• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/FEnv.h"
34 #include "llvm/Support/GetElementPtrTypeIterator.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetLibraryInfo.h"
37 #include <cerrno>
38 #include <cmath>
39 using namespace llvm;
40 
41 //===----------------------------------------------------------------------===//
42 // Constant Folding internal helper functions
43 //===----------------------------------------------------------------------===//
44 
45 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
46 /// DataLayout.  This always returns a non-null constant, but it may be a
47 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const DataLayout & TD)48 static Constant *FoldBitCast(Constant *C, Type *DestTy,
49                              const DataLayout &TD) {
50   // Catch the obvious splat cases.
51   if (C->isNullValue() && !DestTy->isX86_MMXTy())
52     return Constant::getNullValue(DestTy);
53   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
54     return Constant::getAllOnesValue(DestTy);
55 
56   // Handle a vector->integer cast.
57   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
58     VectorType *VTy = dyn_cast<VectorType>(C->getType());
59     if (VTy == 0)
60       return ConstantExpr::getBitCast(C, DestTy);
61 
62     unsigned NumSrcElts = VTy->getNumElements();
63     Type *SrcEltTy = VTy->getElementType();
64 
65     // If the vector is a vector of floating point, convert it to vector of int
66     // to simplify things.
67     if (SrcEltTy->isFloatingPointTy()) {
68       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69       Type *SrcIVTy =
70         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71       // Ask IR to do the conversion now that #elts line up.
72       C = ConstantExpr::getBitCast(C, SrcIVTy);
73     }
74 
75     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
76     if (CDV == 0)
77       return ConstantExpr::getBitCast(C, DestTy);
78 
79     // Now that we know that the input value is a vector of integers, just shift
80     // and insert them into our result.
81     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
82     APInt Result(IT->getBitWidth(), 0);
83     for (unsigned i = 0; i != NumSrcElts; ++i) {
84       Result <<= BitShift;
85       if (TD.isLittleEndian())
86         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
87       else
88         Result |= CDV->getElementAsInteger(i);
89     }
90 
91     return ConstantInt::get(IT, Result);
92   }
93 
94   // The code below only handles casts to vectors currently.
95   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
96   if (DestVTy == 0)
97     return ConstantExpr::getBitCast(C, DestTy);
98 
99   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
100   // vector so the code below can handle it uniformly.
101   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
102     Constant *Ops = C; // don't take the address of C!
103     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
104   }
105 
106   // If this is a bitcast from constant vector -> vector, fold it.
107   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
108     return ConstantExpr::getBitCast(C, DestTy);
109 
110   // If the element types match, IR can fold it.
111   unsigned NumDstElt = DestVTy->getNumElements();
112   unsigned NumSrcElt = C->getType()->getVectorNumElements();
113   if (NumDstElt == NumSrcElt)
114     return ConstantExpr::getBitCast(C, DestTy);
115 
116   Type *SrcEltTy = C->getType()->getVectorElementType();
117   Type *DstEltTy = DestVTy->getElementType();
118 
119   // Otherwise, we're changing the number of elements in a vector, which
120   // requires endianness information to do the right thing.  For example,
121   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
122   // folds to (little endian):
123   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
124   // and to (big endian):
125   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
126 
127   // First thing is first.  We only want to think about integer here, so if
128   // we have something in FP form, recast it as integer.
129   if (DstEltTy->isFloatingPointTy()) {
130     // Fold to an vector of integers with same size as our FP type.
131     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
132     Type *DestIVTy =
133       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
134     // Recursively handle this integer conversion, if possible.
135     C = FoldBitCast(C, DestIVTy, TD);
136 
137     // Finally, IR can handle this now that #elts line up.
138     return ConstantExpr::getBitCast(C, DestTy);
139   }
140 
141   // Okay, we know the destination is integer, if the input is FP, convert
142   // it to integer first.
143   if (SrcEltTy->isFloatingPointTy()) {
144     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
145     Type *SrcIVTy =
146       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
147     // Ask IR to do the conversion now that #elts line up.
148     C = ConstantExpr::getBitCast(C, SrcIVTy);
149     // If IR wasn't able to fold it, bail out.
150     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
151         !isa<ConstantDataVector>(C))
152       return C;
153   }
154 
155   // Now we know that the input and output vectors are both integer vectors
156   // of the same size, and that their #elements is not the same.  Do the
157   // conversion here, which depends on whether the input or output has
158   // more elements.
159   bool isLittleEndian = TD.isLittleEndian();
160 
161   SmallVector<Constant*, 32> Result;
162   if (NumDstElt < NumSrcElt) {
163     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
164     Constant *Zero = Constant::getNullValue(DstEltTy);
165     unsigned Ratio = NumSrcElt/NumDstElt;
166     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
167     unsigned SrcElt = 0;
168     for (unsigned i = 0; i != NumDstElt; ++i) {
169       // Build each element of the result.
170       Constant *Elt = Zero;
171       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
172       for (unsigned j = 0; j != Ratio; ++j) {
173         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
174         if (!Src)  // Reject constantexpr elements.
175           return ConstantExpr::getBitCast(C, DestTy);
176 
177         // Zero extend the element to the right size.
178         Src = ConstantExpr::getZExt(Src, Elt->getType());
179 
180         // Shift it to the right place, depending on endianness.
181         Src = ConstantExpr::getShl(Src,
182                                    ConstantInt::get(Src->getType(), ShiftAmt));
183         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
184 
185         // Mix it in.
186         Elt = ConstantExpr::getOr(Elt, Src);
187       }
188       Result.push_back(Elt);
189     }
190     return ConstantVector::get(Result);
191   }
192 
193   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
194   unsigned Ratio = NumDstElt/NumSrcElt;
195   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
196 
197   // Loop over each source value, expanding into multiple results.
198   for (unsigned i = 0; i != NumSrcElt; ++i) {
199     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
200     if (!Src)  // Reject constantexpr elements.
201       return ConstantExpr::getBitCast(C, DestTy);
202 
203     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
204     for (unsigned j = 0; j != Ratio; ++j) {
205       // Shift the piece of the value into the right place, depending on
206       // endianness.
207       Constant *Elt = ConstantExpr::getLShr(Src,
208                                   ConstantInt::get(Src->getType(), ShiftAmt));
209       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
210 
211       // Truncate and remember this piece.
212       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
213     }
214   }
215 
216   return ConstantVector::get(Result);
217 }
218 
219 
220 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
221 /// from a global, return the global and the constant.  Because of
222 /// constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,APInt & Offset,const DataLayout & TD)223 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
224                                        APInt &Offset, const DataLayout &TD) {
225   // Trivial case, constant is the global.
226   if ((GV = dyn_cast<GlobalValue>(C))) {
227     Offset.clearAllBits();
228     return true;
229   }
230 
231   // Otherwise, if this isn't a constant expr, bail out.
232   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
233   if (!CE) return false;
234 
235   // Look through ptr->int and ptr->ptr casts.
236   if (CE->getOpcode() == Instruction::PtrToInt ||
237       CE->getOpcode() == Instruction::BitCast)
238     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
239 
240   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
241   if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
242     // If the base isn't a global+constant, we aren't either.
243     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
244       return false;
245 
246     // Otherwise, add any offset that our operands provide.
247     return GEP->accumulateConstantOffset(TD, Offset);
248   }
249 
250   return false;
251 }
252 
253 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
254 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
255 /// pointer to copy results into and BytesLeft is the number of bytes left in
256 /// the CurPtr buffer.  TD is the target data.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const DataLayout & TD)257 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
258                                unsigned char *CurPtr, unsigned BytesLeft,
259                                const DataLayout &TD) {
260   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
261          "Out of range access");
262 
263   // If this element is zero or undefined, we can just return since *CurPtr is
264   // zero initialized.
265   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
266     return true;
267 
268   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
269     if (CI->getBitWidth() > 64 ||
270         (CI->getBitWidth() & 7) != 0)
271       return false;
272 
273     uint64_t Val = CI->getZExtValue();
274     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
275 
276     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
277       int n = ByteOffset;
278       if (!TD.isLittleEndian())
279         n = IntBytes - n - 1;
280       CurPtr[i] = (unsigned char)(Val >> (n * 8));
281       ++ByteOffset;
282     }
283     return true;
284   }
285 
286   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
287     if (CFP->getType()->isDoubleTy()) {
288       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
289       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
290     }
291     if (CFP->getType()->isFloatTy()){
292       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
293       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
294     }
295     if (CFP->getType()->isHalfTy()){
296       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
297       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
298     }
299     return false;
300   }
301 
302   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
303     const StructLayout *SL = TD.getStructLayout(CS->getType());
304     unsigned Index = SL->getElementContainingOffset(ByteOffset);
305     uint64_t CurEltOffset = SL->getElementOffset(Index);
306     ByteOffset -= CurEltOffset;
307 
308     while (1) {
309       // If the element access is to the element itself and not to tail padding,
310       // read the bytes from the element.
311       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
312 
313       if (ByteOffset < EltSize &&
314           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
315                               BytesLeft, TD))
316         return false;
317 
318       ++Index;
319 
320       // Check to see if we read from the last struct element, if so we're done.
321       if (Index == CS->getType()->getNumElements())
322         return true;
323 
324       // If we read all of the bytes we needed from this element we're done.
325       uint64_t NextEltOffset = SL->getElementOffset(Index);
326 
327       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
328         return true;
329 
330       // Move to the next element of the struct.
331       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
332       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
333       ByteOffset = 0;
334       CurEltOffset = NextEltOffset;
335     }
336     // not reached.
337   }
338 
339   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
340       isa<ConstantDataSequential>(C)) {
341     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
342     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
343     uint64_t Index = ByteOffset / EltSize;
344     uint64_t Offset = ByteOffset - Index * EltSize;
345     uint64_t NumElts;
346     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
347       NumElts = AT->getNumElements();
348     else
349       NumElts = cast<VectorType>(C->getType())->getNumElements();
350 
351     for (; Index != NumElts; ++Index) {
352       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
353                               BytesLeft, TD))
354         return false;
355 
356       uint64_t BytesWritten = EltSize - Offset;
357       assert(BytesWritten <= EltSize && "Not indexing into this element?");
358       if (BytesWritten >= BytesLeft)
359         return true;
360 
361       Offset = 0;
362       BytesLeft -= BytesWritten;
363       CurPtr += BytesWritten;
364     }
365     return true;
366   }
367 
368   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
369     if (CE->getOpcode() == Instruction::IntToPtr &&
370         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
371       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
372                                 BytesLeft, TD);
373   }
374 
375   // Otherwise, unknown initializer type.
376   return false;
377 }
378 
FoldReinterpretLoadFromConstPtr(Constant * C,const DataLayout & TD)379 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
380                                                  const DataLayout &TD) {
381   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
382   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
383 
384   // If this isn't an integer load we can't fold it directly.
385   if (!IntType) {
386     // If this is a float/double load, we can try folding it as an int32/64 load
387     // and then bitcast the result.  This can be useful for union cases.  Note
388     // that address spaces don't matter here since we're not going to result in
389     // an actual new load.
390     Type *MapTy;
391     if (LoadTy->isHalfTy())
392       MapTy = Type::getInt16PtrTy(C->getContext());
393     else if (LoadTy->isFloatTy())
394       MapTy = Type::getInt32PtrTy(C->getContext());
395     else if (LoadTy->isDoubleTy())
396       MapTy = Type::getInt64PtrTy(C->getContext());
397     else if (LoadTy->isVectorTy()) {
398       MapTy = IntegerType::get(C->getContext(),
399                                TD.getTypeAllocSizeInBits(LoadTy));
400       MapTy = PointerType::getUnqual(MapTy);
401     } else
402       return 0;
403 
404     C = FoldBitCast(C, MapTy, TD);
405     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
406       return FoldBitCast(Res, LoadTy, TD);
407     return 0;
408   }
409 
410   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
411   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
412 
413   GlobalValue *GVal;
414   APInt Offset(TD.getPointerSizeInBits(), 0);
415   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
416     return 0;
417 
418   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
419   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
420       !GV->getInitializer()->getType()->isSized())
421     return 0;
422 
423   // If we're loading off the beginning of the global, some bytes may be valid,
424   // but we don't try to handle this.
425   if (Offset.isNegative()) return 0;
426 
427   // If we're not accessing anything in this constant, the result is undefined.
428   if (Offset.getZExtValue() >=
429       TD.getTypeAllocSize(GV->getInitializer()->getType()))
430     return UndefValue::get(IntType);
431 
432   unsigned char RawBytes[32] = {0};
433   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
434                           BytesLoaded, TD))
435     return 0;
436 
437   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
438   if (TD.isLittleEndian()) {
439     ResultVal = RawBytes[BytesLoaded - 1];
440     for (unsigned i = 1; i != BytesLoaded; ++i) {
441       ResultVal <<= 8;
442       ResultVal |= RawBytes[BytesLoaded-1-i];
443     }
444   } else {
445     ResultVal = RawBytes[0];
446     for (unsigned i = 1; i != BytesLoaded; ++i) {
447       ResultVal <<= 8;
448       ResultVal |= RawBytes[i];
449     }
450   }
451 
452   return ConstantInt::get(IntType->getContext(), ResultVal);
453 }
454 
455 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
456 /// produce if it is constant and determinable.  If this is not determinable,
457 /// return null.
ConstantFoldLoadFromConstPtr(Constant * C,const DataLayout * TD)458 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
459                                              const DataLayout *TD) {
460   // First, try the easy cases:
461   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
462     if (GV->isConstant() && GV->hasDefinitiveInitializer())
463       return GV->getInitializer();
464 
465   // If the loaded value isn't a constant expr, we can't handle it.
466   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
467   if (!CE) return 0;
468 
469   if (CE->getOpcode() == Instruction::GetElementPtr) {
470     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
471       if (GV->isConstant() && GV->hasDefinitiveInitializer())
472         if (Constant *V =
473              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
474           return V;
475   }
476 
477   // Instead of loading constant c string, use corresponding integer value
478   // directly if string length is small enough.
479   StringRef Str;
480   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
481     unsigned StrLen = Str.size();
482     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
483     unsigned NumBits = Ty->getPrimitiveSizeInBits();
484     // Replace load with immediate integer if the result is an integer or fp
485     // value.
486     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
487         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
488       APInt StrVal(NumBits, 0);
489       APInt SingleChar(NumBits, 0);
490       if (TD->isLittleEndian()) {
491         for (signed i = StrLen-1; i >= 0; i--) {
492           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
493           StrVal = (StrVal << 8) | SingleChar;
494         }
495       } else {
496         for (unsigned i = 0; i < StrLen; i++) {
497           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
498           StrVal = (StrVal << 8) | SingleChar;
499         }
500         // Append NULL at the end.
501         SingleChar = 0;
502         StrVal = (StrVal << 8) | SingleChar;
503       }
504 
505       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
506       if (Ty->isFloatingPointTy())
507         Res = ConstantExpr::getBitCast(Res, Ty);
508       return Res;
509     }
510   }
511 
512   // If this load comes from anywhere in a constant global, and if the global
513   // is all undef or zero, we know what it loads.
514   if (GlobalVariable *GV =
515         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
516     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
517       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
518       if (GV->getInitializer()->isNullValue())
519         return Constant::getNullValue(ResTy);
520       if (isa<UndefValue>(GV->getInitializer()))
521         return UndefValue::get(ResTy);
522     }
523   }
524 
525   // Try hard to fold loads from bitcasted strange and non-type-safe things.
526   if (TD)
527     return FoldReinterpretLoadFromConstPtr(CE, *TD);
528   return 0;
529 }
530 
ConstantFoldLoadInst(const LoadInst * LI,const DataLayout * TD)531 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
532   if (LI->isVolatile()) return 0;
533 
534   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
535     return ConstantFoldLoadFromConstPtr(C, TD);
536 
537   return 0;
538 }
539 
540 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
541 /// Attempt to symbolically evaluate the result of a binary operator merging
542 /// these together.  If target data info is available, it is provided as DL,
543 /// otherwise DL is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const DataLayout * DL)544 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
545                                            Constant *Op1, const DataLayout *DL){
546   // SROA
547 
548   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
549   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
550   // bits.
551 
552 
553   if (Opc == Instruction::And && DL) {
554     unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
555     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
556     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
557     ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
558     ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
559     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
560       // All the bits of Op0 that the 'and' could be masking are already zero.
561       return Op0;
562     }
563     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
564       // All the bits of Op1 that the 'and' could be masking are already zero.
565       return Op1;
566     }
567 
568     APInt KnownZero = KnownZero0 | KnownZero1;
569     APInt KnownOne = KnownOne0 & KnownOne1;
570     if ((KnownZero | KnownOne).isAllOnesValue()) {
571       return ConstantInt::get(Op0->getType(), KnownOne);
572     }
573   }
574 
575   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
576   // constant.  This happens frequently when iterating over a global array.
577   if (Opc == Instruction::Sub && DL) {
578     GlobalValue *GV1, *GV2;
579     unsigned PtrSize = DL->getPointerSizeInBits();
580     unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
581     APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
582 
583     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
584       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
585           GV1 == GV2) {
586         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
587         // PtrToInt may change the bitwidth so we have convert to the right size
588         // first.
589         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
590                                                 Offs2.zextOrTrunc(OpSize));
591       }
592   }
593 
594   return 0;
595 }
596 
597 /// CastGEPIndices - If array indices are not pointer-sized integers,
598 /// explicitly cast them so that they aren't implicitly casted by the
599 /// getelementptr.
CastGEPIndices(ArrayRef<Constant * > Ops,Type * ResultTy,const DataLayout * TD,const TargetLibraryInfo * TLI)600 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
601                                 Type *ResultTy, const DataLayout *TD,
602                                 const TargetLibraryInfo *TLI) {
603   if (!TD) return 0;
604   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
605 
606   bool Any = false;
607   SmallVector<Constant*, 32> NewIdxs;
608   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
609     if ((i == 1 ||
610          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
611                                                         Ops.slice(1, i-1)))) &&
612         Ops[i]->getType() != IntPtrTy) {
613       Any = true;
614       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
615                                                                       true,
616                                                                       IntPtrTy,
617                                                                       true),
618                                               Ops[i], IntPtrTy));
619     } else
620       NewIdxs.push_back(Ops[i]);
621   }
622   if (!Any) return 0;
623 
624   Constant *C =
625     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
626   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
627     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
628       C = Folded;
629   return C;
630 }
631 
632 /// Strip the pointer casts, but preserve the address space information.
StripPtrCastKeepAS(Constant * Ptr)633 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
634   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
635   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
636   Ptr = cast<Constant>(Ptr->stripPointerCasts());
637   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
638 
639   // Preserve the address space number of the pointer.
640   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
641     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
642       OldPtrTy->getAddressSpace());
643     Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
644   }
645   return Ptr;
646 }
647 
648 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
649 /// constant expression, do so.
SymbolicallyEvaluateGEP(ArrayRef<Constant * > Ops,Type * ResultTy,const DataLayout * TD,const TargetLibraryInfo * TLI)650 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
651                                          Type *ResultTy, const DataLayout *TD,
652                                          const TargetLibraryInfo *TLI) {
653   Constant *Ptr = Ops[0];
654   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
655       !Ptr->getType()->isPointerTy())
656     return 0;
657 
658   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
659 
660   // If this is a constant expr gep that is effectively computing an
661   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
662   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
663     if (!isa<ConstantInt>(Ops[i])) {
664 
665       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
666       // "inttoptr (sub (ptrtoint Ptr), V)"
667       if (Ops.size() == 2 &&
668           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
669         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
670         assert((CE == 0 || CE->getType() == IntPtrTy) &&
671                "CastGEPIndices didn't canonicalize index types!");
672         if (CE && CE->getOpcode() == Instruction::Sub &&
673             CE->getOperand(0)->isNullValue()) {
674           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
675           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
676           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
677           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
678             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
679           return Res;
680         }
681       }
682       return 0;
683     }
684 
685   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
686   APInt Offset =
687     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
688                                          makeArrayRef((Value *const*)
689                                                         Ops.data() + 1,
690                                                       Ops.size() - 1)));
691   Ptr = StripPtrCastKeepAS(Ptr);
692 
693   // If this is a GEP of a GEP, fold it all into a single GEP.
694   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
695     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
696 
697     // Do not try the incorporate the sub-GEP if some index is not a number.
698     bool AllConstantInt = true;
699     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
700       if (!isa<ConstantInt>(NestedOps[i])) {
701         AllConstantInt = false;
702         break;
703       }
704     if (!AllConstantInt)
705       break;
706 
707     Ptr = cast<Constant>(GEP->getOperand(0));
708     Offset += APInt(BitWidth,
709                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
710     Ptr = StripPtrCastKeepAS(Ptr);
711   }
712 
713   // If the base value for this address is a literal integer value, fold the
714   // getelementptr to the resulting integer value casted to the pointer type.
715   APInt BasePtr(BitWidth, 0);
716   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
717     if (CE->getOpcode() == Instruction::IntToPtr)
718       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
719         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
720   if (Ptr->isNullValue() || BasePtr != 0) {
721     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
722     return ConstantExpr::getIntToPtr(C, ResultTy);
723   }
724 
725   // Otherwise form a regular getelementptr. Recompute the indices so that
726   // we eliminate over-indexing of the notional static type array bounds.
727   // This makes it easy to determine if the getelementptr is "inbounds".
728   // Also, this helps GlobalOpt do SROA on GlobalVariables.
729   Type *Ty = Ptr->getType();
730   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
731   SmallVector<Constant*, 32> NewIdxs;
732   do {
733     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
734       if (ATy->isPointerTy()) {
735         // The only pointer indexing we'll do is on the first index of the GEP.
736         if (!NewIdxs.empty())
737           break;
738 
739         // Only handle pointers to sized types, not pointers to functions.
740         if (!ATy->getElementType()->isSized())
741           return 0;
742       }
743 
744       // Determine which element of the array the offset points into.
745       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
746       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
747       if (ElemSize == 0)
748         // The element size is 0. This may be [0 x Ty]*, so just use a zero
749         // index for this level and proceed to the next level to see if it can
750         // accommodate the offset.
751         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
752       else {
753         // The element size is non-zero divide the offset by the element
754         // size (rounding down), to compute the index at this level.
755         APInt NewIdx = Offset.udiv(ElemSize);
756         Offset -= NewIdx * ElemSize;
757         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
758       }
759       Ty = ATy->getElementType();
760     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
761       // If we end up with an offset that isn't valid for this struct type, we
762       // can't re-form this GEP in a regular form, so bail out. The pointer
763       // operand likely went through casts that are necessary to make the GEP
764       // sensible.
765       const StructLayout &SL = *TD->getStructLayout(STy);
766       if (Offset.uge(SL.getSizeInBytes()))
767         break;
768 
769       // Determine which field of the struct the offset points into. The
770       // getZExtValue is fine as we've already ensured that the offset is
771       // within the range representable by the StructLayout API.
772       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
773       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
774                                          ElIdx));
775       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
776       Ty = STy->getTypeAtIndex(ElIdx);
777     } else {
778       // We've reached some non-indexable type.
779       break;
780     }
781   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
782 
783   // If we haven't used up the entire offset by descending the static
784   // type, then the offset is pointing into the middle of an indivisible
785   // member, so we can't simplify it.
786   if (Offset != 0)
787     return 0;
788 
789   // Create a GEP.
790   Constant *C =
791     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
792   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
793          "Computed GetElementPtr has unexpected type!");
794 
795   // If we ended up indexing a member with a type that doesn't match
796   // the type of what the original indices indexed, add a cast.
797   if (Ty != cast<PointerType>(ResultTy)->getElementType())
798     C = FoldBitCast(C, ResultTy, *TD);
799 
800   return C;
801 }
802 
803 
804 
805 //===----------------------------------------------------------------------===//
806 // Constant Folding public APIs
807 //===----------------------------------------------------------------------===//
808 
809 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
810 /// If successful, the constant result is returned, if not, null is returned.
811 /// Note that this fails if not all of the operands are constant.  Otherwise,
812 /// this function can only fail when attempting to fold instructions like loads
813 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const DataLayout * TD,const TargetLibraryInfo * TLI)814 Constant *llvm::ConstantFoldInstruction(Instruction *I,
815                                         const DataLayout *TD,
816                                         const TargetLibraryInfo *TLI) {
817   // Handle PHI nodes quickly here...
818   if (PHINode *PN = dyn_cast<PHINode>(I)) {
819     Constant *CommonValue = 0;
820 
821     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
822       Value *Incoming = PN->getIncomingValue(i);
823       // If the incoming value is undef then skip it.  Note that while we could
824       // skip the value if it is equal to the phi node itself we choose not to
825       // because that would break the rule that constant folding only applies if
826       // all operands are constants.
827       if (isa<UndefValue>(Incoming))
828         continue;
829       // If the incoming value is not a constant, then give up.
830       Constant *C = dyn_cast<Constant>(Incoming);
831       if (!C)
832         return 0;
833       // Fold the PHI's operands.
834       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
835         C = ConstantFoldConstantExpression(NewC, TD, TLI);
836       // If the incoming value is a different constant to
837       // the one we saw previously, then give up.
838       if (CommonValue && C != CommonValue)
839         return 0;
840       CommonValue = C;
841     }
842 
843 
844     // If we reach here, all incoming values are the same constant or undef.
845     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
846   }
847 
848   // Scan the operand list, checking to see if they are all constants, if so,
849   // hand off to ConstantFoldInstOperands.
850   SmallVector<Constant*, 8> Ops;
851   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
852     Constant *Op = dyn_cast<Constant>(*i);
853     if (!Op)
854       return 0;  // All operands not constant!
855 
856     // Fold the Instruction's operands.
857     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
858       Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
859 
860     Ops.push_back(Op);
861   }
862 
863   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
864     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
865                                            TD, TLI);
866 
867   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
868     return ConstantFoldLoadInst(LI, TD);
869 
870   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
871     return ConstantExpr::getInsertValue(
872                                 cast<Constant>(IVI->getAggregateOperand()),
873                                 cast<Constant>(IVI->getInsertedValueOperand()),
874                                 IVI->getIndices());
875 
876   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
877     return ConstantExpr::getExtractValue(
878                                     cast<Constant>(EVI->getAggregateOperand()),
879                                     EVI->getIndices());
880 
881   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
882 }
883 
884 static Constant *
ConstantFoldConstantExpressionImpl(const ConstantExpr * CE,const DataLayout * TD,const TargetLibraryInfo * TLI,SmallPtrSet<ConstantExpr *,4> & FoldedOps)885 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
886                                    const TargetLibraryInfo *TLI,
887                                    SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
888   SmallVector<Constant *, 8> Ops;
889   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
890        ++i) {
891     Constant *NewC = cast<Constant>(*i);
892     // Recursively fold the ConstantExpr's operands. If we have already folded
893     // a ConstantExpr, we don't have to process it again.
894     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
895       if (FoldedOps.insert(NewCE))
896         NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
897     }
898     Ops.push_back(NewC);
899   }
900 
901   if (CE->isCompare())
902     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
903                                            TD, TLI);
904   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
905 }
906 
907 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
908 /// using the specified DataLayout.  If successful, the constant result is
909 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const DataLayout * TD,const TargetLibraryInfo * TLI)910 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
911                                                const DataLayout *TD,
912                                                const TargetLibraryInfo *TLI) {
913   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
914   return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
915 }
916 
917 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
918 /// specified opcode and operands.  If successful, the constant result is
919 /// returned, if not, null is returned.  Note that this function can fail when
920 /// attempting to fold instructions like loads and stores, which have no
921 /// constant expression form.
922 ///
923 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
924 /// information, due to only being passed an opcode and operands. Constant
925 /// folding using this function strips this information.
926 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const DataLayout * TD,const TargetLibraryInfo * TLI)927 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
928                                          ArrayRef<Constant *> Ops,
929                                          const DataLayout *TD,
930                                          const TargetLibraryInfo *TLI) {
931   // Handle easy binops first.
932   if (Instruction::isBinaryOp(Opcode)) {
933     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
934       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
935         return C;
936 
937     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
938   }
939 
940   switch (Opcode) {
941   default: return 0;
942   case Instruction::ICmp:
943   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
944   case Instruction::Call:
945     if (Function *F = dyn_cast<Function>(Ops.back()))
946       if (canConstantFoldCallTo(F))
947         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
948     return 0;
949   case Instruction::PtrToInt:
950     // If the input is a inttoptr, eliminate the pair.  This requires knowing
951     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
952     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
953       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
954         Constant *Input = CE->getOperand(0);
955         unsigned InWidth = Input->getType()->getScalarSizeInBits();
956         if (TD->getPointerSizeInBits() < InWidth) {
957           Constant *Mask =
958             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
959                                                   TD->getPointerSizeInBits()));
960           Input = ConstantExpr::getAnd(Input, Mask);
961         }
962         // Do a zext or trunc to get to the dest size.
963         return ConstantExpr::getIntegerCast(Input, DestTy, false);
964       }
965     }
966     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
967   case Instruction::IntToPtr:
968     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
969     // the int size is >= the ptr size.  This requires knowing the width of a
970     // pointer, so it can't be done in ConstantExpr::getCast.
971     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
972       if (TD &&
973           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
974           CE->getOpcode() == Instruction::PtrToInt)
975         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
976 
977     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
978   case Instruction::Trunc:
979   case Instruction::ZExt:
980   case Instruction::SExt:
981   case Instruction::FPTrunc:
982   case Instruction::FPExt:
983   case Instruction::UIToFP:
984   case Instruction::SIToFP:
985   case Instruction::FPToUI:
986   case Instruction::FPToSI:
987       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
988   case Instruction::BitCast:
989     if (TD)
990       return FoldBitCast(Ops[0], DestTy, *TD);
991     return ConstantExpr::getBitCast(Ops[0], DestTy);
992   case Instruction::Select:
993     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
994   case Instruction::ExtractElement:
995     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
996   case Instruction::InsertElement:
997     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
998   case Instruction::ShuffleVector:
999     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1000   case Instruction::GetElementPtr:
1001     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1002       return C;
1003     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1004       return C;
1005 
1006     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1007   }
1008 }
1009 
1010 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1011 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1012 /// returns a constant expression of the specified operands.
1013 ///
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const DataLayout * TD,const TargetLibraryInfo * TLI)1014 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1015                                                 Constant *Ops0, Constant *Ops1,
1016                                                 const DataLayout *TD,
1017                                                 const TargetLibraryInfo *TLI) {
1018   // fold: icmp (inttoptr x), null         -> icmp x, 0
1019   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1020   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1021   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1022   //
1023   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1024   // around to know if bit truncation is happening.
1025   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1026     if (TD && Ops1->isNullValue()) {
1027       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
1028       if (CE0->getOpcode() == Instruction::IntToPtr) {
1029         // Convert the integer value to the right size to ensure we get the
1030         // proper extension or truncation.
1031         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1032                                                    IntPtrTy, false);
1033         Constant *Null = Constant::getNullValue(C->getType());
1034         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1035       }
1036 
1037       // Only do this transformation if the int is intptrty in size, otherwise
1038       // there is a truncation or extension that we aren't modeling.
1039       if (CE0->getOpcode() == Instruction::PtrToInt &&
1040           CE0->getType() == IntPtrTy) {
1041         Constant *C = CE0->getOperand(0);
1042         Constant *Null = Constant::getNullValue(C->getType());
1043         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1044       }
1045     }
1046 
1047     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1048       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1049         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
1050 
1051         if (CE0->getOpcode() == Instruction::IntToPtr) {
1052           // Convert the integer value to the right size to ensure we get the
1053           // proper extension or truncation.
1054           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1055                                                       IntPtrTy, false);
1056           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1057                                                       IntPtrTy, false);
1058           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1059         }
1060 
1061         // Only do this transformation if the int is intptrty in size, otherwise
1062         // there is a truncation or extension that we aren't modeling.
1063         if ((CE0->getOpcode() == Instruction::PtrToInt &&
1064              CE0->getType() == IntPtrTy &&
1065              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
1066           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
1067                                                  CE1->getOperand(0), TD, TLI);
1068       }
1069     }
1070 
1071     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1072     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1073     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1074         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1075       Constant *LHS =
1076         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1077                                         TD, TLI);
1078       Constant *RHS =
1079         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1080                                         TD, TLI);
1081       unsigned OpC =
1082         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1083       Constant *Ops[] = { LHS, RHS };
1084       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1085     }
1086   }
1087 
1088   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1089 }
1090 
1091 
1092 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1093 /// getelementptr constantexpr, return the constant value being addressed by the
1094 /// constant expression, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)1095 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1096                                                        ConstantExpr *CE) {
1097   if (!CE->getOperand(1)->isNullValue())
1098     return 0;  // Do not allow stepping over the value!
1099 
1100   // Loop over all of the operands, tracking down which value we are
1101   // addressing.
1102   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1103     C = C->getAggregateElement(CE->getOperand(i));
1104     if (C == 0) return 0;
1105   }
1106   return C;
1107 }
1108 
1109 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1110 /// indices (with an *implied* zero pointer index that is not in the list),
1111 /// return the constant value being addressed by a virtual load, or null if
1112 /// something is funny and we can't decide.
ConstantFoldLoadThroughGEPIndices(Constant * C,ArrayRef<Constant * > Indices)1113 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1114                                                   ArrayRef<Constant*> Indices) {
1115   // Loop over all of the operands, tracking down which value we are
1116   // addressing.
1117   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1118     C = C->getAggregateElement(Indices[i]);
1119     if (C == 0) return 0;
1120   }
1121   return C;
1122 }
1123 
1124 
1125 //===----------------------------------------------------------------------===//
1126 //  Constant Folding for Calls
1127 //
1128 
1129 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1130 /// the specified function.
1131 bool
canConstantFoldCallTo(const Function * F)1132 llvm::canConstantFoldCallTo(const Function *F) {
1133   switch (F->getIntrinsicID()) {
1134   case Intrinsic::fabs:
1135   case Intrinsic::log:
1136   case Intrinsic::log2:
1137   case Intrinsic::log10:
1138   case Intrinsic::exp:
1139   case Intrinsic::exp2:
1140   case Intrinsic::floor:
1141   case Intrinsic::sqrt:
1142   case Intrinsic::pow:
1143   case Intrinsic::powi:
1144   case Intrinsic::bswap:
1145   case Intrinsic::ctpop:
1146   case Intrinsic::ctlz:
1147   case Intrinsic::cttz:
1148   case Intrinsic::sadd_with_overflow:
1149   case Intrinsic::uadd_with_overflow:
1150   case Intrinsic::ssub_with_overflow:
1151   case Intrinsic::usub_with_overflow:
1152   case Intrinsic::smul_with_overflow:
1153   case Intrinsic::umul_with_overflow:
1154   case Intrinsic::convert_from_fp16:
1155   case Intrinsic::convert_to_fp16:
1156   case Intrinsic::x86_sse_cvtss2si:
1157   case Intrinsic::x86_sse_cvtss2si64:
1158   case Intrinsic::x86_sse_cvttss2si:
1159   case Intrinsic::x86_sse_cvttss2si64:
1160   case Intrinsic::x86_sse2_cvtsd2si:
1161   case Intrinsic::x86_sse2_cvtsd2si64:
1162   case Intrinsic::x86_sse2_cvttsd2si:
1163   case Intrinsic::x86_sse2_cvttsd2si64:
1164     return true;
1165   default:
1166     return false;
1167   case 0: break;
1168   }
1169 
1170   if (!F->hasName()) return false;
1171   StringRef Name = F->getName();
1172 
1173   // In these cases, the check of the length is required.  We don't want to
1174   // return true for a name like "cos\0blah" which strcmp would return equal to
1175   // "cos", but has length 8.
1176   switch (Name[0]) {
1177   default: return false;
1178   case 'a':
1179     return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1180   case 'c':
1181     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1182   case 'e':
1183     return Name == "exp" || Name == "exp2";
1184   case 'f':
1185     return Name == "fabs" || Name == "fmod" || Name == "floor";
1186   case 'l':
1187     return Name == "log" || Name == "log10";
1188   case 'p':
1189     return Name == "pow";
1190   case 's':
1191     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1192       Name == "sinf" || Name == "sqrtf";
1193   case 't':
1194     return Name == "tan" || Name == "tanh";
1195   }
1196 }
1197 
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1198 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1199                                 Type *Ty) {
1200   sys::llvm_fenv_clearexcept();
1201   V = NativeFP(V);
1202   if (sys::llvm_fenv_testexcept()) {
1203     sys::llvm_fenv_clearexcept();
1204     return 0;
1205   }
1206 
1207   if (Ty->isHalfTy()) {
1208     APFloat APF(V);
1209     bool unused;
1210     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1211     return ConstantFP::get(Ty->getContext(), APF);
1212   }
1213   if (Ty->isFloatTy())
1214     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1215   if (Ty->isDoubleTy())
1216     return ConstantFP::get(Ty->getContext(), APFloat(V));
1217   llvm_unreachable("Can only constant fold half/float/double");
1218 }
1219 
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1220 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1221                                       double V, double W, Type *Ty) {
1222   sys::llvm_fenv_clearexcept();
1223   V = NativeFP(V, W);
1224   if (sys::llvm_fenv_testexcept()) {
1225     sys::llvm_fenv_clearexcept();
1226     return 0;
1227   }
1228 
1229   if (Ty->isHalfTy()) {
1230     APFloat APF(V);
1231     bool unused;
1232     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1233     return ConstantFP::get(Ty->getContext(), APF);
1234   }
1235   if (Ty->isFloatTy())
1236     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1237   if (Ty->isDoubleTy())
1238     return ConstantFP::get(Ty->getContext(), APFloat(V));
1239   llvm_unreachable("Can only constant fold half/float/double");
1240 }
1241 
1242 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1243 /// conversion of a constant floating point. If roundTowardZero is false, the
1244 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1245 /// the behavior of the non-truncating SSE instructions in the default rounding
1246 /// mode. The desired integer type Ty is used to select how many bits are
1247 /// available for the result. Returns null if the conversion cannot be
1248 /// performed, otherwise returns the Constant value resulting from the
1249 /// conversion.
ConstantFoldConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty)1250 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1251                                           bool roundTowardZero, Type *Ty) {
1252   // All of these conversion intrinsics form an integer of at most 64bits.
1253   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1254   assert(ResultWidth <= 64 &&
1255          "Can only constant fold conversions to 64 and 32 bit ints");
1256 
1257   uint64_t UIntVal;
1258   bool isExact = false;
1259   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1260                                               : APFloat::rmNearestTiesToEven;
1261   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1262                                                   /*isSigned=*/true, mode,
1263                                                   &isExact);
1264   if (status != APFloat::opOK && status != APFloat::opInexact)
1265     return 0;
1266   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1267 }
1268 
1269 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1270 /// with the specified arguments, returning null if unsuccessful.
1271 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1272 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1273                        const TargetLibraryInfo *TLI) {
1274   if (!F->hasName()) return 0;
1275   StringRef Name = F->getName();
1276 
1277   Type *Ty = F->getReturnType();
1278   if (Operands.size() == 1) {
1279     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1280       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1281         APFloat Val(Op->getValueAPF());
1282 
1283         bool lost = false;
1284         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1285 
1286         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1287       }
1288       if (!TLI)
1289         return 0;
1290 
1291       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1292         return 0;
1293 
1294       /// We only fold functions with finite arguments. Folding NaN and inf is
1295       /// likely to be aborted with an exception anyway, and some host libms
1296       /// have known errors raising exceptions.
1297       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1298         return 0;
1299 
1300       /// Currently APFloat versions of these functions do not exist, so we use
1301       /// the host native double versions.  Float versions are not called
1302       /// directly but for all these it is true (float)(f((double)arg)) ==
1303       /// f(arg).  Long double not supported yet.
1304       double V;
1305       if (Ty->isFloatTy())
1306         V = Op->getValueAPF().convertToFloat();
1307       else if (Ty->isDoubleTy())
1308         V = Op->getValueAPF().convertToDouble();
1309       else {
1310         bool unused;
1311         APFloat APF = Op->getValueAPF();
1312         APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1313         V = APF.convertToDouble();
1314       }
1315 
1316       switch (F->getIntrinsicID()) {
1317         default: break;
1318         case Intrinsic::fabs:
1319           return ConstantFoldFP(fabs, V, Ty);
1320 #if HAVE_LOG2
1321         case Intrinsic::log2:
1322           return ConstantFoldFP(log2, V, Ty);
1323 #endif
1324 #if HAVE_LOG
1325         case Intrinsic::log:
1326           return ConstantFoldFP(log, V, Ty);
1327 #endif
1328 #if HAVE_LOG10
1329         case Intrinsic::log10:
1330           return ConstantFoldFP(log10, V, Ty);
1331 #endif
1332 #if HAVE_EXP
1333         case Intrinsic::exp:
1334           return ConstantFoldFP(exp, V, Ty);
1335 #endif
1336 #if HAVE_EXP2
1337         case Intrinsic::exp2:
1338           return ConstantFoldFP(exp2, V, Ty);
1339 #endif
1340         case Intrinsic::floor:
1341           return ConstantFoldFP(floor, V, Ty);
1342       }
1343 
1344       switch (Name[0]) {
1345       case 'a':
1346         if (Name == "acos" && TLI->has(LibFunc::acos))
1347           return ConstantFoldFP(acos, V, Ty);
1348         else if (Name == "asin" && TLI->has(LibFunc::asin))
1349           return ConstantFoldFP(asin, V, Ty);
1350         else if (Name == "atan" && TLI->has(LibFunc::atan))
1351           return ConstantFoldFP(atan, V, Ty);
1352         break;
1353       case 'c':
1354         if (Name == "ceil" && TLI->has(LibFunc::ceil))
1355           return ConstantFoldFP(ceil, V, Ty);
1356         else if (Name == "cos" && TLI->has(LibFunc::cos))
1357           return ConstantFoldFP(cos, V, Ty);
1358         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1359           return ConstantFoldFP(cosh, V, Ty);
1360         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1361           return ConstantFoldFP(cos, V, Ty);
1362         break;
1363       case 'e':
1364         if (Name == "exp" && TLI->has(LibFunc::exp))
1365           return ConstantFoldFP(exp, V, Ty);
1366 
1367         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1368           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1369           // C99 library.
1370           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1371         }
1372         break;
1373       case 'f':
1374         if (Name == "fabs" && TLI->has(LibFunc::fabs))
1375           return ConstantFoldFP(fabs, V, Ty);
1376         else if (Name == "floor" && TLI->has(LibFunc::floor))
1377           return ConstantFoldFP(floor, V, Ty);
1378         break;
1379       case 'l':
1380         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1381           return ConstantFoldFP(log, V, Ty);
1382         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1383           return ConstantFoldFP(log10, V, Ty);
1384         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1385                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1386           if (V >= -0.0)
1387             return ConstantFoldFP(sqrt, V, Ty);
1388           else // Undefined
1389             return Constant::getNullValue(Ty);
1390         }
1391         break;
1392       case 's':
1393         if (Name == "sin" && TLI->has(LibFunc::sin))
1394           return ConstantFoldFP(sin, V, Ty);
1395         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1396           return ConstantFoldFP(sinh, V, Ty);
1397         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1398           return ConstantFoldFP(sqrt, V, Ty);
1399         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1400           return ConstantFoldFP(sqrt, V, Ty);
1401         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1402           return ConstantFoldFP(sin, V, Ty);
1403         break;
1404       case 't':
1405         if (Name == "tan" && TLI->has(LibFunc::tan))
1406           return ConstantFoldFP(tan, V, Ty);
1407         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1408           return ConstantFoldFP(tanh, V, Ty);
1409         break;
1410       default:
1411         break;
1412       }
1413       return 0;
1414     }
1415 
1416     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1417       switch (F->getIntrinsicID()) {
1418       case Intrinsic::bswap:
1419         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1420       case Intrinsic::ctpop:
1421         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1422       case Intrinsic::convert_from_fp16: {
1423         APFloat Val(APFloat::IEEEhalf, Op->getValue());
1424 
1425         bool lost = false;
1426         APFloat::opStatus status =
1427           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1428 
1429         // Conversion is always precise.
1430         (void)status;
1431         assert(status == APFloat::opOK && !lost &&
1432                "Precision lost during fp16 constfolding");
1433 
1434         return ConstantFP::get(F->getContext(), Val);
1435       }
1436       default:
1437         return 0;
1438       }
1439     }
1440 
1441     // Support ConstantVector in case we have an Undef in the top.
1442     if (isa<ConstantVector>(Operands[0]) ||
1443         isa<ConstantDataVector>(Operands[0])) {
1444       Constant *Op = cast<Constant>(Operands[0]);
1445       switch (F->getIntrinsicID()) {
1446       default: break;
1447       case Intrinsic::x86_sse_cvtss2si:
1448       case Intrinsic::x86_sse_cvtss2si64:
1449       case Intrinsic::x86_sse2_cvtsd2si:
1450       case Intrinsic::x86_sse2_cvtsd2si64:
1451         if (ConstantFP *FPOp =
1452               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1453           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1454                                           /*roundTowardZero=*/false, Ty);
1455       case Intrinsic::x86_sse_cvttss2si:
1456       case Intrinsic::x86_sse_cvttss2si64:
1457       case Intrinsic::x86_sse2_cvttsd2si:
1458       case Intrinsic::x86_sse2_cvttsd2si64:
1459         if (ConstantFP *FPOp =
1460               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1461           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1462                                           /*roundTowardZero=*/true, Ty);
1463       }
1464     }
1465 
1466     if (isa<UndefValue>(Operands[0])) {
1467       if (F->getIntrinsicID() == Intrinsic::bswap)
1468         return Operands[0];
1469       return 0;
1470     }
1471 
1472     return 0;
1473   }
1474 
1475   if (Operands.size() == 2) {
1476     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1477       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1478         return 0;
1479       double Op1V;
1480       if (Ty->isFloatTy())
1481         Op1V = Op1->getValueAPF().convertToFloat();
1482       else if (Ty->isDoubleTy())
1483         Op1V = Op1->getValueAPF().convertToDouble();
1484       else {
1485         bool unused;
1486         APFloat APF = Op1->getValueAPF();
1487         APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1488         Op1V = APF.convertToDouble();
1489       }
1490 
1491       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1492         if (Op2->getType() != Op1->getType())
1493           return 0;
1494 
1495         double Op2V;
1496         if (Ty->isFloatTy())
1497           Op2V = Op2->getValueAPF().convertToFloat();
1498         else if (Ty->isDoubleTy())
1499           Op2V = Op2->getValueAPF().convertToDouble();
1500         else {
1501           bool unused;
1502           APFloat APF = Op2->getValueAPF();
1503           APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1504           Op2V = APF.convertToDouble();
1505         }
1506 
1507         if (F->getIntrinsicID() == Intrinsic::pow) {
1508           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1509         }
1510         if (!TLI)
1511           return 0;
1512         if (Name == "pow" && TLI->has(LibFunc::pow))
1513           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1514         if (Name == "fmod" && TLI->has(LibFunc::fmod))
1515           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1516         if (Name == "atan2" && TLI->has(LibFunc::atan2))
1517           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1518       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1519         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
1520           return ConstantFP::get(F->getContext(),
1521                                  APFloat((float)std::pow((float)Op1V,
1522                                                  (int)Op2C->getZExtValue())));
1523         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1524           return ConstantFP::get(F->getContext(),
1525                                  APFloat((float)std::pow((float)Op1V,
1526                                                  (int)Op2C->getZExtValue())));
1527         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1528           return ConstantFP::get(F->getContext(),
1529                                  APFloat((double)std::pow((double)Op1V,
1530                                                    (int)Op2C->getZExtValue())));
1531       }
1532       return 0;
1533     }
1534 
1535     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1536       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1537         switch (F->getIntrinsicID()) {
1538         default: break;
1539         case Intrinsic::sadd_with_overflow:
1540         case Intrinsic::uadd_with_overflow:
1541         case Intrinsic::ssub_with_overflow:
1542         case Intrinsic::usub_with_overflow:
1543         case Intrinsic::smul_with_overflow:
1544         case Intrinsic::umul_with_overflow: {
1545           APInt Res;
1546           bool Overflow;
1547           switch (F->getIntrinsicID()) {
1548           default: llvm_unreachable("Invalid case");
1549           case Intrinsic::sadd_with_overflow:
1550             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1551             break;
1552           case Intrinsic::uadd_with_overflow:
1553             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1554             break;
1555           case Intrinsic::ssub_with_overflow:
1556             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1557             break;
1558           case Intrinsic::usub_with_overflow:
1559             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1560             break;
1561           case Intrinsic::smul_with_overflow:
1562             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1563             break;
1564           case Intrinsic::umul_with_overflow:
1565             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1566             break;
1567           }
1568           Constant *Ops[] = {
1569             ConstantInt::get(F->getContext(), Res),
1570             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1571           };
1572           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1573         }
1574         case Intrinsic::cttz:
1575           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1576             return UndefValue::get(Ty);
1577           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1578         case Intrinsic::ctlz:
1579           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1580             return UndefValue::get(Ty);
1581           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1582         }
1583       }
1584 
1585       return 0;
1586     }
1587     return 0;
1588   }
1589   return 0;
1590 }
1591