• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "EHScopeStack.h"
21 #include "CodeGenModule.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Type.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/CapturedStmt.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 
36 namespace llvm {
37   class BasicBlock;
38   class LLVMContext;
39   class MDNode;
40   class Module;
41   class SwitchInst;
42   class Twine;
43   class Value;
44   class CallSite;
45 }
46 
47 namespace clang {
48   class ASTContext;
49   class BlockDecl;
50   class CXXDestructorDecl;
51   class CXXForRangeStmt;
52   class CXXTryStmt;
53   class Decl;
54   class LabelDecl;
55   class EnumConstantDecl;
56   class FunctionDecl;
57   class FunctionProtoType;
58   class LabelStmt;
59   class ObjCContainerDecl;
60   class ObjCInterfaceDecl;
61   class ObjCIvarDecl;
62   class ObjCMethodDecl;
63   class ObjCImplementationDecl;
64   class ObjCPropertyImplDecl;
65   class TargetInfo;
66   class TargetCodeGenInfo;
67   class VarDecl;
68   class ObjCForCollectionStmt;
69   class ObjCAtTryStmt;
70   class ObjCAtThrowStmt;
71   class ObjCAtSynchronizedStmt;
72   class ObjCAutoreleasePoolStmt;
73 
74 namespace CodeGen {
75   class CodeGenTypes;
76   class CGFunctionInfo;
77   class CGRecordLayout;
78   class CGBlockInfo;
79   class CGCXXABI;
80   class BlockFlags;
81   class BlockFieldFlags;
82 
83 /// The kind of evaluation to perform on values of a particular
84 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
85 /// CGExprAgg?
86 ///
87 /// TODO: should vectors maybe be split out into their own thing?
88 enum TypeEvaluationKind {
89   TEK_Scalar,
90   TEK_Complex,
91   TEK_Aggregate
92 };
93 
94 /// CodeGenFunction - This class organizes the per-function state that is used
95 /// while generating LLVM code.
96 class CodeGenFunction : public CodeGenTypeCache {
97   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
98   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99 
100   friend class CGCXXABI;
101 public:
102   /// A jump destination is an abstract label, branching to which may
103   /// require a jump out through normal cleanups.
104   struct JumpDest {
JumpDestJumpDest105     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
JumpDestJumpDest106     JumpDest(llvm::BasicBlock *Block,
107              EHScopeStack::stable_iterator Depth,
108              unsigned Index)
109       : Block(Block), ScopeDepth(Depth), Index(Index) {}
110 
isValidJumpDest111     bool isValid() const { return Block != 0; }
getBlockJumpDest112     llvm::BasicBlock *getBlock() const { return Block; }
getScopeDepthJumpDest113     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
getDestIndexJumpDest114     unsigned getDestIndex() const { return Index; }
115 
116     // This should be used cautiously.
setScopeDepthJumpDest117     void setScopeDepth(EHScopeStack::stable_iterator depth) {
118       ScopeDepth = depth;
119     }
120 
121   private:
122     llvm::BasicBlock *Block;
123     EHScopeStack::stable_iterator ScopeDepth;
124     unsigned Index;
125   };
126 
127   CodeGenModule &CGM;  // Per-module state.
128   const TargetInfo &Target;
129 
130   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
131   CGBuilderTy Builder;
132 
133   /// CurFuncDecl - Holds the Decl for the current outermost
134   /// non-closure context.
135   const Decl *CurFuncDecl;
136   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
137   const Decl *CurCodeDecl;
138   const CGFunctionInfo *CurFnInfo;
139   QualType FnRetTy;
140   llvm::Function *CurFn;
141 
142   /// CurGD - The GlobalDecl for the current function being compiled.
143   GlobalDecl CurGD;
144 
145   /// PrologueCleanupDepth - The cleanup depth enclosing all the
146   /// cleanups associated with the parameters.
147   EHScopeStack::stable_iterator PrologueCleanupDepth;
148 
149   /// ReturnBlock - Unified return block.
150   JumpDest ReturnBlock;
151 
152   /// ReturnValue - The temporary alloca to hold the return value. This is null
153   /// iff the function has no return value.
154   llvm::Value *ReturnValue;
155 
156   /// AllocaInsertPoint - This is an instruction in the entry block before which
157   /// we prefer to insert allocas.
158   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
159 
160   /// \brief API for captured statement code generation.
161   class CGCapturedStmtInfo {
162   public:
163     explicit CGCapturedStmtInfo(const CapturedStmt &S,
164                                 CapturedRegionKind K = CR_Default)
Kind(K)165       : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
166 
167       RecordDecl::field_iterator Field =
168         S.getCapturedRecordDecl()->field_begin();
169       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
170                                                 E = S.capture_end();
171            I != E; ++I, ++Field) {
172         if (I->capturesThis())
173           CXXThisFieldDecl = *Field;
174         else
175           CaptureFields[I->getCapturedVar()] = *Field;
176       }
177     }
178 
179     virtual ~CGCapturedStmtInfo();
180 
getKind()181     CapturedRegionKind getKind() const { return Kind; }
182 
setContextValue(llvm::Value * V)183     void setContextValue(llvm::Value *V) { ThisValue = V; }
184     // \brief Retrieve the value of the context parameter.
getContextValue()185     llvm::Value *getContextValue() const { return ThisValue; }
186 
187     /// \brief Lookup the captured field decl for a variable.
lookup(const VarDecl * VD)188     const FieldDecl *lookup(const VarDecl *VD) const {
189       return CaptureFields.lookup(VD);
190     }
191 
isCXXThisExprCaptured()192     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
getThisFieldDecl()193     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
194 
195     /// \brief Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,Stmt * S)196     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
197       CGF.EmitStmt(S);
198     }
199 
200     /// \brief Get the name of the capture helper.
getHelperName()201     virtual StringRef getHelperName() const { return "__captured_stmt"; }
202 
203   private:
204     /// \brief The kind of captured statement being generated.
205     CapturedRegionKind Kind;
206 
207     /// \brief Keep the map between VarDecl and FieldDecl.
208     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
209 
210     /// \brief The base address of the captured record, passed in as the first
211     /// argument of the parallel region function.
212     llvm::Value *ThisValue;
213 
214     /// \brief Captured 'this' type.
215     FieldDecl *CXXThisFieldDecl;
216   };
217   CGCapturedStmtInfo *CapturedStmtInfo;
218 
219   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
220   /// potentially higher performance penalties.
221   unsigned char BoundsChecking;
222 
223   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
224   /// calls to EmitTypeCheck can be skipped.
225   bool SanitizePerformTypeCheck;
226 
227   /// \brief Sanitizer options to use for this function.
228   const SanitizerOptions *SanOpts;
229 
230   /// In ARC, whether we should autorelease the return value.
231   bool AutoreleaseResult;
232 
233   const CodeGen::CGBlockInfo *BlockInfo;
234   llvm::Value *BlockPointer;
235 
236   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
237   FieldDecl *LambdaThisCaptureField;
238 
239   /// \brief A mapping from NRVO variables to the flags used to indicate
240   /// when the NRVO has been applied to this variable.
241   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
242 
243   EHScopeStack EHStack;
244   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
245 
246   /// Header for data within LifetimeExtendedCleanupStack.
247   struct LifetimeExtendedCleanupHeader {
248     /// The size of the following cleanup object.
249     size_t Size : 29;
250     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
251     unsigned Kind : 3;
252 
getSizeLifetimeExtendedCleanupHeader253     size_t getSize() const { return Size; }
getKindLifetimeExtendedCleanupHeader254     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
255   };
256 
257   /// i32s containing the indexes of the cleanup destinations.
258   llvm::AllocaInst *NormalCleanupDest;
259 
260   unsigned NextCleanupDestIndex;
261 
262   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
263   CGBlockInfo *FirstBlockInfo;
264 
265   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
266   llvm::BasicBlock *EHResumeBlock;
267 
268   /// The exception slot.  All landing pads write the current exception pointer
269   /// into this alloca.
270   llvm::Value *ExceptionSlot;
271 
272   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
273   /// write the current selector value into this alloca.
274   llvm::AllocaInst *EHSelectorSlot;
275 
276   /// Emits a landing pad for the current EH stack.
277   llvm::BasicBlock *EmitLandingPad();
278 
279   llvm::BasicBlock *getInvokeDestImpl();
280 
281   template <class T>
saveValueInCond(T value)282   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
283     return DominatingValue<T>::save(*this, value);
284   }
285 
286 public:
287   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
288   /// rethrows.
289   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
290 
291   /// A class controlling the emission of a finally block.
292   class FinallyInfo {
293     /// Where the catchall's edge through the cleanup should go.
294     JumpDest RethrowDest;
295 
296     /// A function to call to enter the catch.
297     llvm::Constant *BeginCatchFn;
298 
299     /// An i1 variable indicating whether or not the @finally is
300     /// running for an exception.
301     llvm::AllocaInst *ForEHVar;
302 
303     /// An i8* variable into which the exception pointer to rethrow
304     /// has been saved.
305     llvm::AllocaInst *SavedExnVar;
306 
307   public:
308     void enter(CodeGenFunction &CGF, const Stmt *Finally,
309                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
310                llvm::Constant *rethrowFn);
311     void exit(CodeGenFunction &CGF);
312   };
313 
314   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
315   /// current full-expression.  Safe against the possibility that
316   /// we're currently inside a conditionally-evaluated expression.
317   template <class T, class A0>
pushFullExprCleanup(CleanupKind kind,A0 a0)318   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
319     // If we're not in a conditional branch, or if none of the
320     // arguments requires saving, then use the unconditional cleanup.
321     if (!isInConditionalBranch())
322       return EHStack.pushCleanup<T>(kind, a0);
323 
324     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
325 
326     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
327     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
328     initFullExprCleanup();
329   }
330 
331   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
332   /// current full-expression.  Safe against the possibility that
333   /// we're currently inside a conditionally-evaluated expression.
334   template <class T, class A0, class A1>
pushFullExprCleanup(CleanupKind kind,A0 a0,A1 a1)335   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
336     // If we're not in a conditional branch, or if none of the
337     // arguments requires saving, then use the unconditional cleanup.
338     if (!isInConditionalBranch())
339       return EHStack.pushCleanup<T>(kind, a0, a1);
340 
341     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
342     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
343 
344     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
345     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
346     initFullExprCleanup();
347   }
348 
349   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
350   /// current full-expression.  Safe against the possibility that
351   /// we're currently inside a conditionally-evaluated expression.
352   template <class T, class A0, class A1, class A2>
pushFullExprCleanup(CleanupKind kind,A0 a0,A1 a1,A2 a2)353   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
354     // If we're not in a conditional branch, or if none of the
355     // arguments requires saving, then use the unconditional cleanup.
356     if (!isInConditionalBranch()) {
357       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
358     }
359 
360     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
361     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
362     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
363 
364     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
365     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
366     initFullExprCleanup();
367   }
368 
369   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
370   /// current full-expression.  Safe against the possibility that
371   /// we're currently inside a conditionally-evaluated expression.
372   template <class T, class A0, class A1, class A2, class A3>
pushFullExprCleanup(CleanupKind kind,A0 a0,A1 a1,A2 a2,A3 a3)373   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
374     // If we're not in a conditional branch, or if none of the
375     // arguments requires saving, then use the unconditional cleanup.
376     if (!isInConditionalBranch()) {
377       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
378     }
379 
380     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
381     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
382     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
383     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
384 
385     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
386     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
387                                      a2_saved, a3_saved);
388     initFullExprCleanup();
389   }
390 
391   /// \brief Queue a cleanup to be pushed after finishing the current
392   /// full-expression.
393   template <class T, class A0, class A1, class A2, class A3>
pushCleanupAfterFullExpr(CleanupKind Kind,A0 a0,A1 a1,A2 a2,A3 a3)394   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
395     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
396 
397     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
398 
399     size_t OldSize = LifetimeExtendedCleanupStack.size();
400     LifetimeExtendedCleanupStack.resize(
401         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
402 
403     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
404     new (Buffer) LifetimeExtendedCleanupHeader(Header);
405     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
406   }
407 
408   /// Set up the last cleaup that was pushed as a conditional
409   /// full-expression cleanup.
410   void initFullExprCleanup();
411 
412   /// PushDestructorCleanup - Push a cleanup to call the
413   /// complete-object destructor of an object of the given type at the
414   /// given address.  Does nothing if T is not a C++ class type with a
415   /// non-trivial destructor.
416   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
417 
418   /// PushDestructorCleanup - Push a cleanup to call the
419   /// complete-object variant of the given destructor on the object at
420   /// the given address.
421   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
422                              llvm::Value *Addr);
423 
424   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
425   /// process all branch fixups.
426   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
427 
428   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
429   /// The block cannot be reactivated.  Pops it if it's the top of the
430   /// stack.
431   ///
432   /// \param DominatingIP - An instruction which is known to
433   ///   dominate the current IP (if set) and which lies along
434   ///   all paths of execution between the current IP and the
435   ///   the point at which the cleanup comes into scope.
436   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
437                               llvm::Instruction *DominatingIP);
438 
439   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
440   /// Cannot be used to resurrect a deactivated cleanup.
441   ///
442   /// \param DominatingIP - An instruction which is known to
443   ///   dominate the current IP (if set) and which lies along
444   ///   all paths of execution between the current IP and the
445   ///   the point at which the cleanup comes into scope.
446   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
447                             llvm::Instruction *DominatingIP);
448 
449   /// \brief Enters a new scope for capturing cleanups, all of which
450   /// will be executed once the scope is exited.
451   class RunCleanupsScope {
452     EHScopeStack::stable_iterator CleanupStackDepth;
453     size_t LifetimeExtendedCleanupStackSize;
454     bool OldDidCallStackSave;
455   protected:
456     bool PerformCleanup;
457   private:
458 
459     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
460     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461 
462   protected:
463     CodeGenFunction& CGF;
464 
465   public:
466     /// \brief Enter a new cleanup scope.
RunCleanupsScope(CodeGenFunction & CGF)467     explicit RunCleanupsScope(CodeGenFunction &CGF)
468       : PerformCleanup(true), CGF(CGF)
469     {
470       CleanupStackDepth = CGF.EHStack.stable_begin();
471       LifetimeExtendedCleanupStackSize =
472           CGF.LifetimeExtendedCleanupStack.size();
473       OldDidCallStackSave = CGF.DidCallStackSave;
474       CGF.DidCallStackSave = false;
475     }
476 
477     /// \brief Exit this cleanup scope, emitting any accumulated
478     /// cleanups.
~RunCleanupsScope()479     ~RunCleanupsScope() {
480       if (PerformCleanup) {
481         CGF.DidCallStackSave = OldDidCallStackSave;
482         CGF.PopCleanupBlocks(CleanupStackDepth,
483                              LifetimeExtendedCleanupStackSize);
484       }
485     }
486 
487     /// \brief Determine whether this scope requires any cleanups.
requiresCleanups()488     bool requiresCleanups() const {
489       return CGF.EHStack.stable_begin() != CleanupStackDepth;
490     }
491 
492     /// \brief Force the emission of cleanups now, instead of waiting
493     /// until this object is destroyed.
ForceCleanup()494     void ForceCleanup() {
495       assert(PerformCleanup && "Already forced cleanup");
496       CGF.DidCallStackSave = OldDidCallStackSave;
497       CGF.PopCleanupBlocks(CleanupStackDepth,
498                            LifetimeExtendedCleanupStackSize);
499       PerformCleanup = false;
500     }
501   };
502 
503   class LexicalScope: protected RunCleanupsScope {
504     SourceRange Range;
505     SmallVector<const LabelDecl*, 4> Labels;
506     LexicalScope *ParentScope;
507 
508     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
509     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
510 
511   public:
512     /// \brief Enter a new cleanup scope.
LexicalScope(CodeGenFunction & CGF,SourceRange Range)513     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
514       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
515       CGF.CurLexicalScope = this;
516       if (CGDebugInfo *DI = CGF.getDebugInfo())
517         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
518     }
519 
addLabel(const LabelDecl * label)520     void addLabel(const LabelDecl *label) {
521       assert(PerformCleanup && "adding label to dead scope?");
522       Labels.push_back(label);
523     }
524 
525     /// \brief Exit this cleanup scope, emitting any accumulated
526     /// cleanups.
~LexicalScope()527     ~LexicalScope() {
528       if (CGDebugInfo *DI = CGF.getDebugInfo())
529         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
530 
531       // If we should perform a cleanup, force them now.  Note that
532       // this ends the cleanup scope before rescoping any labels.
533       if (PerformCleanup) ForceCleanup();
534     }
535 
536     /// \brief Force the emission of cleanups now, instead of waiting
537     /// until this object is destroyed.
ForceCleanup()538     void ForceCleanup() {
539       CGF.CurLexicalScope = ParentScope;
540       RunCleanupsScope::ForceCleanup();
541 
542       if (!Labels.empty())
543         rescopeLabels();
544     }
545 
546     void rescopeLabels();
547   };
548 
549 
550   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
551   /// that have been added.
552   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
553 
554   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
555   /// that have been added, then adds all lifetime-extended cleanups from
556   /// the given position to the stack.
557   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
558                         size_t OldLifetimeExtendedStackSize);
559 
560   void ResolveBranchFixups(llvm::BasicBlock *Target);
561 
562   /// The given basic block lies in the current EH scope, but may be a
563   /// target of a potentially scope-crossing jump; get a stable handle
564   /// to which we can perform this jump later.
getJumpDestInCurrentScope(llvm::BasicBlock * Target)565   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
566     return JumpDest(Target,
567                     EHStack.getInnermostNormalCleanup(),
568                     NextCleanupDestIndex++);
569   }
570 
571   /// The given basic block lies in the current EH scope, but may be a
572   /// target of a potentially scope-crossing jump; get a stable handle
573   /// to which we can perform this jump later.
574   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
575     return getJumpDestInCurrentScope(createBasicBlock(Name));
576   }
577 
578   /// EmitBranchThroughCleanup - Emit a branch from the current insert
579   /// block through the normal cleanup handling code (if any) and then
580   /// on to \arg Dest.
581   void EmitBranchThroughCleanup(JumpDest Dest);
582 
583   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
584   /// specified destination obviously has no cleanups to run.  'false' is always
585   /// a conservatively correct answer for this method.
586   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
587 
588   /// popCatchScope - Pops the catch scope at the top of the EHScope
589   /// stack, emitting any required code (other than the catch handlers
590   /// themselves).
591   void popCatchScope();
592 
593   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
594   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
595 
596   /// An object to manage conditionally-evaluated expressions.
597   class ConditionalEvaluation {
598     llvm::BasicBlock *StartBB;
599 
600   public:
ConditionalEvaluation(CodeGenFunction & CGF)601     ConditionalEvaluation(CodeGenFunction &CGF)
602       : StartBB(CGF.Builder.GetInsertBlock()) {}
603 
begin(CodeGenFunction & CGF)604     void begin(CodeGenFunction &CGF) {
605       assert(CGF.OutermostConditional != this);
606       if (!CGF.OutermostConditional)
607         CGF.OutermostConditional = this;
608     }
609 
end(CodeGenFunction & CGF)610     void end(CodeGenFunction &CGF) {
611       assert(CGF.OutermostConditional != 0);
612       if (CGF.OutermostConditional == this)
613         CGF.OutermostConditional = 0;
614     }
615 
616     /// Returns a block which will be executed prior to each
617     /// evaluation of the conditional code.
getStartingBlock()618     llvm::BasicBlock *getStartingBlock() const {
619       return StartBB;
620     }
621   };
622 
623   /// isInConditionalBranch - Return true if we're currently emitting
624   /// one branch or the other of a conditional expression.
isInConditionalBranch()625   bool isInConditionalBranch() const { return OutermostConditional != 0; }
626 
setBeforeOutermostConditional(llvm::Value * value,llvm::Value * addr)627   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
628     assert(isInConditionalBranch());
629     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
630     new llvm::StoreInst(value, addr, &block->back());
631   }
632 
633   /// An RAII object to record that we're evaluating a statement
634   /// expression.
635   class StmtExprEvaluation {
636     CodeGenFunction &CGF;
637 
638     /// We have to save the outermost conditional: cleanups in a
639     /// statement expression aren't conditional just because the
640     /// StmtExpr is.
641     ConditionalEvaluation *SavedOutermostConditional;
642 
643   public:
StmtExprEvaluation(CodeGenFunction & CGF)644     StmtExprEvaluation(CodeGenFunction &CGF)
645       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
646       CGF.OutermostConditional = 0;
647     }
648 
~StmtExprEvaluation()649     ~StmtExprEvaluation() {
650       CGF.OutermostConditional = SavedOutermostConditional;
651       CGF.EnsureInsertPoint();
652     }
653   };
654 
655   /// An object which temporarily prevents a value from being
656   /// destroyed by aggressive peephole optimizations that assume that
657   /// all uses of a value have been realized in the IR.
658   class PeepholeProtection {
659     llvm::Instruction *Inst;
660     friend class CodeGenFunction;
661 
662   public:
PeepholeProtection()663     PeepholeProtection() : Inst(0) {}
664   };
665 
666   /// A non-RAII class containing all the information about a bound
667   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
668   /// this which makes individual mappings very simple; using this
669   /// class directly is useful when you have a variable number of
670   /// opaque values or don't want the RAII functionality for some
671   /// reason.
672   class OpaqueValueMappingData {
673     const OpaqueValueExpr *OpaqueValue;
674     bool BoundLValue;
675     CodeGenFunction::PeepholeProtection Protection;
676 
OpaqueValueMappingData(const OpaqueValueExpr * ov,bool boundLValue)677     OpaqueValueMappingData(const OpaqueValueExpr *ov,
678                            bool boundLValue)
679       : OpaqueValue(ov), BoundLValue(boundLValue) {}
680   public:
OpaqueValueMappingData()681     OpaqueValueMappingData() : OpaqueValue(0) {}
682 
shouldBindAsLValue(const Expr * expr)683     static bool shouldBindAsLValue(const Expr *expr) {
684       // gl-values should be bound as l-values for obvious reasons.
685       // Records should be bound as l-values because IR generation
686       // always keeps them in memory.  Expressions of function type
687       // act exactly like l-values but are formally required to be
688       // r-values in C.
689       return expr->isGLValue() ||
690              expr->getType()->isRecordType() ||
691              expr->getType()->isFunctionType();
692     }
693 
bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const Expr * e)694     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
695                                        const OpaqueValueExpr *ov,
696                                        const Expr *e) {
697       if (shouldBindAsLValue(ov))
698         return bind(CGF, ov, CGF.EmitLValue(e));
699       return bind(CGF, ov, CGF.EmitAnyExpr(e));
700     }
701 
bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const LValue & lv)702     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
703                                        const OpaqueValueExpr *ov,
704                                        const LValue &lv) {
705       assert(shouldBindAsLValue(ov));
706       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
707       return OpaqueValueMappingData(ov, true);
708     }
709 
bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const RValue & rv)710     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
711                                        const OpaqueValueExpr *ov,
712                                        const RValue &rv) {
713       assert(!shouldBindAsLValue(ov));
714       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
715 
716       OpaqueValueMappingData data(ov, false);
717 
718       // Work around an extremely aggressive peephole optimization in
719       // EmitScalarConversion which assumes that all other uses of a
720       // value are extant.
721       data.Protection = CGF.protectFromPeepholes(rv);
722 
723       return data;
724     }
725 
isValid()726     bool isValid() const { return OpaqueValue != 0; }
clear()727     void clear() { OpaqueValue = 0; }
728 
unbind(CodeGenFunction & CGF)729     void unbind(CodeGenFunction &CGF) {
730       assert(OpaqueValue && "no data to unbind!");
731 
732       if (BoundLValue) {
733         CGF.OpaqueLValues.erase(OpaqueValue);
734       } else {
735         CGF.OpaqueRValues.erase(OpaqueValue);
736         CGF.unprotectFromPeepholes(Protection);
737       }
738     }
739   };
740 
741   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
742   class OpaqueValueMapping {
743     CodeGenFunction &CGF;
744     OpaqueValueMappingData Data;
745 
746   public:
shouldBindAsLValue(const Expr * expr)747     static bool shouldBindAsLValue(const Expr *expr) {
748       return OpaqueValueMappingData::shouldBindAsLValue(expr);
749     }
750 
751     /// Build the opaque value mapping for the given conditional
752     /// operator if it's the GNU ?: extension.  This is a common
753     /// enough pattern that the convenience operator is really
754     /// helpful.
755     ///
OpaqueValueMapping(CodeGenFunction & CGF,const AbstractConditionalOperator * op)756     OpaqueValueMapping(CodeGenFunction &CGF,
757                        const AbstractConditionalOperator *op) : CGF(CGF) {
758       if (isa<ConditionalOperator>(op))
759         // Leave Data empty.
760         return;
761 
762       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
763       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
764                                           e->getCommon());
765     }
766 
OpaqueValueMapping(CodeGenFunction & CGF,const OpaqueValueExpr * opaqueValue,LValue lvalue)767     OpaqueValueMapping(CodeGenFunction &CGF,
768                        const OpaqueValueExpr *opaqueValue,
769                        LValue lvalue)
770       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
771     }
772 
OpaqueValueMapping(CodeGenFunction & CGF,const OpaqueValueExpr * opaqueValue,RValue rvalue)773     OpaqueValueMapping(CodeGenFunction &CGF,
774                        const OpaqueValueExpr *opaqueValue,
775                        RValue rvalue)
776       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
777     }
778 
pop()779     void pop() {
780       Data.unbind(CGF);
781       Data.clear();
782     }
783 
~OpaqueValueMapping()784     ~OpaqueValueMapping() {
785       if (Data.isValid()) Data.unbind(CGF);
786     }
787   };
788 
789   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
790   /// number that holds the value.
791   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
792 
793   /// BuildBlockByrefAddress - Computes address location of the
794   /// variable which is declared as __block.
795   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
796                                       const VarDecl *V);
797 private:
798   CGDebugInfo *DebugInfo;
799   bool DisableDebugInfo;
800 
801   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
802   /// calling llvm.stacksave for multiple VLAs in the same scope.
803   bool DidCallStackSave;
804 
805   /// IndirectBranch - The first time an indirect goto is seen we create a block
806   /// with an indirect branch.  Every time we see the address of a label taken,
807   /// we add the label to the indirect goto.  Every subsequent indirect goto is
808   /// codegen'd as a jump to the IndirectBranch's basic block.
809   llvm::IndirectBrInst *IndirectBranch;
810 
811   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
812   /// decls.
813   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
814   DeclMapTy LocalDeclMap;
815 
816   /// LabelMap - This keeps track of the LLVM basic block for each C label.
817   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
818 
819   // BreakContinueStack - This keeps track of where break and continue
820   // statements should jump to.
821   struct BreakContinue {
BreakContinueBreakContinue822     BreakContinue(JumpDest Break, JumpDest Continue)
823       : BreakBlock(Break), ContinueBlock(Continue) {}
824 
825     JumpDest BreakBlock;
826     JumpDest ContinueBlock;
827   };
828   SmallVector<BreakContinue, 8> BreakContinueStack;
829 
830   /// SwitchInsn - This is nearest current switch instruction. It is null if
831   /// current context is not in a switch.
832   llvm::SwitchInst *SwitchInsn;
833 
834   /// CaseRangeBlock - This block holds if condition check for last case
835   /// statement range in current switch instruction.
836   llvm::BasicBlock *CaseRangeBlock;
837 
838   /// OpaqueLValues - Keeps track of the current set of opaque value
839   /// expressions.
840   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
841   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
842 
843   // VLASizeMap - This keeps track of the associated size for each VLA type.
844   // We track this by the size expression rather than the type itself because
845   // in certain situations, like a const qualifier applied to an VLA typedef,
846   // multiple VLA types can share the same size expression.
847   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
848   // enter/leave scopes.
849   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
850 
851   /// A block containing a single 'unreachable' instruction.  Created
852   /// lazily by getUnreachableBlock().
853   llvm::BasicBlock *UnreachableBlock;
854 
855   /// Counts of the number return expressions in the function.
856   unsigned NumReturnExprs;
857 
858   /// Count the number of simple (constant) return expressions in the function.
859   unsigned NumSimpleReturnExprs;
860 
861   /// The last regular (non-return) debug location (breakpoint) in the function.
862   SourceLocation LastStopPoint;
863 
864 public:
865   /// A scope within which we are constructing the fields of an object which
866   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
867   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
868   class FieldConstructionScope {
869   public:
FieldConstructionScope(CodeGenFunction & CGF,llvm::Value * This)870     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
871         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
872       CGF.CXXDefaultInitExprThis = This;
873     }
~FieldConstructionScope()874     ~FieldConstructionScope() {
875       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
876     }
877 
878   private:
879     CodeGenFunction &CGF;
880     llvm::Value *OldCXXDefaultInitExprThis;
881   };
882 
883   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
884   /// is overridden to be the object under construction.
885   class CXXDefaultInitExprScope {
886   public:
CXXDefaultInitExprScope(CodeGenFunction & CGF)887     CXXDefaultInitExprScope(CodeGenFunction &CGF)
888         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
889       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
890     }
~CXXDefaultInitExprScope()891     ~CXXDefaultInitExprScope() {
892       CGF.CXXThisValue = OldCXXThisValue;
893     }
894 
895   public:
896     CodeGenFunction &CGF;
897     llvm::Value *OldCXXThisValue;
898   };
899 
900 private:
901   /// CXXThisDecl - When generating code for a C++ member function,
902   /// this will hold the implicit 'this' declaration.
903   ImplicitParamDecl *CXXABIThisDecl;
904   llvm::Value *CXXABIThisValue;
905   llvm::Value *CXXThisValue;
906 
907   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
908   /// this expression.
909   llvm::Value *CXXDefaultInitExprThis;
910 
911   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
912   /// destructor, this will hold the implicit argument (e.g. VTT).
913   ImplicitParamDecl *CXXStructorImplicitParamDecl;
914   llvm::Value *CXXStructorImplicitParamValue;
915 
916   /// OutermostConditional - Points to the outermost active
917   /// conditional control.  This is used so that we know if a
918   /// temporary should be destroyed conditionally.
919   ConditionalEvaluation *OutermostConditional;
920 
921   /// The current lexical scope.
922   LexicalScope *CurLexicalScope;
923 
924   /// The current source location that should be used for exception
925   /// handling code.
926   SourceLocation CurEHLocation;
927 
928   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
929   /// type as well as the field number that contains the actual data.
930   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
931                                               unsigned> > ByRefValueInfo;
932 
933   llvm::BasicBlock *TerminateLandingPad;
934   llvm::BasicBlock *TerminateHandler;
935   llvm::BasicBlock *TrapBB;
936 
937   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
938   /// In the kernel metadata node, reference the kernel function and metadata
939   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
940   /// - A node for the vec_type_hint(<type>) qualifier contains string
941   ///   "vec_type_hint", an undefined value of the <type> data type,
942   ///   and a Boolean that is true if the <type> is integer and signed.
943   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
944   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
945   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
946   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
947   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
948                                 llvm::Function *Fn);
949 
950 public:
951   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
952   ~CodeGenFunction();
953 
getTypes()954   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
getContext()955   ASTContext &getContext() const { return CGM.getContext(); }
956   /// Returns true if DebugInfo is actually initialized.
maybeInitializeDebugInfo()957   bool maybeInitializeDebugInfo() {
958     if (CGM.getModuleDebugInfo()) {
959       DebugInfo = CGM.getModuleDebugInfo();
960       return true;
961     }
962     return false;
963   }
getDebugInfo()964   CGDebugInfo *getDebugInfo() {
965     if (DisableDebugInfo)
966       return NULL;
967     return DebugInfo;
968   }
disableDebugInfo()969   void disableDebugInfo() { DisableDebugInfo = true; }
enableDebugInfo()970   void enableDebugInfo() { DisableDebugInfo = false; }
971 
shouldUseFusedARCCalls()972   bool shouldUseFusedARCCalls() {
973     return CGM.getCodeGenOpts().OptimizationLevel == 0;
974   }
975 
getLangOpts()976   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
977 
978   /// Returns a pointer to the function's exception object and selector slot,
979   /// which is assigned in every landing pad.
980   llvm::Value *getExceptionSlot();
981   llvm::Value *getEHSelectorSlot();
982 
983   /// Returns the contents of the function's exception object and selector
984   /// slots.
985   llvm::Value *getExceptionFromSlot();
986   llvm::Value *getSelectorFromSlot();
987 
988   llvm::Value *getNormalCleanupDestSlot();
989 
getUnreachableBlock()990   llvm::BasicBlock *getUnreachableBlock() {
991     if (!UnreachableBlock) {
992       UnreachableBlock = createBasicBlock("unreachable");
993       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
994     }
995     return UnreachableBlock;
996   }
997 
getInvokeDest()998   llvm::BasicBlock *getInvokeDest() {
999     if (!EHStack.requiresLandingPad()) return 0;
1000     return getInvokeDestImpl();
1001   }
1002 
getTarget()1003   const TargetInfo &getTarget() const { return Target; }
getLLVMContext()1004   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1005 
1006   //===--------------------------------------------------------------------===//
1007   //                                  Cleanups
1008   //===--------------------------------------------------------------------===//
1009 
1010   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1011 
1012   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1013                                         llvm::Value *arrayEndPointer,
1014                                         QualType elementType,
1015                                         Destroyer *destroyer);
1016   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1017                                       llvm::Value *arrayEnd,
1018                                       QualType elementType,
1019                                       Destroyer *destroyer);
1020 
1021   void pushDestroy(QualType::DestructionKind dtorKind,
1022                    llvm::Value *addr, QualType type);
1023   void pushEHDestroy(QualType::DestructionKind dtorKind,
1024                      llvm::Value *addr, QualType type);
1025   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1026                    Destroyer *destroyer, bool useEHCleanupForArray);
1027   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1028                                    QualType type, Destroyer *destroyer,
1029                                    bool useEHCleanupForArray);
1030   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1031                    bool useEHCleanupForArray);
1032   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1033                                         QualType type,
1034                                         Destroyer *destroyer,
1035                                         bool useEHCleanupForArray);
1036   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1037                         QualType type, Destroyer *destroyer,
1038                         bool checkZeroLength, bool useEHCleanup);
1039 
1040   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1041 
1042   /// Determines whether an EH cleanup is required to destroy a type
1043   /// with the given destruction kind.
needsEHCleanup(QualType::DestructionKind kind)1044   bool needsEHCleanup(QualType::DestructionKind kind) {
1045     switch (kind) {
1046     case QualType::DK_none:
1047       return false;
1048     case QualType::DK_cxx_destructor:
1049     case QualType::DK_objc_weak_lifetime:
1050       return getLangOpts().Exceptions;
1051     case QualType::DK_objc_strong_lifetime:
1052       return getLangOpts().Exceptions &&
1053              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1054     }
1055     llvm_unreachable("bad destruction kind");
1056   }
1057 
getCleanupKind(QualType::DestructionKind kind)1058   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1059     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1060   }
1061 
1062   //===--------------------------------------------------------------------===//
1063   //                                  Objective-C
1064   //===--------------------------------------------------------------------===//
1065 
1066   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1067 
1068   void StartObjCMethod(const ObjCMethodDecl *MD,
1069                        const ObjCContainerDecl *CD,
1070                        SourceLocation StartLoc);
1071 
1072   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1073   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1074                           const ObjCPropertyImplDecl *PID);
1075   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1076                               const ObjCPropertyImplDecl *propImpl,
1077                               const ObjCMethodDecl *GetterMothodDecl,
1078                               llvm::Constant *AtomicHelperFn);
1079 
1080   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1081                                   ObjCMethodDecl *MD, bool ctor);
1082 
1083   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1084   /// for the given property.
1085   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1086                           const ObjCPropertyImplDecl *PID);
1087   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1088                               const ObjCPropertyImplDecl *propImpl,
1089                               llvm::Constant *AtomicHelperFn);
1090   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1091   bool IvarTypeWithAggrGCObjects(QualType Ty);
1092 
1093   //===--------------------------------------------------------------------===//
1094   //                                  Block Bits
1095   //===--------------------------------------------------------------------===//
1096 
1097   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1098   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1099   static void destroyBlockInfos(CGBlockInfo *info);
1100   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1101                                            const CGBlockInfo &Info,
1102                                            llvm::StructType *,
1103                                            llvm::Constant *BlockVarLayout);
1104 
1105   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1106                                         const CGBlockInfo &Info,
1107                                         const DeclMapTy &ldm,
1108                                         bool IsLambdaConversionToBlock);
1109 
1110   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1111   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1112   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1113                                              const ObjCPropertyImplDecl *PID);
1114   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1115                                              const ObjCPropertyImplDecl *PID);
1116   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1117 
1118   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1119 
1120   class AutoVarEmission;
1121 
1122   void emitByrefStructureInit(const AutoVarEmission &emission);
1123   void enterByrefCleanup(const AutoVarEmission &emission);
1124 
LoadBlockStruct()1125   llvm::Value *LoadBlockStruct() {
1126     assert(BlockPointer && "no block pointer set!");
1127     return BlockPointer;
1128   }
1129 
1130   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1131   void AllocateBlockDecl(const DeclRefExpr *E);
1132   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1133   llvm::Type *BuildByRefType(const VarDecl *var);
1134 
1135   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1136                     const CGFunctionInfo &FnInfo);
1137   void StartFunction(GlobalDecl GD,
1138                      QualType RetTy,
1139                      llvm::Function *Fn,
1140                      const CGFunctionInfo &FnInfo,
1141                      const FunctionArgList &Args,
1142                      SourceLocation StartLoc);
1143 
1144   void EmitConstructorBody(FunctionArgList &Args);
1145   void EmitDestructorBody(FunctionArgList &Args);
1146   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1147   void EmitFunctionBody(FunctionArgList &Args);
1148 
1149   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1150                                   CallArgList &CallArgs);
1151   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1152   void EmitLambdaBlockInvokeBody();
1153   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1154   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1155 
1156   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1157   /// emission when possible.
1158   void EmitReturnBlock();
1159 
1160   /// FinishFunction - Complete IR generation of the current function. It is
1161   /// legal to call this function even if there is no current insertion point.
1162   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1163 
1164   /// GenerateThunk - Generate a thunk for the given method.
1165   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1166                      GlobalDecl GD, const ThunkInfo &Thunk);
1167 
1168   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1169                             GlobalDecl GD, const ThunkInfo &Thunk);
1170 
1171   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1172                         FunctionArgList &Args);
1173 
1174   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1175                                ArrayRef<VarDecl *> ArrayIndexes);
1176 
1177   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1178   /// subobject.
1179   ///
1180   void InitializeVTablePointer(BaseSubobject Base,
1181                                const CXXRecordDecl *NearestVBase,
1182                                CharUnits OffsetFromNearestVBase,
1183                                llvm::Constant *VTable,
1184                                const CXXRecordDecl *VTableClass);
1185 
1186   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1187   void InitializeVTablePointers(BaseSubobject Base,
1188                                 const CXXRecordDecl *NearestVBase,
1189                                 CharUnits OffsetFromNearestVBase,
1190                                 bool BaseIsNonVirtualPrimaryBase,
1191                                 llvm::Constant *VTable,
1192                                 const CXXRecordDecl *VTableClass,
1193                                 VisitedVirtualBasesSetTy& VBases);
1194 
1195   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1196 
1197   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1198   /// to by This.
1199   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1200 
1201   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1202   /// given phase of destruction for a destructor.  The end result
1203   /// should call destructors on members and base classes in reverse
1204   /// order of their construction.
1205   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1206 
1207   /// ShouldInstrumentFunction - Return true if the current function should be
1208   /// instrumented with __cyg_profile_func_* calls
1209   bool ShouldInstrumentFunction();
1210 
1211   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1212   /// instrumentation function with the current function and the call site, if
1213   /// function instrumentation is enabled.
1214   void EmitFunctionInstrumentation(const char *Fn);
1215 
1216   /// EmitMCountInstrumentation - Emit call to .mcount.
1217   void EmitMCountInstrumentation();
1218 
1219   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1220   /// arguments for the given function. This is also responsible for naming the
1221   /// LLVM function arguments.
1222   void EmitFunctionProlog(const CGFunctionInfo &FI,
1223                           llvm::Function *Fn,
1224                           const FunctionArgList &Args);
1225 
1226   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1227   /// given temporary.
1228   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc);
1229 
1230   /// EmitStartEHSpec - Emit the start of the exception spec.
1231   void EmitStartEHSpec(const Decl *D);
1232 
1233   /// EmitEndEHSpec - Emit the end of the exception spec.
1234   void EmitEndEHSpec(const Decl *D);
1235 
1236   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1237   llvm::BasicBlock *getTerminateLandingPad();
1238 
1239   /// getTerminateHandler - Return a handler (not a landing pad, just
1240   /// a catch handler) that just calls terminate.  This is used when
1241   /// a terminate scope encloses a try.
1242   llvm::BasicBlock *getTerminateHandler();
1243 
1244   llvm::Type *ConvertTypeForMem(QualType T);
1245   llvm::Type *ConvertType(QualType T);
ConvertType(const TypeDecl * T)1246   llvm::Type *ConvertType(const TypeDecl *T) {
1247     return ConvertType(getContext().getTypeDeclType(T));
1248   }
1249 
1250   /// LoadObjCSelf - Load the value of self. This function is only valid while
1251   /// generating code for an Objective-C method.
1252   llvm::Value *LoadObjCSelf();
1253 
1254   /// TypeOfSelfObject - Return type of object that this self represents.
1255   QualType TypeOfSelfObject();
1256 
1257   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1258   /// an aggregate LLVM type or is void.
1259   static TypeEvaluationKind getEvaluationKind(QualType T);
1260 
hasScalarEvaluationKind(QualType T)1261   static bool hasScalarEvaluationKind(QualType T) {
1262     return getEvaluationKind(T) == TEK_Scalar;
1263   }
1264 
hasAggregateEvaluationKind(QualType T)1265   static bool hasAggregateEvaluationKind(QualType T) {
1266     return getEvaluationKind(T) == TEK_Aggregate;
1267   }
1268 
1269   /// createBasicBlock - Create an LLVM basic block.
1270   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1271                                      llvm::Function *parent = 0,
1272                                      llvm::BasicBlock *before = 0) {
1273 #ifdef NDEBUG
1274     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1275 #else
1276     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1277 #endif
1278   }
1279 
1280   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1281   /// label maps to.
1282   JumpDest getJumpDestForLabel(const LabelDecl *S);
1283 
1284   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1285   /// another basic block, simplify it. This assumes that no other code could
1286   /// potentially reference the basic block.
1287   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1288 
1289   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1290   /// adding a fall-through branch from the current insert block if
1291   /// necessary. It is legal to call this function even if there is no current
1292   /// insertion point.
1293   ///
1294   /// IsFinished - If true, indicates that the caller has finished emitting
1295   /// branches to the given block and does not expect to emit code into it. This
1296   /// means the block can be ignored if it is unreachable.
1297   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1298 
1299   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1300   /// near its uses, and leave the insertion point in it.
1301   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1302 
1303   /// EmitBranch - Emit a branch to the specified basic block from the current
1304   /// insert block, taking care to avoid creation of branches from dummy
1305   /// blocks. It is legal to call this function even if there is no current
1306   /// insertion point.
1307   ///
1308   /// This function clears the current insertion point. The caller should follow
1309   /// calls to this function with calls to Emit*Block prior to generation new
1310   /// code.
1311   void EmitBranch(llvm::BasicBlock *Block);
1312 
1313   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1314   /// indicates that the current code being emitted is unreachable.
HaveInsertPoint()1315   bool HaveInsertPoint() const {
1316     return Builder.GetInsertBlock() != 0;
1317   }
1318 
1319   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1320   /// emitted IR has a place to go. Note that by definition, if this function
1321   /// creates a block then that block is unreachable; callers may do better to
1322   /// detect when no insertion point is defined and simply skip IR generation.
EnsureInsertPoint()1323   void EnsureInsertPoint() {
1324     if (!HaveInsertPoint())
1325       EmitBlock(createBasicBlock());
1326   }
1327 
1328   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1329   /// specified stmt yet.
1330   void ErrorUnsupported(const Stmt *S, const char *Type,
1331                         bool OmitOnError=false);
1332 
1333   //===--------------------------------------------------------------------===//
1334   //                                  Helpers
1335   //===--------------------------------------------------------------------===//
1336 
1337   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1338                         CharUnits Alignment = CharUnits()) {
1339     return LValue::MakeAddr(V, T, Alignment, getContext(),
1340                             CGM.getTBAAInfo(T));
1341   }
1342 
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)1343   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1344     CharUnits Alignment;
1345     if (!T->isIncompleteType())
1346       Alignment = getContext().getTypeAlignInChars(T);
1347     return LValue::MakeAddr(V, T, Alignment, getContext(),
1348                             CGM.getTBAAInfo(T));
1349   }
1350 
1351   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1352   /// block. The caller is responsible for setting an appropriate alignment on
1353   /// the alloca.
1354   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1355                                      const Twine &Name = "tmp");
1356 
1357   /// InitTempAlloca - Provide an initial value for the given alloca.
1358   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1359 
1360   /// CreateIRTemp - Create a temporary IR object of the given type, with
1361   /// appropriate alignment. This routine should only be used when an temporary
1362   /// value needs to be stored into an alloca (for example, to avoid explicit
1363   /// PHI construction), but the type is the IR type, not the type appropriate
1364   /// for storing in memory.
1365   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1366 
1367   /// CreateMemTemp - Create a temporary memory object of the given type, with
1368   /// appropriate alignment.
1369   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1370 
1371   /// CreateAggTemp - Create a temporary memory object for the given
1372   /// aggregate type.
1373   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1374     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1375     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1376                                  T.getQualifiers(),
1377                                  AggValueSlot::IsNotDestructed,
1378                                  AggValueSlot::DoesNotNeedGCBarriers,
1379                                  AggValueSlot::IsNotAliased);
1380   }
1381 
1382   /// Emit a cast to void* in the appropriate address space.
1383   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1384 
1385   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1386   /// expression and compare the result against zero, returning an Int1Ty value.
1387   llvm::Value *EvaluateExprAsBool(const Expr *E);
1388 
1389   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1390   void EmitIgnoredExpr(const Expr *E);
1391 
1392   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1393   /// any type.  The result is returned as an RValue struct.  If this is an
1394   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1395   /// the result should be returned.
1396   ///
1397   /// \param ignoreResult True if the resulting value isn't used.
1398   RValue EmitAnyExpr(const Expr *E,
1399                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1400                      bool ignoreResult = false);
1401 
1402   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1403   // or the value of the expression, depending on how va_list is defined.
1404   llvm::Value *EmitVAListRef(const Expr *E);
1405 
1406   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1407   /// always be accessible even if no aggregate location is provided.
1408   RValue EmitAnyExprToTemp(const Expr *E);
1409 
1410   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1411   /// arbitrary expression into the given memory location.
1412   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1413                         Qualifiers Quals, bool IsInitializer);
1414 
1415   /// EmitExprAsInit - Emits the code necessary to initialize a
1416   /// location in memory with the given initializer.
1417   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1418                       LValue lvalue, bool capturedByInit);
1419 
1420   /// hasVolatileMember - returns true if aggregate type has a volatile
1421   /// member.
hasVolatileMember(QualType T)1422   bool hasVolatileMember(QualType T) {
1423     if (const RecordType *RT = T->getAs<RecordType>()) {
1424       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1425       return RD->hasVolatileMember();
1426     }
1427     return false;
1428   }
1429   /// EmitAggregateCopy - Emit an aggregate assignment.
1430   ///
1431   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1432   /// This is required for correctness when assigning non-POD structures in C++.
EmitAggregateAssign(llvm::Value * DestPtr,llvm::Value * SrcPtr,QualType EltTy)1433   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1434                            QualType EltTy) {
1435     bool IsVolatile = hasVolatileMember(EltTy);
1436     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1437                       true);
1438   }
1439 
1440   /// EmitAggregateCopy - Emit an aggregate copy.
1441   ///
1442   /// \param isVolatile - True iff either the source or the destination is
1443   /// volatile.
1444   /// \param isAssignment - If false, allow padding to be copied.  This often
1445   /// yields more efficient.
1446   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1447                          QualType EltTy, bool isVolatile=false,
1448                          CharUnits Alignment = CharUnits::Zero(),
1449                          bool isAssignment = false);
1450 
1451   /// StartBlock - Start new block named N. If insert block is a dummy block
1452   /// then reuse it.
1453   void StartBlock(const char *N);
1454 
1455   /// GetAddrOfLocalVar - Return the address of a local variable.
GetAddrOfLocalVar(const VarDecl * VD)1456   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1457     llvm::Value *Res = LocalDeclMap[VD];
1458     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1459     return Res;
1460   }
1461 
1462   /// getOpaqueLValueMapping - Given an opaque value expression (which
1463   /// must be mapped to an l-value), return its mapping.
getOpaqueLValueMapping(const OpaqueValueExpr * e)1464   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1465     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1466 
1467     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1468       it = OpaqueLValues.find(e);
1469     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1470     return it->second;
1471   }
1472 
1473   /// getOpaqueRValueMapping - Given an opaque value expression (which
1474   /// must be mapped to an r-value), return its mapping.
getOpaqueRValueMapping(const OpaqueValueExpr * e)1475   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1476     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1477 
1478     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1479       it = OpaqueRValues.find(e);
1480     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1481     return it->second;
1482   }
1483 
1484   /// getAccessedFieldNo - Given an encoded value and a result number, return
1485   /// the input field number being accessed.
1486   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1487 
1488   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1489   llvm::BasicBlock *GetIndirectGotoBlock();
1490 
1491   /// EmitNullInitialization - Generate code to set a value of the given type to
1492   /// null, If the type contains data member pointers, they will be initialized
1493   /// to -1 in accordance with the Itanium C++ ABI.
1494   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1495 
1496   // EmitVAArg - Generate code to get an argument from the passed in pointer
1497   // and update it accordingly. The return value is a pointer to the argument.
1498   // FIXME: We should be able to get rid of this method and use the va_arg
1499   // instruction in LLVM instead once it works well enough.
1500   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1501 
1502   /// emitArrayLength - Compute the length of an array, even if it's a
1503   /// VLA, and drill down to the base element type.
1504   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1505                                QualType &baseType,
1506                                llvm::Value *&addr);
1507 
1508   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1509   /// the given variably-modified type and store them in the VLASizeMap.
1510   ///
1511   /// This function can be called with a null (unreachable) insert point.
1512   void EmitVariablyModifiedType(QualType Ty);
1513 
1514   /// getVLASize - Returns an LLVM value that corresponds to the size,
1515   /// in non-variably-sized elements, of a variable length array type,
1516   /// plus that largest non-variably-sized element type.  Assumes that
1517   /// the type has already been emitted with EmitVariablyModifiedType.
1518   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1519   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1520 
1521   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1522   /// generating code for an C++ member function.
LoadCXXThis()1523   llvm::Value *LoadCXXThis() {
1524     assert(CXXThisValue && "no 'this' value for this function");
1525     return CXXThisValue;
1526   }
1527 
1528   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1529   /// virtual bases.
1530   // FIXME: Every place that calls LoadCXXVTT is something
1531   // that needs to be abstracted properly.
LoadCXXVTT()1532   llvm::Value *LoadCXXVTT() {
1533     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1534     return CXXStructorImplicitParamValue;
1535   }
1536 
1537   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1538   /// for a constructor/destructor.
LoadCXXStructorImplicitParam()1539   llvm::Value *LoadCXXStructorImplicitParam() {
1540     assert(CXXStructorImplicitParamValue &&
1541            "no implicit argument value for this function");
1542     return CXXStructorImplicitParamValue;
1543   }
1544 
1545   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1546   /// complete class to the given direct base.
1547   llvm::Value *
1548   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1549                                         const CXXRecordDecl *Derived,
1550                                         const CXXRecordDecl *Base,
1551                                         bool BaseIsVirtual);
1552 
1553   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1554   /// load of 'this' and returns address of the base class.
1555   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1556                                      const CXXRecordDecl *Derived,
1557                                      CastExpr::path_const_iterator PathBegin,
1558                                      CastExpr::path_const_iterator PathEnd,
1559                                      bool NullCheckValue);
1560 
1561   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1562                                         const CXXRecordDecl *Derived,
1563                                         CastExpr::path_const_iterator PathBegin,
1564                                         CastExpr::path_const_iterator PathEnd,
1565                                         bool NullCheckValue);
1566 
1567   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1568   /// base constructor/destructor with virtual bases.
1569   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1570   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1571   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1572                                bool Delegating);
1573 
1574   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1575                                       CXXCtorType CtorType,
1576                                       const FunctionArgList &Args);
1577   // It's important not to confuse this and the previous function. Delegating
1578   // constructors are the C++0x feature. The constructor delegate optimization
1579   // is used to reduce duplication in the base and complete consturctors where
1580   // they are substantially the same.
1581   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1582                                         const FunctionArgList &Args);
1583   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1584                               bool ForVirtualBase, bool Delegating,
1585                               llvm::Value *This,
1586                               CallExpr::const_arg_iterator ArgBeg,
1587                               CallExpr::const_arg_iterator ArgEnd);
1588 
1589   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1590                               llvm::Value *This, llvm::Value *Src,
1591                               CallExpr::const_arg_iterator ArgBeg,
1592                               CallExpr::const_arg_iterator ArgEnd);
1593 
1594   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1595                                   const ConstantArrayType *ArrayTy,
1596                                   llvm::Value *ArrayPtr,
1597                                   CallExpr::const_arg_iterator ArgBeg,
1598                                   CallExpr::const_arg_iterator ArgEnd,
1599                                   bool ZeroInitialization = false);
1600 
1601   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1602                                   llvm::Value *NumElements,
1603                                   llvm::Value *ArrayPtr,
1604                                   CallExpr::const_arg_iterator ArgBeg,
1605                                   CallExpr::const_arg_iterator ArgEnd,
1606                                   bool ZeroInitialization = false);
1607 
1608   static Destroyer destroyCXXObject;
1609 
1610   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1611                              bool ForVirtualBase, bool Delegating,
1612                              llvm::Value *This);
1613 
1614   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1615                                llvm::Value *NewPtr, llvm::Value *NumElements);
1616 
1617   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1618                         llvm::Value *Ptr);
1619 
1620   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1621   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1622 
1623   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1624                       QualType DeleteTy);
1625 
1626   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1627   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1628   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1629 
1630   /// \brief Situations in which we might emit a check for the suitability of a
1631   ///        pointer or glvalue.
1632   enum TypeCheckKind {
1633     /// Checking the operand of a load. Must be suitably sized and aligned.
1634     TCK_Load,
1635     /// Checking the destination of a store. Must be suitably sized and aligned.
1636     TCK_Store,
1637     /// Checking the bound value in a reference binding. Must be suitably sized
1638     /// and aligned, but is not required to refer to an object (until the
1639     /// reference is used), per core issue 453.
1640     TCK_ReferenceBinding,
1641     /// Checking the object expression in a non-static data member access. Must
1642     /// be an object within its lifetime.
1643     TCK_MemberAccess,
1644     /// Checking the 'this' pointer for a call to a non-static member function.
1645     /// Must be an object within its lifetime.
1646     TCK_MemberCall,
1647     /// Checking the 'this' pointer for a constructor call.
1648     TCK_ConstructorCall,
1649     /// Checking the operand of a static_cast to a derived pointer type. Must be
1650     /// null or an object within its lifetime.
1651     TCK_DowncastPointer,
1652     /// Checking the operand of a static_cast to a derived reference type. Must
1653     /// be an object within its lifetime.
1654     TCK_DowncastReference
1655   };
1656 
1657   /// \brief Emit a check that \p V is the address of storage of the
1658   /// appropriate size and alignment for an object of type \p Type.
1659   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1660                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1661 
1662   /// \brief Emit a check that \p Base points into an array object, which
1663   /// we can access at index \p Index. \p Accessed should be \c false if we
1664   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1665   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1666                        QualType IndexType, bool Accessed);
1667 
1668   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1669                                        bool isInc, bool isPre);
1670   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1671                                          bool isInc, bool isPre);
1672   //===--------------------------------------------------------------------===//
1673   //                            Declaration Emission
1674   //===--------------------------------------------------------------------===//
1675 
1676   /// EmitDecl - Emit a declaration.
1677   ///
1678   /// This function can be called with a null (unreachable) insert point.
1679   void EmitDecl(const Decl &D);
1680 
1681   /// EmitVarDecl - Emit a local variable declaration.
1682   ///
1683   /// This function can be called with a null (unreachable) insert point.
1684   void EmitVarDecl(const VarDecl &D);
1685 
1686   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1687                       LValue lvalue, bool capturedByInit);
1688   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1689 
1690   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1691                              llvm::Value *Address);
1692 
1693   /// EmitAutoVarDecl - Emit an auto variable declaration.
1694   ///
1695   /// This function can be called with a null (unreachable) insert point.
1696   void EmitAutoVarDecl(const VarDecl &D);
1697 
1698   class AutoVarEmission {
1699     friend class CodeGenFunction;
1700 
1701     const VarDecl *Variable;
1702 
1703     /// The alignment of the variable.
1704     CharUnits Alignment;
1705 
1706     /// The address of the alloca.  Null if the variable was emitted
1707     /// as a global constant.
1708     llvm::Value *Address;
1709 
1710     llvm::Value *NRVOFlag;
1711 
1712     /// True if the variable is a __block variable.
1713     bool IsByRef;
1714 
1715     /// True if the variable is of aggregate type and has a constant
1716     /// initializer.
1717     bool IsConstantAggregate;
1718 
1719     /// Non-null if we should use lifetime annotations.
1720     llvm::Value *SizeForLifetimeMarkers;
1721 
1722     struct Invalid {};
AutoVarEmission(Invalid)1723     AutoVarEmission(Invalid) : Variable(0) {}
1724 
AutoVarEmission(const VarDecl & variable)1725     AutoVarEmission(const VarDecl &variable)
1726       : Variable(&variable), Address(0), NRVOFlag(0),
1727         IsByRef(false), IsConstantAggregate(false),
1728         SizeForLifetimeMarkers(0) {}
1729 
wasEmittedAsGlobal()1730     bool wasEmittedAsGlobal() const { return Address == 0; }
1731 
1732   public:
invalid()1733     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1734 
useLifetimeMarkers()1735     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
getSizeForLifetimeMarkers()1736     llvm::Value *getSizeForLifetimeMarkers() const {
1737       assert(useLifetimeMarkers());
1738       return SizeForLifetimeMarkers;
1739     }
1740 
1741     /// Returns the raw, allocated address, which is not necessarily
1742     /// the address of the object itself.
getAllocatedAddress()1743     llvm::Value *getAllocatedAddress() const {
1744       return Address;
1745     }
1746 
1747     /// Returns the address of the object within this declaration.
1748     /// Note that this does not chase the forwarding pointer for
1749     /// __block decls.
getObjectAddress(CodeGenFunction & CGF)1750     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1751       if (!IsByRef) return Address;
1752 
1753       return CGF.Builder.CreateStructGEP(Address,
1754                                          CGF.getByRefValueLLVMField(Variable),
1755                                          Variable->getNameAsString());
1756     }
1757   };
1758   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1759   void EmitAutoVarInit(const AutoVarEmission &emission);
1760   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1761   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1762                               QualType::DestructionKind dtorKind);
1763 
1764   void EmitStaticVarDecl(const VarDecl &D,
1765                          llvm::GlobalValue::LinkageTypes Linkage);
1766 
1767   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1768   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1769 
1770   /// protectFromPeepholes - Protect a value that we're intending to
1771   /// store to the side, but which will probably be used later, from
1772   /// aggressive peepholing optimizations that might delete it.
1773   ///
1774   /// Pass the result to unprotectFromPeepholes to declare that
1775   /// protection is no longer required.
1776   ///
1777   /// There's no particular reason why this shouldn't apply to
1778   /// l-values, it's just that no existing peepholes work on pointers.
1779   PeepholeProtection protectFromPeepholes(RValue rvalue);
1780   void unprotectFromPeepholes(PeepholeProtection protection);
1781 
1782   //===--------------------------------------------------------------------===//
1783   //                             Statement Emission
1784   //===--------------------------------------------------------------------===//
1785 
1786   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1787   void EmitStopPoint(const Stmt *S);
1788 
1789   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1790   /// this function even if there is no current insertion point.
1791   ///
1792   /// This function may clear the current insertion point; callers should use
1793   /// EnsureInsertPoint if they wish to subsequently generate code without first
1794   /// calling EmitBlock, EmitBranch, or EmitStmt.
1795   void EmitStmt(const Stmt *S);
1796 
1797   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1798   /// necessarily require an insertion point or debug information; typically
1799   /// because the statement amounts to a jump or a container of other
1800   /// statements.
1801   ///
1802   /// \return True if the statement was handled.
1803   bool EmitSimpleStmt(const Stmt *S);
1804 
1805   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1806                                 AggValueSlot AVS = AggValueSlot::ignored());
1807   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1808                                             bool GetLast = false,
1809                                             AggValueSlot AVS =
1810                                                 AggValueSlot::ignored());
1811 
1812   /// EmitLabel - Emit the block for the given label. It is legal to call this
1813   /// function even if there is no current insertion point.
1814   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1815 
1816   void EmitLabelStmt(const LabelStmt &S);
1817   void EmitAttributedStmt(const AttributedStmt &S);
1818   void EmitGotoStmt(const GotoStmt &S);
1819   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1820   void EmitIfStmt(const IfStmt &S);
1821   void EmitWhileStmt(const WhileStmt &S);
1822   void EmitDoStmt(const DoStmt &S);
1823   void EmitForStmt(const ForStmt &S);
1824   void EmitReturnStmt(const ReturnStmt &S);
1825   void EmitDeclStmt(const DeclStmt &S);
1826   void EmitBreakStmt(const BreakStmt &S);
1827   void EmitContinueStmt(const ContinueStmt &S);
1828   void EmitSwitchStmt(const SwitchStmt &S);
1829   void EmitDefaultStmt(const DefaultStmt &S);
1830   void EmitCaseStmt(const CaseStmt &S);
1831   void EmitCaseStmtRange(const CaseStmt &S);
1832   void EmitAsmStmt(const AsmStmt &S);
1833 
1834   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1835   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1836   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1837   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1838   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1839 
1840   llvm::Constant *getUnwindResumeFn();
1841   llvm::Constant *getUnwindResumeOrRethrowFn();
1842   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1843   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1844 
1845   void EmitCXXTryStmt(const CXXTryStmt &S);
1846   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1847 
1848   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1849   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1850                                                const RecordDecl *RD);
1851 
1852   //===--------------------------------------------------------------------===//
1853   //                         LValue Expression Emission
1854   //===--------------------------------------------------------------------===//
1855 
1856   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1857   RValue GetUndefRValue(QualType Ty);
1858 
1859   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1860   /// and issue an ErrorUnsupported style diagnostic (using the
1861   /// provided Name).
1862   RValue EmitUnsupportedRValue(const Expr *E,
1863                                const char *Name);
1864 
1865   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1866   /// an ErrorUnsupported style diagnostic (using the provided Name).
1867   LValue EmitUnsupportedLValue(const Expr *E,
1868                                const char *Name);
1869 
1870   /// EmitLValue - Emit code to compute a designator that specifies the location
1871   /// of the expression.
1872   ///
1873   /// This can return one of two things: a simple address or a bitfield
1874   /// reference.  In either case, the LLVM Value* in the LValue structure is
1875   /// guaranteed to be an LLVM pointer type.
1876   ///
1877   /// If this returns a bitfield reference, nothing about the pointee type of
1878   /// the LLVM value is known: For example, it may not be a pointer to an
1879   /// integer.
1880   ///
1881   /// If this returns a normal address, and if the lvalue's C type is fixed
1882   /// size, this method guarantees that the returned pointer type will point to
1883   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1884   /// variable length type, this is not possible.
1885   ///
1886   LValue EmitLValue(const Expr *E);
1887 
1888   /// \brief Same as EmitLValue but additionally we generate checking code to
1889   /// guard against undefined behavior.  This is only suitable when we know
1890   /// that the address will be used to access the object.
1891   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1892 
1893   RValue convertTempToRValue(llvm::Value *addr, QualType type);
1894 
1895   void EmitAtomicInit(Expr *E, LValue lvalue);
1896 
1897   RValue EmitAtomicLoad(LValue lvalue,
1898                         AggValueSlot slot = AggValueSlot::ignored());
1899 
1900   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1901 
1902   /// EmitToMemory - Change a scalar value from its value
1903   /// representation to its in-memory representation.
1904   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1905 
1906   /// EmitFromMemory - Change a scalar value from its memory
1907   /// representation to its value representation.
1908   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1909 
1910   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1911   /// care to appropriately convert from the memory representation to
1912   /// the LLVM value representation.
1913   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1914                                 unsigned Alignment, QualType Ty,
1915                                 llvm::MDNode *TBAAInfo = 0,
1916                                 QualType TBAABaseTy = QualType(),
1917                                 uint64_t TBAAOffset = 0);
1918 
1919   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1920   /// care to appropriately convert from the memory representation to
1921   /// the LLVM value representation.  The l-value must be a simple
1922   /// l-value.
1923   llvm::Value *EmitLoadOfScalar(LValue lvalue);
1924 
1925   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1926   /// care to appropriately convert from the memory representation to
1927   /// the LLVM value representation.
1928   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1929                          bool Volatile, unsigned Alignment, QualType Ty,
1930                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1931                          QualType TBAABaseTy = QualType(),
1932                          uint64_t TBAAOffset = 0);
1933 
1934   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1935   /// care to appropriately convert from the memory representation to
1936   /// the LLVM value representation.  The l-value must be a simple
1937   /// l-value.  The isInit flag indicates whether this is an initialization.
1938   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1939   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1940 
1941   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1942   /// this method emits the address of the lvalue, then loads the result as an
1943   /// rvalue, returning the rvalue.
1944   RValue EmitLoadOfLValue(LValue V);
1945   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1946   RValue EmitLoadOfBitfieldLValue(LValue LV);
1947 
1948   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1949   /// lvalue, where both are guaranteed to the have the same type, and that type
1950   /// is 'Ty'.
1951   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1952   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1953 
1954   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1955   /// EmitStoreThroughLValue.
1956   ///
1957   /// \param Result [out] - If non-null, this will be set to a Value* for the
1958   /// bit-field contents after the store, appropriate for use as the result of
1959   /// an assignment to the bit-field.
1960   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1961                                       llvm::Value **Result=0);
1962 
1963   /// Emit an l-value for an assignment (simple or compound) of complex type.
1964   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1965   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1966   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1967                                               llvm::Value *&Result);
1968 
1969   // Note: only available for agg return types
1970   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1971   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1972   // Note: only available for agg return types
1973   LValue EmitCallExprLValue(const CallExpr *E);
1974   // Note: only available for agg return types
1975   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1976   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1977   LValue EmitStringLiteralLValue(const StringLiteral *E);
1978   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1979   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1980   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1981   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
1982                                 bool Accessed = false);
1983   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1984   LValue EmitMemberExpr(const MemberExpr *E);
1985   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1986   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1987   LValue EmitInitListLValue(const InitListExpr *E);
1988   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1989   LValue EmitCastLValue(const CastExpr *E);
1990   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1991   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1992 
1993   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
1994 
1995   class ConstantEmission {
1996     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
ConstantEmission(llvm::Constant * C,bool isReference)1997     ConstantEmission(llvm::Constant *C, bool isReference)
1998       : ValueAndIsReference(C, isReference) {}
1999   public:
ConstantEmission()2000     ConstantEmission() {}
forReference(llvm::Constant * C)2001     static ConstantEmission forReference(llvm::Constant *C) {
2002       return ConstantEmission(C, true);
2003     }
forValue(llvm::Constant * C)2004     static ConstantEmission forValue(llvm::Constant *C) {
2005       return ConstantEmission(C, false);
2006     }
2007 
2008     LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2009 
isReference()2010     bool isReference() const { return ValueAndIsReference.getInt(); }
getReferenceLValue(CodeGenFunction & CGF,Expr * refExpr)2011     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2012       assert(isReference());
2013       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2014                                             refExpr->getType());
2015     }
2016 
getValue()2017     llvm::Constant *getValue() const {
2018       assert(!isReference());
2019       return ValueAndIsReference.getPointer();
2020     }
2021   };
2022 
2023   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2024 
2025   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2026                                 AggValueSlot slot = AggValueSlot::ignored());
2027   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2028 
2029   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2030                               const ObjCIvarDecl *Ivar);
2031   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2032   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2033 
2034   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2035   /// if the Field is a reference, this will return the address of the reference
2036   /// and not the address of the value stored in the reference.
2037   LValue EmitLValueForFieldInitialization(LValue Base,
2038                                           const FieldDecl* Field);
2039 
2040   LValue EmitLValueForIvar(QualType ObjectTy,
2041                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2042                            unsigned CVRQualifiers);
2043 
2044   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2045   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2046   LValue EmitLambdaLValue(const LambdaExpr *E);
2047   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2048   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2049 
2050   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2051   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2052   LValue EmitStmtExprLValue(const StmtExpr *E);
2053   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2054   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2055   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2056 
2057   //===--------------------------------------------------------------------===//
2058   //                         Scalar Expression Emission
2059   //===--------------------------------------------------------------------===//
2060 
2061   /// EmitCall - Generate a call of the given function, expecting the given
2062   /// result type, and using the given argument list which specifies both the
2063   /// LLVM arguments and the types they were derived from.
2064   ///
2065   /// \param TargetDecl - If given, the decl of the function in a direct call;
2066   /// used to set attributes on the call (noreturn, etc.).
2067   RValue EmitCall(const CGFunctionInfo &FnInfo,
2068                   llvm::Value *Callee,
2069                   ReturnValueSlot ReturnValue,
2070                   const CallArgList &Args,
2071                   const Decl *TargetDecl = 0,
2072                   llvm::Instruction **callOrInvoke = 0);
2073 
2074   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2075                   ReturnValueSlot ReturnValue,
2076                   CallExpr::const_arg_iterator ArgBeg,
2077                   CallExpr::const_arg_iterator ArgEnd,
2078                   const Decl *TargetDecl = 0);
2079   RValue EmitCallExpr(const CallExpr *E,
2080                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2081 
2082   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2083                                   const Twine &name = "");
2084   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2085                                   ArrayRef<llvm::Value*> args,
2086                                   const Twine &name = "");
2087   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2088                                           const Twine &name = "");
2089   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2090                                           ArrayRef<llvm::Value*> args,
2091                                           const Twine &name = "");
2092 
2093   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2094                                   ArrayRef<llvm::Value *> Args,
2095                                   const Twine &Name = "");
2096   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2097                                   const Twine &Name = "");
2098   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2099                                          ArrayRef<llvm::Value*> args,
2100                                          const Twine &name = "");
2101   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2102                                          const Twine &name = "");
2103   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2104                                        ArrayRef<llvm::Value*> args);
2105 
2106   llvm::Value *BuildVirtualCall(GlobalDecl GD, llvm::Value *This,
2107                                 llvm::Type *Ty);
2108   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2109                                          NestedNameSpecifier *Qual,
2110                                          llvm::Type *Ty);
2111 
2112   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2113                                                    CXXDtorType Type,
2114                                                    const CXXRecordDecl *RD);
2115 
2116   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2117                            SourceLocation CallLoc,
2118                            llvm::Value *Callee,
2119                            ReturnValueSlot ReturnValue,
2120                            llvm::Value *This,
2121                            llvm::Value *ImplicitParam,
2122                            QualType ImplicitParamTy,
2123                            CallExpr::const_arg_iterator ArgBeg,
2124                            CallExpr::const_arg_iterator ArgEnd);
2125   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2126                                ReturnValueSlot ReturnValue);
2127   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2128                                       ReturnValueSlot ReturnValue);
2129 
2130   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2131                                            const CXXMethodDecl *MD,
2132                                            llvm::Value *This);
2133   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2134                                        const CXXMethodDecl *MD,
2135                                        ReturnValueSlot ReturnValue);
2136 
2137   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2138                                 ReturnValueSlot ReturnValue);
2139 
2140 
2141   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2142                          unsigned BuiltinID, const CallExpr *E);
2143 
2144   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2145 
2146   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2147   /// is unhandled by the current target.
2148   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2149 
2150   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2151   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2152   llvm::Value *EmitNeonCall(llvm::Function *F,
2153                             SmallVectorImpl<llvm::Value*> &O,
2154                             const char *name,
2155                             unsigned shift = 0, bool rightshift = false);
2156   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2157   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2158                                    bool negateForRightShift);
2159 
2160   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2161   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2162   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2163 
2164   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2165   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2166   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2167   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2168   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2169   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2170                                 const ObjCMethodDecl *MethodWithObjects);
2171   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2172   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2173                              ReturnValueSlot Return = ReturnValueSlot());
2174 
2175   /// Retrieves the default cleanup kind for an ARC cleanup.
2176   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
getARCCleanupKind()2177   CleanupKind getARCCleanupKind() {
2178     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2179              ? NormalAndEHCleanup : NormalCleanup;
2180   }
2181 
2182   // ARC primitives.
2183   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2184   void EmitARCDestroyWeak(llvm::Value *addr);
2185   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2186   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2187   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2188                                 bool ignored);
2189   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2190   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2191   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2192   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2193   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2194                                   bool resultIgnored);
2195   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2196                                       bool resultIgnored);
2197   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2198   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2199   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2200   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2201   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2202   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2203   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2204   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2205   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2206 
2207   std::pair<LValue,llvm::Value*>
2208   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2209   std::pair<LValue,llvm::Value*>
2210   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2211 
2212   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2213 
2214   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2215   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2216   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2217 
2218   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2219   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2220   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2221 
2222   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2223 
2224   static Destroyer destroyARCStrongImprecise;
2225   static Destroyer destroyARCStrongPrecise;
2226   static Destroyer destroyARCWeak;
2227 
2228   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2229   llvm::Value *EmitObjCAutoreleasePoolPush();
2230   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2231   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2232   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2233 
2234   /// \brief Emits a reference binding to the passed in expression.
2235   RValue EmitReferenceBindingToExpr(const Expr *E);
2236 
2237   //===--------------------------------------------------------------------===//
2238   //                           Expression Emission
2239   //===--------------------------------------------------------------------===//
2240 
2241   // Expressions are broken into three classes: scalar, complex, aggregate.
2242 
2243   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2244   /// scalar type, returning the result.
2245   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2246 
2247   /// EmitScalarConversion - Emit a conversion from the specified type to the
2248   /// specified destination type, both of which are LLVM scalar types.
2249   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2250                                     QualType DstTy);
2251 
2252   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2253   /// complex type to the specified destination type, where the destination type
2254   /// is an LLVM scalar type.
2255   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2256                                              QualType DstTy);
2257 
2258 
2259   /// EmitAggExpr - Emit the computation of the specified expression
2260   /// of aggregate type.  The result is computed into the given slot,
2261   /// which may be null to indicate that the value is not needed.
2262   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2263 
2264   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2265   /// aggregate type into a temporary LValue.
2266   LValue EmitAggExprToLValue(const Expr *E);
2267 
2268   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2269   /// pointers.
2270   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2271                                 QualType Ty);
2272 
2273   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2274   /// make sure it survives garbage collection until this point.
2275   void EmitExtendGCLifetime(llvm::Value *object);
2276 
2277   /// EmitComplexExpr - Emit the computation of the specified expression of
2278   /// complex type, returning the result.
2279   ComplexPairTy EmitComplexExpr(const Expr *E,
2280                                 bool IgnoreReal = false,
2281                                 bool IgnoreImag = false);
2282 
2283   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2284   /// type and place its result into the specified l-value.
2285   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2286 
2287   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2288   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2289 
2290   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2291   ComplexPairTy EmitLoadOfComplex(LValue src);
2292 
2293   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2294   /// a static local variable.
2295   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2296                                             const char *Separator,
2297                                        llvm::GlobalValue::LinkageTypes Linkage);
2298 
2299   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2300   /// global variable that has already been created for it.  If the initializer
2301   /// has a different type than GV does, this may free GV and return a different
2302   /// one.  Otherwise it just returns GV.
2303   llvm::GlobalVariable *
2304   AddInitializerToStaticVarDecl(const VarDecl &D,
2305                                 llvm::GlobalVariable *GV);
2306 
2307 
2308   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2309   /// variable with global storage.
2310   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2311                                 bool PerformInit);
2312 
2313   /// Call atexit() with a function that passes the given argument to
2314   /// the given function.
2315   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2316 
2317   /// Emit code in this function to perform a guarded variable
2318   /// initialization.  Guarded initializations are used when it's not
2319   /// possible to prove that an initialization will be done exactly
2320   /// once, e.g. with a static local variable or a static data member
2321   /// of a class template.
2322   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2323                           bool PerformInit);
2324 
2325   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2326   /// variables.
2327   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2328                                  ArrayRef<llvm::Constant *> Decls,
2329                                  llvm::GlobalVariable *Guard = 0);
2330 
2331   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2332   /// variables.
2333   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2334                                   const std::vector<std::pair<llvm::WeakVH,
2335                                   llvm::Constant*> > &DtorsAndObjects);
2336 
2337   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2338                                         const VarDecl *D,
2339                                         llvm::GlobalVariable *Addr,
2340                                         bool PerformInit);
2341 
2342   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2343 
2344   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2345                                   const Expr *Exp);
2346 
enterFullExpression(const ExprWithCleanups * E)2347   void enterFullExpression(const ExprWithCleanups *E) {
2348     if (E->getNumObjects() == 0) return;
2349     enterNonTrivialFullExpression(E);
2350   }
2351   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2352 
2353   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2354 
2355   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2356 
2357   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2358 
2359   //===--------------------------------------------------------------------===//
2360   //                         Annotations Emission
2361   //===--------------------------------------------------------------------===//
2362 
2363   /// Emit an annotation call (intrinsic or builtin).
2364   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2365                                   llvm::Value *AnnotatedVal,
2366                                   StringRef AnnotationStr,
2367                                   SourceLocation Location);
2368 
2369   /// Emit local annotations for the local variable V, declared by D.
2370   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2371 
2372   /// Emit field annotations for the given field & value. Returns the
2373   /// annotation result.
2374   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2375 
2376   //===--------------------------------------------------------------------===//
2377   //                             Internal Helpers
2378   //===--------------------------------------------------------------------===//
2379 
2380   /// ContainsLabel - Return true if the statement contains a label in it.  If
2381   /// this statement is not executed normally, it not containing a label means
2382   /// that we can just remove the code.
2383   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2384 
2385   /// containsBreak - Return true if the statement contains a break out of it.
2386   /// If the statement (recursively) contains a switch or loop with a break
2387   /// inside of it, this is fine.
2388   static bool containsBreak(const Stmt *S);
2389 
2390   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2391   /// to a constant, or if it does but contains a label, return false.  If it
2392   /// constant folds return true and set the boolean result in Result.
2393   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2394 
2395   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2396   /// to a constant, or if it does but contains a label, return false.  If it
2397   /// constant folds return true and set the folded value.
2398   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2399 
2400   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2401   /// if statement) to the specified blocks.  Based on the condition, this might
2402   /// try to simplify the codegen of the conditional based on the branch.
2403   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2404                             llvm::BasicBlock *FalseBlock);
2405 
2406   /// \brief Emit a description of a type in a format suitable for passing to
2407   /// a runtime sanitizer handler.
2408   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2409 
2410   /// \brief Convert a value into a format suitable for passing to a runtime
2411   /// sanitizer handler.
2412   llvm::Value *EmitCheckValue(llvm::Value *V);
2413 
2414   /// \brief Emit a description of a source location in a format suitable for
2415   /// passing to a runtime sanitizer handler.
2416   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2417 
2418   /// \brief Specify under what conditions this check can be recovered
2419   enum CheckRecoverableKind {
2420     /// Always terminate program execution if this check fails
2421     CRK_Unrecoverable,
2422     /// Check supports recovering, allows user to specify which
2423     CRK_Recoverable,
2424     /// Runtime conditionally aborts, always need to support recovery.
2425     CRK_AlwaysRecoverable
2426   };
2427 
2428   /// \brief Create a basic block that will call a handler function in a
2429   /// sanitizer runtime with the provided arguments, and create a conditional
2430   /// branch to it.
2431   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2432                  ArrayRef<llvm::Constant *> StaticArgs,
2433                  ArrayRef<llvm::Value *> DynamicArgs,
2434                  CheckRecoverableKind Recoverable);
2435 
2436   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2437   /// conditional branch to it, for the -ftrapv checks.
2438   void EmitTrapCheck(llvm::Value *Checked);
2439 
2440   /// EmitCallArg - Emit a single call argument.
2441   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2442 
2443   /// EmitDelegateCallArg - We are performing a delegate call; that
2444   /// is, the current function is delegating to another one.  Produce
2445   /// a r-value suitable for passing the given parameter.
2446   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2447 
2448   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2449   /// point operation, expressed as the maximum relative error in ulp.
2450   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2451 
2452 private:
2453   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2454   void EmitReturnOfRValue(RValue RV, QualType Ty);
2455 
2456   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2457   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2458   ///
2459   /// \param AI - The first function argument of the expansion.
2460   /// \return The argument following the last expanded function
2461   /// argument.
2462   llvm::Function::arg_iterator
2463   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2464                      llvm::Function::arg_iterator AI);
2465 
2466   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2467   /// Ty, into individual arguments on the provided vector \arg Args. See
2468   /// ABIArgInfo::Expand.
2469   void ExpandTypeToArgs(QualType Ty, RValue Src,
2470                         SmallVectorImpl<llvm::Value *> &Args,
2471                         llvm::FunctionType *IRFuncTy);
2472 
2473   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2474                             const Expr *InputExpr, std::string &ConstraintStr);
2475 
2476   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2477                                   LValue InputValue, QualType InputType,
2478                                   std::string &ConstraintStr);
2479 
2480   /// EmitCallArgs - Emit call arguments for a function.
2481   /// The CallArgTypeInfo parameter is used for iterating over the known
2482   /// argument types of the function being called.
2483   template<typename T>
2484   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2485                     CallExpr::const_arg_iterator ArgBeg,
2486                     CallExpr::const_arg_iterator ArgEnd,
2487                     bool ForceColumnInfo = false) {
2488     CGDebugInfo *DI = getDebugInfo();
2489     SourceLocation CallLoc;
2490     if (DI) CallLoc = DI->getLocation();
2491 
2492     CallExpr::const_arg_iterator Arg = ArgBeg;
2493 
2494     // First, use the argument types that the type info knows about
2495     if (CallArgTypeInfo) {
2496       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2497            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2498         assert(Arg != ArgEnd && "Running over edge of argument list!");
2499         QualType ArgType = *I;
2500 #ifndef NDEBUG
2501         QualType ActualArgType = Arg->getType();
2502         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2503           QualType ActualBaseType =
2504             ActualArgType->getAs<PointerType>()->getPointeeType();
2505           QualType ArgBaseType =
2506             ArgType->getAs<PointerType>()->getPointeeType();
2507           if (ArgBaseType->isVariableArrayType()) {
2508             if (const VariableArrayType *VAT =
2509                 getContext().getAsVariableArrayType(ActualBaseType)) {
2510               if (!VAT->getSizeExpr())
2511                 ActualArgType = ArgType;
2512             }
2513           }
2514         }
2515         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2516                getTypePtr() ==
2517                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2518                "type mismatch in call argument!");
2519 #endif
2520         EmitCallArg(Args, *Arg, ArgType);
2521 
2522         // Each argument expression could modify the debug
2523         // location. Restore it.
2524         if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2525       }
2526 
2527       // Either we've emitted all the call args, or we have a call to a
2528       // variadic function.
2529       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2530              "Extra arguments in non-variadic function!");
2531 
2532     }
2533 
2534     // If we still have any arguments, emit them using the type of the argument.
2535     for (; Arg != ArgEnd; ++Arg) {
2536       EmitCallArg(Args, *Arg, Arg->getType());
2537 
2538       // Restore the debug location.
2539       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2540     }
2541   }
2542 
getTargetHooks()2543   const TargetCodeGenInfo &getTargetHooks() const {
2544     return CGM.getTargetCodeGenInfo();
2545   }
2546 
2547   void EmitDeclMetadata();
2548 
2549   CodeGenModule::ByrefHelpers *
2550   buildByrefHelpers(llvm::StructType &byrefType,
2551                     const AutoVarEmission &emission);
2552 
2553   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2554 
2555   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2556   /// value and compute our best estimate of the alignment of the pointee.
2557   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2558 };
2559 
2560 /// Helper class with most of the code for saving a value for a
2561 /// conditional expression cleanup.
2562 struct DominatingLLVMValue {
2563   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2564 
2565   /// Answer whether the given value needs extra work to be saved.
needsSavingDominatingLLVMValue2566   static bool needsSaving(llvm::Value *value) {
2567     // If it's not an instruction, we don't need to save.
2568     if (!isa<llvm::Instruction>(value)) return false;
2569 
2570     // If it's an instruction in the entry block, we don't need to save.
2571     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2572     return (block != &block->getParent()->getEntryBlock());
2573   }
2574 
2575   /// Try to save the given value.
saveDominatingLLVMValue2576   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2577     if (!needsSaving(value)) return saved_type(value, false);
2578 
2579     // Otherwise we need an alloca.
2580     llvm::Value *alloca =
2581       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2582     CGF.Builder.CreateStore(value, alloca);
2583 
2584     return saved_type(alloca, true);
2585   }
2586 
restoreDominatingLLVMValue2587   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2588     if (!value.getInt()) return value.getPointer();
2589     return CGF.Builder.CreateLoad(value.getPointer());
2590   }
2591 };
2592 
2593 /// A partial specialization of DominatingValue for llvm::Values that
2594 /// might be llvm::Instructions.
2595 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2596   typedef T *type;
2597   static type restore(CodeGenFunction &CGF, saved_type value) {
2598     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2599   }
2600 };
2601 
2602 /// A specialization of DominatingValue for RValue.
2603 template <> struct DominatingValue<RValue> {
2604   typedef RValue type;
2605   class saved_type {
2606     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2607                 AggregateAddress, ComplexAddress };
2608 
2609     llvm::Value *Value;
2610     Kind K;
2611     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2612 
2613   public:
2614     static bool needsSaving(RValue value);
2615     static saved_type save(CodeGenFunction &CGF, RValue value);
2616     RValue restore(CodeGenFunction &CGF);
2617 
2618     // implementations in CGExprCXX.cpp
2619   };
2620 
2621   static bool needsSaving(type value) {
2622     return saved_type::needsSaving(value);
2623   }
2624   static saved_type save(CodeGenFunction &CGF, type value) {
2625     return saved_type::save(CGF, value);
2626   }
2627   static type restore(CodeGenFunction &CGF, saved_type value) {
2628     return value.restore(CGF);
2629   }
2630 };
2631 
2632 }  // end namespace CodeGen
2633 }  // end namespace clang
2634 
2635 #endif
2636