1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30
31 #include "ceres/gradient_checking_cost_function.h"
32
33 #include <algorithm>
34 #include <cmath>
35 #include <numeric>
36 #include <string>
37 #include <vector>
38
39 #include "ceres/cost_function.h"
40 #include "ceres/internal/eigen.h"
41 #include "ceres/internal/scoped_ptr.h"
42 #include "ceres/parameter_block.h"
43 #include "ceres/problem.h"
44 #include "ceres/problem_impl.h"
45 #include "ceres/program.h"
46 #include "ceres/residual_block.h"
47 #include "ceres/runtime_numeric_diff_cost_function.h"
48 #include "ceres/stringprintf.h"
49 #include "ceres/types.h"
50 #include "glog/logging.h"
51
52 namespace ceres {
53 namespace internal {
54 namespace {
55
56 // True if x and y have an absolute relative difference less than
57 // relative_precision and false otherwise. Stores the relative and absolute
58 // difference in relative/absolute_error if non-NULL.
IsClose(double x,double y,double relative_precision,double * relative_error,double * absolute_error)59 bool IsClose(double x, double y, double relative_precision,
60 double *relative_error,
61 double *absolute_error) {
62 double local_absolute_error;
63 double local_relative_error;
64 if (!absolute_error) {
65 absolute_error = &local_absolute_error;
66 }
67 if (!relative_error) {
68 relative_error = &local_relative_error;
69 }
70 *absolute_error = fabs(x - y);
71 *relative_error = *absolute_error / max(fabs(x), fabs(y));
72 if (x == 0 || y == 0) {
73 // If x or y is exactly zero, then relative difference doesn't have any
74 // meaning. Take the absolute difference instead.
75 *relative_error = *absolute_error;
76 }
77 return fabs(*relative_error) < fabs(relative_precision);
78 }
79
80 class GradientCheckingCostFunction : public CostFunction {
81 public:
GradientCheckingCostFunction(const CostFunction * function,double relative_step_size,double relative_precision,const string & extra_info)82 GradientCheckingCostFunction(const CostFunction* function,
83 double relative_step_size,
84 double relative_precision,
85 const string& extra_info)
86 : function_(function),
87 finite_diff_cost_function_(
88 CreateRuntimeNumericDiffCostFunction(function,
89 CENTRAL,
90 relative_step_size)),
91 relative_precision_(relative_precision),
92 extra_info_(extra_info) {
93 *mutable_parameter_block_sizes() = function->parameter_block_sizes();
94 set_num_residuals(function->num_residuals());
95 }
96
~GradientCheckingCostFunction()97 virtual ~GradientCheckingCostFunction() { }
98
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const99 virtual bool Evaluate(double const* const* parameters,
100 double* residuals,
101 double** jacobians) const {
102 if (!jacobians) {
103 // Nothing to check in this case; just forward.
104 return function_->Evaluate(parameters, residuals, NULL);
105 }
106
107 int num_residuals = function_->num_residuals();
108
109 // Make space for the jacobians of the two methods.
110 const vector<int16>& block_sizes = function_->parameter_block_sizes();
111 vector<Matrix> term_jacobians(block_sizes.size());
112 vector<Matrix> finite_difference_jacobians(block_sizes.size());
113 vector<double*> term_jacobian_pointers(block_sizes.size());
114 vector<double*> finite_difference_jacobian_pointers(block_sizes.size());
115 for (int i = 0; i < block_sizes.size(); i++) {
116 term_jacobians[i].resize(num_residuals, block_sizes[i]);
117 term_jacobian_pointers[i] = term_jacobians[i].data();
118 finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]);
119 finite_difference_jacobian_pointers[i] =
120 finite_difference_jacobians[i].data();
121 }
122
123 // Evaluate the derivative using the user supplied code.
124 if (!function_->Evaluate(parameters,
125 residuals,
126 &term_jacobian_pointers[0])) {
127 LOG(WARNING) << "Function evaluation failed.";
128 return false;
129 }
130
131 // Evaluate the derivative using numeric derivatives.
132 finite_diff_cost_function_->Evaluate(
133 parameters,
134 residuals,
135 &finite_difference_jacobian_pointers[0]);
136
137 // See if any elements have relative error larger than the threshold.
138 int num_bad_jacobian_components = 0;
139 double worst_relative_error = 0;
140
141 // Accumulate the error message for all the jacobians, since it won't get
142 // output if there are no bad jacobian components.
143 string m;
144 for (int k = 0; k < block_sizes.size(); k++) {
145 // Copy the original jacobian blocks into the jacobians array.
146 if (jacobians[k] != NULL) {
147 MatrixRef(jacobians[k],
148 term_jacobians[k].rows(),
149 term_jacobians[k].cols()) = term_jacobians[k];
150 }
151
152 StringAppendF(&m,
153 "========== "
154 "Jacobian for " "block %d: (%ld by %ld)) "
155 "==========\n",
156 k,
157 static_cast<long>(term_jacobians[k].rows()),
158 static_cast<long>(term_jacobians[k].cols()));
159 // The funny spacing creates appropriately aligned column headers.
160 m += " block row col user dx/dy num diff dx/dy "
161 "abs error relative error parameter residual\n";
162
163 for (int i = 0; i < term_jacobians[k].rows(); i++) {
164 for (int j = 0; j < term_jacobians[k].cols(); j++) {
165 double term_jacobian = term_jacobians[k](i, j);
166 double finite_jacobian = finite_difference_jacobians[k](i, j);
167 double relative_error, absolute_error;
168 bool bad_jacobian_entry =
169 !IsClose(term_jacobian,
170 finite_jacobian,
171 relative_precision_,
172 &relative_error,
173 &absolute_error);
174 worst_relative_error = std::max(worst_relative_error,
175 relative_error);
176
177 StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
178 k, i, j,
179 term_jacobian, finite_jacobian,
180 absolute_error, relative_error,
181 parameters[k][j],
182 residuals[i]);
183
184 if (bad_jacobian_entry) {
185 num_bad_jacobian_components++;
186 StringAppendF(
187 &m, " ------ (%d,%d,%d) Relative error worse than %g",
188 k, i, j, relative_precision_);
189 }
190 m += "\n";
191 }
192 }
193 }
194
195 // Since there were some bad errors, dump comprehensive debug info.
196 if (num_bad_jacobian_components) {
197 string header = StringPrintf("Detected %d bad jacobian component(s). "
198 "Worst relative error was %g.\n",
199 num_bad_jacobian_components,
200 worst_relative_error);
201 if (!extra_info_.empty()) {
202 header += "Extra info for this residual: " + extra_info_ + "\n";
203 }
204 LOG(WARNING) << "\n" << header << m;
205 }
206 return true;
207 }
208
209 private:
210 const CostFunction* function_;
211 internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
212 double relative_precision_;
213 string extra_info_;
214 };
215
216 } // namespace
217
CreateGradientCheckingCostFunction(const CostFunction * cost_function,double relative_step_size,double relative_precision,const string & extra_info)218 CostFunction *CreateGradientCheckingCostFunction(
219 const CostFunction *cost_function,
220 double relative_step_size,
221 double relative_precision,
222 const string& extra_info) {
223 return new GradientCheckingCostFunction(cost_function,
224 relative_step_size,
225 relative_precision,
226 extra_info);
227 }
228
CreateGradientCheckingProblemImpl(ProblemImpl * problem_impl,double relative_step_size,double relative_precision)229 ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl,
230 double relative_step_size,
231 double relative_precision) {
232 // We create new CostFunctions by wrapping the original CostFunction
233 // in a gradient checking CostFunction. So its okay for the
234 // ProblemImpl to take ownership of it and destroy it. The
235 // LossFunctions and LocalParameterizations are reused and since
236 // they are owned by problem_impl, gradient_checking_problem_impl
237 // should not take ownership of it.
238 Problem::Options gradient_checking_problem_options;
239 gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
240 gradient_checking_problem_options.loss_function_ownership =
241 DO_NOT_TAKE_OWNERSHIP;
242 gradient_checking_problem_options.local_parameterization_ownership =
243 DO_NOT_TAKE_OWNERSHIP;
244
245 ProblemImpl* gradient_checking_problem_impl = new ProblemImpl(
246 gradient_checking_problem_options);
247
248 Program* program = problem_impl->mutable_program();
249
250 // For every ParameterBlock in problem_impl, create a new parameter
251 // block with the same local parameterization and constancy.
252 const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
253 for (int i = 0; i < parameter_blocks.size(); ++i) {
254 ParameterBlock* parameter_block = parameter_blocks[i];
255 gradient_checking_problem_impl->AddParameterBlock(
256 parameter_block->mutable_user_state(),
257 parameter_block->Size(),
258 parameter_block->mutable_local_parameterization());
259
260 if (parameter_block->IsConstant()) {
261 gradient_checking_problem_impl->SetParameterBlockConstant(
262 parameter_block->mutable_user_state());
263 }
264 }
265
266 // For every ResidualBlock in problem_impl, create a new
267 // ResidualBlock by wrapping its CostFunction inside a
268 // GradientCheckingCostFunction.
269 const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
270 for (int i = 0; i < residual_blocks.size(); ++i) {
271 ResidualBlock* residual_block = residual_blocks[i];
272
273 // Build a human readable string which identifies the
274 // ResidualBlock. This is used by the GradientCheckingCostFunction
275 // when logging debugging information.
276 string extra_info = StringPrintf(
277 "Residual block id %d; depends on parameters [", i);
278 vector<double*> parameter_blocks;
279 for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
280 ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
281 parameter_blocks.push_back(parameter_block->mutable_user_state());
282 StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
283 extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
284 }
285
286 // Wrap the original CostFunction in a GradientCheckingCostFunction.
287 CostFunction* gradient_checking_cost_function =
288 CreateGradientCheckingCostFunction(residual_block->cost_function(),
289 relative_step_size,
290 relative_precision,
291 extra_info);
292
293 // The const_cast is necessary because
294 // ProblemImpl::AddResidualBlock can potentially take ownership of
295 // the LossFunction, but in this case we are guaranteed that this
296 // will not be the case, so this const_cast is harmless.
297 gradient_checking_problem_impl->AddResidualBlock(
298 gradient_checking_cost_function,
299 const_cast<LossFunction*>(residual_block->loss_function()),
300 parameter_blocks);
301 }
302
303 return gradient_checking_problem_impl;
304 }
305
306
307 } // namespace internal
308 } // namespace ceres
309