1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/Dominators.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/ProfileInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/DIBuilder.h"
25 #include "llvm/DebugInfo.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/CFG.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/GetElementPtrTypeIterator.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/ValueHandle.h"
43 #include "llvm/Support/raw_ostream.h"
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // Local constant propagation.
48 //
49
50 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
51 /// constant value, convert it into an unconditional branch to the constant
52 /// destination. This is a nontrivial operation because the successors of this
53 /// basic block must have their PHI nodes updated.
54 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
55 /// conditions and indirectbr addresses this might make dead if
56 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI)57 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
58 const TargetLibraryInfo *TLI) {
59 TerminatorInst *T = BB->getTerminator();
60 IRBuilder<> Builder(T);
61
62 // Branch - See if we are conditional jumping on constant
63 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
64 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
65 BasicBlock *Dest1 = BI->getSuccessor(0);
66 BasicBlock *Dest2 = BI->getSuccessor(1);
67
68 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
69 // Are we branching on constant?
70 // YES. Change to unconditional branch...
71 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
72 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
73
74 //cerr << "Function: " << T->getParent()->getParent()
75 // << "\nRemoving branch from " << T->getParent()
76 // << "\n\nTo: " << OldDest << endl;
77
78 // Let the basic block know that we are letting go of it. Based on this,
79 // it will adjust it's PHI nodes.
80 OldDest->removePredecessor(BB);
81
82 // Replace the conditional branch with an unconditional one.
83 Builder.CreateBr(Destination);
84 BI->eraseFromParent();
85 return true;
86 }
87
88 if (Dest2 == Dest1) { // Conditional branch to same location?
89 // This branch matches something like this:
90 // br bool %cond, label %Dest, label %Dest
91 // and changes it into: br label %Dest
92
93 // Let the basic block know that we are letting go of one copy of it.
94 assert(BI->getParent() && "Terminator not inserted in block!");
95 Dest1->removePredecessor(BI->getParent());
96
97 // Replace the conditional branch with an unconditional one.
98 Builder.CreateBr(Dest1);
99 Value *Cond = BI->getCondition();
100 BI->eraseFromParent();
101 if (DeleteDeadConditions)
102 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
103 return true;
104 }
105 return false;
106 }
107
108 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
109 // If we are switching on a constant, we can convert the switch into a
110 // single branch instruction!
111 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
112 BasicBlock *TheOnlyDest = SI->getDefaultDest();
113 BasicBlock *DefaultDest = TheOnlyDest;
114
115 // Figure out which case it goes to.
116 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
117 i != e; ++i) {
118 // Found case matching a constant operand?
119 if (i.getCaseValue() == CI) {
120 TheOnlyDest = i.getCaseSuccessor();
121 break;
122 }
123
124 // Check to see if this branch is going to the same place as the default
125 // dest. If so, eliminate it as an explicit compare.
126 if (i.getCaseSuccessor() == DefaultDest) {
127 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
128 // MD should have 2 + NumCases operands.
129 if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
130 // Collect branch weights into a vector.
131 SmallVector<uint32_t, 8> Weights;
132 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
133 ++MD_i) {
134 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
135 assert(CI);
136 Weights.push_back(CI->getValue().getZExtValue());
137 }
138 // Merge weight of this case to the default weight.
139 unsigned idx = i.getCaseIndex();
140 Weights[0] += Weights[idx+1];
141 // Remove weight for this case.
142 std::swap(Weights[idx+1], Weights.back());
143 Weights.pop_back();
144 SI->setMetadata(LLVMContext::MD_prof,
145 MDBuilder(BB->getContext()).
146 createBranchWeights(Weights));
147 }
148 // Remove this entry.
149 DefaultDest->removePredecessor(SI->getParent());
150 SI->removeCase(i);
151 --i; --e;
152 continue;
153 }
154
155 // Otherwise, check to see if the switch only branches to one destination.
156 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
157 // destinations.
158 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
159 }
160
161 if (CI && !TheOnlyDest) {
162 // Branching on a constant, but not any of the cases, go to the default
163 // successor.
164 TheOnlyDest = SI->getDefaultDest();
165 }
166
167 // If we found a single destination that we can fold the switch into, do so
168 // now.
169 if (TheOnlyDest) {
170 // Insert the new branch.
171 Builder.CreateBr(TheOnlyDest);
172 BasicBlock *BB = SI->getParent();
173
174 // Remove entries from PHI nodes which we no longer branch to...
175 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
176 // Found case matching a constant operand?
177 BasicBlock *Succ = SI->getSuccessor(i);
178 if (Succ == TheOnlyDest)
179 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
180 else
181 Succ->removePredecessor(BB);
182 }
183
184 // Delete the old switch.
185 Value *Cond = SI->getCondition();
186 SI->eraseFromParent();
187 if (DeleteDeadConditions)
188 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
189 return true;
190 }
191
192 if (SI->getNumCases() == 1) {
193 // Otherwise, we can fold this switch into a conditional branch
194 // instruction if it has only one non-default destination.
195 SwitchInst::CaseIt FirstCase = SI->case_begin();
196 IntegersSubset& Case = FirstCase.getCaseValueEx();
197 if (Case.isSingleNumber()) {
198 // FIXME: Currently work with ConstantInt based numbers.
199 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
200 Case.getSingleNumber(0).toConstantInt(),
201 "cond");
202
203 // Insert the new branch.
204 BranchInst *NewBr = Builder.CreateCondBr(Cond,
205 FirstCase.getCaseSuccessor(),
206 SI->getDefaultDest());
207 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
208 if (MD && MD->getNumOperands() == 3) {
209 ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
210 ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
211 assert(SICase && SIDef);
212 // The TrueWeight should be the weight for the single case of SI.
213 NewBr->setMetadata(LLVMContext::MD_prof,
214 MDBuilder(BB->getContext()).
215 createBranchWeights(SICase->getValue().getZExtValue(),
216 SIDef->getValue().getZExtValue()));
217 }
218
219 // Delete the old switch.
220 SI->eraseFromParent();
221 return true;
222 }
223 }
224 return false;
225 }
226
227 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
228 // indirectbr blockaddress(@F, @BB) -> br label @BB
229 if (BlockAddress *BA =
230 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
231 BasicBlock *TheOnlyDest = BA->getBasicBlock();
232 // Insert the new branch.
233 Builder.CreateBr(TheOnlyDest);
234
235 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
236 if (IBI->getDestination(i) == TheOnlyDest)
237 TheOnlyDest = 0;
238 else
239 IBI->getDestination(i)->removePredecessor(IBI->getParent());
240 }
241 Value *Address = IBI->getAddress();
242 IBI->eraseFromParent();
243 if (DeleteDeadConditions)
244 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
245
246 // If we didn't find our destination in the IBI successor list, then we
247 // have undefined behavior. Replace the unconditional branch with an
248 // 'unreachable' instruction.
249 if (TheOnlyDest) {
250 BB->getTerminator()->eraseFromParent();
251 new UnreachableInst(BB->getContext(), BB);
252 }
253
254 return true;
255 }
256 }
257
258 return false;
259 }
260
261
262 //===----------------------------------------------------------------------===//
263 // Local dead code elimination.
264 //
265
266 /// isInstructionTriviallyDead - Return true if the result produced by the
267 /// instruction is not used, and the instruction has no side effects.
268 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)269 bool llvm::isInstructionTriviallyDead(Instruction *I,
270 const TargetLibraryInfo *TLI) {
271 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
272
273 // We don't want the landingpad instruction removed by anything this general.
274 if (isa<LandingPadInst>(I))
275 return false;
276
277 // We don't want debug info removed by anything this general, unless
278 // debug info is empty.
279 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
280 if (DDI->getAddress())
281 return false;
282 return true;
283 }
284 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
285 if (DVI->getValue())
286 return false;
287 return true;
288 }
289
290 if (!I->mayHaveSideEffects()) return true;
291
292 // Special case intrinsics that "may have side effects" but can be deleted
293 // when dead.
294 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
295 // Safe to delete llvm.stacksave if dead.
296 if (II->getIntrinsicID() == Intrinsic::stacksave)
297 return true;
298
299 // Lifetime intrinsics are dead when their right-hand is undef.
300 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
301 II->getIntrinsicID() == Intrinsic::lifetime_end)
302 return isa<UndefValue>(II->getArgOperand(1));
303 }
304
305 if (isAllocLikeFn(I, TLI)) return true;
306
307 if (CallInst *CI = isFreeCall(I, TLI))
308 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
309 return C->isNullValue() || isa<UndefValue>(C);
310
311 return false;
312 }
313
314 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
315 /// trivially dead instruction, delete it. If that makes any of its operands
316 /// trivially dead, delete them too, recursively. Return true if any
317 /// instructions were deleted.
318 bool
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI)319 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
320 const TargetLibraryInfo *TLI) {
321 Instruction *I = dyn_cast<Instruction>(V);
322 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
323 return false;
324
325 SmallVector<Instruction*, 16> DeadInsts;
326 DeadInsts.push_back(I);
327
328 do {
329 I = DeadInsts.pop_back_val();
330
331 // Null out all of the instruction's operands to see if any operand becomes
332 // dead as we go.
333 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
334 Value *OpV = I->getOperand(i);
335 I->setOperand(i, 0);
336
337 if (!OpV->use_empty()) continue;
338
339 // If the operand is an instruction that became dead as we nulled out the
340 // operand, and if it is 'trivially' dead, delete it in a future loop
341 // iteration.
342 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
343 if (isInstructionTriviallyDead(OpI, TLI))
344 DeadInsts.push_back(OpI);
345 }
346
347 I->eraseFromParent();
348 } while (!DeadInsts.empty());
349
350 return true;
351 }
352
353 /// areAllUsesEqual - Check whether the uses of a value are all the same.
354 /// This is similar to Instruction::hasOneUse() except this will also return
355 /// true when there are no uses or multiple uses that all refer to the same
356 /// value.
areAllUsesEqual(Instruction * I)357 static bool areAllUsesEqual(Instruction *I) {
358 Value::use_iterator UI = I->use_begin();
359 Value::use_iterator UE = I->use_end();
360 if (UI == UE)
361 return true;
362
363 User *TheUse = *UI;
364 for (++UI; UI != UE; ++UI) {
365 if (*UI != TheUse)
366 return false;
367 }
368 return true;
369 }
370
371 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
372 /// dead PHI node, due to being a def-use chain of single-use nodes that
373 /// either forms a cycle or is terminated by a trivially dead instruction,
374 /// delete it. If that makes any of its operands trivially dead, delete them
375 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI)376 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
377 const TargetLibraryInfo *TLI) {
378 SmallPtrSet<Instruction*, 4> Visited;
379 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
380 I = cast<Instruction>(*I->use_begin())) {
381 if (I->use_empty())
382 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
383
384 // If we find an instruction more than once, we're on a cycle that
385 // won't prove fruitful.
386 if (!Visited.insert(I)) {
387 // Break the cycle and delete the instruction and its operands.
388 I->replaceAllUsesWith(UndefValue::get(I->getType()));
389 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
390 return true;
391 }
392 }
393 return false;
394 }
395
396 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
397 /// simplify any instructions in it and recursively delete dead instructions.
398 ///
399 /// This returns true if it changed the code, note that it can delete
400 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const DataLayout * TD,const TargetLibraryInfo * TLI)401 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
402 const TargetLibraryInfo *TLI) {
403 bool MadeChange = false;
404
405 #ifndef NDEBUG
406 // In debug builds, ensure that the terminator of the block is never replaced
407 // or deleted by these simplifications. The idea of simplification is that it
408 // cannot introduce new instructions, and there is no way to replace the
409 // terminator of a block without introducing a new instruction.
410 AssertingVH<Instruction> TerminatorVH(--BB->end());
411 #endif
412
413 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
414 assert(!BI->isTerminator());
415 Instruction *Inst = BI++;
416
417 WeakVH BIHandle(BI);
418 if (recursivelySimplifyInstruction(Inst, TD)) {
419 MadeChange = true;
420 if (BIHandle != BI)
421 BI = BB->begin();
422 continue;
423 }
424
425 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
426 if (BIHandle != BI)
427 BI = BB->begin();
428 }
429 return MadeChange;
430 }
431
432 //===----------------------------------------------------------------------===//
433 // Control Flow Graph Restructuring.
434 //
435
436
437 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
438 /// method is called when we're about to delete Pred as a predecessor of BB. If
439 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
440 ///
441 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
442 /// nodes that collapse into identity values. For example, if we have:
443 /// x = phi(1, 0, 0, 0)
444 /// y = and x, z
445 ///
446 /// .. and delete the predecessor corresponding to the '1', this will attempt to
447 /// recursively fold the and to 0.
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,DataLayout * TD)448 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
449 DataLayout *TD) {
450 // This only adjusts blocks with PHI nodes.
451 if (!isa<PHINode>(BB->begin()))
452 return;
453
454 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
455 // them down. This will leave us with single entry phi nodes and other phis
456 // that can be removed.
457 BB->removePredecessor(Pred, true);
458
459 WeakVH PhiIt = &BB->front();
460 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
461 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
462 Value *OldPhiIt = PhiIt;
463
464 if (!recursivelySimplifyInstruction(PN, TD))
465 continue;
466
467 // If recursive simplification ended up deleting the next PHI node we would
468 // iterate to, then our iterator is invalid, restart scanning from the top
469 // of the block.
470 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
471 }
472 }
473
474
475 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
476 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
477 /// between them, moving the instructions in the predecessor into DestBB and
478 /// deleting the predecessor block.
479 ///
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,Pass * P)480 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
481 // If BB has single-entry PHI nodes, fold them.
482 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
483 Value *NewVal = PN->getIncomingValue(0);
484 // Replace self referencing PHI with undef, it must be dead.
485 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
486 PN->replaceAllUsesWith(NewVal);
487 PN->eraseFromParent();
488 }
489
490 BasicBlock *PredBB = DestBB->getSinglePredecessor();
491 assert(PredBB && "Block doesn't have a single predecessor!");
492
493 // Zap anything that took the address of DestBB. Not doing this will give the
494 // address an invalid value.
495 if (DestBB->hasAddressTaken()) {
496 BlockAddress *BA = BlockAddress::get(DestBB);
497 Constant *Replacement =
498 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
499 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
500 BA->getType()));
501 BA->destroyConstant();
502 }
503
504 // Anything that branched to PredBB now branches to DestBB.
505 PredBB->replaceAllUsesWith(DestBB);
506
507 // Splice all the instructions from PredBB to DestBB.
508 PredBB->getTerminator()->eraseFromParent();
509 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
510
511 if (P) {
512 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
513 if (DT) {
514 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
515 DT->changeImmediateDominator(DestBB, PredBBIDom);
516 DT->eraseNode(PredBB);
517 }
518 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
519 if (PI) {
520 PI->replaceAllUses(PredBB, DestBB);
521 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
522 }
523 }
524 // Nuke BB.
525 PredBB->eraseFromParent();
526 }
527
528 /// CanMergeValues - Return true if we can choose one of these values to use
529 /// in place of the other. Note that we will always choose the non-undef
530 /// value to keep.
CanMergeValues(Value * First,Value * Second)531 static bool CanMergeValues(Value *First, Value *Second) {
532 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
533 }
534
535 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
536 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
537 ///
538 /// Assumption: Succ is the single successor for BB.
539 ///
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)540 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
541 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
542
543 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
544 << Succ->getName() << "\n");
545 // Shortcut, if there is only a single predecessor it must be BB and merging
546 // is always safe
547 if (Succ->getSinglePredecessor()) return true;
548
549 // Make a list of the predecessors of BB
550 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
551
552 // Look at all the phi nodes in Succ, to see if they present a conflict when
553 // merging these blocks
554 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
555 PHINode *PN = cast<PHINode>(I);
556
557 // If the incoming value from BB is again a PHINode in
558 // BB which has the same incoming value for *PI as PN does, we can
559 // merge the phi nodes and then the blocks can still be merged
560 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
561 if (BBPN && BBPN->getParent() == BB) {
562 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
563 BasicBlock *IBB = PN->getIncomingBlock(PI);
564 if (BBPreds.count(IBB) &&
565 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
566 PN->getIncomingValue(PI))) {
567 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
568 << Succ->getName() << " is conflicting with "
569 << BBPN->getName() << " with regard to common predecessor "
570 << IBB->getName() << "\n");
571 return false;
572 }
573 }
574 } else {
575 Value* Val = PN->getIncomingValueForBlock(BB);
576 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
577 // See if the incoming value for the common predecessor is equal to the
578 // one for BB, in which case this phi node will not prevent the merging
579 // of the block.
580 BasicBlock *IBB = PN->getIncomingBlock(PI);
581 if (BBPreds.count(IBB) &&
582 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
583 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
584 << Succ->getName() << " is conflicting with regard to common "
585 << "predecessor " << IBB->getName() << "\n");
586 return false;
587 }
588 }
589 }
590 }
591
592 return true;
593 }
594
595 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
596 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
597
598 /// \brief Determines the value to use as the phi node input for a block.
599 ///
600 /// Select between \p OldVal any value that we know flows from \p BB
601 /// to a particular phi on the basis of which one (if either) is not
602 /// undef. Update IncomingValues based on the selected value.
603 ///
604 /// \param OldVal The value we are considering selecting.
605 /// \param BB The block that the value flows in from.
606 /// \param IncomingValues A map from block-to-value for other phi inputs
607 /// that we have examined.
608 ///
609 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)610 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
611 IncomingValueMap &IncomingValues) {
612 if (!isa<UndefValue>(OldVal)) {
613 assert((!IncomingValues.count(BB) ||
614 IncomingValues.find(BB)->second == OldVal) &&
615 "Expected OldVal to match incoming value from BB!");
616
617 IncomingValues.insert(std::make_pair(BB, OldVal));
618 return OldVal;
619 }
620
621 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
622 if (It != IncomingValues.end()) return It->second;
623
624 return OldVal;
625 }
626
627 /// \brief Create a map from block to value for the operands of a
628 /// given phi.
629 ///
630 /// Create a map from block to value for each non-undef value flowing
631 /// into \p PN.
632 ///
633 /// \param PN The phi we are collecting the map for.
634 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)635 static void gatherIncomingValuesToPhi(PHINode *PN,
636 IncomingValueMap &IncomingValues) {
637 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
638 BasicBlock *BB = PN->getIncomingBlock(i);
639 Value *V = PN->getIncomingValue(i);
640
641 if (!isa<UndefValue>(V))
642 IncomingValues.insert(std::make_pair(BB, V));
643 }
644 }
645
646 /// \brief Replace the incoming undef values to a phi with the values
647 /// from a block-to-value map.
648 ///
649 /// \param PN The phi we are replacing the undefs in.
650 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)651 static void replaceUndefValuesInPhi(PHINode *PN,
652 const IncomingValueMap &IncomingValues) {
653 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
654 Value *V = PN->getIncomingValue(i);
655
656 if (!isa<UndefValue>(V)) continue;
657
658 BasicBlock *BB = PN->getIncomingBlock(i);
659 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
660 if (It == IncomingValues.end()) continue;
661
662 PN->setIncomingValue(i, It->second);
663 }
664 }
665
666 /// \brief Replace a value flowing from a block to a phi with
667 /// potentially multiple instances of that value flowing from the
668 /// block's predecessors to the phi.
669 ///
670 /// \param BB The block with the value flowing into the phi.
671 /// \param BBPreds The predecessors of BB.
672 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)673 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
674 const PredBlockVector &BBPreds,
675 PHINode *PN) {
676 Value *OldVal = PN->removeIncomingValue(BB, false);
677 assert(OldVal && "No entry in PHI for Pred BB!");
678
679 IncomingValueMap IncomingValues;
680
681 // We are merging two blocks - BB, and the block containing PN - and
682 // as a result we need to redirect edges from the predecessors of BB
683 // to go to the block containing PN, and update PN
684 // accordingly. Since we allow merging blocks in the case where the
685 // predecessor and successor blocks both share some predecessors,
686 // and where some of those common predecessors might have undef
687 // values flowing into PN, we want to rewrite those values to be
688 // consistent with the non-undef values.
689
690 gatherIncomingValuesToPhi(PN, IncomingValues);
691
692 // If this incoming value is one of the PHI nodes in BB, the new entries
693 // in the PHI node are the entries from the old PHI.
694 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
695 PHINode *OldValPN = cast<PHINode>(OldVal);
696 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
697 // Note that, since we are merging phi nodes and BB and Succ might
698 // have common predecessors, we could end up with a phi node with
699 // identical incoming branches. This will be cleaned up later (and
700 // will trigger asserts if we try to clean it up now, without also
701 // simplifying the corresponding conditional branch).
702 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
703 Value *PredVal = OldValPN->getIncomingValue(i);
704 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
705 IncomingValues);
706
707 // And add a new incoming value for this predecessor for the
708 // newly retargeted branch.
709 PN->addIncoming(Selected, PredBB);
710 }
711 } else {
712 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
713 // Update existing incoming values in PN for this
714 // predecessor of BB.
715 BasicBlock *PredBB = BBPreds[i];
716 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
717 IncomingValues);
718
719 // And add a new incoming value for this predecessor for the
720 // newly retargeted branch.
721 PN->addIncoming(Selected, PredBB);
722 }
723 }
724
725 replaceUndefValuesInPhi(PN, IncomingValues);
726 }
727
728 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
729 /// unconditional branch, and contains no instructions other than PHI nodes,
730 /// potential side-effect free intrinsics and the branch. If possible,
731 /// eliminate BB by rewriting all the predecessors to branch to the successor
732 /// block and return true. If we can't transform, return false.
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB)733 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
734 assert(BB != &BB->getParent()->getEntryBlock() &&
735 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
736
737 // We can't eliminate infinite loops.
738 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
739 if (BB == Succ) return false;
740
741 // Check to see if merging these blocks would cause conflicts for any of the
742 // phi nodes in BB or Succ. If not, we can safely merge.
743 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
744
745 // Check for cases where Succ has multiple predecessors and a PHI node in BB
746 // has uses which will not disappear when the PHI nodes are merged. It is
747 // possible to handle such cases, but difficult: it requires checking whether
748 // BB dominates Succ, which is non-trivial to calculate in the case where
749 // Succ has multiple predecessors. Also, it requires checking whether
750 // constructing the necessary self-referential PHI node doesn't introduce any
751 // conflicts; this isn't too difficult, but the previous code for doing this
752 // was incorrect.
753 //
754 // Note that if this check finds a live use, BB dominates Succ, so BB is
755 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
756 // folding the branch isn't profitable in that case anyway.
757 if (!Succ->getSinglePredecessor()) {
758 BasicBlock::iterator BBI = BB->begin();
759 while (isa<PHINode>(*BBI)) {
760 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
761 UI != E; ++UI) {
762 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
763 if (PN->getIncomingBlock(UI) != BB)
764 return false;
765 } else {
766 return false;
767 }
768 }
769 ++BBI;
770 }
771 }
772
773 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
774
775 if (isa<PHINode>(Succ->begin())) {
776 // If there is more than one pred of succ, and there are PHI nodes in
777 // the successor, then we need to add incoming edges for the PHI nodes
778 //
779 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
780
781 // Loop over all of the PHI nodes in the successor of BB.
782 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
783 PHINode *PN = cast<PHINode>(I);
784
785 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
786 }
787 }
788
789 if (Succ->getSinglePredecessor()) {
790 // BB is the only predecessor of Succ, so Succ will end up with exactly
791 // the same predecessors BB had.
792
793 // Copy over any phi, debug or lifetime instruction.
794 BB->getTerminator()->eraseFromParent();
795 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
796 } else {
797 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
798 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
799 assert(PN->use_empty() && "There shouldn't be any uses here!");
800 PN->eraseFromParent();
801 }
802 }
803
804 // Everything that jumped to BB now goes to Succ.
805 BB->replaceAllUsesWith(Succ);
806 if (!Succ->hasName()) Succ->takeName(BB);
807 BB->eraseFromParent(); // Delete the old basic block.
808 return true;
809 }
810
811 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
812 /// nodes in this block. This doesn't try to be clever about PHI nodes
813 /// which differ only in the order of the incoming values, but instcombine
814 /// orders them so it usually won't matter.
815 ///
EliminateDuplicatePHINodes(BasicBlock * BB)816 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
817 bool Changed = false;
818
819 // This implementation doesn't currently consider undef operands
820 // specially. Theoretically, two phis which are identical except for
821 // one having an undef where the other doesn't could be collapsed.
822
823 // Map from PHI hash values to PHI nodes. If multiple PHIs have
824 // the same hash value, the element is the first PHI in the
825 // linked list in CollisionMap.
826 DenseMap<uintptr_t, PHINode *> HashMap;
827
828 // Maintain linked lists of PHI nodes with common hash values.
829 DenseMap<PHINode *, PHINode *> CollisionMap;
830
831 // Examine each PHI.
832 for (BasicBlock::iterator I = BB->begin();
833 PHINode *PN = dyn_cast<PHINode>(I++); ) {
834 // Compute a hash value on the operands. Instcombine will likely have sorted
835 // them, which helps expose duplicates, but we have to check all the
836 // operands to be safe in case instcombine hasn't run.
837 uintptr_t Hash = 0;
838 // This hash algorithm is quite weak as hash functions go, but it seems
839 // to do a good enough job for this particular purpose, and is very quick.
840 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
841 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
842 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
843 }
844 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
845 I != E; ++I) {
846 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
847 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
848 }
849 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
850 Hash >>= 1;
851 // If we've never seen this hash value before, it's a unique PHI.
852 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
853 HashMap.insert(std::make_pair(Hash, PN));
854 if (Pair.second) continue;
855 // Otherwise it's either a duplicate or a hash collision.
856 for (PHINode *OtherPN = Pair.first->second; ; ) {
857 if (OtherPN->isIdenticalTo(PN)) {
858 // A duplicate. Replace this PHI with its duplicate.
859 PN->replaceAllUsesWith(OtherPN);
860 PN->eraseFromParent();
861 Changed = true;
862 break;
863 }
864 // A non-duplicate hash collision.
865 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
866 if (I == CollisionMap.end()) {
867 // Set this PHI to be the head of the linked list of colliding PHIs.
868 PHINode *Old = Pair.first->second;
869 Pair.first->second = PN;
870 CollisionMap[PN] = Old;
871 break;
872 }
873 // Proceed to the next PHI in the list.
874 OtherPN = I->second;
875 }
876 }
877
878 return Changed;
879 }
880
881 /// enforceKnownAlignment - If the specified pointer points to an object that
882 /// we control, modify the object's alignment to PrefAlign. This isn't
883 /// often possible though. If alignment is important, a more reliable approach
884 /// is to simply align all global variables and allocation instructions to
885 /// their preferred alignment from the beginning.
886 ///
enforceKnownAlignment(Value * V,unsigned Align,unsigned PrefAlign,const DataLayout * TD)887 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
888 unsigned PrefAlign, const DataLayout *TD) {
889 V = V->stripPointerCasts();
890
891 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
892 // If the preferred alignment is greater than the natural stack alignment
893 // then don't round up. This avoids dynamic stack realignment.
894 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
895 return Align;
896 // If there is a requested alignment and if this is an alloca, round up.
897 if (AI->getAlignment() >= PrefAlign)
898 return AI->getAlignment();
899 AI->setAlignment(PrefAlign);
900 return PrefAlign;
901 }
902
903 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
904 // If there is a large requested alignment and we can, bump up the alignment
905 // of the global.
906 if (GV->isDeclaration()) return Align;
907 // If the memory we set aside for the global may not be the memory used by
908 // the final program then it is impossible for us to reliably enforce the
909 // preferred alignment.
910 if (GV->isWeakForLinker()) return Align;
911
912 if (GV->getAlignment() >= PrefAlign)
913 return GV->getAlignment();
914 // We can only increase the alignment of the global if it has no alignment
915 // specified or if it is not assigned a section. If it is assigned a
916 // section, the global could be densely packed with other objects in the
917 // section, increasing the alignment could cause padding issues.
918 if (!GV->hasSection() || GV->getAlignment() == 0)
919 GV->setAlignment(PrefAlign);
920 return GV->getAlignment();
921 }
922
923 return Align;
924 }
925
926 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
927 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
928 /// and it is more than the alignment of the ultimate object, see if we can
929 /// increase the alignment of the ultimate object, making this check succeed.
getOrEnforceKnownAlignment(Value * V,unsigned PrefAlign,const DataLayout * DL)930 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
931 const DataLayout *DL) {
932 assert(V->getType()->isPointerTy() &&
933 "getOrEnforceKnownAlignment expects a pointer!");
934 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
935
936 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
937 ComputeMaskedBits(V, KnownZero, KnownOne, DL);
938 unsigned TrailZ = KnownZero.countTrailingOnes();
939
940 // Avoid trouble with ridiculously large TrailZ values, such as
941 // those computed from a null pointer.
942 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
943
944 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
945
946 // LLVM doesn't support alignments larger than this currently.
947 Align = std::min(Align, +Value::MaximumAlignment);
948
949 if (PrefAlign > Align)
950 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
951
952 // We don't need to make any adjustment.
953 return Align;
954 }
955
956 ///===---------------------------------------------------------------------===//
957 /// Dbg Intrinsic utilities
958 ///
959
960 /// See if there is a dbg.value intrinsic for DIVar before I.
LdStHasDebugValue(DIVariable & DIVar,Instruction * I)961 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
962 // Since we can't guarantee that the original dbg.declare instrinsic
963 // is removed by LowerDbgDeclare(), we need to make sure that we are
964 // not inserting the same dbg.value intrinsic over and over.
965 llvm::BasicBlock::InstListType::iterator PrevI(I);
966 if (PrevI != I->getParent()->getInstList().begin()) {
967 --PrevI;
968 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
969 if (DVI->getValue() == I->getOperand(0) &&
970 DVI->getOffset() == 0 &&
971 DVI->getVariable() == DIVar)
972 return true;
973 }
974 return false;
975 }
976
977 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
978 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,StoreInst * SI,DIBuilder & Builder)979 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
980 StoreInst *SI, DIBuilder &Builder) {
981 DIVariable DIVar(DDI->getVariable());
982 assert((!DIVar || DIVar.isVariable()) &&
983 "Variable in DbgDeclareInst should be either null or a DIVariable.");
984 if (!DIVar)
985 return false;
986
987 if (LdStHasDebugValue(DIVar, SI))
988 return true;
989
990 Instruction *DbgVal = NULL;
991 // If an argument is zero extended then use argument directly. The ZExt
992 // may be zapped by an optimization pass in future.
993 Argument *ExtendedArg = NULL;
994 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
995 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
996 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
997 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
998 if (ExtendedArg)
999 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
1000 else
1001 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
1002
1003 // Propagate any debug metadata from the store onto the dbg.value.
1004 DebugLoc SIDL = SI->getDebugLoc();
1005 if (!SIDL.isUnknown())
1006 DbgVal->setDebugLoc(SIDL);
1007 // Otherwise propagate debug metadata from dbg.declare.
1008 else
1009 DbgVal->setDebugLoc(DDI->getDebugLoc());
1010 return true;
1011 }
1012
1013 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1014 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,LoadInst * LI,DIBuilder & Builder)1015 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1016 LoadInst *LI, DIBuilder &Builder) {
1017 DIVariable DIVar(DDI->getVariable());
1018 assert((!DIVar || DIVar.isVariable()) &&
1019 "Variable in DbgDeclareInst should be either null or a DIVariable.");
1020 if (!DIVar)
1021 return false;
1022
1023 if (LdStHasDebugValue(DIVar, LI))
1024 return true;
1025
1026 Instruction *DbgVal =
1027 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
1028 DIVar, LI);
1029
1030 // Propagate any debug metadata from the store onto the dbg.value.
1031 DebugLoc LIDL = LI->getDebugLoc();
1032 if (!LIDL.isUnknown())
1033 DbgVal->setDebugLoc(LIDL);
1034 // Otherwise propagate debug metadata from dbg.declare.
1035 else
1036 DbgVal->setDebugLoc(DDI->getDebugLoc());
1037 return true;
1038 }
1039
1040 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1041 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1042 bool llvm::LowerDbgDeclare(Function &F) {
1043 DIBuilder DIB(*F.getParent());
1044 SmallVector<DbgDeclareInst *, 4> Dbgs;
1045 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1046 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
1047 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
1048 Dbgs.push_back(DDI);
1049 }
1050 if (Dbgs.empty())
1051 return false;
1052
1053 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
1054 E = Dbgs.end(); I != E; ++I) {
1055 DbgDeclareInst *DDI = *I;
1056 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
1057 // We only remove the dbg.declare intrinsic if all uses are
1058 // converted to dbg.value intrinsics.
1059 bool RemoveDDI = true;
1060 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1061 UI != E; ++UI)
1062 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
1063 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1064 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1065 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1066 else
1067 RemoveDDI = false;
1068 if (RemoveDDI)
1069 DDI->eraseFromParent();
1070 }
1071 }
1072 return true;
1073 }
1074
1075 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1076 /// alloca 'V', if any.
FindAllocaDbgDeclare(Value * V)1077 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1078 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
1079 for (Value::use_iterator UI = DebugNode->use_begin(),
1080 E = DebugNode->use_end(); UI != E; ++UI)
1081 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1082 return DDI;
1083
1084 return 0;
1085 }
1086
replaceDbgDeclareForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder)1087 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1088 DIBuilder &Builder) {
1089 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1090 if (!DDI)
1091 return false;
1092 DIVariable DIVar(DDI->getVariable());
1093 assert((!DIVar || DIVar.isVariable()) &&
1094 "Variable in DbgDeclareInst should be either null or a DIVariable.");
1095 if (!DIVar)
1096 return false;
1097
1098 // Create a copy of the original DIDescriptor for user variable, appending
1099 // "deref" operation to a list of address elements, as new llvm.dbg.declare
1100 // will take a value storing address of the memory for variable, not
1101 // alloca itself.
1102 Type *Int64Ty = Type::getInt64Ty(AI->getContext());
1103 SmallVector<Value*, 4> NewDIVarAddress;
1104 if (DIVar.hasComplexAddress()) {
1105 for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
1106 NewDIVarAddress.push_back(
1107 ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
1108 }
1109 }
1110 NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
1111 DIVariable NewDIVar = Builder.createComplexVariable(
1112 DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
1113 DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
1114 NewDIVarAddress, DIVar.getArgNumber());
1115
1116 // Insert llvm.dbg.declare in the same basic block as the original alloca,
1117 // and remove old llvm.dbg.declare.
1118 BasicBlock *BB = AI->getParent();
1119 Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
1120 DDI->eraseFromParent();
1121 return true;
1122 }
1123
removeUnreachableBlocks(Function & F)1124 bool llvm::removeUnreachableBlocks(Function &F) {
1125 SmallPtrSet<BasicBlock*, 16> Reachable;
1126 SmallVector<BasicBlock*, 128> Worklist;
1127 Worklist.push_back(&F.getEntryBlock());
1128 Reachable.insert(&F.getEntryBlock());
1129 do {
1130 BasicBlock *BB = Worklist.pop_back_val();
1131 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1132 if (Reachable.insert(*SI))
1133 Worklist.push_back(*SI);
1134 } while (!Worklist.empty());
1135
1136 if (Reachable.size() == F.size())
1137 return false;
1138
1139 assert(Reachable.size() < F.size());
1140 for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
1141 if (Reachable.count(I))
1142 continue;
1143
1144 for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
1145 if (Reachable.count(*SI))
1146 (*SI)->removePredecessor(I);
1147 I->dropAllReferences();
1148 }
1149
1150 for (Function::iterator I = llvm::next(F.begin()), E=F.end(); I != E;)
1151 if (!Reachable.count(I))
1152 I = F.getBasicBlockList().erase(I);
1153 else
1154 ++I;
1155
1156 return true;
1157 }
1158