• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * libjingle
3  * Copyright 2011, Google Inc.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *  2. Redistributions in binary form must reproduce the above copyright notice,
11  *     this list of conditions and the following disclaimer in the documentation
12  *     and/or other materials provided with the distribution.
13  *  3. The name of the author may not be used to endorse or promote products
14  *     derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #ifndef TALK_BASE_ROLLINGACCUMULATOR_H_
29 #define TALK_BASE_ROLLINGACCUMULATOR_H_
30 
31 #include <vector>
32 
33 #include "talk/base/common.h"
34 
35 namespace talk_base {
36 
37 // RollingAccumulator stores and reports statistics
38 // over N most recent samples.
39 //
40 // T is assumed to be an int, long, double or float.
41 template<typename T>
42 class RollingAccumulator {
43  public:
RollingAccumulator(size_t max_count)44   explicit RollingAccumulator(size_t max_count)
45     : count_(0),
46       next_index_(0),
47       sum_(0.0),
48       sum_2_(0.0),
49       samples_(max_count) {
50   }
~RollingAccumulator()51   ~RollingAccumulator() {
52   }
53 
max_count()54   size_t max_count() const {
55     return samples_.size();
56   }
57 
count()58   size_t count() const {
59     return count_;
60   }
61 
AddSample(T sample)62   void AddSample(T sample) {
63     if (count_ == max_count()) {
64       // Remove oldest sample.
65       T sample_to_remove = samples_[next_index_];
66       sum_ -= sample_to_remove;
67       sum_2_ -= sample_to_remove * sample_to_remove;
68     } else {
69       // Increase count of samples.
70       ++count_;
71     }
72     // Add new sample.
73     samples_[next_index_] = sample;
74     sum_ += sample;
75     sum_2_ += sample * sample;
76     // Update next_index_.
77     next_index_ = (next_index_ + 1) % max_count();
78   }
79 
ComputeSum()80   T ComputeSum() const {
81     return static_cast<T>(sum_);
82   }
83 
ComputeMean()84   T ComputeMean() const {
85     if (count_ == 0) {
86       return static_cast<T>(0);
87     }
88     return static_cast<T>(sum_ / count_);
89   }
90 
91   // O(n) time complexity.
92   // Weights nth sample with weight (learning_rate)^n. Learning_rate should be
93   // between (0.0, 1.0], otherwise the non-weighted mean is returned.
ComputeWeightedMean(double learning_rate)94   T ComputeWeightedMean(double learning_rate) const {
95     if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) {
96       return ComputeMean();
97     }
98     double weighted_mean = 0.0;
99     double current_weight = 1.0;
100     double weight_sum = 0.0;
101     const size_t max_size = max_count();
102     for (size_t i = 0; i < count_; ++i) {
103       current_weight *= learning_rate;
104       weight_sum += current_weight;
105       // Add max_size to prevent underflow.
106       size_t index = (next_index_ + max_size - i - 1) % max_size;
107       weighted_mean += current_weight * samples_[index];
108     }
109     return static_cast<T>(weighted_mean / weight_sum);
110   }
111 
112   // Compute estimated variance.  Estimation is more accurate
113   // as the number of samples grows.
ComputeVariance()114   T ComputeVariance() const {
115     if (count_ == 0) {
116       return static_cast<T>(0);
117     }
118     // Var = E[x^2] - (E[x])^2
119     double count_inv = 1.0 / count_;
120     double mean_2 = sum_2_ * count_inv;
121     double mean = sum_ * count_inv;
122     return static_cast<T>(mean_2 - (mean * mean));
123   }
124 
125  private:
126   size_t count_;
127   size_t next_index_;
128   double sum_;    // Sum(x)
129   double sum_2_;  // Sum(x*x)
130   std::vector<T> samples_;
131 
132   DISALLOW_COPY_AND_ASSIGN(RollingAccumulator);
133 };
134 
135 }  // namespace talk_base
136 
137 #endif  // TALK_BASE_ROLLINGACCUMULATOR_H_
138