• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CGCXXABI.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/TargetBuiltins.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 
29 static CharUnits
ComputeNonVirtualBaseClassOffset(ASTContext & Context,const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)30 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
31                                  const CXXRecordDecl *DerivedClass,
32                                  CastExpr::path_const_iterator Start,
33                                  CastExpr::path_const_iterator End) {
34   CharUnits Offset = CharUnits::Zero();
35 
36   const CXXRecordDecl *RD = DerivedClass;
37 
38   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
39     const CXXBaseSpecifier *Base = *I;
40     assert(!Base->isVirtual() && "Should not see virtual bases here!");
41 
42     // Get the layout.
43     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
44 
45     const CXXRecordDecl *BaseDecl =
46       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
47 
48     // Add the offset.
49     Offset += Layout.getBaseClassOffset(BaseDecl);
50 
51     RD = BaseDecl;
52   }
53 
54   return Offset;
55 }
56 
57 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)58 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
59                                    CastExpr::path_const_iterator PathBegin,
60                                    CastExpr::path_const_iterator PathEnd) {
61   assert(PathBegin != PathEnd && "Base path should not be empty!");
62 
63   CharUnits Offset =
64     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
65                                      PathBegin, PathEnd);
66   if (Offset.isZero())
67     return 0;
68 
69   llvm::Type *PtrDiffTy =
70   Types.ConvertType(getContext().getPointerDiffType());
71 
72   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
73 }
74 
75 /// Gets the address of a direct base class within a complete object.
76 /// This should only be used for (1) non-virtual bases or (2) virtual bases
77 /// when the type is known to be complete (e.g. in complete destructors).
78 ///
79 /// The object pointed to by 'This' is assumed to be non-null.
80 llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value * This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)81 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
82                                                    const CXXRecordDecl *Derived,
83                                                    const CXXRecordDecl *Base,
84                                                    bool BaseIsVirtual) {
85   // 'this' must be a pointer (in some address space) to Derived.
86   assert(This->getType()->isPointerTy() &&
87          cast<llvm::PointerType>(This->getType())->getElementType()
88            == ConvertType(Derived));
89 
90   // Compute the offset of the virtual base.
91   CharUnits Offset;
92   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
93   if (BaseIsVirtual)
94     Offset = Layout.getVBaseClassOffset(Base);
95   else
96     Offset = Layout.getBaseClassOffset(Base);
97 
98   // Shift and cast down to the base type.
99   // TODO: for complete types, this should be possible with a GEP.
100   llvm::Value *V = This;
101   if (Offset.isPositive()) {
102     V = Builder.CreateBitCast(V, Int8PtrTy);
103     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
104   }
105   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
106 
107   return V;
108 }
109 
110 static llvm::Value *
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,llvm::Value * ptr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset)111 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
112                                 CharUnits nonVirtualOffset,
113                                 llvm::Value *virtualOffset) {
114   // Assert that we have something to do.
115   assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
116 
117   // Compute the offset from the static and dynamic components.
118   llvm::Value *baseOffset;
119   if (!nonVirtualOffset.isZero()) {
120     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
121                                         nonVirtualOffset.getQuantity());
122     if (virtualOffset) {
123       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
124     }
125   } else {
126     baseOffset = virtualOffset;
127   }
128 
129   // Apply the base offset.
130   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
131   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
132   return ptr;
133 }
134 
135 llvm::Value *
GetAddressOfBaseClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)136 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
137                                        const CXXRecordDecl *Derived,
138                                        CastExpr::path_const_iterator PathBegin,
139                                        CastExpr::path_const_iterator PathEnd,
140                                        bool NullCheckValue) {
141   assert(PathBegin != PathEnd && "Base path should not be empty!");
142 
143   CastExpr::path_const_iterator Start = PathBegin;
144   const CXXRecordDecl *VBase = 0;
145 
146   // Sema has done some convenient canonicalization here: if the
147   // access path involved any virtual steps, the conversion path will
148   // *start* with a step down to the correct virtual base subobject,
149   // and hence will not require any further steps.
150   if ((*Start)->isVirtual()) {
151     VBase =
152       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
153     ++Start;
154   }
155 
156   // Compute the static offset of the ultimate destination within its
157   // allocating subobject (the virtual base, if there is one, or else
158   // the "complete" object that we see).
159   CharUnits NonVirtualOffset =
160     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
161                                      Start, PathEnd);
162 
163   // If there's a virtual step, we can sometimes "devirtualize" it.
164   // For now, that's limited to when the derived type is final.
165   // TODO: "devirtualize" this for accesses to known-complete objects.
166   if (VBase && Derived->hasAttr<FinalAttr>()) {
167     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
168     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
169     NonVirtualOffset += vBaseOffset;
170     VBase = 0; // we no longer have a virtual step
171   }
172 
173   // Get the base pointer type.
174   llvm::Type *BasePtrTy =
175     ConvertType((PathEnd[-1])->getType())->getPointerTo();
176 
177   // If the static offset is zero and we don't have a virtual step,
178   // just do a bitcast; null checks are unnecessary.
179   if (NonVirtualOffset.isZero() && !VBase) {
180     return Builder.CreateBitCast(Value, BasePtrTy);
181   }
182 
183   llvm::BasicBlock *origBB = 0;
184   llvm::BasicBlock *endBB = 0;
185 
186   // Skip over the offset (and the vtable load) if we're supposed to
187   // null-check the pointer.
188   if (NullCheckValue) {
189     origBB = Builder.GetInsertBlock();
190     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
191     endBB = createBasicBlock("cast.end");
192 
193     llvm::Value *isNull = Builder.CreateIsNull(Value);
194     Builder.CreateCondBr(isNull, endBB, notNullBB);
195     EmitBlock(notNullBB);
196   }
197 
198   // Compute the virtual offset.
199   llvm::Value *VirtualOffset = 0;
200   if (VBase) {
201     VirtualOffset =
202       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
203   }
204 
205   // Apply both offsets.
206   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
207                                           NonVirtualOffset,
208                                           VirtualOffset);
209 
210   // Cast to the destination type.
211   Value = Builder.CreateBitCast(Value, BasePtrTy);
212 
213   // Build a phi if we needed a null check.
214   if (NullCheckValue) {
215     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
216     Builder.CreateBr(endBB);
217     EmitBlock(endBB);
218 
219     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
220     PHI->addIncoming(Value, notNullBB);
221     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
222     Value = PHI;
223   }
224 
225   return Value;
226 }
227 
228 llvm::Value *
GetAddressOfDerivedClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)229 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
230                                           const CXXRecordDecl *Derived,
231                                         CastExpr::path_const_iterator PathBegin,
232                                           CastExpr::path_const_iterator PathEnd,
233                                           bool NullCheckValue) {
234   assert(PathBegin != PathEnd && "Base path should not be empty!");
235 
236   QualType DerivedTy =
237     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
238   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
239 
240   llvm::Value *NonVirtualOffset =
241     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
242 
243   if (!NonVirtualOffset) {
244     // No offset, we can just cast back.
245     return Builder.CreateBitCast(Value, DerivedPtrTy);
246   }
247 
248   llvm::BasicBlock *CastNull = 0;
249   llvm::BasicBlock *CastNotNull = 0;
250   llvm::BasicBlock *CastEnd = 0;
251 
252   if (NullCheckValue) {
253     CastNull = createBasicBlock("cast.null");
254     CastNotNull = createBasicBlock("cast.notnull");
255     CastEnd = createBasicBlock("cast.end");
256 
257     llvm::Value *IsNull = Builder.CreateIsNull(Value);
258     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
259     EmitBlock(CastNotNull);
260   }
261 
262   // Apply the offset.
263   Value = Builder.CreateBitCast(Value, Int8PtrTy);
264   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
265                             "sub.ptr");
266 
267   // Just cast.
268   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
269 
270   if (NullCheckValue) {
271     Builder.CreateBr(CastEnd);
272     EmitBlock(CastNull);
273     Builder.CreateBr(CastEnd);
274     EmitBlock(CastEnd);
275 
276     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
277     PHI->addIncoming(Value, CastNotNull);
278     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
279                      CastNull);
280     Value = PHI;
281   }
282 
283   return Value;
284 }
285 
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)286 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
287                                               bool ForVirtualBase,
288                                               bool Delegating) {
289   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
290     // This constructor/destructor does not need a VTT parameter.
291     return 0;
292   }
293 
294   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
295   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
296 
297   llvm::Value *VTT;
298 
299   uint64_t SubVTTIndex;
300 
301   if (Delegating) {
302     // If this is a delegating constructor call, just load the VTT.
303     return LoadCXXVTT();
304   } else if (RD == Base) {
305     // If the record matches the base, this is the complete ctor/dtor
306     // variant calling the base variant in a class with virtual bases.
307     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
308            "doing no-op VTT offset in base dtor/ctor?");
309     assert(!ForVirtualBase && "Can't have same class as virtual base!");
310     SubVTTIndex = 0;
311   } else {
312     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
313     CharUnits BaseOffset = ForVirtualBase ?
314       Layout.getVBaseClassOffset(Base) :
315       Layout.getBaseClassOffset(Base);
316 
317     SubVTTIndex =
318       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
319     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
320   }
321 
322   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
323     // A VTT parameter was passed to the constructor, use it.
324     VTT = LoadCXXVTT();
325     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
326   } else {
327     // We're the complete constructor, so get the VTT by name.
328     VTT = CGM.getVTables().GetAddrOfVTT(RD);
329     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
330   }
331 
332   return VTT;
333 }
334 
335 namespace {
336   /// Call the destructor for a direct base class.
337   struct CallBaseDtor : EHScopeStack::Cleanup {
338     const CXXRecordDecl *BaseClass;
339     bool BaseIsVirtual;
CallBaseDtor__anonc19dd22a0111::CallBaseDtor340     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
341       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
342 
Emit__anonc19dd22a0111::CallBaseDtor343     void Emit(CodeGenFunction &CGF, Flags flags) {
344       const CXXRecordDecl *DerivedClass =
345         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
346 
347       const CXXDestructorDecl *D = BaseClass->getDestructor();
348       llvm::Value *Addr =
349         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
350                                                   DerivedClass, BaseClass,
351                                                   BaseIsVirtual);
352       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
353                                 /*Delegating=*/false, Addr);
354     }
355   };
356 
357   /// A visitor which checks whether an initializer uses 'this' in a
358   /// way which requires the vtable to be properly set.
359   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
360     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
361 
362     bool UsesThis;
363 
DynamicThisUseChecker__anonc19dd22a0111::DynamicThisUseChecker364     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
365 
366     // Black-list all explicit and implicit references to 'this'.
367     //
368     // Do we need to worry about external references to 'this' derived
369     // from arbitrary code?  If so, then anything which runs arbitrary
370     // external code might potentially access the vtable.
VisitCXXThisExpr__anonc19dd22a0111::DynamicThisUseChecker371     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
372   };
373 }
374 
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)375 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
376   DynamicThisUseChecker Checker(C);
377   Checker.Visit(const_cast<Expr*>(Init));
378   return Checker.UsesThis;
379 }
380 
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit,CXXCtorType CtorType)381 static void EmitBaseInitializer(CodeGenFunction &CGF,
382                                 const CXXRecordDecl *ClassDecl,
383                                 CXXCtorInitializer *BaseInit,
384                                 CXXCtorType CtorType) {
385   assert(BaseInit->isBaseInitializer() &&
386          "Must have base initializer!");
387 
388   llvm::Value *ThisPtr = CGF.LoadCXXThis();
389 
390   const Type *BaseType = BaseInit->getBaseClass();
391   CXXRecordDecl *BaseClassDecl =
392     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
393 
394   bool isBaseVirtual = BaseInit->isBaseVirtual();
395 
396   // The base constructor doesn't construct virtual bases.
397   if (CtorType == Ctor_Base && isBaseVirtual)
398     return;
399 
400   // If the initializer for the base (other than the constructor
401   // itself) accesses 'this' in any way, we need to initialize the
402   // vtables.
403   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
404     CGF.InitializeVTablePointers(ClassDecl);
405 
406   // We can pretend to be a complete class because it only matters for
407   // virtual bases, and we only do virtual bases for complete ctors.
408   llvm::Value *V =
409     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
410                                               BaseClassDecl,
411                                               isBaseVirtual);
412   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
413   AggValueSlot AggSlot =
414     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
415                           AggValueSlot::IsDestructed,
416                           AggValueSlot::DoesNotNeedGCBarriers,
417                           AggValueSlot::IsNotAliased);
418 
419   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
420 
421   if (CGF.CGM.getLangOpts().Exceptions &&
422       !BaseClassDecl->hasTrivialDestructor())
423     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
424                                           isBaseVirtual);
425 }
426 
EmitAggMemberInitializer(CodeGenFunction & CGF,LValue LHS,Expr * Init,llvm::Value * ArrayIndexVar,QualType T,ArrayRef<VarDecl * > ArrayIndexes,unsigned Index)427 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
428                                      LValue LHS,
429                                      Expr *Init,
430                                      llvm::Value *ArrayIndexVar,
431                                      QualType T,
432                                      ArrayRef<VarDecl *> ArrayIndexes,
433                                      unsigned Index) {
434   if (Index == ArrayIndexes.size()) {
435     LValue LV = LHS;
436 
437     if (ArrayIndexVar) {
438       // If we have an array index variable, load it and use it as an offset.
439       // Then, increment the value.
440       llvm::Value *Dest = LHS.getAddress();
441       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
442       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
443       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
444       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
445       CGF.Builder.CreateStore(Next, ArrayIndexVar);
446 
447       // Update the LValue.
448       LV.setAddress(Dest);
449       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
450       LV.setAlignment(std::min(Align, LV.getAlignment()));
451     }
452 
453     switch (CGF.getEvaluationKind(T)) {
454     case TEK_Scalar:
455       CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
456       break;
457     case TEK_Complex:
458       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
459       break;
460     case TEK_Aggregate: {
461       AggValueSlot Slot =
462         AggValueSlot::forLValue(LV,
463                                 AggValueSlot::IsDestructed,
464                                 AggValueSlot::DoesNotNeedGCBarriers,
465                                 AggValueSlot::IsNotAliased);
466 
467       CGF.EmitAggExpr(Init, Slot);
468       break;
469     }
470     }
471 
472     return;
473   }
474 
475   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
476   assert(Array && "Array initialization without the array type?");
477   llvm::Value *IndexVar
478     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
479   assert(IndexVar && "Array index variable not loaded");
480 
481   // Initialize this index variable to zero.
482   llvm::Value* Zero
483     = llvm::Constant::getNullValue(
484                               CGF.ConvertType(CGF.getContext().getSizeType()));
485   CGF.Builder.CreateStore(Zero, IndexVar);
486 
487   // Start the loop with a block that tests the condition.
488   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
489   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
490 
491   CGF.EmitBlock(CondBlock);
492 
493   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
494   // Generate: if (loop-index < number-of-elements) fall to the loop body,
495   // otherwise, go to the block after the for-loop.
496   uint64_t NumElements = Array->getSize().getZExtValue();
497   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
498   llvm::Value *NumElementsPtr =
499     llvm::ConstantInt::get(Counter->getType(), NumElements);
500   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
501                                                   "isless");
502 
503   // If the condition is true, execute the body.
504   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
505 
506   CGF.EmitBlock(ForBody);
507   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
508 
509   // Inside the loop body recurse to emit the inner loop or, eventually, the
510   // constructor call.
511   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
512                            Array->getElementType(), ArrayIndexes, Index + 1);
513 
514   CGF.EmitBlock(ContinueBlock);
515 
516   // Emit the increment of the loop counter.
517   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
518   Counter = CGF.Builder.CreateLoad(IndexVar);
519   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
520   CGF.Builder.CreateStore(NextVal, IndexVar);
521 
522   // Finally, branch back up to the condition for the next iteration.
523   CGF.EmitBranch(CondBlock);
524 
525   // Emit the fall-through block.
526   CGF.EmitBlock(AfterFor, true);
527 }
528 
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)529 static void EmitMemberInitializer(CodeGenFunction &CGF,
530                                   const CXXRecordDecl *ClassDecl,
531                                   CXXCtorInitializer *MemberInit,
532                                   const CXXConstructorDecl *Constructor,
533                                   FunctionArgList &Args) {
534   assert(MemberInit->isAnyMemberInitializer() &&
535          "Must have member initializer!");
536   assert(MemberInit->getInit() && "Must have initializer!");
537 
538   // non-static data member initializers.
539   FieldDecl *Field = MemberInit->getAnyMember();
540   QualType FieldType = Field->getType();
541 
542   llvm::Value *ThisPtr = CGF.LoadCXXThis();
543   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
544   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
545 
546   if (MemberInit->isIndirectMemberInitializer()) {
547     // If we are initializing an anonymous union field, drill down to
548     // the field.
549     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
550     IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
551       IEnd = IndirectField->chain_end();
552     for ( ; I != IEnd; ++I)
553       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
554     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
555   } else {
556     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
557   }
558 
559   // Special case: if we are in a copy or move constructor, and we are copying
560   // an array of PODs or classes with trivial copy constructors, ignore the
561   // AST and perform the copy we know is equivalent.
562   // FIXME: This is hacky at best... if we had a bit more explicit information
563   // in the AST, we could generalize it more easily.
564   const ConstantArrayType *Array
565     = CGF.getContext().getAsConstantArrayType(FieldType);
566   if (Array && Constructor->isDefaulted() &&
567       Constructor->isCopyOrMoveConstructor()) {
568     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
569     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
570     if (BaseElementTy.isPODType(CGF.getContext()) ||
571         (CE && CE->getConstructor()->isTrivial())) {
572       // Find the source pointer. We know it's the last argument because
573       // we know we're in an implicit copy constructor.
574       unsigned SrcArgIndex = Args.size() - 1;
575       llvm::Value *SrcPtr
576         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
577       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
578       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
579 
580       // Copy the aggregate.
581       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
582                             LHS.isVolatileQualified());
583       return;
584     }
585   }
586 
587   ArrayRef<VarDecl *> ArrayIndexes;
588   if (MemberInit->getNumArrayIndices())
589     ArrayIndexes = MemberInit->getArrayIndexes();
590   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
591 }
592 
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init,ArrayRef<VarDecl * > ArrayIndexes)593 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
594                                               LValue LHS, Expr *Init,
595                                              ArrayRef<VarDecl *> ArrayIndexes) {
596   QualType FieldType = Field->getType();
597   switch (getEvaluationKind(FieldType)) {
598   case TEK_Scalar:
599     if (LHS.isSimple()) {
600       EmitExprAsInit(Init, Field, LHS, false);
601     } else {
602       RValue RHS = RValue::get(EmitScalarExpr(Init));
603       EmitStoreThroughLValue(RHS, LHS);
604     }
605     break;
606   case TEK_Complex:
607     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
608     break;
609   case TEK_Aggregate: {
610     llvm::Value *ArrayIndexVar = 0;
611     if (ArrayIndexes.size()) {
612       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
613 
614       // The LHS is a pointer to the first object we'll be constructing, as
615       // a flat array.
616       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
617       llvm::Type *BasePtr = ConvertType(BaseElementTy);
618       BasePtr = llvm::PointerType::getUnqual(BasePtr);
619       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
620                                                        BasePtr);
621       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
622 
623       // Create an array index that will be used to walk over all of the
624       // objects we're constructing.
625       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
626       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
627       Builder.CreateStore(Zero, ArrayIndexVar);
628 
629 
630       // Emit the block variables for the array indices, if any.
631       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
632         EmitAutoVarDecl(*ArrayIndexes[I]);
633     }
634 
635     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
636                              ArrayIndexes, 0);
637   }
638   }
639 
640   // Ensure that we destroy this object if an exception is thrown
641   // later in the constructor.
642   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
643   if (needsEHCleanup(dtorKind))
644     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
645 }
646 
647 /// Checks whether the given constructor is a valid subject for the
648 /// complete-to-base constructor delegation optimization, i.e.
649 /// emitting the complete constructor as a simple call to the base
650 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)651 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
652 
653   // Currently we disable the optimization for classes with virtual
654   // bases because (1) the addresses of parameter variables need to be
655   // consistent across all initializers but (2) the delegate function
656   // call necessarily creates a second copy of the parameter variable.
657   //
658   // The limiting example (purely theoretical AFAIK):
659   //   struct A { A(int &c) { c++; } };
660   //   struct B : virtual A {
661   //     B(int count) : A(count) { printf("%d\n", count); }
662   //   };
663   // ...although even this example could in principle be emitted as a
664   // delegation since the address of the parameter doesn't escape.
665   if (Ctor->getParent()->getNumVBases()) {
666     // TODO: white-list trivial vbase initializers.  This case wouldn't
667     // be subject to the restrictions below.
668 
669     // TODO: white-list cases where:
670     //  - there are no non-reference parameters to the constructor
671     //  - the initializers don't access any non-reference parameters
672     //  - the initializers don't take the address of non-reference
673     //    parameters
674     //  - etc.
675     // If we ever add any of the above cases, remember that:
676     //  - function-try-blocks will always blacklist this optimization
677     //  - we need to perform the constructor prologue and cleanup in
678     //    EmitConstructorBody.
679 
680     return false;
681   }
682 
683   // We also disable the optimization for variadic functions because
684   // it's impossible to "re-pass" varargs.
685   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
686     return false;
687 
688   // FIXME: Decide if we can do a delegation of a delegating constructor.
689   if (Ctor->isDelegatingConstructor())
690     return false;
691 
692   return true;
693 }
694 
695 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)696 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
697   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
698   CXXCtorType CtorType = CurGD.getCtorType();
699 
700   // Before we go any further, try the complete->base constructor
701   // delegation optimization.
702   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
703       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
704     if (CGDebugInfo *DI = getDebugInfo())
705       DI->EmitLocation(Builder, Ctor->getLocEnd());
706     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
707     return;
708   }
709 
710   Stmt *Body = Ctor->getBody();
711 
712   // Enter the function-try-block before the constructor prologue if
713   // applicable.
714   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
715   if (IsTryBody)
716     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
717 
718   RunCleanupsScope RunCleanups(*this);
719 
720   // TODO: in restricted cases, we can emit the vbase initializers of
721   // a complete ctor and then delegate to the base ctor.
722 
723   // Emit the constructor prologue, i.e. the base and member
724   // initializers.
725   EmitCtorPrologue(Ctor, CtorType, Args);
726 
727   // Emit the body of the statement.
728   if (IsTryBody)
729     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
730   else if (Body)
731     EmitStmt(Body);
732 
733   // Emit any cleanup blocks associated with the member or base
734   // initializers, which includes (along the exceptional path) the
735   // destructors for those members and bases that were fully
736   // constructed.
737   RunCleanups.ForceCleanup();
738 
739   if (IsTryBody)
740     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
741 }
742 
743 namespace {
744   class FieldMemcpyizer {
745   public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)746     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
747                     const VarDecl *SrcRec)
748       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
749         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
750         FirstField(0), LastField(0), FirstFieldOffset(0), LastFieldOffset(0),
751         LastAddedFieldIndex(0) { }
752 
isMemcpyableField(FieldDecl * F)753     static bool isMemcpyableField(FieldDecl *F) {
754       Qualifiers Qual = F->getType().getQualifiers();
755       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
756         return false;
757       return true;
758     }
759 
addMemcpyableField(FieldDecl * F)760     void addMemcpyableField(FieldDecl *F) {
761       if (FirstField == 0)
762         addInitialField(F);
763       else
764         addNextField(F);
765     }
766 
getMemcpySize() const767     CharUnits getMemcpySize() const {
768       unsigned LastFieldSize =
769         LastField->isBitField() ?
770           LastField->getBitWidthValue(CGF.getContext()) :
771           CGF.getContext().getTypeSize(LastField->getType());
772       uint64_t MemcpySizeBits =
773         LastFieldOffset + LastFieldSize - FirstFieldOffset +
774         CGF.getContext().getCharWidth() - 1;
775       CharUnits MemcpySize =
776         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
777       return MemcpySize;
778     }
779 
emitMemcpy()780     void emitMemcpy() {
781       // Give the subclass a chance to bail out if it feels the memcpy isn't
782       // worth it (e.g. Hasn't aggregated enough data).
783       if (FirstField == 0) {
784         return;
785       }
786 
787       CharUnits Alignment;
788 
789       if (FirstField->isBitField()) {
790         const CGRecordLayout &RL =
791           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
792         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
793         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
794       } else {
795         Alignment = CGF.getContext().getDeclAlign(FirstField);
796       }
797 
798       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
799               Alignment) == 0 && "Bad field alignment.");
800 
801       CharUnits MemcpySize = getMemcpySize();
802       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
803       llvm::Value *ThisPtr = CGF.LoadCXXThis();
804       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
805       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
806       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
807       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
808       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
809 
810       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
811                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
812                    MemcpySize, Alignment);
813       reset();
814     }
815 
reset()816     void reset() {
817       FirstField = 0;
818     }
819 
820   protected:
821     CodeGenFunction &CGF;
822     const CXXRecordDecl *ClassDecl;
823 
824   private:
825 
emitMemcpyIR(llvm::Value * DestPtr,llvm::Value * SrcPtr,CharUnits Size,CharUnits Alignment)826     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
827                       CharUnits Size, CharUnits Alignment) {
828       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
829       llvm::Type *DBP =
830         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
831       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
832 
833       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
834       llvm::Type *SBP =
835         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
836       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
837 
838       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
839                                Alignment.getQuantity());
840     }
841 
addInitialField(FieldDecl * F)842     void addInitialField(FieldDecl *F) {
843         FirstField = F;
844         LastField = F;
845         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
846         LastFieldOffset = FirstFieldOffset;
847         LastAddedFieldIndex = F->getFieldIndex();
848         return;
849       }
850 
addNextField(FieldDecl * F)851     void addNextField(FieldDecl *F) {
852       // For the most part, the following invariant will hold:
853       //   F->getFieldIndex() == LastAddedFieldIndex + 1
854       // The one exception is that Sema won't add a copy-initializer for an
855       // unnamed bitfield, which will show up here as a gap in the sequence.
856       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
857              "Cannot aggregate fields out of order.");
858       LastAddedFieldIndex = F->getFieldIndex();
859 
860       // The 'first' and 'last' fields are chosen by offset, rather than field
861       // index. This allows the code to support bitfields, as well as regular
862       // fields.
863       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
864       if (FOffset < FirstFieldOffset) {
865         FirstField = F;
866         FirstFieldOffset = FOffset;
867       } else if (FOffset > LastFieldOffset) {
868         LastField = F;
869         LastFieldOffset = FOffset;
870       }
871     }
872 
873     const VarDecl *SrcRec;
874     const ASTRecordLayout &RecLayout;
875     FieldDecl *FirstField;
876     FieldDecl *LastField;
877     uint64_t FirstFieldOffset, LastFieldOffset;
878     unsigned LastAddedFieldIndex;
879   };
880 
881   class ConstructorMemcpyizer : public FieldMemcpyizer {
882   private:
883 
884     /// Get source argument for copy constructor. Returns null if not a copy
885     /// constructor.
getTrivialCopySource(const CXXConstructorDecl * CD,FunctionArgList & Args)886     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
887                                                FunctionArgList &Args) {
888       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
889         return Args[Args.size() - 1];
890       return 0;
891     }
892 
893     // Returns true if a CXXCtorInitializer represents a member initialization
894     // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const895     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
896       if (!MemcpyableCtor)
897         return false;
898       FieldDecl *Field = MemberInit->getMember();
899       assert(Field != 0 && "No field for member init.");
900       QualType FieldType = Field->getType();
901       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
902 
903       // Bail out on non-POD, not-trivially-constructable members.
904       if (!(CE && CE->getConstructor()->isTrivial()) &&
905           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
906             FieldType->isReferenceType()))
907         return false;
908 
909       // Bail out on volatile fields.
910       if (!isMemcpyableField(Field))
911         return false;
912 
913       // Otherwise we're good.
914       return true;
915     }
916 
917   public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)918     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
919                           FunctionArgList &Args)
920       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
921         ConstructorDecl(CD),
922         MemcpyableCtor(CD->isDefaulted() &&
923                        CD->isCopyOrMoveConstructor() &&
924                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
925         Args(Args) { }
926 
addMemberInitializer(CXXCtorInitializer * MemberInit)927     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
928       if (isMemberInitMemcpyable(MemberInit)) {
929         AggregatedInits.push_back(MemberInit);
930         addMemcpyableField(MemberInit->getMember());
931       } else {
932         emitAggregatedInits();
933         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
934                               ConstructorDecl, Args);
935       }
936     }
937 
emitAggregatedInits()938     void emitAggregatedInits() {
939       if (AggregatedInits.size() <= 1) {
940         // This memcpy is too small to be worthwhile. Fall back on default
941         // codegen.
942         for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
943           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
944                                 AggregatedInits[i], ConstructorDecl, Args);
945         }
946         reset();
947         return;
948       }
949 
950       pushEHDestructors();
951       emitMemcpy();
952       AggregatedInits.clear();
953     }
954 
pushEHDestructors()955     void pushEHDestructors() {
956       llvm::Value *ThisPtr = CGF.LoadCXXThis();
957       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
958       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
959 
960       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
961         QualType FieldType = AggregatedInits[i]->getMember()->getType();
962         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
963         if (CGF.needsEHCleanup(dtorKind))
964           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
965       }
966     }
967 
finish()968     void finish() {
969       emitAggregatedInits();
970     }
971 
972   private:
973     const CXXConstructorDecl *ConstructorDecl;
974     bool MemcpyableCtor;
975     FunctionArgList &Args;
976     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
977   };
978 
979   class AssignmentMemcpyizer : public FieldMemcpyizer {
980   private:
981 
982     // Returns the memcpyable field copied by the given statement, if one
983     // exists. Otherwise r
getMemcpyableField(Stmt * S)984     FieldDecl* getMemcpyableField(Stmt *S) {
985       if (!AssignmentsMemcpyable)
986         return 0;
987       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
988         // Recognise trivial assignments.
989         if (BO->getOpcode() != BO_Assign)
990           return 0;
991         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
992         if (!ME)
993           return 0;
994         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
995         if (!Field || !isMemcpyableField(Field))
996           return 0;
997         Stmt *RHS = BO->getRHS();
998         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
999           RHS = EC->getSubExpr();
1000         if (!RHS)
1001           return 0;
1002         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1003         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1004           return 0;
1005         return Field;
1006       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1007         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1008         if (!(MD && (MD->isCopyAssignmentOperator() ||
1009                        MD->isMoveAssignmentOperator()) &&
1010               MD->isTrivial()))
1011           return 0;
1012         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1013         if (!IOA)
1014           return 0;
1015         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1016         if (!Field || !isMemcpyableField(Field))
1017           return 0;
1018         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1019         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1020           return 0;
1021         return Field;
1022       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1023         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1024         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1025           return 0;
1026         Expr *DstPtr = CE->getArg(0);
1027         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1028           DstPtr = DC->getSubExpr();
1029         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1030         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1031           return 0;
1032         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1033         if (!ME)
1034           return 0;
1035         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1036         if (!Field || !isMemcpyableField(Field))
1037           return 0;
1038         Expr *SrcPtr = CE->getArg(1);
1039         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1040           SrcPtr = SC->getSubExpr();
1041         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1042         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1043           return 0;
1044         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1045         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1046           return 0;
1047         return Field;
1048       }
1049 
1050       return 0;
1051     }
1052 
1053     bool AssignmentsMemcpyable;
1054     SmallVector<Stmt*, 16> AggregatedStmts;
1055 
1056   public:
1057 
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1058     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1059                          FunctionArgList &Args)
1060       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1061         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1062       assert(Args.size() == 2);
1063     }
1064 
emitAssignment(Stmt * S)1065     void emitAssignment(Stmt *S) {
1066       FieldDecl *F = getMemcpyableField(S);
1067       if (F) {
1068         addMemcpyableField(F);
1069         AggregatedStmts.push_back(S);
1070       } else {
1071         emitAggregatedStmts();
1072         CGF.EmitStmt(S);
1073       }
1074     }
1075 
emitAggregatedStmts()1076     void emitAggregatedStmts() {
1077       if (AggregatedStmts.size() <= 1) {
1078         for (unsigned i = 0; i < AggregatedStmts.size(); ++i)
1079           CGF.EmitStmt(AggregatedStmts[i]);
1080         reset();
1081       }
1082 
1083       emitMemcpy();
1084       AggregatedStmts.clear();
1085     }
1086 
finish()1087     void finish() {
1088       emitAggregatedStmts();
1089     }
1090   };
1091 
1092 }
1093 
1094 /// EmitCtorPrologue - This routine generates necessary code to initialize
1095 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1096 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1097                                        CXXCtorType CtorType,
1098                                        FunctionArgList &Args) {
1099   if (CD->isDelegatingConstructor())
1100     return EmitDelegatingCXXConstructorCall(CD, Args);
1101 
1102   const CXXRecordDecl *ClassDecl = CD->getParent();
1103 
1104   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1105                                           E = CD->init_end();
1106 
1107   llvm::BasicBlock *BaseCtorContinueBB = 0;
1108   if (ClassDecl->getNumVBases() &&
1109       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1110     // The ABIs that don't have constructor variants need to put a branch
1111     // before the virtual base initialization code.
1112     BaseCtorContinueBB =
1113       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1114     assert(BaseCtorContinueBB);
1115   }
1116 
1117   // Virtual base initializers first.
1118   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1119     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1120   }
1121 
1122   if (BaseCtorContinueBB) {
1123     // Complete object handler should continue to the remaining initializers.
1124     Builder.CreateBr(BaseCtorContinueBB);
1125     EmitBlock(BaseCtorContinueBB);
1126   }
1127 
1128   // Then, non-virtual base initializers.
1129   for (; B != E && (*B)->isBaseInitializer(); B++) {
1130     assert(!(*B)->isBaseVirtual());
1131     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1132   }
1133 
1134   InitializeVTablePointers(ClassDecl);
1135 
1136   // And finally, initialize class members.
1137   FieldConstructionScope FCS(*this, CXXThisValue);
1138   ConstructorMemcpyizer CM(*this, CD, Args);
1139   for (; B != E; B++) {
1140     CXXCtorInitializer *Member = (*B);
1141     assert(!Member->isBaseInitializer());
1142     assert(Member->isAnyMemberInitializer() &&
1143            "Delegating initializer on non-delegating constructor");
1144     CM.addMemberInitializer(Member);
1145   }
1146   CM.finish();
1147 }
1148 
1149 static bool
1150 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1151 
1152 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1153 HasTrivialDestructorBody(ASTContext &Context,
1154                          const CXXRecordDecl *BaseClassDecl,
1155                          const CXXRecordDecl *MostDerivedClassDecl)
1156 {
1157   // If the destructor is trivial we don't have to check anything else.
1158   if (BaseClassDecl->hasTrivialDestructor())
1159     return true;
1160 
1161   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1162     return false;
1163 
1164   // Check fields.
1165   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
1166        E = BaseClassDecl->field_end(); I != E; ++I) {
1167     const FieldDecl *Field = *I;
1168 
1169     if (!FieldHasTrivialDestructorBody(Context, Field))
1170       return false;
1171   }
1172 
1173   // Check non-virtual bases.
1174   for (CXXRecordDecl::base_class_const_iterator I =
1175        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
1176        I != E; ++I) {
1177     if (I->isVirtual())
1178       continue;
1179 
1180     const CXXRecordDecl *NonVirtualBase =
1181       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1182     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1183                                   MostDerivedClassDecl))
1184       return false;
1185   }
1186 
1187   if (BaseClassDecl == MostDerivedClassDecl) {
1188     // Check virtual bases.
1189     for (CXXRecordDecl::base_class_const_iterator I =
1190          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
1191          I != E; ++I) {
1192       const CXXRecordDecl *VirtualBase =
1193         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1194       if (!HasTrivialDestructorBody(Context, VirtualBase,
1195                                     MostDerivedClassDecl))
1196         return false;
1197     }
1198   }
1199 
1200   return true;
1201 }
1202 
1203 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1204 FieldHasTrivialDestructorBody(ASTContext &Context,
1205                               const FieldDecl *Field)
1206 {
1207   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1208 
1209   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1210   if (!RT)
1211     return true;
1212 
1213   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1214   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1215 }
1216 
1217 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1218 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(ASTContext & Context,const CXXDestructorDecl * Dtor)1219 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1220                                                const CXXDestructorDecl *Dtor) {
1221   if (!Dtor->hasTrivialBody())
1222     return false;
1223 
1224   // Check the fields.
1225   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1226   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1227        E = ClassDecl->field_end(); I != E; ++I) {
1228     const FieldDecl *Field = *I;
1229 
1230     if (!FieldHasTrivialDestructorBody(Context, Field))
1231       return false;
1232   }
1233 
1234   return true;
1235 }
1236 
1237 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1238 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1239   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1240   CXXDtorType DtorType = CurGD.getDtorType();
1241 
1242   // The call to operator delete in a deleting destructor happens
1243   // outside of the function-try-block, which means it's always
1244   // possible to delegate the destructor body to the complete
1245   // destructor.  Do so.
1246   if (DtorType == Dtor_Deleting) {
1247     EnterDtorCleanups(Dtor, Dtor_Deleting);
1248     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1249                           /*Delegating=*/false, LoadCXXThis());
1250     PopCleanupBlock();
1251     return;
1252   }
1253 
1254   Stmt *Body = Dtor->getBody();
1255 
1256   // If the body is a function-try-block, enter the try before
1257   // anything else.
1258   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1259   if (isTryBody)
1260     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1261 
1262   // Enter the epilogue cleanups.
1263   RunCleanupsScope DtorEpilogue(*this);
1264 
1265   // If this is the complete variant, just invoke the base variant;
1266   // the epilogue will destruct the virtual bases.  But we can't do
1267   // this optimization if the body is a function-try-block, because
1268   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1269   // always delegate because we might not have a definition in this TU.
1270   switch (DtorType) {
1271   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1272 
1273   case Dtor_Complete:
1274     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1275            "can't emit a dtor without a body for non-Microsoft ABIs");
1276 
1277     // Enter the cleanup scopes for virtual bases.
1278     EnterDtorCleanups(Dtor, Dtor_Complete);
1279 
1280     if (!isTryBody) {
1281       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1282                             /*Delegating=*/false, LoadCXXThis());
1283       break;
1284     }
1285     // Fallthrough: act like we're in the base variant.
1286 
1287   case Dtor_Base:
1288     assert(Body);
1289 
1290     // Enter the cleanup scopes for fields and non-virtual bases.
1291     EnterDtorCleanups(Dtor, Dtor_Base);
1292 
1293     // Initialize the vtable pointers before entering the body.
1294     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1295         InitializeVTablePointers(Dtor->getParent());
1296 
1297     if (isTryBody)
1298       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1299     else if (Body)
1300       EmitStmt(Body);
1301     else {
1302       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1303       // nothing to do besides what's in the epilogue
1304     }
1305     // -fapple-kext must inline any call to this dtor into
1306     // the caller's body.
1307     if (getLangOpts().AppleKext)
1308       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1309     break;
1310   }
1311 
1312   // Jump out through the epilogue cleanups.
1313   DtorEpilogue.ForceCleanup();
1314 
1315   // Exit the try if applicable.
1316   if (isTryBody)
1317     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1318 }
1319 
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1320 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1321   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1322   const Stmt *RootS = AssignOp->getBody();
1323   assert(isa<CompoundStmt>(RootS) &&
1324          "Body of an implicit assignment operator should be compound stmt.");
1325   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1326 
1327   LexicalScope Scope(*this, RootCS->getSourceRange());
1328 
1329   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1330   for (CompoundStmt::const_body_iterator I = RootCS->body_begin(),
1331                                          E = RootCS->body_end();
1332        I != E; ++I) {
1333     AM.emitAssignment(*I);
1334   }
1335   AM.finish();
1336 }
1337 
1338 namespace {
1339   /// Call the operator delete associated with the current destructor.
1340   struct CallDtorDelete : EHScopeStack::Cleanup {
CallDtorDelete__anonc19dd22a0311::CallDtorDelete1341     CallDtorDelete() {}
1342 
Emit__anonc19dd22a0311::CallDtorDelete1343     void Emit(CodeGenFunction &CGF, Flags flags) {
1344       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1345       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1346       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1347                          CGF.getContext().getTagDeclType(ClassDecl));
1348     }
1349   };
1350 
1351   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1352     llvm::Value *ShouldDeleteCondition;
1353   public:
CallDtorDeleteConditional__anonc19dd22a0311::CallDtorDeleteConditional1354     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1355       : ShouldDeleteCondition(ShouldDeleteCondition) {
1356       assert(ShouldDeleteCondition != NULL);
1357     }
1358 
Emit__anonc19dd22a0311::CallDtorDeleteConditional1359     void Emit(CodeGenFunction &CGF, Flags flags) {
1360       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1361       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1362       llvm::Value *ShouldCallDelete
1363         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1364       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1365 
1366       CGF.EmitBlock(callDeleteBB);
1367       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1368       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1369       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1370                          CGF.getContext().getTagDeclType(ClassDecl));
1371       CGF.Builder.CreateBr(continueBB);
1372 
1373       CGF.EmitBlock(continueBB);
1374     }
1375   };
1376 
1377   class DestroyField  : public EHScopeStack::Cleanup {
1378     const FieldDecl *field;
1379     CodeGenFunction::Destroyer *destroyer;
1380     bool useEHCleanupForArray;
1381 
1382   public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1383     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1384                  bool useEHCleanupForArray)
1385       : field(field), destroyer(destroyer),
1386         useEHCleanupForArray(useEHCleanupForArray) {}
1387 
Emit(CodeGenFunction & CGF,Flags flags)1388     void Emit(CodeGenFunction &CGF, Flags flags) {
1389       // Find the address of the field.
1390       llvm::Value *thisValue = CGF.LoadCXXThis();
1391       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1392       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1393       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1394       assert(LV.isSimple());
1395 
1396       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1397                       flags.isForNormalCleanup() && useEHCleanupForArray);
1398     }
1399   };
1400 }
1401 
1402 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
1403 /// destructor. This is to call destructors on members and base classes
1404 /// in reverse order of their construction.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1405 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1406                                         CXXDtorType DtorType) {
1407   assert(!DD->isTrivial() &&
1408          "Should not emit dtor epilogue for trivial dtor!");
1409 
1410   // The deleting-destructor phase just needs to call the appropriate
1411   // operator delete that Sema picked up.
1412   if (DtorType == Dtor_Deleting) {
1413     assert(DD->getOperatorDelete() &&
1414            "operator delete missing - EmitDtorEpilogue");
1415     if (CXXStructorImplicitParamValue) {
1416       // If there is an implicit param to the deleting dtor, it's a boolean
1417       // telling whether we should call delete at the end of the dtor.
1418       EHStack.pushCleanup<CallDtorDeleteConditional>(
1419           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1420     } else {
1421       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1422     }
1423     return;
1424   }
1425 
1426   const CXXRecordDecl *ClassDecl = DD->getParent();
1427 
1428   // Unions have no bases and do not call field destructors.
1429   if (ClassDecl->isUnion())
1430     return;
1431 
1432   // The complete-destructor phase just destructs all the virtual bases.
1433   if (DtorType == Dtor_Complete) {
1434 
1435     // We push them in the forward order so that they'll be popped in
1436     // the reverse order.
1437     for (CXXRecordDecl::base_class_const_iterator I =
1438            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
1439               I != E; ++I) {
1440       const CXXBaseSpecifier &Base = *I;
1441       CXXRecordDecl *BaseClassDecl
1442         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1443 
1444       // Ignore trivial destructors.
1445       if (BaseClassDecl->hasTrivialDestructor())
1446         continue;
1447 
1448       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1449                                         BaseClassDecl,
1450                                         /*BaseIsVirtual*/ true);
1451     }
1452 
1453     return;
1454   }
1455 
1456   assert(DtorType == Dtor_Base);
1457 
1458   // Destroy non-virtual bases.
1459   for (CXXRecordDecl::base_class_const_iterator I =
1460         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
1461     const CXXBaseSpecifier &Base = *I;
1462 
1463     // Ignore virtual bases.
1464     if (Base.isVirtual())
1465       continue;
1466 
1467     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1468 
1469     // Ignore trivial destructors.
1470     if (BaseClassDecl->hasTrivialDestructor())
1471       continue;
1472 
1473     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1474                                       BaseClassDecl,
1475                                       /*BaseIsVirtual*/ false);
1476   }
1477 
1478   // Destroy direct fields.
1479   SmallVector<const FieldDecl *, 16> FieldDecls;
1480   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1481        E = ClassDecl->field_end(); I != E; ++I) {
1482     const FieldDecl *field = *I;
1483     QualType type = field->getType();
1484     QualType::DestructionKind dtorKind = type.isDestructedType();
1485     if (!dtorKind) continue;
1486 
1487     // Anonymous union members do not have their destructors called.
1488     const RecordType *RT = type->getAsUnionType();
1489     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1490 
1491     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1492     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
1493                                       getDestroyer(dtorKind),
1494                                       cleanupKind & EHCleanup);
1495   }
1496 }
1497 
1498 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1499 /// constructor for each of several members of an array.
1500 ///
1501 /// \param ctor the constructor to call for each element
1502 /// \param arrayType the type of the array to initialize
1503 /// \param arrayBegin an arrayType*
1504 /// \param zeroInitialize true if each element should be
1505 ///   zero-initialized before it is constructed
1506 void
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ConstantArrayType * arrayType,llvm::Value * arrayBegin,CallExpr::const_arg_iterator argBegin,CallExpr::const_arg_iterator argEnd,bool zeroInitialize)1507 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1508                                             const ConstantArrayType *arrayType,
1509                                             llvm::Value *arrayBegin,
1510                                           CallExpr::const_arg_iterator argBegin,
1511                                             CallExpr::const_arg_iterator argEnd,
1512                                             bool zeroInitialize) {
1513   QualType elementType;
1514   llvm::Value *numElements =
1515     emitArrayLength(arrayType, elementType, arrayBegin);
1516 
1517   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1518                              argBegin, argEnd, zeroInitialize);
1519 }
1520 
1521 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1522 /// constructor for each of several members of an array.
1523 ///
1524 /// \param ctor the constructor to call for each element
1525 /// \param numElements the number of elements in the array;
1526 ///   may be zero
1527 /// \param arrayBegin a T*, where T is the type constructed by ctor
1528 /// \param zeroInitialize true if each element should be
1529 ///   zero-initialized before it is constructed
1530 void
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,llvm::Value * arrayBegin,CallExpr::const_arg_iterator argBegin,CallExpr::const_arg_iterator argEnd,bool zeroInitialize)1531 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1532                                             llvm::Value *numElements,
1533                                             llvm::Value *arrayBegin,
1534                                          CallExpr::const_arg_iterator argBegin,
1535                                            CallExpr::const_arg_iterator argEnd,
1536                                             bool zeroInitialize) {
1537 
1538   // It's legal for numElements to be zero.  This can happen both
1539   // dynamically, because x can be zero in 'new A[x]', and statically,
1540   // because of GCC extensions that permit zero-length arrays.  There
1541   // are probably legitimate places where we could assume that this
1542   // doesn't happen, but it's not clear that it's worth it.
1543   llvm::BranchInst *zeroCheckBranch = 0;
1544 
1545   // Optimize for a constant count.
1546   llvm::ConstantInt *constantCount
1547     = dyn_cast<llvm::ConstantInt>(numElements);
1548   if (constantCount) {
1549     // Just skip out if the constant count is zero.
1550     if (constantCount->isZero()) return;
1551 
1552   // Otherwise, emit the check.
1553   } else {
1554     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1555     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1556     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1557     EmitBlock(loopBB);
1558   }
1559 
1560   // Find the end of the array.
1561   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1562                                                     "arrayctor.end");
1563 
1564   // Enter the loop, setting up a phi for the current location to initialize.
1565   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1566   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1567   EmitBlock(loopBB);
1568   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1569                                          "arrayctor.cur");
1570   cur->addIncoming(arrayBegin, entryBB);
1571 
1572   // Inside the loop body, emit the constructor call on the array element.
1573 
1574   QualType type = getContext().getTypeDeclType(ctor->getParent());
1575 
1576   // Zero initialize the storage, if requested.
1577   if (zeroInitialize)
1578     EmitNullInitialization(cur, type);
1579 
1580   // C++ [class.temporary]p4:
1581   // There are two contexts in which temporaries are destroyed at a different
1582   // point than the end of the full-expression. The first context is when a
1583   // default constructor is called to initialize an element of an array.
1584   // If the constructor has one or more default arguments, the destruction of
1585   // every temporary created in a default argument expression is sequenced
1586   // before the construction of the next array element, if any.
1587 
1588   {
1589     RunCleanupsScope Scope(*this);
1590 
1591     // Evaluate the constructor and its arguments in a regular
1592     // partial-destroy cleanup.
1593     if (getLangOpts().Exceptions &&
1594         !ctor->getParent()->hasTrivialDestructor()) {
1595       Destroyer *destroyer = destroyCXXObject;
1596       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1597     }
1598 
1599     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1600                            /*Delegating=*/false, cur, argBegin, argEnd);
1601   }
1602 
1603   // Go to the next element.
1604   llvm::Value *next =
1605     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1606                               "arrayctor.next");
1607   cur->addIncoming(next, Builder.GetInsertBlock());
1608 
1609   // Check whether that's the end of the loop.
1610   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1611   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1612   Builder.CreateCondBr(done, contBB, loopBB);
1613 
1614   // Patch the earlier check to skip over the loop.
1615   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1616 
1617   EmitBlock(contBB);
1618 }
1619 
destroyCXXObject(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1620 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1621                                        llvm::Value *addr,
1622                                        QualType type) {
1623   const RecordType *rtype = type->castAs<RecordType>();
1624   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1625   const CXXDestructorDecl *dtor = record->getDestructor();
1626   assert(!dtor->isTrivial());
1627   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1628                             /*Delegating=*/false, addr);
1629 }
1630 
1631 void
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)1632 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1633                                         CXXCtorType Type, bool ForVirtualBase,
1634                                         bool Delegating,
1635                                         llvm::Value *This,
1636                                         CallExpr::const_arg_iterator ArgBeg,
1637                                         CallExpr::const_arg_iterator ArgEnd) {
1638   // If this is a trivial constructor, just emit what's needed.
1639   if (D->isTrivial()) {
1640     if (ArgBeg == ArgEnd) {
1641       // Trivial default constructor, no codegen required.
1642       assert(D->isDefaultConstructor() &&
1643              "trivial 0-arg ctor not a default ctor");
1644       return;
1645     }
1646 
1647     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1648     assert(D->isCopyOrMoveConstructor() &&
1649            "trivial 1-arg ctor not a copy/move ctor");
1650 
1651     const Expr *E = (*ArgBeg);
1652     QualType Ty = E->getType();
1653     llvm::Value *Src = EmitLValue(E).getAddress();
1654     EmitAggregateCopy(This, Src, Ty);
1655     return;
1656   }
1657 
1658   // Non-trivial constructors are handled in an ABI-specific manner.
1659   CGM.getCXXABI().EmitConstructorCall(*this, D, Type, ForVirtualBase,
1660                                       Delegating, This, ArgBeg, ArgEnd);
1661 }
1662 
1663 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,llvm::Value * This,llvm::Value * Src,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)1664 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1665                                         llvm::Value *This, llvm::Value *Src,
1666                                         CallExpr::const_arg_iterator ArgBeg,
1667                                         CallExpr::const_arg_iterator ArgEnd) {
1668   if (D->isTrivial()) {
1669     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1670     assert(D->isCopyOrMoveConstructor() &&
1671            "trivial 1-arg ctor not a copy/move ctor");
1672     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1673     return;
1674   }
1675   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
1676                                                     clang::Ctor_Complete);
1677   assert(D->isInstance() &&
1678          "Trying to emit a member call expr on a static method!");
1679 
1680   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
1681 
1682   CallArgList Args;
1683 
1684   // Push the this ptr.
1685   Args.add(RValue::get(This), D->getThisType(getContext()));
1686 
1687 
1688   // Push the src ptr.
1689   QualType QT = *(FPT->arg_type_begin());
1690   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1691   Src = Builder.CreateBitCast(Src, t);
1692   Args.add(RValue::get(Src), QT);
1693 
1694   // Skip over first argument (Src).
1695   ++ArgBeg;
1696   CallExpr::const_arg_iterator Arg = ArgBeg;
1697   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
1698        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
1699     assert(Arg != ArgEnd && "Running over edge of argument list!");
1700     EmitCallArg(Args, *Arg, *I);
1701   }
1702   // Either we've emitted all the call args, or we have a call to a
1703   // variadic function.
1704   assert((Arg == ArgEnd || FPT->isVariadic()) &&
1705          "Extra arguments in non-variadic function!");
1706   // If we still have any arguments, emit them using the type of the argument.
1707   for (; Arg != ArgEnd; ++Arg) {
1708     QualType ArgType = Arg->getType();
1709     EmitCallArg(Args, *Arg, ArgType);
1710   }
1711 
1712   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1713            Callee, ReturnValueSlot(), Args, D);
1714 }
1715 
1716 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args)1717 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1718                                                 CXXCtorType CtorType,
1719                                                 const FunctionArgList &Args) {
1720   CallArgList DelegateArgs;
1721 
1722   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1723   assert(I != E && "no parameters to constructor");
1724 
1725   // this
1726   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1727   ++I;
1728 
1729   // vtt
1730   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1731                                          /*ForVirtualBase=*/false,
1732                                          /*Delegating=*/true)) {
1733     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1734     DelegateArgs.add(RValue::get(VTT), VoidPP);
1735 
1736     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1737       assert(I != E && "cannot skip vtt parameter, already done with args");
1738       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1739       ++I;
1740     }
1741   }
1742 
1743   // Explicit arguments.
1744   for (; I != E; ++I) {
1745     const VarDecl *param = *I;
1746     EmitDelegateCallArg(DelegateArgs, param);
1747   }
1748 
1749   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
1750   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1751            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1752 }
1753 
1754 namespace {
1755   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1756     const CXXDestructorDecl *Dtor;
1757     llvm::Value *Addr;
1758     CXXDtorType Type;
1759 
CallDelegatingCtorDtor__anonc19dd22a0411::CallDelegatingCtorDtor1760     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1761                            CXXDtorType Type)
1762       : Dtor(D), Addr(Addr), Type(Type) {}
1763 
Emit__anonc19dd22a0411::CallDelegatingCtorDtor1764     void Emit(CodeGenFunction &CGF, Flags flags) {
1765       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1766                                 /*Delegating=*/true, Addr);
1767     }
1768   };
1769 }
1770 
1771 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)1772 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1773                                                   const FunctionArgList &Args) {
1774   assert(Ctor->isDelegatingConstructor());
1775 
1776   llvm::Value *ThisPtr = LoadCXXThis();
1777 
1778   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1779   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1780   AggValueSlot AggSlot =
1781     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1782                           AggValueSlot::IsDestructed,
1783                           AggValueSlot::DoesNotNeedGCBarriers,
1784                           AggValueSlot::IsNotAliased);
1785 
1786   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1787 
1788   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1789   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1790     CXXDtorType Type =
1791       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1792 
1793     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1794                                                 ClassDecl->getDestructor(),
1795                                                 ThisPtr, Type);
1796   }
1797 }
1798 
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1799 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1800                                             CXXDtorType Type,
1801                                             bool ForVirtualBase,
1802                                             bool Delegating,
1803                                             llvm::Value *This) {
1804   llvm::Value *VTT = GetVTTParameter(GlobalDecl(DD, Type),
1805                                      ForVirtualBase, Delegating);
1806   llvm::Value *Callee = 0;
1807   if (getLangOpts().AppleKext)
1808     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
1809                                                  DD->getParent());
1810 
1811   if (!Callee)
1812     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
1813 
1814   // FIXME: Provide a source location here.
1815   EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
1816                     VTT, getContext().getPointerType(getContext().VoidPtrTy),
1817                     0, 0);
1818 }
1819 
1820 namespace {
1821   struct CallLocalDtor : EHScopeStack::Cleanup {
1822     const CXXDestructorDecl *Dtor;
1823     llvm::Value *Addr;
1824 
CallLocalDtor__anonc19dd22a0511::CallLocalDtor1825     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1826       : Dtor(D), Addr(Addr) {}
1827 
Emit__anonc19dd22a0511::CallLocalDtor1828     void Emit(CodeGenFunction &CGF, Flags flags) {
1829       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1830                                 /*ForVirtualBase=*/false,
1831                                 /*Delegating=*/false, Addr);
1832     }
1833   };
1834 }
1835 
PushDestructorCleanup(const CXXDestructorDecl * D,llvm::Value * Addr)1836 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1837                                             llvm::Value *Addr) {
1838   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1839 }
1840 
PushDestructorCleanup(QualType T,llvm::Value * Addr)1841 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1842   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1843   if (!ClassDecl) return;
1844   if (ClassDecl->hasTrivialDestructor()) return;
1845 
1846   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1847   assert(D && D->isUsed() && "destructor not marked as used!");
1848   PushDestructorCleanup(D, Addr);
1849 }
1850 
1851 void
InitializeVTablePointer(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,llvm::Constant * VTable,const CXXRecordDecl * VTableClass)1852 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1853                                          const CXXRecordDecl *NearestVBase,
1854                                          CharUnits OffsetFromNearestVBase,
1855                                          llvm::Constant *VTable,
1856                                          const CXXRecordDecl *VTableClass) {
1857   const CXXRecordDecl *RD = Base.getBase();
1858 
1859   // Compute the address point.
1860   llvm::Value *VTableAddressPoint;
1861 
1862   bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CurGD);
1863 
1864   // Check if we need to use a vtable from the VTT.
1865   if (NeedsVTTParam && (RD->getNumVBases() || NearestVBase)) {
1866     // Get the secondary vpointer index.
1867     uint64_t VirtualPointerIndex =
1868      CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
1869 
1870     /// Load the VTT.
1871     llvm::Value *VTT = LoadCXXVTT();
1872     if (VirtualPointerIndex)
1873       VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
1874 
1875     // And load the address point from the VTT.
1876     VTableAddressPoint = Builder.CreateLoad(VTT);
1877   } else {
1878     uint64_t AddressPoint =
1879       CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
1880     VTableAddressPoint =
1881       Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
1882   }
1883 
1884   // Compute where to store the address point.
1885   llvm::Value *VirtualOffset = 0;
1886   CharUnits NonVirtualOffset = CharUnits::Zero();
1887 
1888   if (NeedsVTTParam && NearestVBase) {
1889     // We need to use the virtual base offset offset because the virtual base
1890     // might have a different offset in the most derived class.
1891     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1892                                                               LoadCXXThis(),
1893                                                               VTableClass,
1894                                                               NearestVBase);
1895     NonVirtualOffset = OffsetFromNearestVBase;
1896   } else {
1897     // We can just use the base offset in the complete class.
1898     NonVirtualOffset = Base.getBaseOffset();
1899   }
1900 
1901   // Apply the offsets.
1902   llvm::Value *VTableField = LoadCXXThis();
1903 
1904   if (!NonVirtualOffset.isZero() || VirtualOffset)
1905     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1906                                                   NonVirtualOffset,
1907                                                   VirtualOffset);
1908 
1909   // Finally, store the address point.
1910   llvm::Type *AddressPointPtrTy =
1911     VTableAddressPoint->getType()->getPointerTo();
1912   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1913   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1914   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1915 }
1916 
1917 void
InitializeVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,llvm::Constant * VTable,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases)1918 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1919                                           const CXXRecordDecl *NearestVBase,
1920                                           CharUnits OffsetFromNearestVBase,
1921                                           bool BaseIsNonVirtualPrimaryBase,
1922                                           llvm::Constant *VTable,
1923                                           const CXXRecordDecl *VTableClass,
1924                                           VisitedVirtualBasesSetTy& VBases) {
1925   // If this base is a non-virtual primary base the address point has already
1926   // been set.
1927   if (!BaseIsNonVirtualPrimaryBase) {
1928     // Initialize the vtable pointer for this base.
1929     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1930                             VTable, VTableClass);
1931   }
1932 
1933   const CXXRecordDecl *RD = Base.getBase();
1934 
1935   // Traverse bases.
1936   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1937        E = RD->bases_end(); I != E; ++I) {
1938     CXXRecordDecl *BaseDecl
1939       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1940 
1941     // Ignore classes without a vtable.
1942     if (!BaseDecl->isDynamicClass())
1943       continue;
1944 
1945     CharUnits BaseOffset;
1946     CharUnits BaseOffsetFromNearestVBase;
1947     bool BaseDeclIsNonVirtualPrimaryBase;
1948 
1949     if (I->isVirtual()) {
1950       // Check if we've visited this virtual base before.
1951       if (!VBases.insert(BaseDecl))
1952         continue;
1953 
1954       const ASTRecordLayout &Layout =
1955         getContext().getASTRecordLayout(VTableClass);
1956 
1957       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1958       BaseOffsetFromNearestVBase = CharUnits::Zero();
1959       BaseDeclIsNonVirtualPrimaryBase = false;
1960     } else {
1961       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1962 
1963       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1964       BaseOffsetFromNearestVBase =
1965         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1966       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1967     }
1968 
1969     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1970                              I->isVirtual() ? BaseDecl : NearestVBase,
1971                              BaseOffsetFromNearestVBase,
1972                              BaseDeclIsNonVirtualPrimaryBase,
1973                              VTable, VTableClass, VBases);
1974   }
1975 }
1976 
InitializeVTablePointers(const CXXRecordDecl * RD)1977 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1978   // Ignore classes without a vtable.
1979   if (!RD->isDynamicClass())
1980     return;
1981 
1982   // Get the VTable.
1983   llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
1984 
1985   // Initialize the vtable pointers for this class and all of its bases.
1986   VisitedVirtualBasesSetTy VBases;
1987   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1988                            /*NearestVBase=*/0,
1989                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1990                            /*BaseIsNonVirtualPrimaryBase=*/false,
1991                            VTable, RD, VBases);
1992 }
1993 
GetVTablePtr(llvm::Value * This,llvm::Type * Ty)1994 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
1995                                            llvm::Type *Ty) {
1996   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
1997   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
1998   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
1999   return VTable;
2000 }
2001 
getMostDerivedClassDecl(const Expr * Base)2002 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
2003   const Expr *E = Base;
2004 
2005   while (true) {
2006     E = E->IgnoreParens();
2007     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2008       if (CE->getCastKind() == CK_DerivedToBase ||
2009           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2010           CE->getCastKind() == CK_NoOp) {
2011         E = CE->getSubExpr();
2012         continue;
2013       }
2014     }
2015 
2016     break;
2017   }
2018 
2019   QualType DerivedType = E->getType();
2020   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
2021     DerivedType = PTy->getPointeeType();
2022 
2023   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
2024 }
2025 
2026 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2027 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)2028 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2029   while (true) {
2030     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2031       E = PE->getSubExpr();
2032       continue;
2033     }
2034 
2035     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2036       if (CE->getCastKind() == CK_NoOp) {
2037         E = CE->getSubExpr();
2038         continue;
2039       }
2040     }
2041     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2042       if (UO->getOpcode() == UO_Extension) {
2043         E = UO->getSubExpr();
2044         continue;
2045       }
2046     }
2047     return E;
2048   }
2049 }
2050 
2051 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member
2052 /// function call on the given expr can be devirtualized.
canDevirtualizeMemberFunctionCall(const Expr * Base,const CXXMethodDecl * MD)2053 static bool canDevirtualizeMemberFunctionCall(const Expr *Base,
2054                                               const CXXMethodDecl *MD) {
2055   // If the most derived class is marked final, we know that no subclass can
2056   // override this member function and so we can devirtualize it. For example:
2057   //
2058   // struct A { virtual void f(); }
2059   // struct B final : A { };
2060   //
2061   // void f(B *b) {
2062   //   b->f();
2063   // }
2064   //
2065   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
2066   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2067     return true;
2068 
2069   // If the member function is marked 'final', we know that it can't be
2070   // overridden and can therefore devirtualize it.
2071   if (MD->hasAttr<FinalAttr>())
2072     return true;
2073 
2074   // Similarly, if the class itself is marked 'final' it can't be overridden
2075   // and we can therefore devirtualize the member function call.
2076   if (MD->getParent()->hasAttr<FinalAttr>())
2077     return true;
2078 
2079   Base = skipNoOpCastsAndParens(Base);
2080   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2081     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2082       // This is a record decl. We know the type and can devirtualize it.
2083       return VD->getType()->isRecordType();
2084     }
2085 
2086     return false;
2087   }
2088 
2089   // We can always devirtualize calls on temporary object expressions.
2090   if (isa<CXXConstructExpr>(Base))
2091     return true;
2092 
2093   // And calls on bound temporaries.
2094   if (isa<CXXBindTemporaryExpr>(Base))
2095     return true;
2096 
2097   // Check if this is a call expr that returns a record type.
2098   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2099     return CE->getCallReturnType()->isRecordType();
2100 
2101   // We can't devirtualize the call.
2102   return false;
2103 }
2104 
UseVirtualCall(ASTContext & Context,const CXXOperatorCallExpr * CE,const CXXMethodDecl * MD)2105 static bool UseVirtualCall(ASTContext &Context,
2106                            const CXXOperatorCallExpr *CE,
2107                            const CXXMethodDecl *MD) {
2108   if (!MD->isVirtual())
2109     return false;
2110 
2111   // When building with -fapple-kext, all calls must go through the vtable since
2112   // the kernel linker can do runtime patching of vtables.
2113   if (Context.getLangOpts().AppleKext)
2114     return true;
2115 
2116   return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD);
2117 }
2118 
2119 llvm::Value *
EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,llvm::Value * This)2120 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2121                                              const CXXMethodDecl *MD,
2122                                              llvm::Value *This) {
2123   llvm::FunctionType *fnType =
2124     CGM.getTypes().GetFunctionType(
2125                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
2126 
2127   if (UseVirtualCall(getContext(), E, MD))
2128     return BuildVirtualCall(MD, This, fnType);
2129 
2130   return CGM.GetAddrOfFunction(MD, fnType);
2131 }
2132 
EmitForwardingCallToLambda(const CXXRecordDecl * lambda,CallArgList & callArgs)2133 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *lambda,
2134                                                  CallArgList &callArgs) {
2135   // Lookup the call operator
2136   DeclarationName operatorName
2137     = getContext().DeclarationNames.getCXXOperatorName(OO_Call);
2138   CXXMethodDecl *callOperator =
2139     cast<CXXMethodDecl>(lambda->lookup(operatorName).front());
2140 
2141   // Get the address of the call operator.
2142   const CGFunctionInfo &calleeFnInfo =
2143     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2144   llvm::Value *callee =
2145     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2146                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2147 
2148   // Prepare the return slot.
2149   const FunctionProtoType *FPT =
2150     callOperator->getType()->castAs<FunctionProtoType>();
2151   QualType resultType = FPT->getResultType();
2152   ReturnValueSlot returnSlot;
2153   if (!resultType->isVoidType() &&
2154       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2155       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2156     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2157 
2158   // We don't need to separately arrange the call arguments because
2159   // the call can't be variadic anyway --- it's impossible to forward
2160   // variadic arguments.
2161 
2162   // Now emit our call.
2163   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2164                        callArgs, callOperator);
2165 
2166   // If necessary, copy the returned value into the slot.
2167   if (!resultType->isVoidType() && returnSlot.isNull())
2168     EmitReturnOfRValue(RV, resultType);
2169   else
2170     EmitBranchThroughCleanup(ReturnBlock);
2171 }
2172 
EmitLambdaBlockInvokeBody()2173 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2174   const BlockDecl *BD = BlockInfo->getBlockDecl();
2175   const VarDecl *variable = BD->capture_begin()->getVariable();
2176   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2177 
2178   // Start building arguments for forwarding call
2179   CallArgList CallArgs;
2180 
2181   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2182   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2183   CallArgs.add(RValue::get(ThisPtr), ThisType);
2184 
2185   // Add the rest of the parameters.
2186   for (BlockDecl::param_const_iterator I = BD->param_begin(),
2187        E = BD->param_end(); I != E; ++I) {
2188     ParmVarDecl *param = *I;
2189     EmitDelegateCallArg(CallArgs, param);
2190   }
2191 
2192   EmitForwardingCallToLambda(Lambda, CallArgs);
2193 }
2194 
EmitLambdaToBlockPointerBody(FunctionArgList & Args)2195 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2196   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2197     // FIXME: Making this work correctly is nasty because it requires either
2198     // cloning the body of the call operator or making the call operator forward.
2199     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2200     return;
2201   }
2202 
2203   EmitFunctionBody(Args);
2204 }
2205 
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2206 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2207   const CXXRecordDecl *Lambda = MD->getParent();
2208 
2209   // Start building arguments for forwarding call
2210   CallArgList CallArgs;
2211 
2212   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2213   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2214   CallArgs.add(RValue::get(ThisPtr), ThisType);
2215 
2216   // Add the rest of the parameters.
2217   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
2218        E = MD->param_end(); I != E; ++I) {
2219     ParmVarDecl *param = *I;
2220     EmitDelegateCallArg(CallArgs, param);
2221   }
2222 
2223   EmitForwardingCallToLambda(Lambda, CallArgs);
2224 }
2225 
EmitLambdaStaticInvokeFunction(const CXXMethodDecl * MD)2226 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2227   if (MD->isVariadic()) {
2228     // FIXME: Making this work correctly is nasty because it requires either
2229     // cloning the body of the call operator or making the call operator forward.
2230     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2231     return;
2232   }
2233 
2234   EmitLambdaDelegatingInvokeBody(MD);
2235 }
2236