1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "ui/gfx/skbitmap_operations.h"
6
7 #include <algorithm>
8 #include <string.h>
9
10 #include "base/logging.h"
11 #include "skia/ext/refptr.h"
12 #include "third_party/skia/include/core/SkBitmap.h"
13 #include "third_party/skia/include/core/SkCanvas.h"
14 #include "third_party/skia/include/core/SkColorFilter.h"
15 #include "third_party/skia/include/core/SkColorPriv.h"
16 #include "third_party/skia/include/core/SkUnPreMultiply.h"
17 #include "third_party/skia/include/effects/SkBlurImageFilter.h"
18 #include "ui/gfx/insets.h"
19 #include "ui/gfx/point.h"
20 #include "ui/gfx/size.h"
21
22 // static
CreateInvertedBitmap(const SkBitmap & image)23 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
24 DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
25
26 SkAutoLockPixels lock_image(image);
27
28 SkBitmap inverted;
29 inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
30 0);
31 inverted.allocPixels();
32 inverted.eraseARGB(0, 0, 0, 0);
33
34 for (int y = 0; y < image.height(); ++y) {
35 uint32* image_row = image.getAddr32(0, y);
36 uint32* dst_row = inverted.getAddr32(0, y);
37
38 for (int x = 0; x < image.width(); ++x) {
39 uint32 image_pixel = image_row[x];
40 dst_row[x] = (image_pixel & 0xFF000000) |
41 (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
42 }
43 }
44
45 return inverted;
46 }
47
48 // static
CreateSuperimposedBitmap(const SkBitmap & first,const SkBitmap & second)49 SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
50 const SkBitmap& second) {
51 DCHECK(first.width() == second.width());
52 DCHECK(first.height() == second.height());
53 DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
54 DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
55
56 SkAutoLockPixels lock_first(first);
57 SkAutoLockPixels lock_second(second);
58
59 SkBitmap superimposed;
60 superimposed.setConfig(SkBitmap::kARGB_8888_Config,
61 first.width(), first.height());
62 superimposed.allocPixels();
63 superimposed.eraseARGB(0, 0, 0, 0);
64
65 SkCanvas canvas(superimposed);
66
67 SkRect rect;
68 rect.fLeft = 0;
69 rect.fTop = 0;
70 rect.fRight = SkIntToScalar(first.width());
71 rect.fBottom = SkIntToScalar(first.height());
72
73 canvas.drawBitmapRect(first, NULL, rect);
74 canvas.drawBitmapRect(second, NULL, rect);
75
76 return superimposed;
77 }
78
79 // static
CreateBlendedBitmap(const SkBitmap & first,const SkBitmap & second,double alpha)80 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
81 const SkBitmap& second,
82 double alpha) {
83 DCHECK((alpha >= 0) && (alpha <= 1));
84 DCHECK(first.width() == second.width());
85 DCHECK(first.height() == second.height());
86 DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
87 DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
88
89 // Optimize for case where we won't need to blend anything.
90 static const double alpha_min = 1.0 / 255;
91 static const double alpha_max = 254.0 / 255;
92 if (alpha < alpha_min)
93 return first;
94 else if (alpha > alpha_max)
95 return second;
96
97 SkAutoLockPixels lock_first(first);
98 SkAutoLockPixels lock_second(second);
99
100 SkBitmap blended;
101 blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
102 0);
103 blended.allocPixels();
104 blended.eraseARGB(0, 0, 0, 0);
105
106 double first_alpha = 1 - alpha;
107
108 for (int y = 0; y < first.height(); ++y) {
109 uint32* first_row = first.getAddr32(0, y);
110 uint32* second_row = second.getAddr32(0, y);
111 uint32* dst_row = blended.getAddr32(0, y);
112
113 for (int x = 0; x < first.width(); ++x) {
114 uint32 first_pixel = first_row[x];
115 uint32 second_pixel = second_row[x];
116
117 int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
118 (SkColorGetA(second_pixel) * alpha));
119 int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
120 (SkColorGetR(second_pixel) * alpha));
121 int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
122 (SkColorGetG(second_pixel) * alpha));
123 int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
124 (SkColorGetB(second_pixel) * alpha));
125
126 dst_row[x] = SkColorSetARGB(a, r, g, b);
127 }
128 }
129
130 return blended;
131 }
132
133 // static
CreateMaskedBitmap(const SkBitmap & rgb,const SkBitmap & alpha)134 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
135 const SkBitmap& alpha) {
136 DCHECK(rgb.width() == alpha.width());
137 DCHECK(rgb.height() == alpha.height());
138 DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
139 DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
140 DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);
141
142 SkBitmap masked;
143 masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
144 masked.allocPixels();
145 masked.eraseARGB(0, 0, 0, 0);
146
147 SkAutoLockPixels lock_rgb(rgb);
148 SkAutoLockPixels lock_alpha(alpha);
149 SkAutoLockPixels lock_masked(masked);
150
151 for (int y = 0; y < masked.height(); ++y) {
152 uint32* rgb_row = rgb.getAddr32(0, y);
153 uint32* alpha_row = alpha.getAddr32(0, y);
154 uint32* dst_row = masked.getAddr32(0, y);
155
156 for (int x = 0; x < masked.width(); ++x) {
157 SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
158 SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]);
159 int alpha = SkAlphaMul(SkColorGetA(rgb_pixel),
160 SkAlpha255To256(SkColorGetA(alpha_pixel)));
161 int alpha_256 = SkAlpha255To256(alpha);
162 dst_row[x] = SkColorSetARGB(alpha,
163 SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256),
164 SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256),
165 SkAlphaMul(SkColorGetB(rgb_pixel),
166 alpha_256));
167 }
168 }
169
170 return masked;
171 }
172
173 // static
CreateButtonBackground(SkColor color,const SkBitmap & image,const SkBitmap & mask)174 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
175 const SkBitmap& image,
176 const SkBitmap& mask) {
177 DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
178 DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);
179
180 SkBitmap background;
181 background.setConfig(
182 SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
183 background.allocPixels();
184
185 double bg_a = SkColorGetA(color);
186 double bg_r = SkColorGetR(color);
187 double bg_g = SkColorGetG(color);
188 double bg_b = SkColorGetB(color);
189
190 SkAutoLockPixels lock_mask(mask);
191 SkAutoLockPixels lock_image(image);
192 SkAutoLockPixels lock_background(background);
193
194 for (int y = 0; y < mask.height(); ++y) {
195 uint32* dst_row = background.getAddr32(0, y);
196 uint32* image_row = image.getAddr32(0, y % image.height());
197 uint32* mask_row = mask.getAddr32(0, y);
198
199 for (int x = 0; x < mask.width(); ++x) {
200 uint32 image_pixel = image_row[x % image.width()];
201
202 double img_a = SkColorGetA(image_pixel);
203 double img_r = SkColorGetR(image_pixel);
204 double img_g = SkColorGetG(image_pixel);
205 double img_b = SkColorGetB(image_pixel);
206
207 double img_alpha = static_cast<double>(img_a) / 255.0;
208 double img_inv = 1 - img_alpha;
209
210 double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
211
212 dst_row[x] = SkColorSetARGB(
213 static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
214 static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
215 static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
216 static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
217 }
218 }
219
220 return background;
221 }
222
223 namespace {
224 namespace HSLShift {
225
226 // TODO(viettrungluu): Some things have yet to be optimized at all.
227
228 // Notes on and conventions used in the following code
229 //
230 // Conventions:
231 // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
232 // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
233 // - variables derived from S, L shift parameters: |sdec| and |sinc| for S
234 // increase and decrease factors, |ldec| and |linc| for L (see also below)
235 //
236 // To try to optimize HSL shifts, we do several things:
237 // - Avoid unpremultiplying (then processing) then premultiplying. This means
238 // that R, G, B values (and also L, but not H and S) should be treated as
239 // having a range of 0..A (where A is alpha).
240 // - Do things in integer/fixed-point. This avoids costly conversions between
241 // floating-point and integer, though I should study the tradeoff more
242 // carefully (presumably, at some point of processing complexity, converting
243 // and processing using simpler floating-point code will begin to win in
244 // performance). Also to be studied is the speed/type of floating point
245 // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
246 //
247 // Conventions for fixed-point arithmetic
248 // - Each function has a constant denominator (called |den|, which should be a
249 // power of 2), appropriate for the computations done in that function.
250 // - A value |x| is then typically represented by a numerator, named |x_num|,
251 // so that its actual value is |x_num / den| (casting to floating-point
252 // before division).
253 // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
254 // den| (casting appropriately).
255 // - When necessary, a value |x| may also be represented as a numerator over
256 // the denominator squared (set |den2 = den * den|). In such a case, the
257 // corresponding variable is called |x_num2| (so that its actual value is
258 // |x_num^2 / den2|.
259 // - The representation of the product of |x| and |y| is be called |x_y_num| if
260 // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
261 // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
262
263 // Routine used to process a line; typically specialized for specific kinds of
264 // HSL shifts (to optimize).
265 typedef void (*LineProcessor)(const color_utils::HSL&,
266 const SkPMColor*,
267 SkPMColor*,
268 int width);
269
270 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
271 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
272 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
273
274 // Epsilon used to judge when shift values are close enough to various critical
275 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
276 // be small enough, but let's play it safe>
277 const double epsilon = 0.0005;
278
279 // Line processor: default/universal (i.e., old-school).
LineProcDefault(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)280 void LineProcDefault(const color_utils::HSL& hsl_shift,
281 const SkPMColor* in,
282 SkPMColor* out,
283 int width) {
284 for (int x = 0; x < width; x++) {
285 out[x] = SkPreMultiplyColor(color_utils::HSLShift(
286 SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
287 }
288 }
289
290 // Line processor: no-op (i.e., copy).
LineProcCopy(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)291 void LineProcCopy(const color_utils::HSL& hsl_shift,
292 const SkPMColor* in,
293 SkPMColor* out,
294 int width) {
295 DCHECK(hsl_shift.h < 0);
296 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
297 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
298 memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
299 }
300
301 // Line processor: H no-op, S no-op, L decrease.
LineProcHnopSnopLdec(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)302 void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift,
303 const SkPMColor* in,
304 SkPMColor* out,
305 int width) {
306 const uint32_t den = 65536;
307
308 DCHECK(hsl_shift.h < 0);
309 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
310 DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
311
312 uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
313 for (int x = 0; x < width; x++) {
314 uint32_t a = SkGetPackedA32(in[x]);
315 uint32_t r = SkGetPackedR32(in[x]);
316 uint32_t g = SkGetPackedG32(in[x]);
317 uint32_t b = SkGetPackedB32(in[x]);
318 r = r * ldec_num / den;
319 g = g * ldec_num / den;
320 b = b * ldec_num / den;
321 out[x] = SkPackARGB32(a, r, g, b);
322 }
323 }
324
325 // Line processor: H no-op, S no-op, L increase.
LineProcHnopSnopLinc(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)326 void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift,
327 const SkPMColor* in,
328 SkPMColor* out,
329 int width) {
330 const uint32_t den = 65536;
331
332 DCHECK(hsl_shift.h < 0);
333 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
334 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
335
336 uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
337 for (int x = 0; x < width; x++) {
338 uint32_t a = SkGetPackedA32(in[x]);
339 uint32_t r = SkGetPackedR32(in[x]);
340 uint32_t g = SkGetPackedG32(in[x]);
341 uint32_t b = SkGetPackedB32(in[x]);
342 r += (a - r) * linc_num / den;
343 g += (a - g) * linc_num / den;
344 b += (a - b) * linc_num / den;
345 out[x] = SkPackARGB32(a, r, g, b);
346 }
347 }
348
349 // Saturation changes modifications in RGB
350 //
351 // (Note that as a further complication, the values we deal in are
352 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical
353 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
354 // generality, assume that R/G/B values are in the range 0..1.)
355 //
356 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
357 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
358 //
359 // For H to remain constant, first, the (numerical) order of R/G/B (from
360 // smallest to largest) must remain the same. Second, all the ratios
361 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
362 // course, if Max = Min, then S = 0 and no saturation change is well-defined,
363 // since H is not well-defined).
364 //
365 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med
366 // the remaining colour. Increasing saturation (to the maximum) is accomplished
367 // by increasing the value of C_max while simultaneously decreasing C_min and
368 // changing C_med so that the ratios are maintained; for the latter, it suffices
369 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
370 // (Med-Min)/(Max-Min)).
371
372 // Line processor: H no-op, S decrease, L no-op.
LineProcHnopSdecLnop(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)373 void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift,
374 const SkPMColor* in,
375 SkPMColor* out,
376 int width) {
377 DCHECK(hsl_shift.h < 0);
378 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
379 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
380
381 const int32_t denom = 65536;
382 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
383 for (int x = 0; x < width; x++) {
384 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
385 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
386 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
387 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
388
389 int32_t vmax, vmin;
390 if (r > g) { // This uses 3 compares rather than 4.
391 vmax = std::max(r, b);
392 vmin = std::min(g, b);
393 } else {
394 vmax = std::max(g, b);
395 vmin = std::min(r, b);
396 }
397
398 // Use denom * L to avoid rounding.
399 int32_t denom_l = (vmax + vmin) * (denom / 2);
400 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
401
402 r = (denom_l + r * s_numer - s_numer_l) / denom;
403 g = (denom_l + g * s_numer - s_numer_l) / denom;
404 b = (denom_l + b * s_numer - s_numer_l) / denom;
405 out[x] = SkPackARGB32(a, r, g, b);
406 }
407 }
408
409 // Line processor: H no-op, S decrease, L decrease.
LineProcHnopSdecLdec(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)410 void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift,
411 const SkPMColor* in,
412 SkPMColor* out,
413 int width) {
414 DCHECK(hsl_shift.h < 0);
415 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
416 DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
417
418 // Can't be too big since we need room for denom*denom and a bit for sign.
419 const int32_t denom = 1024;
420 int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
421 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
422 for (int x = 0; x < width; x++) {
423 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
424 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
425 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
426 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
427
428 int32_t vmax, vmin;
429 if (r > g) { // This uses 3 compares rather than 4.
430 vmax = std::max(r, b);
431 vmin = std::min(g, b);
432 } else {
433 vmax = std::max(g, b);
434 vmin = std::min(r, b);
435 }
436
437 // Use denom * L to avoid rounding.
438 int32_t denom_l = (vmax + vmin) * (denom / 2);
439 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
440
441 r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
442 g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
443 b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
444 out[x] = SkPackARGB32(a, r, g, b);
445 }
446 }
447
448 // Line processor: H no-op, S decrease, L increase.
LineProcHnopSdecLinc(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)449 void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift,
450 const SkPMColor* in,
451 SkPMColor* out,
452 int width) {
453 DCHECK(hsl_shift.h < 0);
454 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
455 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
456
457 // Can't be too big since we need room for denom*denom and a bit for sign.
458 const int32_t denom = 1024;
459 int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
460 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
461 for (int x = 0; x < width; x++) {
462 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
463 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
464 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
465 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
466
467 int32_t vmax, vmin;
468 if (r > g) { // This uses 3 compares rather than 4.
469 vmax = std::max(r, b);
470 vmin = std::min(g, b);
471 } else {
472 vmax = std::max(g, b);
473 vmin = std::min(r, b);
474 }
475
476 // Use denom * L to avoid rounding.
477 int32_t denom_l = (vmax + vmin) * (denom / 2);
478 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
479
480 r = denom_l + r * s_numer - s_numer_l;
481 g = denom_l + g * s_numer - s_numer_l;
482 b = denom_l + b * s_numer - s_numer_l;
483
484 r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
485 g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
486 b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
487 out[x] = SkPackARGB32(a, r, g, b);
488 }
489 }
490
491 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
492 { // H: kOpHNone
493 { // S: kOpSNone
494 LineProcCopy, // L: kOpLNone
495 LineProcHnopSnopLdec, // L: kOpLDec
496 LineProcHnopSnopLinc // L: kOpLInc
497 },
498 { // S: kOpSDec
499 LineProcHnopSdecLnop, // L: kOpLNone
500 LineProcHnopSdecLdec, // L: kOpLDec
501 LineProcHnopSdecLinc // L: kOpLInc
502 },
503 { // S: kOpSInc
504 LineProcDefault, // L: kOpLNone
505 LineProcDefault, // L: kOpLDec
506 LineProcDefault // L: kOpLInc
507 }
508 },
509 { // H: kOpHShift
510 { // S: kOpSNone
511 LineProcDefault, // L: kOpLNone
512 LineProcDefault, // L: kOpLDec
513 LineProcDefault // L: kOpLInc
514 },
515 { // S: kOpSDec
516 LineProcDefault, // L: kOpLNone
517 LineProcDefault, // L: kOpLDec
518 LineProcDefault // L: kOpLInc
519 },
520 { // S: kOpSInc
521 LineProcDefault, // L: kOpLNone
522 LineProcDefault, // L: kOpLDec
523 LineProcDefault // L: kOpLInc
524 }
525 }
526 };
527
528 } // namespace HSLShift
529 } // namespace
530
531 // static
CreateHSLShiftedBitmap(const SkBitmap & bitmap,const color_utils::HSL & hsl_shift)532 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
533 const SkBitmap& bitmap,
534 const color_utils::HSL& hsl_shift) {
535 // Default to NOPs.
536 HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
537 HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
538 HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
539
540 if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
541 H_op = HSLShift::kOpHShift;
542
543 // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
544 if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
545 S_op = HSLShift::kOpSDec;
546 else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
547 S_op = HSLShift::kOpSInc;
548
549 // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
550 if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
551 L_op = HSLShift::kOpLDec;
552 else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
553 L_op = HSLShift::kOpLInc;
554
555 HSLShift::LineProcessor line_proc =
556 HSLShift::kLineProcessors[H_op][S_op][L_op];
557
558 DCHECK(bitmap.empty() == false);
559 DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
560
561 SkBitmap shifted;
562 shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
563 bitmap.height());
564 shifted.allocPixels();
565 shifted.eraseARGB(0, 0, 0, 0);
566
567 SkAutoLockPixels lock_bitmap(bitmap);
568 SkAutoLockPixels lock_shifted(shifted);
569
570 // Loop through the pixels of the original bitmap.
571 for (int y = 0; y < bitmap.height(); ++y) {
572 SkPMColor* pixels = bitmap.getAddr32(0, y);
573 SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
574
575 (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
576 }
577
578 return shifted;
579 }
580
581 // static
CreateTiledBitmap(const SkBitmap & source,int src_x,int src_y,int dst_w,int dst_h)582 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
583 int src_x, int src_y,
584 int dst_w, int dst_h) {
585 DCHECK(source.config() == SkBitmap::kARGB_8888_Config);
586
587 SkBitmap cropped;
588 cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
589 cropped.allocPixels();
590 cropped.eraseARGB(0, 0, 0, 0);
591
592 SkAutoLockPixels lock_source(source);
593 SkAutoLockPixels lock_cropped(cropped);
594
595 // Loop through the pixels of the original bitmap.
596 for (int y = 0; y < dst_h; ++y) {
597 int y_pix = (src_y + y) % source.height();
598 while (y_pix < 0)
599 y_pix += source.height();
600
601 uint32* source_row = source.getAddr32(0, y_pix);
602 uint32* dst_row = cropped.getAddr32(0, y);
603
604 for (int x = 0; x < dst_w; ++x) {
605 int x_pix = (src_x + x) % source.width();
606 while (x_pix < 0)
607 x_pix += source.width();
608
609 dst_row[x] = source_row[x_pix];
610 }
611 }
612
613 return cropped;
614 }
615
616 // static
DownsampleByTwoUntilSize(const SkBitmap & bitmap,int min_w,int min_h)617 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
618 int min_w, int min_h) {
619 if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
620 (min_w < 0) || (min_h < 0))
621 return bitmap;
622
623 // Since bitmaps are refcounted, this copy will be fast.
624 SkBitmap current = bitmap;
625 while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
626 (current.width() > 1) && (current.height() > 1))
627 current = DownsampleByTwo(current);
628 return current;
629 }
630
631 // static
DownsampleByTwo(const SkBitmap & bitmap)632 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
633 // Handle the nop case.
634 if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
635 return bitmap;
636
637 SkBitmap result;
638 result.setConfig(SkBitmap::kARGB_8888_Config,
639 (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
640 result.allocPixels();
641
642 SkAutoLockPixels lock(bitmap);
643
644 const int resultLastX = result.width() - 1;
645 const int srcLastX = bitmap.width() - 1;
646
647 for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
648 const int src_y = dest_y << 1;
649 const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y);
650 const SkPMColor* SK_RESTRICT cur_src1 = cur_src0;
651 if (src_y + 1 < bitmap.height())
652 cur_src1 = bitmap.getAddr32(0, src_y + 1);
653
654 SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y);
655
656 for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) {
657 // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
658 // clever in that it does two channels at once: alpha and green ("ag")
659 // and red and blue ("rb"). Each channel gets averaged across 4 pixels
660 // to get the result.
661 int bump_x = (dest_x << 1) < srcLastX;
662 SkPMColor tmp, ag, rb;
663
664 // Top left pixel of the 2x2 block.
665 tmp = cur_src0[0];
666 ag = (tmp >> 8) & 0xFF00FF;
667 rb = tmp & 0xFF00FF;
668
669 // Top right pixel of the 2x2 block.
670 tmp = cur_src0[bump_x];
671 ag += (tmp >> 8) & 0xFF00FF;
672 rb += tmp & 0xFF00FF;
673
674 // Bottom left pixel of the 2x2 block.
675 tmp = cur_src1[0];
676 ag += (tmp >> 8) & 0xFF00FF;
677 rb += tmp & 0xFF00FF;
678
679 // Bottom right pixel of the 2x2 block.
680 tmp = cur_src1[bump_x];
681 ag += (tmp >> 8) & 0xFF00FF;
682 rb += tmp & 0xFF00FF;
683
684 // Put the channels back together, dividing each by 4 to get the average.
685 // |ag| has the alpha and green channels shifted right by 8 bits from
686 // there they should end up, so shifting left by 6 gives them in the
687 // correct position divided by 4.
688 *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
689
690 cur_src0 += 2;
691 cur_src1 += 2;
692 }
693 }
694
695 return result;
696 }
697
698 // static
UnPreMultiply(const SkBitmap & bitmap)699 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
700 if (bitmap.isNull())
701 return bitmap;
702 if (bitmap.isOpaque())
703 return bitmap;
704
705 SkBitmap opaque_bitmap;
706 opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height(),
707 0, kOpaque_SkAlphaType);
708 opaque_bitmap.allocPixels();
709
710 {
711 SkAutoLockPixels bitmap_lock(bitmap);
712 SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
713 for (int y = 0; y < opaque_bitmap.height(); y++) {
714 for (int x = 0; x < opaque_bitmap.width(); x++) {
715 uint32 src_pixel = *bitmap.getAddr32(x, y);
716 uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
717 SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
718 *dst_pixel = unmultiplied;
719 }
720 }
721 }
722
723 return opaque_bitmap;
724 }
725
726 // static
CreateTransposedBitmap(const SkBitmap & image)727 SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) {
728 DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
729
730 SkBitmap transposed;
731 transposed.setConfig(
732 SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0);
733 transposed.allocPixels();
734
735 SkAutoLockPixels lock_image(image);
736 SkAutoLockPixels lock_transposed(transposed);
737
738 for (int y = 0; y < image.height(); ++y) {
739 uint32* image_row = image.getAddr32(0, y);
740 for (int x = 0; x < image.width(); ++x) {
741 uint32* dst = transposed.getAddr32(y, x);
742 *dst = image_row[x];
743 }
744 }
745
746 return transposed;
747 }
748
749 // static
CreateColorMask(const SkBitmap & bitmap,SkColor c)750 SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap,
751 SkColor c) {
752 DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
753
754 SkBitmap color_mask;
755 color_mask.setConfig(SkBitmap::kARGB_8888_Config,
756 bitmap.width(), bitmap.height());
757 color_mask.allocPixels();
758 color_mask.eraseARGB(0, 0, 0, 0);
759
760 SkCanvas canvas(color_mask);
761
762 skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef(
763 SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode));
764 SkPaint paint;
765 paint.setColorFilter(color_filter.get());
766 canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint);
767 return color_mask;
768 }
769
770 // static
CreateDropShadow(const SkBitmap & bitmap,const gfx::ShadowValues & shadows)771 SkBitmap SkBitmapOperations::CreateDropShadow(
772 const SkBitmap& bitmap,
773 const gfx::ShadowValues& shadows) {
774 DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
775
776 // Shadow margin insets are negative values because they grow outside.
777 // Negate them here as grow direction is not important and only pixel value
778 // is of interest here.
779 gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows);
780
781 SkBitmap image_with_shadow;
782 image_with_shadow.setConfig(SkBitmap::kARGB_8888_Config,
783 bitmap.width() + shadow_margin.width(),
784 bitmap.height() + shadow_margin.height());
785 image_with_shadow.allocPixels();
786 image_with_shadow.eraseARGB(0, 0, 0, 0);
787
788 SkCanvas canvas(image_with_shadow);
789 canvas.translate(SkIntToScalar(shadow_margin.left()),
790 SkIntToScalar(shadow_margin.top()));
791
792 SkPaint paint;
793 for (size_t i = 0; i < shadows.size(); ++i) {
794 const gfx::ShadowValue& shadow = shadows[i];
795 SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap,
796 shadow.color());
797
798 skia::RefPtr<SkBlurImageFilter> filter =
799 skia::AdoptRef(new SkBlurImageFilter(SkDoubleToScalar(shadow.blur()),
800 SkDoubleToScalar(shadow.blur())));
801 paint.setImageFilter(filter.get());
802
803 canvas.saveLayer(0, &paint);
804 canvas.drawBitmap(shadow_image,
805 SkIntToScalar(shadow.x()),
806 SkIntToScalar(shadow.y()));
807 canvas.restore();
808 }
809
810 canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0));
811 return image_with_shadow;
812 }
813
814 // static
Rotate(const SkBitmap & source,RotationAmount rotation)815 SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source,
816 RotationAmount rotation) {
817 SkBitmap result;
818 SkScalar angle = SkFloatToScalar(0.0f);
819
820 switch (rotation) {
821 case ROTATION_90_CW:
822 angle = SkFloatToScalar(90.0f);
823 result.setConfig(
824 SkBitmap::kARGB_8888_Config, source.height(), source.width());
825 break;
826 case ROTATION_180_CW:
827 angle = SkFloatToScalar(180.0f);
828 result.setConfig(
829 SkBitmap::kARGB_8888_Config, source.width(), source.height());
830 break;
831 case ROTATION_270_CW:
832 angle = SkFloatToScalar(270.0f);
833 result.setConfig(
834 SkBitmap::kARGB_8888_Config, source.height(), source.width());
835 break;
836 }
837 result.allocPixels();
838 SkCanvas canvas(result);
839 canvas.clear(SkColorSetARGB(0, 0, 0, 0));
840
841 canvas.translate(SkFloatToScalar(result.width() * 0.5f),
842 SkFloatToScalar(result.height() * 0.5f));
843 canvas.rotate(angle);
844 canvas.translate(-SkFloatToScalar(source.width() * 0.5f),
845 -SkFloatToScalar(source.height() * 0.5f));
846 canvas.drawBitmap(source, 0, 0);
847 canvas.flush();
848
849 return result;
850 }
851