1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveVariables.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/LeakDetector.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include <algorithm>
37 using namespace llvm;
38
MachineBasicBlock(MachineFunction & mf,const BasicBlock * bb)39 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
40 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
41 AddressTaken(false), CachedMCSymbol(NULL) {
42 Insts.Parent = this;
43 }
44
~MachineBasicBlock()45 MachineBasicBlock::~MachineBasicBlock() {
46 LeakDetector::removeGarbageObject(this);
47 }
48
49 /// getSymbol - Return the MCSymbol for this basic block.
50 ///
getSymbol() const51 MCSymbol *MachineBasicBlock::getSymbol() const {
52 if (!CachedMCSymbol) {
53 const MachineFunction *MF = getParent();
54 MCContext &Ctx = MF->getContext();
55 const char *Prefix = Ctx.getAsmInfo()->getPrivateGlobalPrefix();
56 CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
57 Twine(MF->getFunctionNumber()) +
58 "_" + Twine(getNumber()));
59 }
60
61 return CachedMCSymbol;
62 }
63
64
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
66 MBB.print(OS);
67 return OS;
68 }
69
70 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
71 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
72 /// MBB to be on the right operand list for registers.
73 ///
74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
75 /// gets the next available unique MBB number. If it is removed from a
76 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
78 MachineFunction &MF = *N->getParent();
79 N->Number = MF.addToMBBNumbering(N);
80
81 // Make sure the instructions have their operands in the reginfo lists.
82 MachineRegisterInfo &RegInfo = MF.getRegInfo();
83 for (MachineBasicBlock::instr_iterator
84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
85 I->AddRegOperandsToUseLists(RegInfo);
86
87 LeakDetector::removeGarbageObject(N);
88 }
89
removeNodeFromList(MachineBasicBlock * N)90 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
91 N->getParent()->removeFromMBBNumbering(N->Number);
92 N->Number = -1;
93 LeakDetector::addGarbageObject(N);
94 }
95
96
97 /// addNodeToList (MI) - When we add an instruction to a basic block
98 /// list, we update its parent pointer and add its operands from reg use/def
99 /// lists if appropriate.
addNodeToList(MachineInstr * N)100 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
101 assert(N->getParent() == 0 && "machine instruction already in a basic block");
102 N->setParent(Parent);
103
104 // Add the instruction's register operands to their corresponding
105 // use/def lists.
106 MachineFunction *MF = Parent->getParent();
107 N->AddRegOperandsToUseLists(MF->getRegInfo());
108
109 LeakDetector::removeGarbageObject(N);
110 }
111
112 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
113 /// list, we update its parent pointer and remove its operands from reg use/def
114 /// lists if appropriate.
removeNodeFromList(MachineInstr * N)115 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
116 assert(N->getParent() != 0 && "machine instruction not in a basic block");
117
118 // Remove from the use/def lists.
119 if (MachineFunction *MF = N->getParent()->getParent())
120 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
121
122 N->setParent(0);
123
124 LeakDetector::addGarbageObject(N);
125 }
126
127 /// transferNodesFromList (MI) - When moving a range of instructions from one
128 /// MBB list to another, we need to update the parent pointers and the use/def
129 /// lists.
130 void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> & fromList,ilist_iterator<MachineInstr> first,ilist_iterator<MachineInstr> last)131 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
132 ilist_iterator<MachineInstr> first,
133 ilist_iterator<MachineInstr> last) {
134 assert(Parent->getParent() == fromList.Parent->getParent() &&
135 "MachineInstr parent mismatch!");
136
137 // Splice within the same MBB -> no change.
138 if (Parent == fromList.Parent) return;
139
140 // If splicing between two blocks within the same function, just update the
141 // parent pointers.
142 for (; first != last; ++first)
143 first->setParent(Parent);
144 }
145
deleteNode(MachineInstr * MI)146 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
147 assert(!MI->getParent() && "MI is still in a block!");
148 Parent->getParent()->DeleteMachineInstr(MI);
149 }
150
getFirstNonPHI()151 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
152 instr_iterator I = instr_begin(), E = instr_end();
153 while (I != E && I->isPHI())
154 ++I;
155 assert((I == E || !I->isInsideBundle()) &&
156 "First non-phi MI cannot be inside a bundle!");
157 return I;
158 }
159
160 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
162 iterator E = end();
163 while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
164 ++I;
165 // FIXME: This needs to change if we wish to bundle labels / dbg_values
166 // inside the bundle.
167 assert((I == E || !I->isInsideBundle()) &&
168 "First non-phi / non-label instruction is inside a bundle!");
169 return I;
170 }
171
getFirstTerminator()172 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
173 iterator B = begin(), E = end(), I = E;
174 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
175 ; /*noop */
176 while (I != E && !I->isTerminator())
177 ++I;
178 return I;
179 }
180
181 MachineBasicBlock::const_iterator
getFirstTerminator() const182 MachineBasicBlock::getFirstTerminator() const {
183 const_iterator B = begin(), E = end(), I = E;
184 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
185 ; /*noop */
186 while (I != E && !I->isTerminator())
187 ++I;
188 return I;
189 }
190
getFirstInstrTerminator()191 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
192 instr_iterator B = instr_begin(), E = instr_end(), I = E;
193 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
194 ; /*noop */
195 while (I != E && !I->isTerminator())
196 ++I;
197 return I;
198 }
199
getLastNonDebugInstr()200 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
201 // Skip over end-of-block dbg_value instructions.
202 instr_iterator B = instr_begin(), I = instr_end();
203 while (I != B) {
204 --I;
205 // Return instruction that starts a bundle.
206 if (I->isDebugValue() || I->isInsideBundle())
207 continue;
208 return I;
209 }
210 // The block is all debug values.
211 return end();
212 }
213
214 MachineBasicBlock::const_iterator
getLastNonDebugInstr() const215 MachineBasicBlock::getLastNonDebugInstr() const {
216 // Skip over end-of-block dbg_value instructions.
217 const_instr_iterator B = instr_begin(), I = instr_end();
218 while (I != B) {
219 --I;
220 // Return instruction that starts a bundle.
221 if (I->isDebugValue() || I->isInsideBundle())
222 continue;
223 return I;
224 }
225 // The block is all debug values.
226 return end();
227 }
228
getLandingPadSuccessor() const229 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
230 // A block with a landing pad successor only has one other successor.
231 if (succ_size() > 2)
232 return 0;
233 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
234 if ((*I)->isLandingPad())
235 return *I;
236 return 0;
237 }
238
239 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const240 void MachineBasicBlock::dump() const {
241 print(dbgs());
242 }
243 #endif
244
getName() const245 StringRef MachineBasicBlock::getName() const {
246 if (const BasicBlock *LBB = getBasicBlock())
247 return LBB->getName();
248 else
249 return "(null)";
250 }
251
252 /// Return a hopefully unique identifier for this block.
getFullName() const253 std::string MachineBasicBlock::getFullName() const {
254 std::string Name;
255 if (getParent())
256 Name = (getParent()->getName() + ":").str();
257 if (getBasicBlock())
258 Name += getBasicBlock()->getName();
259 else
260 Name += (Twine("BB") + Twine(getNumber())).str();
261 return Name;
262 }
263
print(raw_ostream & OS,SlotIndexes * Indexes) const264 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
265 const MachineFunction *MF = getParent();
266 if (!MF) {
267 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
268 << " is null\n";
269 return;
270 }
271
272 if (Indexes)
273 OS << Indexes->getMBBStartIdx(this) << '\t';
274
275 OS << "BB#" << getNumber() << ": ";
276
277 const char *Comma = "";
278 if (const BasicBlock *LBB = getBasicBlock()) {
279 OS << Comma << "derived from LLVM BB ";
280 WriteAsOperand(OS, LBB, /*PrintType=*/false);
281 Comma = ", ";
282 }
283 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
284 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
285 if (Alignment)
286 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
287 << " bytes)";
288
289 OS << '\n';
290
291 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
292 if (!livein_empty()) {
293 if (Indexes) OS << '\t';
294 OS << " Live Ins:";
295 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
296 OS << ' ' << PrintReg(*I, TRI);
297 OS << '\n';
298 }
299 // Print the preds of this block according to the CFG.
300 if (!pred_empty()) {
301 if (Indexes) OS << '\t';
302 OS << " Predecessors according to CFG:";
303 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
304 OS << " BB#" << (*PI)->getNumber();
305 OS << '\n';
306 }
307
308 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
309 if (Indexes) {
310 if (Indexes->hasIndex(I))
311 OS << Indexes->getInstructionIndex(I);
312 OS << '\t';
313 }
314 OS << '\t';
315 if (I->isInsideBundle())
316 OS << " * ";
317 I->print(OS, &getParent()->getTarget());
318 }
319
320 // Print the successors of this block according to the CFG.
321 if (!succ_empty()) {
322 if (Indexes) OS << '\t';
323 OS << " Successors according to CFG:";
324 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
325 OS << " BB#" << (*SI)->getNumber();
326 if (!Weights.empty())
327 OS << '(' << *getWeightIterator(SI) << ')';
328 }
329 OS << '\n';
330 }
331 }
332
removeLiveIn(unsigned Reg)333 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
334 std::vector<unsigned>::iterator I =
335 std::find(LiveIns.begin(), LiveIns.end(), Reg);
336 if (I != LiveIns.end())
337 LiveIns.erase(I);
338 }
339
isLiveIn(unsigned Reg) const340 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
341 livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
342 return I != livein_end();
343 }
344
345 unsigned
addLiveIn(unsigned PhysReg,const TargetRegisterClass * RC)346 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
347 assert(getParent() && "MBB must be inserted in function");
348 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
349 assert(RC && "Register class is required");
350 assert((isLandingPad() || this == &getParent()->front()) &&
351 "Only the entry block and landing pads can have physreg live ins");
352
353 bool LiveIn = isLiveIn(PhysReg);
354 iterator I = SkipPHIsAndLabels(begin()), E = end();
355 MachineRegisterInfo &MRI = getParent()->getRegInfo();
356 const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
357
358 // Look for an existing copy.
359 if (LiveIn)
360 for (;I != E && I->isCopy(); ++I)
361 if (I->getOperand(1).getReg() == PhysReg) {
362 unsigned VirtReg = I->getOperand(0).getReg();
363 if (!MRI.constrainRegClass(VirtReg, RC))
364 llvm_unreachable("Incompatible live-in register class.");
365 return VirtReg;
366 }
367
368 // No luck, create a virtual register.
369 unsigned VirtReg = MRI.createVirtualRegister(RC);
370 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
371 .addReg(PhysReg, RegState::Kill);
372 if (!LiveIn)
373 addLiveIn(PhysReg);
374 return VirtReg;
375 }
376
moveBefore(MachineBasicBlock * NewAfter)377 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
378 getParent()->splice(NewAfter, this);
379 }
380
moveAfter(MachineBasicBlock * NewBefore)381 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
382 MachineFunction::iterator BBI = NewBefore;
383 getParent()->splice(++BBI, this);
384 }
385
updateTerminator()386 void MachineBasicBlock::updateTerminator() {
387 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
388 // A block with no successors has no concerns with fall-through edges.
389 if (this->succ_empty()) return;
390
391 MachineBasicBlock *TBB = 0, *FBB = 0;
392 SmallVector<MachineOperand, 4> Cond;
393 DebugLoc dl; // FIXME: this is nowhere
394 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
395 (void) B;
396 assert(!B && "UpdateTerminators requires analyzable predecessors!");
397 if (Cond.empty()) {
398 if (TBB) {
399 // The block has an unconditional branch. If its successor is now
400 // its layout successor, delete the branch.
401 if (isLayoutSuccessor(TBB))
402 TII->RemoveBranch(*this);
403 } else {
404 // The block has an unconditional fallthrough. If its successor is not
405 // its layout successor, insert a branch. First we have to locate the
406 // only non-landing-pad successor, as that is the fallthrough block.
407 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
408 if ((*SI)->isLandingPad())
409 continue;
410 assert(!TBB && "Found more than one non-landing-pad successor!");
411 TBB = *SI;
412 }
413
414 // If there is no non-landing-pad successor, the block has no
415 // fall-through edges to be concerned with.
416 if (!TBB)
417 return;
418
419 // Finally update the unconditional successor to be reached via a branch
420 // if it would not be reached by fallthrough.
421 if (!isLayoutSuccessor(TBB))
422 TII->InsertBranch(*this, TBB, 0, Cond, dl);
423 }
424 } else {
425 if (FBB) {
426 // The block has a non-fallthrough conditional branch. If one of its
427 // successors is its layout successor, rewrite it to a fallthrough
428 // conditional branch.
429 if (isLayoutSuccessor(TBB)) {
430 if (TII->ReverseBranchCondition(Cond))
431 return;
432 TII->RemoveBranch(*this);
433 TII->InsertBranch(*this, FBB, 0, Cond, dl);
434 } else if (isLayoutSuccessor(FBB)) {
435 TII->RemoveBranch(*this);
436 TII->InsertBranch(*this, TBB, 0, Cond, dl);
437 }
438 } else {
439 // Walk through the successors and find the successor which is not
440 // a landing pad and is not the conditional branch destination (in TBB)
441 // as the fallthrough successor.
442 MachineBasicBlock *FallthroughBB = 0;
443 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
444 if ((*SI)->isLandingPad() || *SI == TBB)
445 continue;
446 assert(!FallthroughBB && "Found more than one fallthrough successor.");
447 FallthroughBB = *SI;
448 }
449 if (!FallthroughBB && canFallThrough()) {
450 // We fallthrough to the same basic block as the conditional jump
451 // targets. Remove the conditional jump, leaving unconditional
452 // fallthrough.
453 // FIXME: This does not seem like a reasonable pattern to support, but it
454 // has been seen in the wild coming out of degenerate ARM test cases.
455 TII->RemoveBranch(*this);
456
457 // Finally update the unconditional successor to be reached via a branch
458 // if it would not be reached by fallthrough.
459 if (!isLayoutSuccessor(TBB))
460 TII->InsertBranch(*this, TBB, 0, Cond, dl);
461 return;
462 }
463
464 // The block has a fallthrough conditional branch.
465 if (isLayoutSuccessor(TBB)) {
466 if (TII->ReverseBranchCondition(Cond)) {
467 // We can't reverse the condition, add an unconditional branch.
468 Cond.clear();
469 TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
470 return;
471 }
472 TII->RemoveBranch(*this);
473 TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
474 } else if (!isLayoutSuccessor(FallthroughBB)) {
475 TII->RemoveBranch(*this);
476 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
477 }
478 }
479 }
480 }
481
addSuccessor(MachineBasicBlock * succ,uint32_t weight)482 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
483
484 // If we see non-zero value for the first time it means we actually use Weight
485 // list, so we fill all Weights with 0's.
486 if (weight != 0 && Weights.empty())
487 Weights.resize(Successors.size());
488
489 if (weight != 0 || !Weights.empty())
490 Weights.push_back(weight);
491
492 Successors.push_back(succ);
493 succ->addPredecessor(this);
494 }
495
removeSuccessor(MachineBasicBlock * succ)496 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
497 succ->removePredecessor(this);
498 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
499 assert(I != Successors.end() && "Not a current successor!");
500
501 // If Weight list is empty it means we don't use it (disabled optimization).
502 if (!Weights.empty()) {
503 weight_iterator WI = getWeightIterator(I);
504 Weights.erase(WI);
505 }
506
507 Successors.erase(I);
508 }
509
510 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I)511 MachineBasicBlock::removeSuccessor(succ_iterator I) {
512 assert(I != Successors.end() && "Not a current successor!");
513
514 // If Weight list is empty it means we don't use it (disabled optimization).
515 if (!Weights.empty()) {
516 weight_iterator WI = getWeightIterator(I);
517 Weights.erase(WI);
518 }
519
520 (*I)->removePredecessor(this);
521 return Successors.erase(I);
522 }
523
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)524 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
525 MachineBasicBlock *New) {
526 if (Old == New)
527 return;
528
529 succ_iterator E = succ_end();
530 succ_iterator NewI = E;
531 succ_iterator OldI = E;
532 for (succ_iterator I = succ_begin(); I != E; ++I) {
533 if (*I == Old) {
534 OldI = I;
535 if (NewI != E)
536 break;
537 }
538 if (*I == New) {
539 NewI = I;
540 if (OldI != E)
541 break;
542 }
543 }
544 assert(OldI != E && "Old is not a successor of this block");
545 Old->removePredecessor(this);
546
547 // If New isn't already a successor, let it take Old's place.
548 if (NewI == E) {
549 New->addPredecessor(this);
550 *OldI = New;
551 return;
552 }
553
554 // New is already a successor.
555 // Update its weight instead of adding a duplicate edge.
556 if (!Weights.empty()) {
557 weight_iterator OldWI = getWeightIterator(OldI);
558 *getWeightIterator(NewI) += *OldWI;
559 Weights.erase(OldWI);
560 }
561 Successors.erase(OldI);
562 }
563
addPredecessor(MachineBasicBlock * pred)564 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
565 Predecessors.push_back(pred);
566 }
567
removePredecessor(MachineBasicBlock * pred)568 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
569 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
570 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
571 Predecessors.erase(I);
572 }
573
transferSuccessors(MachineBasicBlock * fromMBB)574 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
575 if (this == fromMBB)
576 return;
577
578 while (!fromMBB->succ_empty()) {
579 MachineBasicBlock *Succ = *fromMBB->succ_begin();
580 uint32_t Weight = 0;
581
582 // If Weight list is empty it means we don't use it (disabled optimization).
583 if (!fromMBB->Weights.empty())
584 Weight = *fromMBB->Weights.begin();
585
586 addSuccessor(Succ, Weight);
587 fromMBB->removeSuccessor(Succ);
588 }
589 }
590
591 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * fromMBB)592 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
593 if (this == fromMBB)
594 return;
595
596 while (!fromMBB->succ_empty()) {
597 MachineBasicBlock *Succ = *fromMBB->succ_begin();
598 uint32_t Weight = 0;
599 if (!fromMBB->Weights.empty())
600 Weight = *fromMBB->Weights.begin();
601 addSuccessor(Succ, Weight);
602 fromMBB->removeSuccessor(Succ);
603
604 // Fix up any PHI nodes in the successor.
605 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
606 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
607 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
608 MachineOperand &MO = MI->getOperand(i);
609 if (MO.getMBB() == fromMBB)
610 MO.setMBB(this);
611 }
612 }
613 }
614
isPredecessor(const MachineBasicBlock * MBB) const615 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
616 return std::find(pred_begin(), pred_end(), MBB) != pred_end();
617 }
618
isSuccessor(const MachineBasicBlock * MBB) const619 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
620 return std::find(succ_begin(), succ_end(), MBB) != succ_end();
621 }
622
isLayoutSuccessor(const MachineBasicBlock * MBB) const623 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
624 MachineFunction::const_iterator I(this);
625 return llvm::next(I) == MachineFunction::const_iterator(MBB);
626 }
627
canFallThrough()628 bool MachineBasicBlock::canFallThrough() {
629 MachineFunction::iterator Fallthrough = this;
630 ++Fallthrough;
631 // If FallthroughBlock is off the end of the function, it can't fall through.
632 if (Fallthrough == getParent()->end())
633 return false;
634
635 // If FallthroughBlock isn't a successor, no fallthrough is possible.
636 if (!isSuccessor(Fallthrough))
637 return false;
638
639 // Analyze the branches, if any, at the end of the block.
640 MachineBasicBlock *TBB = 0, *FBB = 0;
641 SmallVector<MachineOperand, 4> Cond;
642 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
643 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
644 // If we couldn't analyze the branch, examine the last instruction.
645 // If the block doesn't end in a known control barrier, assume fallthrough
646 // is possible. The isPredicated check is needed because this code can be
647 // called during IfConversion, where an instruction which is normally a
648 // Barrier is predicated and thus no longer an actual control barrier.
649 return empty() || !back().isBarrier() || TII->isPredicated(&back());
650 }
651
652 // If there is no branch, control always falls through.
653 if (TBB == 0) return true;
654
655 // If there is some explicit branch to the fallthrough block, it can obviously
656 // reach, even though the branch should get folded to fall through implicitly.
657 if (MachineFunction::iterator(TBB) == Fallthrough ||
658 MachineFunction::iterator(FBB) == Fallthrough)
659 return true;
660
661 // If it's an unconditional branch to some block not the fall through, it
662 // doesn't fall through.
663 if (Cond.empty()) return false;
664
665 // Otherwise, if it is conditional and has no explicit false block, it falls
666 // through.
667 return FBB == 0;
668 }
669
670 MachineBasicBlock *
SplitCriticalEdge(MachineBasicBlock * Succ,Pass * P)671 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
672 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
673 // it in this generic function.
674 if (Succ->isLandingPad())
675 return NULL;
676
677 MachineFunction *MF = getParent();
678 DebugLoc dl; // FIXME: this is nowhere
679
680 // We may need to update this's terminator, but we can't do that if
681 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
682 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
683 MachineBasicBlock *TBB = 0, *FBB = 0;
684 SmallVector<MachineOperand, 4> Cond;
685 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
686 return NULL;
687
688 // Avoid bugpoint weirdness: A block may end with a conditional branch but
689 // jumps to the same MBB is either case. We have duplicate CFG edges in that
690 // case that we can't handle. Since this never happens in properly optimized
691 // code, just skip those edges.
692 if (TBB && TBB == FBB) {
693 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
694 << getNumber() << '\n');
695 return NULL;
696 }
697
698 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
699 MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
700 DEBUG(dbgs() << "Splitting critical edge:"
701 " BB#" << getNumber()
702 << " -- BB#" << NMBB->getNumber()
703 << " -- BB#" << Succ->getNumber() << '\n');
704
705 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
706 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
707 if (LIS)
708 LIS->insertMBBInMaps(NMBB);
709 else if (Indexes)
710 Indexes->insertMBBInMaps(NMBB);
711
712 // On some targets like Mips, branches may kill virtual registers. Make sure
713 // that LiveVariables is properly updated after updateTerminator replaces the
714 // terminators.
715 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
716
717 // Collect a list of virtual registers killed by the terminators.
718 SmallVector<unsigned, 4> KilledRegs;
719 if (LV)
720 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
721 I != E; ++I) {
722 MachineInstr *MI = I;
723 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
724 OE = MI->operands_end(); OI != OE; ++OI) {
725 if (!OI->isReg() || OI->getReg() == 0 ||
726 !OI->isUse() || !OI->isKill() || OI->isUndef())
727 continue;
728 unsigned Reg = OI->getReg();
729 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
730 LV->getVarInfo(Reg).removeKill(MI)) {
731 KilledRegs.push_back(Reg);
732 DEBUG(dbgs() << "Removing terminator kill: " << *MI);
733 OI->setIsKill(false);
734 }
735 }
736 }
737
738 SmallVector<unsigned, 4> UsedRegs;
739 if (LIS) {
740 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
741 I != E; ++I) {
742 MachineInstr *MI = I;
743
744 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
745 OE = MI->operands_end(); OI != OE; ++OI) {
746 if (!OI->isReg() || OI->getReg() == 0)
747 continue;
748
749 unsigned Reg = OI->getReg();
750 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
751 UsedRegs.push_back(Reg);
752 }
753 }
754 }
755
756 ReplaceUsesOfBlockWith(Succ, NMBB);
757
758 // If updateTerminator() removes instructions, we need to remove them from
759 // SlotIndexes.
760 SmallVector<MachineInstr*, 4> Terminators;
761 if (Indexes) {
762 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
763 I != E; ++I)
764 Terminators.push_back(I);
765 }
766
767 updateTerminator();
768
769 if (Indexes) {
770 SmallVector<MachineInstr*, 4> NewTerminators;
771 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
772 I != E; ++I)
773 NewTerminators.push_back(I);
774
775 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
776 E = Terminators.end(); I != E; ++I) {
777 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
778 NewTerminators.end())
779 Indexes->removeMachineInstrFromMaps(*I);
780 }
781 }
782
783 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
784 NMBB->addSuccessor(Succ);
785 if (!NMBB->isLayoutSuccessor(Succ)) {
786 Cond.clear();
787 MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
788
789 if (Indexes) {
790 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
791 I != E; ++I) {
792 // Some instructions may have been moved to NMBB by updateTerminator(),
793 // so we first remove any instruction that already has an index.
794 if (Indexes->hasIndex(I))
795 Indexes->removeMachineInstrFromMaps(I);
796 Indexes->insertMachineInstrInMaps(I);
797 }
798 }
799 }
800
801 // Fix PHI nodes in Succ so they refer to NMBB instead of this
802 for (MachineBasicBlock::instr_iterator
803 i = Succ->instr_begin(),e = Succ->instr_end();
804 i != e && i->isPHI(); ++i)
805 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
806 if (i->getOperand(ni+1).getMBB() == this)
807 i->getOperand(ni+1).setMBB(NMBB);
808
809 // Inherit live-ins from the successor
810 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
811 E = Succ->livein_end(); I != E; ++I)
812 NMBB->addLiveIn(*I);
813
814 // Update LiveVariables.
815 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
816 if (LV) {
817 // Restore kills of virtual registers that were killed by the terminators.
818 while (!KilledRegs.empty()) {
819 unsigned Reg = KilledRegs.pop_back_val();
820 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
821 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
822 continue;
823 if (TargetRegisterInfo::isVirtualRegister(Reg))
824 LV->getVarInfo(Reg).Kills.push_back(I);
825 DEBUG(dbgs() << "Restored terminator kill: " << *I);
826 break;
827 }
828 }
829 // Update relevant live-through information.
830 LV->addNewBlock(NMBB, this, Succ);
831 }
832
833 if (LIS) {
834 // After splitting the edge and updating SlotIndexes, live intervals may be
835 // in one of two situations, depending on whether this block was the last in
836 // the function. If the original block was the last in the function, all live
837 // intervals will end prior to the beginning of the new split block. If the
838 // original block was not at the end of the function, all live intervals will
839 // extend to the end of the new split block.
840
841 bool isLastMBB =
842 llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
843
844 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
845 SlotIndex PrevIndex = StartIndex.getPrevSlot();
846 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
847
848 // Find the registers used from NMBB in PHIs in Succ.
849 SmallSet<unsigned, 8> PHISrcRegs;
850 for (MachineBasicBlock::instr_iterator
851 I = Succ->instr_begin(), E = Succ->instr_end();
852 I != E && I->isPHI(); ++I) {
853 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
854 if (I->getOperand(ni+1).getMBB() == NMBB) {
855 MachineOperand &MO = I->getOperand(ni);
856 unsigned Reg = MO.getReg();
857 PHISrcRegs.insert(Reg);
858 if (MO.isUndef())
859 continue;
860
861 LiveInterval &LI = LIS->getInterval(Reg);
862 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
863 assert(VNI && "PHI sources should be live out of their predecessors.");
864 LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
865 }
866 }
867 }
868
869 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
870 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
871 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
872 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
873 continue;
874
875 LiveInterval &LI = LIS->getInterval(Reg);
876 if (!LI.liveAt(PrevIndex))
877 continue;
878
879 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
880 if (isLiveOut && isLastMBB) {
881 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
882 assert(VNI && "LiveInterval should have VNInfo where it is live.");
883 LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
884 } else if (!isLiveOut && !isLastMBB) {
885 LI.removeRange(StartIndex, EndIndex);
886 }
887 }
888
889 // Update all intervals for registers whose uses may have been modified by
890 // updateTerminator().
891 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
892 }
893
894 if (MachineDominatorTree *MDT =
895 P->getAnalysisIfAvailable<MachineDominatorTree>()) {
896 // Update dominator information.
897 MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
898
899 bool IsNewIDom = true;
900 for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
901 PI != E; ++PI) {
902 MachineBasicBlock *PredBB = *PI;
903 if (PredBB == NMBB)
904 continue;
905 if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
906 IsNewIDom = false;
907 break;
908 }
909 }
910
911 // We know "this" dominates the newly created basic block.
912 MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
913
914 // If all the other predecessors of "Succ" are dominated by "Succ" itself
915 // then the new block is the new immediate dominator of "Succ". Otherwise,
916 // the new block doesn't dominate anything.
917 if (IsNewIDom)
918 MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
919 }
920
921 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
922 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
923 // If one or the other blocks were not in a loop, the new block is not
924 // either, and thus LI doesn't need to be updated.
925 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
926 if (TIL == DestLoop) {
927 // Both in the same loop, the NMBB joins loop.
928 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
929 } else if (TIL->contains(DestLoop)) {
930 // Edge from an outer loop to an inner loop. Add to the outer loop.
931 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
932 } else if (DestLoop->contains(TIL)) {
933 // Edge from an inner loop to an outer loop. Add to the outer loop.
934 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
935 } else {
936 // Edge from two loops with no containment relation. Because these
937 // are natural loops, we know that the destination block must be the
938 // header of its loop (adding a branch into a loop elsewhere would
939 // create an irreducible loop).
940 assert(DestLoop->getHeader() == Succ &&
941 "Should not create irreducible loops!");
942 if (MachineLoop *P = DestLoop->getParentLoop())
943 P->addBasicBlockToLoop(NMBB, MLI->getBase());
944 }
945 }
946 }
947
948 return NMBB;
949 }
950
951 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
952 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)953 static void unbundleSingleMI(MachineInstr *MI) {
954 // Removing the first instruction in a bundle.
955 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
956 MI->unbundleFromSucc();
957 // Removing the last instruction in a bundle.
958 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
959 MI->unbundleFromPred();
960 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
961 // are already fine.
962 }
963
964 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)965 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
966 unbundleSingleMI(I);
967 return Insts.erase(I);
968 }
969
remove_instr(MachineInstr * MI)970 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
971 unbundleSingleMI(MI);
972 MI->clearFlag(MachineInstr::BundledPred);
973 MI->clearFlag(MachineInstr::BundledSucc);
974 return Insts.remove(MI);
975 }
976
977 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)978 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
979 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
980 "Cannot insert instruction with bundle flags");
981 // Set the bundle flags when inserting inside a bundle.
982 if (I != instr_end() && I->isBundledWithPred()) {
983 MI->setFlag(MachineInstr::BundledPred);
984 MI->setFlag(MachineInstr::BundledSucc);
985 }
986 return Insts.insert(I, MI);
987 }
988
989 /// removeFromParent - This method unlinks 'this' from the containing function,
990 /// and returns it, but does not delete it.
removeFromParent()991 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
992 assert(getParent() && "Not embedded in a function!");
993 getParent()->remove(this);
994 return this;
995 }
996
997
998 /// eraseFromParent - This method unlinks 'this' from the containing function,
999 /// and deletes it.
eraseFromParent()1000 void MachineBasicBlock::eraseFromParent() {
1001 assert(getParent() && "Not embedded in a function!");
1002 getParent()->erase(this);
1003 }
1004
1005
1006 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
1007 /// 'Old', change the code and CFG so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1008 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1009 MachineBasicBlock *New) {
1010 assert(Old != New && "Cannot replace self with self!");
1011
1012 MachineBasicBlock::instr_iterator I = instr_end();
1013 while (I != instr_begin()) {
1014 --I;
1015 if (!I->isTerminator()) break;
1016
1017 // Scan the operands of this machine instruction, replacing any uses of Old
1018 // with New.
1019 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1020 if (I->getOperand(i).isMBB() &&
1021 I->getOperand(i).getMBB() == Old)
1022 I->getOperand(i).setMBB(New);
1023 }
1024
1025 // Update the successor information.
1026 replaceSuccessor(Old, New);
1027 }
1028
1029 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
1030 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and
1031 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be
1032 /// null.
1033 ///
1034 /// Besides DestA and DestB, retain other edges leading to LandingPads
1035 /// (currently there can be only one; we don't check or require that here).
1036 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool isCond)1037 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1038 MachineBasicBlock *DestB,
1039 bool isCond) {
1040 // The values of DestA and DestB frequently come from a call to the
1041 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1042 // values from there.
1043 //
1044 // 1. If both DestA and DestB are null, then the block ends with no branches
1045 // (it falls through to its successor).
1046 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1047 // with only an unconditional branch.
1048 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1049 // with a conditional branch that falls through to a successor (DestB).
1050 // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1051 // conditional branch followed by an unconditional branch. DestA is the
1052 // 'true' destination and DestB is the 'false' destination.
1053
1054 bool Changed = false;
1055
1056 MachineFunction::iterator FallThru =
1057 llvm::next(MachineFunction::iterator(this));
1058
1059 if (DestA == 0 && DestB == 0) {
1060 // Block falls through to successor.
1061 DestA = FallThru;
1062 DestB = FallThru;
1063 } else if (DestA != 0 && DestB == 0) {
1064 if (isCond)
1065 // Block ends in conditional jump that falls through to successor.
1066 DestB = FallThru;
1067 } else {
1068 assert(DestA && DestB && isCond &&
1069 "CFG in a bad state. Cannot correct CFG edges");
1070 }
1071
1072 // Remove superfluous edges. I.e., those which aren't destinations of this
1073 // basic block, duplicate edges, or landing pads.
1074 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1075 MachineBasicBlock::succ_iterator SI = succ_begin();
1076 while (SI != succ_end()) {
1077 const MachineBasicBlock *MBB = *SI;
1078 if (!SeenMBBs.insert(MBB) ||
1079 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1080 // This is a superfluous edge, remove it.
1081 SI = removeSuccessor(SI);
1082 Changed = true;
1083 } else {
1084 ++SI;
1085 }
1086 }
1087
1088 return Changed;
1089 }
1090
1091 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1092 /// any DBG_VALUE instructions. Return UnknownLoc if there is none.
1093 DebugLoc
findDebugLoc(instr_iterator MBBI)1094 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1095 DebugLoc DL;
1096 instr_iterator E = instr_end();
1097 if (MBBI == E)
1098 return DL;
1099
1100 // Skip debug declarations, we don't want a DebugLoc from them.
1101 while (MBBI != E && MBBI->isDebugValue())
1102 MBBI++;
1103 if (MBBI != E)
1104 DL = MBBI->getDebugLoc();
1105 return DL;
1106 }
1107
1108 /// getSuccWeight - Return weight of the edge from this block to MBB.
1109 ///
getSuccWeight(const_succ_iterator Succ) const1110 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1111 if (Weights.empty())
1112 return 0;
1113
1114 return *getWeightIterator(Succ);
1115 }
1116
1117 /// getWeightIterator - Return wight iterator corresonding to the I successor
1118 /// iterator
1119 MachineBasicBlock::weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::succ_iterator I)1120 getWeightIterator(MachineBasicBlock::succ_iterator I) {
1121 assert(Weights.size() == Successors.size() && "Async weight list!");
1122 size_t index = std::distance(Successors.begin(), I);
1123 assert(index < Weights.size() && "Not a current successor!");
1124 return Weights.begin() + index;
1125 }
1126
1127 /// getWeightIterator - Return wight iterator corresonding to the I successor
1128 /// iterator
1129 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::const_succ_iterator I) const1130 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1131 assert(Weights.size() == Successors.size() && "Async weight list!");
1132 const size_t index = std::distance(Successors.begin(), I);
1133 assert(index < Weights.size() && "Not a current successor!");
1134 return Weights.begin() + index;
1135 }
1136
1137 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1138 /// as of just before "MI".
1139 ///
1140 /// Search is localised to a neighborhood of
1141 /// Neighborhood instructions before (searching for defs or kills) and N
1142 /// instructions after (searching just for defs) MI.
1143 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,MachineInstr * MI,unsigned Neighborhood)1144 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1145 unsigned Reg, MachineInstr *MI,
1146 unsigned Neighborhood) {
1147 unsigned N = Neighborhood;
1148 MachineBasicBlock *MBB = MI->getParent();
1149
1150 // Start by searching backwards from MI, looking for kills, reads or defs.
1151
1152 MachineBasicBlock::iterator I(MI);
1153 // If this is the first insn in the block, don't search backwards.
1154 if (I != MBB->begin()) {
1155 do {
1156 --I;
1157
1158 MachineOperandIteratorBase::PhysRegInfo Analysis =
1159 MIOperands(I).analyzePhysReg(Reg, TRI);
1160
1161 if (Analysis.Defines)
1162 // Outputs happen after inputs so they take precedence if both are
1163 // present.
1164 return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1165
1166 if (Analysis.Kills || Analysis.Clobbers)
1167 // Register killed, so isn't live.
1168 return LQR_Dead;
1169
1170 else if (Analysis.ReadsOverlap)
1171 // Defined or read without a previous kill - live.
1172 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1173
1174 } while (I != MBB->begin() && --N > 0);
1175 }
1176
1177 // Did we get to the start of the block?
1178 if (I == MBB->begin()) {
1179 // If so, the register's state is definitely defined by the live-in state.
1180 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1181 RAI.isValid(); ++RAI) {
1182 if (MBB->isLiveIn(*RAI))
1183 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1184 }
1185
1186 return LQR_Dead;
1187 }
1188
1189 N = Neighborhood;
1190
1191 // Try searching forwards from MI, looking for reads or defs.
1192 I = MachineBasicBlock::iterator(MI);
1193 // If this is the last insn in the block, don't search forwards.
1194 if (I != MBB->end()) {
1195 for (++I; I != MBB->end() && N > 0; ++I, --N) {
1196 MachineOperandIteratorBase::PhysRegInfo Analysis =
1197 MIOperands(I).analyzePhysReg(Reg, TRI);
1198
1199 if (Analysis.ReadsOverlap)
1200 // Used, therefore must have been live.
1201 return (Analysis.Reads) ?
1202 LQR_Live : LQR_OverlappingLive;
1203
1204 else if (Analysis.Clobbers || Analysis.Defines)
1205 // Defined (but not read) therefore cannot have been live.
1206 return LQR_Dead;
1207 }
1208 }
1209
1210 // At this point we have no idea of the liveness of the register.
1211 return LQR_Unknown;
1212 }
1213
WriteAsOperand(raw_ostream & OS,const MachineBasicBlock * MBB,bool t)1214 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
1215 bool t) {
1216 OS << "BB#" << MBB->getNumber();
1217 }
1218
1219