• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
EmitCastToVoidPtr(llvm::Value * value)39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
CreateIRTemp(QualType Ty,const Twine & Name)67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
CreateMemTemp(QualType Ty,const Twine & Name)76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89     llvm::Value *MemPtr = EmitScalarExpr(E);
90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91   }
92 
93   QualType BoolTy = getContext().BoolTy;
94   if (!E->getType()->isAnyComplexType())
95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96 
97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99 
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103   if (E->isRValue())
104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105 
106   // Just emit it as an l-value and drop the result.
107   EmitLValue(E);
108 }
109 
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type.  The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                     AggValueSlot aggSlot,
116                                     bool ignoreResult) {
117   switch (getEvaluationKind(E->getType())) {
118   case TEK_Scalar:
119     return RValue::get(EmitScalarExpr(E, ignoreResult));
120   case TEK_Complex:
121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122   case TEK_Aggregate:
123     if (!ignoreResult && aggSlot.isIgnored())
124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125     EmitAggExpr(E, aggSlot);
126     return aggSlot.asRValue();
127   }
128   llvm_unreachable("bad evaluation kind");
129 }
130 
131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134   AggValueSlot AggSlot = AggValueSlot::ignored();
135 
136   if (hasAggregateEvaluationKind(E->getType()))
137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138   return EmitAnyExpr(E, AggSlot);
139 }
140 
141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
142 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                        llvm::Value *Location,
145                                        Qualifiers Quals,
146                                        bool IsInit) {
147   // FIXME: This function should take an LValue as an argument.
148   switch (getEvaluationKind(E->getType())) {
149   case TEK_Complex:
150     EmitComplexExprIntoLValue(E,
151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
152                               /*isInit*/ false);
153     return;
154 
155   case TEK_Aggregate: {
156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                          AggValueSlot::IsDestructed_t(IsInit),
159                                          AggValueSlot::DoesNotNeedGCBarriers,
160                                          AggValueSlot::IsAliased_t(!IsInit)));
161     return;
162   }
163 
164   case TEK_Scalar: {
165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166     LValue LV = MakeAddrLValue(Location, E->getType());
167     EmitStoreThroughLValue(RV, LV);
168     return;
169   }
170   }
171   llvm_unreachable("bad evaluation kind");
172 }
173 
174 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,llvm::Value * ReferenceTemporary)175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                      const Expr *E, llvm::Value *ReferenceTemporary) {
177   // Objective-C++ ARC:
178   //   If we are binding a reference to a temporary that has ownership, we
179   //   need to perform retain/release operations on the temporary.
180   //
181   // FIXME: This should be looking at E, not M.
182   if (CGF.getLangOpts().ObjCAutoRefCount &&
183       M->getType()->isObjCLifetimeType()) {
184     QualType ObjCARCReferenceLifetimeType = M->getType();
185     switch (Qualifiers::ObjCLifetime Lifetime =
186                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187     case Qualifiers::OCL_None:
188     case Qualifiers::OCL_ExplicitNone:
189       // Carry on to normal cleanup handling.
190       break;
191 
192     case Qualifiers::OCL_Autoreleasing:
193       // Nothing to do; cleaned up by an autorelease pool.
194       return;
195 
196     case Qualifiers::OCL_Strong:
197     case Qualifiers::OCL_Weak:
198       switch (StorageDuration Duration = M->getStorageDuration()) {
199       case SD_Static:
200         // Note: we intentionally do not register a cleanup to release
201         // the object on program termination.
202         return;
203 
204       case SD_Thread:
205         // FIXME: We should probably register a cleanup in this case.
206         return;
207 
208       case SD_Automatic:
209       case SD_FullExpression:
210         assert(!ObjCARCReferenceLifetimeType->isArrayType());
211         CodeGenFunction::Destroyer *Destroy;
212         CleanupKind CleanupKind;
213         if (Lifetime == Qualifiers::OCL_Strong) {
214           const ValueDecl *VD = M->getExtendingDecl();
215           bool Precise =
216               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217           CleanupKind = CGF.getARCCleanupKind();
218           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                             : &CodeGenFunction::destroyARCStrongImprecise;
220         } else {
221           // __weak objects always get EH cleanups; otherwise, exceptions
222           // could cause really nasty crashes instead of mere leaks.
223           CleanupKind = NormalAndEHCleanup;
224           Destroy = &CodeGenFunction::destroyARCWeak;
225         }
226         if (Duration == SD_FullExpression)
227           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                           ObjCARCReferenceLifetimeType, *Destroy,
229                           CleanupKind & EHCleanup);
230         else
231           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                           ObjCARCReferenceLifetimeType,
233                                           *Destroy, CleanupKind & EHCleanup);
234         return;
235 
236       case SD_Dynamic:
237         llvm_unreachable("temporary cannot have dynamic storage duration");
238       }
239       llvm_unreachable("unknown storage duration");
240     }
241   }
242 
243   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244   if (const RecordType *RT =
245           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246     // Get the destructor for the reference temporary.
247     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248     if (!ClassDecl->hasTrivialDestructor())
249       ReferenceTemporaryDtor = ClassDecl->getDestructor();
250   }
251 
252   if (!ReferenceTemporaryDtor)
253     return;
254 
255   // Call the destructor for the temporary.
256   switch (M->getStorageDuration()) {
257   case SD_Static:
258   case SD_Thread: {
259     llvm::Constant *CleanupFn;
260     llvm::Constant *CleanupArg;
261     if (E->getType()->isArrayType()) {
262       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions);
265       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
266     } else {
267       CleanupFn =
268         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
269       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
270     }
271     CGF.CGM.getCXXABI().registerGlobalDtor(
272         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
273     break;
274   }
275 
276   case SD_FullExpression:
277     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
278                     CodeGenFunction::destroyCXXObject,
279                     CGF.getLangOpts().Exceptions);
280     break;
281 
282   case SD_Automatic:
283     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
284                                     ReferenceTemporary, E->getType(),
285                                     CodeGenFunction::destroyCXXObject,
286                                     CGF.getLangOpts().Exceptions);
287     break;
288 
289   case SD_Dynamic:
290     llvm_unreachable("temporary cannot have dynamic storage duration");
291   }
292 }
293 
294 static llvm::Value *
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner)295 createReferenceTemporary(CodeGenFunction &CGF,
296                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
297   switch (M->getStorageDuration()) {
298   case SD_FullExpression:
299   case SD_Automatic:
300     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
301 
302   case SD_Thread:
303   case SD_Static:
304     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
305 
306   case SD_Dynamic:
307     llvm_unreachable("temporary can't have dynamic storage duration");
308   }
309   llvm_unreachable("unknown storage duration");
310 }
311 
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)312 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
313                                            const MaterializeTemporaryExpr *M) {
314   const Expr *E = M->GetTemporaryExpr();
315 
316   if (getLangOpts().ObjCAutoRefCount &&
317       M->getType()->isObjCLifetimeType() &&
318       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
319       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
320     // FIXME: Fold this into the general case below.
321     llvm::Value *Object = createReferenceTemporary(*this, M, E);
322     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
323 
324     if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
325       // We should not have emitted the initializer for this temporary as a
326       // constant.
327       assert(!Var->hasInitializer());
328       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
329     }
330 
331     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
332 
333     pushTemporaryCleanup(*this, M, E, Object);
334     return RefTempDst;
335   }
336 
337   SmallVector<const Expr *, 2> CommaLHSs;
338   SmallVector<SubobjectAdjustment, 2> Adjustments;
339   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
340 
341   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
342     EmitIgnoredExpr(CommaLHSs[I]);
343 
344   if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
345     if (opaque->getType()->isRecordType()) {
346       assert(Adjustments.empty());
347       return EmitOpaqueValueLValue(opaque);
348     }
349   }
350 
351   // Create and initialize the reference temporary.
352   llvm::Value *Object = createReferenceTemporary(*this, M, E);
353   if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
354     // If the temporary is a global and has a constant initializer, we may
355     // have already initialized it.
356     if (!Var->hasInitializer()) {
357       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
358       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
359     }
360   } else {
361     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362   }
363   pushTemporaryCleanup(*this, M, E, Object);
364 
365   // Perform derived-to-base casts and/or field accesses, to get from the
366   // temporary object we created (and, potentially, for which we extended
367   // the lifetime) to the subobject we're binding the reference to.
368   for (unsigned I = Adjustments.size(); I != 0; --I) {
369     SubobjectAdjustment &Adjustment = Adjustments[I-1];
370     switch (Adjustment.Kind) {
371     case SubobjectAdjustment::DerivedToBaseAdjustment:
372       Object =
373           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
374                                 Adjustment.DerivedToBase.BasePath->path_begin(),
375                                 Adjustment.DerivedToBase.BasePath->path_end(),
376                                 /*NullCheckValue=*/ false);
377       break;
378 
379     case SubobjectAdjustment::FieldAdjustment: {
380       LValue LV = MakeAddrLValue(Object, E->getType());
381       LV = EmitLValueForField(LV, Adjustment.Field);
382       assert(LV.isSimple() &&
383              "materialized temporary field is not a simple lvalue");
384       Object = LV.getAddress();
385       break;
386     }
387 
388     case SubobjectAdjustment::MemberPointerAdjustment: {
389       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
390       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
391                     *this, Object, Ptr, Adjustment.Ptr.MPT);
392       break;
393     }
394     }
395   }
396 
397   return MakeAddrLValue(Object, M->getType());
398 }
399 
400 RValue
EmitReferenceBindingToExpr(const Expr * E)401 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
402   // Emit the expression as an lvalue.
403   LValue LV = EmitLValue(E);
404   assert(LV.isSimple());
405   llvm::Value *Value = LV.getAddress();
406 
407   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
408     // C++11 [dcl.ref]p5 (as amended by core issue 453):
409     //   If a glvalue to which a reference is directly bound designates neither
410     //   an existing object or function of an appropriate type nor a region of
411     //   storage of suitable size and alignment to contain an object of the
412     //   reference's type, the behavior is undefined.
413     QualType Ty = E->getType();
414     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
415   }
416 
417   return RValue::get(Value);
418 }
419 
420 
421 /// getAccessedFieldNo - Given an encoded value and a result number, return the
422 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)423 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
424                                              const llvm::Constant *Elts) {
425   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
426       ->getZExtValue();
427 }
428 
429 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)430 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
431                                     llvm::Value *High) {
432   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
433   llvm::Value *K47 = Builder.getInt64(47);
434   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
435   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
436   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
437   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
438   return Builder.CreateMul(B1, KMul);
439 }
440 
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Address,QualType Ty,CharUnits Alignment)441 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
442                                     llvm::Value *Address,
443                                     QualType Ty, CharUnits Alignment) {
444   if (!SanitizePerformTypeCheck)
445     return;
446 
447   // Don't check pointers outside the default address space. The null check
448   // isn't correct, the object-size check isn't supported by LLVM, and we can't
449   // communicate the addresses to the runtime handler for the vptr check.
450   if (Address->getType()->getPointerAddressSpace())
451     return;
452 
453   llvm::Value *Cond = 0;
454   llvm::BasicBlock *Done = 0;
455 
456   if (SanOpts->Null) {
457     // The glvalue must not be an empty glvalue.
458     Cond = Builder.CreateICmpNE(
459         Address, llvm::Constant::getNullValue(Address->getType()));
460 
461     if (TCK == TCK_DowncastPointer) {
462       // When performing a pointer downcast, it's OK if the value is null.
463       // Skip the remaining checks in that case.
464       Done = createBasicBlock("null");
465       llvm::BasicBlock *Rest = createBasicBlock("not.null");
466       Builder.CreateCondBr(Cond, Rest, Done);
467       EmitBlock(Rest);
468       Cond = 0;
469     }
470   }
471 
472   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
473     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
474 
475     // The glvalue must refer to a large enough storage region.
476     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
477     //        to check this.
478     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
479     llvm::Value *Min = Builder.getFalse();
480     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
481     llvm::Value *LargeEnough =
482         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
483                               llvm::ConstantInt::get(IntPtrTy, Size));
484     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
485   }
486 
487   uint64_t AlignVal = 0;
488 
489   if (SanOpts->Alignment) {
490     AlignVal = Alignment.getQuantity();
491     if (!Ty->isIncompleteType() && !AlignVal)
492       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
493 
494     // The glvalue must be suitably aligned.
495     if (AlignVal) {
496       llvm::Value *Align =
497           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
498                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
499       llvm::Value *Aligned =
500         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
501       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
502     }
503   }
504 
505   if (Cond) {
506     llvm::Constant *StaticData[] = {
507       EmitCheckSourceLocation(Loc),
508       EmitCheckTypeDescriptor(Ty),
509       llvm::ConstantInt::get(SizeTy, AlignVal),
510       llvm::ConstantInt::get(Int8Ty, TCK)
511     };
512     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
513   }
514 
515   // If possible, check that the vptr indicates that there is a subobject of
516   // type Ty at offset zero within this object.
517   //
518   // C++11 [basic.life]p5,6:
519   //   [For storage which does not refer to an object within its lifetime]
520   //   The program has undefined behavior if:
521   //    -- the [pointer or glvalue] is used to access a non-static data member
522   //       or call a non-static member function
523   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
524   if (SanOpts->Vptr &&
525       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
526        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
527       RD && RD->hasDefinition() && RD->isDynamicClass()) {
528     // Compute a hash of the mangled name of the type.
529     //
530     // FIXME: This is not guaranteed to be deterministic! Move to a
531     //        fingerprinting mechanism once LLVM provides one. For the time
532     //        being the implementation happens to be deterministic.
533     SmallString<64> MangledName;
534     llvm::raw_svector_ostream Out(MangledName);
535     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
536                                                      Out);
537     llvm::hash_code TypeHash = hash_value(Out.str());
538 
539     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
540     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
541     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
542     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
543     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
544     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
545 
546     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
547     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
548 
549     // Look the hash up in our cache.
550     const int CacheSize = 128;
551     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
552     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
553                                                    "__ubsan_vptr_type_cache");
554     llvm::Value *Slot = Builder.CreateAnd(Hash,
555                                           llvm::ConstantInt::get(IntPtrTy,
556                                                                  CacheSize-1));
557     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
558     llvm::Value *CacheVal =
559       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
560 
561     // If the hash isn't in the cache, call a runtime handler to perform the
562     // hard work of checking whether the vptr is for an object of the right
563     // type. This will either fill in the cache and return, or produce a
564     // diagnostic.
565     llvm::Constant *StaticData[] = {
566       EmitCheckSourceLocation(Loc),
567       EmitCheckTypeDescriptor(Ty),
568       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
569       llvm::ConstantInt::get(Int8Ty, TCK)
570     };
571     llvm::Value *DynamicData[] = { Address, Hash };
572     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
573               "dynamic_type_cache_miss", StaticData, DynamicData,
574               CRK_AlwaysRecoverable);
575   }
576 
577   if (Done) {
578     Builder.CreateBr(Done);
579     EmitBlock(Done);
580   }
581 }
582 
583 /// Determine whether this expression refers to a flexible array member in a
584 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)585 static bool isFlexibleArrayMemberExpr(const Expr *E) {
586   // For compatibility with existing code, we treat arrays of length 0 or
587   // 1 as flexible array members.
588   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
589   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
590     if (CAT->getSize().ugt(1))
591       return false;
592   } else if (!isa<IncompleteArrayType>(AT))
593     return false;
594 
595   E = E->IgnoreParens();
596 
597   // A flexible array member must be the last member in the class.
598   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
599     // FIXME: If the base type of the member expr is not FD->getParent(),
600     // this should not be treated as a flexible array member access.
601     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
602       RecordDecl::field_iterator FI(
603           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
604       return ++FI == FD->getParent()->field_end();
605     }
606   }
607 
608   return false;
609 }
610 
611 /// If Base is known to point to the start of an array, return the length of
612 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)613 static llvm::Value *getArrayIndexingBound(
614     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
615   // For the vector indexing extension, the bound is the number of elements.
616   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
617     IndexedType = Base->getType();
618     return CGF.Builder.getInt32(VT->getNumElements());
619   }
620 
621   Base = Base->IgnoreParens();
622 
623   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
624     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
625         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
626       IndexedType = CE->getSubExpr()->getType();
627       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
628       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
629         return CGF.Builder.getInt(CAT->getSize());
630       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
631         return CGF.getVLASize(VAT).first;
632     }
633   }
634 
635   return 0;
636 }
637 
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)638 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
639                                       llvm::Value *Index, QualType IndexType,
640                                       bool Accessed) {
641   assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
642 
643   QualType IndexedType;
644   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
645   if (!Bound)
646     return;
647 
648   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
649   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
650   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
651 
652   llvm::Constant *StaticData[] = {
653     EmitCheckSourceLocation(E->getExprLoc()),
654     EmitCheckTypeDescriptor(IndexedType),
655     EmitCheckTypeDescriptor(IndexType)
656   };
657   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
658                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
659   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
660 }
661 
662 
663 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)664 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
665                          bool isInc, bool isPre) {
666   ComplexPairTy InVal = EmitLoadOfComplex(LV);
667 
668   llvm::Value *NextVal;
669   if (isa<llvm::IntegerType>(InVal.first->getType())) {
670     uint64_t AmountVal = isInc ? 1 : -1;
671     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
672 
673     // Add the inc/dec to the real part.
674     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
675   } else {
676     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
677     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
678     if (!isInc)
679       FVal.changeSign();
680     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
681 
682     // Add the inc/dec to the real part.
683     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
684   }
685 
686   ComplexPairTy IncVal(NextVal, InVal.second);
687 
688   // Store the updated result through the lvalue.
689   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
690 
691   // If this is a postinc, return the value read from memory, otherwise use the
692   // updated value.
693   return isPre ? IncVal : InVal;
694 }
695 
696 
697 //===----------------------------------------------------------------------===//
698 //                         LValue Expression Emission
699 //===----------------------------------------------------------------------===//
700 
GetUndefRValue(QualType Ty)701 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
702   if (Ty->isVoidType())
703     return RValue::get(0);
704 
705   switch (getEvaluationKind(Ty)) {
706   case TEK_Complex: {
707     llvm::Type *EltTy =
708       ConvertType(Ty->castAs<ComplexType>()->getElementType());
709     llvm::Value *U = llvm::UndefValue::get(EltTy);
710     return RValue::getComplex(std::make_pair(U, U));
711   }
712 
713   // If this is a use of an undefined aggregate type, the aggregate must have an
714   // identifiable address.  Just because the contents of the value are undefined
715   // doesn't mean that the address can't be taken and compared.
716   case TEK_Aggregate: {
717     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
718     return RValue::getAggregate(DestPtr);
719   }
720 
721   case TEK_Scalar:
722     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
723   }
724   llvm_unreachable("bad evaluation kind");
725 }
726 
EmitUnsupportedRValue(const Expr * E,const char * Name)727 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
728                                               const char *Name) {
729   ErrorUnsupported(E, Name);
730   return GetUndefRValue(E->getType());
731 }
732 
EmitUnsupportedLValue(const Expr * E,const char * Name)733 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
734                                               const char *Name) {
735   ErrorUnsupported(E, Name);
736   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
737   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
738 }
739 
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)740 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
741   LValue LV;
742   if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
743     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
744   else
745     LV = EmitLValue(E);
746   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
747     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
748                   E->getType(), LV.getAlignment());
749   return LV;
750 }
751 
752 /// EmitLValue - Emit code to compute a designator that specifies the location
753 /// of the expression.
754 ///
755 /// This can return one of two things: a simple address or a bitfield reference.
756 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
757 /// an LLVM pointer type.
758 ///
759 /// If this returns a bitfield reference, nothing about the pointee type of the
760 /// LLVM value is known: For example, it may not be a pointer to an integer.
761 ///
762 /// If this returns a normal address, and if the lvalue's C type is fixed size,
763 /// this method guarantees that the returned pointer type will point to an LLVM
764 /// type of the same size of the lvalue's type.  If the lvalue has a variable
765 /// length type, this is not possible.
766 ///
EmitLValue(const Expr * E)767 LValue CodeGenFunction::EmitLValue(const Expr *E) {
768   switch (E->getStmtClass()) {
769   default: return EmitUnsupportedLValue(E, "l-value expression");
770 
771   case Expr::ObjCPropertyRefExprClass:
772     llvm_unreachable("cannot emit a property reference directly");
773 
774   case Expr::ObjCSelectorExprClass:
775     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
776   case Expr::ObjCIsaExprClass:
777     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
778   case Expr::BinaryOperatorClass:
779     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
780   case Expr::CompoundAssignOperatorClass:
781     if (!E->getType()->isAnyComplexType())
782       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
783     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
784   case Expr::CallExprClass:
785   case Expr::CXXMemberCallExprClass:
786   case Expr::CXXOperatorCallExprClass:
787   case Expr::UserDefinedLiteralClass:
788     return EmitCallExprLValue(cast<CallExpr>(E));
789   case Expr::VAArgExprClass:
790     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
791   case Expr::DeclRefExprClass:
792     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
793   case Expr::ParenExprClass:
794     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
795   case Expr::GenericSelectionExprClass:
796     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
797   case Expr::PredefinedExprClass:
798     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
799   case Expr::StringLiteralClass:
800     return EmitStringLiteralLValue(cast<StringLiteral>(E));
801   case Expr::ObjCEncodeExprClass:
802     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
803   case Expr::PseudoObjectExprClass:
804     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
805   case Expr::InitListExprClass:
806     return EmitInitListLValue(cast<InitListExpr>(E));
807   case Expr::CXXTemporaryObjectExprClass:
808   case Expr::CXXConstructExprClass:
809     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
810   case Expr::CXXBindTemporaryExprClass:
811     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
812   case Expr::CXXUuidofExprClass:
813     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
814   case Expr::LambdaExprClass:
815     return EmitLambdaLValue(cast<LambdaExpr>(E));
816 
817   case Expr::ExprWithCleanupsClass: {
818     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
819     enterFullExpression(cleanups);
820     RunCleanupsScope Scope(*this);
821     return EmitLValue(cleanups->getSubExpr());
822   }
823 
824   case Expr::CXXDefaultArgExprClass:
825     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
826   case Expr::CXXDefaultInitExprClass: {
827     CXXDefaultInitExprScope Scope(*this);
828     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
829   }
830   case Expr::CXXTypeidExprClass:
831     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
832 
833   case Expr::ObjCMessageExprClass:
834     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
835   case Expr::ObjCIvarRefExprClass:
836     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
837   case Expr::StmtExprClass:
838     return EmitStmtExprLValue(cast<StmtExpr>(E));
839   case Expr::UnaryOperatorClass:
840     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
841   case Expr::ArraySubscriptExprClass:
842     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
843   case Expr::ExtVectorElementExprClass:
844     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
845   case Expr::MemberExprClass:
846     return EmitMemberExpr(cast<MemberExpr>(E));
847   case Expr::CompoundLiteralExprClass:
848     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
849   case Expr::ConditionalOperatorClass:
850     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
851   case Expr::BinaryConditionalOperatorClass:
852     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
853   case Expr::ChooseExprClass:
854     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
855   case Expr::OpaqueValueExprClass:
856     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
857   case Expr::SubstNonTypeTemplateParmExprClass:
858     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
859   case Expr::ImplicitCastExprClass:
860   case Expr::CStyleCastExprClass:
861   case Expr::CXXFunctionalCastExprClass:
862   case Expr::CXXStaticCastExprClass:
863   case Expr::CXXDynamicCastExprClass:
864   case Expr::CXXReinterpretCastExprClass:
865   case Expr::CXXConstCastExprClass:
866   case Expr::ObjCBridgedCastExprClass:
867     return EmitCastLValue(cast<CastExpr>(E));
868 
869   case Expr::MaterializeTemporaryExprClass:
870     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
871   }
872 }
873 
874 /// Given an object of the given canonical type, can we safely copy a
875 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)876 static bool isConstantEmittableObjectType(QualType type) {
877   assert(type.isCanonical());
878   assert(!type->isReferenceType());
879 
880   // Must be const-qualified but non-volatile.
881   Qualifiers qs = type.getLocalQualifiers();
882   if (!qs.hasConst() || qs.hasVolatile()) return false;
883 
884   // Otherwise, all object types satisfy this except C++ classes with
885   // mutable subobjects or non-trivial copy/destroy behavior.
886   if (const RecordType *RT = dyn_cast<RecordType>(type))
887     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
888       if (RD->hasMutableFields() || !RD->isTrivial())
889         return false;
890 
891   return true;
892 }
893 
894 /// Can we constant-emit a load of a reference to a variable of the
895 /// given type?  This is different from predicates like
896 /// Decl::isUsableInConstantExpressions because we do want it to apply
897 /// in situations that don't necessarily satisfy the language's rules
898 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
899 /// to do this with const float variables even if those variables
900 /// aren't marked 'constexpr'.
901 enum ConstantEmissionKind {
902   CEK_None,
903   CEK_AsReferenceOnly,
904   CEK_AsValueOrReference,
905   CEK_AsValueOnly
906 };
checkVarTypeForConstantEmission(QualType type)907 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
908   type = type.getCanonicalType();
909   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
910     if (isConstantEmittableObjectType(ref->getPointeeType()))
911       return CEK_AsValueOrReference;
912     return CEK_AsReferenceOnly;
913   }
914   if (isConstantEmittableObjectType(type))
915     return CEK_AsValueOnly;
916   return CEK_None;
917 }
918 
919 /// Try to emit a reference to the given value without producing it as
920 /// an l-value.  This is actually more than an optimization: we can't
921 /// produce an l-value for variables that we never actually captured
922 /// in a block or lambda, which means const int variables or constexpr
923 /// literals or similar.
924 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)925 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
926   ValueDecl *value = refExpr->getDecl();
927 
928   // The value needs to be an enum constant or a constant variable.
929   ConstantEmissionKind CEK;
930   if (isa<ParmVarDecl>(value)) {
931     CEK = CEK_None;
932   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
933     CEK = checkVarTypeForConstantEmission(var->getType());
934   } else if (isa<EnumConstantDecl>(value)) {
935     CEK = CEK_AsValueOnly;
936   } else {
937     CEK = CEK_None;
938   }
939   if (CEK == CEK_None) return ConstantEmission();
940 
941   Expr::EvalResult result;
942   bool resultIsReference;
943   QualType resultType;
944 
945   // It's best to evaluate all the way as an r-value if that's permitted.
946   if (CEK != CEK_AsReferenceOnly &&
947       refExpr->EvaluateAsRValue(result, getContext())) {
948     resultIsReference = false;
949     resultType = refExpr->getType();
950 
951   // Otherwise, try to evaluate as an l-value.
952   } else if (CEK != CEK_AsValueOnly &&
953              refExpr->EvaluateAsLValue(result, getContext())) {
954     resultIsReference = true;
955     resultType = value->getType();
956 
957   // Failure.
958   } else {
959     return ConstantEmission();
960   }
961 
962   // In any case, if the initializer has side-effects, abandon ship.
963   if (result.HasSideEffects)
964     return ConstantEmission();
965 
966   // Emit as a constant.
967   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
968 
969   // Make sure we emit a debug reference to the global variable.
970   // This should probably fire even for
971   if (isa<VarDecl>(value)) {
972     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
973       EmitDeclRefExprDbgValue(refExpr, C);
974   } else {
975     assert(isa<EnumConstantDecl>(value));
976     EmitDeclRefExprDbgValue(refExpr, C);
977   }
978 
979   // If we emitted a reference constant, we need to dereference that.
980   if (resultIsReference)
981     return ConstantEmission::forReference(C);
982 
983   return ConstantEmission::forValue(C);
984 }
985 
EmitLoadOfScalar(LValue lvalue)986 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
987   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
988                           lvalue.getAlignment().getQuantity(),
989                           lvalue.getType(), lvalue.getTBAAInfo(),
990                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
991 }
992 
hasBooleanRepresentation(QualType Ty)993 static bool hasBooleanRepresentation(QualType Ty) {
994   if (Ty->isBooleanType())
995     return true;
996 
997   if (const EnumType *ET = Ty->getAs<EnumType>())
998     return ET->getDecl()->getIntegerType()->isBooleanType();
999 
1000   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1001     return hasBooleanRepresentation(AT->getValueType());
1002 
1003   return false;
1004 }
1005 
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums)1006 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1007                             llvm::APInt &Min, llvm::APInt &End,
1008                             bool StrictEnums) {
1009   const EnumType *ET = Ty->getAs<EnumType>();
1010   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1011                                 ET && !ET->getDecl()->isFixed();
1012   bool IsBool = hasBooleanRepresentation(Ty);
1013   if (!IsBool && !IsRegularCPlusPlusEnum)
1014     return false;
1015 
1016   if (IsBool) {
1017     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1018     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1019   } else {
1020     const EnumDecl *ED = ET->getDecl();
1021     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1022     unsigned Bitwidth = LTy->getScalarSizeInBits();
1023     unsigned NumNegativeBits = ED->getNumNegativeBits();
1024     unsigned NumPositiveBits = ED->getNumPositiveBits();
1025 
1026     if (NumNegativeBits) {
1027       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1028       assert(NumBits <= Bitwidth);
1029       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1030       Min = -End;
1031     } else {
1032       assert(NumPositiveBits <= Bitwidth);
1033       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1034       Min = llvm::APInt(Bitwidth, 0);
1035     }
1036   }
1037   return true;
1038 }
1039 
getRangeForLoadFromType(QualType Ty)1040 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1041   llvm::APInt Min, End;
1042   if (!getRangeForType(*this, Ty, Min, End,
1043                        CGM.getCodeGenOpts().StrictEnums))
1044     return 0;
1045 
1046   llvm::MDBuilder MDHelper(getLLVMContext());
1047   return MDHelper.createRange(Min, End);
1048 }
1049 
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,QualType TBAABaseType,uint64_t TBAAOffset)1050 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1051                                               unsigned Alignment, QualType Ty,
1052                                               llvm::MDNode *TBAAInfo,
1053                                               QualType TBAABaseType,
1054                                               uint64_t TBAAOffset) {
1055   // For better performance, handle vector loads differently.
1056   if (Ty->isVectorType()) {
1057     llvm::Value *V;
1058     const llvm::Type *EltTy =
1059     cast<llvm::PointerType>(Addr->getType())->getElementType();
1060 
1061     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1062 
1063     // Handle vectors of size 3, like size 4 for better performance.
1064     if (VTy->getNumElements() == 3) {
1065 
1066       // Bitcast to vec4 type.
1067       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1068                                                          4);
1069       llvm::PointerType *ptVec4Ty =
1070       llvm::PointerType::get(vec4Ty,
1071                              (cast<llvm::PointerType>(
1072                                       Addr->getType()))->getAddressSpace());
1073       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1074                                                 "castToVec4");
1075       // Now load value.
1076       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1077 
1078       // Shuffle vector to get vec3.
1079       llvm::Constant *Mask[] = {
1080         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1081         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1082         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1083       };
1084 
1085       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1086       V = Builder.CreateShuffleVector(LoadVal,
1087                                       llvm::UndefValue::get(vec4Ty),
1088                                       MaskV, "extractVec");
1089       return EmitFromMemory(V, Ty);
1090     }
1091   }
1092 
1093   // Atomic operations have to be done on integral types.
1094   if (Ty->isAtomicType()) {
1095     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1096                                      CharUnits::fromQuantity(Alignment),
1097                                      getContext(), TBAAInfo);
1098     return EmitAtomicLoad(lvalue).getScalarVal();
1099   }
1100 
1101   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1102   if (Volatile)
1103     Load->setVolatile(true);
1104   if (Alignment)
1105     Load->setAlignment(Alignment);
1106   if (TBAAInfo) {
1107     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1108                                                       TBAAOffset);
1109     CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1110   }
1111 
1112   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1113       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1114     llvm::APInt Min, End;
1115     if (getRangeForType(*this, Ty, Min, End, true)) {
1116       --End;
1117       llvm::Value *Check;
1118       if (!Min)
1119         Check = Builder.CreateICmpULE(
1120           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1121       else {
1122         llvm::Value *Upper = Builder.CreateICmpSLE(
1123           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1124         llvm::Value *Lower = Builder.CreateICmpSGE(
1125           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1126         Check = Builder.CreateAnd(Upper, Lower);
1127       }
1128       // FIXME: Provide a SourceLocation.
1129       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1130                 EmitCheckValue(Load), CRK_Recoverable);
1131     }
1132   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1133     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1134       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1135 
1136   return EmitFromMemory(Load, Ty);
1137 }
1138 
EmitToMemory(llvm::Value * Value,QualType Ty)1139 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1140   // Bool has a different representation in memory than in registers.
1141   if (hasBooleanRepresentation(Ty)) {
1142     // This should really always be an i1, but sometimes it's already
1143     // an i8, and it's awkward to track those cases down.
1144     if (Value->getType()->isIntegerTy(1))
1145       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1146     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1147            "wrong value rep of bool");
1148   }
1149 
1150   return Value;
1151 }
1152 
EmitFromMemory(llvm::Value * Value,QualType Ty)1153 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1154   // Bool has a different representation in memory than in registers.
1155   if (hasBooleanRepresentation(Ty)) {
1156     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1157            "wrong value rep of bool");
1158     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1159   }
1160 
1161   return Value;
1162 }
1163 
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit,QualType TBAABaseType,uint64_t TBAAOffset)1164 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1165                                         bool Volatile, unsigned Alignment,
1166                                         QualType Ty,
1167                                         llvm::MDNode *TBAAInfo,
1168                                         bool isInit, QualType TBAABaseType,
1169                                         uint64_t TBAAOffset) {
1170 
1171   // Handle vectors differently to get better performance.
1172   if (Ty->isVectorType()) {
1173     llvm::Type *SrcTy = Value->getType();
1174     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1175     // Handle vec3 special.
1176     if (VecTy->getNumElements() == 3) {
1177       llvm::LLVMContext &VMContext = getLLVMContext();
1178 
1179       // Our source is a vec3, do a shuffle vector to make it a vec4.
1180       SmallVector<llvm::Constant*, 4> Mask;
1181       Mask.push_back(llvm::ConstantInt::get(
1182                                             llvm::Type::getInt32Ty(VMContext),
1183                                             0));
1184       Mask.push_back(llvm::ConstantInt::get(
1185                                             llvm::Type::getInt32Ty(VMContext),
1186                                             1));
1187       Mask.push_back(llvm::ConstantInt::get(
1188                                             llvm::Type::getInt32Ty(VMContext),
1189                                             2));
1190       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1191 
1192       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1193       Value = Builder.CreateShuffleVector(Value,
1194                                           llvm::UndefValue::get(VecTy),
1195                                           MaskV, "extractVec");
1196       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1197     }
1198     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1199     if (DstPtr->getElementType() != SrcTy) {
1200       llvm::Type *MemTy =
1201       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1202       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1203     }
1204   }
1205 
1206   Value = EmitToMemory(Value, Ty);
1207 
1208   if (Ty->isAtomicType()) {
1209     EmitAtomicStore(RValue::get(Value),
1210                     LValue::MakeAddr(Addr, Ty,
1211                                      CharUnits::fromQuantity(Alignment),
1212                                      getContext(), TBAAInfo),
1213                     isInit);
1214     return;
1215   }
1216 
1217   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1218   if (Alignment)
1219     Store->setAlignment(Alignment);
1220   if (TBAAInfo) {
1221     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1222                                                       TBAAOffset);
1223     CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1224   }
1225 }
1226 
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1227 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1228                                         bool isInit) {
1229   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1230                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1231                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1232                     lvalue.getTBAAOffset());
1233 }
1234 
1235 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1236 /// method emits the address of the lvalue, then loads the result as an rvalue,
1237 /// returning the rvalue.
EmitLoadOfLValue(LValue LV)1238 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1239   if (LV.isObjCWeak()) {
1240     // load of a __weak object.
1241     llvm::Value *AddrWeakObj = LV.getAddress();
1242     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1243                                                              AddrWeakObj));
1244   }
1245   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1246     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1247     Object = EmitObjCConsumeObject(LV.getType(), Object);
1248     return RValue::get(Object);
1249   }
1250 
1251   if (LV.isSimple()) {
1252     assert(!LV.getType()->isFunctionType());
1253 
1254     // Everything needs a load.
1255     return RValue::get(EmitLoadOfScalar(LV));
1256   }
1257 
1258   if (LV.isVectorElt()) {
1259     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1260                                               LV.isVolatileQualified());
1261     Load->setAlignment(LV.getAlignment().getQuantity());
1262     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1263                                                     "vecext"));
1264   }
1265 
1266   // If this is a reference to a subset of the elements of a vector, either
1267   // shuffle the input or extract/insert them as appropriate.
1268   if (LV.isExtVectorElt())
1269     return EmitLoadOfExtVectorElementLValue(LV);
1270 
1271   assert(LV.isBitField() && "Unknown LValue type!");
1272   return EmitLoadOfBitfieldLValue(LV);
1273 }
1274 
EmitLoadOfBitfieldLValue(LValue LV)1275 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1276   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1277 
1278   // Get the output type.
1279   llvm::Type *ResLTy = ConvertType(LV.getType());
1280 
1281   llvm::Value *Ptr = LV.getBitFieldAddr();
1282   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1283                                         "bf.load");
1284   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1285 
1286   if (Info.IsSigned) {
1287     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1288     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1289     if (HighBits)
1290       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1291     if (Info.Offset + HighBits)
1292       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1293   } else {
1294     if (Info.Offset)
1295       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1296     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1297       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1298                                                               Info.Size),
1299                               "bf.clear");
1300   }
1301   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1302 
1303   return RValue::get(Val);
1304 }
1305 
1306 // If this is a reference to a subset of the elements of a vector, create an
1307 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1308 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1309   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1310                                             LV.isVolatileQualified());
1311   Load->setAlignment(LV.getAlignment().getQuantity());
1312   llvm::Value *Vec = Load;
1313 
1314   const llvm::Constant *Elts = LV.getExtVectorElts();
1315 
1316   // If the result of the expression is a non-vector type, we must be extracting
1317   // a single element.  Just codegen as an extractelement.
1318   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1319   if (!ExprVT) {
1320     unsigned InIdx = getAccessedFieldNo(0, Elts);
1321     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1322     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1323   }
1324 
1325   // Always use shuffle vector to try to retain the original program structure
1326   unsigned NumResultElts = ExprVT->getNumElements();
1327 
1328   SmallVector<llvm::Constant*, 4> Mask;
1329   for (unsigned i = 0; i != NumResultElts; ++i)
1330     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1331 
1332   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1333   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1334                                     MaskV);
1335   return RValue::get(Vec);
1336 }
1337 
1338 
1339 
1340 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1341 /// lvalue, where both are guaranteed to the have the same type, and that type
1342 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1343 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1344   if (!Dst.isSimple()) {
1345     if (Dst.isVectorElt()) {
1346       // Read/modify/write the vector, inserting the new element.
1347       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1348                                                 Dst.isVolatileQualified());
1349       Load->setAlignment(Dst.getAlignment().getQuantity());
1350       llvm::Value *Vec = Load;
1351       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1352                                         Dst.getVectorIdx(), "vecins");
1353       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1354                                                    Dst.isVolatileQualified());
1355       Store->setAlignment(Dst.getAlignment().getQuantity());
1356       return;
1357     }
1358 
1359     // If this is an update of extended vector elements, insert them as
1360     // appropriate.
1361     if (Dst.isExtVectorElt())
1362       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1363 
1364     assert(Dst.isBitField() && "Unknown LValue type");
1365     return EmitStoreThroughBitfieldLValue(Src, Dst);
1366   }
1367 
1368   // There's special magic for assigning into an ARC-qualified l-value.
1369   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1370     switch (Lifetime) {
1371     case Qualifiers::OCL_None:
1372       llvm_unreachable("present but none");
1373 
1374     case Qualifiers::OCL_ExplicitNone:
1375       // nothing special
1376       break;
1377 
1378     case Qualifiers::OCL_Strong:
1379       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1380       return;
1381 
1382     case Qualifiers::OCL_Weak:
1383       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1384       return;
1385 
1386     case Qualifiers::OCL_Autoreleasing:
1387       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1388                                                      Src.getScalarVal()));
1389       // fall into the normal path
1390       break;
1391     }
1392   }
1393 
1394   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1395     // load of a __weak object.
1396     llvm::Value *LvalueDst = Dst.getAddress();
1397     llvm::Value *src = Src.getScalarVal();
1398      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1399     return;
1400   }
1401 
1402   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1403     // load of a __strong object.
1404     llvm::Value *LvalueDst = Dst.getAddress();
1405     llvm::Value *src = Src.getScalarVal();
1406     if (Dst.isObjCIvar()) {
1407       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1408       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1409       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1410       llvm::Value *dst = RHS;
1411       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1412       llvm::Value *LHS =
1413         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1414       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1415       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1416                                               BytesBetween);
1417     } else if (Dst.isGlobalObjCRef()) {
1418       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1419                                                 Dst.isThreadLocalRef());
1420     }
1421     else
1422       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1423     return;
1424   }
1425 
1426   assert(Src.isScalar() && "Can't emit an agg store with this method");
1427   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1428 }
1429 
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1430 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1431                                                      llvm::Value **Result) {
1432   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1433   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1434   llvm::Value *Ptr = Dst.getBitFieldAddr();
1435 
1436   // Get the source value, truncated to the width of the bit-field.
1437   llvm::Value *SrcVal = Src.getScalarVal();
1438 
1439   // Cast the source to the storage type and shift it into place.
1440   SrcVal = Builder.CreateIntCast(SrcVal,
1441                                  Ptr->getType()->getPointerElementType(),
1442                                  /*IsSigned=*/false);
1443   llvm::Value *MaskedVal = SrcVal;
1444 
1445   // See if there are other bits in the bitfield's storage we'll need to load
1446   // and mask together with source before storing.
1447   if (Info.StorageSize != Info.Size) {
1448     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1449     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1450                                           "bf.load");
1451     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1452 
1453     // Mask the source value as needed.
1454     if (!hasBooleanRepresentation(Dst.getType()))
1455       SrcVal = Builder.CreateAnd(SrcVal,
1456                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1457                                                             Info.Size),
1458                                  "bf.value");
1459     MaskedVal = SrcVal;
1460     if (Info.Offset)
1461       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1462 
1463     // Mask out the original value.
1464     Val = Builder.CreateAnd(Val,
1465                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1466                                                      Info.Offset,
1467                                                      Info.Offset + Info.Size),
1468                             "bf.clear");
1469 
1470     // Or together the unchanged values and the source value.
1471     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1472   } else {
1473     assert(Info.Offset == 0);
1474   }
1475 
1476   // Write the new value back out.
1477   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1478                                                Dst.isVolatileQualified());
1479   Store->setAlignment(Info.StorageAlignment);
1480 
1481   // Return the new value of the bit-field, if requested.
1482   if (Result) {
1483     llvm::Value *ResultVal = MaskedVal;
1484 
1485     // Sign extend the value if needed.
1486     if (Info.IsSigned) {
1487       assert(Info.Size <= Info.StorageSize);
1488       unsigned HighBits = Info.StorageSize - Info.Size;
1489       if (HighBits) {
1490         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1491         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1492       }
1493     }
1494 
1495     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1496                                       "bf.result.cast");
1497     *Result = EmitFromMemory(ResultVal, Dst.getType());
1498   }
1499 }
1500 
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1501 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1502                                                                LValue Dst) {
1503   // This access turns into a read/modify/write of the vector.  Load the input
1504   // value now.
1505   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1506                                             Dst.isVolatileQualified());
1507   Load->setAlignment(Dst.getAlignment().getQuantity());
1508   llvm::Value *Vec = Load;
1509   const llvm::Constant *Elts = Dst.getExtVectorElts();
1510 
1511   llvm::Value *SrcVal = Src.getScalarVal();
1512 
1513   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1514     unsigned NumSrcElts = VTy->getNumElements();
1515     unsigned NumDstElts =
1516        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1517     if (NumDstElts == NumSrcElts) {
1518       // Use shuffle vector is the src and destination are the same number of
1519       // elements and restore the vector mask since it is on the side it will be
1520       // stored.
1521       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1522       for (unsigned i = 0; i != NumSrcElts; ++i)
1523         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1524 
1525       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1526       Vec = Builder.CreateShuffleVector(SrcVal,
1527                                         llvm::UndefValue::get(Vec->getType()),
1528                                         MaskV);
1529     } else if (NumDstElts > NumSrcElts) {
1530       // Extended the source vector to the same length and then shuffle it
1531       // into the destination.
1532       // FIXME: since we're shuffling with undef, can we just use the indices
1533       //        into that?  This could be simpler.
1534       SmallVector<llvm::Constant*, 4> ExtMask;
1535       for (unsigned i = 0; i != NumSrcElts; ++i)
1536         ExtMask.push_back(Builder.getInt32(i));
1537       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1538       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1539       llvm::Value *ExtSrcVal =
1540         Builder.CreateShuffleVector(SrcVal,
1541                                     llvm::UndefValue::get(SrcVal->getType()),
1542                                     ExtMaskV);
1543       // build identity
1544       SmallVector<llvm::Constant*, 4> Mask;
1545       for (unsigned i = 0; i != NumDstElts; ++i)
1546         Mask.push_back(Builder.getInt32(i));
1547 
1548       // modify when what gets shuffled in
1549       for (unsigned i = 0; i != NumSrcElts; ++i)
1550         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1551       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1552       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1553     } else {
1554       // We should never shorten the vector
1555       llvm_unreachable("unexpected shorten vector length");
1556     }
1557   } else {
1558     // If the Src is a scalar (not a vector) it must be updating one element.
1559     unsigned InIdx = getAccessedFieldNo(0, Elts);
1560     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1561     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1562   }
1563 
1564   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1565                                                Dst.isVolatileQualified());
1566   Store->setAlignment(Dst.getAlignment().getQuantity());
1567 }
1568 
1569 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1570 // generating write-barries API. It is currently a global, ivar,
1571 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1572 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1573                                  LValue &LV,
1574                                  bool IsMemberAccess=false) {
1575   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1576     return;
1577 
1578   if (isa<ObjCIvarRefExpr>(E)) {
1579     QualType ExpTy = E->getType();
1580     if (IsMemberAccess && ExpTy->isPointerType()) {
1581       // If ivar is a structure pointer, assigning to field of
1582       // this struct follows gcc's behavior and makes it a non-ivar
1583       // writer-barrier conservatively.
1584       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1585       if (ExpTy->isRecordType()) {
1586         LV.setObjCIvar(false);
1587         return;
1588       }
1589     }
1590     LV.setObjCIvar(true);
1591     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1592     LV.setBaseIvarExp(Exp->getBase());
1593     LV.setObjCArray(E->getType()->isArrayType());
1594     return;
1595   }
1596 
1597   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1598     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1599       if (VD->hasGlobalStorage()) {
1600         LV.setGlobalObjCRef(true);
1601         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1602       }
1603     }
1604     LV.setObjCArray(E->getType()->isArrayType());
1605     return;
1606   }
1607 
1608   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1609     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1610     return;
1611   }
1612 
1613   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1614     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1615     if (LV.isObjCIvar()) {
1616       // If cast is to a structure pointer, follow gcc's behavior and make it
1617       // a non-ivar write-barrier.
1618       QualType ExpTy = E->getType();
1619       if (ExpTy->isPointerType())
1620         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1621       if (ExpTy->isRecordType())
1622         LV.setObjCIvar(false);
1623     }
1624     return;
1625   }
1626 
1627   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1628     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1629     return;
1630   }
1631 
1632   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1633     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1634     return;
1635   }
1636 
1637   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1638     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1639     return;
1640   }
1641 
1642   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1643     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1644     return;
1645   }
1646 
1647   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1648     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1649     if (LV.isObjCIvar() && !LV.isObjCArray())
1650       // Using array syntax to assigning to what an ivar points to is not
1651       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1652       LV.setObjCIvar(false);
1653     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1654       // Using array syntax to assigning to what global points to is not
1655       // same as assigning to the global itself. {id *G;} G[i] = 0;
1656       LV.setGlobalObjCRef(false);
1657     return;
1658   }
1659 
1660   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1661     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1662     // We don't know if member is an 'ivar', but this flag is looked at
1663     // only in the context of LV.isObjCIvar().
1664     LV.setObjCArray(E->getType()->isArrayType());
1665     return;
1666   }
1667 }
1668 
1669 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1670 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1671                                 llvm::Value *V, llvm::Type *IRType,
1672                                 StringRef Name = StringRef()) {
1673   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1674   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1675 }
1676 
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1677 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1678                                       const Expr *E, const VarDecl *VD) {
1679   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1680   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1681   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1682   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1683   QualType T = E->getType();
1684   LValue LV;
1685   if (VD->getType()->isReferenceType()) {
1686     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1687     LI->setAlignment(Alignment.getQuantity());
1688     V = LI;
1689     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1690   } else {
1691     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1692   }
1693   setObjCGCLValueClass(CGF.getContext(), E, LV);
1694   return LV;
1695 }
1696 
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1697 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1698                                      const Expr *E, const FunctionDecl *FD) {
1699   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1700   if (!FD->hasPrototype()) {
1701     if (const FunctionProtoType *Proto =
1702             FD->getType()->getAs<FunctionProtoType>()) {
1703       // Ugly case: for a K&R-style definition, the type of the definition
1704       // isn't the same as the type of a use.  Correct for this with a
1705       // bitcast.
1706       QualType NoProtoType =
1707           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1708       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1709       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1710     }
1711   }
1712   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1713   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1714 }
1715 
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)1716 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1717                                       llvm::Value *ThisValue) {
1718   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1719   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1720   return CGF.EmitLValueForField(LV, FD);
1721 }
1722 
EmitDeclRefLValue(const DeclRefExpr * E)1723 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1724   const NamedDecl *ND = E->getDecl();
1725   CharUnits Alignment = getContext().getDeclAlign(ND);
1726   QualType T = E->getType();
1727 
1728   // A DeclRefExpr for a reference initialized by a constant expression can
1729   // appear without being odr-used. Directly emit the constant initializer.
1730   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1731     const Expr *Init = VD->getAnyInitializer(VD);
1732     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1733         VD->isUsableInConstantExpressions(getContext()) &&
1734         VD->checkInitIsICE()) {
1735       llvm::Constant *Val =
1736         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1737       assert(Val && "failed to emit reference constant expression");
1738       // FIXME: Eventually we will want to emit vector element references.
1739       return MakeAddrLValue(Val, T, Alignment);
1740     }
1741   }
1742 
1743   // FIXME: We should be able to assert this for FunctionDecls as well!
1744   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1745   // those with a valid source location.
1746   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1747           !E->getLocation().isValid()) &&
1748          "Should not use decl without marking it used!");
1749 
1750   if (ND->hasAttr<WeakRefAttr>()) {
1751     const ValueDecl *VD = cast<ValueDecl>(ND);
1752     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1753     return MakeAddrLValue(Aliasee, T, Alignment);
1754   }
1755 
1756   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1757     // Check if this is a global variable.
1758     if (VD->hasLinkage() || VD->isStaticDataMember()) {
1759       // If it's thread_local, emit a call to its wrapper function instead.
1760       if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1761         return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1762       return EmitGlobalVarDeclLValue(*this, E, VD);
1763     }
1764 
1765     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1766 
1767     llvm::Value *V = LocalDeclMap.lookup(VD);
1768     if (!V && VD->isStaticLocal())
1769       V = CGM.getStaticLocalDeclAddress(VD);
1770 
1771     // Use special handling for lambdas.
1772     if (!V) {
1773       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1774         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1775       } else if (CapturedStmtInfo) {
1776         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1777           return EmitCapturedFieldLValue(*this, FD,
1778                                          CapturedStmtInfo->getContextValue());
1779       }
1780 
1781       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1782       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1783                             T, Alignment);
1784     }
1785 
1786     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1787 
1788     if (isBlockVariable)
1789       V = BuildBlockByrefAddress(V, VD);
1790 
1791     LValue LV;
1792     if (VD->getType()->isReferenceType()) {
1793       llvm::LoadInst *LI = Builder.CreateLoad(V);
1794       LI->setAlignment(Alignment.getQuantity());
1795       V = LI;
1796       LV = MakeNaturalAlignAddrLValue(V, T);
1797     } else {
1798       LV = MakeAddrLValue(V, T, Alignment);
1799     }
1800 
1801     bool isLocalStorage = VD->hasLocalStorage();
1802 
1803     bool NonGCable = isLocalStorage &&
1804                      !VD->getType()->isReferenceType() &&
1805                      !isBlockVariable;
1806     if (NonGCable) {
1807       LV.getQuals().removeObjCGCAttr();
1808       LV.setNonGC(true);
1809     }
1810 
1811     bool isImpreciseLifetime =
1812       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1813     if (isImpreciseLifetime)
1814       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1815     setObjCGCLValueClass(getContext(), E, LV);
1816     return LV;
1817   }
1818 
1819   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1820     return EmitFunctionDeclLValue(*this, E, fn);
1821 
1822   llvm_unreachable("Unhandled DeclRefExpr");
1823 }
1824 
EmitUnaryOpLValue(const UnaryOperator * E)1825 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1826   // __extension__ doesn't affect lvalue-ness.
1827   if (E->getOpcode() == UO_Extension)
1828     return EmitLValue(E->getSubExpr());
1829 
1830   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1831   switch (E->getOpcode()) {
1832   default: llvm_unreachable("Unknown unary operator lvalue!");
1833   case UO_Deref: {
1834     QualType T = E->getSubExpr()->getType()->getPointeeType();
1835     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1836 
1837     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1838     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1839 
1840     // We should not generate __weak write barrier on indirect reference
1841     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1842     // But, we continue to generate __strong write barrier on indirect write
1843     // into a pointer to object.
1844     if (getLangOpts().ObjC1 &&
1845         getLangOpts().getGC() != LangOptions::NonGC &&
1846         LV.isObjCWeak())
1847       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1848     return LV;
1849   }
1850   case UO_Real:
1851   case UO_Imag: {
1852     LValue LV = EmitLValue(E->getSubExpr());
1853     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1854     llvm::Value *Addr = LV.getAddress();
1855 
1856     // __real is valid on scalars.  This is a faster way of testing that.
1857     // __imag can only produce an rvalue on scalars.
1858     if (E->getOpcode() == UO_Real &&
1859         !cast<llvm::PointerType>(Addr->getType())
1860            ->getElementType()->isStructTy()) {
1861       assert(E->getSubExpr()->getType()->isArithmeticType());
1862       return LV;
1863     }
1864 
1865     assert(E->getSubExpr()->getType()->isAnyComplexType());
1866 
1867     unsigned Idx = E->getOpcode() == UO_Imag;
1868     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1869                                                   Idx, "idx"),
1870                           ExprTy);
1871   }
1872   case UO_PreInc:
1873   case UO_PreDec: {
1874     LValue LV = EmitLValue(E->getSubExpr());
1875     bool isInc = E->getOpcode() == UO_PreInc;
1876 
1877     if (E->getType()->isAnyComplexType())
1878       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1879     else
1880       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1881     return LV;
1882   }
1883   }
1884 }
1885 
EmitStringLiteralLValue(const StringLiteral * E)1886 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1887   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1888                         E->getType());
1889 }
1890 
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)1891 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1892   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1893                         E->getType());
1894 }
1895 
1896 static llvm::Constant*
GetAddrOfConstantWideString(StringRef Str,const char * GlobalName,ASTContext & Context,QualType Ty,SourceLocation Loc,CodeGenModule & CGM)1897 GetAddrOfConstantWideString(StringRef Str,
1898                             const char *GlobalName,
1899                             ASTContext &Context,
1900                             QualType Ty, SourceLocation Loc,
1901                             CodeGenModule &CGM) {
1902 
1903   StringLiteral *SL = StringLiteral::Create(Context,
1904                                             Str,
1905                                             StringLiteral::Wide,
1906                                             /*Pascal = */false,
1907                                             Ty, Loc);
1908   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1909   llvm::GlobalVariable *GV =
1910     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1911                              !CGM.getLangOpts().WritableStrings,
1912                              llvm::GlobalValue::PrivateLinkage,
1913                              C, GlobalName);
1914   const unsigned WideAlignment =
1915     Context.getTypeAlignInChars(Ty).getQuantity();
1916   GV->setAlignment(WideAlignment);
1917   return GV;
1918 }
1919 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)1920 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1921                                     SmallString<32>& Target) {
1922   Target.resize(CharByteWidth * (Source.size() + 1));
1923   char *ResultPtr = &Target[0];
1924   const UTF8 *ErrorPtr;
1925   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1926   (void)success;
1927   assert(success);
1928   Target.resize(ResultPtr - &Target[0]);
1929 }
1930 
EmitPredefinedLValue(const PredefinedExpr * E)1931 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1932   switch (E->getIdentType()) {
1933   default:
1934     return EmitUnsupportedLValue(E, "predefined expression");
1935 
1936   case PredefinedExpr::Func:
1937   case PredefinedExpr::Function:
1938   case PredefinedExpr::LFunction:
1939   case PredefinedExpr::PrettyFunction: {
1940     unsigned IdentType = E->getIdentType();
1941     std::string GlobalVarName;
1942 
1943     switch (IdentType) {
1944     default: llvm_unreachable("Invalid type");
1945     case PredefinedExpr::Func:
1946       GlobalVarName = "__func__.";
1947       break;
1948     case PredefinedExpr::Function:
1949       GlobalVarName = "__FUNCTION__.";
1950       break;
1951     case PredefinedExpr::LFunction:
1952       GlobalVarName = "L__FUNCTION__.";
1953       break;
1954     case PredefinedExpr::PrettyFunction:
1955       GlobalVarName = "__PRETTY_FUNCTION__.";
1956       break;
1957     }
1958 
1959     StringRef FnName = CurFn->getName();
1960     if (FnName.startswith("\01"))
1961       FnName = FnName.substr(1);
1962     GlobalVarName += FnName;
1963 
1964     const Decl *CurDecl = CurCodeDecl;
1965     if (CurDecl == 0)
1966       CurDecl = getContext().getTranslationUnitDecl();
1967 
1968     std::string FunctionName =
1969         (isa<BlockDecl>(CurDecl)
1970          ? FnName.str()
1971          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1972                                        CurDecl));
1973 
1974     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1975     llvm::Constant *C;
1976     if (ElemType->isWideCharType()) {
1977       SmallString<32> RawChars;
1978       ConvertUTF8ToWideString(
1979           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1980           FunctionName, RawChars);
1981       C = GetAddrOfConstantWideString(RawChars,
1982                                       GlobalVarName.c_str(),
1983                                       getContext(),
1984                                       E->getType(),
1985                                       E->getLocation(),
1986                                       CGM);
1987     } else {
1988       C = CGM.GetAddrOfConstantCString(FunctionName,
1989                                        GlobalVarName.c_str(),
1990                                        1);
1991     }
1992     return MakeAddrLValue(C, E->getType());
1993   }
1994   }
1995 }
1996 
1997 /// Emit a type description suitable for use by a runtime sanitizer library. The
1998 /// format of a type descriptor is
1999 ///
2000 /// \code
2001 ///   { i16 TypeKind, i16 TypeInfo }
2002 /// \endcode
2003 ///
2004 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2005 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2006 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2007   // FIXME: Only emit each type's descriptor once.
2008   uint16_t TypeKind = -1;
2009   uint16_t TypeInfo = 0;
2010 
2011   if (T->isIntegerType()) {
2012     TypeKind = 0;
2013     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2014                (T->isSignedIntegerType() ? 1 : 0);
2015   } else if (T->isFloatingType()) {
2016     TypeKind = 1;
2017     TypeInfo = getContext().getTypeSize(T);
2018   }
2019 
2020   // Format the type name as if for a diagnostic, including quotes and
2021   // optionally an 'aka'.
2022   SmallString<32> Buffer;
2023   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2024                                     (intptr_t)T.getAsOpaquePtr(),
2025                                     0, 0, 0, 0, 0, 0, Buffer,
2026                                     ArrayRef<intptr_t>());
2027 
2028   llvm::Constant *Components[] = {
2029     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2030     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2031   };
2032   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2033 
2034   llvm::GlobalVariable *GV =
2035     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2036                              /*isConstant=*/true,
2037                              llvm::GlobalVariable::PrivateLinkage,
2038                              Descriptor);
2039   GV->setUnnamedAddr(true);
2040   return GV;
2041 }
2042 
EmitCheckValue(llvm::Value * V)2043 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2044   llvm::Type *TargetTy = IntPtrTy;
2045 
2046   // Floating-point types which fit into intptr_t are bitcast to integers
2047   // and then passed directly (after zero-extension, if necessary).
2048   if (V->getType()->isFloatingPointTy()) {
2049     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2050     if (Bits <= TargetTy->getIntegerBitWidth())
2051       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2052                                                          Bits));
2053   }
2054 
2055   // Integers which fit in intptr_t are zero-extended and passed directly.
2056   if (V->getType()->isIntegerTy() &&
2057       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2058     return Builder.CreateZExt(V, TargetTy);
2059 
2060   // Pointers are passed directly, everything else is passed by address.
2061   if (!V->getType()->isPointerTy()) {
2062     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2063     Builder.CreateStore(V, Ptr);
2064     V = Ptr;
2065   }
2066   return Builder.CreatePtrToInt(V, TargetTy);
2067 }
2068 
2069 /// \brief Emit a representation of a SourceLocation for passing to a handler
2070 /// in a sanitizer runtime library. The format for this data is:
2071 /// \code
2072 ///   struct SourceLocation {
2073 ///     const char *Filename;
2074 ///     int32_t Line, Column;
2075 ///   };
2076 /// \endcode
2077 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)2078 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2079   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2080 
2081   llvm::Constant *Data[] = {
2082     // FIXME: Only emit each file name once.
2083     PLoc.isValid() ? cast<llvm::Constant>(
2084                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2085                    : llvm::Constant::getNullValue(Int8PtrTy),
2086     Builder.getInt32(PLoc.getLine()),
2087     Builder.getInt32(PLoc.getColumn())
2088   };
2089 
2090   return llvm::ConstantStruct::getAnon(Data);
2091 }
2092 
EmitCheck(llvm::Value * Checked,StringRef CheckName,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs,CheckRecoverableKind RecoverKind)2093 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2094                                 ArrayRef<llvm::Constant *> StaticArgs,
2095                                 ArrayRef<llvm::Value *> DynamicArgs,
2096                                 CheckRecoverableKind RecoverKind) {
2097   assert(SanOpts != &SanitizerOptions::Disabled);
2098 
2099   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2100     assert (RecoverKind != CRK_AlwaysRecoverable &&
2101             "Runtime call required for AlwaysRecoverable kind!");
2102     return EmitTrapCheck(Checked);
2103   }
2104 
2105   llvm::BasicBlock *Cont = createBasicBlock("cont");
2106 
2107   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2108 
2109   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2110 
2111   // Give hint that we very much don't expect to execute the handler
2112   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2113   llvm::MDBuilder MDHelper(getLLVMContext());
2114   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2115   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2116 
2117   EmitBlock(Handler);
2118 
2119   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2120   llvm::GlobalValue *InfoPtr =
2121       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2122                                llvm::GlobalVariable::PrivateLinkage, Info);
2123   InfoPtr->setUnnamedAddr(true);
2124 
2125   SmallVector<llvm::Value *, 4> Args;
2126   SmallVector<llvm::Type *, 4> ArgTypes;
2127   Args.reserve(DynamicArgs.size() + 1);
2128   ArgTypes.reserve(DynamicArgs.size() + 1);
2129 
2130   // Handler functions take an i8* pointing to the (handler-specific) static
2131   // information block, followed by a sequence of intptr_t arguments
2132   // representing operand values.
2133   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2134   ArgTypes.push_back(Int8PtrTy);
2135   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2136     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2137     ArgTypes.push_back(IntPtrTy);
2138   }
2139 
2140   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2141                  ((RecoverKind == CRK_Recoverable) &&
2142                    CGM.getCodeGenOpts().SanitizeRecover);
2143 
2144   llvm::FunctionType *FnType =
2145     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2146   llvm::AttrBuilder B;
2147   if (!Recover) {
2148     B.addAttribute(llvm::Attribute::NoReturn)
2149      .addAttribute(llvm::Attribute::NoUnwind);
2150   }
2151   B.addAttribute(llvm::Attribute::UWTable);
2152 
2153   // Checks that have two variants use a suffix to differentiate them
2154   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2155                            !CGM.getCodeGenOpts().SanitizeRecover;
2156   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2157                               (NeedsAbortSuffix? "_abort" : "")).str();
2158   llvm::Value *Fn =
2159     CGM.CreateRuntimeFunction(FnType, FunctionName,
2160                               llvm::AttributeSet::get(getLLVMContext(),
2161                                               llvm::AttributeSet::FunctionIndex,
2162                                                       B));
2163   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2164   if (Recover) {
2165     Builder.CreateBr(Cont);
2166   } else {
2167     HandlerCall->setDoesNotReturn();
2168     Builder.CreateUnreachable();
2169   }
2170 
2171   EmitBlock(Cont);
2172 }
2173 
EmitTrapCheck(llvm::Value * Checked)2174 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2175   llvm::BasicBlock *Cont = createBasicBlock("cont");
2176 
2177   // If we're optimizing, collapse all calls to trap down to just one per
2178   // function to save on code size.
2179   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2180     TrapBB = createBasicBlock("trap");
2181     Builder.CreateCondBr(Checked, Cont, TrapBB);
2182     EmitBlock(TrapBB);
2183     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2184     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2185     TrapCall->setDoesNotReturn();
2186     TrapCall->setDoesNotThrow();
2187     Builder.CreateUnreachable();
2188   } else {
2189     Builder.CreateCondBr(Checked, Cont, TrapBB);
2190   }
2191 
2192   EmitBlock(Cont);
2193 }
2194 
2195 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2196 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)2197 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2198   // If this isn't just an array->pointer decay, bail out.
2199   const CastExpr *CE = dyn_cast<CastExpr>(E);
2200   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2201     return 0;
2202 
2203   // If this is a decay from variable width array, bail out.
2204   const Expr *SubExpr = CE->getSubExpr();
2205   if (SubExpr->getType()->isVariableArrayType())
2206     return 0;
2207 
2208   return SubExpr;
2209 }
2210 
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)2211 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2212                                                bool Accessed) {
2213   // The index must always be an integer, which is not an aggregate.  Emit it.
2214   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2215   QualType IdxTy  = E->getIdx()->getType();
2216   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2217 
2218   if (SanOpts->Bounds)
2219     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2220 
2221   // If the base is a vector type, then we are forming a vector element lvalue
2222   // with this subscript.
2223   if (E->getBase()->getType()->isVectorType()) {
2224     // Emit the vector as an lvalue to get its address.
2225     LValue LHS = EmitLValue(E->getBase());
2226     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2227     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2228     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2229                                  E->getBase()->getType(), LHS.getAlignment());
2230   }
2231 
2232   // Extend or truncate the index type to 32 or 64-bits.
2233   if (Idx->getType() != IntPtrTy)
2234     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2235 
2236   // We know that the pointer points to a type of the correct size, unless the
2237   // size is a VLA or Objective-C interface.
2238   llvm::Value *Address = 0;
2239   CharUnits ArrayAlignment;
2240   if (const VariableArrayType *vla =
2241         getContext().getAsVariableArrayType(E->getType())) {
2242     // The base must be a pointer, which is not an aggregate.  Emit
2243     // it.  It needs to be emitted first in case it's what captures
2244     // the VLA bounds.
2245     Address = EmitScalarExpr(E->getBase());
2246 
2247     // The element count here is the total number of non-VLA elements.
2248     llvm::Value *numElements = getVLASize(vla).first;
2249 
2250     // Effectively, the multiply by the VLA size is part of the GEP.
2251     // GEP indexes are signed, and scaling an index isn't permitted to
2252     // signed-overflow, so we use the same semantics for our explicit
2253     // multiply.  We suppress this if overflow is not undefined behavior.
2254     if (getLangOpts().isSignedOverflowDefined()) {
2255       Idx = Builder.CreateMul(Idx, numElements);
2256       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2257     } else {
2258       Idx = Builder.CreateNSWMul(Idx, numElements);
2259       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2260     }
2261   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2262     // Indexing over an interface, as in "NSString *P; P[4];"
2263     llvm::Value *InterfaceSize =
2264       llvm::ConstantInt::get(Idx->getType(),
2265           getContext().getTypeSizeInChars(OIT).getQuantity());
2266 
2267     Idx = Builder.CreateMul(Idx, InterfaceSize);
2268 
2269     // The base must be a pointer, which is not an aggregate.  Emit it.
2270     llvm::Value *Base = EmitScalarExpr(E->getBase());
2271     Address = EmitCastToVoidPtr(Base);
2272     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2273     Address = Builder.CreateBitCast(Address, Base->getType());
2274   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2275     // If this is A[i] where A is an array, the frontend will have decayed the
2276     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2277     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2278     // "gep x, i" here.  Emit one "gep A, 0, i".
2279     assert(Array->getType()->isArrayType() &&
2280            "Array to pointer decay must have array source type!");
2281     LValue ArrayLV;
2282     // For simple multidimensional array indexing, set the 'accessed' flag for
2283     // better bounds-checking of the base expression.
2284     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2285       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2286     else
2287       ArrayLV = EmitLValue(Array);
2288     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2289     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2290     llvm::Value *Args[] = { Zero, Idx };
2291 
2292     // Propagate the alignment from the array itself to the result.
2293     ArrayAlignment = ArrayLV.getAlignment();
2294 
2295     if (getLangOpts().isSignedOverflowDefined())
2296       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2297     else
2298       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2299   } else {
2300     // The base must be a pointer, which is not an aggregate.  Emit it.
2301     llvm::Value *Base = EmitScalarExpr(E->getBase());
2302     if (getLangOpts().isSignedOverflowDefined())
2303       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2304     else
2305       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2306   }
2307 
2308   QualType T = E->getBase()->getType()->getPointeeType();
2309   assert(!T.isNull() &&
2310          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2311 
2312 
2313   // Limit the alignment to that of the result type.
2314   LValue LV;
2315   if (!ArrayAlignment.isZero()) {
2316     CharUnits Align = getContext().getTypeAlignInChars(T);
2317     ArrayAlignment = std::min(Align, ArrayAlignment);
2318     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2319   } else {
2320     LV = MakeNaturalAlignAddrLValue(Address, T);
2321   }
2322 
2323   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2324 
2325   if (getLangOpts().ObjC1 &&
2326       getLangOpts().getGC() != LangOptions::NonGC) {
2327     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2328     setObjCGCLValueClass(getContext(), E, LV);
2329   }
2330   return LV;
2331 }
2332 
2333 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVectorImpl<unsigned> & Elts)2334 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2335                                        SmallVectorImpl<unsigned> &Elts) {
2336   SmallVector<llvm::Constant*, 4> CElts;
2337   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2338     CElts.push_back(Builder.getInt32(Elts[i]));
2339 
2340   return llvm::ConstantVector::get(CElts);
2341 }
2342 
2343 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2344 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2345   // Emit the base vector as an l-value.
2346   LValue Base;
2347 
2348   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2349   if (E->isArrow()) {
2350     // If it is a pointer to a vector, emit the address and form an lvalue with
2351     // it.
2352     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2353     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2354     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2355     Base.getQuals().removeObjCGCAttr();
2356   } else if (E->getBase()->isGLValue()) {
2357     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2358     // emit the base as an lvalue.
2359     assert(E->getBase()->getType()->isVectorType());
2360     Base = EmitLValue(E->getBase());
2361   } else {
2362     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2363     assert(E->getBase()->getType()->isVectorType() &&
2364            "Result must be a vector");
2365     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2366 
2367     // Store the vector to memory (because LValue wants an address).
2368     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2369     Builder.CreateStore(Vec, VecMem);
2370     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2371   }
2372 
2373   QualType type =
2374     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2375 
2376   // Encode the element access list into a vector of unsigned indices.
2377   SmallVector<unsigned, 4> Indices;
2378   E->getEncodedElementAccess(Indices);
2379 
2380   if (Base.isSimple()) {
2381     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2382     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2383                                     Base.getAlignment());
2384   }
2385   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2386 
2387   llvm::Constant *BaseElts = Base.getExtVectorElts();
2388   SmallVector<llvm::Constant *, 4> CElts;
2389 
2390   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2391     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2392   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2393   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2394                                   Base.getAlignment());
2395 }
2396 
EmitMemberExpr(const MemberExpr * E)2397 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2398   Expr *BaseExpr = E->getBase();
2399 
2400   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2401   LValue BaseLV;
2402   if (E->isArrow()) {
2403     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2404     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2405     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2406     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2407   } else
2408     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2409 
2410   NamedDecl *ND = E->getMemberDecl();
2411   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2412     LValue LV = EmitLValueForField(BaseLV, Field);
2413     setObjCGCLValueClass(getContext(), E, LV);
2414     return LV;
2415   }
2416 
2417   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2418     return EmitGlobalVarDeclLValue(*this, E, VD);
2419 
2420   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2421     return EmitFunctionDeclLValue(*this, E, FD);
2422 
2423   llvm_unreachable("Unhandled member declaration!");
2424 }
2425 
2426 /// Given that we are currently emitting a lambda, emit an l-value for
2427 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)2428 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2429   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2430   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2431   QualType LambdaTagType =
2432     getContext().getTagDeclType(Field->getParent());
2433   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2434   return EmitLValueForField(LambdaLV, Field);
2435 }
2436 
EmitLValueForField(LValue base,const FieldDecl * field)2437 LValue CodeGenFunction::EmitLValueForField(LValue base,
2438                                            const FieldDecl *field) {
2439   if (field->isBitField()) {
2440     const CGRecordLayout &RL =
2441       CGM.getTypes().getCGRecordLayout(field->getParent());
2442     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2443     llvm::Value *Addr = base.getAddress();
2444     unsigned Idx = RL.getLLVMFieldNo(field);
2445     if (Idx != 0)
2446       // For structs, we GEP to the field that the record layout suggests.
2447       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2448     // Get the access type.
2449     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2450       getLLVMContext(), Info.StorageSize,
2451       CGM.getContext().getTargetAddressSpace(base.getType()));
2452     if (Addr->getType() != PtrTy)
2453       Addr = Builder.CreateBitCast(Addr, PtrTy);
2454 
2455     QualType fieldType =
2456       field->getType().withCVRQualifiers(base.getVRQualifiers());
2457     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2458   }
2459 
2460   const RecordDecl *rec = field->getParent();
2461   QualType type = field->getType();
2462   CharUnits alignment = getContext().getDeclAlign(field);
2463 
2464   // FIXME: It should be impossible to have an LValue without alignment for a
2465   // complete type.
2466   if (!base.getAlignment().isZero())
2467     alignment = std::min(alignment, base.getAlignment());
2468 
2469   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2470 
2471   llvm::Value *addr = base.getAddress();
2472   unsigned cvr = base.getVRQualifiers();
2473   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2474   if (rec->isUnion()) {
2475     // For unions, there is no pointer adjustment.
2476     assert(!type->isReferenceType() && "union has reference member");
2477     // TODO: handle path-aware TBAA for union.
2478     TBAAPath = false;
2479   } else {
2480     // For structs, we GEP to the field that the record layout suggests.
2481     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2482     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2483 
2484     // If this is a reference field, load the reference right now.
2485     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2486       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2487       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2488       load->setAlignment(alignment.getQuantity());
2489 
2490       // Loading the reference will disable path-aware TBAA.
2491       TBAAPath = false;
2492       if (CGM.shouldUseTBAA()) {
2493         llvm::MDNode *tbaa;
2494         if (mayAlias)
2495           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2496         else
2497           tbaa = CGM.getTBAAInfo(type);
2498         CGM.DecorateInstruction(load, tbaa);
2499       }
2500 
2501       addr = load;
2502       mayAlias = false;
2503       type = refType->getPointeeType();
2504       if (type->isIncompleteType())
2505         alignment = CharUnits();
2506       else
2507         alignment = getContext().getTypeAlignInChars(type);
2508       cvr = 0; // qualifiers don't recursively apply to referencee
2509     }
2510   }
2511 
2512   // Make sure that the address is pointing to the right type.  This is critical
2513   // for both unions and structs.  A union needs a bitcast, a struct element
2514   // will need a bitcast if the LLVM type laid out doesn't match the desired
2515   // type.
2516   addr = EmitBitCastOfLValueToProperType(*this, addr,
2517                                          CGM.getTypes().ConvertTypeForMem(type),
2518                                          field->getName());
2519 
2520   if (field->hasAttr<AnnotateAttr>())
2521     addr = EmitFieldAnnotations(field, addr);
2522 
2523   LValue LV = MakeAddrLValue(addr, type, alignment);
2524   LV.getQuals().addCVRQualifiers(cvr);
2525   if (TBAAPath) {
2526     const ASTRecordLayout &Layout =
2527         getContext().getASTRecordLayout(field->getParent());
2528     // Set the base type to be the base type of the base LValue and
2529     // update offset to be relative to the base type.
2530     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2531     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2532                      Layout.getFieldOffset(field->getFieldIndex()) /
2533                                            getContext().getCharWidth());
2534   }
2535 
2536   // __weak attribute on a field is ignored.
2537   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2538     LV.getQuals().removeObjCGCAttr();
2539 
2540   // Fields of may_alias structs act like 'char' for TBAA purposes.
2541   // FIXME: this should get propagated down through anonymous structs
2542   // and unions.
2543   if (mayAlias && LV.getTBAAInfo())
2544     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2545 
2546   return LV;
2547 }
2548 
2549 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2550 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2551                                                   const FieldDecl *Field) {
2552   QualType FieldType = Field->getType();
2553 
2554   if (!FieldType->isReferenceType())
2555     return EmitLValueForField(Base, Field);
2556 
2557   const CGRecordLayout &RL =
2558     CGM.getTypes().getCGRecordLayout(Field->getParent());
2559   unsigned idx = RL.getLLVMFieldNo(Field);
2560   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2561   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2562 
2563   // Make sure that the address is pointing to the right type.  This is critical
2564   // for both unions and structs.  A union needs a bitcast, a struct element
2565   // will need a bitcast if the LLVM type laid out doesn't match the desired
2566   // type.
2567   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2568   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2569 
2570   CharUnits Alignment = getContext().getDeclAlign(Field);
2571 
2572   // FIXME: It should be impossible to have an LValue without alignment for a
2573   // complete type.
2574   if (!Base.getAlignment().isZero())
2575     Alignment = std::min(Alignment, Base.getAlignment());
2576 
2577   return MakeAddrLValue(V, FieldType, Alignment);
2578 }
2579 
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2580 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2581   if (E->isFileScope()) {
2582     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2583     return MakeAddrLValue(GlobalPtr, E->getType());
2584   }
2585   if (E->getType()->isVariablyModifiedType())
2586     // make sure to emit the VLA size.
2587     EmitVariablyModifiedType(E->getType());
2588 
2589   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2590   const Expr *InitExpr = E->getInitializer();
2591   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2592 
2593   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2594                    /*Init*/ true);
2595 
2596   return Result;
2597 }
2598 
EmitInitListLValue(const InitListExpr * E)2599 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2600   if (!E->isGLValue())
2601     // Initializing an aggregate temporary in C++11: T{...}.
2602     return EmitAggExprToLValue(E);
2603 
2604   // An lvalue initializer list must be initializing a reference.
2605   assert(E->getNumInits() == 1 && "reference init with multiple values");
2606   return EmitLValue(E->getInit(0));
2607 }
2608 
2609 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2610 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2611   if (!expr->isGLValue()) {
2612     // ?: here should be an aggregate.
2613     assert(hasAggregateEvaluationKind(expr->getType()) &&
2614            "Unexpected conditional operator!");
2615     return EmitAggExprToLValue(expr);
2616   }
2617 
2618   OpaqueValueMapping binding(*this, expr);
2619 
2620   const Expr *condExpr = expr->getCond();
2621   bool CondExprBool;
2622   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2623     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2624     if (!CondExprBool) std::swap(live, dead);
2625 
2626     if (!ContainsLabel(dead))
2627       return EmitLValue(live);
2628   }
2629 
2630   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2631   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2632   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2633 
2634   ConditionalEvaluation eval(*this);
2635   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2636 
2637   // Any temporaries created here are conditional.
2638   EmitBlock(lhsBlock);
2639   eval.begin(*this);
2640   LValue lhs = EmitLValue(expr->getTrueExpr());
2641   eval.end(*this);
2642 
2643   if (!lhs.isSimple())
2644     return EmitUnsupportedLValue(expr, "conditional operator");
2645 
2646   lhsBlock = Builder.GetInsertBlock();
2647   Builder.CreateBr(contBlock);
2648 
2649   // Any temporaries created here are conditional.
2650   EmitBlock(rhsBlock);
2651   eval.begin(*this);
2652   LValue rhs = EmitLValue(expr->getFalseExpr());
2653   eval.end(*this);
2654   if (!rhs.isSimple())
2655     return EmitUnsupportedLValue(expr, "conditional operator");
2656   rhsBlock = Builder.GetInsertBlock();
2657 
2658   EmitBlock(contBlock);
2659 
2660   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2661                                          "cond-lvalue");
2662   phi->addIncoming(lhs.getAddress(), lhsBlock);
2663   phi->addIncoming(rhs.getAddress(), rhsBlock);
2664   return MakeAddrLValue(phi, expr->getType());
2665 }
2666 
2667 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2668 /// type. If the cast is to a reference, we can have the usual lvalue result,
2669 /// otherwise if a cast is needed by the code generator in an lvalue context,
2670 /// then it must mean that we need the address of an aggregate in order to
2671 /// access one of its members.  This can happen for all the reasons that casts
2672 /// are permitted with aggregate result, including noop aggregate casts, and
2673 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2674 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2675   switch (E->getCastKind()) {
2676   case CK_ToVoid:
2677   case CK_BitCast:
2678   case CK_ArrayToPointerDecay:
2679   case CK_FunctionToPointerDecay:
2680   case CK_NullToMemberPointer:
2681   case CK_NullToPointer:
2682   case CK_IntegralToPointer:
2683   case CK_PointerToIntegral:
2684   case CK_PointerToBoolean:
2685   case CK_VectorSplat:
2686   case CK_IntegralCast:
2687   case CK_IntegralToBoolean:
2688   case CK_IntegralToFloating:
2689   case CK_FloatingToIntegral:
2690   case CK_FloatingToBoolean:
2691   case CK_FloatingCast:
2692   case CK_FloatingRealToComplex:
2693   case CK_FloatingComplexToReal:
2694   case CK_FloatingComplexToBoolean:
2695   case CK_FloatingComplexCast:
2696   case CK_FloatingComplexToIntegralComplex:
2697   case CK_IntegralRealToComplex:
2698   case CK_IntegralComplexToReal:
2699   case CK_IntegralComplexToBoolean:
2700   case CK_IntegralComplexCast:
2701   case CK_IntegralComplexToFloatingComplex:
2702   case CK_DerivedToBaseMemberPointer:
2703   case CK_BaseToDerivedMemberPointer:
2704   case CK_MemberPointerToBoolean:
2705   case CK_ReinterpretMemberPointer:
2706   case CK_AnyPointerToBlockPointerCast:
2707   case CK_ARCProduceObject:
2708   case CK_ARCConsumeObject:
2709   case CK_ARCReclaimReturnedObject:
2710   case CK_ARCExtendBlockObject:
2711   case CK_CopyAndAutoreleaseBlockObject:
2712     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2713 
2714   case CK_Dependent:
2715     llvm_unreachable("dependent cast kind in IR gen!");
2716 
2717   case CK_BuiltinFnToFnPtr:
2718     llvm_unreachable("builtin functions are handled elsewhere");
2719 
2720   // These are never l-values; just use the aggregate emission code.
2721   case CK_NonAtomicToAtomic:
2722   case CK_AtomicToNonAtomic:
2723     return EmitAggExprToLValue(E);
2724 
2725   case CK_Dynamic: {
2726     LValue LV = EmitLValue(E->getSubExpr());
2727     llvm::Value *V = LV.getAddress();
2728     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2729     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2730   }
2731 
2732   case CK_ConstructorConversion:
2733   case CK_UserDefinedConversion:
2734   case CK_CPointerToObjCPointerCast:
2735   case CK_BlockPointerToObjCPointerCast:
2736   case CK_NoOp:
2737   case CK_LValueToRValue:
2738     return EmitLValue(E->getSubExpr());
2739 
2740   case CK_UncheckedDerivedToBase:
2741   case CK_DerivedToBase: {
2742     const RecordType *DerivedClassTy =
2743       E->getSubExpr()->getType()->getAs<RecordType>();
2744     CXXRecordDecl *DerivedClassDecl =
2745       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2746 
2747     LValue LV = EmitLValue(E->getSubExpr());
2748     llvm::Value *This = LV.getAddress();
2749 
2750     // Perform the derived-to-base conversion
2751     llvm::Value *Base =
2752       GetAddressOfBaseClass(This, DerivedClassDecl,
2753                             E->path_begin(), E->path_end(),
2754                             /*NullCheckValue=*/false);
2755 
2756     return MakeAddrLValue(Base, E->getType());
2757   }
2758   case CK_ToUnion:
2759     return EmitAggExprToLValue(E);
2760   case CK_BaseToDerived: {
2761     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2762     CXXRecordDecl *DerivedClassDecl =
2763       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2764 
2765     LValue LV = EmitLValue(E->getSubExpr());
2766 
2767     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2768     // performed and the object is not of the derived type.
2769     if (SanitizePerformTypeCheck)
2770       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2771                     LV.getAddress(), E->getType());
2772 
2773     // Perform the base-to-derived conversion
2774     llvm::Value *Derived =
2775       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2776                                E->path_begin(), E->path_end(),
2777                                /*NullCheckValue=*/false);
2778 
2779     return MakeAddrLValue(Derived, E->getType());
2780   }
2781   case CK_LValueBitCast: {
2782     // This must be a reinterpret_cast (or c-style equivalent).
2783     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2784 
2785     LValue LV = EmitLValue(E->getSubExpr());
2786     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2787                                            ConvertType(CE->getTypeAsWritten()));
2788     return MakeAddrLValue(V, E->getType());
2789   }
2790   case CK_ObjCObjectLValueCast: {
2791     LValue LV = EmitLValue(E->getSubExpr());
2792     QualType ToType = getContext().getLValueReferenceType(E->getType());
2793     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2794                                            ConvertType(ToType));
2795     return MakeAddrLValue(V, E->getType());
2796   }
2797   case CK_ZeroToOCLEvent:
2798     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2799   }
2800 
2801   llvm_unreachable("Unhandled lvalue cast kind?");
2802 }
2803 
EmitOpaqueValueLValue(const OpaqueValueExpr * e)2804 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2805   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2806   return getOpaqueLValueMapping(e);
2807 }
2808 
EmitRValueForField(LValue LV,const FieldDecl * FD)2809 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2810                                            const FieldDecl *FD) {
2811   QualType FT = FD->getType();
2812   LValue FieldLV = EmitLValueForField(LV, FD);
2813   switch (getEvaluationKind(FT)) {
2814   case TEK_Complex:
2815     return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2816   case TEK_Aggregate:
2817     return FieldLV.asAggregateRValue();
2818   case TEK_Scalar:
2819     return EmitLoadOfLValue(FieldLV);
2820   }
2821   llvm_unreachable("bad evaluation kind");
2822 }
2823 
2824 //===--------------------------------------------------------------------===//
2825 //                             Expression Emission
2826 //===--------------------------------------------------------------------===//
2827 
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)2828 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2829                                      ReturnValueSlot ReturnValue) {
2830   if (CGDebugInfo *DI = getDebugInfo()) {
2831     SourceLocation Loc = E->getLocStart();
2832     // Force column info to be generated so we can differentiate
2833     // multiple call sites on the same line in the debug info.
2834     const FunctionDecl* Callee = E->getDirectCallee();
2835     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2836     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2837   }
2838 
2839   // Builtins never have block type.
2840   if (E->getCallee()->getType()->isBlockPointerType())
2841     return EmitBlockCallExpr(E, ReturnValue);
2842 
2843   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2844     return EmitCXXMemberCallExpr(CE, ReturnValue);
2845 
2846   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2847     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2848 
2849   const Decl *TargetDecl = E->getCalleeDecl();
2850   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2851     if (unsigned builtinID = FD->getBuiltinID())
2852       return EmitBuiltinExpr(FD, builtinID, E);
2853   }
2854 
2855   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2856     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2857       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2858 
2859   if (const CXXPseudoDestructorExpr *PseudoDtor
2860           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2861     QualType DestroyedType = PseudoDtor->getDestroyedType();
2862     if (getLangOpts().ObjCAutoRefCount &&
2863         DestroyedType->isObjCLifetimeType() &&
2864         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2865          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2866       // Automatic Reference Counting:
2867       //   If the pseudo-expression names a retainable object with weak or
2868       //   strong lifetime, the object shall be released.
2869       Expr *BaseExpr = PseudoDtor->getBase();
2870       llvm::Value *BaseValue = NULL;
2871       Qualifiers BaseQuals;
2872 
2873       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2874       if (PseudoDtor->isArrow()) {
2875         BaseValue = EmitScalarExpr(BaseExpr);
2876         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2877         BaseQuals = PTy->getPointeeType().getQualifiers();
2878       } else {
2879         LValue BaseLV = EmitLValue(BaseExpr);
2880         BaseValue = BaseLV.getAddress();
2881         QualType BaseTy = BaseExpr->getType();
2882         BaseQuals = BaseTy.getQualifiers();
2883       }
2884 
2885       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2886       case Qualifiers::OCL_None:
2887       case Qualifiers::OCL_ExplicitNone:
2888       case Qualifiers::OCL_Autoreleasing:
2889         break;
2890 
2891       case Qualifiers::OCL_Strong:
2892         EmitARCRelease(Builder.CreateLoad(BaseValue,
2893                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2894                        ARCPreciseLifetime);
2895         break;
2896 
2897       case Qualifiers::OCL_Weak:
2898         EmitARCDestroyWeak(BaseValue);
2899         break;
2900       }
2901     } else {
2902       // C++ [expr.pseudo]p1:
2903       //   The result shall only be used as the operand for the function call
2904       //   operator (), and the result of such a call has type void. The only
2905       //   effect is the evaluation of the postfix-expression before the dot or
2906       //   arrow.
2907       EmitScalarExpr(E->getCallee());
2908     }
2909 
2910     return RValue::get(0);
2911   }
2912 
2913   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2914   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2915                   E->arg_begin(), E->arg_end(), TargetDecl);
2916 }
2917 
EmitBinaryOperatorLValue(const BinaryOperator * E)2918 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2919   // Comma expressions just emit their LHS then their RHS as an l-value.
2920   if (E->getOpcode() == BO_Comma) {
2921     EmitIgnoredExpr(E->getLHS());
2922     EnsureInsertPoint();
2923     return EmitLValue(E->getRHS());
2924   }
2925 
2926   if (E->getOpcode() == BO_PtrMemD ||
2927       E->getOpcode() == BO_PtrMemI)
2928     return EmitPointerToDataMemberBinaryExpr(E);
2929 
2930   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2931 
2932   // Note that in all of these cases, __block variables need the RHS
2933   // evaluated first just in case the variable gets moved by the RHS.
2934 
2935   switch (getEvaluationKind(E->getType())) {
2936   case TEK_Scalar: {
2937     switch (E->getLHS()->getType().getObjCLifetime()) {
2938     case Qualifiers::OCL_Strong:
2939       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2940 
2941     case Qualifiers::OCL_Autoreleasing:
2942       return EmitARCStoreAutoreleasing(E).first;
2943 
2944     // No reason to do any of these differently.
2945     case Qualifiers::OCL_None:
2946     case Qualifiers::OCL_ExplicitNone:
2947     case Qualifiers::OCL_Weak:
2948       break;
2949     }
2950 
2951     RValue RV = EmitAnyExpr(E->getRHS());
2952     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2953     EmitStoreThroughLValue(RV, LV);
2954     return LV;
2955   }
2956 
2957   case TEK_Complex:
2958     return EmitComplexAssignmentLValue(E);
2959 
2960   case TEK_Aggregate:
2961     return EmitAggExprToLValue(E);
2962   }
2963   llvm_unreachable("bad evaluation kind");
2964 }
2965 
EmitCallExprLValue(const CallExpr * E)2966 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2967   RValue RV = EmitCallExpr(E);
2968 
2969   if (!RV.isScalar())
2970     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2971 
2972   assert(E->getCallReturnType()->isReferenceType() &&
2973          "Can't have a scalar return unless the return type is a "
2974          "reference type!");
2975 
2976   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2977 }
2978 
EmitVAArgExprLValue(const VAArgExpr * E)2979 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2980   // FIXME: This shouldn't require another copy.
2981   return EmitAggExprToLValue(E);
2982 }
2983 
EmitCXXConstructLValue(const CXXConstructExpr * E)2984 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2985   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2986          && "binding l-value to type which needs a temporary");
2987   AggValueSlot Slot = CreateAggTemp(E->getType());
2988   EmitCXXConstructExpr(E, Slot);
2989   return MakeAddrLValue(Slot.getAddr(), E->getType());
2990 }
2991 
2992 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)2993 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2994   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2995 }
2996 
EmitCXXUuidofExpr(const CXXUuidofExpr * E)2997 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2998   return CGM.GetAddrOfUuidDescriptor(E);
2999 }
3000 
EmitCXXUuidofLValue(const CXXUuidofExpr * E)3001 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3002   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3003 }
3004 
3005 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)3006 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3007   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3008   Slot.setExternallyDestructed();
3009   EmitAggExpr(E->getSubExpr(), Slot);
3010   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3011   return MakeAddrLValue(Slot.getAddr(), E->getType());
3012 }
3013 
3014 LValue
EmitLambdaLValue(const LambdaExpr * E)3015 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3016   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3017   EmitLambdaExpr(E, Slot);
3018   return MakeAddrLValue(Slot.getAddr(), E->getType());
3019 }
3020 
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)3021 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3022   RValue RV = EmitObjCMessageExpr(E);
3023 
3024   if (!RV.isScalar())
3025     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3026 
3027   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3028          "Can't have a scalar return unless the return type is a "
3029          "reference type!");
3030 
3031   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3032 }
3033 
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)3034 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3035   llvm::Value *V =
3036     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3037   return MakeAddrLValue(V, E->getType());
3038 }
3039 
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3040 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3041                                              const ObjCIvarDecl *Ivar) {
3042   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3043 }
3044 
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3045 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3046                                           llvm::Value *BaseValue,
3047                                           const ObjCIvarDecl *Ivar,
3048                                           unsigned CVRQualifiers) {
3049   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3050                                                    Ivar, CVRQualifiers);
3051 }
3052 
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)3053 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3054   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3055   llvm::Value *BaseValue = 0;
3056   const Expr *BaseExpr = E->getBase();
3057   Qualifiers BaseQuals;
3058   QualType ObjectTy;
3059   if (E->isArrow()) {
3060     BaseValue = EmitScalarExpr(BaseExpr);
3061     ObjectTy = BaseExpr->getType()->getPointeeType();
3062     BaseQuals = ObjectTy.getQualifiers();
3063   } else {
3064     LValue BaseLV = EmitLValue(BaseExpr);
3065     // FIXME: this isn't right for bitfields.
3066     BaseValue = BaseLV.getAddress();
3067     ObjectTy = BaseExpr->getType();
3068     BaseQuals = ObjectTy.getQualifiers();
3069   }
3070 
3071   LValue LV =
3072     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3073                       BaseQuals.getCVRQualifiers());
3074   setObjCGCLValueClass(getContext(), E, LV);
3075   return LV;
3076 }
3077 
EmitStmtExprLValue(const StmtExpr * E)3078 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3079   // Can only get l-value for message expression returning aggregate type
3080   RValue RV = EmitAnyExprToTemp(E);
3081   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3082 }
3083 
EmitCall(QualType CalleeType,llvm::Value * Callee,ReturnValueSlot ReturnValue,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const Decl * TargetDecl)3084 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3085                                  ReturnValueSlot ReturnValue,
3086                                  CallExpr::const_arg_iterator ArgBeg,
3087                                  CallExpr::const_arg_iterator ArgEnd,
3088                                  const Decl *TargetDecl) {
3089   // Get the actual function type. The callee type will always be a pointer to
3090   // function type or a block pointer type.
3091   assert(CalleeType->isFunctionPointerType() &&
3092          "Call must have function pointer type!");
3093 
3094   CalleeType = getContext().getCanonicalType(CalleeType);
3095 
3096   const FunctionType *FnType
3097     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3098 
3099   // Force column info to differentiate multiple inlined call sites on
3100   // the same line, analoguous to EmitCallExpr.
3101   bool ForceColumnInfo = false;
3102   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3103     ForceColumnInfo = FD->isInlineSpecified();
3104 
3105   CallArgList Args;
3106   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3107                ForceColumnInfo);
3108 
3109   const CGFunctionInfo &FnInfo =
3110     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3111 
3112   // C99 6.5.2.2p6:
3113   //   If the expression that denotes the called function has a type
3114   //   that does not include a prototype, [the default argument
3115   //   promotions are performed]. If the number of arguments does not
3116   //   equal the number of parameters, the behavior is undefined. If
3117   //   the function is defined with a type that includes a prototype,
3118   //   and either the prototype ends with an ellipsis (, ...) or the
3119   //   types of the arguments after promotion are not compatible with
3120   //   the types of the parameters, the behavior is undefined. If the
3121   //   function is defined with a type that does not include a
3122   //   prototype, and the types of the arguments after promotion are
3123   //   not compatible with those of the parameters after promotion,
3124   //   the behavior is undefined [except in some trivial cases].
3125   // That is, in the general case, we should assume that a call
3126   // through an unprototyped function type works like a *non-variadic*
3127   // call.  The way we make this work is to cast to the exact type
3128   // of the promoted arguments.
3129   if (isa<FunctionNoProtoType>(FnType)) {
3130     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3131     CalleeTy = CalleeTy->getPointerTo();
3132     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3133   }
3134 
3135   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3136 }
3137 
3138 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)3139 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3140   llvm::Value *BaseV;
3141   if (E->getOpcode() == BO_PtrMemI)
3142     BaseV = EmitScalarExpr(E->getLHS());
3143   else
3144     BaseV = EmitLValue(E->getLHS()).getAddress();
3145 
3146   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3147 
3148   const MemberPointerType *MPT
3149     = E->getRHS()->getType()->getAs<MemberPointerType>();
3150 
3151   llvm::Value *AddV =
3152     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3153 
3154   return MakeAddrLValue(AddV, MPT->getPointeeType());
3155 }
3156 
3157 /// Given the address of a temporary variable, produce an r-value of
3158 /// its type.
convertTempToRValue(llvm::Value * addr,QualType type)3159 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3160                                             QualType type) {
3161   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3162   switch (getEvaluationKind(type)) {
3163   case TEK_Complex:
3164     return RValue::getComplex(EmitLoadOfComplex(lvalue));
3165   case TEK_Aggregate:
3166     return lvalue.asAggregateRValue();
3167   case TEK_Scalar:
3168     return RValue::get(EmitLoadOfScalar(lvalue));
3169   }
3170   llvm_unreachable("bad evaluation kind");
3171 }
3172 
SetFPAccuracy(llvm::Value * Val,float Accuracy)3173 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3174   assert(Val->getType()->isFPOrFPVectorTy());
3175   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3176     return;
3177 
3178   llvm::MDBuilder MDHelper(getLLVMContext());
3179   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3180 
3181   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3182 }
3183 
3184 namespace {
3185   struct LValueOrRValue {
3186     LValue LV;
3187     RValue RV;
3188   };
3189 }
3190 
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3191 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3192                                            const PseudoObjectExpr *E,
3193                                            bool forLValue,
3194                                            AggValueSlot slot) {
3195   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3196 
3197   // Find the result expression, if any.
3198   const Expr *resultExpr = E->getResultExpr();
3199   LValueOrRValue result;
3200 
3201   for (PseudoObjectExpr::const_semantics_iterator
3202          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3203     const Expr *semantic = *i;
3204 
3205     // If this semantic expression is an opaque value, bind it
3206     // to the result of its source expression.
3207     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3208 
3209       // If this is the result expression, we may need to evaluate
3210       // directly into the slot.
3211       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3212       OVMA opaqueData;
3213       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3214           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3215         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3216 
3217         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3218         opaqueData = OVMA::bind(CGF, ov, LV);
3219         result.RV = slot.asRValue();
3220 
3221       // Otherwise, emit as normal.
3222       } else {
3223         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3224 
3225         // If this is the result, also evaluate the result now.
3226         if (ov == resultExpr) {
3227           if (forLValue)
3228             result.LV = CGF.EmitLValue(ov);
3229           else
3230             result.RV = CGF.EmitAnyExpr(ov, slot);
3231         }
3232       }
3233 
3234       opaques.push_back(opaqueData);
3235 
3236     // Otherwise, if the expression is the result, evaluate it
3237     // and remember the result.
3238     } else if (semantic == resultExpr) {
3239       if (forLValue)
3240         result.LV = CGF.EmitLValue(semantic);
3241       else
3242         result.RV = CGF.EmitAnyExpr(semantic, slot);
3243 
3244     // Otherwise, evaluate the expression in an ignored context.
3245     } else {
3246       CGF.EmitIgnoredExpr(semantic);
3247     }
3248   }
3249 
3250   // Unbind all the opaques now.
3251   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3252     opaques[i].unbind(CGF);
3253 
3254   return result;
3255 }
3256 
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3257 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3258                                                AggValueSlot slot) {
3259   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3260 }
3261 
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3262 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3263   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3264 }
3265