1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Error.h"
22 #include "llvm/TableGen/Record.h"
23 #include <algorithm>
24 #include <cstdio>
25 #include <set>
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 // EEVT::TypeSet Implementation
30 //===----------------------------------------------------------------------===//
31
isInteger(MVT::SimpleValueType VT)32 static inline bool isInteger(MVT::SimpleValueType VT) {
33 return EVT(VT).isInteger();
34 }
isFloatingPoint(MVT::SimpleValueType VT)35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36 return EVT(VT).isFloatingPoint();
37 }
isVector(MVT::SimpleValueType VT)38 static inline bool isVector(MVT::SimpleValueType VT) {
39 return EVT(VT).isVector();
40 }
isScalar(MVT::SimpleValueType VT)41 static inline bool isScalar(MVT::SimpleValueType VT) {
42 return !EVT(VT).isVector();
43 }
44
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46 if (VT == MVT::iAny)
47 EnforceInteger(TP);
48 else if (VT == MVT::fAny)
49 EnforceFloatingPoint(TP);
50 else if (VT == MVT::vAny)
51 EnforceVector(TP);
52 else {
53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54 VT == MVT::iPTRAny) && "Not a concrete type!");
55 TypeVec.push_back(VT);
56 }
57 }
58
59
TypeSet(ArrayRef<MVT::SimpleValueType> VTList)60 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
61 assert(!VTList.empty() && "empty list?");
62 TypeVec.append(VTList.begin(), VTList.end());
63
64 if (!VTList.empty())
65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66 VTList[0] != MVT::fAny);
67
68 // Verify no duplicates.
69 array_pod_sort(TypeVec.begin(), TypeVec.end());
70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71 }
72
73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
74 /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76 bool (*Pred)(MVT::SimpleValueType),
77 const char *PredicateName) {
78 assert(isCompletelyUnknown());
79 ArrayRef<MVT::SimpleValueType> LegalTypes =
80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82 if (TP.hasError())
83 return false;
84
85 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
86 if (Pred == 0 || Pred(LegalTypes[i]))
87 TypeVec.push_back(LegalTypes[i]);
88
89 // If we have nothing that matches the predicate, bail out.
90 if (TypeVec.empty()) {
91 TP.error("Type inference contradiction found, no " +
92 std::string(PredicateName) + " types found");
93 return false;
94 }
95 // No need to sort with one element.
96 if (TypeVec.size() == 1) return true;
97
98 // Remove duplicates.
99 array_pod_sort(TypeVec.begin(), TypeVec.end());
100 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
101
102 return true;
103 }
104
105 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
106 /// integer value type.
hasIntegerTypes() const107 bool EEVT::TypeSet::hasIntegerTypes() const {
108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109 if (isInteger(TypeVec[i]))
110 return true;
111 return false;
112 }
113
114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115 /// a floating point value type.
hasFloatingPointTypes() const116 bool EEVT::TypeSet::hasFloatingPointTypes() const {
117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118 if (isFloatingPoint(TypeVec[i]))
119 return true;
120 return false;
121 }
122
123 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
124 /// value type.
hasVectorTypes() const125 bool EEVT::TypeSet::hasVectorTypes() const {
126 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
127 if (isVector(TypeVec[i]))
128 return true;
129 return false;
130 }
131
132
getName() const133 std::string EEVT::TypeSet::getName() const {
134 if (TypeVec.empty()) return "<empty>";
135
136 std::string Result;
137
138 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
139 std::string VTName = llvm::getEnumName(TypeVec[i]);
140 // Strip off MVT:: prefix if present.
141 if (VTName.substr(0,5) == "MVT::")
142 VTName = VTName.substr(5);
143 if (i) Result += ':';
144 Result += VTName;
145 }
146
147 if (TypeVec.size() == 1)
148 return Result;
149 return "{" + Result + "}";
150 }
151
152 /// MergeInTypeInfo - This merges in type information from the specified
153 /// argument. If 'this' changes, it returns true. If the two types are
154 /// contradictory (e.g. merge f32 into i32) then this flags an error.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)155 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
156 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
157 return false;
158
159 if (isCompletelyUnknown()) {
160 *this = InVT;
161 return true;
162 }
163
164 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
165
166 // Handle the abstract cases, seeing if we can resolve them better.
167 switch (TypeVec[0]) {
168 default: break;
169 case MVT::iPTR:
170 case MVT::iPTRAny:
171 if (InVT.hasIntegerTypes()) {
172 EEVT::TypeSet InCopy(InVT);
173 InCopy.EnforceInteger(TP);
174 InCopy.EnforceScalar(TP);
175
176 if (InCopy.isConcrete()) {
177 // If the RHS has one integer type, upgrade iPTR to i32.
178 TypeVec[0] = InVT.TypeVec[0];
179 return true;
180 }
181
182 // If the input has multiple scalar integers, this doesn't add any info.
183 if (!InCopy.isCompletelyUnknown())
184 return false;
185 }
186 break;
187 }
188
189 // If the input constraint is iAny/iPTR and this is an integer type list,
190 // remove non-integer types from the list.
191 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
192 hasIntegerTypes()) {
193 bool MadeChange = EnforceInteger(TP);
194
195 // If we're merging in iPTR/iPTRAny and the node currently has a list of
196 // multiple different integer types, replace them with a single iPTR.
197 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
198 TypeVec.size() != 1) {
199 TypeVec.resize(1);
200 TypeVec[0] = InVT.TypeVec[0];
201 MadeChange = true;
202 }
203
204 return MadeChange;
205 }
206
207 // If this is a type list and the RHS is a typelist as well, eliminate entries
208 // from this list that aren't in the other one.
209 bool MadeChange = false;
210 TypeSet InputSet(*this);
211
212 for (unsigned i = 0; i != TypeVec.size(); ++i) {
213 bool InInVT = false;
214 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
215 if (TypeVec[i] == InVT.TypeVec[j]) {
216 InInVT = true;
217 break;
218 }
219
220 if (InInVT) continue;
221 TypeVec.erase(TypeVec.begin()+i--);
222 MadeChange = true;
223 }
224
225 // If we removed all of our types, we have a type contradiction.
226 if (!TypeVec.empty())
227 return MadeChange;
228
229 // FIXME: Really want an SMLoc here!
230 TP.error("Type inference contradiction found, merging '" +
231 InVT.getName() + "' into '" + InputSet.getName() + "'");
232 return false;
233 }
234
235 /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)236 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
237 if (TP.hasError())
238 return false;
239 // If we know nothing, then get the full set.
240 if (TypeVec.empty())
241 return FillWithPossibleTypes(TP, isInteger, "integer");
242 if (!hasFloatingPointTypes())
243 return false;
244
245 TypeSet InputSet(*this);
246
247 // Filter out all the fp types.
248 for (unsigned i = 0; i != TypeVec.size(); ++i)
249 if (!isInteger(TypeVec[i]))
250 TypeVec.erase(TypeVec.begin()+i--);
251
252 if (TypeVec.empty()) {
253 TP.error("Type inference contradiction found, '" +
254 InputSet.getName() + "' needs to be integer");
255 return false;
256 }
257 return true;
258 }
259
260 /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)261 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
262 if (TP.hasError())
263 return false;
264 // If we know nothing, then get the full set.
265 if (TypeVec.empty())
266 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
267
268 if (!hasIntegerTypes())
269 return false;
270
271 TypeSet InputSet(*this);
272
273 // Filter out all the fp types.
274 for (unsigned i = 0; i != TypeVec.size(); ++i)
275 if (!isFloatingPoint(TypeVec[i]))
276 TypeVec.erase(TypeVec.begin()+i--);
277
278 if (TypeVec.empty()) {
279 TP.error("Type inference contradiction found, '" +
280 InputSet.getName() + "' needs to be floating point");
281 return false;
282 }
283 return true;
284 }
285
286 /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)287 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
288 if (TP.hasError())
289 return false;
290
291 // If we know nothing, then get the full set.
292 if (TypeVec.empty())
293 return FillWithPossibleTypes(TP, isScalar, "scalar");
294
295 if (!hasVectorTypes())
296 return false;
297
298 TypeSet InputSet(*this);
299
300 // Filter out all the vector types.
301 for (unsigned i = 0; i != TypeVec.size(); ++i)
302 if (!isScalar(TypeVec[i]))
303 TypeVec.erase(TypeVec.begin()+i--);
304
305 if (TypeVec.empty()) {
306 TP.error("Type inference contradiction found, '" +
307 InputSet.getName() + "' needs to be scalar");
308 return false;
309 }
310 return true;
311 }
312
313 /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)314 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
315 if (TP.hasError())
316 return false;
317
318 // If we know nothing, then get the full set.
319 if (TypeVec.empty())
320 return FillWithPossibleTypes(TP, isVector, "vector");
321
322 TypeSet InputSet(*this);
323 bool MadeChange = false;
324
325 // Filter out all the scalar types.
326 for (unsigned i = 0; i != TypeVec.size(); ++i)
327 if (!isVector(TypeVec[i])) {
328 TypeVec.erase(TypeVec.begin()+i--);
329 MadeChange = true;
330 }
331
332 if (TypeVec.empty()) {
333 TP.error("Type inference contradiction found, '" +
334 InputSet.getName() + "' needs to be a vector");
335 return false;
336 }
337 return MadeChange;
338 }
339
340
341
342 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
343 /// this an other based on this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)344 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
345 if (TP.hasError())
346 return false;
347
348 // Both operands must be integer or FP, but we don't care which.
349 bool MadeChange = false;
350
351 if (isCompletelyUnknown())
352 MadeChange = FillWithPossibleTypes(TP);
353
354 if (Other.isCompletelyUnknown())
355 MadeChange = Other.FillWithPossibleTypes(TP);
356
357 // If one side is known to be integer or known to be FP but the other side has
358 // no information, get at least the type integrality info in there.
359 if (!hasFloatingPointTypes())
360 MadeChange |= Other.EnforceInteger(TP);
361 else if (!hasIntegerTypes())
362 MadeChange |= Other.EnforceFloatingPoint(TP);
363 if (!Other.hasFloatingPointTypes())
364 MadeChange |= EnforceInteger(TP);
365 else if (!Other.hasIntegerTypes())
366 MadeChange |= EnforceFloatingPoint(TP);
367
368 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
369 "Should have a type list now");
370
371 // If one contains vectors but the other doesn't pull vectors out.
372 if (!hasVectorTypes())
373 MadeChange |= Other.EnforceScalar(TP);
374 if (!hasVectorTypes())
375 MadeChange |= EnforceScalar(TP);
376
377 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
378 // If we are down to concrete types, this code does not currently
379 // handle nodes which have multiple types, where some types are
380 // integer, and some are fp. Assert that this is not the case.
381 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
382 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
383 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
384
385 // Otherwise, if these are both vector types, either this vector
386 // must have a larger bitsize than the other, or this element type
387 // must be larger than the other.
388 EVT Type(TypeVec[0]);
389 EVT OtherType(Other.TypeVec[0]);
390
391 if (hasVectorTypes() && Other.hasVectorTypes()) {
392 if (Type.getSizeInBits() >= OtherType.getSizeInBits())
393 if (Type.getVectorElementType().getSizeInBits()
394 >= OtherType.getVectorElementType().getSizeInBits()) {
395 TP.error("Type inference contradiction found, '" +
396 getName() + "' element type not smaller than '" +
397 Other.getName() +"'!");
398 return false;
399 }
400 }
401 else
402 // For scalar types, the bitsize of this type must be larger
403 // than that of the other.
404 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
405 TP.error("Type inference contradiction found, '" +
406 getName() + "' is not smaller than '" +
407 Other.getName() +"'!");
408 return false;
409 }
410 }
411
412
413 // Handle int and fp as disjoint sets. This won't work for patterns
414 // that have mixed fp/int types but those are likely rare and would
415 // not have been accepted by this code previously.
416
417 // Okay, find the smallest type from the current set and remove it from the
418 // largest set.
419 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
420 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
421 if (isInteger(TypeVec[i])) {
422 SmallestInt = TypeVec[i];
423 break;
424 }
425 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
426 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
427 SmallestInt = TypeVec[i];
428
429 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
430 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
431 if (isFloatingPoint(TypeVec[i])) {
432 SmallestFP = TypeVec[i];
433 break;
434 }
435 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
436 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
437 SmallestFP = TypeVec[i];
438
439 int OtherIntSize = 0;
440 int OtherFPSize = 0;
441 for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
442 Other.TypeVec.begin();
443 TVI != Other.TypeVec.end();
444 /* NULL */) {
445 if (isInteger(*TVI)) {
446 ++OtherIntSize;
447 if (*TVI == SmallestInt) {
448 TVI = Other.TypeVec.erase(TVI);
449 --OtherIntSize;
450 MadeChange = true;
451 continue;
452 }
453 }
454 else if (isFloatingPoint(*TVI)) {
455 ++OtherFPSize;
456 if (*TVI == SmallestFP) {
457 TVI = Other.TypeVec.erase(TVI);
458 --OtherFPSize;
459 MadeChange = true;
460 continue;
461 }
462 }
463 ++TVI;
464 }
465
466 // If this is the only type in the large set, the constraint can never be
467 // satisfied.
468 if ((Other.hasIntegerTypes() && OtherIntSize == 0)
469 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
470 TP.error("Type inference contradiction found, '" +
471 Other.getName() + "' has nothing larger than '" + getName() +"'!");
472 return false;
473 }
474
475 // Okay, find the largest type in the Other set and remove it from the
476 // current set.
477 MVT::SimpleValueType LargestInt = MVT::Other;
478 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
479 if (isInteger(Other.TypeVec[i])) {
480 LargestInt = Other.TypeVec[i];
481 break;
482 }
483 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
484 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
485 LargestInt = Other.TypeVec[i];
486
487 MVT::SimpleValueType LargestFP = MVT::Other;
488 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
489 if (isFloatingPoint(Other.TypeVec[i])) {
490 LargestFP = Other.TypeVec[i];
491 break;
492 }
493 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
494 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
495 LargestFP = Other.TypeVec[i];
496
497 int IntSize = 0;
498 int FPSize = 0;
499 for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
500 TypeVec.begin();
501 TVI != TypeVec.end();
502 /* NULL */) {
503 if (isInteger(*TVI)) {
504 ++IntSize;
505 if (*TVI == LargestInt) {
506 TVI = TypeVec.erase(TVI);
507 --IntSize;
508 MadeChange = true;
509 continue;
510 }
511 }
512 else if (isFloatingPoint(*TVI)) {
513 ++FPSize;
514 if (*TVI == LargestFP) {
515 TVI = TypeVec.erase(TVI);
516 --FPSize;
517 MadeChange = true;
518 continue;
519 }
520 }
521 ++TVI;
522 }
523
524 // If this is the only type in the small set, the constraint can never be
525 // satisfied.
526 if ((hasIntegerTypes() && IntSize == 0)
527 || (hasFloatingPointTypes() && FPSize == 0)) {
528 TP.error("Type inference contradiction found, '" +
529 getName() + "' has nothing smaller than '" + Other.getName()+"'!");
530 return false;
531 }
532
533 return MadeChange;
534 }
535
536 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
537 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)538 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
539 TreePattern &TP) {
540 if (TP.hasError())
541 return false;
542
543 // "This" must be a vector and "VTOperand" must be a scalar.
544 bool MadeChange = false;
545 MadeChange |= EnforceVector(TP);
546 MadeChange |= VTOperand.EnforceScalar(TP);
547
548 // If we know the vector type, it forces the scalar to agree.
549 if (isConcrete()) {
550 EVT IVT = getConcrete();
551 IVT = IVT.getVectorElementType();
552 return MadeChange |
553 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
554 }
555
556 // If the scalar type is known, filter out vector types whose element types
557 // disagree.
558 if (!VTOperand.isConcrete())
559 return MadeChange;
560
561 MVT::SimpleValueType VT = VTOperand.getConcrete();
562
563 TypeSet InputSet(*this);
564
565 // Filter out all the types which don't have the right element type.
566 for (unsigned i = 0; i != TypeVec.size(); ++i) {
567 assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
568 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
569 TypeVec.erase(TypeVec.begin()+i--);
570 MadeChange = true;
571 }
572 }
573
574 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
575 TP.error("Type inference contradiction found, forcing '" +
576 InputSet.getName() + "' to have a vector element");
577 return false;
578 }
579 return MadeChange;
580 }
581
582 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
583 /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)584 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
585 TreePattern &TP) {
586 // "This" must be a vector and "VTOperand" must be a vector.
587 bool MadeChange = false;
588 MadeChange |= EnforceVector(TP);
589 MadeChange |= VTOperand.EnforceVector(TP);
590
591 // "This" must be larger than "VTOperand."
592 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
593
594 // If we know the vector type, it forces the scalar types to agree.
595 if (isConcrete()) {
596 EVT IVT = getConcrete();
597 IVT = IVT.getVectorElementType();
598
599 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
600 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
601 } else if (VTOperand.isConcrete()) {
602 EVT IVT = VTOperand.getConcrete();
603 IVT = IVT.getVectorElementType();
604
605 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
606 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
607 }
608
609 return MadeChange;
610 }
611
612 //===----------------------------------------------------------------------===//
613 // Helpers for working with extended types.
614
615 /// Dependent variable map for CodeGenDAGPattern variant generation
616 typedef std::map<std::string, int> DepVarMap;
617
618 /// Const iterator shorthand for DepVarMap
619 typedef DepVarMap::const_iterator DepVarMap_citer;
620
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
622 if (N->isLeaf()) {
623 if (isa<DefInit>(N->getLeafValue()))
624 DepMap[N->getName()]++;
625 } else {
626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
627 FindDepVarsOf(N->getChild(i), DepMap);
628 }
629 }
630
631 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
633 DepVarMap depcounts;
634 FindDepVarsOf(N, depcounts);
635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
636 if (i->second > 1) // std::pair<std::string, int>
637 DepVars.insert(i->first);
638 }
639 }
640
641 #ifndef NDEBUG
642 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)643 static void DumpDepVars(MultipleUseVarSet &DepVars) {
644 if (DepVars.empty()) {
645 DEBUG(errs() << "<empty set>");
646 } else {
647 DEBUG(errs() << "[ ");
648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
649 e = DepVars.end(); i != e; ++i) {
650 DEBUG(errs() << (*i) << " ");
651 }
652 DEBUG(errs() << "]");
653 }
654 }
655 #endif
656
657
658 //===----------------------------------------------------------------------===//
659 // TreePredicateFn Implementation
660 //===----------------------------------------------------------------------===//
661
662 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
664 assert((getPredCode().empty() || getImmCode().empty()) &&
665 ".td file corrupt: can't have a node predicate *and* an imm predicate");
666 }
667
getPredCode() const668 std::string TreePredicateFn::getPredCode() const {
669 return PatFragRec->getRecord()->getValueAsString("PredicateCode");
670 }
671
getImmCode() const672 std::string TreePredicateFn::getImmCode() const {
673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
674 }
675
676
677 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const678 bool TreePredicateFn::isAlwaysTrue() const {
679 return getPredCode().empty() && getImmCode().empty();
680 }
681
682 /// Return the name to use in the generated code to reference this, this is
683 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const684 std::string TreePredicateFn::getFnName() const {
685 return "Predicate_" + PatFragRec->getRecord()->getName();
686 }
687
688 /// getCodeToRunOnSDNode - Return the code for the function body that
689 /// evaluates this predicate. The argument is expected to be in "Node",
690 /// not N. This handles casting and conversion to a concrete node type as
691 /// appropriate.
getCodeToRunOnSDNode() const692 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
693 // Handle immediate predicates first.
694 std::string ImmCode = getImmCode();
695 if (!ImmCode.empty()) {
696 std::string Result =
697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
698 return Result + ImmCode;
699 }
700
701 // Handle arbitrary node predicates.
702 assert(!getPredCode().empty() && "Don't have any predicate code!");
703 std::string ClassName;
704 if (PatFragRec->getOnlyTree()->isLeaf())
705 ClassName = "SDNode";
706 else {
707 Record *Op = PatFragRec->getOnlyTree()->getOperator();
708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
709 }
710 std::string Result;
711 if (ClassName == "SDNode")
712 Result = " SDNode *N = Node;\n";
713 else
714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
715
716 return Result + getPredCode();
717 }
718
719 //===----------------------------------------------------------------------===//
720 // PatternToMatch implementation
721 //
722
723
724 /// getPatternSize - Return the 'size' of this pattern. We want to match large
725 /// patterns before small ones. This is used to determine the size of a
726 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)727 static unsigned getPatternSize(const TreePatternNode *P,
728 const CodeGenDAGPatterns &CGP) {
729 unsigned Size = 3; // The node itself.
730 // If the root node is a ConstantSDNode, increases its size.
731 // e.g. (set R32:$dst, 0).
732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
733 Size += 2;
734
735 // FIXME: This is a hack to statically increase the priority of patterns
736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
737 // Later we can allow complexity / cost for each pattern to be (optionally)
738 // specified. To get best possible pattern match we'll need to dynamically
739 // calculate the complexity of all patterns a dag can potentially map to.
740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
741 if (AM)
742 Size += AM->getNumOperands() * 3;
743
744 // If this node has some predicate function that must match, it adds to the
745 // complexity of this node.
746 if (!P->getPredicateFns().empty())
747 ++Size;
748
749 // Count children in the count if they are also nodes.
750 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
751 TreePatternNode *Child = P->getChild(i);
752 if (!Child->isLeaf() && Child->getNumTypes() &&
753 Child->getType(0) != MVT::Other)
754 Size += getPatternSize(Child, CGP);
755 else if (Child->isLeaf()) {
756 if (isa<IntInit>(Child->getLeafValue()))
757 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
758 else if (Child->getComplexPatternInfo(CGP))
759 Size += getPatternSize(Child, CGP);
760 else if (!Child->getPredicateFns().empty())
761 ++Size;
762 }
763 }
764
765 return Size;
766 }
767
768 /// Compute the complexity metric for the input pattern. This roughly
769 /// corresponds to the number of nodes that are covered.
770 unsigned PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const771 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
772 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
773 }
774
775
776 /// getPredicateCheck - Return a single string containing all of this
777 /// pattern's predicates concatenated with "&&" operators.
778 ///
getPredicateCheck() const779 std::string PatternToMatch::getPredicateCheck() const {
780 std::string PredicateCheck;
781 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
782 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
783 Record *Def = Pred->getDef();
784 if (!Def->isSubClassOf("Predicate")) {
785 #ifndef NDEBUG
786 Def->dump();
787 #endif
788 llvm_unreachable("Unknown predicate type!");
789 }
790 if (!PredicateCheck.empty())
791 PredicateCheck += " && ";
792 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
793 }
794 }
795
796 return PredicateCheck;
797 }
798
799 //===----------------------------------------------------------------------===//
800 // SDTypeConstraint implementation
801 //
802
SDTypeConstraint(Record * R)803 SDTypeConstraint::SDTypeConstraint(Record *R) {
804 OperandNo = R->getValueAsInt("OperandNum");
805
806 if (R->isSubClassOf("SDTCisVT")) {
807 ConstraintType = SDTCisVT;
808 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
809 if (x.SDTCisVT_Info.VT == MVT::isVoid)
810 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
811
812 } else if (R->isSubClassOf("SDTCisPtrTy")) {
813 ConstraintType = SDTCisPtrTy;
814 } else if (R->isSubClassOf("SDTCisInt")) {
815 ConstraintType = SDTCisInt;
816 } else if (R->isSubClassOf("SDTCisFP")) {
817 ConstraintType = SDTCisFP;
818 } else if (R->isSubClassOf("SDTCisVec")) {
819 ConstraintType = SDTCisVec;
820 } else if (R->isSubClassOf("SDTCisSameAs")) {
821 ConstraintType = SDTCisSameAs;
822 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
823 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
824 ConstraintType = SDTCisVTSmallerThanOp;
825 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
826 R->getValueAsInt("OtherOperandNum");
827 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
828 ConstraintType = SDTCisOpSmallerThanOp;
829 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
830 R->getValueAsInt("BigOperandNum");
831 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
832 ConstraintType = SDTCisEltOfVec;
833 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
834 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
835 ConstraintType = SDTCisSubVecOfVec;
836 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
837 R->getValueAsInt("OtherOpNum");
838 } else {
839 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
840 exit(1);
841 }
842 }
843
844 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
845 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)846 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
847 const SDNodeInfo &NodeInfo,
848 unsigned &ResNo) {
849 unsigned NumResults = NodeInfo.getNumResults();
850 if (OpNo < NumResults) {
851 ResNo = OpNo;
852 return N;
853 }
854
855 OpNo -= NumResults;
856
857 if (OpNo >= N->getNumChildren()) {
858 errs() << "Invalid operand number in type constraint "
859 << (OpNo+NumResults) << " ";
860 N->dump();
861 errs() << '\n';
862 exit(1);
863 }
864
865 return N->getChild(OpNo);
866 }
867
868 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
869 /// constraint to the nodes operands. This returns true if it makes a
870 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const871 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
872 const SDNodeInfo &NodeInfo,
873 TreePattern &TP) const {
874 if (TP.hasError())
875 return false;
876
877 unsigned ResNo = 0; // The result number being referenced.
878 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
879
880 switch (ConstraintType) {
881 case SDTCisVT:
882 // Operand must be a particular type.
883 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
884 case SDTCisPtrTy:
885 // Operand must be same as target pointer type.
886 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
887 case SDTCisInt:
888 // Require it to be one of the legal integer VTs.
889 return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
890 case SDTCisFP:
891 // Require it to be one of the legal fp VTs.
892 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
893 case SDTCisVec:
894 // Require it to be one of the legal vector VTs.
895 return NodeToApply->getExtType(ResNo).EnforceVector(TP);
896 case SDTCisSameAs: {
897 unsigned OResNo = 0;
898 TreePatternNode *OtherNode =
899 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
900 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
901 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
902 }
903 case SDTCisVTSmallerThanOp: {
904 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
905 // have an integer type that is smaller than the VT.
906 if (!NodeToApply->isLeaf() ||
907 !isa<DefInit>(NodeToApply->getLeafValue()) ||
908 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
909 ->isSubClassOf("ValueType")) {
910 TP.error(N->getOperator()->getName() + " expects a VT operand!");
911 return false;
912 }
913 MVT::SimpleValueType VT =
914 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
915
916 EEVT::TypeSet TypeListTmp(VT, TP);
917
918 unsigned OResNo = 0;
919 TreePatternNode *OtherNode =
920 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
921 OResNo);
922
923 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
924 }
925 case SDTCisOpSmallerThanOp: {
926 unsigned BResNo = 0;
927 TreePatternNode *BigOperand =
928 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
929 BResNo);
930 return NodeToApply->getExtType(ResNo).
931 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
932 }
933 case SDTCisEltOfVec: {
934 unsigned VResNo = 0;
935 TreePatternNode *VecOperand =
936 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
937 VResNo);
938
939 // Filter vector types out of VecOperand that don't have the right element
940 // type.
941 return VecOperand->getExtType(VResNo).
942 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
943 }
944 case SDTCisSubVecOfVec: {
945 unsigned VResNo = 0;
946 TreePatternNode *BigVecOperand =
947 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
948 VResNo);
949
950 // Filter vector types out of BigVecOperand that don't have the
951 // right subvector type.
952 return BigVecOperand->getExtType(VResNo).
953 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
954 }
955 }
956 llvm_unreachable("Invalid ConstraintType!");
957 }
958
959 // Update the node type to match an instruction operand or result as specified
960 // in the ins or outs lists on the instruction definition. Return true if the
961 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)962 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
963 Record *Operand,
964 TreePattern &TP) {
965 // The 'unknown' operand indicates that types should be inferred from the
966 // context.
967 if (Operand->isSubClassOf("unknown_class"))
968 return false;
969
970 // The Operand class specifies a type directly.
971 if (Operand->isSubClassOf("Operand"))
972 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
973 TP);
974
975 // PointerLikeRegClass has a type that is determined at runtime.
976 if (Operand->isSubClassOf("PointerLikeRegClass"))
977 return UpdateNodeType(ResNo, MVT::iPTR, TP);
978
979 // Both RegisterClass and RegisterOperand operands derive their types from a
980 // register class def.
981 Record *RC = 0;
982 if (Operand->isSubClassOf("RegisterClass"))
983 RC = Operand;
984 else if (Operand->isSubClassOf("RegisterOperand"))
985 RC = Operand->getValueAsDef("RegClass");
986
987 assert(RC && "Unknown operand type");
988 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
989 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
990 }
991
992
993 //===----------------------------------------------------------------------===//
994 // SDNodeInfo implementation
995 //
SDNodeInfo(Record * R)996 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
997 EnumName = R->getValueAsString("Opcode");
998 SDClassName = R->getValueAsString("SDClass");
999 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1000 NumResults = TypeProfile->getValueAsInt("NumResults");
1001 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1002
1003 // Parse the properties.
1004 Properties = 0;
1005 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1006 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1007 if (PropList[i]->getName() == "SDNPCommutative") {
1008 Properties |= 1 << SDNPCommutative;
1009 } else if (PropList[i]->getName() == "SDNPAssociative") {
1010 Properties |= 1 << SDNPAssociative;
1011 } else if (PropList[i]->getName() == "SDNPHasChain") {
1012 Properties |= 1 << SDNPHasChain;
1013 } else if (PropList[i]->getName() == "SDNPOutGlue") {
1014 Properties |= 1 << SDNPOutGlue;
1015 } else if (PropList[i]->getName() == "SDNPInGlue") {
1016 Properties |= 1 << SDNPInGlue;
1017 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1018 Properties |= 1 << SDNPOptInGlue;
1019 } else if (PropList[i]->getName() == "SDNPMayStore") {
1020 Properties |= 1 << SDNPMayStore;
1021 } else if (PropList[i]->getName() == "SDNPMayLoad") {
1022 Properties |= 1 << SDNPMayLoad;
1023 } else if (PropList[i]->getName() == "SDNPSideEffect") {
1024 Properties |= 1 << SDNPSideEffect;
1025 } else if (PropList[i]->getName() == "SDNPMemOperand") {
1026 Properties |= 1 << SDNPMemOperand;
1027 } else if (PropList[i]->getName() == "SDNPVariadic") {
1028 Properties |= 1 << SDNPVariadic;
1029 } else {
1030 errs() << "Unknown SD Node property '" << PropList[i]->getName()
1031 << "' on node '" << R->getName() << "'!\n";
1032 exit(1);
1033 }
1034 }
1035
1036
1037 // Parse the type constraints.
1038 std::vector<Record*> ConstraintList =
1039 TypeProfile->getValueAsListOfDefs("Constraints");
1040 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1041 }
1042
1043 /// getKnownType - If the type constraints on this node imply a fixed type
1044 /// (e.g. all stores return void, etc), then return it as an
1045 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1046 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1047 unsigned NumResults = getNumResults();
1048 assert(NumResults <= 1 &&
1049 "We only work with nodes with zero or one result so far!");
1050 assert(ResNo == 0 && "Only handles single result nodes so far");
1051
1052 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1053 // Make sure that this applies to the correct node result.
1054 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
1055 continue;
1056
1057 switch (TypeConstraints[i].ConstraintType) {
1058 default: break;
1059 case SDTypeConstraint::SDTCisVT:
1060 return TypeConstraints[i].x.SDTCisVT_Info.VT;
1061 case SDTypeConstraint::SDTCisPtrTy:
1062 return MVT::iPTR;
1063 }
1064 }
1065 return MVT::Other;
1066 }
1067
1068 //===----------------------------------------------------------------------===//
1069 // TreePatternNode implementation
1070 //
1071
~TreePatternNode()1072 TreePatternNode::~TreePatternNode() {
1073 #if 0 // FIXME: implement refcounted tree nodes!
1074 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1075 delete getChild(i);
1076 #endif
1077 }
1078
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1079 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1080 if (Operator->getName() == "set" ||
1081 Operator->getName() == "implicit")
1082 return 0; // All return nothing.
1083
1084 if (Operator->isSubClassOf("Intrinsic"))
1085 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1086
1087 if (Operator->isSubClassOf("SDNode"))
1088 return CDP.getSDNodeInfo(Operator).getNumResults();
1089
1090 if (Operator->isSubClassOf("PatFrag")) {
1091 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1092 // the forward reference case where one pattern fragment references another
1093 // before it is processed.
1094 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1095 return PFRec->getOnlyTree()->getNumTypes();
1096
1097 // Get the result tree.
1098 DagInit *Tree = Operator->getValueAsDag("Fragment");
1099 Record *Op = 0;
1100 if (Tree)
1101 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1102 Op = DI->getDef();
1103 assert(Op && "Invalid Fragment");
1104 return GetNumNodeResults(Op, CDP);
1105 }
1106
1107 if (Operator->isSubClassOf("Instruction")) {
1108 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1109
1110 // FIXME: Should allow access to all the results here.
1111 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1112
1113 // Add on one implicit def if it has a resolvable type.
1114 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1115 ++NumDefsToAdd;
1116 return NumDefsToAdd;
1117 }
1118
1119 if (Operator->isSubClassOf("SDNodeXForm"))
1120 return 1; // FIXME: Generalize SDNodeXForm
1121
1122 Operator->dump();
1123 errs() << "Unhandled node in GetNumNodeResults\n";
1124 exit(1);
1125 }
1126
print(raw_ostream & OS) const1127 void TreePatternNode::print(raw_ostream &OS) const {
1128 if (isLeaf())
1129 OS << *getLeafValue();
1130 else
1131 OS << '(' << getOperator()->getName();
1132
1133 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1134 OS << ':' << getExtType(i).getName();
1135
1136 if (!isLeaf()) {
1137 if (getNumChildren() != 0) {
1138 OS << " ";
1139 getChild(0)->print(OS);
1140 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1141 OS << ", ";
1142 getChild(i)->print(OS);
1143 }
1144 }
1145 OS << ")";
1146 }
1147
1148 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1149 OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1150 if (TransformFn)
1151 OS << "<<X:" << TransformFn->getName() << ">>";
1152 if (!getName().empty())
1153 OS << ":$" << getName();
1154
1155 }
dump() const1156 void TreePatternNode::dump() const {
1157 print(errs());
1158 }
1159
1160 /// isIsomorphicTo - Return true if this node is recursively
1161 /// isomorphic to the specified node. For this comparison, the node's
1162 /// entire state is considered. The assigned name is ignored, since
1163 /// nodes with differing names are considered isomorphic. However, if
1164 /// the assigned name is present in the dependent variable set, then
1165 /// the assigned name is considered significant and the node is
1166 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1167 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1168 const MultipleUseVarSet &DepVars) const {
1169 if (N == this) return true;
1170 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1171 getPredicateFns() != N->getPredicateFns() ||
1172 getTransformFn() != N->getTransformFn())
1173 return false;
1174
1175 if (isLeaf()) {
1176 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1177 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1178 return ((DI->getDef() == NDI->getDef())
1179 && (DepVars.find(getName()) == DepVars.end()
1180 || getName() == N->getName()));
1181 }
1182 }
1183 return getLeafValue() == N->getLeafValue();
1184 }
1185
1186 if (N->getOperator() != getOperator() ||
1187 N->getNumChildren() != getNumChildren()) return false;
1188 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1189 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1190 return false;
1191 return true;
1192 }
1193
1194 /// clone - Make a copy of this tree and all of its children.
1195 ///
clone() const1196 TreePatternNode *TreePatternNode::clone() const {
1197 TreePatternNode *New;
1198 if (isLeaf()) {
1199 New = new TreePatternNode(getLeafValue(), getNumTypes());
1200 } else {
1201 std::vector<TreePatternNode*> CChildren;
1202 CChildren.reserve(Children.size());
1203 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1204 CChildren.push_back(getChild(i)->clone());
1205 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1206 }
1207 New->setName(getName());
1208 New->Types = Types;
1209 New->setPredicateFns(getPredicateFns());
1210 New->setTransformFn(getTransformFn());
1211 return New;
1212 }
1213
1214 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1215 void TreePatternNode::RemoveAllTypes() {
1216 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1217 Types[i] = EEVT::TypeSet(); // Reset to unknown type.
1218 if (isLeaf()) return;
1219 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1220 getChild(i)->RemoveAllTypes();
1221 }
1222
1223
1224 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1225 /// with actual values specified by ArgMap.
1226 void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1227 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1228 if (isLeaf()) return;
1229
1230 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1231 TreePatternNode *Child = getChild(i);
1232 if (Child->isLeaf()) {
1233 Init *Val = Child->getLeafValue();
1234 if (isa<DefInit>(Val) &&
1235 cast<DefInit>(Val)->getDef()->getName() == "node") {
1236 // We found a use of a formal argument, replace it with its value.
1237 TreePatternNode *NewChild = ArgMap[Child->getName()];
1238 assert(NewChild && "Couldn't find formal argument!");
1239 assert((Child->getPredicateFns().empty() ||
1240 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1241 "Non-empty child predicate clobbered!");
1242 setChild(i, NewChild);
1243 }
1244 } else {
1245 getChild(i)->SubstituteFormalArguments(ArgMap);
1246 }
1247 }
1248 }
1249
1250
1251 /// InlinePatternFragments - If this pattern refers to any pattern
1252 /// fragments, inline them into place, giving us a pattern without any
1253 /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1254 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1255 if (TP.hasError())
1256 return 0;
1257
1258 if (isLeaf())
1259 return this; // nothing to do.
1260 Record *Op = getOperator();
1261
1262 if (!Op->isSubClassOf("PatFrag")) {
1263 // Just recursively inline children nodes.
1264 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1265 TreePatternNode *Child = getChild(i);
1266 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1267
1268 assert((Child->getPredicateFns().empty() ||
1269 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1270 "Non-empty child predicate clobbered!");
1271
1272 setChild(i, NewChild);
1273 }
1274 return this;
1275 }
1276
1277 // Otherwise, we found a reference to a fragment. First, look up its
1278 // TreePattern record.
1279 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1280
1281 // Verify that we are passing the right number of operands.
1282 if (Frag->getNumArgs() != Children.size()) {
1283 TP.error("'" + Op->getName() + "' fragment requires " +
1284 utostr(Frag->getNumArgs()) + " operands!");
1285 return 0;
1286 }
1287
1288 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1289
1290 TreePredicateFn PredFn(Frag);
1291 if (!PredFn.isAlwaysTrue())
1292 FragTree->addPredicateFn(PredFn);
1293
1294 // Resolve formal arguments to their actual value.
1295 if (Frag->getNumArgs()) {
1296 // Compute the map of formal to actual arguments.
1297 std::map<std::string, TreePatternNode*> ArgMap;
1298 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1299 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1300
1301 FragTree->SubstituteFormalArguments(ArgMap);
1302 }
1303
1304 FragTree->setName(getName());
1305 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1306 FragTree->UpdateNodeType(i, getExtType(i), TP);
1307
1308 // Transfer in the old predicates.
1309 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1310 FragTree->addPredicateFn(getPredicateFns()[i]);
1311
1312 // Get a new copy of this fragment to stitch into here.
1313 //delete this; // FIXME: implement refcounting!
1314
1315 // The fragment we inlined could have recursive inlining that is needed. See
1316 // if there are any pattern fragments in it and inline them as needed.
1317 return FragTree->InlinePatternFragments(TP);
1318 }
1319
1320 /// getImplicitType - Check to see if the specified record has an implicit
1321 /// type which should be applied to it. This will infer the type of register
1322 /// references from the register file information, for example.
1323 ///
1324 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1325 /// the F8RC register class argument in:
1326 ///
1327 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
1328 ///
1329 /// When Unnamed is false, return the type of a named DAG operand such as the
1330 /// GPR:$src operand above.
1331 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1332 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1333 bool NotRegisters,
1334 bool Unnamed,
1335 TreePattern &TP) {
1336 // Check to see if this is a register operand.
1337 if (R->isSubClassOf("RegisterOperand")) {
1338 assert(ResNo == 0 && "Regoperand ref only has one result!");
1339 if (NotRegisters)
1340 return EEVT::TypeSet(); // Unknown.
1341 Record *RegClass = R->getValueAsDef("RegClass");
1342 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1343 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1344 }
1345
1346 // Check to see if this is a register or a register class.
1347 if (R->isSubClassOf("RegisterClass")) {
1348 assert(ResNo == 0 && "Regclass ref only has one result!");
1349 // An unnamed register class represents itself as an i32 immediate, for
1350 // example on a COPY_TO_REGCLASS instruction.
1351 if (Unnamed)
1352 return EEVT::TypeSet(MVT::i32, TP);
1353
1354 // In a named operand, the register class provides the possible set of
1355 // types.
1356 if (NotRegisters)
1357 return EEVT::TypeSet(); // Unknown.
1358 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1359 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1360 }
1361
1362 if (R->isSubClassOf("PatFrag")) {
1363 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1364 // Pattern fragment types will be resolved when they are inlined.
1365 return EEVT::TypeSet(); // Unknown.
1366 }
1367
1368 if (R->isSubClassOf("Register")) {
1369 assert(ResNo == 0 && "Registers only produce one result!");
1370 if (NotRegisters)
1371 return EEVT::TypeSet(); // Unknown.
1372 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1373 return EEVT::TypeSet(T.getRegisterVTs(R));
1374 }
1375
1376 if (R->isSubClassOf("SubRegIndex")) {
1377 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1378 return EEVT::TypeSet();
1379 }
1380
1381 if (R->isSubClassOf("ValueType")) {
1382 assert(ResNo == 0 && "This node only has one result!");
1383 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1384 //
1385 // (sext_inreg GPR:$src, i16)
1386 // ~~~
1387 if (Unnamed)
1388 return EEVT::TypeSet(MVT::Other, TP);
1389 // With a name, the ValueType simply provides the type of the named
1390 // variable.
1391 //
1392 // (sext_inreg i32:$src, i16)
1393 // ~~~~~~~~
1394 if (NotRegisters)
1395 return EEVT::TypeSet(); // Unknown.
1396 return EEVT::TypeSet(getValueType(R), TP);
1397 }
1398
1399 if (R->isSubClassOf("CondCode")) {
1400 assert(ResNo == 0 && "This node only has one result!");
1401 // Using a CondCodeSDNode.
1402 return EEVT::TypeSet(MVT::Other, TP);
1403 }
1404
1405 if (R->isSubClassOf("ComplexPattern")) {
1406 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1407 if (NotRegisters)
1408 return EEVT::TypeSet(); // Unknown.
1409 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1410 TP);
1411 }
1412 if (R->isSubClassOf("PointerLikeRegClass")) {
1413 assert(ResNo == 0 && "Regclass can only have one result!");
1414 return EEVT::TypeSet(MVT::iPTR, TP);
1415 }
1416
1417 if (R->getName() == "node" || R->getName() == "srcvalue" ||
1418 R->getName() == "zero_reg") {
1419 // Placeholder.
1420 return EEVT::TypeSet(); // Unknown.
1421 }
1422
1423 TP.error("Unknown node flavor used in pattern: " + R->getName());
1424 return EEVT::TypeSet(MVT::Other, TP);
1425 }
1426
1427
1428 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1429 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1430 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1431 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1432 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1433 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1434 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1435 return 0;
1436
1437 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1438 return &CDP.getIntrinsicInfo(IID);
1439 }
1440
1441 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1442 /// return the ComplexPattern information, otherwise return null.
1443 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1444 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1445 if (!isLeaf()) return 0;
1446
1447 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1448 if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1449 return &CGP.getComplexPattern(DI->getDef());
1450 return 0;
1451 }
1452
1453 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1454 bool TreePatternNode::NodeHasProperty(SDNP Property,
1455 const CodeGenDAGPatterns &CGP) const {
1456 if (isLeaf()) {
1457 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1458 return CP->hasProperty(Property);
1459 return false;
1460 }
1461
1462 Record *Operator = getOperator();
1463 if (!Operator->isSubClassOf("SDNode")) return false;
1464
1465 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1466 }
1467
1468
1469
1470
1471 /// TreeHasProperty - Return true if any node in this tree has the specified
1472 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1473 bool TreePatternNode::TreeHasProperty(SDNP Property,
1474 const CodeGenDAGPatterns &CGP) const {
1475 if (NodeHasProperty(Property, CGP))
1476 return true;
1477 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1478 if (getChild(i)->TreeHasProperty(Property, CGP))
1479 return true;
1480 return false;
1481 }
1482
1483 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1484 /// commutative intrinsic.
1485 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1486 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1487 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1488 return Int->isCommutative;
1489 return false;
1490 }
1491
1492
1493 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1494 /// this node and its children in the tree. This returns true if it makes a
1495 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1496 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1497 if (TP.hasError())
1498 return false;
1499
1500 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1501 if (isLeaf()) {
1502 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1503 // If it's a regclass or something else known, include the type.
1504 bool MadeChange = false;
1505 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1506 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1507 NotRegisters,
1508 !hasName(), TP), TP);
1509 return MadeChange;
1510 }
1511
1512 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1513 assert(Types.size() == 1 && "Invalid IntInit");
1514
1515 // Int inits are always integers. :)
1516 bool MadeChange = Types[0].EnforceInteger(TP);
1517
1518 if (!Types[0].isConcrete())
1519 return MadeChange;
1520
1521 MVT::SimpleValueType VT = getType(0);
1522 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1523 return MadeChange;
1524
1525 unsigned Size = EVT(VT).getSizeInBits();
1526 // Make sure that the value is representable for this type.
1527 if (Size >= 32) return MadeChange;
1528
1529 // Check that the value doesn't use more bits than we have. It must either
1530 // be a sign- or zero-extended equivalent of the original.
1531 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1532 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1533 return MadeChange;
1534
1535 TP.error("Integer value '" + itostr(II->getValue()) +
1536 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1537 return false;
1538 }
1539 return false;
1540 }
1541
1542 // special handling for set, which isn't really an SDNode.
1543 if (getOperator()->getName() == "set") {
1544 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1545 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1546 unsigned NC = getNumChildren();
1547
1548 TreePatternNode *SetVal = getChild(NC-1);
1549 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1550
1551 for (unsigned i = 0; i < NC-1; ++i) {
1552 TreePatternNode *Child = getChild(i);
1553 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1554
1555 // Types of operands must match.
1556 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1557 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1558 }
1559 return MadeChange;
1560 }
1561
1562 if (getOperator()->getName() == "implicit") {
1563 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1564
1565 bool MadeChange = false;
1566 for (unsigned i = 0; i < getNumChildren(); ++i)
1567 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1568 return MadeChange;
1569 }
1570
1571 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1572 bool MadeChange = false;
1573
1574 // Apply the result type to the node.
1575 unsigned NumRetVTs = Int->IS.RetVTs.size();
1576 unsigned NumParamVTs = Int->IS.ParamVTs.size();
1577
1578 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1579 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1580
1581 if (getNumChildren() != NumParamVTs + 1) {
1582 TP.error("Intrinsic '" + Int->Name + "' expects " +
1583 utostr(NumParamVTs) + " operands, not " +
1584 utostr(getNumChildren() - 1) + " operands!");
1585 return false;
1586 }
1587
1588 // Apply type info to the intrinsic ID.
1589 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1590
1591 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1592 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1593
1594 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1595 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1596 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1597 }
1598 return MadeChange;
1599 }
1600
1601 if (getOperator()->isSubClassOf("SDNode")) {
1602 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1603
1604 // Check that the number of operands is sane. Negative operands -> varargs.
1605 if (NI.getNumOperands() >= 0 &&
1606 getNumChildren() != (unsigned)NI.getNumOperands()) {
1607 TP.error(getOperator()->getName() + " node requires exactly " +
1608 itostr(NI.getNumOperands()) + " operands!");
1609 return false;
1610 }
1611
1612 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1613 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1614 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1615 return MadeChange;
1616 }
1617
1618 if (getOperator()->isSubClassOf("Instruction")) {
1619 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1620 CodeGenInstruction &InstInfo =
1621 CDP.getTargetInfo().getInstruction(getOperator());
1622
1623 bool MadeChange = false;
1624
1625 // Apply the result types to the node, these come from the things in the
1626 // (outs) list of the instruction.
1627 // FIXME: Cap at one result so far.
1628 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1629 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1630 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1631
1632 // If the instruction has implicit defs, we apply the first one as a result.
1633 // FIXME: This sucks, it should apply all implicit defs.
1634 if (!InstInfo.ImplicitDefs.empty()) {
1635 unsigned ResNo = NumResultsToAdd;
1636
1637 // FIXME: Generalize to multiple possible types and multiple possible
1638 // ImplicitDefs.
1639 MVT::SimpleValueType VT =
1640 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1641
1642 if (VT != MVT::Other)
1643 MadeChange |= UpdateNodeType(ResNo, VT, TP);
1644 }
1645
1646 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1647 // be the same.
1648 if (getOperator()->getName() == "INSERT_SUBREG") {
1649 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1650 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1651 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1652 }
1653
1654 unsigned ChildNo = 0;
1655 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1656 Record *OperandNode = Inst.getOperand(i);
1657
1658 // If the instruction expects a predicate or optional def operand, we
1659 // codegen this by setting the operand to it's default value if it has a
1660 // non-empty DefaultOps field.
1661 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1662 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1663 continue;
1664
1665 // Verify that we didn't run out of provided operands.
1666 if (ChildNo >= getNumChildren()) {
1667 TP.error("Instruction '" + getOperator()->getName() +
1668 "' expects more operands than were provided.");
1669 return false;
1670 }
1671
1672 TreePatternNode *Child = getChild(ChildNo++);
1673 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
1674
1675 // If the operand has sub-operands, they may be provided by distinct
1676 // child patterns, so attempt to match each sub-operand separately.
1677 if (OperandNode->isSubClassOf("Operand")) {
1678 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1679 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1680 // But don't do that if the whole operand is being provided by
1681 // a single ComplexPattern.
1682 const ComplexPattern *AM = Child->getComplexPatternInfo(CDP);
1683 if (!AM || AM->getNumOperands() < NumArgs) {
1684 // Match first sub-operand against the child we already have.
1685 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1686 MadeChange |=
1687 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1688
1689 // And the remaining sub-operands against subsequent children.
1690 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1691 if (ChildNo >= getNumChildren()) {
1692 TP.error("Instruction '" + getOperator()->getName() +
1693 "' expects more operands than were provided.");
1694 return false;
1695 }
1696 Child = getChild(ChildNo++);
1697
1698 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1699 MadeChange |=
1700 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1701 }
1702 continue;
1703 }
1704 }
1705 }
1706
1707 // If we didn't match by pieces above, attempt to match the whole
1708 // operand now.
1709 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1710 }
1711
1712 if (ChildNo != getNumChildren()) {
1713 TP.error("Instruction '" + getOperator()->getName() +
1714 "' was provided too many operands!");
1715 return false;
1716 }
1717
1718 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1719 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1720 return MadeChange;
1721 }
1722
1723 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1724
1725 // Node transforms always take one operand.
1726 if (getNumChildren() != 1) {
1727 TP.error("Node transform '" + getOperator()->getName() +
1728 "' requires one operand!");
1729 return false;
1730 }
1731
1732 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1733
1734
1735 // If either the output or input of the xform does not have exact
1736 // type info. We assume they must be the same. Otherwise, it is perfectly
1737 // legal to transform from one type to a completely different type.
1738 #if 0
1739 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1740 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1741 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1742 return MadeChange;
1743 }
1744 #endif
1745 return MadeChange;
1746 }
1747
1748 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1749 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1750 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1751 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1752 return true;
1753 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1754 return true;
1755 return false;
1756 }
1757
1758
1759 /// canPatternMatch - If it is impossible for this pattern to match on this
1760 /// target, fill in Reason and return false. Otherwise, return true. This is
1761 /// used as a sanity check for .td files (to prevent people from writing stuff
1762 /// that can never possibly work), and to prevent the pattern permuter from
1763 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)1764 bool TreePatternNode::canPatternMatch(std::string &Reason,
1765 const CodeGenDAGPatterns &CDP) {
1766 if (isLeaf()) return true;
1767
1768 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1769 if (!getChild(i)->canPatternMatch(Reason, CDP))
1770 return false;
1771
1772 // If this is an intrinsic, handle cases that would make it not match. For
1773 // example, if an operand is required to be an immediate.
1774 if (getOperator()->isSubClassOf("Intrinsic")) {
1775 // TODO:
1776 return true;
1777 }
1778
1779 // If this node is a commutative operator, check that the LHS isn't an
1780 // immediate.
1781 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1782 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1783 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1784 // Scan all of the operands of the node and make sure that only the last one
1785 // is a constant node, unless the RHS also is.
1786 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1787 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1788 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1789 if (OnlyOnRHSOfCommutative(getChild(i))) {
1790 Reason="Immediate value must be on the RHS of commutative operators!";
1791 return false;
1792 }
1793 }
1794 }
1795
1796 return true;
1797 }
1798
1799 //===----------------------------------------------------------------------===//
1800 // TreePattern implementation
1801 //
1802
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)1803 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1804 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1805 isInputPattern(isInput), HasError(false) {
1806 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1807 Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1808 }
1809
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)1810 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1811 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1812 isInputPattern(isInput), HasError(false) {
1813 Trees.push_back(ParseTreePattern(Pat, ""));
1814 }
1815
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)1816 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1817 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1818 isInputPattern(isInput), HasError(false) {
1819 Trees.push_back(Pat);
1820 }
1821
error(const std::string & Msg)1822 void TreePattern::error(const std::string &Msg) {
1823 if (HasError)
1824 return;
1825 dump();
1826 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1827 HasError = true;
1828 }
1829
ComputeNamedNodes()1830 void TreePattern::ComputeNamedNodes() {
1831 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1832 ComputeNamedNodes(Trees[i]);
1833 }
1834
ComputeNamedNodes(TreePatternNode * N)1835 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1836 if (!N->getName().empty())
1837 NamedNodes[N->getName()].push_back(N);
1838
1839 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1840 ComputeNamedNodes(N->getChild(i));
1841 }
1842
1843
ParseTreePattern(Init * TheInit,StringRef OpName)1844 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1845 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1846 Record *R = DI->getDef();
1847
1848 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1849 // TreePatternNode of its own. For example:
1850 /// (foo GPR, imm) -> (foo GPR, (imm))
1851 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1852 return ParseTreePattern(
1853 DagInit::get(DI, "",
1854 std::vector<std::pair<Init*, std::string> >()),
1855 OpName);
1856
1857 // Input argument?
1858 TreePatternNode *Res = new TreePatternNode(DI, 1);
1859 if (R->getName() == "node" && !OpName.empty()) {
1860 if (OpName.empty())
1861 error("'node' argument requires a name to match with operand list");
1862 Args.push_back(OpName);
1863 }
1864
1865 Res->setName(OpName);
1866 return Res;
1867 }
1868
1869 // ?:$name or just $name.
1870 if (TheInit == UnsetInit::get()) {
1871 if (OpName.empty())
1872 error("'?' argument requires a name to match with operand list");
1873 TreePatternNode *Res = new TreePatternNode(TheInit, 1);
1874 Args.push_back(OpName);
1875 Res->setName(OpName);
1876 return Res;
1877 }
1878
1879 if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1880 if (!OpName.empty())
1881 error("Constant int argument should not have a name!");
1882 return new TreePatternNode(II, 1);
1883 }
1884
1885 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1886 // Turn this into an IntInit.
1887 Init *II = BI->convertInitializerTo(IntRecTy::get());
1888 if (II == 0 || !isa<IntInit>(II))
1889 error("Bits value must be constants!");
1890 return ParseTreePattern(II, OpName);
1891 }
1892
1893 DagInit *Dag = dyn_cast<DagInit>(TheInit);
1894 if (!Dag) {
1895 TheInit->dump();
1896 error("Pattern has unexpected init kind!");
1897 }
1898 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
1899 if (!OpDef) error("Pattern has unexpected operator type!");
1900 Record *Operator = OpDef->getDef();
1901
1902 if (Operator->isSubClassOf("ValueType")) {
1903 // If the operator is a ValueType, then this must be "type cast" of a leaf
1904 // node.
1905 if (Dag->getNumArgs() != 1)
1906 error("Type cast only takes one operand!");
1907
1908 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1909
1910 // Apply the type cast.
1911 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1912 New->UpdateNodeType(0, getValueType(Operator), *this);
1913
1914 if (!OpName.empty())
1915 error("ValueType cast should not have a name!");
1916 return New;
1917 }
1918
1919 // Verify that this is something that makes sense for an operator.
1920 if (!Operator->isSubClassOf("PatFrag") &&
1921 !Operator->isSubClassOf("SDNode") &&
1922 !Operator->isSubClassOf("Instruction") &&
1923 !Operator->isSubClassOf("SDNodeXForm") &&
1924 !Operator->isSubClassOf("Intrinsic") &&
1925 Operator->getName() != "set" &&
1926 Operator->getName() != "implicit")
1927 error("Unrecognized node '" + Operator->getName() + "'!");
1928
1929 // Check to see if this is something that is illegal in an input pattern.
1930 if (isInputPattern) {
1931 if (Operator->isSubClassOf("Instruction") ||
1932 Operator->isSubClassOf("SDNodeXForm"))
1933 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1934 } else {
1935 if (Operator->isSubClassOf("Intrinsic"))
1936 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1937
1938 if (Operator->isSubClassOf("SDNode") &&
1939 Operator->getName() != "imm" &&
1940 Operator->getName() != "fpimm" &&
1941 Operator->getName() != "tglobaltlsaddr" &&
1942 Operator->getName() != "tconstpool" &&
1943 Operator->getName() != "tjumptable" &&
1944 Operator->getName() != "tframeindex" &&
1945 Operator->getName() != "texternalsym" &&
1946 Operator->getName() != "tblockaddress" &&
1947 Operator->getName() != "tglobaladdr" &&
1948 Operator->getName() != "bb" &&
1949 Operator->getName() != "vt")
1950 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1951 }
1952
1953 std::vector<TreePatternNode*> Children;
1954
1955 // Parse all the operands.
1956 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1957 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1958
1959 // If the operator is an intrinsic, then this is just syntactic sugar for for
1960 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1961 // convert the intrinsic name to a number.
1962 if (Operator->isSubClassOf("Intrinsic")) {
1963 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1964 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1965
1966 // If this intrinsic returns void, it must have side-effects and thus a
1967 // chain.
1968 if (Int.IS.RetVTs.empty())
1969 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1970 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1971 // Has side-effects, requires chain.
1972 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1973 else // Otherwise, no chain.
1974 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1975
1976 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1977 Children.insert(Children.begin(), IIDNode);
1978 }
1979
1980 unsigned NumResults = GetNumNodeResults(Operator, CDP);
1981 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1982 Result->setName(OpName);
1983
1984 if (!Dag->getName().empty()) {
1985 assert(Result->getName().empty());
1986 Result->setName(Dag->getName());
1987 }
1988 return Result;
1989 }
1990
1991 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1992 /// will never match in favor of something obvious that will. This is here
1993 /// strictly as a convenience to target authors because it allows them to write
1994 /// more type generic things and have useless type casts fold away.
1995 ///
1996 /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)1997 static bool SimplifyTree(TreePatternNode *&N) {
1998 if (N->isLeaf())
1999 return false;
2000
2001 // If we have a bitconvert with a resolved type and if the source and
2002 // destination types are the same, then the bitconvert is useless, remove it.
2003 if (N->getOperator()->getName() == "bitconvert" &&
2004 N->getExtType(0).isConcrete() &&
2005 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2006 N->getName().empty()) {
2007 N = N->getChild(0);
2008 SimplifyTree(N);
2009 return true;
2010 }
2011
2012 // Walk all children.
2013 bool MadeChange = false;
2014 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2015 TreePatternNode *Child = N->getChild(i);
2016 MadeChange |= SimplifyTree(Child);
2017 N->setChild(i, Child);
2018 }
2019 return MadeChange;
2020 }
2021
2022
2023
2024 /// InferAllTypes - Infer/propagate as many types throughout the expression
2025 /// patterns as possible. Return true if all types are inferred, false
2026 /// otherwise. Flags an error if a type contradiction is found.
2027 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2028 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2029 if (NamedNodes.empty())
2030 ComputeNamedNodes();
2031
2032 bool MadeChange = true;
2033 while (MadeChange) {
2034 MadeChange = false;
2035 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2036 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
2037 MadeChange |= SimplifyTree(Trees[i]);
2038 }
2039
2040 // If there are constraints on our named nodes, apply them.
2041 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
2042 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
2043 SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
2044
2045 // If we have input named node types, propagate their types to the named
2046 // values here.
2047 if (InNamedTypes) {
2048 // FIXME: Should be error?
2049 assert(InNamedTypes->count(I->getKey()) &&
2050 "Named node in output pattern but not input pattern?");
2051
2052 const SmallVectorImpl<TreePatternNode*> &InNodes =
2053 InNamedTypes->find(I->getKey())->second;
2054
2055 // The input types should be fully resolved by now.
2056 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2057 // If this node is a register class, and it is the root of the pattern
2058 // then we're mapping something onto an input register. We allow
2059 // changing the type of the input register in this case. This allows
2060 // us to match things like:
2061 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2062 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2063 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2064 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2065 DI->getDef()->isSubClassOf("RegisterOperand")))
2066 continue;
2067 }
2068
2069 assert(Nodes[i]->getNumTypes() == 1 &&
2070 InNodes[0]->getNumTypes() == 1 &&
2071 "FIXME: cannot name multiple result nodes yet");
2072 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2073 *this);
2074 }
2075 }
2076
2077 // If there are multiple nodes with the same name, they must all have the
2078 // same type.
2079 if (I->second.size() > 1) {
2080 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2081 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2082 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2083 "FIXME: cannot name multiple result nodes yet");
2084
2085 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2086 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2087 }
2088 }
2089 }
2090 }
2091
2092 bool HasUnresolvedTypes = false;
2093 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2094 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2095 return !HasUnresolvedTypes;
2096 }
2097
print(raw_ostream & OS) const2098 void TreePattern::print(raw_ostream &OS) const {
2099 OS << getRecord()->getName();
2100 if (!Args.empty()) {
2101 OS << "(" << Args[0];
2102 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2103 OS << ", " << Args[i];
2104 OS << ")";
2105 }
2106 OS << ": ";
2107
2108 if (Trees.size() > 1)
2109 OS << "[\n";
2110 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2111 OS << "\t";
2112 Trees[i]->print(OS);
2113 OS << "\n";
2114 }
2115
2116 if (Trees.size() > 1)
2117 OS << "]\n";
2118 }
2119
dump() const2120 void TreePattern::dump() const { print(errs()); }
2121
2122 //===----------------------------------------------------------------------===//
2123 // CodeGenDAGPatterns implementation
2124 //
2125
CodeGenDAGPatterns(RecordKeeper & R)2126 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2127 Records(R), Target(R) {
2128
2129 Intrinsics = LoadIntrinsics(Records, false);
2130 TgtIntrinsics = LoadIntrinsics(Records, true);
2131 ParseNodeInfo();
2132 ParseNodeTransforms();
2133 ParseComplexPatterns();
2134 ParsePatternFragments();
2135 ParseDefaultOperands();
2136 ParseInstructions();
2137 ParsePatterns();
2138
2139 // Generate variants. For example, commutative patterns can match
2140 // multiple ways. Add them to PatternsToMatch as well.
2141 GenerateVariants();
2142
2143 // Infer instruction flags. For example, we can detect loads,
2144 // stores, and side effects in many cases by examining an
2145 // instruction's pattern.
2146 InferInstructionFlags();
2147
2148 // Verify that instruction flags match the patterns.
2149 VerifyInstructionFlags();
2150 }
2151
~CodeGenDAGPatterns()2152 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2153 for (pf_iterator I = PatternFragments.begin(),
2154 E = PatternFragments.end(); I != E; ++I)
2155 delete I->second;
2156 }
2157
2158
getSDNodeNamed(const std::string & Name) const2159 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2160 Record *N = Records.getDef(Name);
2161 if (!N || !N->isSubClassOf("SDNode")) {
2162 errs() << "Error getting SDNode '" << Name << "'!\n";
2163 exit(1);
2164 }
2165 return N;
2166 }
2167
2168 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2169 void CodeGenDAGPatterns::ParseNodeInfo() {
2170 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2171 while (!Nodes.empty()) {
2172 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2173 Nodes.pop_back();
2174 }
2175
2176 // Get the builtin intrinsic nodes.
2177 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2178 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2179 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2180 }
2181
2182 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2183 /// map, and emit them to the file as functions.
ParseNodeTransforms()2184 void CodeGenDAGPatterns::ParseNodeTransforms() {
2185 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2186 while (!Xforms.empty()) {
2187 Record *XFormNode = Xforms.back();
2188 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2189 std::string Code = XFormNode->getValueAsString("XFormFunction");
2190 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2191
2192 Xforms.pop_back();
2193 }
2194 }
2195
ParseComplexPatterns()2196 void CodeGenDAGPatterns::ParseComplexPatterns() {
2197 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2198 while (!AMs.empty()) {
2199 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2200 AMs.pop_back();
2201 }
2202 }
2203
2204
2205 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2206 /// file, building up the PatternFragments map. After we've collected them all,
2207 /// inline fragments together as necessary, so that there are no references left
2208 /// inside a pattern fragment to a pattern fragment.
2209 ///
ParsePatternFragments()2210 void CodeGenDAGPatterns::ParsePatternFragments() {
2211 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2212
2213 // First step, parse all of the fragments.
2214 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2215 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2216 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2217 PatternFragments[Fragments[i]] = P;
2218
2219 // Validate the argument list, converting it to set, to discard duplicates.
2220 std::vector<std::string> &Args = P->getArgList();
2221 std::set<std::string> OperandsSet(Args.begin(), Args.end());
2222
2223 if (OperandsSet.count(""))
2224 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2225
2226 // Parse the operands list.
2227 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2228 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2229 // Special cases: ops == outs == ins. Different names are used to
2230 // improve readability.
2231 if (!OpsOp ||
2232 (OpsOp->getDef()->getName() != "ops" &&
2233 OpsOp->getDef()->getName() != "outs" &&
2234 OpsOp->getDef()->getName() != "ins"))
2235 P->error("Operands list should start with '(ops ... '!");
2236
2237 // Copy over the arguments.
2238 Args.clear();
2239 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2240 if (!isa<DefInit>(OpsList->getArg(j)) ||
2241 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2242 P->error("Operands list should all be 'node' values.");
2243 if (OpsList->getArgName(j).empty())
2244 P->error("Operands list should have names for each operand!");
2245 if (!OperandsSet.count(OpsList->getArgName(j)))
2246 P->error("'" + OpsList->getArgName(j) +
2247 "' does not occur in pattern or was multiply specified!");
2248 OperandsSet.erase(OpsList->getArgName(j));
2249 Args.push_back(OpsList->getArgName(j));
2250 }
2251
2252 if (!OperandsSet.empty())
2253 P->error("Operands list does not contain an entry for operand '" +
2254 *OperandsSet.begin() + "'!");
2255
2256 // If there is a code init for this fragment, keep track of the fact that
2257 // this fragment uses it.
2258 TreePredicateFn PredFn(P);
2259 if (!PredFn.isAlwaysTrue())
2260 P->getOnlyTree()->addPredicateFn(PredFn);
2261
2262 // If there is a node transformation corresponding to this, keep track of
2263 // it.
2264 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2265 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
2266 P->getOnlyTree()->setTransformFn(Transform);
2267 }
2268
2269 // Now that we've parsed all of the tree fragments, do a closure on them so
2270 // that there are not references to PatFrags left inside of them.
2271 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2272 TreePattern *ThePat = PatternFragments[Fragments[i]];
2273 ThePat->InlinePatternFragments();
2274
2275 // Infer as many types as possible. Don't worry about it if we don't infer
2276 // all of them, some may depend on the inputs of the pattern.
2277 ThePat->InferAllTypes();
2278 ThePat->resetError();
2279
2280 // If debugging, print out the pattern fragment result.
2281 DEBUG(ThePat->dump());
2282 }
2283 }
2284
ParseDefaultOperands()2285 void CodeGenDAGPatterns::ParseDefaultOperands() {
2286 std::vector<Record*> DefaultOps;
2287 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2288
2289 // Find some SDNode.
2290 assert(!SDNodes.empty() && "No SDNodes parsed?");
2291 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2292
2293 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2294 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2295
2296 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2297 // SomeSDnode so that we can parse this.
2298 std::vector<std::pair<Init*, std::string> > Ops;
2299 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2300 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2301 DefaultInfo->getArgName(op)));
2302 DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2303
2304 // Create a TreePattern to parse this.
2305 TreePattern P(DefaultOps[i], DI, false, *this);
2306 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2307
2308 // Copy the operands over into a DAGDefaultOperand.
2309 DAGDefaultOperand DefaultOpInfo;
2310
2311 TreePatternNode *T = P.getTree(0);
2312 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2313 TreePatternNode *TPN = T->getChild(op);
2314 while (TPN->ApplyTypeConstraints(P, false))
2315 /* Resolve all types */;
2316
2317 if (TPN->ContainsUnresolvedType()) {
2318 PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2319 DefaultOps[i]->getName() +"' doesn't have a concrete type!");
2320 }
2321 DefaultOpInfo.DefaultOps.push_back(TPN);
2322 }
2323
2324 // Insert it into the DefaultOperands map so we can find it later.
2325 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2326 }
2327 }
2328
2329 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2330 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2331 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2332 std::map<std::string, TreePatternNode*> &InstInputs) {
2333 // No name -> not interesting.
2334 if (Pat->getName().empty()) {
2335 if (Pat->isLeaf()) {
2336 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2337 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2338 DI->getDef()->isSubClassOf("RegisterOperand")))
2339 I->error("Input " + DI->getDef()->getName() + " must be named!");
2340 }
2341 return false;
2342 }
2343
2344 Record *Rec;
2345 if (Pat->isLeaf()) {
2346 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2347 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2348 Rec = DI->getDef();
2349 } else {
2350 Rec = Pat->getOperator();
2351 }
2352
2353 // SRCVALUE nodes are ignored.
2354 if (Rec->getName() == "srcvalue")
2355 return false;
2356
2357 TreePatternNode *&Slot = InstInputs[Pat->getName()];
2358 if (!Slot) {
2359 Slot = Pat;
2360 return true;
2361 }
2362 Record *SlotRec;
2363 if (Slot->isLeaf()) {
2364 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2365 } else {
2366 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2367 SlotRec = Slot->getOperator();
2368 }
2369
2370 // Ensure that the inputs agree if we've already seen this input.
2371 if (Rec != SlotRec)
2372 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2373 if (Slot->getExtTypes() != Pat->getExtTypes())
2374 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2375 return true;
2376 }
2377
2378 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2379 /// part of "I", the instruction), computing the set of inputs and outputs of
2380 /// the pattern. Report errors if we see anything naughty.
2381 void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2382 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2383 std::map<std::string, TreePatternNode*> &InstInputs,
2384 std::map<std::string, TreePatternNode*>&InstResults,
2385 std::vector<Record*> &InstImpResults) {
2386 if (Pat->isLeaf()) {
2387 bool isUse = HandleUse(I, Pat, InstInputs);
2388 if (!isUse && Pat->getTransformFn())
2389 I->error("Cannot specify a transform function for a non-input value!");
2390 return;
2391 }
2392
2393 if (Pat->getOperator()->getName() == "implicit") {
2394 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2395 TreePatternNode *Dest = Pat->getChild(i);
2396 if (!Dest->isLeaf())
2397 I->error("implicitly defined value should be a register!");
2398
2399 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2400 if (!Val || !Val->getDef()->isSubClassOf("Register"))
2401 I->error("implicitly defined value should be a register!");
2402 InstImpResults.push_back(Val->getDef());
2403 }
2404 return;
2405 }
2406
2407 if (Pat->getOperator()->getName() != "set") {
2408 // If this is not a set, verify that the children nodes are not void typed,
2409 // and recurse.
2410 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2411 if (Pat->getChild(i)->getNumTypes() == 0)
2412 I->error("Cannot have void nodes inside of patterns!");
2413 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2414 InstImpResults);
2415 }
2416
2417 // If this is a non-leaf node with no children, treat it basically as if
2418 // it were a leaf. This handles nodes like (imm).
2419 bool isUse = HandleUse(I, Pat, InstInputs);
2420
2421 if (!isUse && Pat->getTransformFn())
2422 I->error("Cannot specify a transform function for a non-input value!");
2423 return;
2424 }
2425
2426 // Otherwise, this is a set, validate and collect instruction results.
2427 if (Pat->getNumChildren() == 0)
2428 I->error("set requires operands!");
2429
2430 if (Pat->getTransformFn())
2431 I->error("Cannot specify a transform function on a set node!");
2432
2433 // Check the set destinations.
2434 unsigned NumDests = Pat->getNumChildren()-1;
2435 for (unsigned i = 0; i != NumDests; ++i) {
2436 TreePatternNode *Dest = Pat->getChild(i);
2437 if (!Dest->isLeaf())
2438 I->error("set destination should be a register!");
2439
2440 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2441 if (!Val)
2442 I->error("set destination should be a register!");
2443
2444 if (Val->getDef()->isSubClassOf("RegisterClass") ||
2445 Val->getDef()->isSubClassOf("ValueType") ||
2446 Val->getDef()->isSubClassOf("RegisterOperand") ||
2447 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2448 if (Dest->getName().empty())
2449 I->error("set destination must have a name!");
2450 if (InstResults.count(Dest->getName()))
2451 I->error("cannot set '" + Dest->getName() +"' multiple times");
2452 InstResults[Dest->getName()] = Dest;
2453 } else if (Val->getDef()->isSubClassOf("Register")) {
2454 InstImpResults.push_back(Val->getDef());
2455 } else {
2456 I->error("set destination should be a register!");
2457 }
2458 }
2459
2460 // Verify and collect info from the computation.
2461 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2462 InstInputs, InstResults, InstImpResults);
2463 }
2464
2465 //===----------------------------------------------------------------------===//
2466 // Instruction Analysis
2467 //===----------------------------------------------------------------------===//
2468
2469 class InstAnalyzer {
2470 const CodeGenDAGPatterns &CDP;
2471 public:
2472 bool hasSideEffects;
2473 bool mayStore;
2474 bool mayLoad;
2475 bool isBitcast;
2476 bool isVariadic;
2477
InstAnalyzer(const CodeGenDAGPatterns & cdp)2478 InstAnalyzer(const CodeGenDAGPatterns &cdp)
2479 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2480 isBitcast(false), isVariadic(false) {}
2481
Analyze(const TreePattern * Pat)2482 void Analyze(const TreePattern *Pat) {
2483 // Assume only the first tree is the pattern. The others are clobber nodes.
2484 AnalyzeNode(Pat->getTree(0));
2485 }
2486
Analyze(const PatternToMatch * Pat)2487 void Analyze(const PatternToMatch *Pat) {
2488 AnalyzeNode(Pat->getSrcPattern());
2489 }
2490
2491 private:
IsNodeBitcast(const TreePatternNode * N) const2492 bool IsNodeBitcast(const TreePatternNode *N) const {
2493 if (hasSideEffects || mayLoad || mayStore || isVariadic)
2494 return false;
2495
2496 if (N->getNumChildren() != 2)
2497 return false;
2498
2499 const TreePatternNode *N0 = N->getChild(0);
2500 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2501 return false;
2502
2503 const TreePatternNode *N1 = N->getChild(1);
2504 if (N1->isLeaf())
2505 return false;
2506 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2507 return false;
2508
2509 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2510 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2511 return false;
2512 return OpInfo.getEnumName() == "ISD::BITCAST";
2513 }
2514
2515 public:
AnalyzeNode(const TreePatternNode * N)2516 void AnalyzeNode(const TreePatternNode *N) {
2517 if (N->isLeaf()) {
2518 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2519 Record *LeafRec = DI->getDef();
2520 // Handle ComplexPattern leaves.
2521 if (LeafRec->isSubClassOf("ComplexPattern")) {
2522 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2523 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2524 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2525 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2526 }
2527 }
2528 return;
2529 }
2530
2531 // Analyze children.
2532 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2533 AnalyzeNode(N->getChild(i));
2534
2535 // Ignore set nodes, which are not SDNodes.
2536 if (N->getOperator()->getName() == "set") {
2537 isBitcast = IsNodeBitcast(N);
2538 return;
2539 }
2540
2541 // Get information about the SDNode for the operator.
2542 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2543
2544 // Notice properties of the node.
2545 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2546 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2547 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2548 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2549
2550 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2551 // If this is an intrinsic, analyze it.
2552 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2553 mayLoad = true;// These may load memory.
2554
2555 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2556 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2557
2558 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2559 // WriteMem intrinsics can have other strange effects.
2560 hasSideEffects = true;
2561 }
2562 }
2563
2564 };
2565
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2566 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2567 const InstAnalyzer &PatInfo,
2568 Record *PatDef) {
2569 bool Error = false;
2570
2571 // Remember where InstInfo got its flags.
2572 if (InstInfo.hasUndefFlags())
2573 InstInfo.InferredFrom = PatDef;
2574
2575 // Check explicitly set flags for consistency.
2576 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2577 !InstInfo.hasSideEffects_Unset) {
2578 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2579 // the pattern has no side effects. That could be useful for div/rem
2580 // instructions that may trap.
2581 if (!InstInfo.hasSideEffects) {
2582 Error = true;
2583 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2584 Twine(InstInfo.hasSideEffects));
2585 }
2586 }
2587
2588 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2589 Error = true;
2590 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2591 Twine(InstInfo.mayStore));
2592 }
2593
2594 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2595 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2596 // Some targets translate imediates to loads.
2597 if (!InstInfo.mayLoad) {
2598 Error = true;
2599 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2600 Twine(InstInfo.mayLoad));
2601 }
2602 }
2603
2604 // Transfer inferred flags.
2605 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2606 InstInfo.mayStore |= PatInfo.mayStore;
2607 InstInfo.mayLoad |= PatInfo.mayLoad;
2608
2609 // These flags are silently added without any verification.
2610 InstInfo.isBitcast |= PatInfo.isBitcast;
2611
2612 // Don't infer isVariadic. This flag means something different on SDNodes and
2613 // instructions. For example, a CALL SDNode is variadic because it has the
2614 // call arguments as operands, but a CALL instruction is not variadic - it
2615 // has argument registers as implicit, not explicit uses.
2616
2617 return Error;
2618 }
2619
2620 /// hasNullFragReference - Return true if the DAG has any reference to the
2621 /// null_frag operator.
hasNullFragReference(DagInit * DI)2622 static bool hasNullFragReference(DagInit *DI) {
2623 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2624 if (!OpDef) return false;
2625 Record *Operator = OpDef->getDef();
2626
2627 // If this is the null fragment, return true.
2628 if (Operator->getName() == "null_frag") return true;
2629 // If any of the arguments reference the null fragment, return true.
2630 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2631 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2632 if (Arg && hasNullFragReference(Arg))
2633 return true;
2634 }
2635
2636 return false;
2637 }
2638
2639 /// hasNullFragReference - Return true if any DAG in the list references
2640 /// the null_frag operator.
hasNullFragReference(ListInit * LI)2641 static bool hasNullFragReference(ListInit *LI) {
2642 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2643 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2644 assert(DI && "non-dag in an instruction Pattern list?!");
2645 if (hasNullFragReference(DI))
2646 return true;
2647 }
2648 return false;
2649 }
2650
2651 /// Get all the instructions in a tree.
2652 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2653 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2654 if (Tree->isLeaf())
2655 return;
2656 if (Tree->getOperator()->isSubClassOf("Instruction"))
2657 Instrs.push_back(Tree->getOperator());
2658 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2659 getInstructionsInTree(Tree->getChild(i), Instrs);
2660 }
2661
2662 /// Check the class of a pattern leaf node against the instruction operand it
2663 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)2664 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2665 Record *Leaf) {
2666 if (OI.Rec == Leaf)
2667 return true;
2668
2669 // Allow direct value types to be used in instruction set patterns.
2670 // The type will be checked later.
2671 if (Leaf->isSubClassOf("ValueType"))
2672 return true;
2673
2674 // Patterns can also be ComplexPattern instances.
2675 if (Leaf->isSubClassOf("ComplexPattern"))
2676 return true;
2677
2678 return false;
2679 }
2680
2681 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2682 /// any fragments involved. This populates the Instructions list with fully
2683 /// resolved instructions.
ParseInstructions()2684 void CodeGenDAGPatterns::ParseInstructions() {
2685 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2686
2687 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2688 ListInit *LI = 0;
2689
2690 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2691 LI = Instrs[i]->getValueAsListInit("Pattern");
2692
2693 // If there is no pattern, only collect minimal information about the
2694 // instruction for its operand list. We have to assume that there is one
2695 // result, as we have no detailed info. A pattern which references the
2696 // null_frag operator is as-if no pattern were specified. Normally this
2697 // is from a multiclass expansion w/ a SDPatternOperator passed in as
2698 // null_frag.
2699 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2700 std::vector<Record*> Results;
2701 std::vector<Record*> Operands;
2702
2703 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2704
2705 if (InstInfo.Operands.size() != 0) {
2706 if (InstInfo.Operands.NumDefs == 0) {
2707 // These produce no results
2708 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2709 Operands.push_back(InstInfo.Operands[j].Rec);
2710 } else {
2711 // Assume the first operand is the result.
2712 Results.push_back(InstInfo.Operands[0].Rec);
2713
2714 // The rest are inputs.
2715 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2716 Operands.push_back(InstInfo.Operands[j].Rec);
2717 }
2718 }
2719
2720 // Create and insert the instruction.
2721 std::vector<Record*> ImpResults;
2722 Instructions.insert(std::make_pair(Instrs[i],
2723 DAGInstruction(0, Results, Operands, ImpResults)));
2724 continue; // no pattern.
2725 }
2726
2727 // Parse the instruction.
2728 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2729 // Inline pattern fragments into it.
2730 I->InlinePatternFragments();
2731
2732 // Infer as many types as possible. If we cannot infer all of them, we can
2733 // never do anything with this instruction pattern: report it to the user.
2734 if (!I->InferAllTypes())
2735 I->error("Could not infer all types in pattern!");
2736
2737 // InstInputs - Keep track of all of the inputs of the instruction, along
2738 // with the record they are declared as.
2739 std::map<std::string, TreePatternNode*> InstInputs;
2740
2741 // InstResults - Keep track of all the virtual registers that are 'set'
2742 // in the instruction, including what reg class they are.
2743 std::map<std::string, TreePatternNode*> InstResults;
2744
2745 std::vector<Record*> InstImpResults;
2746
2747 // Verify that the top-level forms in the instruction are of void type, and
2748 // fill in the InstResults map.
2749 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2750 TreePatternNode *Pat = I->getTree(j);
2751 if (Pat->getNumTypes() != 0)
2752 I->error("Top-level forms in instruction pattern should have"
2753 " void types");
2754
2755 // Find inputs and outputs, and verify the structure of the uses/defs.
2756 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2757 InstImpResults);
2758 }
2759
2760 // Now that we have inputs and outputs of the pattern, inspect the operands
2761 // list for the instruction. This determines the order that operands are
2762 // added to the machine instruction the node corresponds to.
2763 unsigned NumResults = InstResults.size();
2764
2765 // Parse the operands list from the (ops) list, validating it.
2766 assert(I->getArgList().empty() && "Args list should still be empty here!");
2767 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2768
2769 // Check that all of the results occur first in the list.
2770 std::vector<Record*> Results;
2771 TreePatternNode *Res0Node = 0;
2772 for (unsigned i = 0; i != NumResults; ++i) {
2773 if (i == CGI.Operands.size())
2774 I->error("'" + InstResults.begin()->first +
2775 "' set but does not appear in operand list!");
2776 const std::string &OpName = CGI.Operands[i].Name;
2777
2778 // Check that it exists in InstResults.
2779 TreePatternNode *RNode = InstResults[OpName];
2780 if (RNode == 0)
2781 I->error("Operand $" + OpName + " does not exist in operand list!");
2782
2783 if (i == 0)
2784 Res0Node = RNode;
2785 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2786 if (R == 0)
2787 I->error("Operand $" + OpName + " should be a set destination: all "
2788 "outputs must occur before inputs in operand list!");
2789
2790 if (!checkOperandClass(CGI.Operands[i], R))
2791 I->error("Operand $" + OpName + " class mismatch!");
2792
2793 // Remember the return type.
2794 Results.push_back(CGI.Operands[i].Rec);
2795
2796 // Okay, this one checks out.
2797 InstResults.erase(OpName);
2798 }
2799
2800 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2801 // the copy while we're checking the inputs.
2802 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2803
2804 std::vector<TreePatternNode*> ResultNodeOperands;
2805 std::vector<Record*> Operands;
2806 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2807 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2808 const std::string &OpName = Op.Name;
2809 if (OpName.empty())
2810 I->error("Operand #" + utostr(i) + " in operands list has no name!");
2811
2812 if (!InstInputsCheck.count(OpName)) {
2813 // If this is an operand with a DefaultOps set filled in, we can ignore
2814 // this. When we codegen it, we will do so as always executed.
2815 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2816 // Does it have a non-empty DefaultOps field? If so, ignore this
2817 // operand.
2818 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2819 continue;
2820 }
2821 I->error("Operand $" + OpName +
2822 " does not appear in the instruction pattern");
2823 }
2824 TreePatternNode *InVal = InstInputsCheck[OpName];
2825 InstInputsCheck.erase(OpName); // It occurred, remove from map.
2826
2827 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2828 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2829 if (!checkOperandClass(Op, InRec))
2830 I->error("Operand $" + OpName + "'s register class disagrees"
2831 " between the operand and pattern");
2832 }
2833 Operands.push_back(Op.Rec);
2834
2835 // Construct the result for the dest-pattern operand list.
2836 TreePatternNode *OpNode = InVal->clone();
2837
2838 // No predicate is useful on the result.
2839 OpNode->clearPredicateFns();
2840
2841 // Promote the xform function to be an explicit node if set.
2842 if (Record *Xform = OpNode->getTransformFn()) {
2843 OpNode->setTransformFn(0);
2844 std::vector<TreePatternNode*> Children;
2845 Children.push_back(OpNode);
2846 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2847 }
2848
2849 ResultNodeOperands.push_back(OpNode);
2850 }
2851
2852 if (!InstInputsCheck.empty())
2853 I->error("Input operand $" + InstInputsCheck.begin()->first +
2854 " occurs in pattern but not in operands list!");
2855
2856 TreePatternNode *ResultPattern =
2857 new TreePatternNode(I->getRecord(), ResultNodeOperands,
2858 GetNumNodeResults(I->getRecord(), *this));
2859 // Copy fully inferred output node type to instruction result pattern.
2860 for (unsigned i = 0; i != NumResults; ++i)
2861 ResultPattern->setType(i, Res0Node->getExtType(i));
2862
2863 // Create and insert the instruction.
2864 // FIXME: InstImpResults should not be part of DAGInstruction.
2865 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2866 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2867
2868 // Use a temporary tree pattern to infer all types and make sure that the
2869 // constructed result is correct. This depends on the instruction already
2870 // being inserted into the Instructions map.
2871 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2872 Temp.InferAllTypes(&I->getNamedNodesMap());
2873
2874 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2875 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2876
2877 DEBUG(I->dump());
2878 }
2879
2880 // If we can, convert the instructions to be patterns that are matched!
2881 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2882 Instructions.begin(),
2883 E = Instructions.end(); II != E; ++II) {
2884 DAGInstruction &TheInst = II->second;
2885 TreePattern *I = TheInst.getPattern();
2886 if (I == 0) continue; // No pattern.
2887
2888 // FIXME: Assume only the first tree is the pattern. The others are clobber
2889 // nodes.
2890 TreePatternNode *Pattern = I->getTree(0);
2891 TreePatternNode *SrcPattern;
2892 if (Pattern->getOperator()->getName() == "set") {
2893 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2894 } else{
2895 // Not a set (store or something?)
2896 SrcPattern = Pattern;
2897 }
2898
2899 Record *Instr = II->first;
2900 AddPatternToMatch(I,
2901 PatternToMatch(Instr,
2902 Instr->getValueAsListInit("Predicates"),
2903 SrcPattern,
2904 TheInst.getResultPattern(),
2905 TheInst.getImpResults(),
2906 Instr->getValueAsInt("AddedComplexity"),
2907 Instr->getID()));
2908 }
2909 }
2910
2911
2912 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2913
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)2914 static void FindNames(const TreePatternNode *P,
2915 std::map<std::string, NameRecord> &Names,
2916 TreePattern *PatternTop) {
2917 if (!P->getName().empty()) {
2918 NameRecord &Rec = Names[P->getName()];
2919 // If this is the first instance of the name, remember the node.
2920 if (Rec.second++ == 0)
2921 Rec.first = P;
2922 else if (Rec.first->getExtTypes() != P->getExtTypes())
2923 PatternTop->error("repetition of value: $" + P->getName() +
2924 " where different uses have different types!");
2925 }
2926
2927 if (!P->isLeaf()) {
2928 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2929 FindNames(P->getChild(i), Names, PatternTop);
2930 }
2931 }
2932
AddPatternToMatch(TreePattern * Pattern,const PatternToMatch & PTM)2933 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
2934 const PatternToMatch &PTM) {
2935 // Do some sanity checking on the pattern we're about to match.
2936 std::string Reason;
2937 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2938 PrintWarning(Pattern->getRecord()->getLoc(),
2939 Twine("Pattern can never match: ") + Reason);
2940 return;
2941 }
2942
2943 // If the source pattern's root is a complex pattern, that complex pattern
2944 // must specify the nodes it can potentially match.
2945 if (const ComplexPattern *CP =
2946 PTM.getSrcPattern()->getComplexPatternInfo(*this))
2947 if (CP->getRootNodes().empty())
2948 Pattern->error("ComplexPattern at root must specify list of opcodes it"
2949 " could match");
2950
2951
2952 // Find all of the named values in the input and output, ensure they have the
2953 // same type.
2954 std::map<std::string, NameRecord> SrcNames, DstNames;
2955 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2956 FindNames(PTM.getDstPattern(), DstNames, Pattern);
2957
2958 // Scan all of the named values in the destination pattern, rejecting them if
2959 // they don't exist in the input pattern.
2960 for (std::map<std::string, NameRecord>::iterator
2961 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2962 if (SrcNames[I->first].first == 0)
2963 Pattern->error("Pattern has input without matching name in output: $" +
2964 I->first);
2965 }
2966
2967 // Scan all of the named values in the source pattern, rejecting them if the
2968 // name isn't used in the dest, and isn't used to tie two values together.
2969 for (std::map<std::string, NameRecord>::iterator
2970 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2971 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2972 Pattern->error("Pattern has dead named input: $" + I->first);
2973
2974 PatternsToMatch.push_back(PTM);
2975 }
2976
2977
2978
InferInstructionFlags()2979 void CodeGenDAGPatterns::InferInstructionFlags() {
2980 const std::vector<const CodeGenInstruction*> &Instructions =
2981 Target.getInstructionsByEnumValue();
2982
2983 // First try to infer flags from the primary instruction pattern, if any.
2984 SmallVector<CodeGenInstruction*, 8> Revisit;
2985 unsigned Errors = 0;
2986 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2987 CodeGenInstruction &InstInfo =
2988 const_cast<CodeGenInstruction &>(*Instructions[i]);
2989
2990 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2991 // This flag is obsolete and will be removed.
2992 if (InstInfo.neverHasSideEffects) {
2993 assert(!InstInfo.hasSideEffects);
2994 InstInfo.hasSideEffects_Unset = false;
2995 }
2996
2997 // Get the primary instruction pattern.
2998 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2999 if (!Pattern) {
3000 if (InstInfo.hasUndefFlags())
3001 Revisit.push_back(&InstInfo);
3002 continue;
3003 }
3004 InstAnalyzer PatInfo(*this);
3005 PatInfo.Analyze(Pattern);
3006 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3007 }
3008
3009 // Second, look for single-instruction patterns defined outside the
3010 // instruction.
3011 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3012 const PatternToMatch &PTM = *I;
3013
3014 // We can only infer from single-instruction patterns, otherwise we won't
3015 // know which instruction should get the flags.
3016 SmallVector<Record*, 8> PatInstrs;
3017 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3018 if (PatInstrs.size() != 1)
3019 continue;
3020
3021 // Get the single instruction.
3022 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3023
3024 // Only infer properties from the first pattern. We'll verify the others.
3025 if (InstInfo.InferredFrom)
3026 continue;
3027
3028 InstAnalyzer PatInfo(*this);
3029 PatInfo.Analyze(&PTM);
3030 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3031 }
3032
3033 if (Errors)
3034 PrintFatalError("pattern conflicts");
3035
3036 // Revisit instructions with undefined flags and no pattern.
3037 if (Target.guessInstructionProperties()) {
3038 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3039 CodeGenInstruction &InstInfo = *Revisit[i];
3040 if (InstInfo.InferredFrom)
3041 continue;
3042 // The mayLoad and mayStore flags default to false.
3043 // Conservatively assume hasSideEffects if it wasn't explicit.
3044 if (InstInfo.hasSideEffects_Unset)
3045 InstInfo.hasSideEffects = true;
3046 }
3047 return;
3048 }
3049
3050 // Complain about any flags that are still undefined.
3051 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3052 CodeGenInstruction &InstInfo = *Revisit[i];
3053 if (InstInfo.InferredFrom)
3054 continue;
3055 if (InstInfo.hasSideEffects_Unset)
3056 PrintError(InstInfo.TheDef->getLoc(),
3057 "Can't infer hasSideEffects from patterns");
3058 if (InstInfo.mayStore_Unset)
3059 PrintError(InstInfo.TheDef->getLoc(),
3060 "Can't infer mayStore from patterns");
3061 if (InstInfo.mayLoad_Unset)
3062 PrintError(InstInfo.TheDef->getLoc(),
3063 "Can't infer mayLoad from patterns");
3064 }
3065 }
3066
3067
3068 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3069 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3070 unsigned Errors = 0;
3071 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3072 const PatternToMatch &PTM = *I;
3073 SmallVector<Record*, 8> Instrs;
3074 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3075 if (Instrs.empty())
3076 continue;
3077
3078 // Count the number of instructions with each flag set.
3079 unsigned NumSideEffects = 0;
3080 unsigned NumStores = 0;
3081 unsigned NumLoads = 0;
3082 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3083 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3084 NumSideEffects += InstInfo.hasSideEffects;
3085 NumStores += InstInfo.mayStore;
3086 NumLoads += InstInfo.mayLoad;
3087 }
3088
3089 // Analyze the source pattern.
3090 InstAnalyzer PatInfo(*this);
3091 PatInfo.Analyze(&PTM);
3092
3093 // Collect error messages.
3094 SmallVector<std::string, 4> Msgs;
3095
3096 // Check for missing flags in the output.
3097 // Permit extra flags for now at least.
3098 if (PatInfo.hasSideEffects && !NumSideEffects)
3099 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3100
3101 // Don't verify store flags on instructions with side effects. At least for
3102 // intrinsics, side effects implies mayStore.
3103 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3104 Msgs.push_back("pattern may store, but mayStore isn't set");
3105
3106 // Similarly, mayStore implies mayLoad on intrinsics.
3107 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3108 Msgs.push_back("pattern may load, but mayLoad isn't set");
3109
3110 // Print error messages.
3111 if (Msgs.empty())
3112 continue;
3113 ++Errors;
3114
3115 for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3116 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3117 (Instrs.size() == 1 ?
3118 "instruction" : "output instructions"));
3119 // Provide the location of the relevant instruction definitions.
3120 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3121 if (Instrs[i] != PTM.getSrcRecord())
3122 PrintError(Instrs[i]->getLoc(), "defined here");
3123 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3124 if (InstInfo.InferredFrom &&
3125 InstInfo.InferredFrom != InstInfo.TheDef &&
3126 InstInfo.InferredFrom != PTM.getSrcRecord())
3127 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3128 }
3129 }
3130 if (Errors)
3131 PrintFatalError("Errors in DAG patterns");
3132 }
3133
3134 /// Given a pattern result with an unresolved type, see if we can find one
3135 /// instruction with an unresolved result type. Force this result type to an
3136 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3137 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3138 if (N->isLeaf())
3139 return false;
3140
3141 // Analyze children.
3142 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3143 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3144 return true;
3145
3146 if (!N->getOperator()->isSubClassOf("Instruction"))
3147 return false;
3148
3149 // If this type is already concrete or completely unknown we can't do
3150 // anything.
3151 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3152 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3153 continue;
3154
3155 // Otherwise, force its type to the first possibility (an arbitrary choice).
3156 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3157 return true;
3158 }
3159
3160 return false;
3161 }
3162
ParsePatterns()3163 void CodeGenDAGPatterns::ParsePatterns() {
3164 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3165
3166 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3167 Record *CurPattern = Patterns[i];
3168 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3169
3170 // If the pattern references the null_frag, there's nothing to do.
3171 if (hasNullFragReference(Tree))
3172 continue;
3173
3174 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3175
3176 // Inline pattern fragments into it.
3177 Pattern->InlinePatternFragments();
3178
3179 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3180 if (LI->getSize() == 0) continue; // no pattern.
3181
3182 // Parse the instruction.
3183 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3184
3185 // Inline pattern fragments into it.
3186 Result->InlinePatternFragments();
3187
3188 if (Result->getNumTrees() != 1)
3189 Result->error("Cannot handle instructions producing instructions "
3190 "with temporaries yet!");
3191
3192 bool IterateInference;
3193 bool InferredAllPatternTypes, InferredAllResultTypes;
3194 do {
3195 // Infer as many types as possible. If we cannot infer all of them, we
3196 // can never do anything with this pattern: report it to the user.
3197 InferredAllPatternTypes =
3198 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3199
3200 // Infer as many types as possible. If we cannot infer all of them, we
3201 // can never do anything with this pattern: report it to the user.
3202 InferredAllResultTypes =
3203 Result->InferAllTypes(&Pattern->getNamedNodesMap());
3204
3205 IterateInference = false;
3206
3207 // Apply the type of the result to the source pattern. This helps us
3208 // resolve cases where the input type is known to be a pointer type (which
3209 // is considered resolved), but the result knows it needs to be 32- or
3210 // 64-bits. Infer the other way for good measure.
3211 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3212 Pattern->getTree(0)->getNumTypes());
3213 i != e; ++i) {
3214 IterateInference = Pattern->getTree(0)->
3215 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3216 IterateInference |= Result->getTree(0)->
3217 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3218 }
3219
3220 // If our iteration has converged and the input pattern's types are fully
3221 // resolved but the result pattern is not fully resolved, we may have a
3222 // situation where we have two instructions in the result pattern and
3223 // the instructions require a common register class, but don't care about
3224 // what actual MVT is used. This is actually a bug in our modelling:
3225 // output patterns should have register classes, not MVTs.
3226 //
3227 // In any case, to handle this, we just go through and disambiguate some
3228 // arbitrary types to the result pattern's nodes.
3229 if (!IterateInference && InferredAllPatternTypes &&
3230 !InferredAllResultTypes)
3231 IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3232 *Result);
3233 } while (IterateInference);
3234
3235 // Verify that we inferred enough types that we can do something with the
3236 // pattern and result. If these fire the user has to add type casts.
3237 if (!InferredAllPatternTypes)
3238 Pattern->error("Could not infer all types in pattern!");
3239 if (!InferredAllResultTypes) {
3240 Pattern->dump();
3241 Result->error("Could not infer all types in pattern result!");
3242 }
3243
3244 // Validate that the input pattern is correct.
3245 std::map<std::string, TreePatternNode*> InstInputs;
3246 std::map<std::string, TreePatternNode*> InstResults;
3247 std::vector<Record*> InstImpResults;
3248 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3249 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3250 InstInputs, InstResults,
3251 InstImpResults);
3252
3253 // Promote the xform function to be an explicit node if set.
3254 TreePatternNode *DstPattern = Result->getOnlyTree();
3255 std::vector<TreePatternNode*> ResultNodeOperands;
3256 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3257 TreePatternNode *OpNode = DstPattern->getChild(ii);
3258 if (Record *Xform = OpNode->getTransformFn()) {
3259 OpNode->setTransformFn(0);
3260 std::vector<TreePatternNode*> Children;
3261 Children.push_back(OpNode);
3262 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3263 }
3264 ResultNodeOperands.push_back(OpNode);
3265 }
3266 DstPattern = Result->getOnlyTree();
3267 if (!DstPattern->isLeaf())
3268 DstPattern = new TreePatternNode(DstPattern->getOperator(),
3269 ResultNodeOperands,
3270 DstPattern->getNumTypes());
3271
3272 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3273 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3274
3275 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3276 Temp.InferAllTypes();
3277
3278
3279 AddPatternToMatch(Pattern,
3280 PatternToMatch(CurPattern,
3281 CurPattern->getValueAsListInit("Predicates"),
3282 Pattern->getTree(0),
3283 Temp.getOnlyTree(), InstImpResults,
3284 CurPattern->getValueAsInt("AddedComplexity"),
3285 CurPattern->getID()));
3286 }
3287 }
3288
3289 /// CombineChildVariants - Given a bunch of permutations of each child of the
3290 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3291 static void CombineChildVariants(TreePatternNode *Orig,
3292 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3293 std::vector<TreePatternNode*> &OutVariants,
3294 CodeGenDAGPatterns &CDP,
3295 const MultipleUseVarSet &DepVars) {
3296 // Make sure that each operand has at least one variant to choose from.
3297 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3298 if (ChildVariants[i].empty())
3299 return;
3300
3301 // The end result is an all-pairs construction of the resultant pattern.
3302 std::vector<unsigned> Idxs;
3303 Idxs.resize(ChildVariants.size());
3304 bool NotDone;
3305 do {
3306 #ifndef NDEBUG
3307 DEBUG(if (!Idxs.empty()) {
3308 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3309 for (unsigned i = 0; i < Idxs.size(); ++i) {
3310 errs() << Idxs[i] << " ";
3311 }
3312 errs() << "]\n";
3313 });
3314 #endif
3315 // Create the variant and add it to the output list.
3316 std::vector<TreePatternNode*> NewChildren;
3317 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3318 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3319 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3320 Orig->getNumTypes());
3321
3322 // Copy over properties.
3323 R->setName(Orig->getName());
3324 R->setPredicateFns(Orig->getPredicateFns());
3325 R->setTransformFn(Orig->getTransformFn());
3326 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3327 R->setType(i, Orig->getExtType(i));
3328
3329 // If this pattern cannot match, do not include it as a variant.
3330 std::string ErrString;
3331 if (!R->canPatternMatch(ErrString, CDP)) {
3332 delete R;
3333 } else {
3334 bool AlreadyExists = false;
3335
3336 // Scan to see if this pattern has already been emitted. We can get
3337 // duplication due to things like commuting:
3338 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3339 // which are the same pattern. Ignore the dups.
3340 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3341 if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3342 AlreadyExists = true;
3343 break;
3344 }
3345
3346 if (AlreadyExists)
3347 delete R;
3348 else
3349 OutVariants.push_back(R);
3350 }
3351
3352 // Increment indices to the next permutation by incrementing the
3353 // indicies from last index backward, e.g., generate the sequence
3354 // [0, 0], [0, 1], [1, 0], [1, 1].
3355 int IdxsIdx;
3356 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3357 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3358 Idxs[IdxsIdx] = 0;
3359 else
3360 break;
3361 }
3362 NotDone = (IdxsIdx >= 0);
3363 } while (NotDone);
3364 }
3365
3366 /// CombineChildVariants - A helper function for binary operators.
3367 ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3368 static void CombineChildVariants(TreePatternNode *Orig,
3369 const std::vector<TreePatternNode*> &LHS,
3370 const std::vector<TreePatternNode*> &RHS,
3371 std::vector<TreePatternNode*> &OutVariants,
3372 CodeGenDAGPatterns &CDP,
3373 const MultipleUseVarSet &DepVars) {
3374 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3375 ChildVariants.push_back(LHS);
3376 ChildVariants.push_back(RHS);
3377 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3378 }
3379
3380
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3381 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3382 std::vector<TreePatternNode *> &Children) {
3383 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3384 Record *Operator = N->getOperator();
3385
3386 // Only permit raw nodes.
3387 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3388 N->getTransformFn()) {
3389 Children.push_back(N);
3390 return;
3391 }
3392
3393 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3394 Children.push_back(N->getChild(0));
3395 else
3396 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3397
3398 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3399 Children.push_back(N->getChild(1));
3400 else
3401 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3402 }
3403
3404 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3405 /// the (potentially recursive) pattern by using algebraic laws.
3406 ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3407 static void GenerateVariantsOf(TreePatternNode *N,
3408 std::vector<TreePatternNode*> &OutVariants,
3409 CodeGenDAGPatterns &CDP,
3410 const MultipleUseVarSet &DepVars) {
3411 // We cannot permute leaves.
3412 if (N->isLeaf()) {
3413 OutVariants.push_back(N);
3414 return;
3415 }
3416
3417 // Look up interesting info about the node.
3418 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3419
3420 // If this node is associative, re-associate.
3421 if (NodeInfo.hasProperty(SDNPAssociative)) {
3422 // Re-associate by pulling together all of the linked operators
3423 std::vector<TreePatternNode*> MaximalChildren;
3424 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3425
3426 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3427 // permutations.
3428 if (MaximalChildren.size() == 3) {
3429 // Find the variants of all of our maximal children.
3430 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3431 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3432 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3433 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3434
3435 // There are only two ways we can permute the tree:
3436 // (A op B) op C and A op (B op C)
3437 // Within these forms, we can also permute A/B/C.
3438
3439 // Generate legal pair permutations of A/B/C.
3440 std::vector<TreePatternNode*> ABVariants;
3441 std::vector<TreePatternNode*> BAVariants;
3442 std::vector<TreePatternNode*> ACVariants;
3443 std::vector<TreePatternNode*> CAVariants;
3444 std::vector<TreePatternNode*> BCVariants;
3445 std::vector<TreePatternNode*> CBVariants;
3446 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3447 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3448 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3449 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3450 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3451 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3452
3453 // Combine those into the result: (x op x) op x
3454 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3455 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3456 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3457 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3458 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3459 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3460
3461 // Combine those into the result: x op (x op x)
3462 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3463 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3464 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3465 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3466 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3467 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3468 return;
3469 }
3470 }
3471
3472 // Compute permutations of all children.
3473 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3474 ChildVariants.resize(N->getNumChildren());
3475 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3476 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3477
3478 // Build all permutations based on how the children were formed.
3479 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3480
3481 // If this node is commutative, consider the commuted order.
3482 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3483 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3484 assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3485 "Commutative but doesn't have 2 children!");
3486 // Don't count children which are actually register references.
3487 unsigned NC = 0;
3488 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3489 TreePatternNode *Child = N->getChild(i);
3490 if (Child->isLeaf())
3491 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3492 Record *RR = DI->getDef();
3493 if (RR->isSubClassOf("Register"))
3494 continue;
3495 }
3496 NC++;
3497 }
3498 // Consider the commuted order.
3499 if (isCommIntrinsic) {
3500 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3501 // operands are the commutative operands, and there might be more operands
3502 // after those.
3503 assert(NC >= 3 &&
3504 "Commutative intrinsic should have at least 3 childrean!");
3505 std::vector<std::vector<TreePatternNode*> > Variants;
3506 Variants.push_back(ChildVariants[0]); // Intrinsic id.
3507 Variants.push_back(ChildVariants[2]);
3508 Variants.push_back(ChildVariants[1]);
3509 for (unsigned i = 3; i != NC; ++i)
3510 Variants.push_back(ChildVariants[i]);
3511 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3512 } else if (NC == 2)
3513 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3514 OutVariants, CDP, DepVars);
3515 }
3516 }
3517
3518
3519 // GenerateVariants - Generate variants. For example, commutative patterns can
3520 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()3521 void CodeGenDAGPatterns::GenerateVariants() {
3522 DEBUG(errs() << "Generating instruction variants.\n");
3523
3524 // Loop over all of the patterns we've collected, checking to see if we can
3525 // generate variants of the instruction, through the exploitation of
3526 // identities. This permits the target to provide aggressive matching without
3527 // the .td file having to contain tons of variants of instructions.
3528 //
3529 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3530 // intentionally do not reconsider these. Any variants of added patterns have
3531 // already been added.
3532 //
3533 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3534 MultipleUseVarSet DepVars;
3535 std::vector<TreePatternNode*> Variants;
3536 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3537 DEBUG(errs() << "Dependent/multiply used variables: ");
3538 DEBUG(DumpDepVars(DepVars));
3539 DEBUG(errs() << "\n");
3540 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3541 DepVars);
3542
3543 assert(!Variants.empty() && "Must create at least original variant!");
3544 Variants.erase(Variants.begin()); // Remove the original pattern.
3545
3546 if (Variants.empty()) // No variants for this pattern.
3547 continue;
3548
3549 DEBUG(errs() << "FOUND VARIANTS OF: ";
3550 PatternsToMatch[i].getSrcPattern()->dump();
3551 errs() << "\n");
3552
3553 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3554 TreePatternNode *Variant = Variants[v];
3555
3556 DEBUG(errs() << " VAR#" << v << ": ";
3557 Variant->dump();
3558 errs() << "\n");
3559
3560 // Scan to see if an instruction or explicit pattern already matches this.
3561 bool AlreadyExists = false;
3562 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3563 // Skip if the top level predicates do not match.
3564 if (PatternsToMatch[i].getPredicates() !=
3565 PatternsToMatch[p].getPredicates())
3566 continue;
3567 // Check to see if this variant already exists.
3568 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3569 DepVars)) {
3570 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3571 AlreadyExists = true;
3572 break;
3573 }
3574 }
3575 // If we already have it, ignore the variant.
3576 if (AlreadyExists) continue;
3577
3578 // Otherwise, add it to the list of patterns we have.
3579 PatternsToMatch.
3580 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3581 PatternsToMatch[i].getPredicates(),
3582 Variant, PatternsToMatch[i].getDstPattern(),
3583 PatternsToMatch[i].getDstRegs(),
3584 PatternsToMatch[i].getAddedComplexity(),
3585 Record::getNewUID()));
3586 }
3587
3588 DEBUG(errs() << "\n");
3589 }
3590 }
3591