1 //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the Type class. For more "Type" 11 // stuff, look in DerivedTypes.h. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_IR_TYPE_H 16 #define LLVM_IR_TYPE_H 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/Support/Casting.h" 20 #include "llvm/Support/CBindingWrapping.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm-c/Core.h" 24 25 namespace llvm { 26 27 class PointerType; 28 class IntegerType; 29 class raw_ostream; 30 class Module; 31 class LLVMContext; 32 class LLVMContextImpl; 33 class StringRef; 34 template<class GraphType> struct GraphTraits; 35 36 /// The instances of the Type class are immutable: once they are created, 37 /// they are never changed. Also note that only one instance of a particular 38 /// type is ever created. Thus seeing if two types are equal is a matter of 39 /// doing a trivial pointer comparison. To enforce that no two equal instances 40 /// are created, Type instances can only be created via static factory methods 41 /// in class Type and in derived classes. Once allocated, Types are never 42 /// free'd. 43 /// 44 class Type { 45 public: 46 //===--------------------------------------------------------------------===// 47 /// Definitions of all of the base types for the Type system. Based on this 48 /// value, you can cast to a class defined in DerivedTypes.h. 49 /// Note: If you add an element to this, you need to add an element to the 50 /// Type::getPrimitiveType function, or else things will break! 51 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. 52 /// 53 enum TypeID { 54 // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date. 55 VoidTyID = 0, ///< 0: type with no size 56 HalfTyID, ///< 1: 16-bit floating point type 57 FloatTyID, ///< 2: 32-bit floating point type 58 DoubleTyID, ///< 3: 64-bit floating point type 59 X86_FP80TyID, ///< 4: 80-bit floating point type (X87) 60 FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa) 61 PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC) 62 LabelTyID, ///< 7: Labels 63 MetadataTyID, ///< 8: Metadata 64 X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific) 65 66 // Derived types... see DerivedTypes.h file. 67 // Make sure FirstDerivedTyID stays up to date! 68 IntegerTyID, ///< 10: Arbitrary bit width integers 69 FunctionTyID, ///< 11: Functions 70 StructTyID, ///< 12: Structures 71 ArrayTyID, ///< 13: Arrays 72 PointerTyID, ///< 14: Pointers 73 VectorTyID, ///< 15: SIMD 'packed' format, or other vector type 74 75 NumTypeIDs, // Must remain as last defined ID 76 LastPrimitiveTyID = X86_MMXTyID, 77 FirstDerivedTyID = IntegerTyID 78 }; 79 80 private: 81 /// Context - This refers to the LLVMContext in which this type was uniqued. 82 LLVMContext &Context; 83 84 // Due to Ubuntu GCC bug 910363: 85 // https://bugs.launchpad.net/ubuntu/+source/gcc-4.5/+bug/910363 86 // Bitpack ID and SubclassData manually. 87 // Note: TypeID : low 8 bit; SubclassData : high 24 bit. 88 uint32_t IDAndSubclassData; 89 90 protected: 91 friend class LLVMContextImpl; Type(LLVMContext & C,TypeID tid)92 explicit Type(LLVMContext &C, TypeID tid) 93 : Context(C), IDAndSubclassData(0), 94 NumContainedTys(0), ContainedTys(0) { 95 setTypeID(tid); 96 } ~Type()97 ~Type() {} 98 setTypeID(TypeID ID)99 void setTypeID(TypeID ID) { 100 IDAndSubclassData = (ID & 0xFF) | (IDAndSubclassData & 0xFFFFFF00); 101 assert(getTypeID() == ID && "TypeID data too large for field"); 102 } 103 getSubclassData()104 unsigned getSubclassData() const { return IDAndSubclassData >> 8; } 105 setSubclassData(unsigned val)106 void setSubclassData(unsigned val) { 107 IDAndSubclassData = (IDAndSubclassData & 0xFF) | (val << 8); 108 // Ensure we don't have any accidental truncation. 109 assert(getSubclassData() == val && "Subclass data too large for field"); 110 } 111 112 /// NumContainedTys - Keeps track of how many Type*'s there are in the 113 /// ContainedTys list. 114 unsigned NumContainedTys; 115 116 /// ContainedTys - A pointer to the array of Types contained by this Type. 117 /// For example, this includes the arguments of a function type, the elements 118 /// of a structure, the pointee of a pointer, the element type of an array, 119 /// etc. This pointer may be 0 for types that don't contain other types 120 /// (Integer, Double, Float). 121 Type * const *ContainedTys; 122 123 public: 124 void print(raw_ostream &O) const; 125 void dump() const; 126 127 /// getContext - Return the LLVMContext in which this type was uniqued. getContext()128 LLVMContext &getContext() const { return Context; } 129 130 //===--------------------------------------------------------------------===// 131 // Accessors for working with types. 132 // 133 134 /// getTypeID - Return the type id for the type. This will return one 135 /// of the TypeID enum elements defined above. 136 /// getTypeID()137 TypeID getTypeID() const { return (TypeID)(IDAndSubclassData & 0xFF); } 138 139 /// isVoidTy - Return true if this is 'void'. isVoidTy()140 bool isVoidTy() const { return getTypeID() == VoidTyID; } 141 142 /// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type. isHalfTy()143 bool isHalfTy() const { return getTypeID() == HalfTyID; } 144 145 /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type. isFloatTy()146 bool isFloatTy() const { return getTypeID() == FloatTyID; } 147 148 /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type. isDoubleTy()149 bool isDoubleTy() const { return getTypeID() == DoubleTyID; } 150 151 /// isX86_FP80Ty - Return true if this is x86 long double. isX86_FP80Ty()152 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } 153 154 /// isFP128Ty - Return true if this is 'fp128'. isFP128Ty()155 bool isFP128Ty() const { return getTypeID() == FP128TyID; } 156 157 /// isPPC_FP128Ty - Return true if this is powerpc long double. isPPC_FP128Ty()158 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } 159 160 /// isFloatingPointTy - Return true if this is one of the six floating point 161 /// types isFloatingPointTy()162 bool isFloatingPointTy() const { 163 return getTypeID() == HalfTyID || getTypeID() == FloatTyID || 164 getTypeID() == DoubleTyID || 165 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || 166 getTypeID() == PPC_FP128TyID; 167 } 168 getFltSemantics()169 const fltSemantics &getFltSemantics() const { 170 switch (getTypeID()) { 171 case HalfTyID: return APFloat::IEEEhalf; 172 case FloatTyID: return APFloat::IEEEsingle; 173 case DoubleTyID: return APFloat::IEEEdouble; 174 case X86_FP80TyID: return APFloat::x87DoubleExtended; 175 case FP128TyID: return APFloat::IEEEquad; 176 case PPC_FP128TyID: return APFloat::PPCDoubleDouble; 177 default: llvm_unreachable("Invalid floating type"); 178 } 179 } 180 181 /// isX86_MMXTy - Return true if this is X86 MMX. isX86_MMXTy()182 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } 183 184 /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP. 185 /// isFPOrFPVectorTy()186 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } 187 188 /// isLabelTy - Return true if this is 'label'. isLabelTy()189 bool isLabelTy() const { return getTypeID() == LabelTyID; } 190 191 /// isMetadataTy - Return true if this is 'metadata'. isMetadataTy()192 bool isMetadataTy() const { return getTypeID() == MetadataTyID; } 193 194 /// isIntegerTy - True if this is an instance of IntegerType. 195 /// isIntegerTy()196 bool isIntegerTy() const { return getTypeID() == IntegerTyID; } 197 198 /// isIntegerTy - Return true if this is an IntegerType of the given width. 199 bool isIntegerTy(unsigned Bitwidth) const; 200 201 /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of 202 /// integer types. 203 /// isIntOrIntVectorTy()204 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } 205 206 /// isFunctionTy - True if this is an instance of FunctionType. 207 /// isFunctionTy()208 bool isFunctionTy() const { return getTypeID() == FunctionTyID; } 209 210 /// isStructTy - True if this is an instance of StructType. 211 /// isStructTy()212 bool isStructTy() const { return getTypeID() == StructTyID; } 213 214 /// isArrayTy - True if this is an instance of ArrayType. 215 /// isArrayTy()216 bool isArrayTy() const { return getTypeID() == ArrayTyID; } 217 218 /// isPointerTy - True if this is an instance of PointerType. 219 /// isPointerTy()220 bool isPointerTy() const { return getTypeID() == PointerTyID; } 221 222 /// isPtrOrPtrVectorTy - Return true if this is a pointer type or a vector of 223 /// pointer types. 224 /// isPtrOrPtrVectorTy()225 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } 226 227 /// isVectorTy - True if this is an instance of VectorType. 228 /// isVectorTy()229 bool isVectorTy() const { return getTypeID() == VectorTyID; } 230 231 /// canLosslesslyBitCastTo - Return true if this type could be converted 232 /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts 233 /// are valid for types of the same size only where no re-interpretation of 234 /// the bits is done. 235 /// @brief Determine if this type could be losslessly bitcast to Ty 236 bool canLosslesslyBitCastTo(Type *Ty) const; 237 238 /// isEmptyTy - Return true if this type is empty, that is, it has no 239 /// elements or all its elements are empty. 240 bool isEmptyTy() const; 241 242 /// Here are some useful little methods to query what type derived types are 243 /// Note that all other types can just compare to see if this == Type::xxxTy; 244 /// isPrimitiveType()245 bool isPrimitiveType() const { return getTypeID() <= LastPrimitiveTyID; } isDerivedType()246 bool isDerivedType() const { return getTypeID() >= FirstDerivedTyID; } 247 248 /// isFirstClassType - Return true if the type is "first class", meaning it 249 /// is a valid type for a Value. 250 /// isFirstClassType()251 bool isFirstClassType() const { 252 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; 253 } 254 255 /// isSingleValueType - Return true if the type is a valid type for a 256 /// register in codegen. This includes all first-class types except struct 257 /// and array types. 258 /// isSingleValueType()259 bool isSingleValueType() const { 260 return (getTypeID() != VoidTyID && isPrimitiveType()) || 261 getTypeID() == IntegerTyID || getTypeID() == PointerTyID || 262 getTypeID() == VectorTyID; 263 } 264 265 /// isAggregateType - Return true if the type is an aggregate type. This 266 /// means it is valid as the first operand of an insertvalue or 267 /// extractvalue instruction. This includes struct and array types, but 268 /// does not include vector types. 269 /// isAggregateType()270 bool isAggregateType() const { 271 return getTypeID() == StructTyID || getTypeID() == ArrayTyID; 272 } 273 274 /// isSized - Return true if it makes sense to take the size of this type. To 275 /// get the actual size for a particular target, it is reasonable to use the 276 /// DataLayout subsystem to do this. 277 /// isSized()278 bool isSized() const { 279 // If it's a primitive, it is always sized. 280 if (getTypeID() == IntegerTyID || isFloatingPointTy() || 281 getTypeID() == PointerTyID || 282 getTypeID() == X86_MMXTyID) 283 return true; 284 // If it is not something that can have a size (e.g. a function or label), 285 // it doesn't have a size. 286 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && 287 getTypeID() != VectorTyID) 288 return false; 289 // Otherwise we have to try harder to decide. 290 return isSizedDerivedType(); 291 } 292 293 /// getPrimitiveSizeInBits - Return the basic size of this type if it is a 294 /// primitive type. These are fixed by LLVM and are not target dependent. 295 /// This will return zero if the type does not have a size or is not a 296 /// primitive type. 297 /// 298 /// Note that this may not reflect the size of memory allocated for an 299 /// instance of the type or the number of bytes that are written when an 300 /// instance of the type is stored to memory. The DataLayout class provides 301 /// additional query functions to provide this information. 302 /// 303 unsigned getPrimitiveSizeInBits() const; 304 305 /// getScalarSizeInBits - If this is a vector type, return the 306 /// getPrimitiveSizeInBits value for the element type. Otherwise return the 307 /// getPrimitiveSizeInBits value for this type. 308 unsigned getScalarSizeInBits(); 309 310 /// getFPMantissaWidth - Return the width of the mantissa of this type. This 311 /// is only valid on floating point types. If the FP type does not 312 /// have a stable mantissa (e.g. ppc long double), this method returns -1. 313 int getFPMantissaWidth() const; 314 315 /// getScalarType - If this is a vector type, return the element type, 316 /// otherwise return 'this'. 317 const Type *getScalarType() const; 318 Type *getScalarType(); 319 320 //===--------------------------------------------------------------------===// 321 // Type Iteration support. 322 // 323 typedef Type * const *subtype_iterator; subtype_begin()324 subtype_iterator subtype_begin() const { return ContainedTys; } subtype_end()325 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} 326 327 /// getContainedType - This method is used to implement the type iterator 328 /// (defined a the end of the file). For derived types, this returns the 329 /// types 'contained' in the derived type. 330 /// getContainedType(unsigned i)331 Type *getContainedType(unsigned i) const { 332 assert(i < NumContainedTys && "Index out of range!"); 333 return ContainedTys[i]; 334 } 335 336 /// getNumContainedTypes - Return the number of types in the derived type. 337 /// getNumContainedTypes()338 unsigned getNumContainedTypes() const { return NumContainedTys; } 339 340 //===--------------------------------------------------------------------===// 341 // Helper methods corresponding to subclass methods. This forces a cast to 342 // the specified subclass and calls its accessor. "getVectorNumElements" (for 343 // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is 344 // only intended to cover the core methods that are frequently used, helper 345 // methods should not be added here. 346 347 unsigned getIntegerBitWidth() const; 348 349 Type *getFunctionParamType(unsigned i) const; 350 unsigned getFunctionNumParams() const; 351 bool isFunctionVarArg() const; 352 353 StringRef getStructName() const; 354 unsigned getStructNumElements() const; 355 Type *getStructElementType(unsigned N) const; 356 357 Type *getSequentialElementType() const; 358 359 uint64_t getArrayNumElements() const; getArrayElementType()360 Type *getArrayElementType() const { return getSequentialElementType(); } 361 362 unsigned getVectorNumElements() const; getVectorElementType()363 Type *getVectorElementType() const { return getSequentialElementType(); } 364 getPointerElementType()365 Type *getPointerElementType() const { return getSequentialElementType(); } 366 367 /// \brief Get the address space of this pointer or pointer vector type. 368 unsigned getPointerAddressSpace() const; 369 370 //===--------------------------------------------------------------------===// 371 // Static members exported by the Type class itself. Useful for getting 372 // instances of Type. 373 // 374 375 /// getPrimitiveType - Return a type based on an identifier. 376 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); 377 378 //===--------------------------------------------------------------------===// 379 // These are the builtin types that are always available. 380 // 381 static Type *getVoidTy(LLVMContext &C); 382 static Type *getLabelTy(LLVMContext &C); 383 static Type *getHalfTy(LLVMContext &C); 384 static Type *getFloatTy(LLVMContext &C); 385 static Type *getDoubleTy(LLVMContext &C); 386 static Type *getMetadataTy(LLVMContext &C); 387 static Type *getX86_FP80Ty(LLVMContext &C); 388 static Type *getFP128Ty(LLVMContext &C); 389 static Type *getPPC_FP128Ty(LLVMContext &C); 390 static Type *getX86_MMXTy(LLVMContext &C); 391 static IntegerType *getIntNTy(LLVMContext &C, unsigned N); 392 static IntegerType *getInt1Ty(LLVMContext &C); 393 static IntegerType *getInt8Ty(LLVMContext &C); 394 static IntegerType *getInt16Ty(LLVMContext &C); 395 static IntegerType *getInt32Ty(LLVMContext &C); 396 static IntegerType *getInt64Ty(LLVMContext &C); 397 398 //===--------------------------------------------------------------------===// 399 // Convenience methods for getting pointer types with one of the above builtin 400 // types as pointee. 401 // 402 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); 403 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); 404 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); 405 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); 406 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); 407 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); 408 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); 409 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); 410 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); 411 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); 412 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); 413 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); 414 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); 415 416 /// getPointerTo - Return a pointer to the current type. This is equivalent 417 /// to PointerType::get(Foo, AddrSpace). 418 PointerType *getPointerTo(unsigned AddrSpace = 0); 419 420 private: 421 /// isSizedDerivedType - Derived types like structures and arrays are sized 422 /// iff all of the members of the type are sized as well. Since asking for 423 /// their size is relatively uncommon, move this operation out of line. 424 bool isSizedDerivedType() const; 425 }; 426 427 // Printing of types. 428 static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) { 429 T.print(OS); 430 return OS; 431 } 432 433 // allow isa<PointerType>(x) to work without DerivedTypes.h included. 434 template <> struct isa_impl<PointerType, Type> { 435 static inline bool doit(const Type &Ty) { 436 return Ty.getTypeID() == Type::PointerTyID; 437 } 438 }; 439 440 441 //===----------------------------------------------------------------------===// 442 // Provide specializations of GraphTraits to be able to treat a type as a 443 // graph of sub types. 444 445 446 template <> struct GraphTraits<Type*> { 447 typedef Type NodeType; 448 typedef Type::subtype_iterator ChildIteratorType; 449 450 static inline NodeType *getEntryNode(Type *T) { return T; } 451 static inline ChildIteratorType child_begin(NodeType *N) { 452 return N->subtype_begin(); 453 } 454 static inline ChildIteratorType child_end(NodeType *N) { 455 return N->subtype_end(); 456 } 457 }; 458 459 template <> struct GraphTraits<const Type*> { 460 typedef const Type NodeType; 461 typedef Type::subtype_iterator ChildIteratorType; 462 463 static inline NodeType *getEntryNode(NodeType *T) { return T; } 464 static inline ChildIteratorType child_begin(NodeType *N) { 465 return N->subtype_begin(); 466 } 467 static inline ChildIteratorType child_end(NodeType *N) { 468 return N->subtype_end(); 469 } 470 }; 471 472 // Create wrappers for C Binding types (see CBindingWrapping.h). 473 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef) 474 475 /* Specialized opaque type conversions. 476 */ 477 inline Type **unwrap(LLVMTypeRef* Tys) { 478 return reinterpret_cast<Type**>(Tys); 479 } 480 481 inline LLVMTypeRef *wrap(Type **Tys) { 482 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); 483 } 484 485 } // End llvm namespace 486 487 #endif 488