1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35 Builder(cgm.getModule().getContext()),
36 CapturedStmtInfo(0),
37 SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38 CGM.getSanOpts().Alignment |
39 CGM.getSanOpts().ObjectSize |
40 CGM.getSanOpts().Vptr),
41 SanOpts(&CGM.getSanOpts()),
42 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
46 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
47 NumReturnExprs(0), NumSimpleReturnExprs(0),
48 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
49 CXXDefaultInitExprThis(0),
50 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52 TerminateHandler(0), TrapBB(0) {
53 if (!suppressNewContext)
54 CGM.getCXXABI().getMangleContext().startNewFunction();
55
56 llvm::FastMathFlags FMF;
57 if (CGM.getLangOpts().FastMath)
58 FMF.setUnsafeAlgebra();
59 if (CGM.getLangOpts().FiniteMathOnly) {
60 FMF.setNoNaNs();
61 FMF.setNoInfs();
62 }
63 Builder.SetFastMathFlags(FMF);
64 }
65
~CodeGenFunction()66 CodeGenFunction::~CodeGenFunction() {
67 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68
69 // If there are any unclaimed block infos, go ahead and destroy them
70 // now. This can happen if IR-gen gets clever and skips evaluating
71 // something.
72 if (FirstBlockInfo)
73 destroyBlockInfos(FirstBlockInfo);
74 }
75
76
ConvertTypeForMem(QualType T)77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78 return CGM.getTypes().ConvertTypeForMem(T);
79 }
80
ConvertType(QualType T)81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82 return CGM.getTypes().ConvertType(T);
83 }
84
getEvaluationKind(QualType type)85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86 type = type.getCanonicalType();
87 while (true) {
88 switch (type->getTypeClass()) {
89 #define TYPE(name, parent)
90 #define ABSTRACT_TYPE(name, parent)
91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
92 #define DEPENDENT_TYPE(name, parent) case Type::name:
93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94 #include "clang/AST/TypeNodes.def"
95 llvm_unreachable("non-canonical or dependent type in IR-generation");
96
97 case Type::Auto:
98 llvm_unreachable("undeduced auto type in IR-generation");
99
100 // Various scalar types.
101 case Type::Builtin:
102 case Type::Pointer:
103 case Type::BlockPointer:
104 case Type::LValueReference:
105 case Type::RValueReference:
106 case Type::MemberPointer:
107 case Type::Vector:
108 case Type::ExtVector:
109 case Type::FunctionProto:
110 case Type::FunctionNoProto:
111 case Type::Enum:
112 case Type::ObjCObjectPointer:
113 return TEK_Scalar;
114
115 // Complexes.
116 case Type::Complex:
117 return TEK_Complex;
118
119 // Arrays, records, and Objective-C objects.
120 case Type::ConstantArray:
121 case Type::IncompleteArray:
122 case Type::VariableArray:
123 case Type::Record:
124 case Type::ObjCObject:
125 case Type::ObjCInterface:
126 return TEK_Aggregate;
127
128 // We operate on atomic values according to their underlying type.
129 case Type::Atomic:
130 type = cast<AtomicType>(type)->getValueType();
131 continue;
132 }
133 llvm_unreachable("unknown type kind!");
134 }
135 }
136
EmitReturnBlock()137 void CodeGenFunction::EmitReturnBlock() {
138 // For cleanliness, we try to avoid emitting the return block for
139 // simple cases.
140 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141
142 if (CurBB) {
143 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144
145 // We have a valid insert point, reuse it if it is empty or there are no
146 // explicit jumps to the return block.
147 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149 delete ReturnBlock.getBlock();
150 } else
151 EmitBlock(ReturnBlock.getBlock());
152 return;
153 }
154
155 // Otherwise, if the return block is the target of a single direct
156 // branch then we can just put the code in that block instead. This
157 // cleans up functions which started with a unified return block.
158 if (ReturnBlock.getBlock()->hasOneUse()) {
159 llvm::BranchInst *BI =
160 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161 if (BI && BI->isUnconditional() &&
162 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163 // Reset insertion point, including debug location, and delete the
164 // branch. This is really subtle and only works because the next change
165 // in location will hit the caching in CGDebugInfo::EmitLocation and not
166 // override this.
167 Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168 Builder.SetInsertPoint(BI->getParent());
169 BI->eraseFromParent();
170 delete ReturnBlock.getBlock();
171 return;
172 }
173 }
174
175 // FIXME: We are at an unreachable point, there is no reason to emit the block
176 // unless it has uses. However, we still need a place to put the debug
177 // region.end for now.
178
179 EmitBlock(ReturnBlock.getBlock());
180 }
181
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183 if (!BB) return;
184 if (!BB->use_empty())
185 return CGF.CurFn->getBasicBlockList().push_back(BB);
186 delete BB;
187 }
188
FinishFunction(SourceLocation EndLoc)189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190 assert(BreakContinueStack.empty() &&
191 "mismatched push/pop in break/continue stack!");
192
193 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194 && NumSimpleReturnExprs == NumReturnExprs
195 && ReturnBlock.getBlock()->use_empty();
196 // Usually the return expression is evaluated before the cleanup
197 // code. If the function contains only a simple return statement,
198 // such as a constant, the location before the cleanup code becomes
199 // the last useful breakpoint in the function, because the simple
200 // return expression will be evaluated after the cleanup code. To be
201 // safe, set the debug location for cleanup code to the location of
202 // the return statement. Otherwise the cleanup code should be at the
203 // end of the function's lexical scope.
204 //
205 // If there are multiple branches to the return block, the branch
206 // instructions will get the location of the return statements and
207 // all will be fine.
208 if (CGDebugInfo *DI = getDebugInfo()) {
209 if (OnlySimpleReturnStmts)
210 DI->EmitLocation(Builder, LastStopPoint);
211 else
212 DI->EmitLocation(Builder, EndLoc);
213 }
214
215 // Pop any cleanups that might have been associated with the
216 // parameters. Do this in whatever block we're currently in; it's
217 // important to do this before we enter the return block or return
218 // edges will be *really* confused.
219 bool EmitRetDbgLoc = true;
220 if (EHStack.stable_begin() != PrologueCleanupDepth) {
221 PopCleanupBlocks(PrologueCleanupDepth);
222
223 // Make sure the line table doesn't jump back into the body for
224 // the ret after it's been at EndLoc.
225 EmitRetDbgLoc = false;
226
227 if (CGDebugInfo *DI = getDebugInfo())
228 if (OnlySimpleReturnStmts)
229 DI->EmitLocation(Builder, EndLoc);
230 }
231
232 // Emit function epilog (to return).
233 EmitReturnBlock();
234
235 if (ShouldInstrumentFunction())
236 EmitFunctionInstrumentation("__cyg_profile_func_exit");
237
238 // Emit debug descriptor for function end.
239 if (CGDebugInfo *DI = getDebugInfo()) {
240 DI->EmitFunctionEnd(Builder);
241 }
242
243 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
244 EmitEndEHSpec(CurCodeDecl);
245
246 assert(EHStack.empty() &&
247 "did not remove all scopes from cleanup stack!");
248
249 // If someone did an indirect goto, emit the indirect goto block at the end of
250 // the function.
251 if (IndirectBranch) {
252 EmitBlock(IndirectBranch->getParent());
253 Builder.ClearInsertionPoint();
254 }
255
256 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
257 llvm::Instruction *Ptr = AllocaInsertPt;
258 AllocaInsertPt = 0;
259 Ptr->eraseFromParent();
260
261 // If someone took the address of a label but never did an indirect goto, we
262 // made a zero entry PHI node, which is illegal, zap it now.
263 if (IndirectBranch) {
264 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
265 if (PN->getNumIncomingValues() == 0) {
266 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
267 PN->eraseFromParent();
268 }
269 }
270
271 EmitIfUsed(*this, EHResumeBlock);
272 EmitIfUsed(*this, TerminateLandingPad);
273 EmitIfUsed(*this, TerminateHandler);
274 EmitIfUsed(*this, UnreachableBlock);
275
276 if (CGM.getCodeGenOpts().EmitDeclMetadata)
277 EmitDeclMetadata();
278 }
279
280 /// ShouldInstrumentFunction - Return true if the current function should be
281 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()282 bool CodeGenFunction::ShouldInstrumentFunction() {
283 if (!CGM.getCodeGenOpts().InstrumentFunctions)
284 return false;
285 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
286 return false;
287 return true;
288 }
289
290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
291 /// instrumentation function with the current function and the call site, if
292 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
294 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
295 llvm::PointerType *PointerTy = Int8PtrTy;
296 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
297 llvm::FunctionType *FunctionTy =
298 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
299
300 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
301 llvm::CallInst *CallSite = Builder.CreateCall(
302 CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
303 llvm::ConstantInt::get(Int32Ty, 0),
304 "callsite");
305
306 llvm::Value *args[] = {
307 llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
308 CallSite
309 };
310
311 EmitNounwindRuntimeCall(F, args);
312 }
313
EmitMCountInstrumentation()314 void CodeGenFunction::EmitMCountInstrumentation() {
315 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
316
317 llvm::Constant *MCountFn =
318 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
319 EmitNounwindRuntimeCall(MCountFn);
320 }
321
322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
323 // information in the program executable. The argument information stored
324 // includes the argument name, its type, the address and access qualifiers used.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,SmallVector<llvm::Value *,5> & kernelMDArgs,CGBuilderTy & Builder,ASTContext & ASTCtx)325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
326 CodeGenModule &CGM,llvm::LLVMContext &Context,
327 SmallVector <llvm::Value*, 5> &kernelMDArgs,
328 CGBuilderTy& Builder, ASTContext &ASTCtx) {
329 // Create MDNodes that represent the kernel arg metadata.
330 // Each MDNode is a list in the form of "key", N number of values which is
331 // the same number of values as their are kernel arguments.
332
333 // MDNode for the kernel argument address space qualifiers.
334 SmallVector<llvm::Value*, 8> addressQuals;
335 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
336
337 // MDNode for the kernel argument access qualifiers (images only).
338 SmallVector<llvm::Value*, 8> accessQuals;
339 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
340
341 // MDNode for the kernel argument type names.
342 SmallVector<llvm::Value*, 8> argTypeNames;
343 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
344
345 // MDNode for the kernel argument type qualifiers.
346 SmallVector<llvm::Value*, 8> argTypeQuals;
347 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
348
349 // MDNode for the kernel argument names.
350 SmallVector<llvm::Value*, 8> argNames;
351 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
352
353 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
354 const ParmVarDecl *parm = FD->getParamDecl(i);
355 QualType ty = parm->getType();
356 std::string typeQuals;
357
358 if (ty->isPointerType()) {
359 QualType pointeeTy = ty->getPointeeType();
360
361 // Get address qualifier.
362 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
363 pointeeTy.getAddressSpace())));
364
365 // Get argument type name.
366 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
367
368 // Turn "unsigned type" to "utype"
369 std::string::size_type pos = typeName.find("unsigned");
370 if (pos != std::string::npos)
371 typeName.erase(pos+1, 8);
372
373 argTypeNames.push_back(llvm::MDString::get(Context, typeName));
374
375 // Get argument type qualifiers:
376 if (ty.isRestrictQualified())
377 typeQuals = "restrict";
378 if (pointeeTy.isConstQualified() ||
379 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
380 typeQuals += typeQuals.empty() ? "const" : " const";
381 if (pointeeTy.isVolatileQualified())
382 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
383 } else {
384 addressQuals.push_back(Builder.getInt32(0));
385
386 // Get argument type name.
387 std::string typeName = ty.getUnqualifiedType().getAsString();
388
389 // Turn "unsigned type" to "utype"
390 std::string::size_type pos = typeName.find("unsigned");
391 if (pos != std::string::npos)
392 typeName.erase(pos+1, 8);
393
394 argTypeNames.push_back(llvm::MDString::get(Context, typeName));
395
396 // Get argument type qualifiers:
397 if (ty.isConstQualified())
398 typeQuals = "const";
399 if (ty.isVolatileQualified())
400 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
401 }
402
403 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
404
405 // Get image access qualifier:
406 if (ty->isImageType()) {
407 if (parm->hasAttr<OpenCLImageAccessAttr>() &&
408 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
409 accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
410 else
411 accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
412 } else
413 accessQuals.push_back(llvm::MDString::get(Context, "none"));
414
415 // Get argument name.
416 argNames.push_back(llvm::MDString::get(Context, parm->getName()));
417 }
418
419 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
420 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
421 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
422 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
423 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
424 }
425
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
427 llvm::Function *Fn)
428 {
429 if (!FD->hasAttr<OpenCLKernelAttr>())
430 return;
431
432 llvm::LLVMContext &Context = getLLVMContext();
433
434 SmallVector <llvm::Value*, 5> kernelMDArgs;
435 kernelMDArgs.push_back(Fn);
436
437 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
438 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
439 Builder, getContext());
440
441 if (FD->hasAttr<VecTypeHintAttr>()) {
442 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
443 QualType hintQTy = attr->getTypeHint();
444 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
445 bool isSignedInteger =
446 hintQTy->isSignedIntegerType() ||
447 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
448 llvm::Value *attrMDArgs[] = {
449 llvm::MDString::get(Context, "vec_type_hint"),
450 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
451 llvm::ConstantInt::get(
452 llvm::IntegerType::get(Context, 32),
453 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
454 };
455 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
456 }
457
458 if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
459 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
460 llvm::Value *attrMDArgs[] = {
461 llvm::MDString::get(Context, "work_group_size_hint"),
462 Builder.getInt32(attr->getXDim()),
463 Builder.getInt32(attr->getYDim()),
464 Builder.getInt32(attr->getZDim())
465 };
466 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
467 }
468
469 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
470 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
471 llvm::Value *attrMDArgs[] = {
472 llvm::MDString::get(Context, "reqd_work_group_size"),
473 Builder.getInt32(attr->getXDim()),
474 Builder.getInt32(attr->getYDim()),
475 Builder.getInt32(attr->getZDim())
476 };
477 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478 }
479
480 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
481 llvm::NamedMDNode *OpenCLKernelMetadata =
482 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
483 OpenCLKernelMetadata->addOperand(kernelMDNode);
484 }
485
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation StartLoc)486 void CodeGenFunction::StartFunction(GlobalDecl GD,
487 QualType RetTy,
488 llvm::Function *Fn,
489 const CGFunctionInfo &FnInfo,
490 const FunctionArgList &Args,
491 SourceLocation StartLoc) {
492 const Decl *D = GD.getDecl();
493
494 DidCallStackSave = false;
495 CurCodeDecl = D;
496 CurFuncDecl = (D ? D->getNonClosureContext() : 0);
497 FnRetTy = RetTy;
498 CurFn = Fn;
499 CurFnInfo = &FnInfo;
500 assert(CurFn->isDeclaration() && "Function already has body?");
501
502 if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
503 SanOpts = &SanitizerOptions::Disabled;
504 SanitizePerformTypeCheck = false;
505 }
506
507 // Pass inline keyword to optimizer if it appears explicitly on any
508 // declaration.
509 if (!CGM.getCodeGenOpts().NoInline)
510 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
511 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
512 RE = FD->redecls_end(); RI != RE; ++RI)
513 if (RI->isInlineSpecified()) {
514 Fn->addFnAttr(llvm::Attribute::InlineHint);
515 break;
516 }
517
518 if (getLangOpts().OpenCL) {
519 // Add metadata for a kernel function.
520 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
521 EmitOpenCLKernelMetadata(FD, Fn);
522 }
523
524 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
525
526 // Create a marker to make it easy to insert allocas into the entryblock
527 // later. Don't create this with the builder, because we don't want it
528 // folded.
529 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
530 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
531 if (Builder.isNamePreserving())
532 AllocaInsertPt->setName("allocapt");
533
534 ReturnBlock = getJumpDestInCurrentScope("return");
535
536 Builder.SetInsertPoint(EntryBB);
537
538 // Emit subprogram debug descriptor.
539 if (CGDebugInfo *DI = getDebugInfo()) {
540 SmallVector<QualType, 16> ArgTypes;
541 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
542 i != e; ++i) {
543 ArgTypes.push_back((*i)->getType());
544 }
545
546 QualType FnType =
547 getContext().getFunctionType(RetTy, ArgTypes,
548 FunctionProtoType::ExtProtoInfo());
549
550 DI->setLocation(StartLoc);
551 DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
552 }
553
554 if (ShouldInstrumentFunction())
555 EmitFunctionInstrumentation("__cyg_profile_func_enter");
556
557 if (CGM.getCodeGenOpts().InstrumentForProfiling)
558 EmitMCountInstrumentation();
559
560 if (RetTy->isVoidType()) {
561 // Void type; nothing to return.
562 ReturnValue = 0;
563 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
564 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
565 // Indirect aggregate return; emit returned value directly into sret slot.
566 // This reduces code size, and affects correctness in C++.
567 ReturnValue = CurFn->arg_begin();
568 } else {
569 ReturnValue = CreateIRTemp(RetTy, "retval");
570
571 // Tell the epilog emitter to autorelease the result. We do this
572 // now so that various specialized functions can suppress it
573 // during their IR-generation.
574 if (getLangOpts().ObjCAutoRefCount &&
575 !CurFnInfo->isReturnsRetained() &&
576 RetTy->isObjCRetainableType())
577 AutoreleaseResult = true;
578 }
579
580 EmitStartEHSpec(CurCodeDecl);
581
582 PrologueCleanupDepth = EHStack.stable_begin();
583 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
584
585 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
586 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
587 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
588 if (MD->getParent()->isLambda() &&
589 MD->getOverloadedOperator() == OO_Call) {
590 // We're in a lambda; figure out the captures.
591 MD->getParent()->getCaptureFields(LambdaCaptureFields,
592 LambdaThisCaptureField);
593 if (LambdaThisCaptureField) {
594 // If this lambda captures this, load it.
595 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
596 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
597 }
598 } else {
599 // Not in a lambda; just use 'this' from the method.
600 // FIXME: Should we generate a new load for each use of 'this'? The
601 // fast register allocator would be happier...
602 CXXThisValue = CXXABIThisValue;
603 }
604 }
605
606 // If any of the arguments have a variably modified type, make sure to
607 // emit the type size.
608 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
609 i != e; ++i) {
610 const VarDecl *VD = *i;
611
612 // Dig out the type as written from ParmVarDecls; it's unclear whether
613 // the standard (C99 6.9.1p10) requires this, but we're following the
614 // precedent set by gcc.
615 QualType Ty;
616 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
617 Ty = PVD->getOriginalType();
618 else
619 Ty = VD->getType();
620
621 if (Ty->isVariablyModifiedType())
622 EmitVariablyModifiedType(Ty);
623 }
624 // Emit a location at the end of the prologue.
625 if (CGDebugInfo *DI = getDebugInfo())
626 DI->EmitLocation(Builder, StartLoc);
627 }
628
EmitFunctionBody(FunctionArgList & Args)629 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
630 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
631 assert(FD->getBody());
632 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
633 EmitCompoundStmtWithoutScope(*S);
634 else
635 EmitStmt(FD->getBody());
636 }
637
638 /// Tries to mark the given function nounwind based on the
639 /// non-existence of any throwing calls within it. We believe this is
640 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)641 static void TryMarkNoThrow(llvm::Function *F) {
642 // LLVM treats 'nounwind' on a function as part of the type, so we
643 // can't do this on functions that can be overwritten.
644 if (F->mayBeOverridden()) return;
645
646 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
647 for (llvm::BasicBlock::iterator
648 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
649 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
650 if (!Call->doesNotThrow())
651 return;
652 } else if (isa<llvm::ResumeInst>(&*BI)) {
653 return;
654 }
655 F->setDoesNotThrow();
656 }
657
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)658 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
659 const CGFunctionInfo &FnInfo) {
660 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
661
662 // Check if we should generate debug info for this function.
663 if (!FD->hasAttr<NoDebugAttr>())
664 maybeInitializeDebugInfo();
665
666 FunctionArgList Args;
667 QualType ResTy = FD->getResultType();
668
669 CurGD = GD;
670 const CXXMethodDecl *MD;
671 if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
672 if (CGM.getCXXABI().HasThisReturn(GD))
673 ResTy = MD->getThisType(getContext());
674 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
675 }
676
677 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
678 Args.push_back(FD->getParamDecl(i));
679
680 SourceRange BodyRange;
681 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
682 CurEHLocation = BodyRange.getEnd();
683
684 // Emit the standard function prologue.
685 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
686
687 // Generate the body of the function.
688 if (isa<CXXDestructorDecl>(FD))
689 EmitDestructorBody(Args);
690 else if (isa<CXXConstructorDecl>(FD))
691 EmitConstructorBody(Args);
692 else if (getLangOpts().CUDA &&
693 !CGM.getCodeGenOpts().CUDAIsDevice &&
694 FD->hasAttr<CUDAGlobalAttr>())
695 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
696 else if (isa<CXXConversionDecl>(FD) &&
697 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
698 // The lambda conversion to block pointer is special; the semantics can't be
699 // expressed in the AST, so IRGen needs to special-case it.
700 EmitLambdaToBlockPointerBody(Args);
701 } else if (isa<CXXMethodDecl>(FD) &&
702 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
703 // The lambda "__invoke" function is special, because it forwards or
704 // clones the body of the function call operator (but is actually static).
705 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
706 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
707 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
708 // Implicit copy-assignment gets the same special treatment as implicit
709 // copy-constructors.
710 emitImplicitAssignmentOperatorBody(Args);
711 }
712 else
713 EmitFunctionBody(Args);
714
715 // C++11 [stmt.return]p2:
716 // Flowing off the end of a function [...] results in undefined behavior in
717 // a value-returning function.
718 // C11 6.9.1p12:
719 // If the '}' that terminates a function is reached, and the value of the
720 // function call is used by the caller, the behavior is undefined.
721 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
722 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
723 if (SanOpts->Return)
724 EmitCheck(Builder.getFalse(), "missing_return",
725 EmitCheckSourceLocation(FD->getLocation()),
726 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
727 else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
728 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
729 Builder.CreateUnreachable();
730 Builder.ClearInsertionPoint();
731 }
732
733 // Emit the standard function epilogue.
734 FinishFunction(BodyRange.getEnd());
735
736 // If we haven't marked the function nothrow through other means, do
737 // a quick pass now to see if we can.
738 if (!CurFn->doesNotThrow())
739 TryMarkNoThrow(CurFn);
740 }
741
742 /// ContainsLabel - Return true if the statement contains a label in it. If
743 /// this statement is not executed normally, it not containing a label means
744 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)745 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
746 // Null statement, not a label!
747 if (S == 0) return false;
748
749 // If this is a label, we have to emit the code, consider something like:
750 // if (0) { ... foo: bar(); } goto foo;
751 //
752 // TODO: If anyone cared, we could track __label__'s, since we know that you
753 // can't jump to one from outside their declared region.
754 if (isa<LabelStmt>(S))
755 return true;
756
757 // If this is a case/default statement, and we haven't seen a switch, we have
758 // to emit the code.
759 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
760 return true;
761
762 // If this is a switch statement, we want to ignore cases below it.
763 if (isa<SwitchStmt>(S))
764 IgnoreCaseStmts = true;
765
766 // Scan subexpressions for verboten labels.
767 for (Stmt::const_child_range I = S->children(); I; ++I)
768 if (ContainsLabel(*I, IgnoreCaseStmts))
769 return true;
770
771 return false;
772 }
773
774 /// containsBreak - Return true if the statement contains a break out of it.
775 /// If the statement (recursively) contains a switch or loop with a break
776 /// inside of it, this is fine.
containsBreak(const Stmt * S)777 bool CodeGenFunction::containsBreak(const Stmt *S) {
778 // Null statement, not a label!
779 if (S == 0) return false;
780
781 // If this is a switch or loop that defines its own break scope, then we can
782 // include it and anything inside of it.
783 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
784 isa<ForStmt>(S))
785 return false;
786
787 if (isa<BreakStmt>(S))
788 return true;
789
790 // Scan subexpressions for verboten breaks.
791 for (Stmt::const_child_range I = S->children(); I; ++I)
792 if (containsBreak(*I))
793 return true;
794
795 return false;
796 }
797
798
799 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
800 /// to a constant, or if it does but contains a label, return false. If it
801 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)802 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
803 bool &ResultBool) {
804 llvm::APSInt ResultInt;
805 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
806 return false;
807
808 ResultBool = ResultInt.getBoolValue();
809 return true;
810 }
811
812 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
813 /// to a constant, or if it does but contains a label, return false. If it
814 /// constant folds return true and set the folded value.
815 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt)816 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
817 // FIXME: Rename and handle conversion of other evaluatable things
818 // to bool.
819 llvm::APSInt Int;
820 if (!Cond->EvaluateAsInt(Int, getContext()))
821 return false; // Not foldable, not integer or not fully evaluatable.
822
823 if (CodeGenFunction::ContainsLabel(Cond))
824 return false; // Contains a label.
825
826 ResultInt = Int;
827 return true;
828 }
829
830
831
832 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
833 /// statement) to the specified blocks. Based on the condition, this might try
834 /// to simplify the codegen of the conditional based on the branch.
835 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock)836 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
837 llvm::BasicBlock *TrueBlock,
838 llvm::BasicBlock *FalseBlock) {
839 Cond = Cond->IgnoreParens();
840
841 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
842 // Handle X && Y in a condition.
843 if (CondBOp->getOpcode() == BO_LAnd) {
844 // If we have "1 && X", simplify the code. "0 && X" would have constant
845 // folded if the case was simple enough.
846 bool ConstantBool = false;
847 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
848 ConstantBool) {
849 // br(1 && X) -> br(X).
850 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
851 }
852
853 // If we have "X && 1", simplify the code to use an uncond branch.
854 // "X && 0" would have been constant folded to 0.
855 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
856 ConstantBool) {
857 // br(X && 1) -> br(X).
858 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
859 }
860
861 // Emit the LHS as a conditional. If the LHS conditional is false, we
862 // want to jump to the FalseBlock.
863 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
864
865 ConditionalEvaluation eval(*this);
866 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
867 EmitBlock(LHSTrue);
868
869 // Any temporaries created here are conditional.
870 eval.begin(*this);
871 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
872 eval.end(*this);
873
874 return;
875 }
876
877 if (CondBOp->getOpcode() == BO_LOr) {
878 // If we have "0 || X", simplify the code. "1 || X" would have constant
879 // folded if the case was simple enough.
880 bool ConstantBool = false;
881 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
882 !ConstantBool) {
883 // br(0 || X) -> br(X).
884 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
885 }
886
887 // If we have "X || 0", simplify the code to use an uncond branch.
888 // "X || 1" would have been constant folded to 1.
889 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
890 !ConstantBool) {
891 // br(X || 0) -> br(X).
892 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
893 }
894
895 // Emit the LHS as a conditional. If the LHS conditional is true, we
896 // want to jump to the TrueBlock.
897 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
898
899 ConditionalEvaluation eval(*this);
900 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
901 EmitBlock(LHSFalse);
902
903 // Any temporaries created here are conditional.
904 eval.begin(*this);
905 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
906 eval.end(*this);
907
908 return;
909 }
910 }
911
912 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
913 // br(!x, t, f) -> br(x, f, t)
914 if (CondUOp->getOpcode() == UO_LNot)
915 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
916 }
917
918 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
919 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
920 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
921 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
922
923 ConditionalEvaluation cond(*this);
924 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
925
926 cond.begin(*this);
927 EmitBlock(LHSBlock);
928 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
929 cond.end(*this);
930
931 cond.begin(*this);
932 EmitBlock(RHSBlock);
933 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
934 cond.end(*this);
935
936 return;
937 }
938
939 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
940 // Conditional operator handling can give us a throw expression as a
941 // condition for a case like:
942 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
943 // Fold this to:
944 // br(c, throw x, br(y, t, f))
945 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
946 return;
947 }
948
949 // Emit the code with the fully general case.
950 llvm::Value *CondV = EvaluateExprAsBool(Cond);
951 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
952 }
953
954 /// ErrorUnsupported - Print out an error that codegen doesn't support the
955 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)956 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
957 bool OmitOnError) {
958 CGM.ErrorUnsupported(S, Type, OmitOnError);
959 }
960
961 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
962 /// variable-length array whose elements have a non-zero bit-pattern.
963 ///
964 /// \param baseType the inner-most element type of the array
965 /// \param src - a char* pointing to the bit-pattern for a single
966 /// base element of the array
967 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,llvm::Value * dest,llvm::Value * src,llvm::Value * sizeInChars)968 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
969 llvm::Value *dest, llvm::Value *src,
970 llvm::Value *sizeInChars) {
971 std::pair<CharUnits,CharUnits> baseSizeAndAlign
972 = CGF.getContext().getTypeInfoInChars(baseType);
973
974 CGBuilderTy &Builder = CGF.Builder;
975
976 llvm::Value *baseSizeInChars
977 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
978
979 llvm::Type *i8p = Builder.getInt8PtrTy();
980
981 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
982 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
983
984 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
985 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
986 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
987
988 // Make a loop over the VLA. C99 guarantees that the VLA element
989 // count must be nonzero.
990 CGF.EmitBlock(loopBB);
991
992 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
993 cur->addIncoming(begin, originBB);
994
995 // memcpy the individual element bit-pattern.
996 Builder.CreateMemCpy(cur, src, baseSizeInChars,
997 baseSizeAndAlign.second.getQuantity(),
998 /*volatile*/ false);
999
1000 // Go to the next element.
1001 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1002
1003 // Leave if that's the end of the VLA.
1004 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1005 Builder.CreateCondBr(done, contBB, loopBB);
1006 cur->addIncoming(next, loopBB);
1007
1008 CGF.EmitBlock(contBB);
1009 }
1010
1011 void
EmitNullInitialization(llvm::Value * DestPtr,QualType Ty)1012 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1013 // Ignore empty classes in C++.
1014 if (getLangOpts().CPlusPlus) {
1015 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1016 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1017 return;
1018 }
1019 }
1020
1021 // Cast the dest ptr to the appropriate i8 pointer type.
1022 unsigned DestAS =
1023 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1024 llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1025 if (DestPtr->getType() != BP)
1026 DestPtr = Builder.CreateBitCast(DestPtr, BP);
1027
1028 // Get size and alignment info for this aggregate.
1029 std::pair<CharUnits, CharUnits> TypeInfo =
1030 getContext().getTypeInfoInChars(Ty);
1031 CharUnits Size = TypeInfo.first;
1032 CharUnits Align = TypeInfo.second;
1033
1034 llvm::Value *SizeVal;
1035 const VariableArrayType *vla;
1036
1037 // Don't bother emitting a zero-byte memset.
1038 if (Size.isZero()) {
1039 // But note that getTypeInfo returns 0 for a VLA.
1040 if (const VariableArrayType *vlaType =
1041 dyn_cast_or_null<VariableArrayType>(
1042 getContext().getAsArrayType(Ty))) {
1043 QualType eltType;
1044 llvm::Value *numElts;
1045 llvm::tie(numElts, eltType) = getVLASize(vlaType);
1046
1047 SizeVal = numElts;
1048 CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1049 if (!eltSize.isOne())
1050 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1051 vla = vlaType;
1052 } else {
1053 return;
1054 }
1055 } else {
1056 SizeVal = CGM.getSize(Size);
1057 vla = 0;
1058 }
1059
1060 // If the type contains a pointer to data member we can't memset it to zero.
1061 // Instead, create a null constant and copy it to the destination.
1062 // TODO: there are other patterns besides zero that we can usefully memset,
1063 // like -1, which happens to be the pattern used by member-pointers.
1064 if (!CGM.getTypes().isZeroInitializable(Ty)) {
1065 // For a VLA, emit a single element, then splat that over the VLA.
1066 if (vla) Ty = getContext().getBaseElementType(vla);
1067
1068 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1069
1070 llvm::GlobalVariable *NullVariable =
1071 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1072 /*isConstant=*/true,
1073 llvm::GlobalVariable::PrivateLinkage,
1074 NullConstant, Twine());
1075 llvm::Value *SrcPtr =
1076 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1077
1078 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1079
1080 // Get and call the appropriate llvm.memcpy overload.
1081 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1082 return;
1083 }
1084
1085 // Otherwise, just memset the whole thing to zero. This is legal
1086 // because in LLVM, all default initializers (other than the ones we just
1087 // handled above) are guaranteed to have a bit pattern of all zeros.
1088 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1089 Align.getQuantity(), false);
1090 }
1091
GetAddrOfLabel(const LabelDecl * L)1092 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1093 // Make sure that there is a block for the indirect goto.
1094 if (IndirectBranch == 0)
1095 GetIndirectGotoBlock();
1096
1097 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1098
1099 // Make sure the indirect branch includes all of the address-taken blocks.
1100 IndirectBranch->addDestination(BB);
1101 return llvm::BlockAddress::get(CurFn, BB);
1102 }
1103
GetIndirectGotoBlock()1104 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1105 // If we already made the indirect branch for indirect goto, return its block.
1106 if (IndirectBranch) return IndirectBranch->getParent();
1107
1108 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1109
1110 // Create the PHI node that indirect gotos will add entries to.
1111 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1112 "indirect.goto.dest");
1113
1114 // Create the indirect branch instruction.
1115 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1116 return IndirectBranch->getParent();
1117 }
1118
1119 /// Computes the length of an array in elements, as well as the base
1120 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,llvm::Value * & addr)1121 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1122 QualType &baseType,
1123 llvm::Value *&addr) {
1124 const ArrayType *arrayType = origArrayType;
1125
1126 // If it's a VLA, we have to load the stored size. Note that
1127 // this is the size of the VLA in bytes, not its size in elements.
1128 llvm::Value *numVLAElements = 0;
1129 if (isa<VariableArrayType>(arrayType)) {
1130 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1131
1132 // Walk into all VLAs. This doesn't require changes to addr,
1133 // which has type T* where T is the first non-VLA element type.
1134 do {
1135 QualType elementType = arrayType->getElementType();
1136 arrayType = getContext().getAsArrayType(elementType);
1137
1138 // If we only have VLA components, 'addr' requires no adjustment.
1139 if (!arrayType) {
1140 baseType = elementType;
1141 return numVLAElements;
1142 }
1143 } while (isa<VariableArrayType>(arrayType));
1144
1145 // We get out here only if we find a constant array type
1146 // inside the VLA.
1147 }
1148
1149 // We have some number of constant-length arrays, so addr should
1150 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
1151 // down to the first element of addr.
1152 SmallVector<llvm::Value*, 8> gepIndices;
1153
1154 // GEP down to the array type.
1155 llvm::ConstantInt *zero = Builder.getInt32(0);
1156 gepIndices.push_back(zero);
1157
1158 uint64_t countFromCLAs = 1;
1159 QualType eltType;
1160
1161 llvm::ArrayType *llvmArrayType =
1162 dyn_cast<llvm::ArrayType>(
1163 cast<llvm::PointerType>(addr->getType())->getElementType());
1164 while (llvmArrayType) {
1165 assert(isa<ConstantArrayType>(arrayType));
1166 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1167 == llvmArrayType->getNumElements());
1168
1169 gepIndices.push_back(zero);
1170 countFromCLAs *= llvmArrayType->getNumElements();
1171 eltType = arrayType->getElementType();
1172
1173 llvmArrayType =
1174 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1175 arrayType = getContext().getAsArrayType(arrayType->getElementType());
1176 assert((!llvmArrayType || arrayType) &&
1177 "LLVM and Clang types are out-of-synch");
1178 }
1179
1180 if (arrayType) {
1181 // From this point onwards, the Clang array type has been emitted
1182 // as some other type (probably a packed struct). Compute the array
1183 // size, and just emit the 'begin' expression as a bitcast.
1184 while (arrayType) {
1185 countFromCLAs *=
1186 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1187 eltType = arrayType->getElementType();
1188 arrayType = getContext().getAsArrayType(eltType);
1189 }
1190
1191 unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1192 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1193 addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1194 } else {
1195 // Create the actual GEP.
1196 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1197 }
1198
1199 baseType = eltType;
1200
1201 llvm::Value *numElements
1202 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1203
1204 // If we had any VLA dimensions, factor them in.
1205 if (numVLAElements)
1206 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1207
1208 return numElements;
1209 }
1210
1211 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)1212 CodeGenFunction::getVLASize(QualType type) {
1213 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1214 assert(vla && "type was not a variable array type!");
1215 return getVLASize(vla);
1216 }
1217
1218 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)1219 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1220 // The number of elements so far; always size_t.
1221 llvm::Value *numElements = 0;
1222
1223 QualType elementType;
1224 do {
1225 elementType = type->getElementType();
1226 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1227 assert(vlaSize && "no size for VLA!");
1228 assert(vlaSize->getType() == SizeTy);
1229
1230 if (!numElements) {
1231 numElements = vlaSize;
1232 } else {
1233 // It's undefined behavior if this wraps around, so mark it that way.
1234 // FIXME: Teach -fcatch-undefined-behavior to trap this.
1235 numElements = Builder.CreateNUWMul(numElements, vlaSize);
1236 }
1237 } while ((type = getContext().getAsVariableArrayType(elementType)));
1238
1239 return std::pair<llvm::Value*,QualType>(numElements, elementType);
1240 }
1241
EmitVariablyModifiedType(QualType type)1242 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1243 assert(type->isVariablyModifiedType() &&
1244 "Must pass variably modified type to EmitVLASizes!");
1245
1246 EnsureInsertPoint();
1247
1248 // We're going to walk down into the type and look for VLA
1249 // expressions.
1250 do {
1251 assert(type->isVariablyModifiedType());
1252
1253 const Type *ty = type.getTypePtr();
1254 switch (ty->getTypeClass()) {
1255
1256 #define TYPE(Class, Base)
1257 #define ABSTRACT_TYPE(Class, Base)
1258 #define NON_CANONICAL_TYPE(Class, Base)
1259 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1261 #include "clang/AST/TypeNodes.def"
1262 llvm_unreachable("unexpected dependent type!");
1263
1264 // These types are never variably-modified.
1265 case Type::Builtin:
1266 case Type::Complex:
1267 case Type::Vector:
1268 case Type::ExtVector:
1269 case Type::Record:
1270 case Type::Enum:
1271 case Type::Elaborated:
1272 case Type::TemplateSpecialization:
1273 case Type::ObjCObject:
1274 case Type::ObjCInterface:
1275 case Type::ObjCObjectPointer:
1276 llvm_unreachable("type class is never variably-modified!");
1277
1278 case Type::Decayed:
1279 type = cast<DecayedType>(ty)->getPointeeType();
1280 break;
1281
1282 case Type::Pointer:
1283 type = cast<PointerType>(ty)->getPointeeType();
1284 break;
1285
1286 case Type::BlockPointer:
1287 type = cast<BlockPointerType>(ty)->getPointeeType();
1288 break;
1289
1290 case Type::LValueReference:
1291 case Type::RValueReference:
1292 type = cast<ReferenceType>(ty)->getPointeeType();
1293 break;
1294
1295 case Type::MemberPointer:
1296 type = cast<MemberPointerType>(ty)->getPointeeType();
1297 break;
1298
1299 case Type::ConstantArray:
1300 case Type::IncompleteArray:
1301 // Losing element qualification here is fine.
1302 type = cast<ArrayType>(ty)->getElementType();
1303 break;
1304
1305 case Type::VariableArray: {
1306 // Losing element qualification here is fine.
1307 const VariableArrayType *vat = cast<VariableArrayType>(ty);
1308
1309 // Unknown size indication requires no size computation.
1310 // Otherwise, evaluate and record it.
1311 if (const Expr *size = vat->getSizeExpr()) {
1312 // It's possible that we might have emitted this already,
1313 // e.g. with a typedef and a pointer to it.
1314 llvm::Value *&entry = VLASizeMap[size];
1315 if (!entry) {
1316 llvm::Value *Size = EmitScalarExpr(size);
1317
1318 // C11 6.7.6.2p5:
1319 // If the size is an expression that is not an integer constant
1320 // expression [...] each time it is evaluated it shall have a value
1321 // greater than zero.
1322 if (SanOpts->VLABound &&
1323 size->getType()->isSignedIntegerType()) {
1324 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1325 llvm::Constant *StaticArgs[] = {
1326 EmitCheckSourceLocation(size->getLocStart()),
1327 EmitCheckTypeDescriptor(size->getType())
1328 };
1329 EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1330 "vla_bound_not_positive", StaticArgs, Size,
1331 CRK_Recoverable);
1332 }
1333
1334 // Always zexting here would be wrong if it weren't
1335 // undefined behavior to have a negative bound.
1336 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1337 }
1338 }
1339 type = vat->getElementType();
1340 break;
1341 }
1342
1343 case Type::FunctionProto:
1344 case Type::FunctionNoProto:
1345 type = cast<FunctionType>(ty)->getResultType();
1346 break;
1347
1348 case Type::Paren:
1349 case Type::TypeOf:
1350 case Type::UnaryTransform:
1351 case Type::Attributed:
1352 case Type::SubstTemplateTypeParm:
1353 case Type::PackExpansion:
1354 // Keep walking after single level desugaring.
1355 type = type.getSingleStepDesugaredType(getContext());
1356 break;
1357
1358 case Type::Typedef:
1359 case Type::Decltype:
1360 case Type::Auto:
1361 // Stop walking: nothing to do.
1362 return;
1363
1364 case Type::TypeOfExpr:
1365 // Stop walking: emit typeof expression.
1366 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1367 return;
1368
1369 case Type::Atomic:
1370 type = cast<AtomicType>(ty)->getValueType();
1371 break;
1372 }
1373 } while (type->isVariablyModifiedType());
1374 }
1375
EmitVAListRef(const Expr * E)1376 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1377 if (getContext().getBuiltinVaListType()->isArrayType())
1378 return EmitScalarExpr(E);
1379 return EmitLValue(E).getAddress();
1380 }
1381
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1382 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1383 llvm::Constant *Init) {
1384 assert (Init && "Invalid DeclRefExpr initializer!");
1385 if (CGDebugInfo *Dbg = getDebugInfo())
1386 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1387 Dbg->EmitGlobalVariable(E->getDecl(), Init);
1388 }
1389
1390 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1391 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1392 // At the moment, the only aggressive peephole we do in IR gen
1393 // is trunc(zext) folding, but if we add more, we can easily
1394 // extend this protection.
1395
1396 if (!rvalue.isScalar()) return PeepholeProtection();
1397 llvm::Value *value = rvalue.getScalarVal();
1398 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1399
1400 // Just make an extra bitcast.
1401 assert(HaveInsertPoint());
1402 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1403 Builder.GetInsertBlock());
1404
1405 PeepholeProtection protection;
1406 protection.Inst = inst;
1407 return protection;
1408 }
1409
unprotectFromPeepholes(PeepholeProtection protection)1410 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1411 if (!protection.Inst) return;
1412
1413 // In theory, we could try to duplicate the peepholes now, but whatever.
1414 protection.Inst->eraseFromParent();
1415 }
1416
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)1417 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1418 llvm::Value *AnnotatedVal,
1419 StringRef AnnotationStr,
1420 SourceLocation Location) {
1421 llvm::Value *Args[4] = {
1422 AnnotatedVal,
1423 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1424 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1425 CGM.EmitAnnotationLineNo(Location)
1426 };
1427 return Builder.CreateCall(AnnotationFn, Args);
1428 }
1429
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1430 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1431 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1432 // FIXME We create a new bitcast for every annotation because that's what
1433 // llvm-gcc was doing.
1434 for (specific_attr_iterator<AnnotateAttr>
1435 ai = D->specific_attr_begin<AnnotateAttr>(),
1436 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1437 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1438 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1439 (*ai)->getAnnotation(), D->getLocation());
1440 }
1441
EmitFieldAnnotations(const FieldDecl * D,llvm::Value * V)1442 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1443 llvm::Value *V) {
1444 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1445 llvm::Type *VTy = V->getType();
1446 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1447 CGM.Int8PtrTy);
1448
1449 for (specific_attr_iterator<AnnotateAttr>
1450 ai = D->specific_attr_begin<AnnotateAttr>(),
1451 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1452 // FIXME Always emit the cast inst so we can differentiate between
1453 // annotation on the first field of a struct and annotation on the struct
1454 // itself.
1455 if (VTy != CGM.Int8PtrTy)
1456 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1457 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1458 V = Builder.CreateBitCast(V, VTy);
1459 }
1460
1461 return V;
1462 }
1463
~CGCapturedStmtInfo()1464 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1465