• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 
31 #include "ceres/gradient_checking_cost_function.h"
32 
33 #include <algorithm>
34 #include <cmath>
35 #include <numeric>
36 #include <string>
37 #include <vector>
38 
39 #include "ceres/cost_function.h"
40 #include "ceres/internal/eigen.h"
41 #include "ceres/internal/scoped_ptr.h"
42 #include "ceres/parameter_block.h"
43 #include "ceres/problem.h"
44 #include "ceres/problem_impl.h"
45 #include "ceres/program.h"
46 #include "ceres/residual_block.h"
47 #include "ceres/runtime_numeric_diff_cost_function.h"
48 #include "ceres/stringprintf.h"
49 #include "ceres/types.h"
50 #include "glog/logging.h"
51 
52 namespace ceres {
53 namespace internal {
54 namespace {
55 
56 // True if x and y have an absolute relative difference less than
57 // relative_precision and false otherwise. Stores the relative and absolute
58 // difference in relative/absolute_error if non-NULL.
IsClose(double x,double y,double relative_precision,double * relative_error,double * absolute_error)59 bool IsClose(double x, double y, double relative_precision,
60              double *relative_error,
61              double *absolute_error) {
62   double local_absolute_error;
63   double local_relative_error;
64   if (!absolute_error) {
65     absolute_error = &local_absolute_error;
66   }
67   if (!relative_error) {
68     relative_error = &local_relative_error;
69   }
70   *absolute_error = fabs(x - y);
71   *relative_error = *absolute_error / max(fabs(x), fabs(y));
72   if (x == 0 || y == 0) {
73     // If x or y is exactly zero, then relative difference doesn't have any
74     // meaning. Take the absolute difference instead.
75     *relative_error = *absolute_error;
76   }
77   return fabs(*relative_error) < fabs(relative_precision);
78 }
79 
80 class GradientCheckingCostFunction : public CostFunction {
81  public:
GradientCheckingCostFunction(const CostFunction * function,double relative_step_size,double relative_precision,const string & extra_info)82   GradientCheckingCostFunction(const CostFunction* function,
83                                double relative_step_size,
84                                double relative_precision,
85                                const string& extra_info)
86       : function_(function),
87         finite_diff_cost_function_(
88             CreateRuntimeNumericDiffCostFunction(function,
89                                                  CENTRAL,
90                                                  relative_step_size)),
91         relative_precision_(relative_precision),
92         extra_info_(extra_info) {
93     *mutable_parameter_block_sizes() = function->parameter_block_sizes();
94     set_num_residuals(function->num_residuals());
95   }
96 
~GradientCheckingCostFunction()97   virtual ~GradientCheckingCostFunction() { }
98 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const99   virtual bool Evaluate(double const* const* parameters,
100                         double* residuals,
101                         double** jacobians) const {
102     if (!jacobians) {
103       // Nothing to check in this case; just forward.
104       return function_->Evaluate(parameters, residuals, NULL);
105     }
106 
107     int num_residuals = function_->num_residuals();
108 
109     // Make space for the jacobians of the two methods.
110     const vector<int16>& block_sizes = function_->parameter_block_sizes();
111     vector<Matrix> term_jacobians(block_sizes.size());
112     vector<Matrix> finite_difference_jacobians(block_sizes.size());
113     vector<double*> term_jacobian_pointers(block_sizes.size());
114     vector<double*> finite_difference_jacobian_pointers(block_sizes.size());
115     for (int i = 0; i < block_sizes.size(); i++) {
116       term_jacobians[i].resize(num_residuals, block_sizes[i]);
117       term_jacobian_pointers[i] = term_jacobians[i].data();
118       finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]);
119       finite_difference_jacobian_pointers[i] =
120           finite_difference_jacobians[i].data();
121     }
122 
123     // Evaluate the derivative using the user supplied code.
124     if (!function_->Evaluate(parameters,
125                              residuals,
126                              &term_jacobian_pointers[0])) {
127       LOG(WARNING) << "Function evaluation failed.";
128       return false;
129     }
130 
131     // Evaluate the derivative using numeric derivatives.
132     finite_diff_cost_function_->Evaluate(
133         parameters,
134         residuals,
135         &finite_difference_jacobian_pointers[0]);
136 
137     // See if any elements have relative error larger than the threshold.
138     int num_bad_jacobian_components = 0;
139     double worst_relative_error = 0;
140 
141     // Accumulate the error message for all the jacobians, since it won't get
142     // output if there are no bad jacobian components.
143     string m;
144     for (int k = 0; k < block_sizes.size(); k++) {
145       // Copy the original jacobian blocks into the jacobians array.
146       if (jacobians[k] != NULL) {
147         MatrixRef(jacobians[k],
148                   term_jacobians[k].rows(),
149                   term_jacobians[k].cols()) = term_jacobians[k];
150       }
151 
152       StringAppendF(&m,
153                     "========== "
154                     "Jacobian for " "block %d: (%ld by %ld)) "
155                     "==========\n",
156                     k,
157                     static_cast<long>(term_jacobians[k].rows()),
158                     static_cast<long>(term_jacobians[k].cols()));
159       // The funny spacing creates appropriately aligned column headers.
160       m += " block  row  col        user dx/dy    num diff dx/dy         "
161            "abs error    relative error         parameter          residual\n";
162 
163       for (int i = 0; i < term_jacobians[k].rows(); i++) {
164         for (int j = 0; j < term_jacobians[k].cols(); j++) {
165           double term_jacobian = term_jacobians[k](i, j);
166           double finite_jacobian = finite_difference_jacobians[k](i, j);
167           double relative_error, absolute_error;
168           bool bad_jacobian_entry =
169               !IsClose(term_jacobian,
170                        finite_jacobian,
171                        relative_precision_,
172                        &relative_error,
173                        &absolute_error);
174           worst_relative_error = std::max(worst_relative_error,
175                                           relative_error);
176 
177           StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
178                         k, i, j,
179                         term_jacobian, finite_jacobian,
180                         absolute_error, relative_error,
181                         parameters[k][j],
182                         residuals[i]);
183 
184           if (bad_jacobian_entry) {
185             num_bad_jacobian_components++;
186             StringAppendF(
187                 &m, " ------ (%d,%d,%d) Relative error worse than %g",
188                 k, i, j, relative_precision_);
189           }
190           m += "\n";
191         }
192       }
193     }
194 
195     // Since there were some bad errors, dump comprehensive debug info.
196     if (num_bad_jacobian_components) {
197       string header = StringPrintf("Detected %d bad jacobian component(s). "
198                                    "Worst relative error was %g.\n",
199                                    num_bad_jacobian_components,
200                                    worst_relative_error);
201       if (!extra_info_.empty()) {
202         header += "Extra info for this residual: " + extra_info_ + "\n";
203       }
204       LOG(WARNING) << "\n" << header << m;
205     }
206     return true;
207   }
208 
209  private:
210   const CostFunction* function_;
211   internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
212   double relative_precision_;
213   string extra_info_;
214 };
215 
216 }  // namespace
217 
CreateGradientCheckingCostFunction(const CostFunction * cost_function,double relative_step_size,double relative_precision,const string & extra_info)218 CostFunction *CreateGradientCheckingCostFunction(
219     const CostFunction *cost_function,
220     double relative_step_size,
221     double relative_precision,
222     const string& extra_info) {
223   return new GradientCheckingCostFunction(cost_function,
224                                           relative_step_size,
225                                           relative_precision,
226                                           extra_info);
227 }
228 
CreateGradientCheckingProblemImpl(ProblemImpl * problem_impl,double relative_step_size,double relative_precision)229 ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl,
230                                                double relative_step_size,
231                                                double relative_precision) {
232   // We create new CostFunctions by wrapping the original CostFunction
233   // in a gradient checking CostFunction. So its okay for the
234   // ProblemImpl to take ownership of it and destroy it. The
235   // LossFunctions and LocalParameterizations are reused and since
236   // they are owned by problem_impl, gradient_checking_problem_impl
237   // should not take ownership of it.
238   Problem::Options gradient_checking_problem_options;
239   gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
240   gradient_checking_problem_options.loss_function_ownership =
241       DO_NOT_TAKE_OWNERSHIP;
242   gradient_checking_problem_options.local_parameterization_ownership =
243       DO_NOT_TAKE_OWNERSHIP;
244 
245   ProblemImpl* gradient_checking_problem_impl = new ProblemImpl(
246       gradient_checking_problem_options);
247 
248   Program* program = problem_impl->mutable_program();
249 
250   // For every ParameterBlock in problem_impl, create a new parameter
251   // block with the same local parameterization and constancy.
252   const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
253   for (int i = 0; i < parameter_blocks.size(); ++i) {
254     ParameterBlock* parameter_block = parameter_blocks[i];
255     gradient_checking_problem_impl->AddParameterBlock(
256         parameter_block->mutable_user_state(),
257         parameter_block->Size(),
258         parameter_block->mutable_local_parameterization());
259 
260     if (parameter_block->IsConstant()) {
261       gradient_checking_problem_impl->SetParameterBlockConstant(
262           parameter_block->mutable_user_state());
263     }
264   }
265 
266   // For every ResidualBlock in problem_impl, create a new
267   // ResidualBlock by wrapping its CostFunction inside a
268   // GradientCheckingCostFunction.
269   const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
270   for (int i = 0; i < residual_blocks.size(); ++i) {
271     ResidualBlock* residual_block = residual_blocks[i];
272 
273     // Build a human readable string which identifies the
274     // ResidualBlock. This is used by the GradientCheckingCostFunction
275     // when logging debugging information.
276     string extra_info = StringPrintf(
277         "Residual block id %d; depends on parameters [", i);
278     vector<double*> parameter_blocks;
279     for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
280       ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
281       parameter_blocks.push_back(parameter_block->mutable_user_state());
282       StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
283       extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
284     }
285 
286     // Wrap the original CostFunction in a GradientCheckingCostFunction.
287     CostFunction* gradient_checking_cost_function =
288         CreateGradientCheckingCostFunction(residual_block->cost_function(),
289                                            relative_step_size,
290                                            relative_precision,
291                                            extra_info);
292 
293     // The const_cast is necessary because
294     // ProblemImpl::AddResidualBlock can potentially take ownership of
295     // the LossFunction, but in this case we are guaranteed that this
296     // will not be the case, so this const_cast is harmless.
297     gradient_checking_problem_impl->AddResidualBlock(
298         gradient_checking_cost_function,
299         const_cast<LossFunction*>(residual_block->loss_function()),
300         parameter_blocks);
301   }
302 
303   return gradient_checking_problem_impl;
304 }
305 
306 
307 }  // namespace internal
308 }  // namespace ceres
309