• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "dex/compiler_ir.h"
18 #include "dex_file-inl.h"
19 #include "entrypoints/quick/quick_entrypoints.h"
20 #include "invoke_type.h"
21 #include "mirror/array.h"
22 #include "mirror/string.h"
23 #include "mir_to_lir-inl.h"
24 #include "x86/codegen_x86.h"
25 
26 namespace art {
27 
28 /*
29  * This source files contains "gen" codegen routines that should
30  * be applicable to most targets.  Only mid-level support utilities
31  * and "op" calls may be used here.
32  */
33 
34 /*
35  * To save scheduling time, helper calls are broken into two parts: generation of
36  * the helper target address, and the actual call to the helper.  Because x86
37  * has a memory call operation, part 1 is a NOP for x86.  For other targets,
38  * load arguments between the two parts.
39  */
CallHelperSetup(ThreadOffset helper_offset)40 int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) {
41   return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
42 }
43 
44 /* NOTE: if r_tgt is a temp, it will be freed following use */
CallHelper(int r_tgt,ThreadOffset helper_offset,bool safepoint_pc,bool use_link)45 LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc, bool use_link) {
46   LIR* call_inst;
47   OpKind op = use_link ? kOpBlx : kOpBx;
48   if (cu_->instruction_set == kX86) {
49     call_inst = OpThreadMem(op, helper_offset);
50   } else {
51     call_inst = OpReg(op, r_tgt);
52     FreeTemp(r_tgt);
53   }
54   if (safepoint_pc) {
55     MarkSafepointPC(call_inst);
56   }
57   return call_inst;
58 }
59 
CallRuntimeHelperImm(ThreadOffset helper_offset,int arg0,bool safepoint_pc)60 void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
61   int r_tgt = CallHelperSetup(helper_offset);
62   LoadConstant(TargetReg(kArg0), arg0);
63   ClobberCalleeSave();
64   CallHelper(r_tgt, helper_offset, safepoint_pc);
65 }
66 
CallRuntimeHelperReg(ThreadOffset helper_offset,int arg0,bool safepoint_pc)67 void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
68   int r_tgt = CallHelperSetup(helper_offset);
69   OpRegCopy(TargetReg(kArg0), arg0);
70   ClobberCalleeSave();
71   CallHelper(r_tgt, helper_offset, safepoint_pc);
72 }
73 
CallRuntimeHelperRegLocation(ThreadOffset helper_offset,RegLocation arg0,bool safepoint_pc)74 void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
75                                            bool safepoint_pc) {
76   int r_tgt = CallHelperSetup(helper_offset);
77   if (arg0.wide == 0) {
78     LoadValueDirectFixed(arg0, TargetReg(kArg0));
79   } else {
80     LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
81   }
82   ClobberCalleeSave();
83   CallHelper(r_tgt, helper_offset, safepoint_pc);
84 }
85 
CallRuntimeHelperImmImm(ThreadOffset helper_offset,int arg0,int arg1,bool safepoint_pc)86 void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
87                                       bool safepoint_pc) {
88   int r_tgt = CallHelperSetup(helper_offset);
89   LoadConstant(TargetReg(kArg0), arg0);
90   LoadConstant(TargetReg(kArg1), arg1);
91   ClobberCalleeSave();
92   CallHelper(r_tgt, helper_offset, safepoint_pc);
93 }
94 
CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset,int arg0,RegLocation arg1,bool safepoint_pc)95 void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
96                                               RegLocation arg1, bool safepoint_pc) {
97   int r_tgt = CallHelperSetup(helper_offset);
98   if (arg1.wide == 0) {
99     LoadValueDirectFixed(arg1, TargetReg(kArg1));
100   } else {
101     LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
102   }
103   LoadConstant(TargetReg(kArg0), arg0);
104   ClobberCalleeSave();
105   CallHelper(r_tgt, helper_offset, safepoint_pc);
106 }
107 
CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset,RegLocation arg0,int arg1,bool safepoint_pc)108 void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1,
109                                               bool safepoint_pc) {
110   int r_tgt = CallHelperSetup(helper_offset);
111   LoadValueDirectFixed(arg0, TargetReg(kArg0));
112   LoadConstant(TargetReg(kArg1), arg1);
113   ClobberCalleeSave();
114   CallHelper(r_tgt, helper_offset, safepoint_pc);
115 }
116 
CallRuntimeHelperImmReg(ThreadOffset helper_offset,int arg0,int arg1,bool safepoint_pc)117 void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
118                                       bool safepoint_pc) {
119   int r_tgt = CallHelperSetup(helper_offset);
120   OpRegCopy(TargetReg(kArg1), arg1);
121   LoadConstant(TargetReg(kArg0), arg0);
122   ClobberCalleeSave();
123   CallHelper(r_tgt, helper_offset, safepoint_pc);
124 }
125 
CallRuntimeHelperRegImm(ThreadOffset helper_offset,int arg0,int arg1,bool safepoint_pc)126 void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
127                                       bool safepoint_pc) {
128   int r_tgt = CallHelperSetup(helper_offset);
129   OpRegCopy(TargetReg(kArg0), arg0);
130   LoadConstant(TargetReg(kArg1), arg1);
131   ClobberCalleeSave();
132   CallHelper(r_tgt, helper_offset, safepoint_pc);
133 }
134 
CallRuntimeHelperImmMethod(ThreadOffset helper_offset,int arg0,bool safepoint_pc)135 void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
136   int r_tgt = CallHelperSetup(helper_offset);
137   LoadCurrMethodDirect(TargetReg(kArg1));
138   LoadConstant(TargetReg(kArg0), arg0);
139   ClobberCalleeSave();
140   CallHelper(r_tgt, helper_offset, safepoint_pc);
141 }
142 
CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset,RegLocation arg0,RegLocation arg1,bool safepoint_pc)143 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0,
144                                                       RegLocation arg1, bool safepoint_pc) {
145   int r_tgt = CallHelperSetup(helper_offset);
146   if (arg0.wide == 0) {
147     LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
148     if (arg1.wide == 0) {
149       if (cu_->instruction_set == kMips) {
150         LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
151       } else {
152         LoadValueDirectFixed(arg1, TargetReg(kArg1));
153       }
154     } else {
155       if (cu_->instruction_set == kMips) {
156         LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
157       } else {
158         LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
159       }
160     }
161   } else {
162     LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
163     if (arg1.wide == 0) {
164       LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
165     } else {
166       LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
167     }
168   }
169   ClobberCalleeSave();
170   CallHelper(r_tgt, helper_offset, safepoint_pc);
171 }
172 
CallRuntimeHelperRegReg(ThreadOffset helper_offset,int arg0,int arg1,bool safepoint_pc)173 void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
174                                       bool safepoint_pc) {
175   int r_tgt = CallHelperSetup(helper_offset);
176   DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
177   OpRegCopy(TargetReg(kArg0), arg0);
178   OpRegCopy(TargetReg(kArg1), arg1);
179   ClobberCalleeSave();
180   CallHelper(r_tgt, helper_offset, safepoint_pc);
181 }
182 
CallRuntimeHelperRegRegImm(ThreadOffset helper_offset,int arg0,int arg1,int arg2,bool safepoint_pc)183 void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
184                                          int arg2, bool safepoint_pc) {
185   int r_tgt = CallHelperSetup(helper_offset);
186   DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
187   OpRegCopy(TargetReg(kArg0), arg0);
188   OpRegCopy(TargetReg(kArg1), arg1);
189   LoadConstant(TargetReg(kArg2), arg2);
190   ClobberCalleeSave();
191   CallHelper(r_tgt, helper_offset, safepoint_pc);
192 }
193 
CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset,int arg0,RegLocation arg2,bool safepoint_pc)194 void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset,
195                                                     int arg0, RegLocation arg2, bool safepoint_pc) {
196   int r_tgt = CallHelperSetup(helper_offset);
197   LoadValueDirectFixed(arg2, TargetReg(kArg2));
198   LoadCurrMethodDirect(TargetReg(kArg1));
199   LoadConstant(TargetReg(kArg0), arg0);
200   ClobberCalleeSave();
201   CallHelper(r_tgt, helper_offset, safepoint_pc);
202 }
203 
CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset,int arg0,int arg2,bool safepoint_pc)204 void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0,
205                                             int arg2, bool safepoint_pc) {
206   int r_tgt = CallHelperSetup(helper_offset);
207   LoadCurrMethodDirect(TargetReg(kArg1));
208   LoadConstant(TargetReg(kArg2), arg2);
209   LoadConstant(TargetReg(kArg0), arg0);
210   ClobberCalleeSave();
211   CallHelper(r_tgt, helper_offset, safepoint_pc);
212 }
213 
CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,int arg0,RegLocation arg1,RegLocation arg2,bool safepoint_pc)214 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
215                                                          int arg0, RegLocation arg1,
216                                                          RegLocation arg2, bool safepoint_pc) {
217   int r_tgt = CallHelperSetup(helper_offset);
218   LoadValueDirectFixed(arg1, TargetReg(kArg1));
219   if (arg2.wide == 0) {
220     LoadValueDirectFixed(arg2, TargetReg(kArg2));
221   } else {
222     LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
223   }
224   LoadConstant(TargetReg(kArg0), arg0);
225   ClobberCalleeSave();
226   CallHelper(r_tgt, helper_offset, safepoint_pc);
227 }
228 
229 /*
230  * If there are any ins passed in registers that have not been promoted
231  * to a callee-save register, flush them to the frame.  Perform intial
232  * assignment of promoted arguments.
233  *
234  * ArgLocs is an array of location records describing the incoming arguments
235  * with one location record per word of argument.
236  */
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)237 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
238   /*
239    * Dummy up a RegLocation for the incoming Method*
240    * It will attempt to keep kArg0 live (or copy it to home location
241    * if promoted).
242    */
243   RegLocation rl_src = rl_method;
244   rl_src.location = kLocPhysReg;
245   rl_src.low_reg = TargetReg(kArg0);
246   rl_src.home = false;
247   MarkLive(rl_src.low_reg, rl_src.s_reg_low);
248   StoreValue(rl_method, rl_src);
249   // If Method* has been promoted, explicitly flush
250   if (rl_method.location == kLocPhysReg) {
251     StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
252   }
253 
254   if (cu_->num_ins == 0)
255     return;
256   const int num_arg_regs = 3;
257   static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3};
258   int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
259   /*
260    * Copy incoming arguments to their proper home locations.
261    * NOTE: an older version of dx had an issue in which
262    * it would reuse static method argument registers.
263    * This could result in the same Dalvik virtual register
264    * being promoted to both core and fp regs. To account for this,
265    * we only copy to the corresponding promoted physical register
266    * if it matches the type of the SSA name for the incoming
267    * argument.  It is also possible that long and double arguments
268    * end up half-promoted.  In those cases, we must flush the promoted
269    * half to memory as well.
270    */
271   for (int i = 0; i < cu_->num_ins; i++) {
272     PromotionMap* v_map = &promotion_map_[start_vreg + i];
273     if (i < num_arg_regs) {
274       // If arriving in register
275       bool need_flush = true;
276       RegLocation* t_loc = &ArgLocs[i];
277       if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
278         OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i]));
279         need_flush = false;
280       } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
281         OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i]));
282         need_flush = false;
283       } else {
284         need_flush = true;
285       }
286 
287       // For wide args, force flush if not fully promoted
288       if (t_loc->wide) {
289         PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
290         // Is only half promoted?
291         need_flush |= (p_map->core_location != v_map->core_location) ||
292             (p_map->fp_location != v_map->fp_location);
293         if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
294           /*
295            * In Arm, a double is represented as a pair of consecutive single float
296            * registers starting at an even number.  It's possible that both Dalvik vRegs
297            * representing the incoming double were independently promoted as singles - but
298            * not in a form usable as a double.  If so, we need to flush - even though the
299            * incoming arg appears fully in register.  At this point in the code, both
300            * halves of the double are promoted.  Make sure they are in a usable form.
301            */
302           int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
303           int low_reg = promotion_map_[lowreg_index].FpReg;
304           int high_reg = promotion_map_[lowreg_index + 1].FpReg;
305           if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
306             need_flush = true;
307           }
308         }
309       }
310       if (need_flush) {
311         StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
312                       TargetReg(arg_regs[i]), kWord);
313       }
314     } else {
315       // If arriving in frame & promoted
316       if (v_map->core_location == kLocPhysReg) {
317         LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
318                      v_map->core_reg);
319       }
320       if (v_map->fp_location == kLocPhysReg) {
321         LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
322                      v_map->FpReg);
323       }
324     }
325   }
326 }
327 
328 /*
329  * Bit of a hack here - in the absence of a real scheduling pass,
330  * emit the next instruction in static & direct invoke sequences.
331  */
NextSDCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t direct_code,uintptr_t direct_method,InvokeType type)332 static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
333                           int state, const MethodReference& target_method,
334                           uint32_t unused,
335                           uintptr_t direct_code, uintptr_t direct_method,
336                           InvokeType type) {
337   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
338   if (cu->instruction_set != kThumb2) {
339     // Disable sharpening
340     direct_code = 0;
341     direct_method = 0;
342   }
343   if (direct_code != 0 && direct_method != 0) {
344     switch (state) {
345     case 0:  // Get the current Method* [sets kArg0]
346       if (direct_code != static_cast<unsigned int>(-1)) {
347         cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
348       } else {
349         CHECK_EQ(cu->dex_file, target_method.dex_file);
350         LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
351                                                target_method.dex_method_index, 0);
352         if (data_target == NULL) {
353           data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
354           data_target->operands[1] = type;
355         }
356         LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
357         cg->AppendLIR(load_pc_rel);
358         DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
359       }
360       if (direct_method != static_cast<unsigned int>(-1)) {
361         cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
362       } else {
363         CHECK_EQ(cu->dex_file, target_method.dex_file);
364         LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
365                                                target_method.dex_method_index, 0);
366         if (data_target == NULL) {
367           data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index);
368           data_target->operands[1] = type;
369         }
370         LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
371         cg->AppendLIR(load_pc_rel);
372         DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
373       }
374       break;
375     default:
376       return -1;
377     }
378   } else {
379     switch (state) {
380     case 0:  // Get the current Method* [sets kArg0]
381       // TUNING: we can save a reg copy if Method* has been promoted.
382       cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
383       break;
384     case 1:  // Get method->dex_cache_resolved_methods_
385       cg->LoadWordDisp(cg->TargetReg(kArg0),
386         mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
387       // Set up direct code if known.
388       if (direct_code != 0) {
389         if (direct_code != static_cast<unsigned int>(-1)) {
390           cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
391         } else {
392           CHECK_EQ(cu->dex_file, target_method.dex_file);
393           LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
394                                                  target_method.dex_method_index, 0);
395           if (data_target == NULL) {
396             data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
397             data_target->operands[1] = type;
398           }
399           LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
400           cg->AppendLIR(load_pc_rel);
401           DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
402         }
403       }
404       break;
405     case 2:  // Grab target method*
406       CHECK_EQ(cu->dex_file, target_method.dex_file);
407       cg->LoadWordDisp(cg->TargetReg(kArg0),
408                        mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
409                            (target_method.dex_method_index * 4),
410                        cg-> TargetReg(kArg0));
411       break;
412     case 3:  // Grab the code from the method*
413       if (cu->instruction_set != kX86) {
414         if (direct_code == 0) {
415           cg->LoadWordDisp(cg->TargetReg(kArg0),
416                            mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
417                            cg->TargetReg(kInvokeTgt));
418         }
419         break;
420       }
421       // Intentional fallthrough for x86
422     default:
423       return -1;
424     }
425   }
426   return state + 1;
427 }
428 
429 /*
430  * Bit of a hack here - in the absence of a real scheduling pass,
431  * emit the next instruction in a virtual invoke sequence.
432  * We can use kLr as a temp prior to target address loading
433  * Note also that we'll load the first argument ("this") into
434  * kArg1 here rather than the standard LoadArgRegs.
435  */
NextVCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)436 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
437                          int state, const MethodReference& target_method,
438                          uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
439                          InvokeType unused3) {
440   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
441   /*
442    * This is the fast path in which the target virtual method is
443    * fully resolved at compile time.
444    */
445   switch (state) {
446     case 0: {  // Get "this" [set kArg1]
447       RegLocation  rl_arg = info->args[0];
448       cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
449       break;
450     }
451     case 1:  // Is "this" null? [use kArg1]
452       cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
453       // get this->klass_ [use kArg1, set kInvokeTgt]
454       cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
455                        cg->TargetReg(kInvokeTgt));
456       break;
457     case 2:  // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
458       cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
459                        cg->TargetReg(kInvokeTgt));
460       break;
461     case 3:  // Get target method [use kInvokeTgt, set kArg0]
462       cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
463                        mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
464                        cg->TargetReg(kArg0));
465       break;
466     case 4:  // Get the compiled code address [uses kArg0, sets kInvokeTgt]
467       if (cu->instruction_set != kX86) {
468         cg->LoadWordDisp(cg->TargetReg(kArg0),
469                          mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
470                          cg->TargetReg(kInvokeTgt));
471         break;
472       }
473       // Intentional fallthrough for X86
474     default:
475       return -1;
476   }
477   return state + 1;
478 }
479 
480 /*
481  * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline,
482  * which will locate the target and continue on via a tail call.
483  */
NextInterfaceCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t direct_method,InvokeType unused4)484 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
485                                  const MethodReference& target_method,
486                                  uint32_t unused, uintptr_t unused2,
487                                  uintptr_t direct_method, InvokeType unused4) {
488   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
489   if (cu->instruction_set != kThumb2) {
490     // Disable sharpening
491     direct_method = 0;
492   }
493   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
494 
495   if (direct_method != 0) {
496     switch (state) {
497       case 0:  // Load the trampoline target [sets kInvokeTgt].
498         if (cu->instruction_set != kX86) {
499           cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(),
500                            cg->TargetReg(kInvokeTgt));
501         }
502         // Get the interface Method* [sets kArg0]
503         if (direct_method != static_cast<unsigned int>(-1)) {
504           cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
505         } else {
506           CHECK_EQ(cu->dex_file, target_method.dex_file);
507           LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
508                                                  target_method.dex_method_index, 0);
509           if (data_target == NULL) {
510             data_target = cg->AddWordData(&cg->method_literal_list_,
511                                           target_method.dex_method_index);
512             data_target->operands[1] = kInterface;
513           }
514           LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
515           cg->AppendLIR(load_pc_rel);
516           DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
517         }
518         break;
519       default:
520         return -1;
521     }
522   } else {
523     switch (state) {
524       case 0:
525         // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted.
526         cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
527         // Load the trampoline target [sets kInvokeTgt].
528         if (cu->instruction_set != kX86) {
529           cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(),
530                            cg->TargetReg(kInvokeTgt));
531         }
532         break;
533     case 1:  // Get method->dex_cache_resolved_methods_ [set/use kArg0]
534       cg->LoadWordDisp(cg->TargetReg(kArg0),
535                        mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
536                        cg->TargetReg(kArg0));
537       break;
538     case 2:  // Grab target method* [set/use kArg0]
539       CHECK_EQ(cu->dex_file, target_method.dex_file);
540       cg->LoadWordDisp(cg->TargetReg(kArg0),
541                        mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
542                            (target_method.dex_method_index * 4),
543                        cg->TargetReg(kArg0));
544       break;
545     default:
546       return -1;
547     }
548   }
549   return state + 1;
550 }
551 
NextInvokeInsnSP(CompilationUnit * cu,CallInfo * info,ThreadOffset trampoline,int state,const MethodReference & target_method,uint32_t method_idx)552 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline,
553                             int state, const MethodReference& target_method,
554                             uint32_t method_idx) {
555   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
556   /*
557    * This handles the case in which the base method is not fully
558    * resolved at compile time, we bail to a runtime helper.
559    */
560   if (state == 0) {
561     if (cu->instruction_set != kX86) {
562       // Load trampoline target
563       cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt));
564     }
565     // Load kArg0 with method index
566     CHECK_EQ(cu->dex_file, target_method.dex_file);
567     cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
568     return 1;
569   }
570   return -1;
571 }
572 
NextStaticCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)573 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
574                                 int state,
575                                 const MethodReference& target_method,
576                                 uint32_t method_idx,
577                                 uintptr_t unused, uintptr_t unused2,
578                                 InvokeType unused3) {
579   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
580   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
581 }
582 
NextDirectCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)583 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
584                                 const MethodReference& target_method,
585                                 uint32_t method_idx, uintptr_t unused,
586                                 uintptr_t unused2, InvokeType unused3) {
587   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
588   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
589 }
590 
NextSuperCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)591 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
592                                const MethodReference& target_method,
593                                uint32_t method_idx, uintptr_t unused,
594                                uintptr_t unused2, InvokeType unused3) {
595   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
596   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
597 }
598 
NextVCallInsnSP(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t method_idx,uintptr_t unused,uintptr_t unused2,InvokeType unused3)599 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
600                            const MethodReference& target_method,
601                            uint32_t method_idx, uintptr_t unused,
602                            uintptr_t unused2, InvokeType unused3) {
603   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
604   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
605 }
606 
NextInterfaceCallInsnWithAccessCheck(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused,uintptr_t unused2,uintptr_t unused3,InvokeType unused4)607 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
608                                                 CallInfo* info, int state,
609                                                 const MethodReference& target_method,
610                                                 uint32_t unused,
611                                                 uintptr_t unused2, uintptr_t unused3,
612                                                 InvokeType unused4) {
613   ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
614   return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
615 }
616 
LoadArgRegs(CallInfo * info,int call_state,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)617 int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
618                          NextCallInsn next_call_insn,
619                          const MethodReference& target_method,
620                          uint32_t vtable_idx, uintptr_t direct_code,
621                          uintptr_t direct_method, InvokeType type, bool skip_this) {
622   int last_arg_reg = TargetReg(kArg3);
623   int next_reg = TargetReg(kArg1);
624   int next_arg = 0;
625   if (skip_this) {
626     next_reg++;
627     next_arg++;
628   }
629   for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
630     RegLocation rl_arg = info->args[next_arg++];
631     rl_arg = UpdateRawLoc(rl_arg);
632     if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
633       LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
634       next_reg++;
635       next_arg++;
636     } else {
637       if (rl_arg.wide) {
638         rl_arg.wide = false;
639         rl_arg.is_const = false;
640       }
641       LoadValueDirectFixed(rl_arg, next_reg);
642     }
643     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
644                                 direct_code, direct_method, type);
645   }
646   return call_state;
647 }
648 
649 /*
650  * Load up to 5 arguments, the first three of which will be in
651  * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
652  * and as part of the load sequence, it must be replaced with
653  * the target method pointer.  Note, this may also be called
654  * for "range" variants if the number of arguments is 5 or fewer.
655  */
GenDalvikArgsNoRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)656 int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
657                                   int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
658                                   const MethodReference& target_method,
659                                   uint32_t vtable_idx, uintptr_t direct_code,
660                                   uintptr_t direct_method, InvokeType type, bool skip_this) {
661   RegLocation rl_arg;
662 
663   /* If no arguments, just return */
664   if (info->num_arg_words == 0)
665     return call_state;
666 
667   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
668                               direct_code, direct_method, type);
669 
670   DCHECK_LE(info->num_arg_words, 5);
671   if (info->num_arg_words > 3) {
672     int32_t next_use = 3;
673     // Detect special case of wide arg spanning arg3/arg4
674     RegLocation rl_use0 = info->args[0];
675     RegLocation rl_use1 = info->args[1];
676     RegLocation rl_use2 = info->args[2];
677     if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
678       rl_use2.wide) {
679       int reg = -1;
680       // Wide spans, we need the 2nd half of uses[2].
681       rl_arg = UpdateLocWide(rl_use2);
682       if (rl_arg.location == kLocPhysReg) {
683         reg = rl_arg.high_reg;
684       } else {
685         // kArg2 & rArg3 can safely be used here
686         reg = TargetReg(kArg3);
687         LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
688         call_state = next_call_insn(cu_, info, call_state, target_method,
689                                     vtable_idx, direct_code, direct_method, type);
690       }
691       StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
692       StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
693       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
694                                   direct_code, direct_method, type);
695       next_use++;
696     }
697     // Loop through the rest
698     while (next_use < info->num_arg_words) {
699       int low_reg;
700       int high_reg = -1;
701       rl_arg = info->args[next_use];
702       rl_arg = UpdateRawLoc(rl_arg);
703       if (rl_arg.location == kLocPhysReg) {
704         low_reg = rl_arg.low_reg;
705         high_reg = rl_arg.high_reg;
706       } else {
707         low_reg = TargetReg(kArg2);
708         if (rl_arg.wide) {
709           high_reg = TargetReg(kArg3);
710           LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
711         } else {
712           LoadValueDirectFixed(rl_arg, low_reg);
713         }
714         call_state = next_call_insn(cu_, info, call_state, target_method,
715                                     vtable_idx, direct_code, direct_method, type);
716       }
717       int outs_offset = (next_use + 1) * 4;
718       if (rl_arg.wide) {
719         StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
720         next_use += 2;
721       } else {
722         StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
723         next_use++;
724       }
725       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
726                                direct_code, direct_method, type);
727     }
728   }
729 
730   call_state = LoadArgRegs(info, call_state, next_call_insn,
731                            target_method, vtable_idx, direct_code, direct_method,
732                            type, skip_this);
733 
734   if (pcrLabel) {
735     *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
736   }
737   return call_state;
738 }
739 
740 /*
741  * May have 0+ arguments (also used for jumbo).  Note that
742  * source virtual registers may be in physical registers, so may
743  * need to be flushed to home location before copying.  This
744  * applies to arg3 and above (see below).
745  *
746  * Two general strategies:
747  *    If < 20 arguments
748  *       Pass args 3-18 using vldm/vstm block copy
749  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
750  *    If 20+ arguments
751  *       Pass args arg19+ using memcpy block copy
752  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
753  *
754  */
GenDalvikArgsRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)755 int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
756                                 LIR** pcrLabel, NextCallInsn next_call_insn,
757                                 const MethodReference& target_method,
758                                 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
759                                 InvokeType type, bool skip_this) {
760   // If we can treat it as non-range (Jumbo ops will use range form)
761   if (info->num_arg_words <= 5)
762     return GenDalvikArgsNoRange(info, call_state, pcrLabel,
763                                 next_call_insn, target_method, vtable_idx,
764                                 direct_code, direct_method, type, skip_this);
765   /*
766    * First load the non-register arguments.  Both forms expect all
767    * of the source arguments to be in their home frame location, so
768    * scan the s_reg names and flush any that have been promoted to
769    * frame backing storage.
770    */
771   // Scan the rest of the args - if in phys_reg flush to memory
772   for (int next_arg = 0; next_arg < info->num_arg_words;) {
773     RegLocation loc = info->args[next_arg];
774     if (loc.wide) {
775       loc = UpdateLocWide(loc);
776       if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
777         StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
778                           loc.low_reg, loc.high_reg);
779       }
780       next_arg += 2;
781     } else {
782       loc = UpdateLoc(loc);
783       if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
784         StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
785                       loc.low_reg, kWord);
786       }
787       next_arg++;
788     }
789   }
790 
791   int start_offset = SRegOffset(info->args[3].s_reg_low);
792   int outs_offset = 4 /* Method* */ + (3 * 4);
793   if (cu_->instruction_set != kThumb2) {
794     // Generate memcpy
795     OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
796     OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
797     CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
798                                TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
799   } else {
800     if (info->num_arg_words >= 20) {
801       // Generate memcpy
802       OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
803       OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
804       CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
805                                  TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
806     } else {
807       // Use vldm/vstm pair using kArg3 as a temp
808       int regs_left = std::min(info->num_arg_words - 3, 16);
809       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
810                                direct_code, direct_method, type);
811       OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
812       LIR* ld = OpVldm(TargetReg(kArg3), regs_left);
813       // TUNING: loosen barrier
814       ld->def_mask = ENCODE_ALL;
815       SetMemRefType(ld, true /* is_load */, kDalvikReg);
816       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
817                                direct_code, direct_method, type);
818       OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
819       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
820                                direct_code, direct_method, type);
821       LIR* st = OpVstm(TargetReg(kArg3), regs_left);
822       SetMemRefType(st, false /* is_load */, kDalvikReg);
823       st->def_mask = ENCODE_ALL;
824       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
825                                direct_code, direct_method, type);
826     }
827   }
828 
829   call_state = LoadArgRegs(info, call_state, next_call_insn,
830                            target_method, vtable_idx, direct_code, direct_method,
831                            type, skip_this);
832 
833   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
834                            direct_code, direct_method, type);
835   if (pcrLabel) {
836     *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
837   }
838   return call_state;
839 }
840 
InlineTarget(CallInfo * info)841 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
842   RegLocation res;
843   if (info->result.location == kLocInvalid) {
844     res = GetReturn(false);
845   } else {
846     res = info->result;
847   }
848   return res;
849 }
850 
InlineTargetWide(CallInfo * info)851 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
852   RegLocation res;
853   if (info->result.location == kLocInvalid) {
854     res = GetReturnWide(false);
855   } else {
856     res = info->result;
857   }
858   return res;
859 }
860 
GenInlinedCharAt(CallInfo * info)861 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
862   if (cu_->instruction_set == kMips) {
863     // TODO - add Mips implementation
864     return false;
865   }
866   // Location of reference to data array
867   int value_offset = mirror::String::ValueOffset().Int32Value();
868   // Location of count
869   int count_offset = mirror::String::CountOffset().Int32Value();
870   // Starting offset within data array
871   int offset_offset = mirror::String::OffsetOffset().Int32Value();
872   // Start of char data with array_
873   int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
874 
875   RegLocation rl_obj = info->args[0];
876   RegLocation rl_idx = info->args[1];
877   rl_obj = LoadValue(rl_obj, kCoreReg);
878   rl_idx = LoadValue(rl_idx, kCoreReg);
879   int reg_max;
880   GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
881   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
882   LIR* launch_pad = NULL;
883   int reg_off = INVALID_REG;
884   int reg_ptr = INVALID_REG;
885   if (cu_->instruction_set != kX86) {
886     reg_off = AllocTemp();
887     reg_ptr = AllocTemp();
888     if (range_check) {
889       reg_max = AllocTemp();
890       LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
891     }
892     LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
893     LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
894     if (range_check) {
895       // Set up a launch pad to allow retry in case of bounds violation */
896       launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
897       intrinsic_launchpads_.Insert(launch_pad);
898       OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
899       FreeTemp(reg_max);
900       OpCondBranch(kCondCs, launch_pad);
901     }
902   } else {
903     if (range_check) {
904       reg_max = AllocTemp();
905       LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
906       // Set up a launch pad to allow retry in case of bounds violation */
907       launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
908       intrinsic_launchpads_.Insert(launch_pad);
909       OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
910       FreeTemp(reg_max);
911       OpCondBranch(kCondCc, launch_pad);
912     }
913     reg_off = AllocTemp();
914     reg_ptr = AllocTemp();
915     LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
916     LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
917   }
918   OpRegImm(kOpAdd, reg_ptr, data_offset);
919   OpRegReg(kOpAdd, reg_off, rl_idx.low_reg);
920   FreeTemp(rl_obj.low_reg);
921   FreeTemp(rl_idx.low_reg);
922   RegLocation rl_dest = InlineTarget(info);
923   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
924   LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
925   FreeTemp(reg_off);
926   FreeTemp(reg_ptr);
927   StoreValue(rl_dest, rl_result);
928   if (range_check) {
929     launch_pad->operands[2] = 0;  // no resumption
930   }
931   // Record that we've already inlined & null checked
932   info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
933   return true;
934 }
935 
936 // Generates an inlined String.is_empty or String.length.
GenInlinedStringIsEmptyOrLength(CallInfo * info,bool is_empty)937 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
938   if (cu_->instruction_set == kMips) {
939     // TODO - add Mips implementation
940     return false;
941   }
942   // dst = src.length();
943   RegLocation rl_obj = info->args[0];
944   rl_obj = LoadValue(rl_obj, kCoreReg);
945   RegLocation rl_dest = InlineTarget(info);
946   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
947   GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
948   LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg);
949   if (is_empty) {
950     // dst = (dst == 0);
951     if (cu_->instruction_set == kThumb2) {
952       int t_reg = AllocTemp();
953       OpRegReg(kOpNeg, t_reg, rl_result.low_reg);
954       OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
955     } else {
956       DCHECK_EQ(cu_->instruction_set, kX86);
957       OpRegImm(kOpSub, rl_result.low_reg, 1);
958       OpRegImm(kOpLsr, rl_result.low_reg, 31);
959     }
960   }
961   StoreValue(rl_dest, rl_result);
962   return true;
963 }
964 
GenInlinedAbsInt(CallInfo * info)965 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
966   if (cu_->instruction_set == kMips) {
967     // TODO - add Mips implementation
968     return false;
969   }
970   RegLocation rl_src = info->args[0];
971   rl_src = LoadValue(rl_src, kCoreReg);
972   RegLocation rl_dest = InlineTarget(info);
973   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
974   int sign_reg = AllocTemp();
975   // abs(x) = y<=x>>31, (x+y)^y.
976   OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31);
977   OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
978   OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
979   StoreValue(rl_dest, rl_result);
980   return true;
981 }
982 
GenInlinedAbsLong(CallInfo * info)983 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
984   if (cu_->instruction_set == kMips) {
985     // TODO - add Mips implementation
986     return false;
987   }
988   if (cu_->instruction_set == kThumb2) {
989     RegLocation rl_src = info->args[0];
990     rl_src = LoadValueWide(rl_src, kCoreReg);
991     RegLocation rl_dest = InlineTargetWide(info);
992     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
993     int sign_reg = AllocTemp();
994     // abs(x) = y<=x>>31, (x+y)^y.
995     OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31);
996     OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
997     OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
998     OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
999     OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
1000     StoreValueWide(rl_dest, rl_result);
1001     return true;
1002   } else {
1003     DCHECK_EQ(cu_->instruction_set, kX86);
1004     // Reuse source registers to avoid running out of temps
1005     RegLocation rl_src = info->args[0];
1006     rl_src = LoadValueWide(rl_src, kCoreReg);
1007     RegLocation rl_dest = InlineTargetWide(info);
1008     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1009     OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
1010     FreeTemp(rl_src.low_reg);
1011     FreeTemp(rl_src.high_reg);
1012     int sign_reg = AllocTemp();
1013     // abs(x) = y<=x>>31, (x+y)^y.
1014     OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31);
1015     OpRegReg(kOpAdd, rl_result.low_reg, sign_reg);
1016     OpRegReg(kOpAdc, rl_result.high_reg, sign_reg);
1017     OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
1018     OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
1019     StoreValueWide(rl_dest, rl_result);
1020     return true;
1021   }
1022 }
1023 
GenInlinedFloatCvt(CallInfo * info)1024 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
1025   if (cu_->instruction_set == kMips) {
1026     // TODO - add Mips implementation
1027     return false;
1028   }
1029   RegLocation rl_src = info->args[0];
1030   RegLocation rl_dest = InlineTarget(info);
1031   StoreValue(rl_dest, rl_src);
1032   return true;
1033 }
1034 
GenInlinedDoubleCvt(CallInfo * info)1035 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
1036   if (cu_->instruction_set == kMips) {
1037     // TODO - add Mips implementation
1038     return false;
1039   }
1040   RegLocation rl_src = info->args[0];
1041   RegLocation rl_dest = InlineTargetWide(info);
1042   StoreValueWide(rl_dest, rl_src);
1043   return true;
1044 }
1045 
1046 /*
1047  * Fast string.index_of(I) & (II).  Tests for simple case of char <= 0xffff,
1048  * otherwise bails to standard library code.
1049  */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1050 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1051   if (cu_->instruction_set == kMips) {
1052     // TODO - add Mips implementation
1053     return false;
1054   }
1055   ClobberCalleeSave();
1056   LockCallTemps();  // Using fixed registers
1057   int reg_ptr = TargetReg(kArg0);
1058   int reg_char = TargetReg(kArg1);
1059   int reg_start = TargetReg(kArg2);
1060 
1061   RegLocation rl_obj = info->args[0];
1062   RegLocation rl_char = info->args[1];
1063   RegLocation rl_start = info->args[2];
1064   LoadValueDirectFixed(rl_obj, reg_ptr);
1065   LoadValueDirectFixed(rl_char, reg_char);
1066   if (zero_based) {
1067     LoadConstant(reg_start, 0);
1068   } else {
1069     LoadValueDirectFixed(rl_start, reg_start);
1070   }
1071   int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf)) : 0;
1072   GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
1073   LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
1074   intrinsic_launchpads_.Insert(launch_pad);
1075   OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
1076   // NOTE: not a safepoint
1077   if (cu_->instruction_set != kX86) {
1078     OpReg(kOpBlx, r_tgt);
1079   } else {
1080     OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pIndexOf));
1081   }
1082   LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
1083   launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt);
1084   // Record that we've already inlined & null checked
1085   info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1086   RegLocation rl_return = GetReturn(false);
1087   RegLocation rl_dest = InlineTarget(info);
1088   StoreValue(rl_dest, rl_return);
1089   return true;
1090 }
1091 
1092 /* Fast string.compareTo(Ljava/lang/string;)I. */
GenInlinedStringCompareTo(CallInfo * info)1093 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
1094   if (cu_->instruction_set == kMips) {
1095     // TODO - add Mips implementation
1096     return false;
1097   }
1098   ClobberCalleeSave();
1099   LockCallTemps();  // Using fixed registers
1100   int reg_this = TargetReg(kArg0);
1101   int reg_cmp = TargetReg(kArg1);
1102 
1103   RegLocation rl_this = info->args[0];
1104   RegLocation rl_cmp = info->args[1];
1105   LoadValueDirectFixed(rl_this, reg_this);
1106   LoadValueDirectFixed(rl_cmp, reg_cmp);
1107   int r_tgt = (cu_->instruction_set != kX86) ?
1108       LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
1109   GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
1110   // TUNING: check if rl_cmp.s_reg_low is already null checked
1111   LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
1112   intrinsic_launchpads_.Insert(launch_pad);
1113   OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
1114   // NOTE: not a safepoint
1115   if (cu_->instruction_set != kX86) {
1116     OpReg(kOpBlx, r_tgt);
1117   } else {
1118     OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo));
1119   }
1120   launch_pad->operands[2] = 0;  // No return possible
1121   // Record that we've already inlined & null checked
1122   info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1123   RegLocation rl_return = GetReturn(false);
1124   RegLocation rl_dest = InlineTarget(info);
1125   StoreValue(rl_dest, rl_return);
1126   return true;
1127 }
1128 
GenInlinedCurrentThread(CallInfo * info)1129 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1130   RegLocation rl_dest = InlineTarget(info);
1131   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1132   ThreadOffset offset = Thread::PeerOffset();
1133   if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
1134     LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg);
1135   } else {
1136     CHECK(cu_->instruction_set == kX86);
1137     reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset);
1138   }
1139   StoreValue(rl_dest, rl_result);
1140   return true;
1141 }
1142 
GenInlinedUnsafeGet(CallInfo * info,bool is_long,bool is_volatile)1143 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1144                                   bool is_long, bool is_volatile) {
1145   if (cu_->instruction_set == kMips) {
1146     // TODO - add Mips implementation
1147     return false;
1148   }
1149   // Unused - RegLocation rl_src_unsafe = info->args[0];
1150   RegLocation rl_src_obj = info->args[1];  // Object
1151   RegLocation rl_src_offset = info->args[2];  // long low
1152   rl_src_offset.wide = 0;  // ignore high half in info->args[3]
1153   RegLocation rl_dest = InlineTarget(info);  // result reg
1154   if (is_volatile) {
1155     GenMemBarrier(kLoadLoad);
1156   }
1157   RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
1158   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1159   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1160   if (is_long) {
1161     OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
1162     LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
1163     StoreValueWide(rl_dest, rl_result);
1164   } else {
1165     LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
1166     StoreValue(rl_dest, rl_result);
1167   }
1168   return true;
1169 }
1170 
GenInlinedUnsafePut(CallInfo * info,bool is_long,bool is_object,bool is_volatile,bool is_ordered)1171 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1172                                   bool is_object, bool is_volatile, bool is_ordered) {
1173   if (cu_->instruction_set == kMips) {
1174     // TODO - add Mips implementation
1175     return false;
1176   }
1177   if (cu_->instruction_set == kX86 && is_object) {
1178     // TODO: fix X86, it exhausts registers for card marking.
1179     return false;
1180   }
1181   // Unused - RegLocation rl_src_unsafe = info->args[0];
1182   RegLocation rl_src_obj = info->args[1];  // Object
1183   RegLocation rl_src_offset = info->args[2];  // long low
1184   rl_src_offset.wide = 0;  // ignore high half in info->args[3]
1185   RegLocation rl_src_value = info->args[4];  // value to store
1186   if (is_volatile || is_ordered) {
1187     GenMemBarrier(kStoreStore);
1188   }
1189   RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
1190   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1191   RegLocation rl_value;
1192   if (is_long) {
1193     rl_value = LoadValueWide(rl_src_value, kCoreReg);
1194     OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
1195     StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
1196   } else {
1197     rl_value = LoadValue(rl_src_value, kCoreReg);
1198     StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
1199   }
1200   if (is_volatile) {
1201     GenMemBarrier(kStoreLoad);
1202   }
1203   if (is_object) {
1204     MarkGCCard(rl_value.low_reg, rl_object.low_reg);
1205   }
1206   return true;
1207 }
1208 
GenIntrinsic(CallInfo * info)1209 bool Mir2Lir::GenIntrinsic(CallInfo* info) {
1210   if (info->opt_flags & MIR_INLINED) {
1211     return false;
1212   }
1213   /*
1214    * TODO: move these to a target-specific structured constant array
1215    * and use a generic match function.  The list of intrinsics may be
1216    * slightly different depending on target.
1217    * TODO: Fold this into a matching function that runs during
1218    * basic block building.  This should be part of the action for
1219    * small method inlining and recognition of the special object init
1220    * method.  By doing this during basic block construction, we can also
1221    * take advantage of/generate new useful dataflow info.
1222    */
1223   StringPiece tgt_methods_declaring_class(
1224       cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index)));
1225   if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) {
1226     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
1227     if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") {
1228       return GenInlinedDoubleCvt(info);
1229     }
1230     if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") {
1231       return GenInlinedDoubleCvt(info);
1232     }
1233   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) {
1234     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
1235     if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") {
1236       return GenInlinedFloatCvt(info);
1237     }
1238     if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") {
1239       return GenInlinedFloatCvt(info);
1240     }
1241   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") ||
1242              tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) {
1243     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
1244     if (tgt_method == "int java.lang.Math.abs(int)" ||
1245         tgt_method == "int java.lang.StrictMath.abs(int)") {
1246       return GenInlinedAbsInt(info);
1247     }
1248     if (tgt_method == "long java.lang.Math.abs(long)" ||
1249         tgt_method == "long java.lang.StrictMath.abs(long)") {
1250       return GenInlinedAbsLong(info);
1251     }
1252     if (tgt_method == "int java.lang.Math.max(int, int)" ||
1253         tgt_method == "int java.lang.StrictMath.max(int, int)") {
1254       return GenInlinedMinMaxInt(info, false /* is_min */);
1255     }
1256     if (tgt_method == "int java.lang.Math.min(int, int)" ||
1257         tgt_method == "int java.lang.StrictMath.min(int, int)") {
1258       return GenInlinedMinMaxInt(info, true /* is_min */);
1259     }
1260     if (tgt_method == "double java.lang.Math.sqrt(double)" ||
1261         tgt_method == "double java.lang.StrictMath.sqrt(double)") {
1262       return GenInlinedSqrt(info);
1263     }
1264   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) {
1265     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
1266     if (tgt_method == "char java.lang.String.charAt(int)") {
1267       return GenInlinedCharAt(info);
1268     }
1269     if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") {
1270       return GenInlinedStringCompareTo(info);
1271     }
1272     if (tgt_method == "boolean java.lang.String.is_empty()") {
1273       return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */);
1274     }
1275     if (tgt_method == "int java.lang.String.index_of(int, int)") {
1276       return GenInlinedIndexOf(info, false /* base 0 */);
1277     }
1278     if (tgt_method == "int java.lang.String.index_of(int)") {
1279       return GenInlinedIndexOf(info, true /* base 0 */);
1280     }
1281     if (tgt_method == "int java.lang.String.length()") {
1282       return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */);
1283     }
1284   } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) {
1285     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
1286     if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") {
1287       return GenInlinedCurrentThread(info);
1288     }
1289   } else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) {
1290     std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
1291     if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
1292       return GenInlinedCas32(info, false);
1293     }
1294     if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
1295       return GenInlinedCas32(info, true);
1296     }
1297     if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") {
1298       return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
1299     }
1300     if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") {
1301       return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
1302     }
1303     if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") {
1304       return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
1305                                  false /* is_volatile */, false /* is_ordered */);
1306     }
1307     if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") {
1308       return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
1309                                  true /* is_volatile */, false /* is_ordered */);
1310     }
1311     if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") {
1312       return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
1313                                  false /* is_volatile */, true /* is_ordered */);
1314     }
1315     if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") {
1316       return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */);
1317     }
1318     if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") {
1319       return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */);
1320     }
1321     if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") {
1322       return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
1323                                  false /* is_volatile */, false /* is_ordered */);
1324     }
1325     if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") {
1326       return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
1327                                  true /* is_volatile */, false /* is_ordered */);
1328     }
1329     if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") {
1330       return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
1331                                  false /* is_volatile */, true /* is_ordered */);
1332     }
1333     if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") {
1334       return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
1335     }
1336     if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") {
1337       return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
1338     }
1339     if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") {
1340       return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
1341                                  false /* is_volatile */, false /* is_ordered */);
1342     }
1343     if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") {
1344       return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
1345                                  true /* is_volatile */, false /* is_ordered */);
1346     }
1347     if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") {
1348       return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
1349                                  false /* is_volatile */, true /* is_ordered */);
1350     }
1351   }
1352   return false;
1353 }
1354 
GenInvoke(CallInfo * info)1355 void Mir2Lir::GenInvoke(CallInfo* info) {
1356   if (GenIntrinsic(info)) {
1357     return;
1358   }
1359   InvokeType original_type = info->type;  // avoiding mutation by ComputeInvokeInfo
1360   int call_state = 0;
1361   LIR* null_ck;
1362   LIR** p_null_ck = NULL;
1363   NextCallInsn next_call_insn;
1364   FlushAllRegs();  /* Everything to home location */
1365   // Explicit register usage
1366   LockCallTemps();
1367 
1368   DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit();
1369   MethodReference target_method(cUnit->GetDexFile(), info->index);
1370   int vtable_idx;
1371   uintptr_t direct_code;
1372   uintptr_t direct_method;
1373   bool skip_this;
1374   bool fast_path =
1375       cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(),
1376                                               current_dalvik_offset_,
1377                                               info->type, target_method,
1378                                               vtable_idx,
1379                                               direct_code, direct_method,
1380                                               true) && !SLOW_INVOKE_PATH;
1381   if (info->type == kInterface) {
1382     if (fast_path) {
1383       p_null_ck = &null_ck;
1384     }
1385     next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
1386     skip_this = false;
1387   } else if (info->type == kDirect) {
1388     if (fast_path) {
1389       p_null_ck = &null_ck;
1390     }
1391     next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
1392     skip_this = false;
1393   } else if (info->type == kStatic) {
1394     next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
1395     skip_this = false;
1396   } else if (info->type == kSuper) {
1397     DCHECK(!fast_path);  // Fast path is a direct call.
1398     next_call_insn = NextSuperCallInsnSP;
1399     skip_this = false;
1400   } else {
1401     DCHECK_EQ(info->type, kVirtual);
1402     next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1403     skip_this = fast_path;
1404   }
1405   if (!info->is_range) {
1406     call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
1407                                       next_call_insn, target_method,
1408                                       vtable_idx, direct_code, direct_method,
1409                                       original_type, skip_this);
1410   } else {
1411     call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
1412                                     next_call_insn, target_method, vtable_idx,
1413                                     direct_code, direct_method, original_type,
1414                                     skip_this);
1415   }
1416   // Finish up any of the call sequence not interleaved in arg loading
1417   while (call_state >= 0) {
1418     call_state = next_call_insn(cu_, info, call_state, target_method,
1419                                 vtable_idx, direct_code, direct_method,
1420                                 original_type);
1421   }
1422   LIR* call_inst;
1423   if (cu_->instruction_set != kX86) {
1424     call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
1425   } else {
1426     if (fast_path && info->type != kInterface) {
1427       call_inst = OpMem(kOpBlx, TargetReg(kArg0),
1428                         mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value());
1429     } else {
1430       ThreadOffset trampoline(-1);
1431       switch (info->type) {
1432       case kInterface:
1433         trampoline = fast_path ? QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
1434             : QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
1435         break;
1436       case kDirect:
1437         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
1438         break;
1439       case kStatic:
1440         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
1441         break;
1442       case kSuper:
1443         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
1444         break;
1445       case kVirtual:
1446         trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
1447         break;
1448       default:
1449         LOG(FATAL) << "Unexpected invoke type";
1450       }
1451       call_inst = OpThreadMem(kOpBlx, trampoline);
1452     }
1453   }
1454   MarkSafepointPC(call_inst);
1455 
1456   ClobberCalleeSave();
1457   if (info->result.location != kLocInvalid) {
1458     // We have a following MOVE_RESULT - do it now.
1459     if (info->result.wide) {
1460       RegLocation ret_loc = GetReturnWide(info->result.fp);
1461       StoreValueWide(info->result, ret_loc);
1462     } else {
1463       RegLocation ret_loc = GetReturn(info->result.fp);
1464       StoreValue(info->result, ret_loc);
1465     }
1466   }
1467 }
1468 
1469 }  // namespace art
1470