) {
771     set_target(*pre_monomorphic_stub());
772     TRACE_IC("CallIC", name);
773     return;
774   }
775 
776   Handle<Code> code = ComputeMonomorphicStub(lookup, object, name);
777   // If there's no appropriate stub we simply avoid updating the caches.
778   // TODO(verwaest): Install a slow fallback in this case to avoid not learning,
779   // and deopting Crankshaft code.
780   if (code.is_null()) return;
781 
782   Handle<JSObject> cache_object = object->IsJSObject()
783       ? Handle<JSObject>::cast(object)
784       : Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())),
785                          isolate());
786 
787   PatchCache(CurrentTypeOf(cache_object, isolate()), name, code);
788   TRACE_IC("CallIC", name);
789 }
790 
791 
LoadFunction(Handle<Object> object,Handle<Object> key)792 MaybeObject* KeyedCallIC::LoadFunction(Handle<Object> object,
793                                        Handle<Object> key) {
794   if (key->IsInternalizedString()) {
795     return CallICBase::LoadFunction(object, Handle<String>::cast(key));
796   }
797 
798   if (object->IsUndefined() || object->IsNull()) {
799     return TypeError("non_object_property_call", object, key);
800   }
801 
802   bool use_ic = MigrateDeprecated(object)
803       ? false : FLAG_use_ic && !object->IsAccessCheckNeeded();
804 
805   if (use_ic && state() != MEGAMORPHIC) {
806     ASSERT(!object->IsJSGlobalProxy());
807     int argc = target()->arguments_count();
808     Handle<Code> stub;
809 
810     // Use the KeyedArrayCallStub if the call is of the form array[smi](...),
811     // where array is an instance of one of the initial array maps (without
812     // extra named properties).
813     // TODO(verwaest): Also support keyed calls on instances of other maps.
814     if (object->IsJSArray() && key->IsSmi()) {
815       Handle<JSArray> array = Handle<JSArray>::cast(object);
816       ElementsKind kind = array->map()->elements_kind();
817       if (IsFastObjectElementsKind(kind) &&
818           array->map() == isolate()->get_initial_js_array_map(kind)) {
819         KeyedArrayCallStub stub_gen(IsHoleyElementsKind(kind), argc);
820         stub = stub_gen.GetCode(isolate());
821       }
822     }
823 
824     if (stub.is_null()) {
825       stub = isolate()->stub_cache()->ComputeCallMegamorphic(
826           argc, Code::KEYED_CALL_IC, kNoExtraICState);
827       if (object->IsJSObject()) {
828         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
829         if (receiver->elements()->map() ==
830             isolate()->heap()->non_strict_arguments_elements_map()) {
831           stub = isolate()->stub_cache()->ComputeCallArguments(argc);
832         }
833       }
834       ASSERT(!stub.is_null());
835     }
836     set_target(*stub);
837     TRACE_IC("CallIC", key);
838   }
839 
840   Handle<Object> result = GetProperty(isolate(), object, key);
841   RETURN_IF_EMPTY_HANDLE(isolate(), result);
842 
843   // Make receiver an object if the callee requires it. Strict mode or builtin
844   // functions do not wrap the receiver, non-strict functions and objects
845   // called as functions do.
846   ReceiverToObjectIfRequired(result, object);
847   if (result->IsJSFunction()) return *result;
848 
849   result = TryCallAsFunction(result);
850   if (result->IsJSFunction()) return *result;
851 
852   return TypeError("property_not_function", object, key);
853 }
854 
855 
Load(Handle<Object> object,Handle<String> name)856 MaybeObject* LoadIC::Load(Handle<Object> object,
857                           Handle<String> name) {
858   // If the object is undefined or null it's illegal to try to get any
859   // of its properties; throw a TypeError in that case.
860   if (object->IsUndefined() || object->IsNull()) {
861     return TypeError("non_object_property_load", object, name);
862   }
863 
864   if (FLAG_use_ic) {
865     // Use specialized code for getting the length of strings and
866     // string wrapper objects.  The length property of string wrapper
867     // objects is read-only and therefore always returns the length of
868     // the underlying string value.  See ECMA-262 15.5.5.1.
869     if (object->IsStringWrapper() &&
870         name->Equals(isolate()->heap()->length_string())) {
871       Handle<Code> stub;
872       if (state() == UNINITIALIZED) {
873         stub = pre_monomorphic_stub();
874       } else if (state() == PREMONOMORPHIC || state() == MONOMORPHIC) {
875         StringLengthStub string_length_stub(kind());
876         stub = string_length_stub.GetCode(isolate());
877       } else if (state() != MEGAMORPHIC) {
878         ASSERT(state() != GENERIC);
879         stub = megamorphic_stub();
880       }
881       if (!stub.is_null()) {
882         set_target(*stub);
883         if (FLAG_trace_ic) PrintF("[LoadIC : +#length /stringwrapper]\n");
884       }
885       // Get the string if we have a string wrapper object.
886       String* string = String::cast(JSValue::cast(*object)->value());
887       return Smi::FromInt(string->length());
888     }
889 
890     // Use specialized code for getting prototype of functions.
891     if (object->IsJSFunction() &&
892         name->Equals(isolate()->heap()->prototype_string()) &&
893         Handle<JSFunction>::cast(object)->should_have_prototype()) {
894       Handle<Code> stub;
895       if (state() == UNINITIALIZED) {
896         stub = pre_monomorphic_stub();
897       } else if (state() == PREMONOMORPHIC) {
898         FunctionPrototypeStub function_prototype_stub(kind());
899         stub = function_prototype_stub.GetCode(isolate());
900       } else if (state() != MEGAMORPHIC) {
901         ASSERT(state() != GENERIC);
902         stub = megamorphic_stub();
903       }
904       if (!stub.is_null()) {
905         set_target(*stub);
906         if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
907       }
908       return *Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
909     }
910   }
911 
912   // Check if the name is trivially convertible to an index and get
913   // the element or char if so.
914   uint32_t index;
915   if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
916     // Rewrite to the generic keyed load stub.
917     if (FLAG_use_ic) set_target(*generic_stub());
918     return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
919   }
920 
921   bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
922 
923   // Named lookup in the object.
924   LookupResult lookup(isolate());
925   LookupForRead(object, name, &lookup);
926 
927   // If we did not find a property, check if we need to throw an exception.
928   if (!lookup.IsFound()) {
929     if (IsUndeclaredGlobal(object)) {
930       return ReferenceError("not_defined", name);
931     }
932     LOG(isolate(), SuspectReadEvent(*name, *object));
933   }
934 
935   // Update inline cache and stub cache.
936   if (use_ic) UpdateCaches(&lookup, object, name);
937 
938   PropertyAttributes attr;
939   // Get the property.
940   Handle<Object> result =
941       Object::GetProperty(object, object, &lookup, name, &attr);
942   RETURN_IF_EMPTY_HANDLE(isolate(), result);
943   // If the property is not present, check if we need to throw an
944   // exception.
945   if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
946       attr == ABSENT && IsUndeclaredGlobal(object)) {
947     return ReferenceError("not_defined", name);
948   }
949   return *result;
950 }
951 
952 
AddOneReceiverMapIfMissing(MapHandleList * receiver_maps,Handle<Map> new_receiver_map)953 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
954                                        Handle<Map> new_receiver_map) {
955   ASSERT(!new_receiver_map.is_null());
956   for (int current = 0; current < receiver_maps->length(); ++current) {
957     if (!receiver_maps->at(current).is_null() &&
958         receiver_maps->at(current).is_identical_to(new_receiver_map)) {
959       return false;
960     }
961   }
962   receiver_maps->Add(new_receiver_map);
963   return true;
964 }
965 
966 
UpdatePolymorphicIC(Handle<Type> type,Handle<String> name,Handle<Code> code)967 bool IC::UpdatePolymorphicIC(Handle<Type> type,
968                              Handle<String> name,
969                              Handle<Code> code) {
970   if (!code->is_handler()) return false;
971   TypeHandleList types;
972   CodeHandleList handlers;
973 
974   int number_of_valid_types;
975   int handler_to_overwrite = -1;
976 
977   target()->FindAllTypes(&types);
978   int number_of_types = types.length();
979   number_of_valid_types = number_of_types;
980 
981   for (int i = 0; i < number_of_types; i++) {
982     Handle<Type> current_type = types.at(i);
983     // Filter out deprecated maps to ensure their instances get migrated.
984     if (current_type->IsClass() && current_type->AsClass()->is_deprecated()) {
985       number_of_valid_types--;
986     // If the receiver type is already in the polymorphic IC, this indicates
987     // there was a prototoype chain failure. In that case, just overwrite the
988     // handler.
989     } else if (type->IsCurrently(current_type)) {
990       ASSERT(handler_to_overwrite == -1);
991       number_of_valid_types--;
992       handler_to_overwrite = i;
993     }
994   }
995 
996   if (number_of_valid_types >= 4) return false;
997   if (number_of_types == 0) return false;
998   if (!target()->FindHandlers(&handlers, types.length())) return false;
999 
1000   number_of_valid_types++;
1001   if (handler_to_overwrite >= 0) {
1002     handlers.Set(handler_to_overwrite, code);
1003   } else {
1004     types.Add(type);
1005     handlers.Add(code);
1006   }
1007 
1008   Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
1009       &types, &handlers, number_of_valid_types, name, extra_ic_state());
1010   set_target(*ic);
1011   return true;
1012 }
1013 
1014 
CurrentTypeOf(Handle<Object> object,Isolate * isolate)1015 Handle<Type> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
1016   Type* type = object->IsJSGlobalObject()
1017       ? Type::Constant(Handle<JSGlobalObject>::cast(object))
1018       : Type::OfCurrently(object);
1019   return handle(type, isolate);
1020 }
1021 
1022 
TypeToMap(Type * type,Isolate * isolate)1023 Handle<Map> IC::TypeToMap(Type* type, Isolate* isolate) {
1024   if (type->Is(Type::Number())) return isolate->factory()->heap_number_map();
1025   if (type->Is(Type::Boolean())) return isolate->factory()->oddball_map();
1026   if (type->IsConstant()) {
1027     return handle(Handle<JSGlobalObject>::cast(type->AsConstant())->map());
1028   }
1029   ASSERT(type->IsClass());
1030   return type->AsClass();
1031 }
1032 
1033 
MapToType(Handle<Map> map)1034 Type* IC::MapToType(Handle<Map> map) {
1035   if (map->instance_type() == HEAP_NUMBER_TYPE) return Type::Number();
1036   // The only oddballs that can be recorded in ICs are booleans.
1037   if (map->instance_type() == ODDBALL_TYPE) return Type::Boolean();
1038   return Type::Class(map);
1039 }
1040 
1041 
UpdateMonomorphicIC(Handle<Type> type,Handle<Code> handler,Handle<String> name)1042 void IC::UpdateMonomorphicIC(Handle<Type> type,
1043                              Handle<Code> handler,
1044                              Handle<String> name) {
1045   if (!handler->is_handler()) return set_target(*handler);
1046   Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
1047       name, type, handler, extra_ic_state());
1048   set_target(*ic);
1049 }
1050 
1051 
CopyICToMegamorphicCache(Handle<String> name)1052 void IC::CopyICToMegamorphicCache(Handle<String> name) {
1053   TypeHandleList types;
1054   CodeHandleList handlers;
1055   target()->FindAllTypes(&types);
1056   if (!target()->FindHandlers(&handlers, types.length())) return;
1057   for (int i = 0; i < types.length(); i++) {
1058     UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
1059   }
1060 }
1061 
1062 
IsTransitionOfMonomorphicTarget(Type * type)1063 bool IC::IsTransitionOfMonomorphicTarget(Type* type) {
1064   if (!type->IsClass()) return false;
1065   Map* receiver_map = *type->AsClass();
1066   Map* current_map = target()->FindFirstMap();
1067   ElementsKind receiver_elements_kind = receiver_map->elements_kind();
1068   bool more_general_transition =
1069       IsMoreGeneralElementsKindTransition(
1070         current_map->elements_kind(), receiver_elements_kind);
1071   Map* transitioned_map = more_general_transition
1072       ? current_map->LookupElementsTransitionMap(receiver_elements_kind)
1073       : NULL;
1074 
1075   return transitioned_map == receiver_map;
1076 }
1077 
1078 
PatchCache(Handle<Type> type,Handle<String> name,Handle<Code> code)1079 void IC::PatchCache(Handle<Type> type,
1080                     Handle<String> name,
1081                     Handle<Code> code) {
1082   switch (state()) {
1083     case UNINITIALIZED:
1084     case PREMONOMORPHIC:
1085     case MONOMORPHIC_PROTOTYPE_FAILURE:
1086       UpdateMonomorphicIC(type, code, name);
1087       break;
1088     case MONOMORPHIC: {
1089       // For now, call stubs are allowed to rewrite to the same stub. This
1090       // happens e.g., when the field does not contain a function.
1091       ASSERT(target()->is_call_stub() ||
1092              target()->is_keyed_call_stub() ||
1093              !target().is_identical_to(code));
1094       Code* old_handler = target()->FindFirstHandler();
1095       if (old_handler == *code && IsTransitionOfMonomorphicTarget(*type)) {
1096         UpdateMonomorphicIC(type, code, name);
1097         break;
1098       }
1099       // Fall through.
1100     }
1101     case POLYMORPHIC:
1102       if (!target()->is_keyed_stub()) {
1103         if (UpdatePolymorphicIC(type, name, code)) break;
1104         CopyICToMegamorphicCache(name);
1105       }
1106       set_target(*megamorphic_stub());
1107       // Fall through.
1108     case MEGAMORPHIC:
1109       UpdateMegamorphicCache(*type, *name, *code);
1110       break;
1111     case DEBUG_STUB:
1112       break;
1113     case GENERIC:
1114       UNREACHABLE();
1115       break;
1116   }
1117 }
1118 
1119 
SimpleFieldLoad(int offset,bool inobject,Representation representation)1120 Handle<Code> LoadIC::SimpleFieldLoad(int offset,
1121                                      bool inobject,
1122                                      Representation representation) {
1123   if (kind() == Code::LOAD_IC) {
1124     LoadFieldStub stub(inobject, offset, representation);
1125     return stub.GetCode(isolate());
1126   } else {
1127     KeyedLoadFieldStub stub(inobject, offset, representation);
1128     return stub.GetCode(isolate());
1129   }
1130 }
1131 
1132 
UpdateCaches(LookupResult * lookup,Handle<Object> object,Handle<String> name)1133 void LoadIC::UpdateCaches(LookupResult* lookup,
1134                           Handle<Object> object,
1135                           Handle<String> name) {
1136   if (state() == UNINITIALIZED) {
1137     // This is the first time we execute this inline cache.
1138     // Set the target to the pre monomorphic stub to delay
1139     // setting the monomorphic state.
1140     set_target(*pre_monomorphic_stub());
1141     TRACE_IC("LoadIC", name);
1142     return;
1143   }
1144 
1145   Handle<Type> type = CurrentTypeOf(object, isolate());
1146   Handle<Code> code;
1147   if (!lookup->IsCacheable()) {
1148     // Bail out if the result is not cacheable.
1149     code = slow_stub();
1150   } else if (!lookup->IsProperty()) {
1151     if (kind() == Code::LOAD_IC) {
1152       code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
1153     } else {
1154       code = slow_stub();
1155     }
1156   } else {
1157     code = ComputeHandler(lookup, object, name);
1158   }
1159 
1160   PatchCache(type, name, code);
1161   TRACE_IC("LoadIC", name);
1162 }
1163 
1164 
UpdateMegamorphicCache(Type * type,Name * name,Code * code)1165 void IC::UpdateMegamorphicCache(Type* type, Name* name, Code* code) {
1166   // Cache code holding map should be consistent with
1167   // GenerateMonomorphicCacheProbe.
1168   Map* map = *TypeToMap(type, isolate());
1169   isolate()->stub_cache()->Set(name, map, code);
1170 }
1171 
1172 
ComputeHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value)1173 Handle<Code> IC::ComputeHandler(LookupResult* lookup,
1174                                 Handle<Object> object,
1175                                 Handle<String> name,
1176                                 Handle<Object> value) {
1177   InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
1178   Handle<HeapObject> stub_holder(GetCodeCacheHolder(
1179       isolate(), *object, cache_holder));
1180 
1181   Handle<Code> code = isolate()->stub_cache()->FindHandler(
1182       name, handle(stub_holder->map()), kind(), cache_holder);
1183   if (!code.is_null()) return code;
1184 
1185   code = CompileHandler(lookup, object, name, value, cache_holder);
1186   ASSERT(code->is_handler());
1187 
1188   if (code->type() != Code::NORMAL) {
1189     HeapObject::UpdateMapCodeCache(stub_holder, name, code);
1190   }
1191 
1192   return code;
1193 }
1194 
1195 
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> unused,InlineCacheHolderFlag cache_holder)1196 Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
1197                                     Handle<Object> object,
1198                                     Handle<String> name,
1199                                     Handle<Object> unused,
1200                                     InlineCacheHolderFlag cache_holder) {
1201   if (object->IsString() && name->Equals(isolate()->heap()->length_string())) {
1202     int length_index = String::kLengthOffset / kPointerSize;
1203     return SimpleFieldLoad(length_index);
1204   }
1205 
1206   Handle<Type> type = CurrentTypeOf(object, isolate());
1207   Handle<JSObject> holder(lookup->holder());
1208   LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
1209 
1210   switch (lookup->type()) {
1211     case FIELD: {
1212       PropertyIndex field = lookup->GetFieldIndex();
1213       if (object.is_identical_to(holder)) {
1214         return SimpleFieldLoad(field.translate(holder),
1215                                field.is_inobject(holder),
1216                                lookup->representation());
1217       }
1218       return compiler.CompileLoadField(
1219           type, holder, name, field, lookup->representation());
1220     }
1221     case CONSTANT: {
1222       Handle<Object> constant(lookup->GetConstant(), isolate());
1223       // TODO(2803): Don't compute a stub for cons strings because they cannot
1224       // be embedded into code.
1225       if (constant->IsConsString()) break;
1226       return compiler.CompileLoadConstant(type, holder, name, constant);
1227     }
1228     case NORMAL:
1229       if (kind() != Code::LOAD_IC) break;
1230       if (holder->IsGlobalObject()) {
1231         Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
1232         Handle<PropertyCell> cell(
1233             global->GetPropertyCell(lookup), isolate());
1234         Handle<Code> code = compiler.CompileLoadGlobal(
1235             type, global, cell, name, lookup->IsDontDelete());
1236         // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1237         Handle<HeapObject> stub_holder(GetCodeCacheHolder(
1238             isolate(), *object, cache_holder));
1239         HeapObject::UpdateMapCodeCache(stub_holder, name, code);
1240         return code;
1241       }
1242       // There is only one shared stub for loading normalized
1243       // properties. It does not traverse the prototype chain, so the
1244       // property must be found in the object for the stub to be
1245       // applicable.
1246       if (!object.is_identical_to(holder)) break;
1247       return isolate()->builtins()->LoadIC_Normal();
1248     case CALLBACKS: {
1249       // Use simple field loads for some well-known callback properties.
1250       if (object->IsJSObject()) {
1251         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1252         Handle<Map> map(receiver->map());
1253         int object_offset;
1254         if (Accessors::IsJSObjectFieldAccessor(map, name, &object_offset)) {
1255           return SimpleFieldLoad(object_offset / kPointerSize);
1256         }
1257       }
1258 
1259       Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1260       if (callback->IsExecutableAccessorInfo()) {
1261         Handle<ExecutableAccessorInfo> info =
1262             Handle<ExecutableAccessorInfo>::cast(callback);
1263         if (v8::ToCData<Address>(info->getter()) == 0) break;
1264         if (!info->IsCompatibleReceiver(*object)) break;
1265         return compiler.CompileLoadCallback(type, holder, name, info);
1266       } else if (callback->IsAccessorPair()) {
1267         Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
1268                               isolate());
1269         if (!getter->IsJSFunction()) break;
1270         if (holder->IsGlobalObject()) break;
1271         if (!holder->HasFastProperties()) break;
1272         Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1273         if (!object->IsJSObject() &&
1274             !function->IsBuiltin() &&
1275             function->shared()->is_classic_mode()) {
1276           // Calling non-strict non-builtins with a value as the receiver
1277           // requires boxing.
1278           break;
1279         }
1280         CallOptimization call_optimization(function);
1281         if (call_optimization.is_simple_api_call() &&
1282             call_optimization.IsCompatibleReceiver(*object)) {
1283           return compiler.CompileLoadCallback(
1284               type, holder, name, call_optimization);
1285         }
1286         return compiler.CompileLoadViaGetter(type, holder, name, function);
1287       }
1288       // TODO(dcarney): Handle correctly.
1289       if (callback->IsDeclaredAccessorInfo()) break;
1290       ASSERT(callback->IsForeign());
1291       // No IC support for old-style native accessors.
1292       break;
1293     }
1294     case INTERCEPTOR:
1295       ASSERT(HasInterceptorGetter(*holder));
1296       return compiler.CompileLoadInterceptor(type, holder, name);
1297     default:
1298       break;
1299   }
1300 
1301   return slow_stub();
1302 }
1303 
1304 
TryConvertKey(Handle<Object> key,Isolate * isolate)1305 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1306   // This helper implements a few common fast cases for converting
1307   // non-smi keys of keyed loads/stores to a smi or a string.
1308   if (key->IsHeapNumber()) {
1309     double value = Handle<HeapNumber>::cast(key)->value();
1310     if (std::isnan(value)) {
1311       key = isolate->factory()->nan_string();
1312     } else {
1313       int int_value = FastD2I(value);
1314       if (value == int_value && Smi::IsValid(int_value)) {
1315         key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1316       }
1317     }
1318   } else if (key->IsUndefined()) {
1319     key = isolate->factory()->undefined_string();
1320   }
1321   return key;
1322 }
1323 
1324 
LoadElementStub(Handle<JSObject> receiver)1325 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1326   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1327   // via megamorphic stubs, since they don't have a map in their relocation info
1328   // and so the stubs can't be harvested for the object needed for a map check.
1329   if (target()->type() != Code::NORMAL) {
1330     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1331     return generic_stub();
1332   }
1333 
1334   Handle<Map> receiver_map(receiver->map(), isolate());
1335   MapHandleList target_receiver_maps;
1336   if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1337     // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1338     // yet will do so and stay there.
1339     return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1340   }
1341 
1342   if (target().is_identical_to(string_stub())) {
1343     target_receiver_maps.Add(isolate()->factory()->string_map());
1344   } else {
1345     target()->FindAllMaps(&target_receiver_maps);
1346     if (target_receiver_maps.length() == 0) {
1347       return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1348     }
1349   }
1350 
1351   // The first time a receiver is seen that is a transitioned version of the
1352   // previous monomorphic receiver type, assume the new ElementsKind is the
1353   // monomorphic type. This benefits global arrays that only transition
1354   // once, and all call sites accessing them are faster if they remain
1355   // monomorphic. If this optimistic assumption is not true, the IC will
1356   // miss again and it will become polymorphic and support both the
1357   // untransitioned and transitioned maps.
1358   if (state() == MONOMORPHIC &&
1359       IsMoreGeneralElementsKindTransition(
1360           target_receiver_maps.at(0)->elements_kind(),
1361           receiver->GetElementsKind())) {
1362     return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1363   }
1364 
1365   ASSERT(state() != GENERIC);
1366 
1367   // Determine the list of receiver maps that this call site has seen,
1368   // adding the map that was just encountered.
1369   if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1370     // If the miss wasn't due to an unseen map, a polymorphic stub
1371     // won't help, use the generic stub.
1372     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1373     return generic_stub();
1374   }
1375 
1376   // If the maximum number of receiver maps has been exceeded, use the generic
1377   // version of the IC.
1378   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1379     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1380     return generic_stub();
1381   }
1382 
1383   return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
1384       &target_receiver_maps);
1385 }
1386 
1387 
Load(Handle<Object> object,Handle<Object> key)1388 MaybeObject* KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) {
1389   if (MigrateDeprecated(object)) {
1390     return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1391   }
1392 
1393   MaybeObject* maybe_object = NULL;
1394   Handle<Code> stub = generic_stub();
1395 
1396   // Check for values that can be converted into an internalized string directly
1397   // or is representable as a smi.
1398   key = TryConvertKey(key, isolate());
1399 
1400   if (key->IsInternalizedString()) {
1401     maybe_object = LoadIC::Load(object, Handle<String>::cast(key));
1402     if (maybe_object->IsFailure()) return maybe_object;
1403   } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1404     ASSERT(!object->IsJSGlobalProxy());
1405     if (object->IsString() && key->IsNumber()) {
1406       if (state() == UNINITIALIZED) stub = string_stub();
1407     } else if (object->IsJSObject()) {
1408       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1409       if (receiver->elements()->map() ==
1410           isolate()->heap()->non_strict_arguments_elements_map()) {
1411         stub = non_strict_arguments_stub();
1412       } else if (receiver->HasIndexedInterceptor()) {
1413         stub = indexed_interceptor_stub();
1414       } else if (!key->ToSmi()->IsFailure() &&
1415                  (!target().is_identical_to(non_strict_arguments_stub()))) {
1416         stub = LoadElementStub(receiver);
1417       }
1418     }
1419   }
1420 
1421   if (!is_target_set()) {
1422     if (*stub == *generic_stub()) {
1423       TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1424     }
1425     ASSERT(!stub.is_null());
1426     set_target(*stub);
1427     TRACE_IC("LoadIC", key);
1428   }
1429 
1430   if (maybe_object != NULL) return maybe_object;
1431   return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1432 }
1433 
1434 
LookupForWrite(Handle<JSObject> receiver,Handle<String> name,Handle<Object> value,LookupResult * lookup,IC * ic)1435 static bool LookupForWrite(Handle<JSObject> receiver,
1436                            Handle<String> name,
1437                            Handle<Object> value,
1438                            LookupResult* lookup,
1439                            IC* ic) {
1440   Handle<JSObject> holder = receiver;
1441   receiver->Lookup(*name, lookup);
1442   if (lookup->IsFound()) {
1443     if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
1444 
1445     if (lookup->holder() == *receiver) {
1446       if (lookup->IsInterceptor() && !HasInterceptorSetter(*receiver)) {
1447         receiver->LocalLookupRealNamedProperty(*name, lookup);
1448         return lookup->IsFound() &&
1449             !lookup->IsReadOnly() &&
1450             lookup->CanHoldValue(value) &&
1451             lookup->IsCacheable();
1452       }
1453       return lookup->CanHoldValue(value);
1454     }
1455 
1456     if (lookup->IsPropertyCallbacks()) return true;
1457     // JSGlobalProxy always goes via the runtime, so it's safe to cache.
1458     if (receiver->IsJSGlobalProxy()) return true;
1459     // Currently normal holders in the prototype chain are not supported. They
1460     // would require a runtime positive lookup and verification that the details
1461     // have not changed.
1462     if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
1463     holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
1464   }
1465 
1466   // While normally LookupTransition gets passed the receiver, in this case we
1467   // pass the holder of the property that we overwrite. This keeps the holder in
1468   // the LookupResult intact so we can later use it to generate a prototype
1469   // chain check. This avoids a double lookup, but requires us to pass in the
1470   // receiver when trying to fetch extra information from the transition.
1471   receiver->map()->LookupTransition(*holder, *name, lookup);
1472   if (!lookup->IsTransition()) return false;
1473   PropertyDetails target_details = lookup->GetTransitionDetails();
1474   if (target_details.IsReadOnly()) return false;
1475 
1476   // If the value that's being stored does not fit in the field that the
1477   // instance would transition to, create a new transition that fits the value.
1478   // This has to be done before generating the IC, since that IC will embed the
1479   // transition target.
1480   // Ensure the instance and its map were migrated before trying to update the
1481   // transition target.
1482   ASSERT(!receiver->map()->is_deprecated());
1483   if (!value->FitsRepresentation(target_details.representation())) {
1484     Handle<Map> target(lookup->GetTransitionTarget());
1485     Map::GeneralizeRepresentation(
1486         target, target->LastAdded(),
1487         value->OptimalRepresentation(), FORCE_FIELD);
1488     // Lookup the transition again since the transition tree may have changed
1489     // entirely by the migration above.
1490     receiver->map()->LookupTransition(*holder, *name, lookup);
1491     if (!lookup->IsTransition()) return false;
1492     ic->MarkMonomorphicPrototypeFailure();
1493   }
1494   return true;
1495 }
1496 
1497 
Store(Handle<Object> object,Handle<String> name,Handle<Object> value,JSReceiver::StoreFromKeyed store_mode)1498 MaybeObject* StoreIC::Store(Handle<Object> object,
1499                             Handle<String> name,
1500                             Handle<Object> value,
1501                             JSReceiver::StoreFromKeyed store_mode) {
1502   if (MigrateDeprecated(object) || object->IsJSProxy()) {
1503     Handle<Object> result = JSReceiver::SetProperty(
1504         Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode());
1505     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1506     return *result;
1507   }
1508 
1509   // If the object is undefined or null it's illegal to try to set any
1510   // properties on it; throw a TypeError in that case.
1511   if (object->IsUndefined() || object->IsNull()) {
1512     return TypeError("non_object_property_store", object, name);
1513   }
1514 
1515   // The length property of string values is read-only. Throw in strict mode.
1516   if (strict_mode() == kStrictMode && object->IsString() &&
1517       name->Equals(isolate()->heap()->length_string())) {
1518     return TypeError("strict_read_only_property", object, name);
1519   }
1520 
1521   // Ignore other stores where the receiver is not a JSObject.
1522   // TODO(1475): Must check prototype chains of object wrappers.
1523   if (!object->IsJSObject()) return *value;
1524 
1525   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1526 
1527   // Check if the given name is an array index.
1528   uint32_t index;
1529   if (name->AsArrayIndex(&index)) {
1530     Handle<Object> result =
1531         JSObject::SetElement(receiver, index, value, NONE, strict_mode());
1532     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1533     return *value;
1534   }
1535 
1536   // Observed objects are always modified through the runtime.
1537   if (FLAG_harmony_observation && receiver->map()->is_observed()) {
1538     Handle<Object> result = JSReceiver::SetProperty(
1539         receiver, name, value, NONE, strict_mode(), store_mode);
1540     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1541     return *result;
1542   }
1543 
1544   // Use specialized code for setting the length of arrays with fast
1545   // properties. Slow properties might indicate redefinition of the length
1546   // property. Note that when redefined using Object.freeze, it's possible
1547   // to have fast properties but a read-only length.
1548   if (FLAG_use_ic &&
1549       receiver->IsJSArray() &&
1550       name->Equals(isolate()->heap()->length_string()) &&
1551       Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
1552       receiver->HasFastProperties() &&
1553       !receiver->map()->is_frozen()) {
1554     Handle<Code> stub =
1555         StoreArrayLengthStub(kind(), strict_mode()).GetCode(isolate());
1556     set_target(*stub);
1557     TRACE_IC("StoreIC", name);
1558     Handle<Object> result = JSReceiver::SetProperty(
1559         receiver, name, value, NONE, strict_mode(), store_mode);
1560     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1561     return *result;
1562   }
1563 
1564   LookupResult lookup(isolate());
1565   bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
1566   if (!can_store &&
1567       strict_mode() == kStrictMode &&
1568       !(lookup.IsProperty() && lookup.IsReadOnly()) &&
1569       IsUndeclaredGlobal(object)) {
1570     // Strict mode doesn't allow setting non-existent global property.
1571     return ReferenceError("not_defined", name);
1572   }
1573   if (FLAG_use_ic) {
1574     if (state() == UNINITIALIZED) {
1575       Handle<Code> stub = pre_monomorphic_stub();
1576       set_target(*stub);
1577       TRACE_IC("StoreIC", name);
1578     } else if (can_store) {
1579       UpdateCaches(&lookup, receiver, name, value);
1580     } else if (!name->IsCacheable(isolate()) ||
1581                lookup.IsNormal() ||
1582                (lookup.IsField() && lookup.CanHoldValue(value))) {
1583       Handle<Code> stub = generic_stub();
1584       set_target(*stub);
1585     }
1586   }
1587 
1588   // Set the property.
1589   Handle<Object> result = JSReceiver::SetProperty(
1590       receiver, name, value, NONE, strict_mode(), store_mode);
1591   RETURN_IF_EMPTY_HANDLE(isolate(), result);
1592   return *result;
1593 }
1594 
1595 
UpdateCaches(LookupResult * lookup,Handle<JSObject> receiver,Handle<String> name,Handle<Object> value)1596 void StoreIC::UpdateCaches(LookupResult* lookup,
1597                            Handle<JSObject> receiver,
1598                            Handle<String> name,
1599                            Handle<Object> value) {
1600   ASSERT(lookup->IsFound());
1601 
1602   // These are not cacheable, so we never see such LookupResults here.
1603   ASSERT(!lookup->IsHandler());
1604 
1605   Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
1606 
1607   PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
1608   TRACE_IC("StoreIC", name);
1609 }
1610 
1611 
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value,InlineCacheHolderFlag cache_holder)1612 Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
1613                                      Handle<Object> object,
1614                                      Handle<String> name,
1615                                      Handle<Object> value,
1616                                      InlineCacheHolderFlag cache_holder) {
1617   if (object->IsJSGlobalProxy()) return slow_stub();
1618   ASSERT(cache_holder == OWN_MAP);
1619   // This is currently guaranteed by checks in StoreIC::Store.
1620   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1621 
1622   Handle<JSObject> holder(lookup->holder());
1623   // Handlers do not use strict mode.
1624   StoreStubCompiler compiler(isolate(), kNonStrictMode, kind());
1625   switch (lookup->type()) {
1626     case FIELD:
1627       return compiler.CompileStoreField(receiver, lookup, name);
1628     case TRANSITION: {
1629       // Explicitly pass in the receiver map since LookupForWrite may have
1630       // stored something else than the receiver in the holder.
1631       Handle<Map> transition(lookup->GetTransitionTarget());
1632       PropertyDetails details = transition->GetLastDescriptorDetails();
1633 
1634       if (details.type() == CALLBACKS || details.attributes() != NONE) break;
1635 
1636       return compiler.CompileStoreTransition(
1637           receiver, lookup, transition, name);
1638     }
1639     case NORMAL:
1640       if (kind() == Code::KEYED_STORE_IC) break;
1641       if (receiver->IsGlobalObject()) {
1642         // The stub generated for the global object picks the value directly
1643         // from the property cell. So the property must be directly on the
1644         // global object.
1645         Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
1646         Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
1647         Handle<Type> union_type = PropertyCell::UpdatedType(cell, value);
1648         StoreGlobalStub stub(union_type->IsConstant());
1649 
1650         Handle<Code> code = stub.GetCodeCopyFromTemplate(
1651             isolate(), receiver->map(), *cell);
1652         // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1653         HeapObject::UpdateMapCodeCache(receiver, name, code);
1654         return code;
1655       }
1656       ASSERT(holder.is_identical_to(receiver));
1657       return isolate()->builtins()->StoreIC_Normal();
1658     case CALLBACKS: {
1659       if (kind() == Code::KEYED_STORE_IC) break;
1660       Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1661       if (callback->IsExecutableAccessorInfo()) {
1662         Handle<ExecutableAccessorInfo> info =
1663             Handle<ExecutableAccessorInfo>::cast(callback);
1664         if (v8::ToCData<Address>(info->setter()) == 0) break;
1665         if (!holder->HasFastProperties()) break;
1666         if (!info->IsCompatibleReceiver(*receiver)) break;
1667         return compiler.CompileStoreCallback(receiver, holder, name, info);
1668       } else if (callback->IsAccessorPair()) {
1669         Handle<Object> setter(
1670             Handle<AccessorPair>::cast(callback)->setter(), isolate());
1671         if (!setter->IsJSFunction()) break;
1672         if (holder->IsGlobalObject()) break;
1673         if (!holder->HasFastProperties()) break;
1674         Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1675         CallOptimization call_optimization(function);
1676         if (call_optimization.is_simple_api_call() &&
1677             call_optimization.IsCompatibleReceiver(*receiver)) {
1678           return compiler.CompileStoreCallback(
1679               receiver, holder, name, call_optimization);
1680         }
1681         return compiler.CompileStoreViaSetter(
1682             receiver, holder, name, Handle<JSFunction>::cast(setter));
1683       }
1684       // TODO(dcarney): Handle correctly.
1685       if (callback->IsDeclaredAccessorInfo()) break;
1686       ASSERT(callback->IsForeign());
1687       // No IC support for old-style native accessors.
1688       break;
1689     }
1690     case INTERCEPTOR:
1691       if (kind() == Code::KEYED_STORE_IC) break;
1692       ASSERT(HasInterceptorSetter(*receiver));
1693       return compiler.CompileStoreInterceptor(receiver, name);
1694     case CONSTANT:
1695       break;
1696     case NONEXISTENT:
1697     case HANDLER:
1698       UNREACHABLE();
1699       break;
1700   }
1701   return slow_stub();
1702 }
1703 
1704 
StoreElementStub(Handle<JSObject> receiver,KeyedAccessStoreMode store_mode)1705 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1706                                             KeyedAccessStoreMode store_mode) {
1707   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1708   // via megamorphic stubs, since they don't have a map in their relocation info
1709   // and so the stubs can't be harvested for the object needed for a map check.
1710   if (target()->type() != Code::NORMAL) {
1711     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1712     return generic_stub();
1713   }
1714 
1715   Handle<Map> receiver_map(receiver->map(), isolate());
1716   if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1717     // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1718     // yet will do so and stay there.
1719     Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
1720     store_mode = GetNonTransitioningStoreMode(store_mode);
1721     return isolate()->stub_cache()->ComputeKeyedStoreElement(
1722         monomorphic_map, strict_mode(), store_mode);
1723   }
1724 
1725   MapHandleList target_receiver_maps;
1726   target()->FindAllMaps(&target_receiver_maps);
1727   if (target_receiver_maps.length() == 0) {
1728     // In the case that there is a non-map-specific IC is installed (e.g. keyed
1729     // stores into properties in dictionary mode), then there will be not
1730     // receiver maps in the target.
1731     return generic_stub();
1732   }
1733 
1734   // There are several special cases where an IC that is MONOMORPHIC can still
1735   // transition to a different GetNonTransitioningStoreMode IC that handles a
1736   // superset of the original IC. Handle those here if the receiver map hasn't
1737   // changed or it has transitioned to a more general kind.
1738   KeyedAccessStoreMode old_store_mode =
1739       KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1740   Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1741   if (state() == MONOMORPHIC) {
1742       // If the "old" and "new" maps are in the same elements map family, stay
1743       // MONOMORPHIC and use the map for the most generic ElementsKind.
1744     Handle<Map> transitioned_receiver_map = receiver_map;
1745     if (IsTransitionStoreMode(store_mode)) {
1746       transitioned_receiver_map =
1747           ComputeTransitionedMap(receiver, store_mode);
1748     }
1749     if (IsTransitionOfMonomorphicTarget(MapToType(transitioned_receiver_map))) {
1750       // Element family is the same, use the "worst" case map.
1751       store_mode = GetNonTransitioningStoreMode(store_mode);
1752       return isolate()->stub_cache()->ComputeKeyedStoreElement(
1753           transitioned_receiver_map, strict_mode(), store_mode);
1754     } else if (*previous_receiver_map == receiver->map() &&
1755                old_store_mode == STANDARD_STORE &&
1756                (IsGrowStoreMode(store_mode) ||
1757                 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1758                 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1759       // A "normal" IC that handles stores can switch to a version that can
1760       // grow at the end of the array, handle OOB accesses or copy COW arrays
1761       // and still stay MONOMORPHIC.
1762       return isolate()->stub_cache()->ComputeKeyedStoreElement(
1763           receiver_map, strict_mode(), store_mode);
1764     }
1765   }
1766 
1767   ASSERT(state() != GENERIC);
1768 
1769   bool map_added =
1770       AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1771 
1772   if (IsTransitionStoreMode(store_mode)) {
1773     Handle<Map> transitioned_receiver_map =
1774         ComputeTransitionedMap(receiver, store_mode);
1775     map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1776                                             transitioned_receiver_map);
1777   }
1778 
1779   if (!map_added) {
1780     // If the miss wasn't due to an unseen map, a polymorphic stub
1781     // won't help, use the generic stub.
1782     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1783     return generic_stub();
1784   }
1785 
1786   // If the maximum number of receiver maps has been exceeded, use the generic
1787   // version of the IC.
1788   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1789     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1790     return generic_stub();
1791   }
1792 
1793   // Make sure all polymorphic handlers have the same store mode, otherwise the
1794   // generic stub must be used.
1795   store_mode = GetNonTransitioningStoreMode(store_mode);
1796   if (old_store_mode != STANDARD_STORE) {
1797     if (store_mode == STANDARD_STORE) {
1798       store_mode = old_store_mode;
1799     } else if (store_mode != old_store_mode) {
1800       TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1801       return generic_stub();
1802     }
1803   }
1804 
1805   // If the store mode isn't the standard mode, make sure that all polymorphic
1806   // receivers are either external arrays, or all "normal" arrays. Otherwise,
1807   // use the generic stub.
1808   if (store_mode != STANDARD_STORE) {
1809     int external_arrays = 0;
1810     for (int i = 0; i < target_receiver_maps.length(); ++i) {
1811       if (target_receiver_maps[i]->has_external_array_elements()) {
1812         external_arrays++;
1813       }
1814     }
1815     if (external_arrays != 0 &&
1816         external_arrays != target_receiver_maps.length()) {
1817       TRACE_GENERIC_IC(isolate(), "KeyedIC",
1818           "unsupported combination of external and normal arrays");
1819       return generic_stub();
1820     }
1821   }
1822 
1823   return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
1824       &target_receiver_maps, store_mode, strict_mode());
1825 }
1826 
1827 
ComputeTransitionedMap(Handle<JSObject> receiver,KeyedAccessStoreMode store_mode)1828 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1829     Handle<JSObject> receiver,
1830     KeyedAccessStoreMode store_mode) {
1831   switch (store_mode) {
1832     case STORE_TRANSITION_SMI_TO_OBJECT:
1833     case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1834     case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1835     case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1836       return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
1837     case STORE_TRANSITION_SMI_TO_DOUBLE:
1838     case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1839       return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
1840     case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1841     case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1842     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1843     case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1844       return JSObject::GetElementsTransitionMap(receiver,
1845                                                 FAST_HOLEY_ELEMENTS);
1846     case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1847     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1848       return JSObject::GetElementsTransitionMap(receiver,
1849                                                 FAST_HOLEY_DOUBLE_ELEMENTS);
1850     case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1851       ASSERT(receiver->map()->has_external_array_elements());
1852       // Fall through
1853     case STORE_NO_TRANSITION_HANDLE_COW:
1854     case STANDARD_STORE:
1855     case STORE_AND_GROW_NO_TRANSITION:
1856       return Handle<Map>(receiver->map(), isolate());
1857   }
1858   return Handle<Map>::null();
1859 }
1860 
1861 
IsOutOfBoundsAccess(Handle<JSObject> receiver,int index)1862 bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
1863                          int index) {
1864   if (receiver->IsJSArray()) {
1865     return JSArray::cast(*receiver)->length()->IsSmi() &&
1866         index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1867   }
1868   return index >= receiver->elements()->length();
1869 }
1870 
1871 
GetStoreMode(Handle<JSObject> receiver,Handle<Object> key,Handle<Object> value)1872 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1873                                                 Handle<Object> key,
1874                                                 Handle<Object> value) {
1875   ASSERT(!key->ToSmi()->IsFailure());
1876   Smi* smi_key = NULL;
1877   key->ToSmi()->To(&smi_key);
1878   int index = smi_key->value();
1879   bool oob_access = IsOutOfBoundsAccess(receiver, index);
1880   bool allow_growth = receiver->IsJSArray() && oob_access;
1881   if (allow_growth) {
1882     // Handle growing array in stub if necessary.
1883     if (receiver->HasFastSmiElements()) {
1884       if (value->IsHeapNumber()) {
1885         if (receiver->HasFastHoleyElements()) {
1886           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1887         } else {
1888           return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1889         }
1890       }
1891       if (value->IsHeapObject()) {
1892         if (receiver->HasFastHoleyElements()) {
1893           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1894         } else {
1895           return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1896         }
1897       }
1898     } else if (receiver->HasFastDoubleElements()) {
1899       if (!value->IsSmi() && !value->IsHeapNumber()) {
1900         if (receiver->HasFastHoleyElements()) {
1901           return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1902         } else {
1903           return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1904         }
1905       }
1906     }
1907     return STORE_AND_GROW_NO_TRANSITION;
1908   } else {
1909     // Handle only in-bounds elements accesses.
1910     if (receiver->HasFastSmiElements()) {
1911       if (value->IsHeapNumber()) {
1912         if (receiver->HasFastHoleyElements()) {
1913           return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1914         } else {
1915           return STORE_TRANSITION_SMI_TO_DOUBLE;
1916         }
1917       } else if (value->IsHeapObject()) {
1918         if (receiver->HasFastHoleyElements()) {
1919           return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1920         } else {
1921           return STORE_TRANSITION_SMI_TO_OBJECT;
1922         }
1923       }
1924     } else if (receiver->HasFastDoubleElements()) {
1925       if (!value->IsSmi() && !value->IsHeapNumber()) {
1926         if (receiver->HasFastHoleyElements()) {
1927           return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1928         } else {
1929           return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1930         }
1931       }
1932     }
1933     if (!FLAG_trace_external_array_abuse &&
1934         receiver->map()->has_external_array_elements() && oob_access) {
1935       return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1936     }
1937     Heap* heap = receiver->GetHeap();
1938     if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1939       return STORE_NO_TRANSITION_HANDLE_COW;
1940     } else {
1941       return STANDARD_STORE;
1942     }
1943   }
1944 }
1945 
1946 
Store(Handle<Object> object,Handle<Object> key,Handle<Object> value)1947 MaybeObject* KeyedStoreIC::Store(Handle<Object> object,
1948                                  Handle<Object> key,
1949                                  Handle<Object> value) {
1950   if (MigrateDeprecated(object)) {
1951     Handle<Object> result = Runtime::SetObjectProperty(isolate(), object,
1952                                                        key,
1953                                                        value,
1954                                                        NONE,
1955                                                        strict_mode());
1956     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1957     return *result;
1958   }
1959 
1960   // Check for values that can be converted into an internalized string directly
1961   // or is representable as a smi.
1962   key = TryConvertKey(key, isolate());
1963 
1964   MaybeObject* maybe_object = NULL;
1965   Handle<Code> stub = generic_stub();
1966 
1967   if (key->IsInternalizedString()) {
1968     maybe_object = StoreIC::Store(object,
1969                                   Handle<String>::cast(key),
1970                                   value,
1971                                   JSReceiver::MAY_BE_STORE_FROM_KEYED);
1972     if (maybe_object->IsFailure()) return maybe_object;
1973   } else {
1974     bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
1975         !(FLAG_harmony_observation && object->IsJSObject() &&
1976           JSObject::cast(*object)->map()->is_observed());
1977     if (use_ic && !object->IsSmi()) {
1978       // Don't use ICs for maps of the objects in Array's prototype chain. We
1979       // expect to be able to trap element sets to objects with those maps in
1980       // the runtime to enable optimization of element hole access.
1981       Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1982       if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1983     }
1984 
1985     if (use_ic) {
1986       ASSERT(!object->IsJSGlobalProxy());
1987 
1988       if (object->IsJSObject()) {
1989         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1990         bool key_is_smi_like = key->IsSmi() || !key->ToSmi()->IsFailure();
1991         if (receiver->elements()->map() ==
1992             isolate()->heap()->non_strict_arguments_elements_map()) {
1993           stub = non_strict_arguments_stub();
1994         } else if (key_is_smi_like &&
1995                    !(target().is_identical_to(non_strict_arguments_stub()))) {
1996           // We should go generic if receiver isn't a dictionary, but our
1997           // prototype chain does have dictionary elements. This ensures that
1998           // other non-dictionary receivers in the polymorphic case benefit
1999           // from fast path keyed stores.
2000           if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
2001             KeyedAccessStoreMode store_mode =
2002                 GetStoreMode(receiver, key, value);
2003             stub = StoreElementStub(receiver, store_mode);
2004           }
2005         }
2006       }
2007     }
2008   }
2009 
2010   if (!is_target_set()) {
2011     if (*stub == *generic_stub()) {
2012       TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
2013     }
2014     ASSERT(!stub.is_null());
2015     set_target(*stub);
2016     TRACE_IC("StoreIC", key);
2017   }
2018 
2019   if (maybe_object) return maybe_object;
2020   Handle<Object> result = Runtime::SetObjectProperty(isolate(), object, key,
2021                                                      value,
2022                                                      NONE,
2023                                                      strict_mode());
2024   RETURN_IF_EMPTY_HANDLE(isolate(), result);
2025   return *result;
2026 }
2027 
2028 
2029 #undef TRACE_IC
2030 
2031 
2032 // ----------------------------------------------------------------------------
2033 // Static IC stub generators.
2034 //
2035 
2036 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,CallIC_Miss)2037 RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
2038   HandleScope scope(isolate);
2039   ASSERT(args.length() == 2);
2040   CallIC ic(isolate);
2041   Handle<Object> receiver = args.at<Object>(0);
2042   Handle<String> key = args.at<String>(1);
2043   ic.UpdateState(receiver, key);
2044   MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2045   JSFunction* raw_function;
2046   if (!maybe_result->To(&raw_function)) return maybe_result;
2047 
2048   // The first time the inline cache is updated may be the first time the
2049   // function it references gets called. If the function is lazily compiled
2050   // then the first call will trigger a compilation. We check for this case
2051   // and we do the compilation immediately, instead of waiting for the stub
2052   // currently attached to the JSFunction object to trigger compilation.
2053   if (raw_function->is_compiled()) return raw_function;
2054 
2055   Handle<JSFunction> function(raw_function);
2056   JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2057   return *function;
2058 }
2059 
2060 
2061 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,KeyedCallIC_Miss)2062 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
2063   HandleScope scope(isolate);
2064   ASSERT(args.length() == 2);
2065   KeyedCallIC ic(isolate);
2066   Handle<Object> receiver = args.at<Object>(0);
2067   Handle<Object> key = args.at<Object>(1);
2068   ic.UpdateState(receiver, key);
2069   MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2070   // Result could be a function or a failure.
2071   JSFunction* raw_function = NULL;
2072   if (!maybe_result->To(&raw_function)) return maybe_result;
2073 
2074   if (raw_function->is_compiled()) return raw_function;
2075 
2076   Handle<JSFunction> function(raw_function, isolate);
2077   JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2078   return *function;
2079 }
2080 
2081 
2082 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,LoadIC_Miss)2083 RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
2084   HandleScope scope(isolate);
2085   ASSERT(args.length() == 2);
2086   LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2087   Handle<Object> receiver = args.at<Object>(0);
2088   Handle<String> key = args.at<String>(1);
2089   ic.UpdateState(receiver, key);
2090   return ic.Load(receiver, key);
2091 }
2092 
2093 
2094 // Used from ic-<arch>.cc
RUNTIME_FUNCTION(MaybeObject *,KeyedLoadIC_Miss)2095 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
2096   HandleScope scope(isolate);
2097   ASSERT(args.length() == 2);
2098   KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2099   Handle<Object> receiver = args.at<Object>(0);
2100   Handle<Object> key = args.at<Object>(1);
2101   ic.UpdateState(receiver, key);
2102   return ic.Load(receiver, key);
2103 }
2104 
2105 
RUNTIME_FUNCTION(MaybeObject *,KeyedLoadIC_MissFromStubFailure)2106 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
2107   HandleScope scope(isolate);
2108   ASSERT(args.length() == 2);
2109   KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2110   Handle<Object> receiver = args.at<Object>(0);
2111   Handle<Object> key = args.at<Object>(1);
2112   ic.UpdateState(receiver, key);
2113   return ic.Load(receiver, key);
2114 }
2115 
2116 
2117 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,StoreIC_Miss)2118 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
2119   HandleScope scope(isolate);
2120   ASSERT(args.length() == 3);
2121   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2122   Handle<Object> receiver = args.at<Object>(0);
2123   Handle<String> key = args.at<String>(1);
2124   ic.UpdateState(receiver, key);
2125   return ic.Store(receiver, key, args.at<Object>(2));
2126 }
2127 
2128 
RUNTIME_FUNCTION(MaybeObject *,StoreIC_MissFromStubFailure)2129 RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure) {
2130   HandleScope scope(isolate);
2131   ASSERT(args.length() == 3);
2132   StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2133   Handle<Object> receiver = args.at<Object>(0);
2134   Handle<String> key = args.at<String>(1);
2135   ic.UpdateState(receiver, key);
2136   return ic.Store(receiver, key, args.at<Object>(2));
2137 }
2138 
2139 
RUNTIME_FUNCTION(MaybeObject *,KeyedCallIC_MissFromStubFailure)2140 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_MissFromStubFailure) {
2141   HandleScope scope(isolate);
2142   ASSERT(args.length() == 2);
2143   KeyedCallIC ic(isolate);
2144   Arguments* caller_args = reinterpret_cast<Arguments*>(args[0]);
2145   Handle<Object> key = args.at<Object>(1);
2146   Handle<Object> receiver((*caller_args)[0], isolate);
2147 
2148   ic.UpdateState(receiver, key);
2149   MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2150   // Result could be a function or a failure.
2151   JSFunction* raw_function = NULL;
2152   if (!maybe_result->To(&raw_function)) return maybe_result;
2153 
2154   if (raw_function->is_compiled()) return raw_function;
2155 
2156   Handle<JSFunction> function(raw_function, isolate);
2157   JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2158   return *function;
2159 }
2160 
2161 
RUNTIME_FUNCTION(MaybeObject *,StoreIC_ArrayLength)2162 RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
2163   SealHandleScope shs(isolate);
2164 
2165   ASSERT(args.length() == 2);
2166   JSArray* receiver = JSArray::cast(args[0]);
2167   Object* len = args[1];
2168 
2169   // The generated code should filter out non-Smis before we get here.
2170   ASSERT(len->IsSmi());
2171 
2172 #ifdef DEBUG
2173   // The length property has to be a writable callback property.
2174   LookupResult debug_lookup(isolate);
2175   receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
2176   ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
2177 #endif
2178 
2179   Object* result;
2180   MaybeObject* maybe_result = receiver->SetElementsLength(len);
2181   if (!maybe_result->To(&result)) return maybe_result;
2182 
2183   return len;
2184 }
2185 
2186 
2187 // Extend storage is called in a store inline cache when
2188 // it is necessary to extend the properties array of a
2189 // JSObject.
RUNTIME_FUNCTION(MaybeObject *,SharedStoreIC_ExtendStorage)2190 RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
2191   SealHandleScope shs(isolate);
2192   ASSERT(args.length() == 3);
2193 
2194   // Convert the parameters
2195   JSObject* object = JSObject::cast(args[0]);
2196   Map* transition = Map::cast(args[1]);
2197   Object* value = args[2];
2198 
2199   // Check the object has run out out property space.
2200   ASSERT(object->HasFastProperties());
2201   ASSERT(object->map()->unused_property_fields() == 0);
2202 
2203   // Expand the properties array.
2204   FixedArray* old_storage = object->properties();
2205   int new_unused = transition->unused_property_fields();
2206   int new_size = old_storage->length() + new_unused + 1;
2207   Object* result;
2208   MaybeObject* maybe_result = old_storage->CopySize(new_size);
2209   if (!maybe_result->ToObject(&result)) return maybe_result;
2210 
2211   FixedArray* new_storage = FixedArray::cast(result);
2212 
2213   Object* to_store = value;
2214 
2215   if (FLAG_track_double_fields) {
2216     DescriptorArray* descriptors = transition->instance_descriptors();
2217     PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
2218     if (details.representation().IsDouble()) {
2219       MaybeObject* maybe_storage =
2220           isolate->heap()->AllocateHeapNumber(value->Number());
2221       if (!maybe_storage->To(&to_store)) return maybe_storage;
2222     }
2223   }
2224 
2225   new_storage->set(old_storage->length(), to_store);
2226 
2227   // Set the new property value and do the map transition.
2228   object->set_properties(new_storage);
2229   object->set_map(transition);
2230 
2231   // Return the stored value.
2232   return value;
2233 }
2234 
2235 
2236 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_Miss)2237 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
2238   HandleScope scope(isolate);
2239   ASSERT(args.length() == 3);
2240   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2241   Handle<Object> receiver = args.at<Object>(0);
2242   Handle<Object> key = args.at<Object>(1);
2243   ic.UpdateState(receiver, key);
2244   return ic.Store(receiver, key, args.at<Object>(2));
2245 }
2246 
2247 
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_MissFromStubFailure)2248 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
2249   HandleScope scope(isolate);
2250   ASSERT(args.length() == 3);
2251   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2252   Handle<Object> receiver = args.at<Object>(0);
2253   Handle<Object> key = args.at<Object>(1);
2254   ic.UpdateState(receiver, key);
2255   return ic.Store(receiver, key, args.at<Object>(2));
2256 }
2257 
2258 
RUNTIME_FUNCTION(MaybeObject *,StoreIC_Slow)2259 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
2260   HandleScope scope(isolate);
2261   ASSERT(args.length() == 3);
2262   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2263   Handle<Object> object = args.at<Object>(0);
2264   Handle<Object> key = args.at<Object>(1);
2265   Handle<Object> value = args.at<Object>(2);
2266   StrictModeFlag strict_mode = ic.strict_mode();
2267   Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2268                                                      value,
2269                                                      NONE,
2270                                                      strict_mode);
2271   RETURN_IF_EMPTY_HANDLE(isolate, result);
2272   return *result;
2273 }
2274 
2275 
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_Slow)2276 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
2277   HandleScope scope(isolate);
2278   ASSERT(args.length() == 3);
2279   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2280   Handle<Object> object = args.at<Object>(0);
2281   Handle<Object> key = args.at<Object>(1);
2282   Handle<Object> value = args.at<Object>(2);
2283   StrictModeFlag strict_mode = ic.strict_mode();
2284   Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2285                                                      value,
2286                                                      NONE,
2287                                                      strict_mode);
2288   RETURN_IF_EMPTY_HANDLE(isolate, result);
2289   return *result;
2290 }
2291 
2292 
RUNTIME_FUNCTION(MaybeObject *,ElementsTransitionAndStoreIC_Miss)2293 RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss) {
2294   HandleScope scope(isolate);
2295   ASSERT(args.length() == 4);
2296   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2297   Handle<Object> value = args.at<Object>(0);
2298   Handle<Map> map = args.at<Map>(1);
2299   Handle<Object> key = args.at<Object>(2);
2300   Handle<Object> object = args.at<Object>(3);
2301   StrictModeFlag strict_mode = ic.strict_mode();
2302   if (object->IsJSObject()) {
2303     JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2304                                      map->elements_kind());
2305   }
2306   Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2307                                                      value,
2308                                                      NONE,
2309                                                      strict_mode);
2310   RETURN_IF_EMPTY_HANDLE(isolate, result);
2311   return *result;
2312 }
2313 
2314 
State(ExtraICState extra_ic_state)2315 BinaryOpIC::State::State(ExtraICState extra_ic_state) {
2316   // We don't deserialize the SSE2 Field, since this is only used to be able
2317   // to include SSE2 as well as non-SSE2 versions in the snapshot. For code
2318   // generation we always want it to reflect the current state.
2319   op_ = static_cast<Token::Value>(
2320       FIRST_TOKEN + OpField::decode(extra_ic_state));
2321   mode_ = OverwriteModeField::decode(extra_ic_state);
2322   fixed_right_arg_ = Maybe<int>(
2323       HasFixedRightArgField::decode(extra_ic_state),
2324       1 << FixedRightArgValueField::decode(extra_ic_state));
2325   left_kind_ = LeftKindField::decode(extra_ic_state);
2326   if (fixed_right_arg_.has_value) {
2327     right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2328   } else {
2329     right_kind_ = RightKindField::decode(extra_ic_state);
2330   }
2331   result_kind_ = ResultKindField::decode(extra_ic_state);
2332   ASSERT_LE(FIRST_TOKEN, op_);
2333   ASSERT_LE(op_, LAST_TOKEN);
2334 }
2335 
2336 
GetExtraICState() const2337 ExtraICState BinaryOpIC::State::GetExtraICState() const {
2338   bool sse2 = (Max(result_kind_, Max(left_kind_, right_kind_)) > SMI &&
2339                CpuFeatures::IsSafeForSnapshot(SSE2));
2340   ExtraICState extra_ic_state =
2341       SSE2Field::encode(sse2) |
2342       OpField::encode(op_ - FIRST_TOKEN) |
2343       OverwriteModeField::encode(mode_) |
2344       LeftKindField::encode(left_kind_) |
2345       ResultKindField::encode(result_kind_) |
2346       HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2347   if (fixed_right_arg_.has_value) {
2348     extra_ic_state = FixedRightArgValueField::update(
2349         extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2350   } else {
2351     extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2352   }
2353   return extra_ic_state;
2354 }
2355 
2356 
2357 // static
GenerateAheadOfTime(Isolate * isolate,void (* Generate)(Isolate *,const State &))2358 void BinaryOpIC::State::GenerateAheadOfTime(
2359     Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
2360   // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2361   // expensive at runtime. When solved we should be able to add most binops to
2362   // the snapshot instead of hand-picking them.
2363   // Generated list of commonly used stubs
2364 #define GENERATE(op, left_kind, right_kind, result_kind, mode)  \
2365   do {                                                          \
2366     State state(op, mode);                                      \
2367     state.left_kind_ = left_kind;                               \
2368     state.fixed_right_arg_.has_value = false;                   \
2369     state.right_kind_ = right_kind;                             \
2370     state.result_kind_ = result_kind;                           \
2371     Generate(isolate, state);                                   \
2372   } while (false)
2373   GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2374   GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2375   GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2376   GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2377   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2378   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2379   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2380   GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2381   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2382   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2383   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2384   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2385   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2386   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2387   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2388   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2389   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2390   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2391   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2392   GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2393   GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2394   GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2395   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2396   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2397   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2398   GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2399   GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2400   GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2401   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2402   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2403   GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2404   GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2405   GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2406   GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2407   GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2408   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2409   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2410   GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2411   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2412   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2413   GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2414   GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2415   GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2416   GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2417   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2418   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2419   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2420   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2421   GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2422   GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2423   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2424   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2425   GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2426   GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2427   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2428   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2429   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2430   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2431   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2432   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2433   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2434   GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2435   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2436   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2437   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2438   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2439   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2440   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2441   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2442   GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2443   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2444   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2445   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2446   GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2447   GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2448   GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2449   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2450   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2451   GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2452   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2453   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2454   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2455   GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2456   GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2457   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2458   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2459   GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2460   GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2461   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2462   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2463   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2464   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2465   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2466   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2467   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2468   GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2469   GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2470   GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2471   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2472   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2473   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2474   GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2475   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2476   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2477   GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2478   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2479   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2480   GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2481   GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2482   GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2483   GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2484   GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2485   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2486   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2487   GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2488   GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2489   GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2490   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2491   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2492   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2493   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2494   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2495   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2496   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2497   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2498   GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2499   GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2500   GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2501   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2502   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2503   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2504   GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2505   GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2506   GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2507   GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2508   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2509   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2510   GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2511   GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2512   GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2513   GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2514   GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2515   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2516   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2517   GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2518   GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2519   GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2520   GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2521   GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2522   GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2523   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2524   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2525   GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2526   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2527   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2528   GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2529   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2530   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2531   GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2532   GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2533   GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2534   GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2535   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2536   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2537   GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2538   GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2539   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2540   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2541   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2542   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2543   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2544   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2545   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2546   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2547   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2548   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2549   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2550   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2551   GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2552   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2553   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2554   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2555   GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2556   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2557   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2558 #undef GENERATE
2559 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2560   do {                                                                    \
2561     State state(op, mode);                                                \
2562     state.left_kind_ = left_kind;                                         \
2563     state.fixed_right_arg_.has_value = true;                              \
2564     state.fixed_right_arg_.value = fixed_right_arg_value;                 \
2565     state.right_kind_ = SMI;                                              \
2566     state.result_kind_ = result_kind;                                     \
2567     Generate(isolate, state);                                             \
2568   } while (false)
2569   GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2570   GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2571   GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2572   GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2573   GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2574   GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2575   GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2576 #undef GENERATE
2577 }
2578 
2579 
GetResultType(Isolate * isolate) const2580 Handle<Type> BinaryOpIC::State::GetResultType(Isolate* isolate) const {
2581   Kind result_kind = result_kind_;
2582   if (HasSideEffects()) {
2583     result_kind = NONE;
2584   } else if (result_kind == GENERIC && op_ == Token::ADD) {
2585     return handle(Type::Union(handle(Type::Number(), isolate),
2586                               handle(Type::String(), isolate)), isolate);
2587   } else if (result_kind == NUMBER && op_ == Token::SHR) {
2588     return handle(Type::Unsigned32(), isolate);
2589   }
2590   ASSERT_NE(GENERIC, result_kind);
2591   return KindToType(result_kind, isolate);
2592 }
2593 
2594 
Print(StringStream * stream) const2595 void BinaryOpIC::State::Print(StringStream* stream) const {
2596   stream->Add("(%s", Token::Name(op_));
2597   if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft");
2598   else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight");
2599   stream->Add(":%s*", KindToString(left_kind_));
2600   if (fixed_right_arg_.has_value) {
2601     stream->Add("%d", fixed_right_arg_.value);
2602   } else {
2603     stream->Add("%s", KindToString(right_kind_));
2604   }
2605   stream->Add("->%s)", KindToString(result_kind_));
2606 }
2607 
2608 
Update(Handle<Object> left,Handle<Object> right,Handle<Object> result)2609 void BinaryOpIC::State::Update(Handle<Object> left,
2610                                Handle<Object> right,
2611                                Handle<Object> result) {
2612   ExtraICState old_extra_ic_state = GetExtraICState();
2613 
2614   left_kind_ = UpdateKind(left, left_kind_);
2615   right_kind_ = UpdateKind(right, right_kind_);
2616 
2617   int32_t fixed_right_arg_value = 0;
2618   bool has_fixed_right_arg =
2619       op_ == Token::MOD &&
2620       right->ToInt32(&fixed_right_arg_value) &&
2621       fixed_right_arg_value > 0 &&
2622       IsPowerOf2(fixed_right_arg_value) &&
2623       FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2624       (left_kind_ == SMI || left_kind_ == INT32) &&
2625       (result_kind_ == NONE || !fixed_right_arg_.has_value);
2626   fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
2627                                     fixed_right_arg_value);
2628 
2629   result_kind_ = UpdateKind(result, result_kind_);
2630 
2631   if (!Token::IsTruncatingBinaryOp(op_)) {
2632     Kind input_kind = Max(left_kind_, right_kind_);
2633     if (result_kind_ < input_kind && input_kind <= NUMBER) {
2634       result_kind_ = input_kind;
2635     }
2636   }
2637 
2638   // Reset overwrite mode unless we can actually make use of it, or may be able
2639   // to make use of it at some point in the future.
2640   if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2641       (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2642       result_kind_ > NUMBER) {
2643     mode_ = NO_OVERWRITE;
2644   }
2645 
2646   if (old_extra_ic_state == GetExtraICState()) {
2647     // Tagged operations can lead to non-truncating HChanges
2648     if (left->IsUndefined() || left->IsBoolean()) {
2649       left_kind_ = GENERIC;
2650     } else if (right->IsUndefined() || right->IsBoolean()) {
2651       right_kind_ = GENERIC;
2652     } else {
2653       // Since the X87 is too precise, we might bail out on numbers which
2654       // actually would truncate with 64 bit precision.
2655       ASSERT(!CpuFeatures::IsSupported(SSE2));
2656       ASSERT(result_kind_ < NUMBER);
2657       result_kind_ = NUMBER;
2658     }
2659   }
2660 }
2661 
2662 
UpdateKind(Handle<Object> object,Kind kind) const2663 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2664                                                       Kind kind) const {
2665   Kind new_kind = GENERIC;
2666   bool is_truncating = Token::IsTruncatingBinaryOp(op());
2667   if (object->IsBoolean() && is_truncating) {
2668     // Booleans will be automatically truncated by HChange.
2669     new_kind = INT32;
2670   } else if (object->IsUndefined()) {
2671     // Undefined will be automatically truncated by HChange.
2672     new_kind = is_truncating ? INT32 : NUMBER;
2673   } else if (object->IsSmi()) {
2674     new_kind = SMI;
2675   } else if (object->IsHeapNumber()) {
2676     double value = Handle<HeapNumber>::cast(object)->value();
2677     new_kind = TypeInfo::IsInt32Double(value) ? INT32 : NUMBER;
2678   } else if (object->IsString() && op() == Token::ADD) {
2679     new_kind = STRING;
2680   }
2681   if (new_kind == INT32 && SmiValuesAre32Bits()) {
2682     new_kind = NUMBER;
2683   }
2684   if (kind != NONE &&
2685       ((new_kind <= NUMBER && kind > NUMBER) ||
2686        (new_kind > NUMBER && kind <= NUMBER))) {
2687     new_kind = GENERIC;
2688   }
2689   return Max(kind, new_kind);
2690 }
2691 
2692 
2693 // static
KindToString(Kind kind)2694 const char* BinaryOpIC::State::KindToString(Kind kind) {
2695   switch (kind) {
2696     case NONE: return "None";
2697     case SMI: return "Smi";
2698     case INT32: return "Int32";
2699     case NUMBER: return "Number";
2700     case STRING: return "String";
2701     case GENERIC: return "Generic";
2702   }
2703   UNREACHABLE();
2704   return NULL;
2705 }
2706 
2707 
2708 // static
KindToType(Kind kind,Isolate * isolate)2709 Handle<Type> BinaryOpIC::State::KindToType(Kind kind, Isolate* isolate) {
2710   Type* type = NULL;
2711   switch (kind) {
2712     case NONE: type = Type::None(); break;
2713     case SMI: type = Type::Smi(); break;
2714     case INT32: type = Type::Signed32(); break;
2715     case NUMBER: type = Type::Number(); break;
2716     case STRING: type = Type::String(); break;
2717     case GENERIC: type = Type::Any(); break;
2718   }
2719   return handle(type, isolate);
2720 }
2721 
2722 
Transition(Handle<Object> left,Handle<Object> right)2723 MaybeObject* BinaryOpIC::Transition(Handle<Object> left, Handle<Object> right) {
2724   State state(target()->extended_extra_ic_state());
2725 
2726   // Compute the actual result using the builtin for the binary operation.
2727   Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2728       TokenToJSBuiltin(state.op()));
2729   Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2730   bool caught_exception;
2731   Handle<Object> result = Execution::Call(
2732       isolate(), function, left, 1, &right, &caught_exception);
2733   if (caught_exception) return Failure::Exception();
2734 
2735   // Compute the new state.
2736   State old_state = state;
2737   state.Update(left, right, result);
2738 
2739   // Install the new stub.
2740   BinaryOpICStub stub(state);
2741   set_target(*stub.GetCode(isolate()));
2742 
2743   if (FLAG_trace_ic) {
2744     char buffer[150];
2745     NoAllocationStringAllocator allocator(
2746         buffer, static_cast<unsigned>(sizeof(buffer)));
2747     StringStream stream(&allocator);
2748     stream.Add("[BinaryOpIC");
2749     old_state.Print(&stream);
2750     stream.Add(" => ");
2751     state.Print(&stream);
2752     stream.Add(" @ %p <- ", static_cast<void*>(*target()));
2753     stream.OutputToStdOut();
2754     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2755     PrintF("]\n");
2756   }
2757 
2758   // Patch the inlined smi code as necessary.
2759   if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2760     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2761   } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2762     PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2763   }
2764 
2765   return *result;
2766 }
2767 
2768 
RUNTIME_FUNCTION(MaybeObject *,BinaryOpIC_Miss)2769 RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_Miss) {
2770   HandleScope scope(isolate);
2771   Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2772   Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2773   BinaryOpIC ic(isolate);
2774   return ic.Transition(left, right);
2775 }
2776 
2777 
GetRawUninitialized(Isolate * isolate,Token::Value op)2778 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2779   ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2780   Code* code = NULL;
2781   CHECK(stub.FindCodeInCache(&code, isolate));
2782   return code;
2783 }
2784 
2785 
GetUninitialized(Isolate * isolate,Token::Value op)2786 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2787   ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2788   return stub.GetCode(isolate);
2789 }
2790 
2791 
GetStateName(State state)2792 const char* CompareIC::GetStateName(State state) {
2793   switch (state) {
2794     case UNINITIALIZED: return "UNINITIALIZED";
2795     case SMI: return "SMI";
2796     case NUMBER: return "NUMBER";
2797     case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
2798     case STRING: return "STRING";
2799     case UNIQUE_NAME: return "UNIQUE_NAME";
2800     case OBJECT: return "OBJECT";
2801     case KNOWN_OBJECT: return "KNOWN_OBJECT";
2802     case GENERIC: return "GENERIC";
2803   }
2804   UNREACHABLE();
2805   return NULL;
2806 }
2807 
2808 
StateToType(Isolate * isolate,CompareIC::State state,Handle<Map> map)2809 Handle<Type> CompareIC::StateToType(
2810     Isolate* isolate,
2811     CompareIC::State state,
2812     Handle<Map> map) {
2813   switch (state) {
2814     case CompareIC::UNINITIALIZED:
2815       return handle(Type::None(), isolate);
2816     case CompareIC::SMI:
2817       return handle(Type::Smi(), isolate);
2818     case CompareIC::NUMBER:
2819       return handle(Type::Number(), isolate);
2820     case CompareIC::STRING:
2821       return handle(Type::String(), isolate);
2822     case CompareIC::INTERNALIZED_STRING:
2823       return handle(Type::InternalizedString(), isolate);
2824     case CompareIC::UNIQUE_NAME:
2825       return handle(Type::UniqueName(), isolate);
2826     case CompareIC::OBJECT:
2827       return handle(Type::Receiver(), isolate);
2828     case CompareIC::KNOWN_OBJECT:
2829       return handle(
2830           map.is_null() ? Type::Receiver() : Type::Class(map), isolate);
2831     case CompareIC::GENERIC:
2832       return handle(Type::Any(), isolate);
2833   }
2834   UNREACHABLE();
2835   return Handle<Type>();
2836 }
2837 
2838 
StubInfoToType(int stub_minor_key,Handle<Type> * left_type,Handle<Type> * right_type,Handle<Type> * overall_type,Handle<Map> map,Isolate * isolate)2839 void CompareIC::StubInfoToType(int stub_minor_key,
2840                                Handle<Type>* left_type,
2841                                Handle<Type>* right_type,
2842                                Handle<Type>* overall_type,
2843                                Handle<Map> map,
2844                                Isolate* isolate) {
2845   State left_state, right_state, handler_state;
2846   ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
2847                                 &handler_state, NULL);
2848   *left_type = StateToType(isolate, left_state);
2849   *right_type = StateToType(isolate, right_state);
2850   *overall_type = StateToType(isolate, handler_state, map);
2851 }
2852 
2853 
NewInputState(State old_state,Handle<Object> value)2854 CompareIC::State CompareIC::NewInputState(State old_state,
2855                                           Handle<Object> value) {
2856   switch (old_state) {
2857     case UNINITIALIZED:
2858       if (value->IsSmi()) return SMI;
2859       if (value->IsHeapNumber()) return NUMBER;
2860       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2861       if (value->IsString()) return STRING;
2862       if (value->IsSymbol()) return UNIQUE_NAME;
2863       if (value->IsJSObject()) return OBJECT;
2864       break;
2865     case SMI:
2866       if (value->IsSmi()) return SMI;
2867       if (value->IsHeapNumber()) return NUMBER;
2868       break;
2869     case NUMBER:
2870       if (value->IsNumber()) return NUMBER;
2871       break;
2872     case INTERNALIZED_STRING:
2873       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2874       if (value->IsString()) return STRING;
2875       if (value->IsSymbol()) return UNIQUE_NAME;
2876       break;
2877     case STRING:
2878       if (value->IsString()) return STRING;
2879       break;
2880     case UNIQUE_NAME:
2881       if (value->IsUniqueName()) return UNIQUE_NAME;
2882       break;
2883     case OBJECT:
2884       if (value->IsJSObject()) return OBJECT;
2885       break;
2886     case GENERIC:
2887       break;
2888     case KNOWN_OBJECT:
2889       UNREACHABLE();
2890       break;
2891   }
2892   return GENERIC;
2893 }
2894 
2895 
TargetState(State old_state,State old_left,State old_right,bool has_inlined_smi_code,Handle<Object> x,Handle<Object> y)2896 CompareIC::State CompareIC::TargetState(State old_state,
2897                                         State old_left,
2898                                         State old_right,
2899                                         bool has_inlined_smi_code,
2900                                         Handle<Object> x,
2901                                         Handle<Object> y) {
2902   switch (old_state) {
2903     case UNINITIALIZED:
2904       if (x->IsSmi() && y->IsSmi()) return SMI;
2905       if (x->IsNumber() && y->IsNumber()) return NUMBER;
2906       if (Token::IsOrderedRelationalCompareOp(op_)) {
2907         // Ordered comparisons treat undefined as NaN, so the
2908         // NUMBER stub will do the right thing.
2909         if ((x->IsNumber() && y->IsUndefined()) ||
2910             (y->IsNumber() && x->IsUndefined())) {
2911           return NUMBER;
2912         }
2913       }
2914       if (x->IsInternalizedString() && y->IsInternalizedString()) {
2915         // We compare internalized strings as plain ones if we need to determine
2916         // the order in a non-equality compare.
2917         return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2918       }
2919       if (x->IsString() && y->IsString()) return STRING;
2920       if (!Token::IsEqualityOp(op_)) return GENERIC;
2921       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2922       if (x->IsJSObject() && y->IsJSObject()) {
2923         if (Handle<JSObject>::cast(x)->map() ==
2924             Handle<JSObject>::cast(y)->map()) {
2925           return KNOWN_OBJECT;
2926         } else {
2927           return OBJECT;
2928         }
2929       }
2930       return GENERIC;
2931     case SMI:
2932       return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2933     case INTERNALIZED_STRING:
2934       ASSERT(Token::IsEqualityOp(op_));
2935       if (x->IsString() && y->IsString()) return STRING;
2936       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2937       return GENERIC;
2938     case NUMBER:
2939       // If the failure was due to one side changing from smi to heap number,
2940       // then keep the state (if other changed at the same time, we will get
2941       // a second miss and then go to generic).
2942       if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2943       if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2944       return GENERIC;
2945     case KNOWN_OBJECT:
2946       ASSERT(Token::IsEqualityOp(op_));
2947       if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2948       return GENERIC;
2949     case STRING:
2950     case UNIQUE_NAME:
2951     case OBJECT:
2952     case GENERIC:
2953       return GENERIC;
2954   }
2955   UNREACHABLE();
2956   return GENERIC;  // Make the compiler happy.
2957 }
2958 
2959 
UpdateCaches(Handle<Object> x,Handle<Object> y)2960 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2961   HandleScope scope(isolate());
2962   State previous_left, previous_right, previous_state;
2963   ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
2964                                 &previous_right, &previous_state, NULL);
2965   State new_left = NewInputState(previous_left, x);
2966   State new_right = NewInputState(previous_right, y);
2967   State state = TargetState(previous_state, previous_left, previous_right,
2968                             HasInlinedSmiCode(address()), x, y);
2969   ICCompareStub stub(op_, new_left, new_right, state);
2970   if (state == KNOWN_OBJECT) {
2971     stub.set_known_map(
2972         Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2973   }
2974   Handle<Code> new_target = stub.GetCode(isolate());
2975   set_target(*new_target);
2976 
2977   if (FLAG_trace_ic) {
2978     PrintF("[CompareIC in ");
2979     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2980     PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
2981            GetStateName(previous_left),
2982            GetStateName(previous_right),
2983            GetStateName(previous_state),
2984            GetStateName(new_left),
2985            GetStateName(new_right),
2986            GetStateName(state),
2987            Token::Name(op_),
2988            static_cast<void*>(*stub.GetCode(isolate())));
2989   }
2990 
2991   // Activate inlined smi code.
2992   if (previous_state == UNINITIALIZED) {
2993     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2994   }
2995 
2996   return *new_target;
2997 }
2998 
2999 
3000 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
RUNTIME_FUNCTION(Code *,CompareIC_Miss)3001 RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
3002   HandleScope scope(isolate);
3003   ASSERT(args.length() == 3);
3004   CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
3005   return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
3006 }
3007 
3008 
Clear(Address address,Code * target)3009 void CompareNilIC::Clear(Address address, Code* target) {
3010   if (IsCleared(target)) return;
3011   ExtraICState state = target->extended_extra_ic_state();
3012 
3013   CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED);
3014   stub.ClearState();
3015 
3016   Code* code = NULL;
3017   CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
3018 
3019   SetTargetAtAddress(address, code);
3020 }
3021 
3022 
DoCompareNilSlow(NilValue nil,Handle<Object> object)3023 MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil,
3024                                             Handle<Object> object) {
3025   if (object->IsNull() || object->IsUndefined()) {
3026     return Smi::FromInt(true);
3027   }
3028   return Smi::FromInt(object->IsUndetectableObject());
3029 }
3030 
3031 
CompareNil(Handle<Object> object)3032 MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
3033   ExtraICState extra_ic_state = target()->extended_extra_ic_state();
3034 
3035   CompareNilICStub stub(extra_ic_state);
3036 
3037   // Extract the current supported types from the patched IC and calculate what
3038   // types must be supported as a result of the miss.
3039   bool already_monomorphic = stub.IsMonomorphic();
3040 
3041   stub.UpdateStatus(object);
3042 
3043   NilValue nil = stub.GetNilValue();
3044 
3045   // Find or create the specialized stub to support the new set of types.
3046   Handle<Code> code;
3047   if (stub.IsMonomorphic()) {
3048     Handle<Map> monomorphic_map(already_monomorphic
3049                                 ? target()->FindFirstMap()
3050                                 : HeapObject::cast(*object)->map());
3051     code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub);
3052   } else {
3053     code = stub.GetCode(isolate());
3054   }
3055   set_target(*code);
3056   return DoCompareNilSlow(nil, object);
3057 }
3058 
3059 
RUNTIME_FUNCTION(MaybeObject *,CompareNilIC_Miss)3060 RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
3061   HandleScope scope(isolate);
3062   Handle<Object> object = args.at<Object>(0);
3063   CompareNilIC ic(isolate);
3064   return ic.CompareNil(object);
3065 }
3066 
3067 
RUNTIME_FUNCTION(MaybeObject *,Unreachable)3068 RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
3069   UNREACHABLE();
3070   CHECK(false);
3071   return isolate->heap()->undefined_value();
3072 }
3073 
3074 
TokenToJSBuiltin(Token::Value op)3075 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
3076   switch (op) {
3077     default:
3078       UNREACHABLE();
3079     case Token::ADD:
3080       return Builtins::ADD;
3081       break;
3082     case Token::SUB:
3083       return Builtins::SUB;
3084       break;
3085     case Token::MUL:
3086       return Builtins::MUL;
3087       break;
3088     case Token::DIV:
3089       return Builtins::DIV;
3090       break;
3091     case Token::MOD:
3092       return Builtins::MOD;
3093       break;
3094     case Token::BIT_OR:
3095       return Builtins::BIT_OR;
3096       break;
3097     case Token::BIT_AND:
3098       return Builtins::BIT_AND;
3099       break;
3100     case Token::BIT_XOR:
3101       return Builtins::BIT_XOR;
3102       break;
3103     case Token::SAR:
3104       return Builtins::SAR;
3105       break;
3106     case Token::SHR:
3107       return Builtins::SHR;
3108       break;
3109     case Token::SHL:
3110       return Builtins::SHL;
3111       break;
3112   }
3113 }
3114 
3115 
ToBoolean(Handle<Object> object)3116 MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object) {
3117   ToBooleanStub stub(target()->extended_extra_ic_state());
3118   bool to_boolean_value = stub.UpdateStatus(object);
3119   Handle<Code> code = stub.GetCode(isolate());
3120   set_target(*code);
3121   return Smi::FromInt(to_boolean_value ? 1 : 0);
3122 }
3123 
3124 
RUNTIME_FUNCTION(MaybeObject *,ToBooleanIC_Miss)3125 RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) {
3126   ASSERT(args.length() == 1);
3127   HandleScope scope(isolate);
3128   Handle<Object> object = args.at<Object>(0);
3129   ToBooleanIC ic(isolate);
3130   return ic.ToBoolean(object);
3131 }
3132 
3133 
3134 static const Address IC_utilities[] = {
3135 #define ADDR(name) FUNCTION_ADDR(name),
3136     IC_UTIL_LIST(ADDR)
3137     NULL
3138 #undef ADDR
3139 };
3140 
3141 
AddressFromUtilityId(IC::UtilityId id)3142 Address IC::AddressFromUtilityId(IC::UtilityId id) {
3143   return IC_utilities[id];
3144 }
3145 
3146 
3147 } }  // namespace v8::internal
3148