• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef SANITIZER_ALLOCATOR_H
15 #define SANITIZER_ALLOCATOR_H
16 
17 #include "sanitizer_internal_defs.h"
18 #include "sanitizer_common.h"
19 #include "sanitizer_libc.h"
20 #include "sanitizer_list.h"
21 #include "sanitizer_mutex.h"
22 #include "sanitizer_lfstack.h"
23 
24 namespace __sanitizer {
25 
26 // SizeClassMap maps allocation sizes into size classes and back.
27 // Class 0 corresponds to size 0.
28 // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
29 // Next 4 classes: 256 + i * 64  (i = 1 to 4).
30 // Next 4 classes: 512 + i * 128 (i = 1 to 4).
31 // ...
32 // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
33 // Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
34 //
35 // This structure of the size class map gives us:
36 //   - Efficient table-free class-to-size and size-to-class functions.
37 //   - Difference between two consequent size classes is betweed 14% and 25%
38 //
39 // This class also gives a hint to a thread-caching allocator about the amount
40 // of chunks that need to be cached per-thread:
41 //  - kMaxNumCached is the maximal number of chunks per size class.
42 //  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
43 //
44 // Part of output of SizeClassMap::Print():
45 // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
46 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
47 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
48 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
49 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
50 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
51 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
52 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
53 //
54 // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
55 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
56 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
57 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
58 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
59 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
60 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
61 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
62 //
63 // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
64 // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
65 // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
66 // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
67 //
68 // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
69 // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
70 // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
71 // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
72 //
73 // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
74 // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
75 // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
76 // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
77 //
78 // ...
79 //
80 // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
81 // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
82 // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
83 // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
84 //
85 // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
86 
87 template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
88 class SizeClassMap {
89   static const uptr kMinSizeLog = 4;
90   static const uptr kMidSizeLog = kMinSizeLog + 4;
91   static const uptr kMinSize = 1 << kMinSizeLog;
92   static const uptr kMidSize = 1 << kMidSizeLog;
93   static const uptr kMidClass = kMidSize / kMinSize;
94   static const uptr S = 2;
95   static const uptr M = (1 << S) - 1;
96 
97  public:
98   static const uptr kMaxNumCached = kMaxNumCachedT;
99   // We transfer chunks between central and thread-local free lists in batches.
100   // For small size classes we allocate batches separately.
101   // For large size classes we use one of the chunks to store the batch.
102   struct TransferBatch {
103     TransferBatch *next;
104     uptr count;
105     void *batch[kMaxNumCached];
106   };
107 
108   static const uptr kMaxSize = 1UL << kMaxSizeLog;
109   static const uptr kNumClasses =
110       kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
111   COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
112   static const uptr kNumClassesRounded =
113       kNumClasses == 32  ? 32 :
114       kNumClasses <= 64  ? 64 :
115       kNumClasses <= 128 ? 128 : 256;
116 
Size(uptr class_id)117   static uptr Size(uptr class_id) {
118     if (class_id <= kMidClass)
119       return kMinSize * class_id;
120     class_id -= kMidClass;
121     uptr t = kMidSize << (class_id >> S);
122     return t + (t >> S) * (class_id & M);
123   }
124 
ClassID(uptr size)125   static uptr ClassID(uptr size) {
126     if (size <= kMidSize)
127       return (size + kMinSize - 1) >> kMinSizeLog;
128     if (size > kMaxSize) return 0;
129     uptr l = MostSignificantSetBitIndex(size);
130     uptr hbits = (size >> (l - S)) & M;
131     uptr lbits = size & ((1 << (l - S)) - 1);
132     uptr l1 = l - kMidSizeLog;
133     return kMidClass + (l1 << S) + hbits + (lbits > 0);
134   }
135 
MaxCached(uptr class_id)136   static uptr MaxCached(uptr class_id) {
137     if (class_id == 0) return 0;
138     uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
139     return Max<uptr>(1, Min(kMaxNumCached, n));
140   }
141 
Print()142   static void Print() {
143     uptr prev_s = 0;
144     uptr total_cached = 0;
145     for (uptr i = 0; i < kNumClasses; i++) {
146       uptr s = Size(i);
147       if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
148         Printf("\n");
149       uptr d = s - prev_s;
150       uptr p = prev_s ? (d * 100 / prev_s) : 0;
151       uptr l = s ? MostSignificantSetBitIndex(s) : 0;
152       uptr cached = MaxCached(i) * s;
153       Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
154              "cached: %zd %zd; id %zd\n",
155              i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
156       total_cached += cached;
157       prev_s = s;
158     }
159     Printf("Total cached: %zd\n", total_cached);
160   }
161 
SizeClassRequiresSeparateTransferBatch(uptr class_id)162   static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
163     return Size(class_id) < sizeof(TransferBatch) -
164         sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
165   }
166 
Validate()167   static void Validate() {
168     for (uptr c = 1; c < kNumClasses; c++) {
169       // Printf("Validate: c%zd\n", c);
170       uptr s = Size(c);
171       CHECK_NE(s, 0U);
172       CHECK_EQ(ClassID(s), c);
173       if (c != kNumClasses - 1)
174         CHECK_EQ(ClassID(s + 1), c + 1);
175       CHECK_EQ(ClassID(s - 1), c);
176       if (c)
177         CHECK_GT(Size(c), Size(c-1));
178     }
179     CHECK_EQ(ClassID(kMaxSize + 1), 0);
180 
181     for (uptr s = 1; s <= kMaxSize; s++) {
182       uptr c = ClassID(s);
183       // Printf("s%zd => c%zd\n", s, c);
184       CHECK_LT(c, kNumClasses);
185       CHECK_GE(Size(c), s);
186       if (c > 0)
187         CHECK_LT(Size(c-1), s);
188     }
189   }
190 };
191 
192 typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
193 typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
194 template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
195 
196 // Memory allocator statistics
197 enum AllocatorStat {
198   AllocatorStatMalloced,
199   AllocatorStatFreed,
200   AllocatorStatMmapped,
201   AllocatorStatUnmapped,
202   AllocatorStatCount
203 };
204 
205 typedef u64 AllocatorStatCounters[AllocatorStatCount];
206 
207 // Per-thread stats, live in per-thread cache.
208 class AllocatorStats {
209  public:
Init()210   void Init() {
211     internal_memset(this, 0, sizeof(*this));
212   }
213 
Add(AllocatorStat i,u64 v)214   void Add(AllocatorStat i, u64 v) {
215     v += atomic_load(&stats_[i], memory_order_relaxed);
216     atomic_store(&stats_[i], v, memory_order_relaxed);
217   }
218 
Set(AllocatorStat i,u64 v)219   void Set(AllocatorStat i, u64 v) {
220     atomic_store(&stats_[i], v, memory_order_relaxed);
221   }
222 
Get(AllocatorStat i)223   u64 Get(AllocatorStat i) const {
224     return atomic_load(&stats_[i], memory_order_relaxed);
225   }
226 
227  private:
228   friend class AllocatorGlobalStats;
229   AllocatorStats *next_;
230   AllocatorStats *prev_;
231   atomic_uint64_t stats_[AllocatorStatCount];
232 };
233 
234 // Global stats, used for aggregation and querying.
235 class AllocatorGlobalStats : public AllocatorStats {
236  public:
Init()237   void Init() {
238     internal_memset(this, 0, sizeof(*this));
239     next_ = this;
240     prev_ = this;
241   }
242 
Register(AllocatorStats * s)243   void Register(AllocatorStats *s) {
244     SpinMutexLock l(&mu_);
245     s->next_ = next_;
246     s->prev_ = this;
247     next_->prev_ = s;
248     next_ = s;
249   }
250 
Unregister(AllocatorStats * s)251   void Unregister(AllocatorStats *s) {
252     SpinMutexLock l(&mu_);
253     s->prev_->next_ = s->next_;
254     s->next_->prev_ = s->prev_;
255     for (int i = 0; i < AllocatorStatCount; i++)
256       Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
257   }
258 
Get(AllocatorStatCounters s)259   void Get(AllocatorStatCounters s) const {
260     internal_memset(s, 0, AllocatorStatCount * sizeof(u64));
261     SpinMutexLock l(&mu_);
262     const AllocatorStats *stats = this;
263     for (;;) {
264       for (int i = 0; i < AllocatorStatCount; i++)
265         s[i] += stats->Get(AllocatorStat(i));
266       stats = stats->next_;
267       if (stats == this)
268         break;
269     }
270   }
271 
272  private:
273   mutable SpinMutex mu_;
274 };
275 
276 // Allocators call these callbacks on mmap/munmap.
277 struct NoOpMapUnmapCallback {
OnMapNoOpMapUnmapCallback278   void OnMap(uptr p, uptr size) const { }
OnUnmapNoOpMapUnmapCallback279   void OnUnmap(uptr p, uptr size) const { }
280 };
281 
282 // Callback type for iterating over chunks.
283 typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
284 
285 // SizeClassAllocator64 -- allocator for 64-bit address space.
286 //
287 // Space: a portion of address space of kSpaceSize bytes starting at
288 // a fixed address (kSpaceBeg). Both constants are powers of two and
289 // kSpaceBeg is kSpaceSize-aligned.
290 // At the beginning the entire space is mprotect-ed, then small parts of it
291 // are mapped on demand.
292 //
293 // Region: a part of Space dedicated to a single size class.
294 // There are kNumClasses Regions of equal size.
295 //
296 // UserChunk: a piece of memory returned to user.
297 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
298 //
299 // A Region looks like this:
300 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
301 template <const uptr kSpaceBeg, const uptr kSpaceSize,
302           const uptr kMetadataSize, class SizeClassMap,
303           class MapUnmapCallback = NoOpMapUnmapCallback>
304 class SizeClassAllocator64 {
305  public:
306   typedef typename SizeClassMap::TransferBatch Batch;
307   typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
308       SizeClassMap, MapUnmapCallback> ThisT;
309   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
310 
Init()311   void Init() {
312     CHECK_EQ(kSpaceBeg,
313              reinterpret_cast<uptr>(Mprotect(kSpaceBeg, kSpaceSize)));
314     MapWithCallback(kSpaceEnd, AdditionalSize());
315   }
316 
MapWithCallback(uptr beg,uptr size)317   void MapWithCallback(uptr beg, uptr size) {
318     CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
319     MapUnmapCallback().OnMap(beg, size);
320   }
321 
UnmapWithCallback(uptr beg,uptr size)322   void UnmapWithCallback(uptr beg, uptr size) {
323     MapUnmapCallback().OnUnmap(beg, size);
324     UnmapOrDie(reinterpret_cast<void *>(beg), size);
325   }
326 
CanAllocate(uptr size,uptr alignment)327   static bool CanAllocate(uptr size, uptr alignment) {
328     return size <= SizeClassMap::kMaxSize &&
329       alignment <= SizeClassMap::kMaxSize;
330   }
331 
AllocateBatch(AllocatorStats * stat,AllocatorCache * c,uptr class_id)332   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
333                                 uptr class_id) {
334     CHECK_LT(class_id, kNumClasses);
335     RegionInfo *region = GetRegionInfo(class_id);
336     Batch *b = region->free_list.Pop();
337     if (b == 0)
338       b = PopulateFreeList(stat, c, class_id, region);
339     region->n_allocated += b->count;
340     return b;
341   }
342 
DeallocateBatch(AllocatorStats * stat,uptr class_id,Batch * b)343   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
344     RegionInfo *region = GetRegionInfo(class_id);
345     CHECK_GT(b->count, 0);
346     region->free_list.Push(b);
347     region->n_freed += b->count;
348   }
349 
PointerIsMine(const void * p)350   static bool PointerIsMine(const void *p) {
351     return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
352   }
353 
GetSizeClass(const void * p)354   static uptr GetSizeClass(const void *p) {
355     return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
356   }
357 
GetBlockBegin(const void * p)358   void *GetBlockBegin(const void *p) {
359     uptr class_id = GetSizeClass(p);
360     uptr size = SizeClassMap::Size(class_id);
361     if (!size) return 0;
362     uptr chunk_idx = GetChunkIdx((uptr)p, size);
363     uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
364     uptr beg = chunk_idx * size;
365     uptr next_beg = beg + size;
366     if (class_id >= kNumClasses) return 0;
367     RegionInfo *region = GetRegionInfo(class_id);
368     if (region->mapped_user >= next_beg)
369       return reinterpret_cast<void*>(reg_beg + beg);
370     return 0;
371   }
372 
GetActuallyAllocatedSize(void * p)373   static uptr GetActuallyAllocatedSize(void *p) {
374     CHECK(PointerIsMine(p));
375     return SizeClassMap::Size(GetSizeClass(p));
376   }
377 
ClassID(uptr size)378   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
379 
GetMetaData(const void * p)380   void *GetMetaData(const void *p) {
381     uptr class_id = GetSizeClass(p);
382     uptr size = SizeClassMap::Size(class_id);
383     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
384     return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
385                                    (1 + chunk_idx) * kMetadataSize);
386   }
387 
TotalMemoryUsed()388   uptr TotalMemoryUsed() {
389     uptr res = 0;
390     for (uptr i = 0; i < kNumClasses; i++)
391       res += GetRegionInfo(i)->allocated_user;
392     return res;
393   }
394 
395   // Test-only.
TestOnlyUnmap()396   void TestOnlyUnmap() {
397     UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
398   }
399 
PrintStats()400   void PrintStats() {
401     uptr total_mapped = 0;
402     uptr n_allocated = 0;
403     uptr n_freed = 0;
404     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
405       RegionInfo *region = GetRegionInfo(class_id);
406       total_mapped += region->mapped_user;
407       n_allocated += region->n_allocated;
408       n_freed += region->n_freed;
409     }
410     Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
411            "remains %zd\n",
412            total_mapped >> 20, n_allocated, n_allocated - n_freed);
413     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
414       RegionInfo *region = GetRegionInfo(class_id);
415       if (region->mapped_user == 0) continue;
416       Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
417              class_id,
418              SizeClassMap::Size(class_id),
419              region->mapped_user >> 10,
420              region->n_allocated,
421              region->n_allocated - region->n_freed);
422     }
423   }
424 
425   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
426   // introspection API.
ForceLock()427   void ForceLock() {
428     for (uptr i = 0; i < kNumClasses; i++) {
429       GetRegionInfo(i)->mutex.Lock();
430     }
431   }
432 
ForceUnlock()433   void ForceUnlock() {
434     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
435       GetRegionInfo(i)->mutex.Unlock();
436     }
437   }
438 
439   // Iterate over all existing chunks.
440   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)441   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
442     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
443       RegionInfo *region = GetRegionInfo(class_id);
444       uptr chunk_size = SizeClassMap::Size(class_id);
445       uptr region_beg = kSpaceBeg + class_id * kRegionSize;
446       for (uptr chunk = region_beg;
447            chunk < region_beg + region->allocated_user;
448            chunk += chunk_size) {
449         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
450         callback(chunk, arg);
451       }
452     }
453   }
454 
455   typedef SizeClassMap SizeClassMapT;
456   static const uptr kNumClasses = SizeClassMap::kNumClasses;
457   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
458 
459  private:
460   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
461   static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
462   COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
463   // kRegionSize must be >= 2^32.
464   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
465   // Populate the free list with at most this number of bytes at once
466   // or with one element if its size is greater.
467   static const uptr kPopulateSize = 1 << 14;
468   // Call mmap for user memory with at least this size.
469   static const uptr kUserMapSize = 1 << 16;
470   // Call mmap for metadata memory with at least this size.
471   static const uptr kMetaMapSize = 1 << 16;
472 
473   struct RegionInfo {
474     BlockingMutex mutex;
475     LFStack<Batch> free_list;
476     uptr allocated_user;  // Bytes allocated for user memory.
477     uptr allocated_meta;  // Bytes allocated for metadata.
478     uptr mapped_user;  // Bytes mapped for user memory.
479     uptr mapped_meta;  // Bytes mapped for metadata.
480     uptr n_allocated, n_freed;  // Just stats.
481   };
482   COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
483 
AdditionalSize()484   static uptr AdditionalSize() {
485     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
486                      GetPageSizeCached());
487   }
488 
GetRegionInfo(uptr class_id)489   RegionInfo *GetRegionInfo(uptr class_id) {
490     CHECK_LT(class_id, kNumClasses);
491     RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
492     return &regions[class_id];
493   }
494 
GetChunkIdx(uptr chunk,uptr size)495   static uptr GetChunkIdx(uptr chunk, uptr size) {
496     uptr offset = chunk % kRegionSize;
497     // Here we divide by a non-constant. This is costly.
498     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
499     if (offset >> (SANITIZER_WORDSIZE / 2))
500       return offset / size;
501     return (u32)offset / (u32)size;
502   }
503 
PopulateFreeList(AllocatorStats * stat,AllocatorCache * c,uptr class_id,RegionInfo * region)504   NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
505                                    uptr class_id, RegionInfo *region) {
506     BlockingMutexLock l(&region->mutex);
507     Batch *b = region->free_list.Pop();
508     if (b)
509       return b;
510     uptr size = SizeClassMap::Size(class_id);
511     uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
512     uptr beg_idx = region->allocated_user;
513     uptr end_idx = beg_idx + count * size;
514     uptr region_beg = kSpaceBeg + kRegionSize * class_id;
515     if (end_idx + size > region->mapped_user) {
516       // Do the mmap for the user memory.
517       uptr map_size = kUserMapSize;
518       while (end_idx + size > region->mapped_user + map_size)
519         map_size += kUserMapSize;
520       CHECK_GE(region->mapped_user + map_size, end_idx);
521       MapWithCallback(region_beg + region->mapped_user, map_size);
522       stat->Add(AllocatorStatMmapped, map_size);
523       region->mapped_user += map_size;
524     }
525     uptr total_count = (region->mapped_user - beg_idx - size)
526         / size / count * count;
527     region->allocated_meta += total_count * kMetadataSize;
528     if (region->allocated_meta > region->mapped_meta) {
529       uptr map_size = kMetaMapSize;
530       while (region->allocated_meta > region->mapped_meta + map_size)
531         map_size += kMetaMapSize;
532       // Do the mmap for the metadata.
533       CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
534       MapWithCallback(region_beg + kRegionSize -
535                       region->mapped_meta - map_size, map_size);
536       region->mapped_meta += map_size;
537     }
538     CHECK_LE(region->allocated_meta, region->mapped_meta);
539     if (region->mapped_user + region->mapped_meta > kRegionSize) {
540       Printf("%s: Out of memory. Dying. ", SanitizerToolName);
541       Printf("The process has exhausted %zuMB for size class %zu.\n",
542           kRegionSize / 1024 / 1024, size);
543       Die();
544     }
545     for (;;) {
546       if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
547         b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
548       else
549         b = (Batch*)(region_beg + beg_idx);
550       b->count = count;
551       for (uptr i = 0; i < count; i++)
552         b->batch[i] = (void*)(region_beg + beg_idx + i * size);
553       region->allocated_user += count * size;
554       CHECK_LE(region->allocated_user, region->mapped_user);
555       beg_idx += count * size;
556       if (beg_idx + count * size + size > region->mapped_user)
557         break;
558       CHECK_GT(b->count, 0);
559       region->free_list.Push(b);
560     }
561     return b;
562   }
563 };
564 
565 // Maps integers in rage [0, kSize) to u8 values.
566 template<u64 kSize>
567 class FlatByteMap {
568  public:
TestOnlyInit()569   void TestOnlyInit() {
570     internal_memset(map_, 0, sizeof(map_));
571   }
572 
set(uptr idx,u8 val)573   void set(uptr idx, u8 val) {
574     CHECK_LT(idx, kSize);
575     CHECK_EQ(0U, map_[idx]);
576     map_[idx] = val;
577   }
578   u8 operator[] (uptr idx) {
579     CHECK_LT(idx, kSize);
580     // FIXME: CHECK may be too expensive here.
581     return map_[idx];
582   }
583  private:
584   u8 map_[kSize];
585 };
586 
587 // FIXME: Also implement TwoLevelByteMap.
588 
589 // SizeClassAllocator32 -- allocator for 32-bit address space.
590 // This allocator can theoretically be used on 64-bit arch, but there it is less
591 // efficient than SizeClassAllocator64.
592 //
593 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
594 // be returned by MmapOrDie().
595 //
596 // Region:
597 //   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
598 // Since the regions are aligned by kRegionSize, there are exactly
599 // kNumPossibleRegions possible regions in the address space and so we keep
600 // a ByteMap possible_regions to store the size classes of each Region.
601 // 0 size class means the region is not used by the allocator.
602 //
603 // One Region is used to allocate chunks of a single size class.
604 // A Region looks like this:
605 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
606 //
607 // In order to avoid false sharing the objects of this class should be
608 // chache-line aligned.
609 template <const uptr kSpaceBeg, const u64 kSpaceSize,
610           const uptr kMetadataSize, class SizeClassMap,
611           const uptr kRegionSizeLog,
612           class ByteMap,
613           class MapUnmapCallback = NoOpMapUnmapCallback>
614 class SizeClassAllocator32 {
615  public:
616   typedef typename SizeClassMap::TransferBatch Batch;
617   typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
618       SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
619   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
620 
Init()621   void Init() {
622     possible_regions.TestOnlyInit();
623     internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
624   }
625 
MapWithCallback(uptr size)626   void *MapWithCallback(uptr size) {
627     size = RoundUpTo(size, GetPageSizeCached());
628     void *res = MmapOrDie(size, "SizeClassAllocator32");
629     MapUnmapCallback().OnMap((uptr)res, size);
630     return res;
631   }
632 
UnmapWithCallback(uptr beg,uptr size)633   void UnmapWithCallback(uptr beg, uptr size) {
634     MapUnmapCallback().OnUnmap(beg, size);
635     UnmapOrDie(reinterpret_cast<void *>(beg), size);
636   }
637 
CanAllocate(uptr size,uptr alignment)638   static bool CanAllocate(uptr size, uptr alignment) {
639     return size <= SizeClassMap::kMaxSize &&
640       alignment <= SizeClassMap::kMaxSize;
641   }
642 
GetMetaData(const void * p)643   void *GetMetaData(const void *p) {
644     CHECK(PointerIsMine(p));
645     uptr mem = reinterpret_cast<uptr>(p);
646     uptr beg = ComputeRegionBeg(mem);
647     uptr size = SizeClassMap::Size(GetSizeClass(p));
648     u32 offset = mem - beg;
649     uptr n = offset / (u32)size;  // 32-bit division
650     uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
651     return reinterpret_cast<void*>(meta);
652   }
653 
AllocateBatch(AllocatorStats * stat,AllocatorCache * c,uptr class_id)654   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
655                                 uptr class_id) {
656     CHECK_LT(class_id, kNumClasses);
657     SizeClassInfo *sci = GetSizeClassInfo(class_id);
658     SpinMutexLock l(&sci->mutex);
659     if (sci->free_list.empty())
660       PopulateFreeList(stat, c, sci, class_id);
661     CHECK(!sci->free_list.empty());
662     Batch *b = sci->free_list.front();
663     sci->free_list.pop_front();
664     return b;
665   }
666 
DeallocateBatch(AllocatorStats * stat,uptr class_id,Batch * b)667   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
668     CHECK_LT(class_id, kNumClasses);
669     SizeClassInfo *sci = GetSizeClassInfo(class_id);
670     SpinMutexLock l(&sci->mutex);
671     CHECK_GT(b->count, 0);
672     sci->free_list.push_front(b);
673   }
674 
PointerIsMine(const void * p)675   bool PointerIsMine(const void *p) {
676     return GetSizeClass(p) != 0;
677   }
678 
GetSizeClass(const void * p)679   uptr GetSizeClass(const void *p) {
680     return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
681   }
682 
GetBlockBegin(const void * p)683   void *GetBlockBegin(const void *p) {
684     CHECK(PointerIsMine(p));
685     uptr mem = reinterpret_cast<uptr>(p);
686     uptr beg = ComputeRegionBeg(mem);
687     uptr size = SizeClassMap::Size(GetSizeClass(p));
688     u32 offset = mem - beg;
689     u32 n = offset / (u32)size;  // 32-bit division
690     uptr res = beg + (n * (u32)size);
691     return reinterpret_cast<void*>(res);
692   }
693 
GetActuallyAllocatedSize(void * p)694   uptr GetActuallyAllocatedSize(void *p) {
695     CHECK(PointerIsMine(p));
696     return SizeClassMap::Size(GetSizeClass(p));
697   }
698 
ClassID(uptr size)699   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
700 
TotalMemoryUsed()701   uptr TotalMemoryUsed() {
702     // No need to lock here.
703     uptr res = 0;
704     for (uptr i = 0; i < kNumPossibleRegions; i++)
705       if (possible_regions[i])
706         res += kRegionSize;
707     return res;
708   }
709 
TestOnlyUnmap()710   void TestOnlyUnmap() {
711     for (uptr i = 0; i < kNumPossibleRegions; i++)
712       if (possible_regions[i])
713         UnmapWithCallback((i * kRegionSize), kRegionSize);
714   }
715 
716   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
717   // introspection API.
ForceLock()718   void ForceLock() {
719     for (uptr i = 0; i < kNumClasses; i++) {
720       GetSizeClassInfo(i)->mutex.Lock();
721     }
722   }
723 
ForceUnlock()724   void ForceUnlock() {
725     for (int i = kNumClasses - 1; i >= 0; i--) {
726       GetSizeClassInfo(i)->mutex.Unlock();
727     }
728   }
729 
730   // Iterate over all existing chunks.
731   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)732   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
733     for (uptr region = 0; region < kNumPossibleRegions; region++)
734       if (possible_regions[region]) {
735         uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
736         uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
737         uptr region_beg = region * kRegionSize;
738         for (uptr chunk = region_beg;
739              chunk < region_beg + max_chunks_in_region * chunk_size;
740              chunk += chunk_size) {
741           // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
742           callback(chunk, arg);
743         }
744       }
745   }
746 
PrintStats()747   void PrintStats() {
748   }
749 
750   typedef SizeClassMap SizeClassMapT;
751   static const uptr kNumClasses = SizeClassMap::kNumClasses;
752 
753  private:
754   static const uptr kRegionSize = 1 << kRegionSizeLog;
755   static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
756 
757   struct SizeClassInfo {
758     SpinMutex mutex;
759     IntrusiveList<Batch> free_list;
760     char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
761   };
762   COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
763 
ComputeRegionId(uptr mem)764   uptr ComputeRegionId(uptr mem) {
765     uptr res = mem >> kRegionSizeLog;
766     CHECK_LT(res, kNumPossibleRegions);
767     return res;
768   }
769 
ComputeRegionBeg(uptr mem)770   uptr ComputeRegionBeg(uptr mem) {
771     return mem & ~(kRegionSize - 1);
772   }
773 
AllocateRegion(AllocatorStats * stat,uptr class_id)774   uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
775     CHECK_LT(class_id, kNumClasses);
776     uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
777                                       "SizeClassAllocator32"));
778     MapUnmapCallback().OnMap(res, kRegionSize);
779     stat->Add(AllocatorStatMmapped, kRegionSize);
780     CHECK_EQ(0U, (res & (kRegionSize - 1)));
781     possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
782     return res;
783   }
784 
GetSizeClassInfo(uptr class_id)785   SizeClassInfo *GetSizeClassInfo(uptr class_id) {
786     CHECK_LT(class_id, kNumClasses);
787     return &size_class_info_array[class_id];
788   }
789 
PopulateFreeList(AllocatorStats * stat,AllocatorCache * c,SizeClassInfo * sci,uptr class_id)790   void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
791                         SizeClassInfo *sci, uptr class_id) {
792     uptr size = SizeClassMap::Size(class_id);
793     uptr reg = AllocateRegion(stat, class_id);
794     uptr n_chunks = kRegionSize / (size + kMetadataSize);
795     uptr max_count = SizeClassMap::MaxCached(class_id);
796     Batch *b = 0;
797     for (uptr i = reg; i < reg + n_chunks * size; i += size) {
798       if (b == 0) {
799         if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
800           b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
801         else
802           b = (Batch*)i;
803         b->count = 0;
804       }
805       b->batch[b->count++] = (void*)i;
806       if (b->count == max_count) {
807         CHECK_GT(b->count, 0);
808         sci->free_list.push_back(b);
809         b = 0;
810       }
811     }
812     if (b) {
813       CHECK_GT(b->count, 0);
814       sci->free_list.push_back(b);
815     }
816   }
817 
818   ByteMap possible_regions;
819   SizeClassInfo size_class_info_array[kNumClasses];
820 };
821 
822 // Objects of this type should be used as local caches for SizeClassAllocator64
823 // or SizeClassAllocator32. Since the typical use of this class is to have one
824 // object per thread in TLS, is has to be POD.
825 template<class SizeClassAllocator>
826 struct SizeClassAllocatorLocalCache {
827   typedef SizeClassAllocator Allocator;
828   static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
829 
InitSizeClassAllocatorLocalCache830   void Init(AllocatorGlobalStats *s) {
831     stats_.Init();
832     if (s)
833       s->Register(&stats_);
834   }
835 
DestroySizeClassAllocatorLocalCache836   void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
837     Drain(allocator);
838     if (s)
839       s->Unregister(&stats_);
840   }
841 
AllocateSizeClassAllocatorLocalCache842   void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
843     CHECK_NE(class_id, 0UL);
844     CHECK_LT(class_id, kNumClasses);
845     stats_.Add(AllocatorStatMalloced, SizeClassMap::Size(class_id));
846     PerClass *c = &per_class_[class_id];
847     if (UNLIKELY(c->count == 0))
848       Refill(allocator, class_id);
849     void *res = c->batch[--c->count];
850     PREFETCH(c->batch[c->count - 1]);
851     return res;
852   }
853 
DeallocateSizeClassAllocatorLocalCache854   void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
855     CHECK_NE(class_id, 0UL);
856     CHECK_LT(class_id, kNumClasses);
857     // If the first allocator call on a new thread is a deallocation, then
858     // max_count will be zero, leading to check failure.
859     InitCache();
860     stats_.Add(AllocatorStatFreed, SizeClassMap::Size(class_id));
861     PerClass *c = &per_class_[class_id];
862     CHECK_NE(c->max_count, 0UL);
863     if (UNLIKELY(c->count == c->max_count))
864       Drain(allocator, class_id);
865     c->batch[c->count++] = p;
866   }
867 
DrainSizeClassAllocatorLocalCache868   void Drain(SizeClassAllocator *allocator) {
869     for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
870       PerClass *c = &per_class_[class_id];
871       while (c->count > 0)
872         Drain(allocator, class_id);
873     }
874   }
875 
876   // private:
877   typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
878   typedef typename SizeClassMap::TransferBatch Batch;
879   struct PerClass {
880     uptr count;
881     uptr max_count;
882     void *batch[2 * SizeClassMap::kMaxNumCached];
883   };
884   PerClass per_class_[kNumClasses];
885   AllocatorStats stats_;
886 
InitCacheSizeClassAllocatorLocalCache887   void InitCache() {
888     if (per_class_[1].max_count)
889       return;
890     for (uptr i = 0; i < kNumClasses; i++) {
891       PerClass *c = &per_class_[i];
892       c->max_count = 2 * SizeClassMap::MaxCached(i);
893     }
894   }
895 
RefillSizeClassAllocatorLocalCache896   NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
897     InitCache();
898     PerClass *c = &per_class_[class_id];
899     Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
900     CHECK_GT(b->count, 0);
901     for (uptr i = 0; i < b->count; i++)
902       c->batch[i] = b->batch[i];
903     c->count = b->count;
904     if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
905       Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
906   }
907 
DrainSizeClassAllocatorLocalCache908   NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
909     InitCache();
910     PerClass *c = &per_class_[class_id];
911     Batch *b;
912     if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
913       b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
914     else
915       b = (Batch*)c->batch[0];
916     uptr cnt = Min(c->max_count / 2, c->count);
917     for (uptr i = 0; i < cnt; i++) {
918       b->batch[i] = c->batch[i];
919       c->batch[i] = c->batch[i + c->max_count / 2];
920     }
921     b->count = cnt;
922     c->count -= cnt;
923     CHECK_GT(b->count, 0);
924     allocator->DeallocateBatch(&stats_, class_id, b);
925   }
926 };
927 
928 // This class can (de)allocate only large chunks of memory using mmap/unmap.
929 // The main purpose of this allocator is to cover large and rare allocation
930 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
931 template <class MapUnmapCallback = NoOpMapUnmapCallback>
932 class LargeMmapAllocator {
933  public:
Init()934   void Init() {
935     internal_memset(this, 0, sizeof(*this));
936     page_size_ = GetPageSizeCached();
937   }
938 
Allocate(AllocatorStats * stat,uptr size,uptr alignment)939   void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
940     CHECK(IsPowerOfTwo(alignment));
941     uptr map_size = RoundUpMapSize(size);
942     if (alignment > page_size_)
943       map_size += alignment;
944     if (map_size < size) return 0;  // Overflow.
945     uptr map_beg = reinterpret_cast<uptr>(
946         MmapOrDie(map_size, "LargeMmapAllocator"));
947     MapUnmapCallback().OnMap(map_beg, map_size);
948     uptr map_end = map_beg + map_size;
949     uptr res = map_beg + page_size_;
950     if (res & (alignment - 1))  // Align.
951       res += alignment - (res & (alignment - 1));
952     CHECK_EQ(0, res & (alignment - 1));
953     CHECK_LE(res + size, map_end);
954     Header *h = GetHeader(res);
955     h->size = size;
956     h->map_beg = map_beg;
957     h->map_size = map_size;
958     uptr size_log = MostSignificantSetBitIndex(map_size);
959     CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
960     {
961       SpinMutexLock l(&mutex_);
962       uptr idx = n_chunks_++;
963       chunks_sorted_ = false;
964       CHECK_LT(idx, kMaxNumChunks);
965       h->chunk_idx = idx;
966       chunks_[idx] = h;
967       stats.n_allocs++;
968       stats.currently_allocated += map_size;
969       stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
970       stats.by_size_log[size_log]++;
971       stat->Add(AllocatorStatMalloced, map_size);
972       stat->Add(AllocatorStatMmapped, map_size);
973     }
974     return reinterpret_cast<void*>(res);
975   }
976 
Deallocate(AllocatorStats * stat,void * p)977   void Deallocate(AllocatorStats *stat, void *p) {
978     Header *h = GetHeader(p);
979     {
980       SpinMutexLock l(&mutex_);
981       uptr idx = h->chunk_idx;
982       CHECK_EQ(chunks_[idx], h);
983       CHECK_LT(idx, n_chunks_);
984       chunks_[idx] = chunks_[n_chunks_ - 1];
985       chunks_[idx]->chunk_idx = idx;
986       n_chunks_--;
987       chunks_sorted_ = false;
988       stats.n_frees++;
989       stats.currently_allocated -= h->map_size;
990       stat->Add(AllocatorStatFreed, h->map_size);
991       stat->Add(AllocatorStatUnmapped, h->map_size);
992     }
993     MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
994     UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
995   }
996 
TotalMemoryUsed()997   uptr TotalMemoryUsed() {
998     SpinMutexLock l(&mutex_);
999     uptr res = 0;
1000     for (uptr i = 0; i < n_chunks_; i++) {
1001       Header *h = chunks_[i];
1002       CHECK_EQ(h->chunk_idx, i);
1003       res += RoundUpMapSize(h->size);
1004     }
1005     return res;
1006   }
1007 
PointerIsMine(const void * p)1008   bool PointerIsMine(const void *p) {
1009     return GetBlockBegin(p) != 0;
1010   }
1011 
GetActuallyAllocatedSize(void * p)1012   uptr GetActuallyAllocatedSize(void *p) {
1013     return RoundUpTo(GetHeader(p)->size, page_size_);
1014   }
1015 
1016   // At least page_size_/2 metadata bytes is available.
GetMetaData(const void * p)1017   void *GetMetaData(const void *p) {
1018     // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1019     CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1020     return GetHeader(p) + 1;
1021   }
1022 
GetBlockBegin(const void * ptr)1023   void *GetBlockBegin(const void *ptr) {
1024     uptr p = reinterpret_cast<uptr>(ptr);
1025     SpinMutexLock l(&mutex_);
1026     uptr nearest_chunk = 0;
1027     // Cache-friendly linear search.
1028     for (uptr i = 0; i < n_chunks_; i++) {
1029       uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1030       if (p < ch) continue;  // p is at left to this chunk, skip it.
1031       if (p - ch < p - nearest_chunk)
1032         nearest_chunk = ch;
1033     }
1034     if (!nearest_chunk)
1035       return 0;
1036     Header *h = reinterpret_cast<Header *>(nearest_chunk);
1037     CHECK_GE(nearest_chunk, h->map_beg);
1038     CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1039     CHECK_LE(nearest_chunk, p);
1040     if (h->map_beg + h->map_size <= p)
1041       return 0;
1042     return GetUser(h);
1043   }
1044 
1045   // This function does the same as GetBlockBegin, but is much faster.
1046   // Must be called with the allocator locked.
GetBlockBeginFastLocked(void * ptr)1047   void *GetBlockBeginFastLocked(void *ptr) {
1048     uptr p = reinterpret_cast<uptr>(ptr);
1049     uptr n = n_chunks_;
1050     if (!n) return 0;
1051     if (!chunks_sorted_) {
1052       // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1053       SortArray(reinterpret_cast<uptr*>(chunks_), n);
1054       for (uptr i = 0; i < n; i++)
1055         chunks_[i]->chunk_idx = i;
1056       chunks_sorted_ = true;
1057       min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1058       max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1059           chunks_[n - 1]->map_size;
1060     }
1061     if (p < min_mmap_ || p >= max_mmap_)
1062       return 0;
1063     uptr beg = 0, end = n - 1;
1064     // This loop is a log(n) lower_bound. It does not check for the exact match
1065     // to avoid expensive cache-thrashing loads.
1066     while (end - beg >= 2) {
1067       uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
1068       if (p < reinterpret_cast<uptr>(chunks_[mid]))
1069         end = mid - 1;  // We are not interested in chunks_[mid].
1070       else
1071         beg = mid;  // chunks_[mid] may still be what we want.
1072     }
1073 
1074     if (beg < end) {
1075       CHECK_EQ(beg + 1, end);
1076       // There are 2 chunks left, choose one.
1077       if (p >= reinterpret_cast<uptr>(chunks_[end]))
1078         beg = end;
1079     }
1080 
1081     Header *h = chunks_[beg];
1082     if (h->map_beg + h->map_size <= p || p < h->map_beg)
1083       return 0;
1084     return GetUser(h);
1085   }
1086 
PrintStats()1087   void PrintStats() {
1088     Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1089            "remains %zd (%zd K) max %zd M; by size logs: ",
1090            stats.n_allocs, stats.n_allocs - stats.n_frees,
1091            stats.currently_allocated >> 10, stats.max_allocated >> 20);
1092     for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1093       uptr c = stats.by_size_log[i];
1094       if (!c) continue;
1095       Printf("%zd:%zd; ", i, c);
1096     }
1097     Printf("\n");
1098   }
1099 
1100   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1101   // introspection API.
ForceLock()1102   void ForceLock() {
1103     mutex_.Lock();
1104   }
1105 
ForceUnlock()1106   void ForceUnlock() {
1107     mutex_.Unlock();
1108   }
1109 
1110   // Iterate over all existing chunks.
1111   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)1112   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1113     for (uptr i = 0; i < n_chunks_; i++)
1114       callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1115   }
1116 
1117  private:
1118   static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1119   struct Header {
1120     uptr map_beg;
1121     uptr map_size;
1122     uptr size;
1123     uptr chunk_idx;
1124   };
1125 
GetHeader(uptr p)1126   Header *GetHeader(uptr p) {
1127     CHECK(IsAligned(p, page_size_));
1128     return reinterpret_cast<Header*>(p - page_size_);
1129   }
GetHeader(const void * p)1130   Header *GetHeader(const void *p) {
1131     return GetHeader(reinterpret_cast<uptr>(p));
1132   }
1133 
GetUser(Header * h)1134   void *GetUser(Header *h) {
1135     CHECK(IsAligned((uptr)h, page_size_));
1136     return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1137   }
1138 
RoundUpMapSize(uptr size)1139   uptr RoundUpMapSize(uptr size) {
1140     return RoundUpTo(size, page_size_) + page_size_;
1141   }
1142 
1143   uptr page_size_;
1144   Header *chunks_[kMaxNumChunks];
1145   uptr n_chunks_;
1146   uptr min_mmap_, max_mmap_;
1147   bool chunks_sorted_;
1148   struct Stats {
1149     uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1150   } stats;
1151   SpinMutex mutex_;
1152 };
1153 
1154 // This class implements a complete memory allocator by using two
1155 // internal allocators:
1156 // PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1157 //  When allocating 2^x bytes it should return 2^x aligned chunk.
1158 // PrimaryAllocator is used via a local AllocatorCache.
1159 // SecondaryAllocator can allocate anything, but is not efficient.
1160 template <class PrimaryAllocator, class AllocatorCache,
1161           class SecondaryAllocator>  // NOLINT
1162 class CombinedAllocator {
1163  public:
Init()1164   void Init() {
1165     primary_.Init();
1166     secondary_.Init();
1167     stats_.Init();
1168   }
1169 
1170   void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1171                  bool cleared = false) {
1172     // Returning 0 on malloc(0) may break a lot of code.
1173     if (size == 0)
1174       size = 1;
1175     if (size + alignment < size)
1176       return 0;
1177     if (alignment > 8)
1178       size = RoundUpTo(size, alignment);
1179     void *res;
1180     if (primary_.CanAllocate(size, alignment))
1181       res = cache->Allocate(&primary_, primary_.ClassID(size));
1182     else
1183       res = secondary_.Allocate(&stats_, size, alignment);
1184     if (alignment > 8)
1185       CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1186     if (cleared && res)
1187       internal_memset(res, 0, size);
1188     return res;
1189   }
1190 
Deallocate(AllocatorCache * cache,void * p)1191   void Deallocate(AllocatorCache *cache, void *p) {
1192     if (!p) return;
1193     if (primary_.PointerIsMine(p))
1194       cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1195     else
1196       secondary_.Deallocate(&stats_, p);
1197   }
1198 
Reallocate(AllocatorCache * cache,void * p,uptr new_size,uptr alignment)1199   void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1200                    uptr alignment) {
1201     if (!p)
1202       return Allocate(cache, new_size, alignment);
1203     if (!new_size) {
1204       Deallocate(cache, p);
1205       return 0;
1206     }
1207     CHECK(PointerIsMine(p));
1208     uptr old_size = GetActuallyAllocatedSize(p);
1209     uptr memcpy_size = Min(new_size, old_size);
1210     void *new_p = Allocate(cache, new_size, alignment);
1211     if (new_p)
1212       internal_memcpy(new_p, p, memcpy_size);
1213     Deallocate(cache, p);
1214     return new_p;
1215   }
1216 
PointerIsMine(void * p)1217   bool PointerIsMine(void *p) {
1218     if (primary_.PointerIsMine(p))
1219       return true;
1220     return secondary_.PointerIsMine(p);
1221   }
1222 
FromPrimary(void * p)1223   bool FromPrimary(void *p) {
1224     return primary_.PointerIsMine(p);
1225   }
1226 
GetMetaData(const void * p)1227   void *GetMetaData(const void *p) {
1228     if (primary_.PointerIsMine(p))
1229       return primary_.GetMetaData(p);
1230     return secondary_.GetMetaData(p);
1231   }
1232 
GetBlockBegin(const void * p)1233   void *GetBlockBegin(const void *p) {
1234     if (primary_.PointerIsMine(p))
1235       return primary_.GetBlockBegin(p);
1236     return secondary_.GetBlockBegin(p);
1237   }
1238 
1239   // This function does the same as GetBlockBegin, but is much faster.
1240   // Must be called with the allocator locked.
GetBlockBeginFastLocked(void * p)1241   void *GetBlockBeginFastLocked(void *p) {
1242     if (primary_.PointerIsMine(p))
1243       return primary_.GetBlockBegin(p);
1244     return secondary_.GetBlockBeginFastLocked(p);
1245   }
1246 
GetActuallyAllocatedSize(void * p)1247   uptr GetActuallyAllocatedSize(void *p) {
1248     if (primary_.PointerIsMine(p))
1249       return primary_.GetActuallyAllocatedSize(p);
1250     return secondary_.GetActuallyAllocatedSize(p);
1251   }
1252 
TotalMemoryUsed()1253   uptr TotalMemoryUsed() {
1254     return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1255   }
1256 
TestOnlyUnmap()1257   void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1258 
InitCache(AllocatorCache * cache)1259   void InitCache(AllocatorCache *cache) {
1260     cache->Init(&stats_);
1261   }
1262 
DestroyCache(AllocatorCache * cache)1263   void DestroyCache(AllocatorCache *cache) {
1264     cache->Destroy(&primary_, &stats_);
1265   }
1266 
SwallowCache(AllocatorCache * cache)1267   void SwallowCache(AllocatorCache *cache) {
1268     cache->Drain(&primary_);
1269   }
1270 
GetStats(AllocatorStatCounters s)1271   void GetStats(AllocatorStatCounters s) const {
1272     stats_.Get(s);
1273   }
1274 
PrintStats()1275   void PrintStats() {
1276     primary_.PrintStats();
1277     secondary_.PrintStats();
1278   }
1279 
1280   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1281   // introspection API.
ForceLock()1282   void ForceLock() {
1283     primary_.ForceLock();
1284     secondary_.ForceLock();
1285   }
1286 
ForceUnlock()1287   void ForceUnlock() {
1288     secondary_.ForceUnlock();
1289     primary_.ForceUnlock();
1290   }
1291 
1292   // Iterate over all existing chunks.
1293   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)1294   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1295     primary_.ForEachChunk(callback, arg);
1296     secondary_.ForEachChunk(callback, arg);
1297   }
1298 
1299  private:
1300   PrimaryAllocator primary_;
1301   SecondaryAllocator secondary_;
1302   AllocatorGlobalStats stats_;
1303 };
1304 
1305 // Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1306 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1307 
1308 }  // namespace __sanitizer
1309 
1310 #endif  // SANITIZER_ALLOCATOR_H
1311 
1312