1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reg_type_cache-inl.h"
18
19 #include "base/casts.h"
20 #include "dex_file-inl.h"
21 #include "mirror/class-inl.h"
22 #include "mirror/object-inl.h"
23 #include "object_utils.h"
24
25 namespace art {
26 namespace verifier {
27
28 bool RegTypeCache::primitive_initialized_ = false;
29 uint16_t RegTypeCache::primitive_start_ = 0;
30 uint16_t RegTypeCache::primitive_count_ = 0;
31
MatchingPrecisionForClass(RegType * entry,bool precise)32 static bool MatchingPrecisionForClass(RegType* entry, bool precise)
33 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
34 if (entry->IsPreciseReference() == precise) {
35 // We were or weren't looking for a precise reference and we found what we need.
36 return true;
37 } else {
38 if (!precise && entry->GetClass()->CannotBeAssignedFromOtherTypes()) {
39 // We weren't looking for a precise reference, as we're looking up based on a descriptor, but
40 // we found a matching entry based on the descriptor. Return the precise entry in that case.
41 return true;
42 }
43 return false;
44 }
45 }
46
FillPrimitiveTypes()47 void RegTypeCache::FillPrimitiveTypes() {
48 entries_.push_back(UndefinedType::GetInstance());
49 entries_.push_back(ConflictType::GetInstance());
50 entries_.push_back(BooleanType::GetInstance());
51 entries_.push_back(ByteType::GetInstance());
52 entries_.push_back(ShortType::GetInstance());
53 entries_.push_back(CharType::GetInstance());
54 entries_.push_back(IntegerType::GetInstance());
55 entries_.push_back(LongLoType::GetInstance());
56 entries_.push_back(LongHiType::GetInstance());
57 entries_.push_back(FloatType::GetInstance());
58 entries_.push_back(DoubleLoType::GetInstance());
59 entries_.push_back(DoubleHiType::GetInstance());
60 DCHECK_EQ(entries_.size(), primitive_count_);
61 }
62
FromDescriptor(mirror::ClassLoader * loader,const char * descriptor,bool precise)63 const RegType& RegTypeCache::FromDescriptor(mirror::ClassLoader* loader, const char* descriptor,
64 bool precise) {
65 DCHECK(RegTypeCache::primitive_initialized_);
66 if (descriptor[1] == '\0') {
67 switch (descriptor[0]) {
68 case 'Z':
69 return Boolean();
70 case 'B':
71 return Byte();
72 case 'S':
73 return Short();
74 case 'C':
75 return Char();
76 case 'I':
77 return Integer();
78 case 'J':
79 return LongLo();
80 case 'F':
81 return Float();
82 case 'D':
83 return DoubleLo();
84 case 'V': // For void types, conflict types.
85 default:
86 return Conflict();
87 }
88 } else if (descriptor[0] == 'L' || descriptor[0] == '[') {
89 return From(loader, descriptor, precise);
90 } else {
91 return Conflict();
92 }
93 };
94
RegTypeFromPrimitiveType(Primitive::Type prim_type) const95 const RegType& RegTypeCache::RegTypeFromPrimitiveType(Primitive::Type prim_type) const {
96 CHECK(RegTypeCache::primitive_initialized_);
97 switch (prim_type) {
98 case Primitive::kPrimBoolean:
99 return *BooleanType::GetInstance();
100 case Primitive::kPrimByte:
101 return *ByteType::GetInstance();
102 case Primitive::kPrimShort:
103 return *ShortType::GetInstance();
104 case Primitive::kPrimChar:
105 return *CharType::GetInstance();
106 case Primitive::kPrimInt:
107 return *IntegerType::GetInstance();
108 case Primitive::kPrimLong:
109 return *LongLoType::GetInstance();
110 case Primitive::kPrimFloat:
111 return *FloatType::GetInstance();
112 case Primitive::kPrimDouble:
113 return *DoubleLoType::GetInstance();
114 case Primitive::kPrimVoid:
115 default:
116 return *ConflictType::GetInstance();
117 }
118 }
119
MatchDescriptor(size_t idx,const char * descriptor,bool precise)120 bool RegTypeCache::MatchDescriptor(size_t idx, const char* descriptor, bool precise) {
121 RegType* entry = entries_[idx];
122 if (entry->descriptor_ != descriptor) {
123 return false;
124 }
125 if (entry->HasClass()) {
126 return MatchingPrecisionForClass(entry, precise);
127 }
128 // There is no notion of precise unresolved references, the precise information is just dropped
129 // on the floor.
130 DCHECK(entry->IsUnresolvedReference());
131 return true;
132 }
133
ResolveClass(const char * descriptor,mirror::ClassLoader * loader)134 mirror::Class* RegTypeCache::ResolveClass(const char* descriptor, mirror::ClassLoader* loader) {
135 // Class was not found, must create new type.
136 // Try resolving class
137 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
138 mirror::Class* klass = NULL;
139 if (can_load_classes_) {
140 klass = class_linker->FindClass(descriptor, loader);
141 } else {
142 klass = class_linker->LookupClass(descriptor, loader);
143 if (klass != NULL && !klass->IsLoaded()) {
144 // We found the class but without it being loaded its not safe for use.
145 klass = NULL;
146 }
147 }
148 return klass;
149 }
150
ClearException()151 void RegTypeCache::ClearException() {
152 if (can_load_classes_) {
153 DCHECK(Thread::Current()->IsExceptionPending());
154 Thread::Current()->ClearException();
155 } else {
156 DCHECK(!Thread::Current()->IsExceptionPending());
157 }
158 }
159
From(mirror::ClassLoader * loader,const char * descriptor,bool precise)160 const RegType& RegTypeCache::From(mirror::ClassLoader* loader, const char* descriptor,
161 bool precise) {
162 // Try looking up the class in the cache first.
163 for (size_t i = primitive_count_; i < entries_.size(); i++) {
164 if (MatchDescriptor(i, descriptor, precise)) {
165 return *(entries_[i]);
166 }
167 }
168 // Class not found in the cache, will create a new type for that.
169 // Try resolving class.
170 mirror::Class* klass = ResolveClass(descriptor, loader);
171 if (klass != NULL) {
172 // Class resolved, first look for the class in the list of entries
173 // Class was not found, must create new type.
174 // To pass the verification, the type should be imprecise,
175 // instantiable or an interface with the precise type set to false.
176 DCHECK(!precise || klass->IsInstantiable());
177 // Create a precise type if:
178 // 1- Class is final and NOT an interface. a precise interface is meaningless !!
179 // 2- Precise Flag passed as true.
180 RegType* entry;
181 // Create an imprecise type if we can't tell for a fact that it is precise.
182 if (klass->CannotBeAssignedFromOtherTypes() || precise) {
183 DCHECK(!(klass->IsAbstract()) || klass->IsArrayClass());
184 DCHECK(!klass->IsInterface());
185 entry = new PreciseReferenceType(klass, descriptor, entries_.size());
186 } else {
187 entry = new ReferenceType(klass, descriptor, entries_.size());
188 }
189 entries_.push_back(entry);
190 return *entry;
191 } else { // Class not resolved.
192 // We tried loading the class and failed, this might get an exception raised
193 // so we want to clear it before we go on.
194 ClearException();
195 if (IsValidDescriptor(descriptor)) {
196 RegType* entry = new UnresolvedReferenceType(descriptor, entries_.size());
197 entries_.push_back(entry);
198 return *entry;
199 } else {
200 // The descriptor is broken return the unknown type as there's nothing sensible that
201 // could be done at runtime
202 return Conflict();
203 }
204 }
205 }
206
FromClass(const char * descriptor,mirror::Class * klass,bool precise)207 const RegType& RegTypeCache::FromClass(const char* descriptor, mirror::Class* klass, bool precise) {
208 if (klass->IsPrimitive()) {
209 // Note: precise isn't used for primitive classes. A char is assignable to an int. All
210 // primitive classes are final.
211 return RegTypeFromPrimitiveType(klass->GetPrimitiveType());
212 } else {
213 // Look for the reference in the list of entries to have.
214 for (size_t i = primitive_count_; i < entries_.size(); i++) {
215 RegType* cur_entry = entries_[i];
216 if (cur_entry->klass_ == klass && MatchingPrecisionForClass(cur_entry, precise)) {
217 return *cur_entry;
218 }
219 }
220 // No reference to the class was found, create new reference.
221 RegType* entry;
222 if (precise) {
223 entry = new PreciseReferenceType(klass, descriptor, entries_.size());
224 } else {
225 entry = new ReferenceType(klass, descriptor, entries_.size());
226 }
227 entries_.push_back(entry);
228 return *entry;
229 }
230 }
231
~RegTypeCache()232 RegTypeCache::~RegTypeCache() {
233 CHECK_LE(primitive_count_, entries_.size());
234 // Delete only the non primitive types.
235 if (entries_.size() == kNumPrimitives) {
236 // All entries are primitive, nothing to delete.
237 return;
238 }
239 std::vector<RegType*>::iterator non_primitive_begin = entries_.begin();
240 std::advance(non_primitive_begin, kNumPrimitives);
241 STLDeleteContainerPointers(non_primitive_begin, entries_.end());
242 }
243
ShutDown()244 void RegTypeCache::ShutDown() {
245 if (RegTypeCache::primitive_initialized_) {
246 UndefinedType::Destroy();
247 ConflictType::Destroy();
248 BooleanType::Destroy();
249 ByteType::Destroy();
250 ShortType::Destroy();
251 CharType::Destroy();
252 IntegerType::Destroy();
253 LongLoType::Destroy();
254 LongHiType::Destroy();
255 FloatType::Destroy();
256 DoubleLoType::Destroy();
257 DoubleHiType::Destroy();
258 RegTypeCache::primitive_initialized_ = false;
259 RegTypeCache::primitive_count_ = 0;
260 }
261 }
262
CreatePrimitiveTypes()263 void RegTypeCache::CreatePrimitiveTypes() {
264 CreatePrimitiveTypeInstance<UndefinedType>("");
265 CreatePrimitiveTypeInstance<ConflictType>("");
266 CreatePrimitiveTypeInstance<BooleanType>("Z");
267 CreatePrimitiveTypeInstance<ByteType>("B");
268 CreatePrimitiveTypeInstance<ShortType>("S");
269 CreatePrimitiveTypeInstance<CharType>("C");
270 CreatePrimitiveTypeInstance<IntegerType>("I");
271 CreatePrimitiveTypeInstance<LongLoType>("J");
272 CreatePrimitiveTypeInstance<LongHiType>("J");
273 CreatePrimitiveTypeInstance<FloatType>("F");
274 CreatePrimitiveTypeInstance<DoubleLoType>("D");
275 CreatePrimitiveTypeInstance<DoubleHiType>("D");
276 }
277
FromUnresolvedMerge(const RegType & left,const RegType & right)278 const RegType& RegTypeCache::FromUnresolvedMerge(const RegType& left, const RegType& right) {
279 std::set<uint16_t> types;
280 if (left.IsUnresolvedMergedReference()) {
281 RegType& non_const(const_cast<RegType&>(left));
282 types = (down_cast<UnresolvedMergedType*>(&non_const))->GetMergedTypes();
283 } else {
284 types.insert(left.GetId());
285 }
286 if (right.IsUnresolvedMergedReference()) {
287 RegType& non_const(const_cast<RegType&>(right));
288 std::set<uint16_t> right_types = (down_cast<UnresolvedMergedType*>(&non_const))->GetMergedTypes();
289 types.insert(right_types.begin(), right_types.end());
290 } else {
291 types.insert(right.GetId());
292 }
293 // Check if entry already exists.
294 for (size_t i = primitive_count_; i < entries_.size(); i++) {
295 RegType* cur_entry = entries_[i];
296 if (cur_entry->IsUnresolvedMergedReference()) {
297 std::set<uint16_t> cur_entry_types =
298 (down_cast<UnresolvedMergedType*>(cur_entry))->GetMergedTypes();
299 if (cur_entry_types == types) {
300 return *cur_entry;
301 }
302 }
303 }
304 // Create entry.
305 RegType* entry = new UnresolvedMergedType(left.GetId(), right.GetId(), this, entries_.size());
306 entries_.push_back(entry);
307 if (kIsDebugBuild) {
308 UnresolvedMergedType* tmp_entry = down_cast<UnresolvedMergedType*>(entry);
309 std::set<uint16_t> check_types = tmp_entry->GetMergedTypes();
310 CHECK(check_types == types);
311 }
312 return *entry;
313 }
314
FromUnresolvedSuperClass(const RegType & child)315 const RegType& RegTypeCache::FromUnresolvedSuperClass(const RegType& child) {
316 // Check if entry already exists.
317 for (size_t i = primitive_count_; i < entries_.size(); i++) {
318 RegType* cur_entry = entries_[i];
319 if (cur_entry->IsUnresolvedSuperClass()) {
320 UnresolvedSuperClass* tmp_entry =
321 down_cast<UnresolvedSuperClass*>(cur_entry);
322 uint16_t unresolved_super_child_id =
323 tmp_entry->GetUnresolvedSuperClassChildId();
324 if (unresolved_super_child_id == child.GetId()) {
325 return *cur_entry;
326 }
327 }
328 }
329 RegType* entry = new UnresolvedSuperClass(child.GetId(), this, entries_.size());
330 entries_.push_back(entry);
331 return *entry;
332 }
333
Uninitialized(const RegType & type,uint32_t allocation_pc)334 const RegType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) {
335 RegType* entry = NULL;
336 RegType* cur_entry = NULL;
337 const std::string& descriptor(type.GetDescriptor());
338 if (type.IsUnresolvedTypes()) {
339 for (size_t i = primitive_count_; i < entries_.size(); i++) {
340 cur_entry = entries_[i];
341 if (cur_entry->IsUnresolvedAndUninitializedReference() &&
342 down_cast<UnresolvedUninitializedRefType*>(cur_entry)->GetAllocationPc() == allocation_pc &&
343 (cur_entry->GetDescriptor() == descriptor)) {
344 return *cur_entry;
345 }
346 }
347 entry = new UnresolvedUninitializedRefType(descriptor, allocation_pc, entries_.size());
348 } else {
349 mirror::Class* klass = type.GetClass();
350 for (size_t i = primitive_count_; i < entries_.size(); i++) {
351 cur_entry = entries_[i];
352 if (cur_entry->IsUninitializedReference() &&
353 down_cast<UninitializedReferenceType*>(cur_entry)
354 ->GetAllocationPc() == allocation_pc &&
355 cur_entry->GetClass() == klass) {
356 return *cur_entry;
357 }
358 }
359 entry = new UninitializedReferenceType(klass, descriptor, allocation_pc, entries_.size());
360 }
361 entries_.push_back(entry);
362 return *entry;
363 }
364
FromUninitialized(const RegType & uninit_type)365 const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) {
366 RegType* entry;
367
368 if (uninit_type.IsUnresolvedTypes()) {
369 const std::string& descriptor(uninit_type.GetDescriptor());
370 for (size_t i = primitive_count_; i < entries_.size(); i++) {
371 RegType* cur_entry = entries_[i];
372 if (cur_entry->IsUnresolvedReference() &&
373 cur_entry->GetDescriptor() == descriptor) {
374 return *cur_entry;
375 }
376 }
377 entry = new UnresolvedReferenceType(descriptor.c_str(), entries_.size());
378 } else {
379 mirror::Class* klass = uninit_type.GetClass();
380 if (uninit_type.IsUninitializedThisReference() && !klass->IsFinal()) {
381 // For uninitialized "this reference" look for reference types that are not precise.
382 for (size_t i = primitive_count_; i < entries_.size(); i++) {
383 RegType* cur_entry = entries_[i];
384 if (cur_entry->IsReference() && cur_entry->GetClass() == klass) {
385 return *cur_entry;
386 }
387 }
388 entry = new ReferenceType(klass, "", entries_.size());
389 } else if (klass->IsInstantiable()) {
390 // We're uninitialized because of allocation, look or create a precise type as allocations
391 // may only create objects of that type.
392 for (size_t i = primitive_count_; i < entries_.size(); i++) {
393 RegType* cur_entry = entries_[i];
394 if (cur_entry->IsPreciseReference() && cur_entry->GetClass() == klass) {
395 return *cur_entry;
396 }
397 }
398 entry = new PreciseReferenceType(klass, uninit_type.GetDescriptor(), entries_.size());
399 } else {
400 return Conflict();
401 }
402 }
403 entries_.push_back(entry);
404 return *entry;
405 }
406
ByteConstant()407 const RegType& RegTypeCache::ByteConstant() {
408 return FromCat1Const(std::numeric_limits<jbyte>::min(), false);
409 }
410
ShortConstant()411 const RegType& RegTypeCache::ShortConstant() {
412 return FromCat1Const(std::numeric_limits<jshort>::min(), false);
413 }
414
IntConstant()415 const RegType& RegTypeCache::IntConstant() {
416 return FromCat1Const(std::numeric_limits<jint>::max(), false);
417 }
418
UninitializedThisArgument(const RegType & type)419 const RegType& RegTypeCache::UninitializedThisArgument(const RegType& type) {
420 RegType* entry;
421 const std::string& descriptor(type.GetDescriptor());
422 if (type.IsUnresolvedTypes()) {
423 for (size_t i = primitive_count_; i < entries_.size(); i++) {
424 RegType* cur_entry = entries_[i];
425 if (cur_entry->IsUnresolvedAndUninitializedThisReference() &&
426 cur_entry->GetDescriptor() == descriptor) {
427 return *cur_entry;
428 }
429 }
430 entry = new UnresolvedUninitializedThisRefType(descriptor, entries_.size());
431 } else {
432 mirror::Class* klass = type.GetClass();
433 for (size_t i = primitive_count_; i < entries_.size(); i++) {
434 RegType* cur_entry = entries_[i];
435 if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) {
436 return *cur_entry;
437 }
438 }
439 entry = new UninitializedThisReferenceType(klass, descriptor, entries_.size());
440 }
441 entries_.push_back(entry);
442 return *entry;
443 }
444
FromCat1Const(int32_t value,bool precise)445 const RegType& RegTypeCache::FromCat1Const(int32_t value, bool precise) {
446 for (size_t i = primitive_count_; i < entries_.size(); i++) {
447 RegType* cur_entry = entries_[i];
448 if (cur_entry->klass_ == NULL && cur_entry->IsConstant() &&
449 cur_entry->IsPreciseConstant() == precise &&
450 (down_cast<ConstantType*>(cur_entry))->ConstantValue() == value) {
451 return *cur_entry;
452 }
453 }
454 RegType* entry;
455 if (precise) {
456 entry = new PreciseConstType(value, entries_.size());
457 } else {
458 entry = new ImpreciseConstType(value, entries_.size());
459 }
460 entries_.push_back(entry);
461 return *entry;
462 }
463
FromCat2ConstLo(int32_t value,bool precise)464 const RegType& RegTypeCache::FromCat2ConstLo(int32_t value, bool precise) {
465 for (size_t i = primitive_count_; i < entries_.size(); i++) {
466 RegType* cur_entry = entries_[i];
467 if (cur_entry->IsConstantLo() && (cur_entry->IsPrecise() == precise) &&
468 (down_cast<ConstantType*>(cur_entry))->ConstantValueLo() == value) {
469 return *cur_entry;
470 }
471 }
472 RegType* entry;
473 if (precise) {
474 entry = new PreciseConstLoType(value, entries_.size());
475 } else {
476 entry = new ImpreciseConstLoType(value, entries_.size());
477 }
478 entries_.push_back(entry);
479 return *entry;
480 }
481
FromCat2ConstHi(int32_t value,bool precise)482 const RegType& RegTypeCache::FromCat2ConstHi(int32_t value, bool precise) {
483 for (size_t i = primitive_count_; i < entries_.size(); i++) {
484 RegType* cur_entry = entries_[i];
485 if (cur_entry->IsConstantHi() && (cur_entry->IsPrecise() == precise) &&
486 (down_cast<ConstantType*>(cur_entry))->ConstantValueHi() == value) {
487 return *cur_entry;
488 }
489 }
490 RegType* entry;
491 if (precise) {
492 entry = new PreciseConstHiType(value, entries_.size());
493 } else {
494 entry = new ImpreciseConstHiType(value, entries_.size());
495 }
496 entries_.push_back(entry);
497 return *entry;
498 }
499
GetComponentType(const RegType & array,mirror::ClassLoader * loader)500 const RegType& RegTypeCache::GetComponentType(const RegType& array, mirror::ClassLoader* loader) {
501 CHECK(array.IsArrayTypes());
502 if (array.IsUnresolvedTypes()) {
503 const std::string& descriptor(array.GetDescriptor());
504 const std::string component(descriptor.substr(1, descriptor.size() - 1));
505 return FromDescriptor(loader, component.c_str(), false);
506 } else {
507 mirror::Class* klass = array.GetClass()->GetComponentType();
508 return FromClass(ClassHelper(klass).GetDescriptor(), klass,
509 klass->CannotBeAssignedFromOtherTypes());
510 }
511 }
512
Dump(std::ostream & os)513 void RegTypeCache::Dump(std::ostream& os) {
514 for (size_t i = 0; i < entries_.size(); i++) {
515 RegType* cur_entry = entries_[i];
516 if (cur_entry != NULL) {
517 os << i << ": " << cur_entry->Dump() << "\n";
518 }
519 }
520 }
521
522 } // namespace verifier
523 } // namespace art
524