• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35     Builder(cgm.getModule().getContext()),
36     CapturedStmtInfo(0),
37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38                              CGM.getSanOpts().Alignment |
39                              CGM.getSanOpts().ObjectSize |
40                              CGM.getSanOpts().Vptr),
41     SanOpts(&CGM.getSanOpts()),
42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
46     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
47     NumReturnExprs(0), NumSimpleReturnExprs(0),
48     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
49     CXXDefaultInitExprThis(0),
50     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52     TerminateHandler(0), TrapBB(0) {
53   if (!suppressNewContext)
54     CGM.getCXXABI().getMangleContext().startNewFunction();
55 
56   llvm::FastMathFlags FMF;
57   if (CGM.getLangOpts().FastMath)
58     FMF.setUnsafeAlgebra();
59   if (CGM.getLangOpts().FiniteMathOnly) {
60     FMF.setNoNaNs();
61     FMF.setNoInfs();
62   }
63   Builder.SetFastMathFlags(FMF);
64 }
65 
~CodeGenFunction()66 CodeGenFunction::~CodeGenFunction() {
67   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68 
69   // If there are any unclaimed block infos, go ahead and destroy them
70   // now.  This can happen if IR-gen gets clever and skips evaluating
71   // something.
72   if (FirstBlockInfo)
73     destroyBlockInfos(FirstBlockInfo);
74 }
75 
76 
ConvertTypeForMem(QualType T)77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78   return CGM.getTypes().ConvertTypeForMem(T);
79 }
80 
ConvertType(QualType T)81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82   return CGM.getTypes().ConvertType(T);
83 }
84 
getEvaluationKind(QualType type)85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86   type = type.getCanonicalType();
87   while (true) {
88     switch (type->getTypeClass()) {
89 #define TYPE(name, parent)
90 #define ABSTRACT_TYPE(name, parent)
91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
92 #define DEPENDENT_TYPE(name, parent) case Type::name:
93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94 #include "clang/AST/TypeNodes.def"
95       llvm_unreachable("non-canonical or dependent type in IR-generation");
96 
97     case Type::Auto:
98       llvm_unreachable("undeduced auto type in IR-generation");
99 
100     // Various scalar types.
101     case Type::Builtin:
102     case Type::Pointer:
103     case Type::BlockPointer:
104     case Type::LValueReference:
105     case Type::RValueReference:
106     case Type::MemberPointer:
107     case Type::Vector:
108     case Type::ExtVector:
109     case Type::FunctionProto:
110     case Type::FunctionNoProto:
111     case Type::Enum:
112     case Type::ObjCObjectPointer:
113       return TEK_Scalar;
114 
115     // Complexes.
116     case Type::Complex:
117       return TEK_Complex;
118 
119     // Arrays, records, and Objective-C objects.
120     case Type::ConstantArray:
121     case Type::IncompleteArray:
122     case Type::VariableArray:
123     case Type::Record:
124     case Type::ObjCObject:
125     case Type::ObjCInterface:
126       return TEK_Aggregate;
127 
128     // We operate on atomic values according to their underlying type.
129     case Type::Atomic:
130       type = cast<AtomicType>(type)->getValueType();
131       continue;
132     }
133     llvm_unreachable("unknown type kind!");
134   }
135 }
136 
EmitReturnBlock()137 void CodeGenFunction::EmitReturnBlock() {
138   // For cleanliness, we try to avoid emitting the return block for
139   // simple cases.
140   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141 
142   if (CurBB) {
143     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144 
145     // We have a valid insert point, reuse it if it is empty or there are no
146     // explicit jumps to the return block.
147     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149       delete ReturnBlock.getBlock();
150     } else
151       EmitBlock(ReturnBlock.getBlock());
152     return;
153   }
154 
155   // Otherwise, if the return block is the target of a single direct
156   // branch then we can just put the code in that block instead. This
157   // cleans up functions which started with a unified return block.
158   if (ReturnBlock.getBlock()->hasOneUse()) {
159     llvm::BranchInst *BI =
160       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161     if (BI && BI->isUnconditional() &&
162         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163       // Reset insertion point, including debug location, and delete the
164       // branch.  This is really subtle and only works because the next change
165       // in location will hit the caching in CGDebugInfo::EmitLocation and not
166       // override this.
167       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168       Builder.SetInsertPoint(BI->getParent());
169       BI->eraseFromParent();
170       delete ReturnBlock.getBlock();
171       return;
172     }
173   }
174 
175   // FIXME: We are at an unreachable point, there is no reason to emit the block
176   // unless it has uses. However, we still need a place to put the debug
177   // region.end for now.
178 
179   EmitBlock(ReturnBlock.getBlock());
180 }
181 
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183   if (!BB) return;
184   if (!BB->use_empty())
185     return CGF.CurFn->getBasicBlockList().push_back(BB);
186   delete BB;
187 }
188 
FinishFunction(SourceLocation EndLoc)189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190   assert(BreakContinueStack.empty() &&
191          "mismatched push/pop in break/continue stack!");
192 
193   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194     && NumSimpleReturnExprs == NumReturnExprs
195     && ReturnBlock.getBlock()->use_empty();
196   // Usually the return expression is evaluated before the cleanup
197   // code.  If the function contains only a simple return statement,
198   // such as a constant, the location before the cleanup code becomes
199   // the last useful breakpoint in the function, because the simple
200   // return expression will be evaluated after the cleanup code. To be
201   // safe, set the debug location for cleanup code to the location of
202   // the return statement.  Otherwise the cleanup code should be at the
203   // end of the function's lexical scope.
204   //
205   // If there are multiple branches to the return block, the branch
206   // instructions will get the location of the return statements and
207   // all will be fine.
208   if (CGDebugInfo *DI = getDebugInfo()) {
209     if (OnlySimpleReturnStmts)
210       DI->EmitLocation(Builder, LastStopPoint);
211     else
212       DI->EmitLocation(Builder, EndLoc);
213   }
214 
215   // Pop any cleanups that might have been associated with the
216   // parameters.  Do this in whatever block we're currently in; it's
217   // important to do this before we enter the return block or return
218   // edges will be *really* confused.
219   bool EmitRetDbgLoc = true;
220   if (EHStack.stable_begin() != PrologueCleanupDepth) {
221     PopCleanupBlocks(PrologueCleanupDepth);
222 
223     // Make sure the line table doesn't jump back into the body for
224     // the ret after it's been at EndLoc.
225     EmitRetDbgLoc = false;
226 
227     if (CGDebugInfo *DI = getDebugInfo())
228       if (OnlySimpleReturnStmts)
229         DI->EmitLocation(Builder, EndLoc);
230   }
231 
232   // Emit function epilog (to return).
233   EmitReturnBlock();
234 
235   if (ShouldInstrumentFunction())
236     EmitFunctionInstrumentation("__cyg_profile_func_exit");
237 
238   // Emit debug descriptor for function end.
239   if (CGDebugInfo *DI = getDebugInfo()) {
240     DI->EmitFunctionEnd(Builder);
241   }
242 
243   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
244   EmitEndEHSpec(CurCodeDecl);
245 
246   assert(EHStack.empty() &&
247          "did not remove all scopes from cleanup stack!");
248 
249   // If someone did an indirect goto, emit the indirect goto block at the end of
250   // the function.
251   if (IndirectBranch) {
252     EmitBlock(IndirectBranch->getParent());
253     Builder.ClearInsertionPoint();
254   }
255 
256   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
257   llvm::Instruction *Ptr = AllocaInsertPt;
258   AllocaInsertPt = 0;
259   Ptr->eraseFromParent();
260 
261   // If someone took the address of a label but never did an indirect goto, we
262   // made a zero entry PHI node, which is illegal, zap it now.
263   if (IndirectBranch) {
264     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
265     if (PN->getNumIncomingValues() == 0) {
266       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
267       PN->eraseFromParent();
268     }
269   }
270 
271   EmitIfUsed(*this, EHResumeBlock);
272   EmitIfUsed(*this, TerminateLandingPad);
273   EmitIfUsed(*this, TerminateHandler);
274   EmitIfUsed(*this, UnreachableBlock);
275 
276   if (CGM.getCodeGenOpts().EmitDeclMetadata)
277     EmitDeclMetadata();
278 }
279 
280 /// ShouldInstrumentFunction - Return true if the current function should be
281 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()282 bool CodeGenFunction::ShouldInstrumentFunction() {
283   if (!CGM.getCodeGenOpts().InstrumentFunctions)
284     return false;
285   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
286     return false;
287   return true;
288 }
289 
290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
291 /// instrumentation function with the current function and the call site, if
292 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
294   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
295   llvm::PointerType *PointerTy = Int8PtrTy;
296   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
297   llvm::FunctionType *FunctionTy =
298     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
299 
300   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
301   llvm::CallInst *CallSite = Builder.CreateCall(
302     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
303     llvm::ConstantInt::get(Int32Ty, 0),
304     "callsite");
305 
306   llvm::Value *args[] = {
307     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
308     CallSite
309   };
310 
311   EmitNounwindRuntimeCall(F, args);
312 }
313 
EmitMCountInstrumentation()314 void CodeGenFunction::EmitMCountInstrumentation() {
315   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
316 
317   llvm::Constant *MCountFn =
318     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
319   EmitNounwindRuntimeCall(MCountFn);
320 }
321 
322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
323 // information in the program executable. The argument information stored
324 // includes the argument name, its type, the address and access qualifiers used.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,SmallVector<llvm::Value *,5> & kernelMDArgs,CGBuilderTy & Builder,ASTContext & ASTCtx)325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
326                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
327                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
328                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
329   // Create MDNodes that represent the kernel arg metadata.
330   // Each MDNode is a list in the form of "key", N number of values which is
331   // the same number of values as their are kernel arguments.
332 
333   // MDNode for the kernel argument address space qualifiers.
334   SmallVector<llvm::Value*, 8> addressQuals;
335   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
336 
337   // MDNode for the kernel argument access qualifiers (images only).
338   SmallVector<llvm::Value*, 8> accessQuals;
339   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
340 
341   // MDNode for the kernel argument type names.
342   SmallVector<llvm::Value*, 8> argTypeNames;
343   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
344 
345   // MDNode for the kernel argument type qualifiers.
346   SmallVector<llvm::Value*, 8> argTypeQuals;
347   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
348 
349   // MDNode for the kernel argument names.
350   SmallVector<llvm::Value*, 8> argNames;
351   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
352 
353   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
354     const ParmVarDecl *parm = FD->getParamDecl(i);
355     QualType ty = parm->getType();
356     std::string typeQuals;
357 
358     if (ty->isPointerType()) {
359       QualType pointeeTy = ty->getPointeeType();
360 
361       // Get address qualifier.
362       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
363         pointeeTy.getAddressSpace())));
364 
365       // Get argument type name.
366       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
367 
368       // Turn "unsigned type" to "utype"
369       std::string::size_type pos = typeName.find("unsigned");
370       if (pos != std::string::npos)
371         typeName.erase(pos+1, 8);
372 
373       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
374 
375       // Get argument type qualifiers:
376       if (ty.isRestrictQualified())
377         typeQuals = "restrict";
378       if (pointeeTy.isConstQualified() ||
379           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
380         typeQuals += typeQuals.empty() ? "const" : " const";
381       if (pointeeTy.isVolatileQualified())
382         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
383     } else {
384       addressQuals.push_back(Builder.getInt32(0));
385 
386       // Get argument type name.
387       std::string typeName = ty.getUnqualifiedType().getAsString();
388 
389       // Turn "unsigned type" to "utype"
390       std::string::size_type pos = typeName.find("unsigned");
391       if (pos != std::string::npos)
392         typeName.erase(pos+1, 8);
393 
394       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
395 
396       // Get argument type qualifiers:
397       if (ty.isConstQualified())
398         typeQuals = "const";
399       if (ty.isVolatileQualified())
400         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
401     }
402 
403     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
404 
405     // Get image access qualifier:
406     if (ty->isImageType()) {
407       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
408           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
409         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
410       else
411         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
412     } else
413       accessQuals.push_back(llvm::MDString::get(Context, "none"));
414 
415     // Get argument name.
416     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
417   }
418 
419   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
420   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
421   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
422   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
423   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
424 }
425 
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
427                                                llvm::Function *Fn)
428 {
429   if (!FD->hasAttr<OpenCLKernelAttr>())
430     return;
431 
432   llvm::LLVMContext &Context = getLLVMContext();
433 
434   SmallVector <llvm::Value*, 5> kernelMDArgs;
435   kernelMDArgs.push_back(Fn);
436 
437   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
438     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
439                          Builder, getContext());
440 
441   if (FD->hasAttr<VecTypeHintAttr>()) {
442     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
443     QualType hintQTy = attr->getTypeHint();
444     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
445     bool isSignedInteger =
446         hintQTy->isSignedIntegerType() ||
447         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
448     llvm::Value *attrMDArgs[] = {
449       llvm::MDString::get(Context, "vec_type_hint"),
450       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
451       llvm::ConstantInt::get(
452           llvm::IntegerType::get(Context, 32),
453           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
454     };
455     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
456   }
457 
458   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
459     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
460     llvm::Value *attrMDArgs[] = {
461       llvm::MDString::get(Context, "work_group_size_hint"),
462       Builder.getInt32(attr->getXDim()),
463       Builder.getInt32(attr->getYDim()),
464       Builder.getInt32(attr->getZDim())
465     };
466     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
467   }
468 
469   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
470     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
471     llvm::Value *attrMDArgs[] = {
472       llvm::MDString::get(Context, "reqd_work_group_size"),
473       Builder.getInt32(attr->getXDim()),
474       Builder.getInt32(attr->getYDim()),
475       Builder.getInt32(attr->getZDim())
476     };
477     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478   }
479 
480   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
481   llvm::NamedMDNode *OpenCLKernelMetadata =
482     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
483   OpenCLKernelMetadata->addOperand(kernelMDNode);
484 }
485 
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation StartLoc)486 void CodeGenFunction::StartFunction(GlobalDecl GD,
487                                     QualType RetTy,
488                                     llvm::Function *Fn,
489                                     const CGFunctionInfo &FnInfo,
490                                     const FunctionArgList &Args,
491                                     SourceLocation StartLoc) {
492   const Decl *D = GD.getDecl();
493 
494   DidCallStackSave = false;
495   CurCodeDecl = D;
496   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
497   FnRetTy = RetTy;
498   CurFn = Fn;
499   CurFnInfo = &FnInfo;
500   assert(CurFn->isDeclaration() && "Function already has body?");
501 
502   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
503     SanOpts = &SanitizerOptions::Disabled;
504     SanitizePerformTypeCheck = false;
505   }
506 
507   // Pass inline keyword to optimizer if it appears explicitly on any
508   // declaration.
509   if (!CGM.getCodeGenOpts().NoInline)
510     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
511       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
512              RE = FD->redecls_end(); RI != RE; ++RI)
513         if (RI->isInlineSpecified()) {
514           Fn->addFnAttr(llvm::Attribute::InlineHint);
515           break;
516         }
517 
518   if (getLangOpts().OpenCL) {
519     // Add metadata for a kernel function.
520     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
521       EmitOpenCLKernelMetadata(FD, Fn);
522   }
523 
524   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
525 
526   // Create a marker to make it easy to insert allocas into the entryblock
527   // later.  Don't create this with the builder, because we don't want it
528   // folded.
529   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
530   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
531   if (Builder.isNamePreserving())
532     AllocaInsertPt->setName("allocapt");
533 
534   ReturnBlock = getJumpDestInCurrentScope("return");
535 
536   Builder.SetInsertPoint(EntryBB);
537 
538   // Emit subprogram debug descriptor.
539   if (CGDebugInfo *DI = getDebugInfo()) {
540     SmallVector<QualType, 16> ArgTypes;
541     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
542 	 i != e; ++i) {
543       ArgTypes.push_back((*i)->getType());
544     }
545 
546     QualType FnType =
547       getContext().getFunctionType(RetTy, ArgTypes,
548                                    FunctionProtoType::ExtProtoInfo());
549 
550     DI->setLocation(StartLoc);
551     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
552   }
553 
554   if (ShouldInstrumentFunction())
555     EmitFunctionInstrumentation("__cyg_profile_func_enter");
556 
557   if (CGM.getCodeGenOpts().InstrumentForProfiling)
558     EmitMCountInstrumentation();
559 
560   if (RetTy->isVoidType()) {
561     // Void type; nothing to return.
562     ReturnValue = 0;
563   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
564              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
565     // Indirect aggregate return; emit returned value directly into sret slot.
566     // This reduces code size, and affects correctness in C++.
567     ReturnValue = CurFn->arg_begin();
568   } else {
569     ReturnValue = CreateIRTemp(RetTy, "retval");
570 
571     // Tell the epilog emitter to autorelease the result.  We do this
572     // now so that various specialized functions can suppress it
573     // during their IR-generation.
574     if (getLangOpts().ObjCAutoRefCount &&
575         !CurFnInfo->isReturnsRetained() &&
576         RetTy->isObjCRetainableType())
577       AutoreleaseResult = true;
578   }
579 
580   EmitStartEHSpec(CurCodeDecl);
581 
582   PrologueCleanupDepth = EHStack.stable_begin();
583   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
584 
585   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
586     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
587     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
588     if (MD->getParent()->isLambda() &&
589         MD->getOverloadedOperator() == OO_Call) {
590       // We're in a lambda; figure out the captures.
591       MD->getParent()->getCaptureFields(LambdaCaptureFields,
592                                         LambdaThisCaptureField);
593       if (LambdaThisCaptureField) {
594         // If this lambda captures this, load it.
595         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
596         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
597       }
598     } else {
599       // Not in a lambda; just use 'this' from the method.
600       // FIXME: Should we generate a new load for each use of 'this'?  The
601       // fast register allocator would be happier...
602       CXXThisValue = CXXABIThisValue;
603     }
604   }
605 
606   // If any of the arguments have a variably modified type, make sure to
607   // emit the type size.
608   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
609        i != e; ++i) {
610     const VarDecl *VD = *i;
611 
612     // Dig out the type as written from ParmVarDecls; it's unclear whether
613     // the standard (C99 6.9.1p10) requires this, but we're following the
614     // precedent set by gcc.
615     QualType Ty;
616     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
617       Ty = PVD->getOriginalType();
618     else
619       Ty = VD->getType();
620 
621     if (Ty->isVariablyModifiedType())
622       EmitVariablyModifiedType(Ty);
623   }
624   // Emit a location at the end of the prologue.
625   if (CGDebugInfo *DI = getDebugInfo())
626     DI->EmitLocation(Builder, StartLoc);
627 }
628 
EmitFunctionBody(FunctionArgList & Args)629 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
630   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
631   assert(FD->getBody());
632   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
633     EmitCompoundStmtWithoutScope(*S);
634   else
635     EmitStmt(FD->getBody());
636 }
637 
638 /// Tries to mark the given function nounwind based on the
639 /// non-existence of any throwing calls within it.  We believe this is
640 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)641 static void TryMarkNoThrow(llvm::Function *F) {
642   // LLVM treats 'nounwind' on a function as part of the type, so we
643   // can't do this on functions that can be overwritten.
644   if (F->mayBeOverridden()) return;
645 
646   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
647     for (llvm::BasicBlock::iterator
648            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
649       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
650         if (!Call->doesNotThrow())
651           return;
652       } else if (isa<llvm::ResumeInst>(&*BI)) {
653         return;
654       }
655   F->setDoesNotThrow();
656 }
657 
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)658 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
659                                    const CGFunctionInfo &FnInfo) {
660   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
661 
662   // Check if we should generate debug info for this function.
663   if (!FD->hasAttr<NoDebugAttr>())
664     maybeInitializeDebugInfo();
665 
666   FunctionArgList Args;
667   QualType ResTy = FD->getResultType();
668 
669   CurGD = GD;
670   const CXXMethodDecl *MD;
671   if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
672     if (CGM.getCXXABI().HasThisReturn(GD))
673       ResTy = MD->getThisType(getContext());
674     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
675   }
676 
677   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
678     Args.push_back(FD->getParamDecl(i));
679 
680   SourceRange BodyRange;
681   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
682   CurEHLocation = BodyRange.getEnd();
683 
684   // Emit the standard function prologue.
685   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
686 
687   // Generate the body of the function.
688   if (isa<CXXDestructorDecl>(FD))
689     EmitDestructorBody(Args);
690   else if (isa<CXXConstructorDecl>(FD))
691     EmitConstructorBody(Args);
692   else if (getLangOpts().CUDA &&
693            !CGM.getCodeGenOpts().CUDAIsDevice &&
694            FD->hasAttr<CUDAGlobalAttr>())
695     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
696   else if (isa<CXXConversionDecl>(FD) &&
697            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
698     // The lambda conversion to block pointer is special; the semantics can't be
699     // expressed in the AST, so IRGen needs to special-case it.
700     EmitLambdaToBlockPointerBody(Args);
701   } else if (isa<CXXMethodDecl>(FD) &&
702              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
703     // The lambda "__invoke" function is special, because it forwards or
704     // clones the body of the function call operator (but is actually static).
705     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
706   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
707              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
708     // Implicit copy-assignment gets the same special treatment as implicit
709     // copy-constructors.
710     emitImplicitAssignmentOperatorBody(Args);
711   }
712   else
713     EmitFunctionBody(Args);
714 
715   // C++11 [stmt.return]p2:
716   //   Flowing off the end of a function [...] results in undefined behavior in
717   //   a value-returning function.
718   // C11 6.9.1p12:
719   //   If the '}' that terminates a function is reached, and the value of the
720   //   function call is used by the caller, the behavior is undefined.
721   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
722       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
723     if (SanOpts->Return)
724       EmitCheck(Builder.getFalse(), "missing_return",
725                 EmitCheckSourceLocation(FD->getLocation()),
726                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
727     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
728       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
729     Builder.CreateUnreachable();
730     Builder.ClearInsertionPoint();
731   }
732 
733   // Emit the standard function epilogue.
734   FinishFunction(BodyRange.getEnd());
735 
736   // If we haven't marked the function nothrow through other means, do
737   // a quick pass now to see if we can.
738   if (!CurFn->doesNotThrow())
739     TryMarkNoThrow(CurFn);
740 }
741 
742 /// ContainsLabel - Return true if the statement contains a label in it.  If
743 /// this statement is not executed normally, it not containing a label means
744 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)745 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
746   // Null statement, not a label!
747   if (S == 0) return false;
748 
749   // If this is a label, we have to emit the code, consider something like:
750   // if (0) {  ...  foo:  bar(); }  goto foo;
751   //
752   // TODO: If anyone cared, we could track __label__'s, since we know that you
753   // can't jump to one from outside their declared region.
754   if (isa<LabelStmt>(S))
755     return true;
756 
757   // If this is a case/default statement, and we haven't seen a switch, we have
758   // to emit the code.
759   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
760     return true;
761 
762   // If this is a switch statement, we want to ignore cases below it.
763   if (isa<SwitchStmt>(S))
764     IgnoreCaseStmts = true;
765 
766   // Scan subexpressions for verboten labels.
767   for (Stmt::const_child_range I = S->children(); I; ++I)
768     if (ContainsLabel(*I, IgnoreCaseStmts))
769       return true;
770 
771   return false;
772 }
773 
774 /// containsBreak - Return true if the statement contains a break out of it.
775 /// If the statement (recursively) contains a switch or loop with a break
776 /// inside of it, this is fine.
containsBreak(const Stmt * S)777 bool CodeGenFunction::containsBreak(const Stmt *S) {
778   // Null statement, not a label!
779   if (S == 0) return false;
780 
781   // If this is a switch or loop that defines its own break scope, then we can
782   // include it and anything inside of it.
783   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
784       isa<ForStmt>(S))
785     return false;
786 
787   if (isa<BreakStmt>(S))
788     return true;
789 
790   // Scan subexpressions for verboten breaks.
791   for (Stmt::const_child_range I = S->children(); I; ++I)
792     if (containsBreak(*I))
793       return true;
794 
795   return false;
796 }
797 
798 
799 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
800 /// to a constant, or if it does but contains a label, return false.  If it
801 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)802 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
803                                                    bool &ResultBool) {
804   llvm::APSInt ResultInt;
805   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
806     return false;
807 
808   ResultBool = ResultInt.getBoolValue();
809   return true;
810 }
811 
812 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
813 /// to a constant, or if it does but contains a label, return false.  If it
814 /// constant folds return true and set the folded value.
815 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt)816 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
817   // FIXME: Rename and handle conversion of other evaluatable things
818   // to bool.
819   llvm::APSInt Int;
820   if (!Cond->EvaluateAsInt(Int, getContext()))
821     return false;  // Not foldable, not integer or not fully evaluatable.
822 
823   if (CodeGenFunction::ContainsLabel(Cond))
824     return false;  // Contains a label.
825 
826   ResultInt = Int;
827   return true;
828 }
829 
830 
831 
832 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
833 /// statement) to the specified blocks.  Based on the condition, this might try
834 /// to simplify the codegen of the conditional based on the branch.
835 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock)836 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
837                                            llvm::BasicBlock *TrueBlock,
838                                            llvm::BasicBlock *FalseBlock) {
839   Cond = Cond->IgnoreParens();
840 
841   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
842     // Handle X && Y in a condition.
843     if (CondBOp->getOpcode() == BO_LAnd) {
844       // If we have "1 && X", simplify the code.  "0 && X" would have constant
845       // folded if the case was simple enough.
846       bool ConstantBool = false;
847       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
848           ConstantBool) {
849         // br(1 && X) -> br(X).
850         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
851       }
852 
853       // If we have "X && 1", simplify the code to use an uncond branch.
854       // "X && 0" would have been constant folded to 0.
855       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
856           ConstantBool) {
857         // br(X && 1) -> br(X).
858         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
859       }
860 
861       // Emit the LHS as a conditional.  If the LHS conditional is false, we
862       // want to jump to the FalseBlock.
863       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
864 
865       ConditionalEvaluation eval(*this);
866       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
867       EmitBlock(LHSTrue);
868 
869       // Any temporaries created here are conditional.
870       eval.begin(*this);
871       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
872       eval.end(*this);
873 
874       return;
875     }
876 
877     if (CondBOp->getOpcode() == BO_LOr) {
878       // If we have "0 || X", simplify the code.  "1 || X" would have constant
879       // folded if the case was simple enough.
880       bool ConstantBool = false;
881       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
882           !ConstantBool) {
883         // br(0 || X) -> br(X).
884         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
885       }
886 
887       // If we have "X || 0", simplify the code to use an uncond branch.
888       // "X || 1" would have been constant folded to 1.
889       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
890           !ConstantBool) {
891         // br(X || 0) -> br(X).
892         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
893       }
894 
895       // Emit the LHS as a conditional.  If the LHS conditional is true, we
896       // want to jump to the TrueBlock.
897       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
898 
899       ConditionalEvaluation eval(*this);
900       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
901       EmitBlock(LHSFalse);
902 
903       // Any temporaries created here are conditional.
904       eval.begin(*this);
905       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
906       eval.end(*this);
907 
908       return;
909     }
910   }
911 
912   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
913     // br(!x, t, f) -> br(x, f, t)
914     if (CondUOp->getOpcode() == UO_LNot)
915       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
916   }
917 
918   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
919     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
920     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
921     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
922 
923     ConditionalEvaluation cond(*this);
924     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
925 
926     cond.begin(*this);
927     EmitBlock(LHSBlock);
928     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
929     cond.end(*this);
930 
931     cond.begin(*this);
932     EmitBlock(RHSBlock);
933     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
934     cond.end(*this);
935 
936     return;
937   }
938 
939   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
940     // Conditional operator handling can give us a throw expression as a
941     // condition for a case like:
942     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
943     // Fold this to:
944     //   br(c, throw x, br(y, t, f))
945     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
946     return;
947   }
948 
949   // Emit the code with the fully general case.
950   llvm::Value *CondV = EvaluateExprAsBool(Cond);
951   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
952 }
953 
954 /// ErrorUnsupported - Print out an error that codegen doesn't support the
955 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)956 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
957                                        bool OmitOnError) {
958   CGM.ErrorUnsupported(S, Type, OmitOnError);
959 }
960 
961 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
962 /// variable-length array whose elements have a non-zero bit-pattern.
963 ///
964 /// \param baseType the inner-most element type of the array
965 /// \param src - a char* pointing to the bit-pattern for a single
966 /// base element of the array
967 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,llvm::Value * dest,llvm::Value * src,llvm::Value * sizeInChars)968 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
969                                llvm::Value *dest, llvm::Value *src,
970                                llvm::Value *sizeInChars) {
971   std::pair<CharUnits,CharUnits> baseSizeAndAlign
972     = CGF.getContext().getTypeInfoInChars(baseType);
973 
974   CGBuilderTy &Builder = CGF.Builder;
975 
976   llvm::Value *baseSizeInChars
977     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
978 
979   llvm::Type *i8p = Builder.getInt8PtrTy();
980 
981   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
982   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
983 
984   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
985   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
986   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
987 
988   // Make a loop over the VLA.  C99 guarantees that the VLA element
989   // count must be nonzero.
990   CGF.EmitBlock(loopBB);
991 
992   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
993   cur->addIncoming(begin, originBB);
994 
995   // memcpy the individual element bit-pattern.
996   Builder.CreateMemCpy(cur, src, baseSizeInChars,
997                        baseSizeAndAlign.second.getQuantity(),
998                        /*volatile*/ false);
999 
1000   // Go to the next element.
1001   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1002 
1003   // Leave if that's the end of the VLA.
1004   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1005   Builder.CreateCondBr(done, contBB, loopBB);
1006   cur->addIncoming(next, loopBB);
1007 
1008   CGF.EmitBlock(contBB);
1009 }
1010 
1011 void
EmitNullInitialization(llvm::Value * DestPtr,QualType Ty)1012 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1013   // Ignore empty classes in C++.
1014   if (getLangOpts().CPlusPlus) {
1015     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1016       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1017         return;
1018     }
1019   }
1020 
1021   // Cast the dest ptr to the appropriate i8 pointer type.
1022   unsigned DestAS =
1023     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1024   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1025   if (DestPtr->getType() != BP)
1026     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1027 
1028   // Get size and alignment info for this aggregate.
1029   std::pair<CharUnits, CharUnits> TypeInfo =
1030     getContext().getTypeInfoInChars(Ty);
1031   CharUnits Size = TypeInfo.first;
1032   CharUnits Align = TypeInfo.second;
1033 
1034   llvm::Value *SizeVal;
1035   const VariableArrayType *vla;
1036 
1037   // Don't bother emitting a zero-byte memset.
1038   if (Size.isZero()) {
1039     // But note that getTypeInfo returns 0 for a VLA.
1040     if (const VariableArrayType *vlaType =
1041           dyn_cast_or_null<VariableArrayType>(
1042                                           getContext().getAsArrayType(Ty))) {
1043       QualType eltType;
1044       llvm::Value *numElts;
1045       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1046 
1047       SizeVal = numElts;
1048       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1049       if (!eltSize.isOne())
1050         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1051       vla = vlaType;
1052     } else {
1053       return;
1054     }
1055   } else {
1056     SizeVal = CGM.getSize(Size);
1057     vla = 0;
1058   }
1059 
1060   // If the type contains a pointer to data member we can't memset it to zero.
1061   // Instead, create a null constant and copy it to the destination.
1062   // TODO: there are other patterns besides zero that we can usefully memset,
1063   // like -1, which happens to be the pattern used by member-pointers.
1064   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1065     // For a VLA, emit a single element, then splat that over the VLA.
1066     if (vla) Ty = getContext().getBaseElementType(vla);
1067 
1068     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1069 
1070     llvm::GlobalVariable *NullVariable =
1071       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1072                                /*isConstant=*/true,
1073                                llvm::GlobalVariable::PrivateLinkage,
1074                                NullConstant, Twine());
1075     llvm::Value *SrcPtr =
1076       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1077 
1078     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1079 
1080     // Get and call the appropriate llvm.memcpy overload.
1081     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1082     return;
1083   }
1084 
1085   // Otherwise, just memset the whole thing to zero.  This is legal
1086   // because in LLVM, all default initializers (other than the ones we just
1087   // handled above) are guaranteed to have a bit pattern of all zeros.
1088   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1089                        Align.getQuantity(), false);
1090 }
1091 
GetAddrOfLabel(const LabelDecl * L)1092 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1093   // Make sure that there is a block for the indirect goto.
1094   if (IndirectBranch == 0)
1095     GetIndirectGotoBlock();
1096 
1097   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1098 
1099   // Make sure the indirect branch includes all of the address-taken blocks.
1100   IndirectBranch->addDestination(BB);
1101   return llvm::BlockAddress::get(CurFn, BB);
1102 }
1103 
GetIndirectGotoBlock()1104 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1105   // If we already made the indirect branch for indirect goto, return its block.
1106   if (IndirectBranch) return IndirectBranch->getParent();
1107 
1108   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1109 
1110   // Create the PHI node that indirect gotos will add entries to.
1111   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1112                                               "indirect.goto.dest");
1113 
1114   // Create the indirect branch instruction.
1115   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1116   return IndirectBranch->getParent();
1117 }
1118 
1119 /// Computes the length of an array in elements, as well as the base
1120 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,llvm::Value * & addr)1121 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1122                                               QualType &baseType,
1123                                               llvm::Value *&addr) {
1124   const ArrayType *arrayType = origArrayType;
1125 
1126   // If it's a VLA, we have to load the stored size.  Note that
1127   // this is the size of the VLA in bytes, not its size in elements.
1128   llvm::Value *numVLAElements = 0;
1129   if (isa<VariableArrayType>(arrayType)) {
1130     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1131 
1132     // Walk into all VLAs.  This doesn't require changes to addr,
1133     // which has type T* where T is the first non-VLA element type.
1134     do {
1135       QualType elementType = arrayType->getElementType();
1136       arrayType = getContext().getAsArrayType(elementType);
1137 
1138       // If we only have VLA components, 'addr' requires no adjustment.
1139       if (!arrayType) {
1140         baseType = elementType;
1141         return numVLAElements;
1142       }
1143     } while (isa<VariableArrayType>(arrayType));
1144 
1145     // We get out here only if we find a constant array type
1146     // inside the VLA.
1147   }
1148 
1149   // We have some number of constant-length arrays, so addr should
1150   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1151   // down to the first element of addr.
1152   SmallVector<llvm::Value*, 8> gepIndices;
1153 
1154   // GEP down to the array type.
1155   llvm::ConstantInt *zero = Builder.getInt32(0);
1156   gepIndices.push_back(zero);
1157 
1158   uint64_t countFromCLAs = 1;
1159   QualType eltType;
1160 
1161   llvm::ArrayType *llvmArrayType =
1162     dyn_cast<llvm::ArrayType>(
1163       cast<llvm::PointerType>(addr->getType())->getElementType());
1164   while (llvmArrayType) {
1165     assert(isa<ConstantArrayType>(arrayType));
1166     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1167              == llvmArrayType->getNumElements());
1168 
1169     gepIndices.push_back(zero);
1170     countFromCLAs *= llvmArrayType->getNumElements();
1171     eltType = arrayType->getElementType();
1172 
1173     llvmArrayType =
1174       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1175     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1176     assert((!llvmArrayType || arrayType) &&
1177            "LLVM and Clang types are out-of-synch");
1178   }
1179 
1180   if (arrayType) {
1181     // From this point onwards, the Clang array type has been emitted
1182     // as some other type (probably a packed struct). Compute the array
1183     // size, and just emit the 'begin' expression as a bitcast.
1184     while (arrayType) {
1185       countFromCLAs *=
1186           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1187       eltType = arrayType->getElementType();
1188       arrayType = getContext().getAsArrayType(eltType);
1189     }
1190 
1191     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1192     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1193     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1194   } else {
1195     // Create the actual GEP.
1196     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1197   }
1198 
1199   baseType = eltType;
1200 
1201   llvm::Value *numElements
1202     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1203 
1204   // If we had any VLA dimensions, factor them in.
1205   if (numVLAElements)
1206     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1207 
1208   return numElements;
1209 }
1210 
1211 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)1212 CodeGenFunction::getVLASize(QualType type) {
1213   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1214   assert(vla && "type was not a variable array type!");
1215   return getVLASize(vla);
1216 }
1217 
1218 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)1219 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1220   // The number of elements so far; always size_t.
1221   llvm::Value *numElements = 0;
1222 
1223   QualType elementType;
1224   do {
1225     elementType = type->getElementType();
1226     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1227     assert(vlaSize && "no size for VLA!");
1228     assert(vlaSize->getType() == SizeTy);
1229 
1230     if (!numElements) {
1231       numElements = vlaSize;
1232     } else {
1233       // It's undefined behavior if this wraps around, so mark it that way.
1234       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1235       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1236     }
1237   } while ((type = getContext().getAsVariableArrayType(elementType)));
1238 
1239   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1240 }
1241 
EmitVariablyModifiedType(QualType type)1242 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1243   assert(type->isVariablyModifiedType() &&
1244          "Must pass variably modified type to EmitVLASizes!");
1245 
1246   EnsureInsertPoint();
1247 
1248   // We're going to walk down into the type and look for VLA
1249   // expressions.
1250   do {
1251     assert(type->isVariablyModifiedType());
1252 
1253     const Type *ty = type.getTypePtr();
1254     switch (ty->getTypeClass()) {
1255 
1256 #define TYPE(Class, Base)
1257 #define ABSTRACT_TYPE(Class, Base)
1258 #define NON_CANONICAL_TYPE(Class, Base)
1259 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1261 #include "clang/AST/TypeNodes.def"
1262       llvm_unreachable("unexpected dependent type!");
1263 
1264     // These types are never variably-modified.
1265     case Type::Builtin:
1266     case Type::Complex:
1267     case Type::Vector:
1268     case Type::ExtVector:
1269     case Type::Record:
1270     case Type::Enum:
1271     case Type::Elaborated:
1272     case Type::TemplateSpecialization:
1273     case Type::ObjCObject:
1274     case Type::ObjCInterface:
1275     case Type::ObjCObjectPointer:
1276       llvm_unreachable("type class is never variably-modified!");
1277 
1278     case Type::Decayed:
1279       type = cast<DecayedType>(ty)->getPointeeType();
1280       break;
1281 
1282     case Type::Pointer:
1283       type = cast<PointerType>(ty)->getPointeeType();
1284       break;
1285 
1286     case Type::BlockPointer:
1287       type = cast<BlockPointerType>(ty)->getPointeeType();
1288       break;
1289 
1290     case Type::LValueReference:
1291     case Type::RValueReference:
1292       type = cast<ReferenceType>(ty)->getPointeeType();
1293       break;
1294 
1295     case Type::MemberPointer:
1296       type = cast<MemberPointerType>(ty)->getPointeeType();
1297       break;
1298 
1299     case Type::ConstantArray:
1300     case Type::IncompleteArray:
1301       // Losing element qualification here is fine.
1302       type = cast<ArrayType>(ty)->getElementType();
1303       break;
1304 
1305     case Type::VariableArray: {
1306       // Losing element qualification here is fine.
1307       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1308 
1309       // Unknown size indication requires no size computation.
1310       // Otherwise, evaluate and record it.
1311       if (const Expr *size = vat->getSizeExpr()) {
1312         // It's possible that we might have emitted this already,
1313         // e.g. with a typedef and a pointer to it.
1314         llvm::Value *&entry = VLASizeMap[size];
1315         if (!entry) {
1316           llvm::Value *Size = EmitScalarExpr(size);
1317 
1318           // C11 6.7.6.2p5:
1319           //   If the size is an expression that is not an integer constant
1320           //   expression [...] each time it is evaluated it shall have a value
1321           //   greater than zero.
1322           if (SanOpts->VLABound &&
1323               size->getType()->isSignedIntegerType()) {
1324             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1325             llvm::Constant *StaticArgs[] = {
1326               EmitCheckSourceLocation(size->getLocStart()),
1327               EmitCheckTypeDescriptor(size->getType())
1328             };
1329             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1330                       "vla_bound_not_positive", StaticArgs, Size,
1331                       CRK_Recoverable);
1332           }
1333 
1334           // Always zexting here would be wrong if it weren't
1335           // undefined behavior to have a negative bound.
1336           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1337         }
1338       }
1339       type = vat->getElementType();
1340       break;
1341     }
1342 
1343     case Type::FunctionProto:
1344     case Type::FunctionNoProto:
1345       type = cast<FunctionType>(ty)->getResultType();
1346       break;
1347 
1348     case Type::Paren:
1349     case Type::TypeOf:
1350     case Type::UnaryTransform:
1351     case Type::Attributed:
1352     case Type::SubstTemplateTypeParm:
1353     case Type::PackExpansion:
1354       // Keep walking after single level desugaring.
1355       type = type.getSingleStepDesugaredType(getContext());
1356       break;
1357 
1358     case Type::Typedef:
1359     case Type::Decltype:
1360     case Type::Auto:
1361       // Stop walking: nothing to do.
1362       return;
1363 
1364     case Type::TypeOfExpr:
1365       // Stop walking: emit typeof expression.
1366       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1367       return;
1368 
1369     case Type::Atomic:
1370       type = cast<AtomicType>(ty)->getValueType();
1371       break;
1372     }
1373   } while (type->isVariablyModifiedType());
1374 }
1375 
EmitVAListRef(const Expr * E)1376 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1377   if (getContext().getBuiltinVaListType()->isArrayType())
1378     return EmitScalarExpr(E);
1379   return EmitLValue(E).getAddress();
1380 }
1381 
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1382 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1383                                               llvm::Constant *Init) {
1384   assert (Init && "Invalid DeclRefExpr initializer!");
1385   if (CGDebugInfo *Dbg = getDebugInfo())
1386     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1387       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1388 }
1389 
1390 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1391 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1392   // At the moment, the only aggressive peephole we do in IR gen
1393   // is trunc(zext) folding, but if we add more, we can easily
1394   // extend this protection.
1395 
1396   if (!rvalue.isScalar()) return PeepholeProtection();
1397   llvm::Value *value = rvalue.getScalarVal();
1398   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1399 
1400   // Just make an extra bitcast.
1401   assert(HaveInsertPoint());
1402   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1403                                                   Builder.GetInsertBlock());
1404 
1405   PeepholeProtection protection;
1406   protection.Inst = inst;
1407   return protection;
1408 }
1409 
unprotectFromPeepholes(PeepholeProtection protection)1410 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1411   if (!protection.Inst) return;
1412 
1413   // In theory, we could try to duplicate the peepholes now, but whatever.
1414   protection.Inst->eraseFromParent();
1415 }
1416 
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)1417 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1418                                                  llvm::Value *AnnotatedVal,
1419                                                  StringRef AnnotationStr,
1420                                                  SourceLocation Location) {
1421   llvm::Value *Args[4] = {
1422     AnnotatedVal,
1423     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1424     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1425     CGM.EmitAnnotationLineNo(Location)
1426   };
1427   return Builder.CreateCall(AnnotationFn, Args);
1428 }
1429 
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1430 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1431   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1432   // FIXME We create a new bitcast for every annotation because that's what
1433   // llvm-gcc was doing.
1434   for (specific_attr_iterator<AnnotateAttr>
1435        ai = D->specific_attr_begin<AnnotateAttr>(),
1436        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1437     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1438                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1439                        (*ai)->getAnnotation(), D->getLocation());
1440 }
1441 
EmitFieldAnnotations(const FieldDecl * D,llvm::Value * V)1442 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1443                                                    llvm::Value *V) {
1444   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1445   llvm::Type *VTy = V->getType();
1446   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1447                                     CGM.Int8PtrTy);
1448 
1449   for (specific_attr_iterator<AnnotateAttr>
1450        ai = D->specific_attr_begin<AnnotateAttr>(),
1451        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1452     // FIXME Always emit the cast inst so we can differentiate between
1453     // annotation on the first field of a struct and annotation on the struct
1454     // itself.
1455     if (VTy != CGM.Int8PtrTy)
1456       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1457     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1458     V = Builder.CreateBitCast(V, VTy);
1459   }
1460 
1461   return V;
1462 }
1463 
~CGCapturedStmtInfo()1464 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1465