1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31
32 using namespace clang;
33 using namespace CodeGen;
34
35 //===--------------------------------------------------------------------===//
36 // Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38
EmitCastToVoidPtr(llvm::Value * value)39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40 unsigned addressSpace =
41 cast<llvm::PointerType>(value->getType())->getAddressSpace();
42
43 llvm::PointerType *destType = Int8PtrTy;
44 if (addressSpace)
45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46
47 if (value->getType() == destType) return value;
48 return Builder.CreateBitCast(value, destType);
49 }
50
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54 const Twine &Name) {
55 if (!Builder.isNamePreserving())
56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61 llvm::Value *Init) {
62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66
CreateIRTemp(QualType Ty,const Twine & Name)67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68 const Twine &Name) {
69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70 // FIXME: Should we prefer the preferred type alignment here?
71 CharUnits Align = getContext().getTypeAlignInChars(Ty);
72 Alloc->setAlignment(Align.getQuantity());
73 return Alloc;
74 }
75
CreateMemTemp(QualType Ty,const Twine & Name)76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77 const Twine &Name) {
78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79 // FIXME: Should we prefer the preferred type alignment here?
80 CharUnits Align = getContext().getTypeAlignInChars(Ty);
81 Alloc->setAlignment(Align.getQuantity());
82 return Alloc;
83 }
84
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89 llvm::Value *MemPtr = EmitScalarExpr(E);
90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91 }
92
93 QualType BoolTy = getContext().BoolTy;
94 if (!E->getType()->isAnyComplexType())
95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96
97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103 if (E->isRValue())
104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105
106 // Just emit it as an l-value and drop the result.
107 EmitLValue(E);
108 }
109
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type. The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115 AggValueSlot aggSlot,
116 bool ignoreResult) {
117 switch (getEvaluationKind(E->getType())) {
118 case TEK_Scalar:
119 return RValue::get(EmitScalarExpr(E, ignoreResult));
120 case TEK_Complex:
121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122 case TEK_Aggregate:
123 if (!ignoreResult && aggSlot.isIgnored())
124 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125 EmitAggExpr(E, aggSlot);
126 return aggSlot.asRValue();
127 }
128 llvm_unreachable("bad evaluation kind");
129 }
130
131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134 AggValueSlot AggSlot = AggValueSlot::ignored();
135
136 if (hasAggregateEvaluationKind(E->getType()))
137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138 return EmitAnyExpr(E, AggSlot);
139 }
140
141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
142 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144 llvm::Value *Location,
145 Qualifiers Quals,
146 bool IsInit) {
147 // FIXME: This function should take an LValue as an argument.
148 switch (getEvaluationKind(E->getType())) {
149 case TEK_Complex:
150 EmitComplexExprIntoLValue(E,
151 MakeNaturalAlignAddrLValue(Location, E->getType()),
152 /*isInit*/ false);
153 return;
154
155 case TEK_Aggregate: {
156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158 AggValueSlot::IsDestructed_t(IsInit),
159 AggValueSlot::DoesNotNeedGCBarriers,
160 AggValueSlot::IsAliased_t(!IsInit)));
161 return;
162 }
163
164 case TEK_Scalar: {
165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166 LValue LV = MakeAddrLValue(Location, E->getType());
167 EmitStoreThroughLValue(RV, LV);
168 return;
169 }
170 }
171 llvm_unreachable("bad evaluation kind");
172 }
173
174 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,llvm::Value * ReferenceTemporary)175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176 const Expr *E, llvm::Value *ReferenceTemporary) {
177 // Objective-C++ ARC:
178 // If we are binding a reference to a temporary that has ownership, we
179 // need to perform retain/release operations on the temporary.
180 //
181 // FIXME: This should be looking at E, not M.
182 if (CGF.getLangOpts().ObjCAutoRefCount &&
183 M->getType()->isObjCLifetimeType()) {
184 QualType ObjCARCReferenceLifetimeType = M->getType();
185 switch (Qualifiers::ObjCLifetime Lifetime =
186 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187 case Qualifiers::OCL_None:
188 case Qualifiers::OCL_ExplicitNone:
189 // Carry on to normal cleanup handling.
190 break;
191
192 case Qualifiers::OCL_Autoreleasing:
193 // Nothing to do; cleaned up by an autorelease pool.
194 return;
195
196 case Qualifiers::OCL_Strong:
197 case Qualifiers::OCL_Weak:
198 switch (StorageDuration Duration = M->getStorageDuration()) {
199 case SD_Static:
200 // Note: we intentionally do not register a cleanup to release
201 // the object on program termination.
202 return;
203
204 case SD_Thread:
205 // FIXME: We should probably register a cleanup in this case.
206 return;
207
208 case SD_Automatic:
209 case SD_FullExpression:
210 assert(!ObjCARCReferenceLifetimeType->isArrayType());
211 CodeGenFunction::Destroyer *Destroy;
212 CleanupKind CleanupKind;
213 if (Lifetime == Qualifiers::OCL_Strong) {
214 const ValueDecl *VD = M->getExtendingDecl();
215 bool Precise =
216 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217 CleanupKind = CGF.getARCCleanupKind();
218 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219 : &CodeGenFunction::destroyARCStrongImprecise;
220 } else {
221 // __weak objects always get EH cleanups; otherwise, exceptions
222 // could cause really nasty crashes instead of mere leaks.
223 CleanupKind = NormalAndEHCleanup;
224 Destroy = &CodeGenFunction::destroyARCWeak;
225 }
226 if (Duration == SD_FullExpression)
227 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228 ObjCARCReferenceLifetimeType, *Destroy,
229 CleanupKind & EHCleanup);
230 else
231 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232 ObjCARCReferenceLifetimeType,
233 *Destroy, CleanupKind & EHCleanup);
234 return;
235
236 case SD_Dynamic:
237 llvm_unreachable("temporary cannot have dynamic storage duration");
238 }
239 llvm_unreachable("unknown storage duration");
240 }
241 }
242
243 CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244 if (const RecordType *RT =
245 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246 // Get the destructor for the reference temporary.
247 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248 if (!ClassDecl->hasTrivialDestructor())
249 ReferenceTemporaryDtor = ClassDecl->getDestructor();
250 }
251
252 if (!ReferenceTemporaryDtor)
253 return;
254
255 // Call the destructor for the temporary.
256 switch (M->getStorageDuration()) {
257 case SD_Static:
258 case SD_Thread: {
259 llvm::Constant *CleanupFn;
260 llvm::Constant *CleanupArg;
261 if (E->getType()->isArrayType()) {
262 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263 cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions);
265 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
266 } else {
267 CleanupFn =
268 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
269 CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
270 }
271 CGF.CGM.getCXXABI().registerGlobalDtor(
272 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
273 break;
274 }
275
276 case SD_FullExpression:
277 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
278 CodeGenFunction::destroyCXXObject,
279 CGF.getLangOpts().Exceptions);
280 break;
281
282 case SD_Automatic:
283 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
284 ReferenceTemporary, E->getType(),
285 CodeGenFunction::destroyCXXObject,
286 CGF.getLangOpts().Exceptions);
287 break;
288
289 case SD_Dynamic:
290 llvm_unreachable("temporary cannot have dynamic storage duration");
291 }
292 }
293
294 static llvm::Value *
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner)295 createReferenceTemporary(CodeGenFunction &CGF,
296 const MaterializeTemporaryExpr *M, const Expr *Inner) {
297 switch (M->getStorageDuration()) {
298 case SD_FullExpression:
299 case SD_Automatic:
300 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
301
302 case SD_Thread:
303 case SD_Static:
304 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
305
306 case SD_Dynamic:
307 llvm_unreachable("temporary can't have dynamic storage duration");
308 }
309 llvm_unreachable("unknown storage duration");
310 }
311
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)312 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
313 const MaterializeTemporaryExpr *M) {
314 const Expr *E = M->GetTemporaryExpr();
315
316 if (getLangOpts().ObjCAutoRefCount &&
317 M->getType()->isObjCLifetimeType() &&
318 M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
319 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
320 // FIXME: Fold this into the general case below.
321 llvm::Value *Object = createReferenceTemporary(*this, M, E);
322 LValue RefTempDst = MakeAddrLValue(Object, M->getType());
323
324 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
325 // We should not have emitted the initializer for this temporary as a
326 // constant.
327 assert(!Var->hasInitializer());
328 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
329 }
330
331 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
332
333 pushTemporaryCleanup(*this, M, E, Object);
334 return RefTempDst;
335 }
336
337 SmallVector<const Expr *, 2> CommaLHSs;
338 SmallVector<SubobjectAdjustment, 2> Adjustments;
339 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
340
341 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
342 EmitIgnoredExpr(CommaLHSs[I]);
343
344 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
345 if (opaque->getType()->isRecordType()) {
346 assert(Adjustments.empty());
347 return EmitOpaqueValueLValue(opaque);
348 }
349 }
350
351 // Create and initialize the reference temporary.
352 llvm::Value *Object = createReferenceTemporary(*this, M, E);
353 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
354 // If the temporary is a global and has a constant initializer, we may
355 // have already initialized it.
356 if (!Var->hasInitializer()) {
357 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
358 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
359 }
360 } else {
361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362 }
363 pushTemporaryCleanup(*this, M, E, Object);
364
365 // Perform derived-to-base casts and/or field accesses, to get from the
366 // temporary object we created (and, potentially, for which we extended
367 // the lifetime) to the subobject we're binding the reference to.
368 for (unsigned I = Adjustments.size(); I != 0; --I) {
369 SubobjectAdjustment &Adjustment = Adjustments[I-1];
370 switch (Adjustment.Kind) {
371 case SubobjectAdjustment::DerivedToBaseAdjustment:
372 Object =
373 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
374 Adjustment.DerivedToBase.BasePath->path_begin(),
375 Adjustment.DerivedToBase.BasePath->path_end(),
376 /*NullCheckValue=*/ false);
377 break;
378
379 case SubobjectAdjustment::FieldAdjustment: {
380 LValue LV = MakeAddrLValue(Object, E->getType());
381 LV = EmitLValueForField(LV, Adjustment.Field);
382 assert(LV.isSimple() &&
383 "materialized temporary field is not a simple lvalue");
384 Object = LV.getAddress();
385 break;
386 }
387
388 case SubobjectAdjustment::MemberPointerAdjustment: {
389 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
390 Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
391 *this, Object, Ptr, Adjustment.Ptr.MPT);
392 break;
393 }
394 }
395 }
396
397 return MakeAddrLValue(Object, M->getType());
398 }
399
400 RValue
EmitReferenceBindingToExpr(const Expr * E)401 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
402 // Emit the expression as an lvalue.
403 LValue LV = EmitLValue(E);
404 assert(LV.isSimple());
405 llvm::Value *Value = LV.getAddress();
406
407 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
408 // C++11 [dcl.ref]p5 (as amended by core issue 453):
409 // If a glvalue to which a reference is directly bound designates neither
410 // an existing object or function of an appropriate type nor a region of
411 // storage of suitable size and alignment to contain an object of the
412 // reference's type, the behavior is undefined.
413 QualType Ty = E->getType();
414 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
415 }
416
417 return RValue::get(Value);
418 }
419
420
421 /// getAccessedFieldNo - Given an encoded value and a result number, return the
422 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)423 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
424 const llvm::Constant *Elts) {
425 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
426 ->getZExtValue();
427 }
428
429 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)430 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
431 llvm::Value *High) {
432 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
433 llvm::Value *K47 = Builder.getInt64(47);
434 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
435 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
436 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
437 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
438 return Builder.CreateMul(B1, KMul);
439 }
440
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Address,QualType Ty,CharUnits Alignment)441 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
442 llvm::Value *Address,
443 QualType Ty, CharUnits Alignment) {
444 if (!SanitizePerformTypeCheck)
445 return;
446
447 // Don't check pointers outside the default address space. The null check
448 // isn't correct, the object-size check isn't supported by LLVM, and we can't
449 // communicate the addresses to the runtime handler for the vptr check.
450 if (Address->getType()->getPointerAddressSpace())
451 return;
452
453 llvm::Value *Cond = 0;
454 llvm::BasicBlock *Done = 0;
455
456 if (SanOpts->Null) {
457 // The glvalue must not be an empty glvalue.
458 Cond = Builder.CreateICmpNE(
459 Address, llvm::Constant::getNullValue(Address->getType()));
460
461 if (TCK == TCK_DowncastPointer) {
462 // When performing a pointer downcast, it's OK if the value is null.
463 // Skip the remaining checks in that case.
464 Done = createBasicBlock("null");
465 llvm::BasicBlock *Rest = createBasicBlock("not.null");
466 Builder.CreateCondBr(Cond, Rest, Done);
467 EmitBlock(Rest);
468 Cond = 0;
469 }
470 }
471
472 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
473 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
474
475 // The glvalue must refer to a large enough storage region.
476 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
477 // to check this.
478 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
479 llvm::Value *Min = Builder.getFalse();
480 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
481 llvm::Value *LargeEnough =
482 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
483 llvm::ConstantInt::get(IntPtrTy, Size));
484 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
485 }
486
487 uint64_t AlignVal = 0;
488
489 if (SanOpts->Alignment) {
490 AlignVal = Alignment.getQuantity();
491 if (!Ty->isIncompleteType() && !AlignVal)
492 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
493
494 // The glvalue must be suitably aligned.
495 if (AlignVal) {
496 llvm::Value *Align =
497 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
498 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
499 llvm::Value *Aligned =
500 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
501 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
502 }
503 }
504
505 if (Cond) {
506 llvm::Constant *StaticData[] = {
507 EmitCheckSourceLocation(Loc),
508 EmitCheckTypeDescriptor(Ty),
509 llvm::ConstantInt::get(SizeTy, AlignVal),
510 llvm::ConstantInt::get(Int8Ty, TCK)
511 };
512 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
513 }
514
515 // If possible, check that the vptr indicates that there is a subobject of
516 // type Ty at offset zero within this object.
517 //
518 // C++11 [basic.life]p5,6:
519 // [For storage which does not refer to an object within its lifetime]
520 // The program has undefined behavior if:
521 // -- the [pointer or glvalue] is used to access a non-static data member
522 // or call a non-static member function
523 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
524 if (SanOpts->Vptr &&
525 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
526 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
527 RD && RD->hasDefinition() && RD->isDynamicClass()) {
528 // Compute a hash of the mangled name of the type.
529 //
530 // FIXME: This is not guaranteed to be deterministic! Move to a
531 // fingerprinting mechanism once LLVM provides one. For the time
532 // being the implementation happens to be deterministic.
533 SmallString<64> MangledName;
534 llvm::raw_svector_ostream Out(MangledName);
535 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
536 Out);
537 llvm::hash_code TypeHash = hash_value(Out.str());
538
539 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
540 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
541 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
542 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
543 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
544 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
545
546 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
547 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
548
549 // Look the hash up in our cache.
550 const int CacheSize = 128;
551 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
552 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
553 "__ubsan_vptr_type_cache");
554 llvm::Value *Slot = Builder.CreateAnd(Hash,
555 llvm::ConstantInt::get(IntPtrTy,
556 CacheSize-1));
557 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
558 llvm::Value *CacheVal =
559 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
560
561 // If the hash isn't in the cache, call a runtime handler to perform the
562 // hard work of checking whether the vptr is for an object of the right
563 // type. This will either fill in the cache and return, or produce a
564 // diagnostic.
565 llvm::Constant *StaticData[] = {
566 EmitCheckSourceLocation(Loc),
567 EmitCheckTypeDescriptor(Ty),
568 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
569 llvm::ConstantInt::get(Int8Ty, TCK)
570 };
571 llvm::Value *DynamicData[] = { Address, Hash };
572 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
573 "dynamic_type_cache_miss", StaticData, DynamicData,
574 CRK_AlwaysRecoverable);
575 }
576
577 if (Done) {
578 Builder.CreateBr(Done);
579 EmitBlock(Done);
580 }
581 }
582
583 /// Determine whether this expression refers to a flexible array member in a
584 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)585 static bool isFlexibleArrayMemberExpr(const Expr *E) {
586 // For compatibility with existing code, we treat arrays of length 0 or
587 // 1 as flexible array members.
588 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
589 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
590 if (CAT->getSize().ugt(1))
591 return false;
592 } else if (!isa<IncompleteArrayType>(AT))
593 return false;
594
595 E = E->IgnoreParens();
596
597 // A flexible array member must be the last member in the class.
598 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
599 // FIXME: If the base type of the member expr is not FD->getParent(),
600 // this should not be treated as a flexible array member access.
601 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
602 RecordDecl::field_iterator FI(
603 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
604 return ++FI == FD->getParent()->field_end();
605 }
606 }
607
608 return false;
609 }
610
611 /// If Base is known to point to the start of an array, return the length of
612 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)613 static llvm::Value *getArrayIndexingBound(
614 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
615 // For the vector indexing extension, the bound is the number of elements.
616 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
617 IndexedType = Base->getType();
618 return CGF.Builder.getInt32(VT->getNumElements());
619 }
620
621 Base = Base->IgnoreParens();
622
623 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
624 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
625 !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
626 IndexedType = CE->getSubExpr()->getType();
627 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
628 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
629 return CGF.Builder.getInt(CAT->getSize());
630 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
631 return CGF.getVLASize(VAT).first;
632 }
633 }
634
635 return 0;
636 }
637
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)638 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
639 llvm::Value *Index, QualType IndexType,
640 bool Accessed) {
641 assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
642
643 QualType IndexedType;
644 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
645 if (!Bound)
646 return;
647
648 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
649 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
650 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
651
652 llvm::Constant *StaticData[] = {
653 EmitCheckSourceLocation(E->getExprLoc()),
654 EmitCheckTypeDescriptor(IndexedType),
655 EmitCheckTypeDescriptor(IndexType)
656 };
657 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
658 : Builder.CreateICmpULE(IndexVal, BoundVal);
659 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
660 }
661
662
663 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)664 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
665 bool isInc, bool isPre) {
666 ComplexPairTy InVal = EmitLoadOfComplex(LV);
667
668 llvm::Value *NextVal;
669 if (isa<llvm::IntegerType>(InVal.first->getType())) {
670 uint64_t AmountVal = isInc ? 1 : -1;
671 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
672
673 // Add the inc/dec to the real part.
674 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
675 } else {
676 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
677 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
678 if (!isInc)
679 FVal.changeSign();
680 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
681
682 // Add the inc/dec to the real part.
683 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
684 }
685
686 ComplexPairTy IncVal(NextVal, InVal.second);
687
688 // Store the updated result through the lvalue.
689 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
690
691 // If this is a postinc, return the value read from memory, otherwise use the
692 // updated value.
693 return isPre ? IncVal : InVal;
694 }
695
696
697 //===----------------------------------------------------------------------===//
698 // LValue Expression Emission
699 //===----------------------------------------------------------------------===//
700
GetUndefRValue(QualType Ty)701 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
702 if (Ty->isVoidType())
703 return RValue::get(0);
704
705 switch (getEvaluationKind(Ty)) {
706 case TEK_Complex: {
707 llvm::Type *EltTy =
708 ConvertType(Ty->castAs<ComplexType>()->getElementType());
709 llvm::Value *U = llvm::UndefValue::get(EltTy);
710 return RValue::getComplex(std::make_pair(U, U));
711 }
712
713 // If this is a use of an undefined aggregate type, the aggregate must have an
714 // identifiable address. Just because the contents of the value are undefined
715 // doesn't mean that the address can't be taken and compared.
716 case TEK_Aggregate: {
717 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
718 return RValue::getAggregate(DestPtr);
719 }
720
721 case TEK_Scalar:
722 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
723 }
724 llvm_unreachable("bad evaluation kind");
725 }
726
EmitUnsupportedRValue(const Expr * E,const char * Name)727 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
728 const char *Name) {
729 ErrorUnsupported(E, Name);
730 return GetUndefRValue(E->getType());
731 }
732
EmitUnsupportedLValue(const Expr * E,const char * Name)733 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
734 const char *Name) {
735 ErrorUnsupported(E, Name);
736 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
737 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
738 }
739
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)740 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
741 LValue LV;
742 if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
743 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
744 else
745 LV = EmitLValue(E);
746 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
747 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
748 E->getType(), LV.getAlignment());
749 return LV;
750 }
751
752 /// EmitLValue - Emit code to compute a designator that specifies the location
753 /// of the expression.
754 ///
755 /// This can return one of two things: a simple address or a bitfield reference.
756 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
757 /// an LLVM pointer type.
758 ///
759 /// If this returns a bitfield reference, nothing about the pointee type of the
760 /// LLVM value is known: For example, it may not be a pointer to an integer.
761 ///
762 /// If this returns a normal address, and if the lvalue's C type is fixed size,
763 /// this method guarantees that the returned pointer type will point to an LLVM
764 /// type of the same size of the lvalue's type. If the lvalue has a variable
765 /// length type, this is not possible.
766 ///
EmitLValue(const Expr * E)767 LValue CodeGenFunction::EmitLValue(const Expr *E) {
768 switch (E->getStmtClass()) {
769 default: return EmitUnsupportedLValue(E, "l-value expression");
770
771 case Expr::ObjCPropertyRefExprClass:
772 llvm_unreachable("cannot emit a property reference directly");
773
774 case Expr::ObjCSelectorExprClass:
775 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
776 case Expr::ObjCIsaExprClass:
777 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
778 case Expr::BinaryOperatorClass:
779 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
780 case Expr::CompoundAssignOperatorClass:
781 if (!E->getType()->isAnyComplexType())
782 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
783 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
784 case Expr::CallExprClass:
785 case Expr::CXXMemberCallExprClass:
786 case Expr::CXXOperatorCallExprClass:
787 case Expr::UserDefinedLiteralClass:
788 return EmitCallExprLValue(cast<CallExpr>(E));
789 case Expr::VAArgExprClass:
790 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
791 case Expr::DeclRefExprClass:
792 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
793 case Expr::ParenExprClass:
794 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
795 case Expr::GenericSelectionExprClass:
796 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
797 case Expr::PredefinedExprClass:
798 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
799 case Expr::StringLiteralClass:
800 return EmitStringLiteralLValue(cast<StringLiteral>(E));
801 case Expr::ObjCEncodeExprClass:
802 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
803 case Expr::PseudoObjectExprClass:
804 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
805 case Expr::InitListExprClass:
806 return EmitInitListLValue(cast<InitListExpr>(E));
807 case Expr::CXXTemporaryObjectExprClass:
808 case Expr::CXXConstructExprClass:
809 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
810 case Expr::CXXBindTemporaryExprClass:
811 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
812 case Expr::CXXUuidofExprClass:
813 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
814 case Expr::LambdaExprClass:
815 return EmitLambdaLValue(cast<LambdaExpr>(E));
816
817 case Expr::ExprWithCleanupsClass: {
818 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
819 enterFullExpression(cleanups);
820 RunCleanupsScope Scope(*this);
821 return EmitLValue(cleanups->getSubExpr());
822 }
823
824 case Expr::CXXDefaultArgExprClass:
825 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
826 case Expr::CXXDefaultInitExprClass: {
827 CXXDefaultInitExprScope Scope(*this);
828 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
829 }
830 case Expr::CXXTypeidExprClass:
831 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
832
833 case Expr::ObjCMessageExprClass:
834 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
835 case Expr::ObjCIvarRefExprClass:
836 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
837 case Expr::StmtExprClass:
838 return EmitStmtExprLValue(cast<StmtExpr>(E));
839 case Expr::UnaryOperatorClass:
840 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
841 case Expr::ArraySubscriptExprClass:
842 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
843 case Expr::ExtVectorElementExprClass:
844 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
845 case Expr::MemberExprClass:
846 return EmitMemberExpr(cast<MemberExpr>(E));
847 case Expr::CompoundLiteralExprClass:
848 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
849 case Expr::ConditionalOperatorClass:
850 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
851 case Expr::BinaryConditionalOperatorClass:
852 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
853 case Expr::ChooseExprClass:
854 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
855 case Expr::OpaqueValueExprClass:
856 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
857 case Expr::SubstNonTypeTemplateParmExprClass:
858 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
859 case Expr::ImplicitCastExprClass:
860 case Expr::CStyleCastExprClass:
861 case Expr::CXXFunctionalCastExprClass:
862 case Expr::CXXStaticCastExprClass:
863 case Expr::CXXDynamicCastExprClass:
864 case Expr::CXXReinterpretCastExprClass:
865 case Expr::CXXConstCastExprClass:
866 case Expr::ObjCBridgedCastExprClass:
867 return EmitCastLValue(cast<CastExpr>(E));
868
869 case Expr::MaterializeTemporaryExprClass:
870 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
871 }
872 }
873
874 /// Given an object of the given canonical type, can we safely copy a
875 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)876 static bool isConstantEmittableObjectType(QualType type) {
877 assert(type.isCanonical());
878 assert(!type->isReferenceType());
879
880 // Must be const-qualified but non-volatile.
881 Qualifiers qs = type.getLocalQualifiers();
882 if (!qs.hasConst() || qs.hasVolatile()) return false;
883
884 // Otherwise, all object types satisfy this except C++ classes with
885 // mutable subobjects or non-trivial copy/destroy behavior.
886 if (const RecordType *RT = dyn_cast<RecordType>(type))
887 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
888 if (RD->hasMutableFields() || !RD->isTrivial())
889 return false;
890
891 return true;
892 }
893
894 /// Can we constant-emit a load of a reference to a variable of the
895 /// given type? This is different from predicates like
896 /// Decl::isUsableInConstantExpressions because we do want it to apply
897 /// in situations that don't necessarily satisfy the language's rules
898 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
899 /// to do this with const float variables even if those variables
900 /// aren't marked 'constexpr'.
901 enum ConstantEmissionKind {
902 CEK_None,
903 CEK_AsReferenceOnly,
904 CEK_AsValueOrReference,
905 CEK_AsValueOnly
906 };
checkVarTypeForConstantEmission(QualType type)907 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
908 type = type.getCanonicalType();
909 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
910 if (isConstantEmittableObjectType(ref->getPointeeType()))
911 return CEK_AsValueOrReference;
912 return CEK_AsReferenceOnly;
913 }
914 if (isConstantEmittableObjectType(type))
915 return CEK_AsValueOnly;
916 return CEK_None;
917 }
918
919 /// Try to emit a reference to the given value without producing it as
920 /// an l-value. This is actually more than an optimization: we can't
921 /// produce an l-value for variables that we never actually captured
922 /// in a block or lambda, which means const int variables or constexpr
923 /// literals or similar.
924 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)925 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
926 ValueDecl *value = refExpr->getDecl();
927
928 // The value needs to be an enum constant or a constant variable.
929 ConstantEmissionKind CEK;
930 if (isa<ParmVarDecl>(value)) {
931 CEK = CEK_None;
932 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
933 CEK = checkVarTypeForConstantEmission(var->getType());
934 } else if (isa<EnumConstantDecl>(value)) {
935 CEK = CEK_AsValueOnly;
936 } else {
937 CEK = CEK_None;
938 }
939 if (CEK == CEK_None) return ConstantEmission();
940
941 Expr::EvalResult result;
942 bool resultIsReference;
943 QualType resultType;
944
945 // It's best to evaluate all the way as an r-value if that's permitted.
946 if (CEK != CEK_AsReferenceOnly &&
947 refExpr->EvaluateAsRValue(result, getContext())) {
948 resultIsReference = false;
949 resultType = refExpr->getType();
950
951 // Otherwise, try to evaluate as an l-value.
952 } else if (CEK != CEK_AsValueOnly &&
953 refExpr->EvaluateAsLValue(result, getContext())) {
954 resultIsReference = true;
955 resultType = value->getType();
956
957 // Failure.
958 } else {
959 return ConstantEmission();
960 }
961
962 // In any case, if the initializer has side-effects, abandon ship.
963 if (result.HasSideEffects)
964 return ConstantEmission();
965
966 // Emit as a constant.
967 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
968
969 // Make sure we emit a debug reference to the global variable.
970 // This should probably fire even for
971 if (isa<VarDecl>(value)) {
972 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
973 EmitDeclRefExprDbgValue(refExpr, C);
974 } else {
975 assert(isa<EnumConstantDecl>(value));
976 EmitDeclRefExprDbgValue(refExpr, C);
977 }
978
979 // If we emitted a reference constant, we need to dereference that.
980 if (resultIsReference)
981 return ConstantEmission::forReference(C);
982
983 return ConstantEmission::forValue(C);
984 }
985
EmitLoadOfScalar(LValue lvalue)986 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
987 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
988 lvalue.getAlignment().getQuantity(),
989 lvalue.getType(), lvalue.getTBAAInfo(),
990 lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
991 }
992
hasBooleanRepresentation(QualType Ty)993 static bool hasBooleanRepresentation(QualType Ty) {
994 if (Ty->isBooleanType())
995 return true;
996
997 if (const EnumType *ET = Ty->getAs<EnumType>())
998 return ET->getDecl()->getIntegerType()->isBooleanType();
999
1000 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1001 return hasBooleanRepresentation(AT->getValueType());
1002
1003 return false;
1004 }
1005
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums)1006 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1007 llvm::APInt &Min, llvm::APInt &End,
1008 bool StrictEnums) {
1009 const EnumType *ET = Ty->getAs<EnumType>();
1010 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1011 ET && !ET->getDecl()->isFixed();
1012 bool IsBool = hasBooleanRepresentation(Ty);
1013 if (!IsBool && !IsRegularCPlusPlusEnum)
1014 return false;
1015
1016 if (IsBool) {
1017 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1018 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1019 } else {
1020 const EnumDecl *ED = ET->getDecl();
1021 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1022 unsigned Bitwidth = LTy->getScalarSizeInBits();
1023 unsigned NumNegativeBits = ED->getNumNegativeBits();
1024 unsigned NumPositiveBits = ED->getNumPositiveBits();
1025
1026 if (NumNegativeBits) {
1027 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1028 assert(NumBits <= Bitwidth);
1029 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1030 Min = -End;
1031 } else {
1032 assert(NumPositiveBits <= Bitwidth);
1033 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1034 Min = llvm::APInt(Bitwidth, 0);
1035 }
1036 }
1037 return true;
1038 }
1039
getRangeForLoadFromType(QualType Ty)1040 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1041 llvm::APInt Min, End;
1042 if (!getRangeForType(*this, Ty, Min, End,
1043 CGM.getCodeGenOpts().StrictEnums))
1044 return 0;
1045
1046 llvm::MDBuilder MDHelper(getLLVMContext());
1047 return MDHelper.createRange(Min, End);
1048 }
1049
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,QualType TBAABaseType,uint64_t TBAAOffset)1050 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1051 unsigned Alignment, QualType Ty,
1052 llvm::MDNode *TBAAInfo,
1053 QualType TBAABaseType,
1054 uint64_t TBAAOffset) {
1055 // For better performance, handle vector loads differently.
1056 if (Ty->isVectorType()) {
1057 llvm::Value *V;
1058 const llvm::Type *EltTy =
1059 cast<llvm::PointerType>(Addr->getType())->getElementType();
1060
1061 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1062
1063 // Handle vectors of size 3, like size 4 for better performance.
1064 if (VTy->getNumElements() == 3) {
1065
1066 // Bitcast to vec4 type.
1067 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1068 4);
1069 llvm::PointerType *ptVec4Ty =
1070 llvm::PointerType::get(vec4Ty,
1071 (cast<llvm::PointerType>(
1072 Addr->getType()))->getAddressSpace());
1073 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1074 "castToVec4");
1075 // Now load value.
1076 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1077
1078 // Shuffle vector to get vec3.
1079 llvm::Constant *Mask[] = {
1080 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1081 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1082 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1083 };
1084
1085 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1086 V = Builder.CreateShuffleVector(LoadVal,
1087 llvm::UndefValue::get(vec4Ty),
1088 MaskV, "extractVec");
1089 return EmitFromMemory(V, Ty);
1090 }
1091 }
1092
1093 // Atomic operations have to be done on integral types.
1094 if (Ty->isAtomicType()) {
1095 LValue lvalue = LValue::MakeAddr(Addr, Ty,
1096 CharUnits::fromQuantity(Alignment),
1097 getContext(), TBAAInfo);
1098 return EmitAtomicLoad(lvalue).getScalarVal();
1099 }
1100
1101 llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1102 if (Volatile)
1103 Load->setVolatile(true);
1104 if (Alignment)
1105 Load->setAlignment(Alignment);
1106 if (TBAAInfo) {
1107 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1108 TBAAOffset);
1109 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1110 }
1111
1112 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1113 (SanOpts->Enum && Ty->getAs<EnumType>())) {
1114 llvm::APInt Min, End;
1115 if (getRangeForType(*this, Ty, Min, End, true)) {
1116 --End;
1117 llvm::Value *Check;
1118 if (!Min)
1119 Check = Builder.CreateICmpULE(
1120 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1121 else {
1122 llvm::Value *Upper = Builder.CreateICmpSLE(
1123 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1124 llvm::Value *Lower = Builder.CreateICmpSGE(
1125 Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1126 Check = Builder.CreateAnd(Upper, Lower);
1127 }
1128 // FIXME: Provide a SourceLocation.
1129 EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1130 EmitCheckValue(Load), CRK_Recoverable);
1131 }
1132 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1133 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1134 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1135
1136 return EmitFromMemory(Load, Ty);
1137 }
1138
EmitToMemory(llvm::Value * Value,QualType Ty)1139 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1140 // Bool has a different representation in memory than in registers.
1141 if (hasBooleanRepresentation(Ty)) {
1142 // This should really always be an i1, but sometimes it's already
1143 // an i8, and it's awkward to track those cases down.
1144 if (Value->getType()->isIntegerTy(1))
1145 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1146 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1147 "wrong value rep of bool");
1148 }
1149
1150 return Value;
1151 }
1152
EmitFromMemory(llvm::Value * Value,QualType Ty)1153 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1154 // Bool has a different representation in memory than in registers.
1155 if (hasBooleanRepresentation(Ty)) {
1156 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1157 "wrong value rep of bool");
1158 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1159 }
1160
1161 return Value;
1162 }
1163
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit,QualType TBAABaseType,uint64_t TBAAOffset)1164 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1165 bool Volatile, unsigned Alignment,
1166 QualType Ty,
1167 llvm::MDNode *TBAAInfo,
1168 bool isInit, QualType TBAABaseType,
1169 uint64_t TBAAOffset) {
1170
1171 // Handle vectors differently to get better performance.
1172 if (Ty->isVectorType()) {
1173 llvm::Type *SrcTy = Value->getType();
1174 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1175 // Handle vec3 special.
1176 if (VecTy->getNumElements() == 3) {
1177 llvm::LLVMContext &VMContext = getLLVMContext();
1178
1179 // Our source is a vec3, do a shuffle vector to make it a vec4.
1180 SmallVector<llvm::Constant*, 4> Mask;
1181 Mask.push_back(llvm::ConstantInt::get(
1182 llvm::Type::getInt32Ty(VMContext),
1183 0));
1184 Mask.push_back(llvm::ConstantInt::get(
1185 llvm::Type::getInt32Ty(VMContext),
1186 1));
1187 Mask.push_back(llvm::ConstantInt::get(
1188 llvm::Type::getInt32Ty(VMContext),
1189 2));
1190 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1191
1192 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1193 Value = Builder.CreateShuffleVector(Value,
1194 llvm::UndefValue::get(VecTy),
1195 MaskV, "extractVec");
1196 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1197 }
1198 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1199 if (DstPtr->getElementType() != SrcTy) {
1200 llvm::Type *MemTy =
1201 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1202 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1203 }
1204 }
1205
1206 Value = EmitToMemory(Value, Ty);
1207
1208 if (Ty->isAtomicType()) {
1209 EmitAtomicStore(RValue::get(Value),
1210 LValue::MakeAddr(Addr, Ty,
1211 CharUnits::fromQuantity(Alignment),
1212 getContext(), TBAAInfo),
1213 isInit);
1214 return;
1215 }
1216
1217 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1218 if (Alignment)
1219 Store->setAlignment(Alignment);
1220 if (TBAAInfo) {
1221 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1222 TBAAOffset);
1223 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1224 }
1225 }
1226
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1227 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1228 bool isInit) {
1229 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1230 lvalue.getAlignment().getQuantity(), lvalue.getType(),
1231 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1232 lvalue.getTBAAOffset());
1233 }
1234
1235 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1236 /// method emits the address of the lvalue, then loads the result as an rvalue,
1237 /// returning the rvalue.
EmitLoadOfLValue(LValue LV)1238 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1239 if (LV.isObjCWeak()) {
1240 // load of a __weak object.
1241 llvm::Value *AddrWeakObj = LV.getAddress();
1242 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1243 AddrWeakObj));
1244 }
1245 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1246 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1247 Object = EmitObjCConsumeObject(LV.getType(), Object);
1248 return RValue::get(Object);
1249 }
1250
1251 if (LV.isSimple()) {
1252 assert(!LV.getType()->isFunctionType());
1253
1254 // Everything needs a load.
1255 return RValue::get(EmitLoadOfScalar(LV));
1256 }
1257
1258 if (LV.isVectorElt()) {
1259 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1260 LV.isVolatileQualified());
1261 Load->setAlignment(LV.getAlignment().getQuantity());
1262 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1263 "vecext"));
1264 }
1265
1266 // If this is a reference to a subset of the elements of a vector, either
1267 // shuffle the input or extract/insert them as appropriate.
1268 if (LV.isExtVectorElt())
1269 return EmitLoadOfExtVectorElementLValue(LV);
1270
1271 assert(LV.isBitField() && "Unknown LValue type!");
1272 return EmitLoadOfBitfieldLValue(LV);
1273 }
1274
EmitLoadOfBitfieldLValue(LValue LV)1275 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1276 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1277
1278 // Get the output type.
1279 llvm::Type *ResLTy = ConvertType(LV.getType());
1280
1281 llvm::Value *Ptr = LV.getBitFieldAddr();
1282 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1283 "bf.load");
1284 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1285
1286 if (Info.IsSigned) {
1287 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1288 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1289 if (HighBits)
1290 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1291 if (Info.Offset + HighBits)
1292 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1293 } else {
1294 if (Info.Offset)
1295 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1296 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1297 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1298 Info.Size),
1299 "bf.clear");
1300 }
1301 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1302
1303 return RValue::get(Val);
1304 }
1305
1306 // If this is a reference to a subset of the elements of a vector, create an
1307 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1308 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1309 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1310 LV.isVolatileQualified());
1311 Load->setAlignment(LV.getAlignment().getQuantity());
1312 llvm::Value *Vec = Load;
1313
1314 const llvm::Constant *Elts = LV.getExtVectorElts();
1315
1316 // If the result of the expression is a non-vector type, we must be extracting
1317 // a single element. Just codegen as an extractelement.
1318 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1319 if (!ExprVT) {
1320 unsigned InIdx = getAccessedFieldNo(0, Elts);
1321 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1322 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1323 }
1324
1325 // Always use shuffle vector to try to retain the original program structure
1326 unsigned NumResultElts = ExprVT->getNumElements();
1327
1328 SmallVector<llvm::Constant*, 4> Mask;
1329 for (unsigned i = 0; i != NumResultElts; ++i)
1330 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1331
1332 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1333 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1334 MaskV);
1335 return RValue::get(Vec);
1336 }
1337
1338
1339
1340 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1341 /// lvalue, where both are guaranteed to the have the same type, and that type
1342 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1343 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1344 if (!Dst.isSimple()) {
1345 if (Dst.isVectorElt()) {
1346 // Read/modify/write the vector, inserting the new element.
1347 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1348 Dst.isVolatileQualified());
1349 Load->setAlignment(Dst.getAlignment().getQuantity());
1350 llvm::Value *Vec = Load;
1351 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1352 Dst.getVectorIdx(), "vecins");
1353 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1354 Dst.isVolatileQualified());
1355 Store->setAlignment(Dst.getAlignment().getQuantity());
1356 return;
1357 }
1358
1359 // If this is an update of extended vector elements, insert them as
1360 // appropriate.
1361 if (Dst.isExtVectorElt())
1362 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1363
1364 assert(Dst.isBitField() && "Unknown LValue type");
1365 return EmitStoreThroughBitfieldLValue(Src, Dst);
1366 }
1367
1368 // There's special magic for assigning into an ARC-qualified l-value.
1369 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1370 switch (Lifetime) {
1371 case Qualifiers::OCL_None:
1372 llvm_unreachable("present but none");
1373
1374 case Qualifiers::OCL_ExplicitNone:
1375 // nothing special
1376 break;
1377
1378 case Qualifiers::OCL_Strong:
1379 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1380 return;
1381
1382 case Qualifiers::OCL_Weak:
1383 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1384 return;
1385
1386 case Qualifiers::OCL_Autoreleasing:
1387 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1388 Src.getScalarVal()));
1389 // fall into the normal path
1390 break;
1391 }
1392 }
1393
1394 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1395 // load of a __weak object.
1396 llvm::Value *LvalueDst = Dst.getAddress();
1397 llvm::Value *src = Src.getScalarVal();
1398 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1399 return;
1400 }
1401
1402 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1403 // load of a __strong object.
1404 llvm::Value *LvalueDst = Dst.getAddress();
1405 llvm::Value *src = Src.getScalarVal();
1406 if (Dst.isObjCIvar()) {
1407 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1408 llvm::Type *ResultType = ConvertType(getContext().LongTy);
1409 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1410 llvm::Value *dst = RHS;
1411 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1412 llvm::Value *LHS =
1413 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1414 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1415 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1416 BytesBetween);
1417 } else if (Dst.isGlobalObjCRef()) {
1418 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1419 Dst.isThreadLocalRef());
1420 }
1421 else
1422 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1423 return;
1424 }
1425
1426 assert(Src.isScalar() && "Can't emit an agg store with this method");
1427 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1428 }
1429
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1430 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1431 llvm::Value **Result) {
1432 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1433 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1434 llvm::Value *Ptr = Dst.getBitFieldAddr();
1435
1436 // Get the source value, truncated to the width of the bit-field.
1437 llvm::Value *SrcVal = Src.getScalarVal();
1438
1439 // Cast the source to the storage type and shift it into place.
1440 SrcVal = Builder.CreateIntCast(SrcVal,
1441 Ptr->getType()->getPointerElementType(),
1442 /*IsSigned=*/false);
1443 llvm::Value *MaskedVal = SrcVal;
1444
1445 // See if there are other bits in the bitfield's storage we'll need to load
1446 // and mask together with source before storing.
1447 if (Info.StorageSize != Info.Size) {
1448 assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1449 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1450 "bf.load");
1451 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1452
1453 // Mask the source value as needed.
1454 if (!hasBooleanRepresentation(Dst.getType()))
1455 SrcVal = Builder.CreateAnd(SrcVal,
1456 llvm::APInt::getLowBitsSet(Info.StorageSize,
1457 Info.Size),
1458 "bf.value");
1459 MaskedVal = SrcVal;
1460 if (Info.Offset)
1461 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1462
1463 // Mask out the original value.
1464 Val = Builder.CreateAnd(Val,
1465 ~llvm::APInt::getBitsSet(Info.StorageSize,
1466 Info.Offset,
1467 Info.Offset + Info.Size),
1468 "bf.clear");
1469
1470 // Or together the unchanged values and the source value.
1471 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1472 } else {
1473 assert(Info.Offset == 0);
1474 }
1475
1476 // Write the new value back out.
1477 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1478 Dst.isVolatileQualified());
1479 Store->setAlignment(Info.StorageAlignment);
1480
1481 // Return the new value of the bit-field, if requested.
1482 if (Result) {
1483 llvm::Value *ResultVal = MaskedVal;
1484
1485 // Sign extend the value if needed.
1486 if (Info.IsSigned) {
1487 assert(Info.Size <= Info.StorageSize);
1488 unsigned HighBits = Info.StorageSize - Info.Size;
1489 if (HighBits) {
1490 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1491 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1492 }
1493 }
1494
1495 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1496 "bf.result.cast");
1497 *Result = EmitFromMemory(ResultVal, Dst.getType());
1498 }
1499 }
1500
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1501 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1502 LValue Dst) {
1503 // This access turns into a read/modify/write of the vector. Load the input
1504 // value now.
1505 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1506 Dst.isVolatileQualified());
1507 Load->setAlignment(Dst.getAlignment().getQuantity());
1508 llvm::Value *Vec = Load;
1509 const llvm::Constant *Elts = Dst.getExtVectorElts();
1510
1511 llvm::Value *SrcVal = Src.getScalarVal();
1512
1513 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1514 unsigned NumSrcElts = VTy->getNumElements();
1515 unsigned NumDstElts =
1516 cast<llvm::VectorType>(Vec->getType())->getNumElements();
1517 if (NumDstElts == NumSrcElts) {
1518 // Use shuffle vector is the src and destination are the same number of
1519 // elements and restore the vector mask since it is on the side it will be
1520 // stored.
1521 SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1522 for (unsigned i = 0; i != NumSrcElts; ++i)
1523 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1524
1525 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1526 Vec = Builder.CreateShuffleVector(SrcVal,
1527 llvm::UndefValue::get(Vec->getType()),
1528 MaskV);
1529 } else if (NumDstElts > NumSrcElts) {
1530 // Extended the source vector to the same length and then shuffle it
1531 // into the destination.
1532 // FIXME: since we're shuffling with undef, can we just use the indices
1533 // into that? This could be simpler.
1534 SmallVector<llvm::Constant*, 4> ExtMask;
1535 for (unsigned i = 0; i != NumSrcElts; ++i)
1536 ExtMask.push_back(Builder.getInt32(i));
1537 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1538 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1539 llvm::Value *ExtSrcVal =
1540 Builder.CreateShuffleVector(SrcVal,
1541 llvm::UndefValue::get(SrcVal->getType()),
1542 ExtMaskV);
1543 // build identity
1544 SmallVector<llvm::Constant*, 4> Mask;
1545 for (unsigned i = 0; i != NumDstElts; ++i)
1546 Mask.push_back(Builder.getInt32(i));
1547
1548 // modify when what gets shuffled in
1549 for (unsigned i = 0; i != NumSrcElts; ++i)
1550 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1551 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1552 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1553 } else {
1554 // We should never shorten the vector
1555 llvm_unreachable("unexpected shorten vector length");
1556 }
1557 } else {
1558 // If the Src is a scalar (not a vector) it must be updating one element.
1559 unsigned InIdx = getAccessedFieldNo(0, Elts);
1560 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1561 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1562 }
1563
1564 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1565 Dst.isVolatileQualified());
1566 Store->setAlignment(Dst.getAlignment().getQuantity());
1567 }
1568
1569 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1570 // generating write-barries API. It is currently a global, ivar,
1571 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1572 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1573 LValue &LV,
1574 bool IsMemberAccess=false) {
1575 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1576 return;
1577
1578 if (isa<ObjCIvarRefExpr>(E)) {
1579 QualType ExpTy = E->getType();
1580 if (IsMemberAccess && ExpTy->isPointerType()) {
1581 // If ivar is a structure pointer, assigning to field of
1582 // this struct follows gcc's behavior and makes it a non-ivar
1583 // writer-barrier conservatively.
1584 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1585 if (ExpTy->isRecordType()) {
1586 LV.setObjCIvar(false);
1587 return;
1588 }
1589 }
1590 LV.setObjCIvar(true);
1591 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1592 LV.setBaseIvarExp(Exp->getBase());
1593 LV.setObjCArray(E->getType()->isArrayType());
1594 return;
1595 }
1596
1597 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1598 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1599 if (VD->hasGlobalStorage()) {
1600 LV.setGlobalObjCRef(true);
1601 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1602 }
1603 }
1604 LV.setObjCArray(E->getType()->isArrayType());
1605 return;
1606 }
1607
1608 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1609 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1610 return;
1611 }
1612
1613 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1614 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1615 if (LV.isObjCIvar()) {
1616 // If cast is to a structure pointer, follow gcc's behavior and make it
1617 // a non-ivar write-barrier.
1618 QualType ExpTy = E->getType();
1619 if (ExpTy->isPointerType())
1620 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1621 if (ExpTy->isRecordType())
1622 LV.setObjCIvar(false);
1623 }
1624 return;
1625 }
1626
1627 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1628 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1629 return;
1630 }
1631
1632 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1633 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1634 return;
1635 }
1636
1637 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1638 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1639 return;
1640 }
1641
1642 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1643 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1644 return;
1645 }
1646
1647 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1648 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1649 if (LV.isObjCIvar() && !LV.isObjCArray())
1650 // Using array syntax to assigning to what an ivar points to is not
1651 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1652 LV.setObjCIvar(false);
1653 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1654 // Using array syntax to assigning to what global points to is not
1655 // same as assigning to the global itself. {id *G;} G[i] = 0;
1656 LV.setGlobalObjCRef(false);
1657 return;
1658 }
1659
1660 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1661 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1662 // We don't know if member is an 'ivar', but this flag is looked at
1663 // only in the context of LV.isObjCIvar().
1664 LV.setObjCArray(E->getType()->isArrayType());
1665 return;
1666 }
1667 }
1668
1669 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1670 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1671 llvm::Value *V, llvm::Type *IRType,
1672 StringRef Name = StringRef()) {
1673 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1674 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1675 }
1676
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1677 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1678 const Expr *E, const VarDecl *VD) {
1679 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1680 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1681 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1682 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1683 QualType T = E->getType();
1684 LValue LV;
1685 if (VD->getType()->isReferenceType()) {
1686 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1687 LI->setAlignment(Alignment.getQuantity());
1688 V = LI;
1689 LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1690 } else {
1691 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1692 }
1693 setObjCGCLValueClass(CGF.getContext(), E, LV);
1694 return LV;
1695 }
1696
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1697 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1698 const Expr *E, const FunctionDecl *FD) {
1699 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1700 if (!FD->hasPrototype()) {
1701 if (const FunctionProtoType *Proto =
1702 FD->getType()->getAs<FunctionProtoType>()) {
1703 // Ugly case: for a K&R-style definition, the type of the definition
1704 // isn't the same as the type of a use. Correct for this with a
1705 // bitcast.
1706 QualType NoProtoType =
1707 CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1708 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1709 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1710 }
1711 }
1712 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1713 return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1714 }
1715
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)1716 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1717 llvm::Value *ThisValue) {
1718 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1719 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1720 return CGF.EmitLValueForField(LV, FD);
1721 }
1722
EmitDeclRefLValue(const DeclRefExpr * E)1723 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1724 const NamedDecl *ND = E->getDecl();
1725 CharUnits Alignment = getContext().getDeclAlign(ND);
1726 QualType T = E->getType();
1727
1728 // A DeclRefExpr for a reference initialized by a constant expression can
1729 // appear without being odr-used. Directly emit the constant initializer.
1730 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1731 const Expr *Init = VD->getAnyInitializer(VD);
1732 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1733 VD->isUsableInConstantExpressions(getContext()) &&
1734 VD->checkInitIsICE()) {
1735 llvm::Constant *Val =
1736 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1737 assert(Val && "failed to emit reference constant expression");
1738 // FIXME: Eventually we will want to emit vector element references.
1739 return MakeAddrLValue(Val, T, Alignment);
1740 }
1741 }
1742
1743 // FIXME: We should be able to assert this for FunctionDecls as well!
1744 // FIXME: We should be able to assert this for all DeclRefExprs, not just
1745 // those with a valid source location.
1746 assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1747 !E->getLocation().isValid()) &&
1748 "Should not use decl without marking it used!");
1749
1750 if (ND->hasAttr<WeakRefAttr>()) {
1751 const ValueDecl *VD = cast<ValueDecl>(ND);
1752 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1753 return MakeAddrLValue(Aliasee, T, Alignment);
1754 }
1755
1756 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1757 // Check if this is a global variable.
1758 if (VD->hasLinkage() || VD->isStaticDataMember()) {
1759 // If it's thread_local, emit a call to its wrapper function instead.
1760 if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1761 return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1762 return EmitGlobalVarDeclLValue(*this, E, VD);
1763 }
1764
1765 bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1766
1767 llvm::Value *V = LocalDeclMap.lookup(VD);
1768 if (!V && VD->isStaticLocal())
1769 V = CGM.getStaticLocalDeclAddress(VD);
1770
1771 // Use special handling for lambdas.
1772 if (!V) {
1773 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1774 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1775 } else if (CapturedStmtInfo) {
1776 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1777 return EmitCapturedFieldLValue(*this, FD,
1778 CapturedStmtInfo->getContextValue());
1779 }
1780
1781 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1782 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1783 T, Alignment);
1784 }
1785
1786 assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1787
1788 if (isBlockVariable)
1789 V = BuildBlockByrefAddress(V, VD);
1790
1791 LValue LV;
1792 if (VD->getType()->isReferenceType()) {
1793 llvm::LoadInst *LI = Builder.CreateLoad(V);
1794 LI->setAlignment(Alignment.getQuantity());
1795 V = LI;
1796 LV = MakeNaturalAlignAddrLValue(V, T);
1797 } else {
1798 LV = MakeAddrLValue(V, T, Alignment);
1799 }
1800
1801 bool isLocalStorage = VD->hasLocalStorage();
1802
1803 bool NonGCable = isLocalStorage &&
1804 !VD->getType()->isReferenceType() &&
1805 !isBlockVariable;
1806 if (NonGCable) {
1807 LV.getQuals().removeObjCGCAttr();
1808 LV.setNonGC(true);
1809 }
1810
1811 bool isImpreciseLifetime =
1812 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1813 if (isImpreciseLifetime)
1814 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1815 setObjCGCLValueClass(getContext(), E, LV);
1816 return LV;
1817 }
1818
1819 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1820 return EmitFunctionDeclLValue(*this, E, fn);
1821
1822 llvm_unreachable("Unhandled DeclRefExpr");
1823 }
1824
EmitUnaryOpLValue(const UnaryOperator * E)1825 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1826 // __extension__ doesn't affect lvalue-ness.
1827 if (E->getOpcode() == UO_Extension)
1828 return EmitLValue(E->getSubExpr());
1829
1830 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1831 switch (E->getOpcode()) {
1832 default: llvm_unreachable("Unknown unary operator lvalue!");
1833 case UO_Deref: {
1834 QualType T = E->getSubExpr()->getType()->getPointeeType();
1835 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1836
1837 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1838 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1839
1840 // We should not generate __weak write barrier on indirect reference
1841 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1842 // But, we continue to generate __strong write barrier on indirect write
1843 // into a pointer to object.
1844 if (getLangOpts().ObjC1 &&
1845 getLangOpts().getGC() != LangOptions::NonGC &&
1846 LV.isObjCWeak())
1847 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1848 return LV;
1849 }
1850 case UO_Real:
1851 case UO_Imag: {
1852 LValue LV = EmitLValue(E->getSubExpr());
1853 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1854 llvm::Value *Addr = LV.getAddress();
1855
1856 // __real is valid on scalars. This is a faster way of testing that.
1857 // __imag can only produce an rvalue on scalars.
1858 if (E->getOpcode() == UO_Real &&
1859 !cast<llvm::PointerType>(Addr->getType())
1860 ->getElementType()->isStructTy()) {
1861 assert(E->getSubExpr()->getType()->isArithmeticType());
1862 return LV;
1863 }
1864
1865 assert(E->getSubExpr()->getType()->isAnyComplexType());
1866
1867 unsigned Idx = E->getOpcode() == UO_Imag;
1868 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1869 Idx, "idx"),
1870 ExprTy);
1871 }
1872 case UO_PreInc:
1873 case UO_PreDec: {
1874 LValue LV = EmitLValue(E->getSubExpr());
1875 bool isInc = E->getOpcode() == UO_PreInc;
1876
1877 if (E->getType()->isAnyComplexType())
1878 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1879 else
1880 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1881 return LV;
1882 }
1883 }
1884 }
1885
EmitStringLiteralLValue(const StringLiteral * E)1886 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1887 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1888 E->getType());
1889 }
1890
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)1891 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1892 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1893 E->getType());
1894 }
1895
1896 static llvm::Constant*
GetAddrOfConstantWideString(StringRef Str,const char * GlobalName,ASTContext & Context,QualType Ty,SourceLocation Loc,CodeGenModule & CGM)1897 GetAddrOfConstantWideString(StringRef Str,
1898 const char *GlobalName,
1899 ASTContext &Context,
1900 QualType Ty, SourceLocation Loc,
1901 CodeGenModule &CGM) {
1902
1903 StringLiteral *SL = StringLiteral::Create(Context,
1904 Str,
1905 StringLiteral::Wide,
1906 /*Pascal = */false,
1907 Ty, Loc);
1908 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1909 llvm::GlobalVariable *GV =
1910 new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1911 !CGM.getLangOpts().WritableStrings,
1912 llvm::GlobalValue::PrivateLinkage,
1913 C, GlobalName);
1914 const unsigned WideAlignment =
1915 Context.getTypeAlignInChars(Ty).getQuantity();
1916 GV->setAlignment(WideAlignment);
1917 return GV;
1918 }
1919
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)1920 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1921 SmallString<32>& Target) {
1922 Target.resize(CharByteWidth * (Source.size() + 1));
1923 char *ResultPtr = &Target[0];
1924 const UTF8 *ErrorPtr;
1925 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1926 (void)success;
1927 assert(success);
1928 Target.resize(ResultPtr - &Target[0]);
1929 }
1930
EmitPredefinedLValue(const PredefinedExpr * E)1931 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1932 switch (E->getIdentType()) {
1933 default:
1934 return EmitUnsupportedLValue(E, "predefined expression");
1935
1936 case PredefinedExpr::Func:
1937 case PredefinedExpr::Function:
1938 case PredefinedExpr::LFunction:
1939 case PredefinedExpr::PrettyFunction: {
1940 unsigned IdentType = E->getIdentType();
1941 std::string GlobalVarName;
1942
1943 switch (IdentType) {
1944 default: llvm_unreachable("Invalid type");
1945 case PredefinedExpr::Func:
1946 GlobalVarName = "__func__.";
1947 break;
1948 case PredefinedExpr::Function:
1949 GlobalVarName = "__FUNCTION__.";
1950 break;
1951 case PredefinedExpr::LFunction:
1952 GlobalVarName = "L__FUNCTION__.";
1953 break;
1954 case PredefinedExpr::PrettyFunction:
1955 GlobalVarName = "__PRETTY_FUNCTION__.";
1956 break;
1957 }
1958
1959 StringRef FnName = CurFn->getName();
1960 if (FnName.startswith("\01"))
1961 FnName = FnName.substr(1);
1962 GlobalVarName += FnName;
1963
1964 const Decl *CurDecl = CurCodeDecl;
1965 if (CurDecl == 0)
1966 CurDecl = getContext().getTranslationUnitDecl();
1967
1968 std::string FunctionName =
1969 (isa<BlockDecl>(CurDecl)
1970 ? FnName.str()
1971 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1972 CurDecl));
1973
1974 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1975 llvm::Constant *C;
1976 if (ElemType->isWideCharType()) {
1977 SmallString<32> RawChars;
1978 ConvertUTF8ToWideString(
1979 getContext().getTypeSizeInChars(ElemType).getQuantity(),
1980 FunctionName, RawChars);
1981 C = GetAddrOfConstantWideString(RawChars,
1982 GlobalVarName.c_str(),
1983 getContext(),
1984 E->getType(),
1985 E->getLocation(),
1986 CGM);
1987 } else {
1988 C = CGM.GetAddrOfConstantCString(FunctionName,
1989 GlobalVarName.c_str(),
1990 1);
1991 }
1992 return MakeAddrLValue(C, E->getType());
1993 }
1994 }
1995 }
1996
1997 /// Emit a type description suitable for use by a runtime sanitizer library. The
1998 /// format of a type descriptor is
1999 ///
2000 /// \code
2001 /// { i16 TypeKind, i16 TypeInfo }
2002 /// \endcode
2003 ///
2004 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2005 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2006 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2007 // FIXME: Only emit each type's descriptor once.
2008 uint16_t TypeKind = -1;
2009 uint16_t TypeInfo = 0;
2010
2011 if (T->isIntegerType()) {
2012 TypeKind = 0;
2013 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2014 (T->isSignedIntegerType() ? 1 : 0);
2015 } else if (T->isFloatingType()) {
2016 TypeKind = 1;
2017 TypeInfo = getContext().getTypeSize(T);
2018 }
2019
2020 // Format the type name as if for a diagnostic, including quotes and
2021 // optionally an 'aka'.
2022 SmallString<32> Buffer;
2023 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2024 (intptr_t)T.getAsOpaquePtr(),
2025 0, 0, 0, 0, 0, 0, Buffer,
2026 ArrayRef<intptr_t>());
2027
2028 llvm::Constant *Components[] = {
2029 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2030 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2031 };
2032 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2033
2034 llvm::GlobalVariable *GV =
2035 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2036 /*isConstant=*/true,
2037 llvm::GlobalVariable::PrivateLinkage,
2038 Descriptor);
2039 GV->setUnnamedAddr(true);
2040 return GV;
2041 }
2042
EmitCheckValue(llvm::Value * V)2043 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2044 llvm::Type *TargetTy = IntPtrTy;
2045
2046 // Floating-point types which fit into intptr_t are bitcast to integers
2047 // and then passed directly (after zero-extension, if necessary).
2048 if (V->getType()->isFloatingPointTy()) {
2049 unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2050 if (Bits <= TargetTy->getIntegerBitWidth())
2051 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2052 Bits));
2053 }
2054
2055 // Integers which fit in intptr_t are zero-extended and passed directly.
2056 if (V->getType()->isIntegerTy() &&
2057 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2058 return Builder.CreateZExt(V, TargetTy);
2059
2060 // Pointers are passed directly, everything else is passed by address.
2061 if (!V->getType()->isPointerTy()) {
2062 llvm::Value *Ptr = CreateTempAlloca(V->getType());
2063 Builder.CreateStore(V, Ptr);
2064 V = Ptr;
2065 }
2066 return Builder.CreatePtrToInt(V, TargetTy);
2067 }
2068
2069 /// \brief Emit a representation of a SourceLocation for passing to a handler
2070 /// in a sanitizer runtime library. The format for this data is:
2071 /// \code
2072 /// struct SourceLocation {
2073 /// const char *Filename;
2074 /// int32_t Line, Column;
2075 /// };
2076 /// \endcode
2077 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)2078 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2079 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2080
2081 llvm::Constant *Data[] = {
2082 // FIXME: Only emit each file name once.
2083 PLoc.isValid() ? cast<llvm::Constant>(
2084 Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2085 : llvm::Constant::getNullValue(Int8PtrTy),
2086 Builder.getInt32(PLoc.getLine()),
2087 Builder.getInt32(PLoc.getColumn())
2088 };
2089
2090 return llvm::ConstantStruct::getAnon(Data);
2091 }
2092
EmitCheck(llvm::Value * Checked,StringRef CheckName,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs,CheckRecoverableKind RecoverKind)2093 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2094 ArrayRef<llvm::Constant *> StaticArgs,
2095 ArrayRef<llvm::Value *> DynamicArgs,
2096 CheckRecoverableKind RecoverKind) {
2097 assert(SanOpts != &SanitizerOptions::Disabled);
2098
2099 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2100 assert (RecoverKind != CRK_AlwaysRecoverable &&
2101 "Runtime call required for AlwaysRecoverable kind!");
2102 return EmitTrapCheck(Checked);
2103 }
2104
2105 llvm::BasicBlock *Cont = createBasicBlock("cont");
2106
2107 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2108
2109 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2110
2111 // Give hint that we very much don't expect to execute the handler
2112 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2113 llvm::MDBuilder MDHelper(getLLVMContext());
2114 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2115 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2116
2117 EmitBlock(Handler);
2118
2119 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2120 llvm::GlobalValue *InfoPtr =
2121 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2122 llvm::GlobalVariable::PrivateLinkage, Info);
2123 InfoPtr->setUnnamedAddr(true);
2124
2125 SmallVector<llvm::Value *, 4> Args;
2126 SmallVector<llvm::Type *, 4> ArgTypes;
2127 Args.reserve(DynamicArgs.size() + 1);
2128 ArgTypes.reserve(DynamicArgs.size() + 1);
2129
2130 // Handler functions take an i8* pointing to the (handler-specific) static
2131 // information block, followed by a sequence of intptr_t arguments
2132 // representing operand values.
2133 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2134 ArgTypes.push_back(Int8PtrTy);
2135 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2136 Args.push_back(EmitCheckValue(DynamicArgs[i]));
2137 ArgTypes.push_back(IntPtrTy);
2138 }
2139
2140 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2141 ((RecoverKind == CRK_Recoverable) &&
2142 CGM.getCodeGenOpts().SanitizeRecover);
2143
2144 llvm::FunctionType *FnType =
2145 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2146 llvm::AttrBuilder B;
2147 if (!Recover) {
2148 B.addAttribute(llvm::Attribute::NoReturn)
2149 .addAttribute(llvm::Attribute::NoUnwind);
2150 }
2151 B.addAttribute(llvm::Attribute::UWTable);
2152
2153 // Checks that have two variants use a suffix to differentiate them
2154 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2155 !CGM.getCodeGenOpts().SanitizeRecover;
2156 std::string FunctionName = ("__ubsan_handle_" + CheckName +
2157 (NeedsAbortSuffix? "_abort" : "")).str();
2158 llvm::Value *Fn =
2159 CGM.CreateRuntimeFunction(FnType, FunctionName,
2160 llvm::AttributeSet::get(getLLVMContext(),
2161 llvm::AttributeSet::FunctionIndex,
2162 B));
2163 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2164 if (Recover) {
2165 Builder.CreateBr(Cont);
2166 } else {
2167 HandlerCall->setDoesNotReturn();
2168 Builder.CreateUnreachable();
2169 }
2170
2171 EmitBlock(Cont);
2172 }
2173
EmitTrapCheck(llvm::Value * Checked)2174 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2175 llvm::BasicBlock *Cont = createBasicBlock("cont");
2176
2177 // If we're optimizing, collapse all calls to trap down to just one per
2178 // function to save on code size.
2179 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2180 TrapBB = createBasicBlock("trap");
2181 Builder.CreateCondBr(Checked, Cont, TrapBB);
2182 EmitBlock(TrapBB);
2183 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2184 llvm::CallInst *TrapCall = Builder.CreateCall(F);
2185 TrapCall->setDoesNotReturn();
2186 TrapCall->setDoesNotThrow();
2187 Builder.CreateUnreachable();
2188 } else {
2189 Builder.CreateCondBr(Checked, Cont, TrapBB);
2190 }
2191
2192 EmitBlock(Cont);
2193 }
2194
2195 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2196 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)2197 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2198 // If this isn't just an array->pointer decay, bail out.
2199 const CastExpr *CE = dyn_cast<CastExpr>(E);
2200 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2201 return 0;
2202
2203 // If this is a decay from variable width array, bail out.
2204 const Expr *SubExpr = CE->getSubExpr();
2205 if (SubExpr->getType()->isVariableArrayType())
2206 return 0;
2207
2208 return SubExpr;
2209 }
2210
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)2211 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2212 bool Accessed) {
2213 // The index must always be an integer, which is not an aggregate. Emit it.
2214 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2215 QualType IdxTy = E->getIdx()->getType();
2216 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2217
2218 if (SanOpts->Bounds)
2219 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2220
2221 // If the base is a vector type, then we are forming a vector element lvalue
2222 // with this subscript.
2223 if (E->getBase()->getType()->isVectorType()) {
2224 // Emit the vector as an lvalue to get its address.
2225 LValue LHS = EmitLValue(E->getBase());
2226 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2227 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2228 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2229 E->getBase()->getType(), LHS.getAlignment());
2230 }
2231
2232 // Extend or truncate the index type to 32 or 64-bits.
2233 if (Idx->getType() != IntPtrTy)
2234 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2235
2236 // We know that the pointer points to a type of the correct size, unless the
2237 // size is a VLA or Objective-C interface.
2238 llvm::Value *Address = 0;
2239 CharUnits ArrayAlignment;
2240 if (const VariableArrayType *vla =
2241 getContext().getAsVariableArrayType(E->getType())) {
2242 // The base must be a pointer, which is not an aggregate. Emit
2243 // it. It needs to be emitted first in case it's what captures
2244 // the VLA bounds.
2245 Address = EmitScalarExpr(E->getBase());
2246
2247 // The element count here is the total number of non-VLA elements.
2248 llvm::Value *numElements = getVLASize(vla).first;
2249
2250 // Effectively, the multiply by the VLA size is part of the GEP.
2251 // GEP indexes are signed, and scaling an index isn't permitted to
2252 // signed-overflow, so we use the same semantics for our explicit
2253 // multiply. We suppress this if overflow is not undefined behavior.
2254 if (getLangOpts().isSignedOverflowDefined()) {
2255 Idx = Builder.CreateMul(Idx, numElements);
2256 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2257 } else {
2258 Idx = Builder.CreateNSWMul(Idx, numElements);
2259 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2260 }
2261 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2262 // Indexing over an interface, as in "NSString *P; P[4];"
2263 llvm::Value *InterfaceSize =
2264 llvm::ConstantInt::get(Idx->getType(),
2265 getContext().getTypeSizeInChars(OIT).getQuantity());
2266
2267 Idx = Builder.CreateMul(Idx, InterfaceSize);
2268
2269 // The base must be a pointer, which is not an aggregate. Emit it.
2270 llvm::Value *Base = EmitScalarExpr(E->getBase());
2271 Address = EmitCastToVoidPtr(Base);
2272 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2273 Address = Builder.CreateBitCast(Address, Base->getType());
2274 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2275 // If this is A[i] where A is an array, the frontend will have decayed the
2276 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
2277 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2278 // "gep x, i" here. Emit one "gep A, 0, i".
2279 assert(Array->getType()->isArrayType() &&
2280 "Array to pointer decay must have array source type!");
2281 LValue ArrayLV;
2282 // For simple multidimensional array indexing, set the 'accessed' flag for
2283 // better bounds-checking of the base expression.
2284 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2285 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2286 else
2287 ArrayLV = EmitLValue(Array);
2288 llvm::Value *ArrayPtr = ArrayLV.getAddress();
2289 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2290 llvm::Value *Args[] = { Zero, Idx };
2291
2292 // Propagate the alignment from the array itself to the result.
2293 ArrayAlignment = ArrayLV.getAlignment();
2294
2295 if (getLangOpts().isSignedOverflowDefined())
2296 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2297 else
2298 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2299 } else {
2300 // The base must be a pointer, which is not an aggregate. Emit it.
2301 llvm::Value *Base = EmitScalarExpr(E->getBase());
2302 if (getLangOpts().isSignedOverflowDefined())
2303 Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2304 else
2305 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2306 }
2307
2308 QualType T = E->getBase()->getType()->getPointeeType();
2309 assert(!T.isNull() &&
2310 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2311
2312
2313 // Limit the alignment to that of the result type.
2314 LValue LV;
2315 if (!ArrayAlignment.isZero()) {
2316 CharUnits Align = getContext().getTypeAlignInChars(T);
2317 ArrayAlignment = std::min(Align, ArrayAlignment);
2318 LV = MakeAddrLValue(Address, T, ArrayAlignment);
2319 } else {
2320 LV = MakeNaturalAlignAddrLValue(Address, T);
2321 }
2322
2323 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2324
2325 if (getLangOpts().ObjC1 &&
2326 getLangOpts().getGC() != LangOptions::NonGC) {
2327 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2328 setObjCGCLValueClass(getContext(), E, LV);
2329 }
2330 return LV;
2331 }
2332
2333 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVectorImpl<unsigned> & Elts)2334 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2335 SmallVectorImpl<unsigned> &Elts) {
2336 SmallVector<llvm::Constant*, 4> CElts;
2337 for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2338 CElts.push_back(Builder.getInt32(Elts[i]));
2339
2340 return llvm::ConstantVector::get(CElts);
2341 }
2342
2343 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2344 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2345 // Emit the base vector as an l-value.
2346 LValue Base;
2347
2348 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2349 if (E->isArrow()) {
2350 // If it is a pointer to a vector, emit the address and form an lvalue with
2351 // it.
2352 llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2353 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2354 Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2355 Base.getQuals().removeObjCGCAttr();
2356 } else if (E->getBase()->isGLValue()) {
2357 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2358 // emit the base as an lvalue.
2359 assert(E->getBase()->getType()->isVectorType());
2360 Base = EmitLValue(E->getBase());
2361 } else {
2362 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2363 assert(E->getBase()->getType()->isVectorType() &&
2364 "Result must be a vector");
2365 llvm::Value *Vec = EmitScalarExpr(E->getBase());
2366
2367 // Store the vector to memory (because LValue wants an address).
2368 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2369 Builder.CreateStore(Vec, VecMem);
2370 Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2371 }
2372
2373 QualType type =
2374 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2375
2376 // Encode the element access list into a vector of unsigned indices.
2377 SmallVector<unsigned, 4> Indices;
2378 E->getEncodedElementAccess(Indices);
2379
2380 if (Base.isSimple()) {
2381 llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2382 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2383 Base.getAlignment());
2384 }
2385 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2386
2387 llvm::Constant *BaseElts = Base.getExtVectorElts();
2388 SmallVector<llvm::Constant *, 4> CElts;
2389
2390 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2391 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2392 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2393 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2394 Base.getAlignment());
2395 }
2396
EmitMemberExpr(const MemberExpr * E)2397 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2398 Expr *BaseExpr = E->getBase();
2399
2400 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2401 LValue BaseLV;
2402 if (E->isArrow()) {
2403 llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2404 QualType PtrTy = BaseExpr->getType()->getPointeeType();
2405 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2406 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2407 } else
2408 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2409
2410 NamedDecl *ND = E->getMemberDecl();
2411 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2412 LValue LV = EmitLValueForField(BaseLV, Field);
2413 setObjCGCLValueClass(getContext(), E, LV);
2414 return LV;
2415 }
2416
2417 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2418 return EmitGlobalVarDeclLValue(*this, E, VD);
2419
2420 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2421 return EmitFunctionDeclLValue(*this, E, FD);
2422
2423 llvm_unreachable("Unhandled member declaration!");
2424 }
2425
2426 /// Given that we are currently emitting a lambda, emit an l-value for
2427 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)2428 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2429 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2430 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2431 QualType LambdaTagType =
2432 getContext().getTagDeclType(Field->getParent());
2433 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2434 return EmitLValueForField(LambdaLV, Field);
2435 }
2436
EmitLValueForField(LValue base,const FieldDecl * field)2437 LValue CodeGenFunction::EmitLValueForField(LValue base,
2438 const FieldDecl *field) {
2439 if (field->isBitField()) {
2440 const CGRecordLayout &RL =
2441 CGM.getTypes().getCGRecordLayout(field->getParent());
2442 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2443 llvm::Value *Addr = base.getAddress();
2444 unsigned Idx = RL.getLLVMFieldNo(field);
2445 if (Idx != 0)
2446 // For structs, we GEP to the field that the record layout suggests.
2447 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2448 // Get the access type.
2449 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2450 getLLVMContext(), Info.StorageSize,
2451 CGM.getContext().getTargetAddressSpace(base.getType()));
2452 if (Addr->getType() != PtrTy)
2453 Addr = Builder.CreateBitCast(Addr, PtrTy);
2454
2455 QualType fieldType =
2456 field->getType().withCVRQualifiers(base.getVRQualifiers());
2457 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2458 }
2459
2460 const RecordDecl *rec = field->getParent();
2461 QualType type = field->getType();
2462 CharUnits alignment = getContext().getDeclAlign(field);
2463
2464 // FIXME: It should be impossible to have an LValue without alignment for a
2465 // complete type.
2466 if (!base.getAlignment().isZero())
2467 alignment = std::min(alignment, base.getAlignment());
2468
2469 bool mayAlias = rec->hasAttr<MayAliasAttr>();
2470
2471 llvm::Value *addr = base.getAddress();
2472 unsigned cvr = base.getVRQualifiers();
2473 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2474 if (rec->isUnion()) {
2475 // For unions, there is no pointer adjustment.
2476 assert(!type->isReferenceType() && "union has reference member");
2477 // TODO: handle path-aware TBAA for union.
2478 TBAAPath = false;
2479 } else {
2480 // For structs, we GEP to the field that the record layout suggests.
2481 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2482 addr = Builder.CreateStructGEP(addr, idx, field->getName());
2483
2484 // If this is a reference field, load the reference right now.
2485 if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2486 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2487 if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2488 load->setAlignment(alignment.getQuantity());
2489
2490 // Loading the reference will disable path-aware TBAA.
2491 TBAAPath = false;
2492 if (CGM.shouldUseTBAA()) {
2493 llvm::MDNode *tbaa;
2494 if (mayAlias)
2495 tbaa = CGM.getTBAAInfo(getContext().CharTy);
2496 else
2497 tbaa = CGM.getTBAAInfo(type);
2498 CGM.DecorateInstruction(load, tbaa);
2499 }
2500
2501 addr = load;
2502 mayAlias = false;
2503 type = refType->getPointeeType();
2504 if (type->isIncompleteType())
2505 alignment = CharUnits();
2506 else
2507 alignment = getContext().getTypeAlignInChars(type);
2508 cvr = 0; // qualifiers don't recursively apply to referencee
2509 }
2510 }
2511
2512 // Make sure that the address is pointing to the right type. This is critical
2513 // for both unions and structs. A union needs a bitcast, a struct element
2514 // will need a bitcast if the LLVM type laid out doesn't match the desired
2515 // type.
2516 addr = EmitBitCastOfLValueToProperType(*this, addr,
2517 CGM.getTypes().ConvertTypeForMem(type),
2518 field->getName());
2519
2520 if (field->hasAttr<AnnotateAttr>())
2521 addr = EmitFieldAnnotations(field, addr);
2522
2523 LValue LV = MakeAddrLValue(addr, type, alignment);
2524 LV.getQuals().addCVRQualifiers(cvr);
2525 if (TBAAPath) {
2526 const ASTRecordLayout &Layout =
2527 getContext().getASTRecordLayout(field->getParent());
2528 // Set the base type to be the base type of the base LValue and
2529 // update offset to be relative to the base type.
2530 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2531 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2532 Layout.getFieldOffset(field->getFieldIndex()) /
2533 getContext().getCharWidth());
2534 }
2535
2536 // __weak attribute on a field is ignored.
2537 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2538 LV.getQuals().removeObjCGCAttr();
2539
2540 // Fields of may_alias structs act like 'char' for TBAA purposes.
2541 // FIXME: this should get propagated down through anonymous structs
2542 // and unions.
2543 if (mayAlias && LV.getTBAAInfo())
2544 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2545
2546 return LV;
2547 }
2548
2549 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2550 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2551 const FieldDecl *Field) {
2552 QualType FieldType = Field->getType();
2553
2554 if (!FieldType->isReferenceType())
2555 return EmitLValueForField(Base, Field);
2556
2557 const CGRecordLayout &RL =
2558 CGM.getTypes().getCGRecordLayout(Field->getParent());
2559 unsigned idx = RL.getLLVMFieldNo(Field);
2560 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2561 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2562
2563 // Make sure that the address is pointing to the right type. This is critical
2564 // for both unions and structs. A union needs a bitcast, a struct element
2565 // will need a bitcast if the LLVM type laid out doesn't match the desired
2566 // type.
2567 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2568 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2569
2570 CharUnits Alignment = getContext().getDeclAlign(Field);
2571
2572 // FIXME: It should be impossible to have an LValue without alignment for a
2573 // complete type.
2574 if (!Base.getAlignment().isZero())
2575 Alignment = std::min(Alignment, Base.getAlignment());
2576
2577 return MakeAddrLValue(V, FieldType, Alignment);
2578 }
2579
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2580 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2581 if (E->isFileScope()) {
2582 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2583 return MakeAddrLValue(GlobalPtr, E->getType());
2584 }
2585 if (E->getType()->isVariablyModifiedType())
2586 // make sure to emit the VLA size.
2587 EmitVariablyModifiedType(E->getType());
2588
2589 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2590 const Expr *InitExpr = E->getInitializer();
2591 LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2592
2593 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2594 /*Init*/ true);
2595
2596 return Result;
2597 }
2598
EmitInitListLValue(const InitListExpr * E)2599 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2600 if (!E->isGLValue())
2601 // Initializing an aggregate temporary in C++11: T{...}.
2602 return EmitAggExprToLValue(E);
2603
2604 // An lvalue initializer list must be initializing a reference.
2605 assert(E->getNumInits() == 1 && "reference init with multiple values");
2606 return EmitLValue(E->getInit(0));
2607 }
2608
2609 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2610 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2611 if (!expr->isGLValue()) {
2612 // ?: here should be an aggregate.
2613 assert(hasAggregateEvaluationKind(expr->getType()) &&
2614 "Unexpected conditional operator!");
2615 return EmitAggExprToLValue(expr);
2616 }
2617
2618 OpaqueValueMapping binding(*this, expr);
2619
2620 const Expr *condExpr = expr->getCond();
2621 bool CondExprBool;
2622 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2623 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2624 if (!CondExprBool) std::swap(live, dead);
2625
2626 if (!ContainsLabel(dead))
2627 return EmitLValue(live);
2628 }
2629
2630 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2631 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2632 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2633
2634 ConditionalEvaluation eval(*this);
2635 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2636
2637 // Any temporaries created here are conditional.
2638 EmitBlock(lhsBlock);
2639 eval.begin(*this);
2640 LValue lhs = EmitLValue(expr->getTrueExpr());
2641 eval.end(*this);
2642
2643 if (!lhs.isSimple())
2644 return EmitUnsupportedLValue(expr, "conditional operator");
2645
2646 lhsBlock = Builder.GetInsertBlock();
2647 Builder.CreateBr(contBlock);
2648
2649 // Any temporaries created here are conditional.
2650 EmitBlock(rhsBlock);
2651 eval.begin(*this);
2652 LValue rhs = EmitLValue(expr->getFalseExpr());
2653 eval.end(*this);
2654 if (!rhs.isSimple())
2655 return EmitUnsupportedLValue(expr, "conditional operator");
2656 rhsBlock = Builder.GetInsertBlock();
2657
2658 EmitBlock(contBlock);
2659
2660 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2661 "cond-lvalue");
2662 phi->addIncoming(lhs.getAddress(), lhsBlock);
2663 phi->addIncoming(rhs.getAddress(), rhsBlock);
2664 return MakeAddrLValue(phi, expr->getType());
2665 }
2666
2667 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2668 /// type. If the cast is to a reference, we can have the usual lvalue result,
2669 /// otherwise if a cast is needed by the code generator in an lvalue context,
2670 /// then it must mean that we need the address of an aggregate in order to
2671 /// access one of its members. This can happen for all the reasons that casts
2672 /// are permitted with aggregate result, including noop aggregate casts, and
2673 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2674 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2675 switch (E->getCastKind()) {
2676 case CK_ToVoid:
2677 case CK_BitCast:
2678 case CK_ArrayToPointerDecay:
2679 case CK_FunctionToPointerDecay:
2680 case CK_NullToMemberPointer:
2681 case CK_NullToPointer:
2682 case CK_IntegralToPointer:
2683 case CK_PointerToIntegral:
2684 case CK_PointerToBoolean:
2685 case CK_VectorSplat:
2686 case CK_IntegralCast:
2687 case CK_IntegralToBoolean:
2688 case CK_IntegralToFloating:
2689 case CK_FloatingToIntegral:
2690 case CK_FloatingToBoolean:
2691 case CK_FloatingCast:
2692 case CK_FloatingRealToComplex:
2693 case CK_FloatingComplexToReal:
2694 case CK_FloatingComplexToBoolean:
2695 case CK_FloatingComplexCast:
2696 case CK_FloatingComplexToIntegralComplex:
2697 case CK_IntegralRealToComplex:
2698 case CK_IntegralComplexToReal:
2699 case CK_IntegralComplexToBoolean:
2700 case CK_IntegralComplexCast:
2701 case CK_IntegralComplexToFloatingComplex:
2702 case CK_DerivedToBaseMemberPointer:
2703 case CK_BaseToDerivedMemberPointer:
2704 case CK_MemberPointerToBoolean:
2705 case CK_ReinterpretMemberPointer:
2706 case CK_AnyPointerToBlockPointerCast:
2707 case CK_ARCProduceObject:
2708 case CK_ARCConsumeObject:
2709 case CK_ARCReclaimReturnedObject:
2710 case CK_ARCExtendBlockObject:
2711 case CK_CopyAndAutoreleaseBlockObject:
2712 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2713
2714 case CK_Dependent:
2715 llvm_unreachable("dependent cast kind in IR gen!");
2716
2717 case CK_BuiltinFnToFnPtr:
2718 llvm_unreachable("builtin functions are handled elsewhere");
2719
2720 // These are never l-values; just use the aggregate emission code.
2721 case CK_NonAtomicToAtomic:
2722 case CK_AtomicToNonAtomic:
2723 return EmitAggExprToLValue(E);
2724
2725 case CK_Dynamic: {
2726 LValue LV = EmitLValue(E->getSubExpr());
2727 llvm::Value *V = LV.getAddress();
2728 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2729 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2730 }
2731
2732 case CK_ConstructorConversion:
2733 case CK_UserDefinedConversion:
2734 case CK_CPointerToObjCPointerCast:
2735 case CK_BlockPointerToObjCPointerCast:
2736 case CK_NoOp:
2737 case CK_LValueToRValue:
2738 return EmitLValue(E->getSubExpr());
2739
2740 case CK_UncheckedDerivedToBase:
2741 case CK_DerivedToBase: {
2742 const RecordType *DerivedClassTy =
2743 E->getSubExpr()->getType()->getAs<RecordType>();
2744 CXXRecordDecl *DerivedClassDecl =
2745 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2746
2747 LValue LV = EmitLValue(E->getSubExpr());
2748 llvm::Value *This = LV.getAddress();
2749
2750 // Perform the derived-to-base conversion
2751 llvm::Value *Base =
2752 GetAddressOfBaseClass(This, DerivedClassDecl,
2753 E->path_begin(), E->path_end(),
2754 /*NullCheckValue=*/false);
2755
2756 return MakeAddrLValue(Base, E->getType());
2757 }
2758 case CK_ToUnion:
2759 return EmitAggExprToLValue(E);
2760 case CK_BaseToDerived: {
2761 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2762 CXXRecordDecl *DerivedClassDecl =
2763 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2764
2765 LValue LV = EmitLValue(E->getSubExpr());
2766
2767 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2768 // performed and the object is not of the derived type.
2769 if (SanitizePerformTypeCheck)
2770 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2771 LV.getAddress(), E->getType());
2772
2773 // Perform the base-to-derived conversion
2774 llvm::Value *Derived =
2775 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2776 E->path_begin(), E->path_end(),
2777 /*NullCheckValue=*/false);
2778
2779 return MakeAddrLValue(Derived, E->getType());
2780 }
2781 case CK_LValueBitCast: {
2782 // This must be a reinterpret_cast (or c-style equivalent).
2783 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2784
2785 LValue LV = EmitLValue(E->getSubExpr());
2786 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2787 ConvertType(CE->getTypeAsWritten()));
2788 return MakeAddrLValue(V, E->getType());
2789 }
2790 case CK_ObjCObjectLValueCast: {
2791 LValue LV = EmitLValue(E->getSubExpr());
2792 QualType ToType = getContext().getLValueReferenceType(E->getType());
2793 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2794 ConvertType(ToType));
2795 return MakeAddrLValue(V, E->getType());
2796 }
2797 case CK_ZeroToOCLEvent:
2798 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2799 }
2800
2801 llvm_unreachable("Unhandled lvalue cast kind?");
2802 }
2803
EmitOpaqueValueLValue(const OpaqueValueExpr * e)2804 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2805 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2806 return getOpaqueLValueMapping(e);
2807 }
2808
EmitRValueForField(LValue LV,const FieldDecl * FD)2809 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2810 const FieldDecl *FD) {
2811 QualType FT = FD->getType();
2812 LValue FieldLV = EmitLValueForField(LV, FD);
2813 switch (getEvaluationKind(FT)) {
2814 case TEK_Complex:
2815 return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2816 case TEK_Aggregate:
2817 return FieldLV.asAggregateRValue();
2818 case TEK_Scalar:
2819 return EmitLoadOfLValue(FieldLV);
2820 }
2821 llvm_unreachable("bad evaluation kind");
2822 }
2823
2824 //===--------------------------------------------------------------------===//
2825 // Expression Emission
2826 //===--------------------------------------------------------------------===//
2827
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)2828 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2829 ReturnValueSlot ReturnValue) {
2830 if (CGDebugInfo *DI = getDebugInfo()) {
2831 SourceLocation Loc = E->getLocStart();
2832 // Force column info to be generated so we can differentiate
2833 // multiple call sites on the same line in the debug info.
2834 const FunctionDecl* Callee = E->getDirectCallee();
2835 bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2836 DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2837 }
2838
2839 // Builtins never have block type.
2840 if (E->getCallee()->getType()->isBlockPointerType())
2841 return EmitBlockCallExpr(E, ReturnValue);
2842
2843 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2844 return EmitCXXMemberCallExpr(CE, ReturnValue);
2845
2846 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2847 return EmitCUDAKernelCallExpr(CE, ReturnValue);
2848
2849 const Decl *TargetDecl = E->getCalleeDecl();
2850 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2851 if (unsigned builtinID = FD->getBuiltinID())
2852 return EmitBuiltinExpr(FD, builtinID, E);
2853 }
2854
2855 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2856 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2857 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2858
2859 if (const CXXPseudoDestructorExpr *PseudoDtor
2860 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2861 QualType DestroyedType = PseudoDtor->getDestroyedType();
2862 if (getLangOpts().ObjCAutoRefCount &&
2863 DestroyedType->isObjCLifetimeType() &&
2864 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2865 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2866 // Automatic Reference Counting:
2867 // If the pseudo-expression names a retainable object with weak or
2868 // strong lifetime, the object shall be released.
2869 Expr *BaseExpr = PseudoDtor->getBase();
2870 llvm::Value *BaseValue = NULL;
2871 Qualifiers BaseQuals;
2872
2873 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2874 if (PseudoDtor->isArrow()) {
2875 BaseValue = EmitScalarExpr(BaseExpr);
2876 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2877 BaseQuals = PTy->getPointeeType().getQualifiers();
2878 } else {
2879 LValue BaseLV = EmitLValue(BaseExpr);
2880 BaseValue = BaseLV.getAddress();
2881 QualType BaseTy = BaseExpr->getType();
2882 BaseQuals = BaseTy.getQualifiers();
2883 }
2884
2885 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2886 case Qualifiers::OCL_None:
2887 case Qualifiers::OCL_ExplicitNone:
2888 case Qualifiers::OCL_Autoreleasing:
2889 break;
2890
2891 case Qualifiers::OCL_Strong:
2892 EmitARCRelease(Builder.CreateLoad(BaseValue,
2893 PseudoDtor->getDestroyedType().isVolatileQualified()),
2894 ARCPreciseLifetime);
2895 break;
2896
2897 case Qualifiers::OCL_Weak:
2898 EmitARCDestroyWeak(BaseValue);
2899 break;
2900 }
2901 } else {
2902 // C++ [expr.pseudo]p1:
2903 // The result shall only be used as the operand for the function call
2904 // operator (), and the result of such a call has type void. The only
2905 // effect is the evaluation of the postfix-expression before the dot or
2906 // arrow.
2907 EmitScalarExpr(E->getCallee());
2908 }
2909
2910 return RValue::get(0);
2911 }
2912
2913 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2914 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2915 E->arg_begin(), E->arg_end(), TargetDecl);
2916 }
2917
EmitBinaryOperatorLValue(const BinaryOperator * E)2918 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2919 // Comma expressions just emit their LHS then their RHS as an l-value.
2920 if (E->getOpcode() == BO_Comma) {
2921 EmitIgnoredExpr(E->getLHS());
2922 EnsureInsertPoint();
2923 return EmitLValue(E->getRHS());
2924 }
2925
2926 if (E->getOpcode() == BO_PtrMemD ||
2927 E->getOpcode() == BO_PtrMemI)
2928 return EmitPointerToDataMemberBinaryExpr(E);
2929
2930 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2931
2932 // Note that in all of these cases, __block variables need the RHS
2933 // evaluated first just in case the variable gets moved by the RHS.
2934
2935 switch (getEvaluationKind(E->getType())) {
2936 case TEK_Scalar: {
2937 switch (E->getLHS()->getType().getObjCLifetime()) {
2938 case Qualifiers::OCL_Strong:
2939 return EmitARCStoreStrong(E, /*ignored*/ false).first;
2940
2941 case Qualifiers::OCL_Autoreleasing:
2942 return EmitARCStoreAutoreleasing(E).first;
2943
2944 // No reason to do any of these differently.
2945 case Qualifiers::OCL_None:
2946 case Qualifiers::OCL_ExplicitNone:
2947 case Qualifiers::OCL_Weak:
2948 break;
2949 }
2950
2951 RValue RV = EmitAnyExpr(E->getRHS());
2952 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2953 EmitStoreThroughLValue(RV, LV);
2954 return LV;
2955 }
2956
2957 case TEK_Complex:
2958 return EmitComplexAssignmentLValue(E);
2959
2960 case TEK_Aggregate:
2961 return EmitAggExprToLValue(E);
2962 }
2963 llvm_unreachable("bad evaluation kind");
2964 }
2965
EmitCallExprLValue(const CallExpr * E)2966 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2967 RValue RV = EmitCallExpr(E);
2968
2969 if (!RV.isScalar())
2970 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2971
2972 assert(E->getCallReturnType()->isReferenceType() &&
2973 "Can't have a scalar return unless the return type is a "
2974 "reference type!");
2975
2976 return MakeAddrLValue(RV.getScalarVal(), E->getType());
2977 }
2978
EmitVAArgExprLValue(const VAArgExpr * E)2979 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2980 // FIXME: This shouldn't require another copy.
2981 return EmitAggExprToLValue(E);
2982 }
2983
EmitCXXConstructLValue(const CXXConstructExpr * E)2984 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2985 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2986 && "binding l-value to type which needs a temporary");
2987 AggValueSlot Slot = CreateAggTemp(E->getType());
2988 EmitCXXConstructExpr(E, Slot);
2989 return MakeAddrLValue(Slot.getAddr(), E->getType());
2990 }
2991
2992 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)2993 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2994 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2995 }
2996
EmitCXXUuidofExpr(const CXXUuidofExpr * E)2997 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2998 return CGM.GetAddrOfUuidDescriptor(E);
2999 }
3000
EmitCXXUuidofLValue(const CXXUuidofExpr * E)3001 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3002 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3003 }
3004
3005 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)3006 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3007 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3008 Slot.setExternallyDestructed();
3009 EmitAggExpr(E->getSubExpr(), Slot);
3010 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3011 return MakeAddrLValue(Slot.getAddr(), E->getType());
3012 }
3013
3014 LValue
EmitLambdaLValue(const LambdaExpr * E)3015 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3016 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3017 EmitLambdaExpr(E, Slot);
3018 return MakeAddrLValue(Slot.getAddr(), E->getType());
3019 }
3020
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)3021 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3022 RValue RV = EmitObjCMessageExpr(E);
3023
3024 if (!RV.isScalar())
3025 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3026
3027 assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3028 "Can't have a scalar return unless the return type is a "
3029 "reference type!");
3030
3031 return MakeAddrLValue(RV.getScalarVal(), E->getType());
3032 }
3033
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)3034 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3035 llvm::Value *V =
3036 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3037 return MakeAddrLValue(V, E->getType());
3038 }
3039
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3040 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3041 const ObjCIvarDecl *Ivar) {
3042 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3043 }
3044
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3045 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3046 llvm::Value *BaseValue,
3047 const ObjCIvarDecl *Ivar,
3048 unsigned CVRQualifiers) {
3049 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3050 Ivar, CVRQualifiers);
3051 }
3052
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)3053 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3054 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3055 llvm::Value *BaseValue = 0;
3056 const Expr *BaseExpr = E->getBase();
3057 Qualifiers BaseQuals;
3058 QualType ObjectTy;
3059 if (E->isArrow()) {
3060 BaseValue = EmitScalarExpr(BaseExpr);
3061 ObjectTy = BaseExpr->getType()->getPointeeType();
3062 BaseQuals = ObjectTy.getQualifiers();
3063 } else {
3064 LValue BaseLV = EmitLValue(BaseExpr);
3065 // FIXME: this isn't right for bitfields.
3066 BaseValue = BaseLV.getAddress();
3067 ObjectTy = BaseExpr->getType();
3068 BaseQuals = ObjectTy.getQualifiers();
3069 }
3070
3071 LValue LV =
3072 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3073 BaseQuals.getCVRQualifiers());
3074 setObjCGCLValueClass(getContext(), E, LV);
3075 return LV;
3076 }
3077
EmitStmtExprLValue(const StmtExpr * E)3078 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3079 // Can only get l-value for message expression returning aggregate type
3080 RValue RV = EmitAnyExprToTemp(E);
3081 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3082 }
3083
EmitCall(QualType CalleeType,llvm::Value * Callee,ReturnValueSlot ReturnValue,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const Decl * TargetDecl)3084 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3085 ReturnValueSlot ReturnValue,
3086 CallExpr::const_arg_iterator ArgBeg,
3087 CallExpr::const_arg_iterator ArgEnd,
3088 const Decl *TargetDecl) {
3089 // Get the actual function type. The callee type will always be a pointer to
3090 // function type or a block pointer type.
3091 assert(CalleeType->isFunctionPointerType() &&
3092 "Call must have function pointer type!");
3093
3094 CalleeType = getContext().getCanonicalType(CalleeType);
3095
3096 const FunctionType *FnType
3097 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3098
3099 // Force column info to differentiate multiple inlined call sites on
3100 // the same line, analoguous to EmitCallExpr.
3101 bool ForceColumnInfo = false;
3102 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3103 ForceColumnInfo = FD->isInlineSpecified();
3104
3105 CallArgList Args;
3106 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3107 ForceColumnInfo);
3108
3109 const CGFunctionInfo &FnInfo =
3110 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3111
3112 // C99 6.5.2.2p6:
3113 // If the expression that denotes the called function has a type
3114 // that does not include a prototype, [the default argument
3115 // promotions are performed]. If the number of arguments does not
3116 // equal the number of parameters, the behavior is undefined. If
3117 // the function is defined with a type that includes a prototype,
3118 // and either the prototype ends with an ellipsis (, ...) or the
3119 // types of the arguments after promotion are not compatible with
3120 // the types of the parameters, the behavior is undefined. If the
3121 // function is defined with a type that does not include a
3122 // prototype, and the types of the arguments after promotion are
3123 // not compatible with those of the parameters after promotion,
3124 // the behavior is undefined [except in some trivial cases].
3125 // That is, in the general case, we should assume that a call
3126 // through an unprototyped function type works like a *non-variadic*
3127 // call. The way we make this work is to cast to the exact type
3128 // of the promoted arguments.
3129 if (isa<FunctionNoProtoType>(FnType)) {
3130 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3131 CalleeTy = CalleeTy->getPointerTo();
3132 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3133 }
3134
3135 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3136 }
3137
3138 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)3139 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3140 llvm::Value *BaseV;
3141 if (E->getOpcode() == BO_PtrMemI)
3142 BaseV = EmitScalarExpr(E->getLHS());
3143 else
3144 BaseV = EmitLValue(E->getLHS()).getAddress();
3145
3146 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3147
3148 const MemberPointerType *MPT
3149 = E->getRHS()->getType()->getAs<MemberPointerType>();
3150
3151 llvm::Value *AddV =
3152 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3153
3154 return MakeAddrLValue(AddV, MPT->getPointeeType());
3155 }
3156
3157 /// Given the address of a temporary variable, produce an r-value of
3158 /// its type.
convertTempToRValue(llvm::Value * addr,QualType type)3159 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3160 QualType type) {
3161 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3162 switch (getEvaluationKind(type)) {
3163 case TEK_Complex:
3164 return RValue::getComplex(EmitLoadOfComplex(lvalue));
3165 case TEK_Aggregate:
3166 return lvalue.asAggregateRValue();
3167 case TEK_Scalar:
3168 return RValue::get(EmitLoadOfScalar(lvalue));
3169 }
3170 llvm_unreachable("bad evaluation kind");
3171 }
3172
SetFPAccuracy(llvm::Value * Val,float Accuracy)3173 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3174 assert(Val->getType()->isFPOrFPVectorTy());
3175 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3176 return;
3177
3178 llvm::MDBuilder MDHelper(getLLVMContext());
3179 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3180
3181 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3182 }
3183
3184 namespace {
3185 struct LValueOrRValue {
3186 LValue LV;
3187 RValue RV;
3188 };
3189 }
3190
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3191 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3192 const PseudoObjectExpr *E,
3193 bool forLValue,
3194 AggValueSlot slot) {
3195 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3196
3197 // Find the result expression, if any.
3198 const Expr *resultExpr = E->getResultExpr();
3199 LValueOrRValue result;
3200
3201 for (PseudoObjectExpr::const_semantics_iterator
3202 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3203 const Expr *semantic = *i;
3204
3205 // If this semantic expression is an opaque value, bind it
3206 // to the result of its source expression.
3207 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3208
3209 // If this is the result expression, we may need to evaluate
3210 // directly into the slot.
3211 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3212 OVMA opaqueData;
3213 if (ov == resultExpr && ov->isRValue() && !forLValue &&
3214 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3215 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3216
3217 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3218 opaqueData = OVMA::bind(CGF, ov, LV);
3219 result.RV = slot.asRValue();
3220
3221 // Otherwise, emit as normal.
3222 } else {
3223 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3224
3225 // If this is the result, also evaluate the result now.
3226 if (ov == resultExpr) {
3227 if (forLValue)
3228 result.LV = CGF.EmitLValue(ov);
3229 else
3230 result.RV = CGF.EmitAnyExpr(ov, slot);
3231 }
3232 }
3233
3234 opaques.push_back(opaqueData);
3235
3236 // Otherwise, if the expression is the result, evaluate it
3237 // and remember the result.
3238 } else if (semantic == resultExpr) {
3239 if (forLValue)
3240 result.LV = CGF.EmitLValue(semantic);
3241 else
3242 result.RV = CGF.EmitAnyExpr(semantic, slot);
3243
3244 // Otherwise, evaluate the expression in an ignored context.
3245 } else {
3246 CGF.EmitIgnoredExpr(semantic);
3247 }
3248 }
3249
3250 // Unbind all the opaques now.
3251 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3252 opaques[i].unbind(CGF);
3253
3254 return result;
3255 }
3256
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3257 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3258 AggValueSlot slot) {
3259 return emitPseudoObjectExpr(*this, E, false, slot).RV;
3260 }
3261
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3262 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3263 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3264 }
3265