• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Error.h"
22 #include "llvm/TableGen/Record.h"
23 #include <algorithm>
24 #include <cstdio>
25 #include <set>
26 using namespace llvm;
27 
28 //===----------------------------------------------------------------------===//
29 //  EEVT::TypeSet Implementation
30 //===----------------------------------------------------------------------===//
31 
isInteger(MVT::SimpleValueType VT)32 static inline bool isInteger(MVT::SimpleValueType VT) {
33   return EVT(VT).isInteger();
34 }
isFloatingPoint(MVT::SimpleValueType VT)35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36   return EVT(VT).isFloatingPoint();
37 }
isVector(MVT::SimpleValueType VT)38 static inline bool isVector(MVT::SimpleValueType VT) {
39   return EVT(VT).isVector();
40 }
isScalar(MVT::SimpleValueType VT)41 static inline bool isScalar(MVT::SimpleValueType VT) {
42   return !EVT(VT).isVector();
43 }
44 
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46   if (VT == MVT::iAny)
47     EnforceInteger(TP);
48   else if (VT == MVT::fAny)
49     EnforceFloatingPoint(TP);
50   else if (VT == MVT::vAny)
51     EnforceVector(TP);
52   else {
53     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54             VT == MVT::iPTRAny) && "Not a concrete type!");
55     TypeVec.push_back(VT);
56   }
57 }
58 
59 
TypeSet(ArrayRef<MVT::SimpleValueType> VTList)60 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
61   assert(!VTList.empty() && "empty list?");
62   TypeVec.append(VTList.begin(), VTList.end());
63 
64   if (!VTList.empty())
65     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66            VTList[0] != MVT::fAny);
67 
68   // Verify no duplicates.
69   array_pod_sort(TypeVec.begin(), TypeVec.end());
70   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71 }
72 
73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
74 /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76                                           bool (*Pred)(MVT::SimpleValueType),
77                                           const char *PredicateName) {
78   assert(isCompletelyUnknown());
79   ArrayRef<MVT::SimpleValueType> LegalTypes =
80     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81 
82   if (TP.hasError())
83     return false;
84 
85   for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
86     if (Pred == 0 || Pred(LegalTypes[i]))
87       TypeVec.push_back(LegalTypes[i]);
88 
89   // If we have nothing that matches the predicate, bail out.
90   if (TypeVec.empty()) {
91     TP.error("Type inference contradiction found, no " +
92              std::string(PredicateName) + " types found");
93     return false;
94   }
95   // No need to sort with one element.
96   if (TypeVec.size() == 1) return true;
97 
98   // Remove duplicates.
99   array_pod_sort(TypeVec.begin(), TypeVec.end());
100   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
101 
102   return true;
103 }
104 
105 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
106 /// integer value type.
hasIntegerTypes() const107 bool EEVT::TypeSet::hasIntegerTypes() const {
108   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109     if (isInteger(TypeVec[i]))
110       return true;
111   return false;
112 }
113 
114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115 /// a floating point value type.
hasFloatingPointTypes() const116 bool EEVT::TypeSet::hasFloatingPointTypes() const {
117   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118     if (isFloatingPoint(TypeVec[i]))
119       return true;
120   return false;
121 }
122 
123 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
124 /// value type.
hasVectorTypes() const125 bool EEVT::TypeSet::hasVectorTypes() const {
126   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
127     if (isVector(TypeVec[i]))
128       return true;
129   return false;
130 }
131 
132 
getName() const133 std::string EEVT::TypeSet::getName() const {
134   if (TypeVec.empty()) return "<empty>";
135 
136   std::string Result;
137 
138   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
139     std::string VTName = llvm::getEnumName(TypeVec[i]);
140     // Strip off MVT:: prefix if present.
141     if (VTName.substr(0,5) == "MVT::")
142       VTName = VTName.substr(5);
143     if (i) Result += ':';
144     Result += VTName;
145   }
146 
147   if (TypeVec.size() == 1)
148     return Result;
149   return "{" + Result + "}";
150 }
151 
152 /// MergeInTypeInfo - This merges in type information from the specified
153 /// argument.  If 'this' changes, it returns true.  If the two types are
154 /// contradictory (e.g. merge f32 into i32) then this flags an error.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)155 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
156   if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
157     return false;
158 
159   if (isCompletelyUnknown()) {
160     *this = InVT;
161     return true;
162   }
163 
164   assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
165 
166   // Handle the abstract cases, seeing if we can resolve them better.
167   switch (TypeVec[0]) {
168   default: break;
169   case MVT::iPTR:
170   case MVT::iPTRAny:
171     if (InVT.hasIntegerTypes()) {
172       EEVT::TypeSet InCopy(InVT);
173       InCopy.EnforceInteger(TP);
174       InCopy.EnforceScalar(TP);
175 
176       if (InCopy.isConcrete()) {
177         // If the RHS has one integer type, upgrade iPTR to i32.
178         TypeVec[0] = InVT.TypeVec[0];
179         return true;
180       }
181 
182       // If the input has multiple scalar integers, this doesn't add any info.
183       if (!InCopy.isCompletelyUnknown())
184         return false;
185     }
186     break;
187   }
188 
189   // If the input constraint is iAny/iPTR and this is an integer type list,
190   // remove non-integer types from the list.
191   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
192       hasIntegerTypes()) {
193     bool MadeChange = EnforceInteger(TP);
194 
195     // If we're merging in iPTR/iPTRAny and the node currently has a list of
196     // multiple different integer types, replace them with a single iPTR.
197     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
198         TypeVec.size() != 1) {
199       TypeVec.resize(1);
200       TypeVec[0] = InVT.TypeVec[0];
201       MadeChange = true;
202     }
203 
204     return MadeChange;
205   }
206 
207   // If this is a type list and the RHS is a typelist as well, eliminate entries
208   // from this list that aren't in the other one.
209   bool MadeChange = false;
210   TypeSet InputSet(*this);
211 
212   for (unsigned i = 0; i != TypeVec.size(); ++i) {
213     bool InInVT = false;
214     for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
215       if (TypeVec[i] == InVT.TypeVec[j]) {
216         InInVT = true;
217         break;
218       }
219 
220     if (InInVT) continue;
221     TypeVec.erase(TypeVec.begin()+i--);
222     MadeChange = true;
223   }
224 
225   // If we removed all of our types, we have a type contradiction.
226   if (!TypeVec.empty())
227     return MadeChange;
228 
229   // FIXME: Really want an SMLoc here!
230   TP.error("Type inference contradiction found, merging '" +
231            InVT.getName() + "' into '" + InputSet.getName() + "'");
232   return false;
233 }
234 
235 /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)236 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
237   if (TP.hasError())
238     return false;
239   // If we know nothing, then get the full set.
240   if (TypeVec.empty())
241     return FillWithPossibleTypes(TP, isInteger, "integer");
242   if (!hasFloatingPointTypes())
243     return false;
244 
245   TypeSet InputSet(*this);
246 
247   // Filter out all the fp types.
248   for (unsigned i = 0; i != TypeVec.size(); ++i)
249     if (!isInteger(TypeVec[i]))
250       TypeVec.erase(TypeVec.begin()+i--);
251 
252   if (TypeVec.empty()) {
253     TP.error("Type inference contradiction found, '" +
254              InputSet.getName() + "' needs to be integer");
255     return false;
256   }
257   return true;
258 }
259 
260 /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)261 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
262   if (TP.hasError())
263     return false;
264   // If we know nothing, then get the full set.
265   if (TypeVec.empty())
266     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
267 
268   if (!hasIntegerTypes())
269     return false;
270 
271   TypeSet InputSet(*this);
272 
273   // Filter out all the fp types.
274   for (unsigned i = 0; i != TypeVec.size(); ++i)
275     if (!isFloatingPoint(TypeVec[i]))
276       TypeVec.erase(TypeVec.begin()+i--);
277 
278   if (TypeVec.empty()) {
279     TP.error("Type inference contradiction found, '" +
280              InputSet.getName() + "' needs to be floating point");
281     return false;
282   }
283   return true;
284 }
285 
286 /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)287 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
288   if (TP.hasError())
289     return false;
290 
291   // If we know nothing, then get the full set.
292   if (TypeVec.empty())
293     return FillWithPossibleTypes(TP, isScalar, "scalar");
294 
295   if (!hasVectorTypes())
296     return false;
297 
298   TypeSet InputSet(*this);
299 
300   // Filter out all the vector types.
301   for (unsigned i = 0; i != TypeVec.size(); ++i)
302     if (!isScalar(TypeVec[i]))
303       TypeVec.erase(TypeVec.begin()+i--);
304 
305   if (TypeVec.empty()) {
306     TP.error("Type inference contradiction found, '" +
307              InputSet.getName() + "' needs to be scalar");
308     return false;
309   }
310   return true;
311 }
312 
313 /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)314 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
315   if (TP.hasError())
316     return false;
317 
318   // If we know nothing, then get the full set.
319   if (TypeVec.empty())
320     return FillWithPossibleTypes(TP, isVector, "vector");
321 
322   TypeSet InputSet(*this);
323   bool MadeChange = false;
324 
325   // Filter out all the scalar types.
326   for (unsigned i = 0; i != TypeVec.size(); ++i)
327     if (!isVector(TypeVec[i])) {
328       TypeVec.erase(TypeVec.begin()+i--);
329       MadeChange = true;
330     }
331 
332   if (TypeVec.empty()) {
333     TP.error("Type inference contradiction found, '" +
334              InputSet.getName() + "' needs to be a vector");
335     return false;
336   }
337   return MadeChange;
338 }
339 
340 
341 
342 /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
343 /// this an other based on this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)344 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
345   if (TP.hasError())
346     return false;
347 
348   // Both operands must be integer or FP, but we don't care which.
349   bool MadeChange = false;
350 
351   if (isCompletelyUnknown())
352     MadeChange = FillWithPossibleTypes(TP);
353 
354   if (Other.isCompletelyUnknown())
355     MadeChange = Other.FillWithPossibleTypes(TP);
356 
357   // If one side is known to be integer or known to be FP but the other side has
358   // no information, get at least the type integrality info in there.
359   if (!hasFloatingPointTypes())
360     MadeChange |= Other.EnforceInteger(TP);
361   else if (!hasIntegerTypes())
362     MadeChange |= Other.EnforceFloatingPoint(TP);
363   if (!Other.hasFloatingPointTypes())
364     MadeChange |= EnforceInteger(TP);
365   else if (!Other.hasIntegerTypes())
366     MadeChange |= EnforceFloatingPoint(TP);
367 
368   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
369          "Should have a type list now");
370 
371   // If one contains vectors but the other doesn't pull vectors out.
372   if (!hasVectorTypes())
373     MadeChange |= Other.EnforceScalar(TP);
374   if (!hasVectorTypes())
375     MadeChange |= EnforceScalar(TP);
376 
377   if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
378     // If we are down to concrete types, this code does not currently
379     // handle nodes which have multiple types, where some types are
380     // integer, and some are fp.  Assert that this is not the case.
381     assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
382            !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
383            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
384 
385     // Otherwise, if these are both vector types, either this vector
386     // must have a larger bitsize than the other, or this element type
387     // must be larger than the other.
388     EVT Type(TypeVec[0]);
389     EVT OtherType(Other.TypeVec[0]);
390 
391     if (hasVectorTypes() && Other.hasVectorTypes()) {
392       if (Type.getSizeInBits() >= OtherType.getSizeInBits())
393         if (Type.getVectorElementType().getSizeInBits()
394             >= OtherType.getVectorElementType().getSizeInBits()) {
395           TP.error("Type inference contradiction found, '" +
396                    getName() + "' element type not smaller than '" +
397                    Other.getName() +"'!");
398           return false;
399         }
400     }
401     else
402       // For scalar types, the bitsize of this type must be larger
403       // than that of the other.
404       if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
405         TP.error("Type inference contradiction found, '" +
406                  getName() + "' is not smaller than '" +
407                  Other.getName() +"'!");
408         return false;
409       }
410   }
411 
412 
413   // Handle int and fp as disjoint sets.  This won't work for patterns
414   // that have mixed fp/int types but those are likely rare and would
415   // not have been accepted by this code previously.
416 
417   // Okay, find the smallest type from the current set and remove it from the
418   // largest set.
419   MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
420   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
421     if (isInteger(TypeVec[i])) {
422       SmallestInt = TypeVec[i];
423       break;
424     }
425   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
426     if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
427       SmallestInt = TypeVec[i];
428 
429   MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
430   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
431     if (isFloatingPoint(TypeVec[i])) {
432       SmallestFP = TypeVec[i];
433       break;
434     }
435   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
436     if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
437       SmallestFP = TypeVec[i];
438 
439   int OtherIntSize = 0;
440   int OtherFPSize = 0;
441   for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
442          Other.TypeVec.begin();
443        TVI != Other.TypeVec.end();
444        /* NULL */) {
445     if (isInteger(*TVI)) {
446       ++OtherIntSize;
447       if (*TVI == SmallestInt) {
448         TVI = Other.TypeVec.erase(TVI);
449         --OtherIntSize;
450         MadeChange = true;
451         continue;
452       }
453     }
454     else if (isFloatingPoint(*TVI)) {
455       ++OtherFPSize;
456       if (*TVI == SmallestFP) {
457         TVI = Other.TypeVec.erase(TVI);
458         --OtherFPSize;
459         MadeChange = true;
460         continue;
461       }
462     }
463     ++TVI;
464   }
465 
466   // If this is the only type in the large set, the constraint can never be
467   // satisfied.
468   if ((Other.hasIntegerTypes() && OtherIntSize == 0)
469       || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
470     TP.error("Type inference contradiction found, '" +
471              Other.getName() + "' has nothing larger than '" + getName() +"'!");
472     return false;
473   }
474 
475   // Okay, find the largest type in the Other set and remove it from the
476   // current set.
477   MVT::SimpleValueType LargestInt = MVT::Other;
478   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
479     if (isInteger(Other.TypeVec[i])) {
480       LargestInt = Other.TypeVec[i];
481       break;
482     }
483   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
484     if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
485       LargestInt = Other.TypeVec[i];
486 
487   MVT::SimpleValueType LargestFP = MVT::Other;
488   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
489     if (isFloatingPoint(Other.TypeVec[i])) {
490       LargestFP = Other.TypeVec[i];
491       break;
492     }
493   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
494     if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
495       LargestFP = Other.TypeVec[i];
496 
497   int IntSize = 0;
498   int FPSize = 0;
499   for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
500          TypeVec.begin();
501        TVI != TypeVec.end();
502        /* NULL */) {
503     if (isInteger(*TVI)) {
504       ++IntSize;
505       if (*TVI == LargestInt) {
506         TVI = TypeVec.erase(TVI);
507         --IntSize;
508         MadeChange = true;
509         continue;
510       }
511     }
512     else if (isFloatingPoint(*TVI)) {
513       ++FPSize;
514       if (*TVI == LargestFP) {
515         TVI = TypeVec.erase(TVI);
516         --FPSize;
517         MadeChange = true;
518         continue;
519       }
520     }
521     ++TVI;
522   }
523 
524   // If this is the only type in the small set, the constraint can never be
525   // satisfied.
526   if ((hasIntegerTypes() && IntSize == 0)
527       || (hasFloatingPointTypes() && FPSize == 0)) {
528     TP.error("Type inference contradiction found, '" +
529              getName() + "' has nothing smaller than '" + Other.getName()+"'!");
530     return false;
531   }
532 
533   return MadeChange;
534 }
535 
536 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
537 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)538 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
539                                            TreePattern &TP) {
540   if (TP.hasError())
541     return false;
542 
543   // "This" must be a vector and "VTOperand" must be a scalar.
544   bool MadeChange = false;
545   MadeChange |= EnforceVector(TP);
546   MadeChange |= VTOperand.EnforceScalar(TP);
547 
548   // If we know the vector type, it forces the scalar to agree.
549   if (isConcrete()) {
550     EVT IVT = getConcrete();
551     IVT = IVT.getVectorElementType();
552     return MadeChange |
553       VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
554   }
555 
556   // If the scalar type is known, filter out vector types whose element types
557   // disagree.
558   if (!VTOperand.isConcrete())
559     return MadeChange;
560 
561   MVT::SimpleValueType VT = VTOperand.getConcrete();
562 
563   TypeSet InputSet(*this);
564 
565   // Filter out all the types which don't have the right element type.
566   for (unsigned i = 0; i != TypeVec.size(); ++i) {
567     assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
568     if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
569       TypeVec.erase(TypeVec.begin()+i--);
570       MadeChange = true;
571     }
572   }
573 
574   if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
575     TP.error("Type inference contradiction found, forcing '" +
576              InputSet.getName() + "' to have a vector element");
577     return false;
578   }
579   return MadeChange;
580 }
581 
582 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
583 /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)584 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
585                                                  TreePattern &TP) {
586   // "This" must be a vector and "VTOperand" must be a vector.
587   bool MadeChange = false;
588   MadeChange |= EnforceVector(TP);
589   MadeChange |= VTOperand.EnforceVector(TP);
590 
591   // "This" must be larger than "VTOperand."
592   MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
593 
594   // If we know the vector type, it forces the scalar types to agree.
595   if (isConcrete()) {
596     EVT IVT = getConcrete();
597     IVT = IVT.getVectorElementType();
598 
599     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
600     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
601   } else if (VTOperand.isConcrete()) {
602     EVT IVT = VTOperand.getConcrete();
603     IVT = IVT.getVectorElementType();
604 
605     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
606     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
607   }
608 
609   return MadeChange;
610 }
611 
612 //===----------------------------------------------------------------------===//
613 // Helpers for working with extended types.
614 
615 /// Dependent variable map for CodeGenDAGPattern variant generation
616 typedef std::map<std::string, int> DepVarMap;
617 
618 /// Const iterator shorthand for DepVarMap
619 typedef DepVarMap::const_iterator DepVarMap_citer;
620 
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
622   if (N->isLeaf()) {
623     if (isa<DefInit>(N->getLeafValue()))
624       DepMap[N->getName()]++;
625   } else {
626     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
627       FindDepVarsOf(N->getChild(i), DepMap);
628   }
629 }
630 
631 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
633   DepVarMap depcounts;
634   FindDepVarsOf(N, depcounts);
635   for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
636     if (i->second > 1)            // std::pair<std::string, int>
637       DepVars.insert(i->first);
638   }
639 }
640 
641 #ifndef NDEBUG
642 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)643 static void DumpDepVars(MultipleUseVarSet &DepVars) {
644   if (DepVars.empty()) {
645     DEBUG(errs() << "<empty set>");
646   } else {
647     DEBUG(errs() << "[ ");
648     for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
649          e = DepVars.end(); i != e; ++i) {
650       DEBUG(errs() << (*i) << " ");
651     }
652     DEBUG(errs() << "]");
653   }
654 }
655 #endif
656 
657 
658 //===----------------------------------------------------------------------===//
659 // TreePredicateFn Implementation
660 //===----------------------------------------------------------------------===//
661 
662 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
664   assert((getPredCode().empty() || getImmCode().empty()) &&
665         ".td file corrupt: can't have a node predicate *and* an imm predicate");
666 }
667 
getPredCode() const668 std::string TreePredicateFn::getPredCode() const {
669   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
670 }
671 
getImmCode() const672 std::string TreePredicateFn::getImmCode() const {
673   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
674 }
675 
676 
677 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const678 bool TreePredicateFn::isAlwaysTrue() const {
679   return getPredCode().empty() && getImmCode().empty();
680 }
681 
682 /// Return the name to use in the generated code to reference this, this is
683 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const684 std::string TreePredicateFn::getFnName() const {
685   return "Predicate_" + PatFragRec->getRecord()->getName();
686 }
687 
688 /// getCodeToRunOnSDNode - Return the code for the function body that
689 /// evaluates this predicate.  The argument is expected to be in "Node",
690 /// not N.  This handles casting and conversion to a concrete node type as
691 /// appropriate.
getCodeToRunOnSDNode() const692 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
693   // Handle immediate predicates first.
694   std::string ImmCode = getImmCode();
695   if (!ImmCode.empty()) {
696     std::string Result =
697       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
698     return Result + ImmCode;
699   }
700 
701   // Handle arbitrary node predicates.
702   assert(!getPredCode().empty() && "Don't have any predicate code!");
703   std::string ClassName;
704   if (PatFragRec->getOnlyTree()->isLeaf())
705     ClassName = "SDNode";
706   else {
707     Record *Op = PatFragRec->getOnlyTree()->getOperator();
708     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
709   }
710   std::string Result;
711   if (ClassName == "SDNode")
712     Result = "    SDNode *N = Node;\n";
713   else
714     Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
715 
716   return Result + getPredCode();
717 }
718 
719 //===----------------------------------------------------------------------===//
720 // PatternToMatch implementation
721 //
722 
723 
724 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
725 /// patterns before small ones.  This is used to determine the size of a
726 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)727 static unsigned getPatternSize(const TreePatternNode *P,
728                                const CodeGenDAGPatterns &CGP) {
729   unsigned Size = 3;  // The node itself.
730   // If the root node is a ConstantSDNode, increases its size.
731   // e.g. (set R32:$dst, 0).
732   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
733     Size += 2;
734 
735   // FIXME: This is a hack to statically increase the priority of patterns
736   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
737   // Later we can allow complexity / cost for each pattern to be (optionally)
738   // specified. To get best possible pattern match we'll need to dynamically
739   // calculate the complexity of all patterns a dag can potentially map to.
740   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
741   if (AM)
742     Size += AM->getNumOperands() * 3;
743 
744   // If this node has some predicate function that must match, it adds to the
745   // complexity of this node.
746   if (!P->getPredicateFns().empty())
747     ++Size;
748 
749   // Count children in the count if they are also nodes.
750   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
751     TreePatternNode *Child = P->getChild(i);
752     if (!Child->isLeaf() && Child->getNumTypes() &&
753         Child->getType(0) != MVT::Other)
754       Size += getPatternSize(Child, CGP);
755     else if (Child->isLeaf()) {
756       if (isa<IntInit>(Child->getLeafValue()))
757         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
758       else if (Child->getComplexPatternInfo(CGP))
759         Size += getPatternSize(Child, CGP);
760       else if (!Child->getPredicateFns().empty())
761         ++Size;
762     }
763   }
764 
765   return Size;
766 }
767 
768 /// Compute the complexity metric for the input pattern.  This roughly
769 /// corresponds to the number of nodes that are covered.
770 unsigned PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const771 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
772   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
773 }
774 
775 
776 /// getPredicateCheck - Return a single string containing all of this
777 /// pattern's predicates concatenated with "&&" operators.
778 ///
getPredicateCheck() const779 std::string PatternToMatch::getPredicateCheck() const {
780   std::string PredicateCheck;
781   for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
782     if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
783       Record *Def = Pred->getDef();
784       if (!Def->isSubClassOf("Predicate")) {
785 #ifndef NDEBUG
786         Def->dump();
787 #endif
788         llvm_unreachable("Unknown predicate type!");
789       }
790       if (!PredicateCheck.empty())
791         PredicateCheck += " && ";
792       PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
793     }
794   }
795 
796   return PredicateCheck;
797 }
798 
799 //===----------------------------------------------------------------------===//
800 // SDTypeConstraint implementation
801 //
802 
SDTypeConstraint(Record * R)803 SDTypeConstraint::SDTypeConstraint(Record *R) {
804   OperandNo = R->getValueAsInt("OperandNum");
805 
806   if (R->isSubClassOf("SDTCisVT")) {
807     ConstraintType = SDTCisVT;
808     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
809     if (x.SDTCisVT_Info.VT == MVT::isVoid)
810       PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
811 
812   } else if (R->isSubClassOf("SDTCisPtrTy")) {
813     ConstraintType = SDTCisPtrTy;
814   } else if (R->isSubClassOf("SDTCisInt")) {
815     ConstraintType = SDTCisInt;
816   } else if (R->isSubClassOf("SDTCisFP")) {
817     ConstraintType = SDTCisFP;
818   } else if (R->isSubClassOf("SDTCisVec")) {
819     ConstraintType = SDTCisVec;
820   } else if (R->isSubClassOf("SDTCisSameAs")) {
821     ConstraintType = SDTCisSameAs;
822     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
823   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
824     ConstraintType = SDTCisVTSmallerThanOp;
825     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
826       R->getValueAsInt("OtherOperandNum");
827   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
828     ConstraintType = SDTCisOpSmallerThanOp;
829     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
830       R->getValueAsInt("BigOperandNum");
831   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
832     ConstraintType = SDTCisEltOfVec;
833     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
834   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
835     ConstraintType = SDTCisSubVecOfVec;
836     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
837       R->getValueAsInt("OtherOpNum");
838   } else {
839     errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
840     exit(1);
841   }
842 }
843 
844 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
845 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)846 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
847                                       const SDNodeInfo &NodeInfo,
848                                       unsigned &ResNo) {
849   unsigned NumResults = NodeInfo.getNumResults();
850   if (OpNo < NumResults) {
851     ResNo = OpNo;
852     return N;
853   }
854 
855   OpNo -= NumResults;
856 
857   if (OpNo >= N->getNumChildren()) {
858     errs() << "Invalid operand number in type constraint "
859            << (OpNo+NumResults) << " ";
860     N->dump();
861     errs() << '\n';
862     exit(1);
863   }
864 
865   return N->getChild(OpNo);
866 }
867 
868 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
869 /// constraint to the nodes operands.  This returns true if it makes a
870 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const871 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
872                                            const SDNodeInfo &NodeInfo,
873                                            TreePattern &TP) const {
874   if (TP.hasError())
875     return false;
876 
877   unsigned ResNo = 0; // The result number being referenced.
878   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
879 
880   switch (ConstraintType) {
881   case SDTCisVT:
882     // Operand must be a particular type.
883     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
884   case SDTCisPtrTy:
885     // Operand must be same as target pointer type.
886     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
887   case SDTCisInt:
888     // Require it to be one of the legal integer VTs.
889     return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
890   case SDTCisFP:
891     // Require it to be one of the legal fp VTs.
892     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
893   case SDTCisVec:
894     // Require it to be one of the legal vector VTs.
895     return NodeToApply->getExtType(ResNo).EnforceVector(TP);
896   case SDTCisSameAs: {
897     unsigned OResNo = 0;
898     TreePatternNode *OtherNode =
899       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
900     return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
901            OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
902   }
903   case SDTCisVTSmallerThanOp: {
904     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
905     // have an integer type that is smaller than the VT.
906     if (!NodeToApply->isLeaf() ||
907         !isa<DefInit>(NodeToApply->getLeafValue()) ||
908         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
909                ->isSubClassOf("ValueType")) {
910       TP.error(N->getOperator()->getName() + " expects a VT operand!");
911       return false;
912     }
913     MVT::SimpleValueType VT =
914      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
915 
916     EEVT::TypeSet TypeListTmp(VT, TP);
917 
918     unsigned OResNo = 0;
919     TreePatternNode *OtherNode =
920       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
921                     OResNo);
922 
923     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
924   }
925   case SDTCisOpSmallerThanOp: {
926     unsigned BResNo = 0;
927     TreePatternNode *BigOperand =
928       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
929                     BResNo);
930     return NodeToApply->getExtType(ResNo).
931                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
932   }
933   case SDTCisEltOfVec: {
934     unsigned VResNo = 0;
935     TreePatternNode *VecOperand =
936       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
937                     VResNo);
938 
939     // Filter vector types out of VecOperand that don't have the right element
940     // type.
941     return VecOperand->getExtType(VResNo).
942       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
943   }
944   case SDTCisSubVecOfVec: {
945     unsigned VResNo = 0;
946     TreePatternNode *BigVecOperand =
947       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
948                     VResNo);
949 
950     // Filter vector types out of BigVecOperand that don't have the
951     // right subvector type.
952     return BigVecOperand->getExtType(VResNo).
953       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
954   }
955   }
956   llvm_unreachable("Invalid ConstraintType!");
957 }
958 
959 // Update the node type to match an instruction operand or result as specified
960 // in the ins or outs lists on the instruction definition. Return true if the
961 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)962 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
963                                              Record *Operand,
964                                              TreePattern &TP) {
965   // The 'unknown' operand indicates that types should be inferred from the
966   // context.
967   if (Operand->isSubClassOf("unknown_class"))
968     return false;
969 
970   // The Operand class specifies a type directly.
971   if (Operand->isSubClassOf("Operand"))
972     return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
973                           TP);
974 
975   // PointerLikeRegClass has a type that is determined at runtime.
976   if (Operand->isSubClassOf("PointerLikeRegClass"))
977     return UpdateNodeType(ResNo, MVT::iPTR, TP);
978 
979   // Both RegisterClass and RegisterOperand operands derive their types from a
980   // register class def.
981   Record *RC = 0;
982   if (Operand->isSubClassOf("RegisterClass"))
983     RC = Operand;
984   else if (Operand->isSubClassOf("RegisterOperand"))
985     RC = Operand->getValueAsDef("RegClass");
986 
987   assert(RC && "Unknown operand type");
988   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
989   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
990 }
991 
992 
993 //===----------------------------------------------------------------------===//
994 // SDNodeInfo implementation
995 //
SDNodeInfo(Record * R)996 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
997   EnumName    = R->getValueAsString("Opcode");
998   SDClassName = R->getValueAsString("SDClass");
999   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1000   NumResults = TypeProfile->getValueAsInt("NumResults");
1001   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1002 
1003   // Parse the properties.
1004   Properties = 0;
1005   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1006   for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1007     if (PropList[i]->getName() == "SDNPCommutative") {
1008       Properties |= 1 << SDNPCommutative;
1009     } else if (PropList[i]->getName() == "SDNPAssociative") {
1010       Properties |= 1 << SDNPAssociative;
1011     } else if (PropList[i]->getName() == "SDNPHasChain") {
1012       Properties |= 1 << SDNPHasChain;
1013     } else if (PropList[i]->getName() == "SDNPOutGlue") {
1014       Properties |= 1 << SDNPOutGlue;
1015     } else if (PropList[i]->getName() == "SDNPInGlue") {
1016       Properties |= 1 << SDNPInGlue;
1017     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1018       Properties |= 1 << SDNPOptInGlue;
1019     } else if (PropList[i]->getName() == "SDNPMayStore") {
1020       Properties |= 1 << SDNPMayStore;
1021     } else if (PropList[i]->getName() == "SDNPMayLoad") {
1022       Properties |= 1 << SDNPMayLoad;
1023     } else if (PropList[i]->getName() == "SDNPSideEffect") {
1024       Properties |= 1 << SDNPSideEffect;
1025     } else if (PropList[i]->getName() == "SDNPMemOperand") {
1026       Properties |= 1 << SDNPMemOperand;
1027     } else if (PropList[i]->getName() == "SDNPVariadic") {
1028       Properties |= 1 << SDNPVariadic;
1029     } else {
1030       errs() << "Unknown SD Node property '" << PropList[i]->getName()
1031              << "' on node '" << R->getName() << "'!\n";
1032       exit(1);
1033     }
1034   }
1035 
1036 
1037   // Parse the type constraints.
1038   std::vector<Record*> ConstraintList =
1039     TypeProfile->getValueAsListOfDefs("Constraints");
1040   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1041 }
1042 
1043 /// getKnownType - If the type constraints on this node imply a fixed type
1044 /// (e.g. all stores return void, etc), then return it as an
1045 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1046 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1047   unsigned NumResults = getNumResults();
1048   assert(NumResults <= 1 &&
1049          "We only work with nodes with zero or one result so far!");
1050   assert(ResNo == 0 && "Only handles single result nodes so far");
1051 
1052   for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1053     // Make sure that this applies to the correct node result.
1054     if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
1055       continue;
1056 
1057     switch (TypeConstraints[i].ConstraintType) {
1058     default: break;
1059     case SDTypeConstraint::SDTCisVT:
1060       return TypeConstraints[i].x.SDTCisVT_Info.VT;
1061     case SDTypeConstraint::SDTCisPtrTy:
1062       return MVT::iPTR;
1063     }
1064   }
1065   return MVT::Other;
1066 }
1067 
1068 //===----------------------------------------------------------------------===//
1069 // TreePatternNode implementation
1070 //
1071 
~TreePatternNode()1072 TreePatternNode::~TreePatternNode() {
1073 #if 0 // FIXME: implement refcounted tree nodes!
1074   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1075     delete getChild(i);
1076 #endif
1077 }
1078 
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1079 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1080   if (Operator->getName() == "set" ||
1081       Operator->getName() == "implicit")
1082     return 0;  // All return nothing.
1083 
1084   if (Operator->isSubClassOf("Intrinsic"))
1085     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1086 
1087   if (Operator->isSubClassOf("SDNode"))
1088     return CDP.getSDNodeInfo(Operator).getNumResults();
1089 
1090   if (Operator->isSubClassOf("PatFrag")) {
1091     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1092     // the forward reference case where one pattern fragment references another
1093     // before it is processed.
1094     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1095       return PFRec->getOnlyTree()->getNumTypes();
1096 
1097     // Get the result tree.
1098     DagInit *Tree = Operator->getValueAsDag("Fragment");
1099     Record *Op = 0;
1100     if (Tree)
1101       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1102         Op = DI->getDef();
1103     assert(Op && "Invalid Fragment");
1104     return GetNumNodeResults(Op, CDP);
1105   }
1106 
1107   if (Operator->isSubClassOf("Instruction")) {
1108     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1109 
1110     // FIXME: Should allow access to all the results here.
1111     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1112 
1113     // Add on one implicit def if it has a resolvable type.
1114     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1115       ++NumDefsToAdd;
1116     return NumDefsToAdd;
1117   }
1118 
1119   if (Operator->isSubClassOf("SDNodeXForm"))
1120     return 1;  // FIXME: Generalize SDNodeXForm
1121 
1122   Operator->dump();
1123   errs() << "Unhandled node in GetNumNodeResults\n";
1124   exit(1);
1125 }
1126 
print(raw_ostream & OS) const1127 void TreePatternNode::print(raw_ostream &OS) const {
1128   if (isLeaf())
1129     OS << *getLeafValue();
1130   else
1131     OS << '(' << getOperator()->getName();
1132 
1133   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1134     OS << ':' << getExtType(i).getName();
1135 
1136   if (!isLeaf()) {
1137     if (getNumChildren() != 0) {
1138       OS << " ";
1139       getChild(0)->print(OS);
1140       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1141         OS << ", ";
1142         getChild(i)->print(OS);
1143       }
1144     }
1145     OS << ")";
1146   }
1147 
1148   for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1149     OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1150   if (TransformFn)
1151     OS << "<<X:" << TransformFn->getName() << ">>";
1152   if (!getName().empty())
1153     OS << ":$" << getName();
1154 
1155 }
dump() const1156 void TreePatternNode::dump() const {
1157   print(errs());
1158 }
1159 
1160 /// isIsomorphicTo - Return true if this node is recursively
1161 /// isomorphic to the specified node.  For this comparison, the node's
1162 /// entire state is considered. The assigned name is ignored, since
1163 /// nodes with differing names are considered isomorphic. However, if
1164 /// the assigned name is present in the dependent variable set, then
1165 /// the assigned name is considered significant and the node is
1166 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1167 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1168                                      const MultipleUseVarSet &DepVars) const {
1169   if (N == this) return true;
1170   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1171       getPredicateFns() != N->getPredicateFns() ||
1172       getTransformFn() != N->getTransformFn())
1173     return false;
1174 
1175   if (isLeaf()) {
1176     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1177       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1178         return ((DI->getDef() == NDI->getDef())
1179                 && (DepVars.find(getName()) == DepVars.end()
1180                     || getName() == N->getName()));
1181       }
1182     }
1183     return getLeafValue() == N->getLeafValue();
1184   }
1185 
1186   if (N->getOperator() != getOperator() ||
1187       N->getNumChildren() != getNumChildren()) return false;
1188   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1189     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1190       return false;
1191   return true;
1192 }
1193 
1194 /// clone - Make a copy of this tree and all of its children.
1195 ///
clone() const1196 TreePatternNode *TreePatternNode::clone() const {
1197   TreePatternNode *New;
1198   if (isLeaf()) {
1199     New = new TreePatternNode(getLeafValue(), getNumTypes());
1200   } else {
1201     std::vector<TreePatternNode*> CChildren;
1202     CChildren.reserve(Children.size());
1203     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1204       CChildren.push_back(getChild(i)->clone());
1205     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1206   }
1207   New->setName(getName());
1208   New->Types = Types;
1209   New->setPredicateFns(getPredicateFns());
1210   New->setTransformFn(getTransformFn());
1211   return New;
1212 }
1213 
1214 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1215 void TreePatternNode::RemoveAllTypes() {
1216   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1217     Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1218   if (isLeaf()) return;
1219   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1220     getChild(i)->RemoveAllTypes();
1221 }
1222 
1223 
1224 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1225 /// with actual values specified by ArgMap.
1226 void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1227 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1228   if (isLeaf()) return;
1229 
1230   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1231     TreePatternNode *Child = getChild(i);
1232     if (Child->isLeaf()) {
1233       Init *Val = Child->getLeafValue();
1234       if (isa<DefInit>(Val) &&
1235           cast<DefInit>(Val)->getDef()->getName() == "node") {
1236         // We found a use of a formal argument, replace it with its value.
1237         TreePatternNode *NewChild = ArgMap[Child->getName()];
1238         assert(NewChild && "Couldn't find formal argument!");
1239         assert((Child->getPredicateFns().empty() ||
1240                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1241                "Non-empty child predicate clobbered!");
1242         setChild(i, NewChild);
1243       }
1244     } else {
1245       getChild(i)->SubstituteFormalArguments(ArgMap);
1246     }
1247   }
1248 }
1249 
1250 
1251 /// InlinePatternFragments - If this pattern refers to any pattern
1252 /// fragments, inline them into place, giving us a pattern without any
1253 /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1254 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1255   if (TP.hasError())
1256     return 0;
1257 
1258   if (isLeaf())
1259      return this;  // nothing to do.
1260   Record *Op = getOperator();
1261 
1262   if (!Op->isSubClassOf("PatFrag")) {
1263     // Just recursively inline children nodes.
1264     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1265       TreePatternNode *Child = getChild(i);
1266       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1267 
1268       assert((Child->getPredicateFns().empty() ||
1269               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1270              "Non-empty child predicate clobbered!");
1271 
1272       setChild(i, NewChild);
1273     }
1274     return this;
1275   }
1276 
1277   // Otherwise, we found a reference to a fragment.  First, look up its
1278   // TreePattern record.
1279   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1280 
1281   // Verify that we are passing the right number of operands.
1282   if (Frag->getNumArgs() != Children.size()) {
1283     TP.error("'" + Op->getName() + "' fragment requires " +
1284              utostr(Frag->getNumArgs()) + " operands!");
1285     return 0;
1286   }
1287 
1288   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1289 
1290   TreePredicateFn PredFn(Frag);
1291   if (!PredFn.isAlwaysTrue())
1292     FragTree->addPredicateFn(PredFn);
1293 
1294   // Resolve formal arguments to their actual value.
1295   if (Frag->getNumArgs()) {
1296     // Compute the map of formal to actual arguments.
1297     std::map<std::string, TreePatternNode*> ArgMap;
1298     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1299       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1300 
1301     FragTree->SubstituteFormalArguments(ArgMap);
1302   }
1303 
1304   FragTree->setName(getName());
1305   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1306     FragTree->UpdateNodeType(i, getExtType(i), TP);
1307 
1308   // Transfer in the old predicates.
1309   for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1310     FragTree->addPredicateFn(getPredicateFns()[i]);
1311 
1312   // Get a new copy of this fragment to stitch into here.
1313   //delete this;    // FIXME: implement refcounting!
1314 
1315   // The fragment we inlined could have recursive inlining that is needed.  See
1316   // if there are any pattern fragments in it and inline them as needed.
1317   return FragTree->InlinePatternFragments(TP);
1318 }
1319 
1320 /// getImplicitType - Check to see if the specified record has an implicit
1321 /// type which should be applied to it.  This will infer the type of register
1322 /// references from the register file information, for example.
1323 ///
1324 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1325 /// the F8RC register class argument in:
1326 ///
1327 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1328 ///
1329 /// When Unnamed is false, return the type of a named DAG operand such as the
1330 /// GPR:$src operand above.
1331 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1332 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1333                                      bool NotRegisters,
1334                                      bool Unnamed,
1335                                      TreePattern &TP) {
1336   // Check to see if this is a register operand.
1337   if (R->isSubClassOf("RegisterOperand")) {
1338     assert(ResNo == 0 && "Regoperand ref only has one result!");
1339     if (NotRegisters)
1340       return EEVT::TypeSet(); // Unknown.
1341     Record *RegClass = R->getValueAsDef("RegClass");
1342     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1343     return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1344   }
1345 
1346   // Check to see if this is a register or a register class.
1347   if (R->isSubClassOf("RegisterClass")) {
1348     assert(ResNo == 0 && "Regclass ref only has one result!");
1349     // An unnamed register class represents itself as an i32 immediate, for
1350     // example on a COPY_TO_REGCLASS instruction.
1351     if (Unnamed)
1352       return EEVT::TypeSet(MVT::i32, TP);
1353 
1354     // In a named operand, the register class provides the possible set of
1355     // types.
1356     if (NotRegisters)
1357       return EEVT::TypeSet(); // Unknown.
1358     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1359     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1360   }
1361 
1362   if (R->isSubClassOf("PatFrag")) {
1363     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1364     // Pattern fragment types will be resolved when they are inlined.
1365     return EEVT::TypeSet(); // Unknown.
1366   }
1367 
1368   if (R->isSubClassOf("Register")) {
1369     assert(ResNo == 0 && "Registers only produce one result!");
1370     if (NotRegisters)
1371       return EEVT::TypeSet(); // Unknown.
1372     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1373     return EEVT::TypeSet(T.getRegisterVTs(R));
1374   }
1375 
1376   if (R->isSubClassOf("SubRegIndex")) {
1377     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1378     return EEVT::TypeSet();
1379   }
1380 
1381   if (R->isSubClassOf("ValueType")) {
1382     assert(ResNo == 0 && "This node only has one result!");
1383     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1384     //
1385     //   (sext_inreg GPR:$src, i16)
1386     //                         ~~~
1387     if (Unnamed)
1388       return EEVT::TypeSet(MVT::Other, TP);
1389     // With a name, the ValueType simply provides the type of the named
1390     // variable.
1391     //
1392     //   (sext_inreg i32:$src, i16)
1393     //               ~~~~~~~~
1394     if (NotRegisters)
1395       return EEVT::TypeSet(); // Unknown.
1396     return EEVT::TypeSet(getValueType(R), TP);
1397   }
1398 
1399   if (R->isSubClassOf("CondCode")) {
1400     assert(ResNo == 0 && "This node only has one result!");
1401     // Using a CondCodeSDNode.
1402     return EEVT::TypeSet(MVT::Other, TP);
1403   }
1404 
1405   if (R->isSubClassOf("ComplexPattern")) {
1406     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1407     if (NotRegisters)
1408       return EEVT::TypeSet(); // Unknown.
1409    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1410                          TP);
1411   }
1412   if (R->isSubClassOf("PointerLikeRegClass")) {
1413     assert(ResNo == 0 && "Regclass can only have one result!");
1414     return EEVT::TypeSet(MVT::iPTR, TP);
1415   }
1416 
1417   if (R->getName() == "node" || R->getName() == "srcvalue" ||
1418       R->getName() == "zero_reg") {
1419     // Placeholder.
1420     return EEVT::TypeSet(); // Unknown.
1421   }
1422 
1423   TP.error("Unknown node flavor used in pattern: " + R->getName());
1424   return EEVT::TypeSet(MVT::Other, TP);
1425 }
1426 
1427 
1428 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1429 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1430 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1431 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1432   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1433       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1434       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1435     return 0;
1436 
1437   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1438   return &CDP.getIntrinsicInfo(IID);
1439 }
1440 
1441 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1442 /// return the ComplexPattern information, otherwise return null.
1443 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1444 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1445   if (!isLeaf()) return 0;
1446 
1447   DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1448   if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1449     return &CGP.getComplexPattern(DI->getDef());
1450   return 0;
1451 }
1452 
1453 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1454 bool TreePatternNode::NodeHasProperty(SDNP Property,
1455                                       const CodeGenDAGPatterns &CGP) const {
1456   if (isLeaf()) {
1457     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1458       return CP->hasProperty(Property);
1459     return false;
1460   }
1461 
1462   Record *Operator = getOperator();
1463   if (!Operator->isSubClassOf("SDNode")) return false;
1464 
1465   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1466 }
1467 
1468 
1469 
1470 
1471 /// TreeHasProperty - Return true if any node in this tree has the specified
1472 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1473 bool TreePatternNode::TreeHasProperty(SDNP Property,
1474                                       const CodeGenDAGPatterns &CGP) const {
1475   if (NodeHasProperty(Property, CGP))
1476     return true;
1477   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1478     if (getChild(i)->TreeHasProperty(Property, CGP))
1479       return true;
1480   return false;
1481 }
1482 
1483 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1484 /// commutative intrinsic.
1485 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1486 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1487   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1488     return Int->isCommutative;
1489   return false;
1490 }
1491 
1492 
1493 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1494 /// this node and its children in the tree.  This returns true if it makes a
1495 /// change, false otherwise.  If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1496 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1497   if (TP.hasError())
1498     return false;
1499 
1500   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1501   if (isLeaf()) {
1502     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1503       // If it's a regclass or something else known, include the type.
1504       bool MadeChange = false;
1505       for (unsigned i = 0, e = Types.size(); i != e; ++i)
1506         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1507                                                         NotRegisters,
1508                                                         !hasName(), TP), TP);
1509       return MadeChange;
1510     }
1511 
1512     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1513       assert(Types.size() == 1 && "Invalid IntInit");
1514 
1515       // Int inits are always integers. :)
1516       bool MadeChange = Types[0].EnforceInteger(TP);
1517 
1518       if (!Types[0].isConcrete())
1519         return MadeChange;
1520 
1521       MVT::SimpleValueType VT = getType(0);
1522       if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1523         return MadeChange;
1524 
1525       unsigned Size = EVT(VT).getSizeInBits();
1526       // Make sure that the value is representable for this type.
1527       if (Size >= 32) return MadeChange;
1528 
1529       // Check that the value doesn't use more bits than we have. It must either
1530       // be a sign- or zero-extended equivalent of the original.
1531       int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1532       if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1533         return MadeChange;
1534 
1535       TP.error("Integer value '" + itostr(II->getValue()) +
1536                "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1537       return false;
1538     }
1539     return false;
1540   }
1541 
1542   // special handling for set, which isn't really an SDNode.
1543   if (getOperator()->getName() == "set") {
1544     assert(getNumTypes() == 0 && "Set doesn't produce a value");
1545     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1546     unsigned NC = getNumChildren();
1547 
1548     TreePatternNode *SetVal = getChild(NC-1);
1549     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1550 
1551     for (unsigned i = 0; i < NC-1; ++i) {
1552       TreePatternNode *Child = getChild(i);
1553       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1554 
1555       // Types of operands must match.
1556       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1557       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1558     }
1559     return MadeChange;
1560   }
1561 
1562   if (getOperator()->getName() == "implicit") {
1563     assert(getNumTypes() == 0 && "Node doesn't produce a value");
1564 
1565     bool MadeChange = false;
1566     for (unsigned i = 0; i < getNumChildren(); ++i)
1567       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1568     return MadeChange;
1569   }
1570 
1571   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1572     bool MadeChange = false;
1573 
1574     // Apply the result type to the node.
1575     unsigned NumRetVTs = Int->IS.RetVTs.size();
1576     unsigned NumParamVTs = Int->IS.ParamVTs.size();
1577 
1578     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1579       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1580 
1581     if (getNumChildren() != NumParamVTs + 1) {
1582       TP.error("Intrinsic '" + Int->Name + "' expects " +
1583                utostr(NumParamVTs) + " operands, not " +
1584                utostr(getNumChildren() - 1) + " operands!");
1585       return false;
1586     }
1587 
1588     // Apply type info to the intrinsic ID.
1589     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1590 
1591     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1592       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1593 
1594       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1595       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1596       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1597     }
1598     return MadeChange;
1599   }
1600 
1601   if (getOperator()->isSubClassOf("SDNode")) {
1602     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1603 
1604     // Check that the number of operands is sane.  Negative operands -> varargs.
1605     if (NI.getNumOperands() >= 0 &&
1606         getNumChildren() != (unsigned)NI.getNumOperands()) {
1607       TP.error(getOperator()->getName() + " node requires exactly " +
1608                itostr(NI.getNumOperands()) + " operands!");
1609       return false;
1610     }
1611 
1612     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1613     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1614       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1615     return MadeChange;
1616   }
1617 
1618   if (getOperator()->isSubClassOf("Instruction")) {
1619     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1620     CodeGenInstruction &InstInfo =
1621       CDP.getTargetInfo().getInstruction(getOperator());
1622 
1623     bool MadeChange = false;
1624 
1625     // Apply the result types to the node, these come from the things in the
1626     // (outs) list of the instruction.
1627     // FIXME: Cap at one result so far.
1628     unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1629     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1630       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1631 
1632     // If the instruction has implicit defs, we apply the first one as a result.
1633     // FIXME: This sucks, it should apply all implicit defs.
1634     if (!InstInfo.ImplicitDefs.empty()) {
1635       unsigned ResNo = NumResultsToAdd;
1636 
1637       // FIXME: Generalize to multiple possible types and multiple possible
1638       // ImplicitDefs.
1639       MVT::SimpleValueType VT =
1640         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1641 
1642       if (VT != MVT::Other)
1643         MadeChange |= UpdateNodeType(ResNo, VT, TP);
1644     }
1645 
1646     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1647     // be the same.
1648     if (getOperator()->getName() == "INSERT_SUBREG") {
1649       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1650       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1651       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1652     }
1653 
1654     unsigned ChildNo = 0;
1655     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1656       Record *OperandNode = Inst.getOperand(i);
1657 
1658       // If the instruction expects a predicate or optional def operand, we
1659       // codegen this by setting the operand to it's default value if it has a
1660       // non-empty DefaultOps field.
1661       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1662           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1663         continue;
1664 
1665       // Verify that we didn't run out of provided operands.
1666       if (ChildNo >= getNumChildren()) {
1667         TP.error("Instruction '" + getOperator()->getName() +
1668                  "' expects more operands than were provided.");
1669         return false;
1670       }
1671 
1672       TreePatternNode *Child = getChild(ChildNo++);
1673       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1674 
1675       // If the operand has sub-operands, they may be provided by distinct
1676       // child patterns, so attempt to match each sub-operand separately.
1677       if (OperandNode->isSubClassOf("Operand")) {
1678         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1679         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1680           // But don't do that if the whole operand is being provided by
1681           // a single ComplexPattern.
1682           const ComplexPattern *AM = Child->getComplexPatternInfo(CDP);
1683           if (!AM || AM->getNumOperands() < NumArgs) {
1684             // Match first sub-operand against the child we already have.
1685             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1686             MadeChange |=
1687               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1688 
1689             // And the remaining sub-operands against subsequent children.
1690             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1691               if (ChildNo >= getNumChildren()) {
1692                 TP.error("Instruction '" + getOperator()->getName() +
1693                          "' expects more operands than were provided.");
1694                 return false;
1695               }
1696               Child = getChild(ChildNo++);
1697 
1698               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1699               MadeChange |=
1700                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1701             }
1702             continue;
1703           }
1704         }
1705       }
1706 
1707       // If we didn't match by pieces above, attempt to match the whole
1708       // operand now.
1709       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1710     }
1711 
1712     if (ChildNo != getNumChildren()) {
1713       TP.error("Instruction '" + getOperator()->getName() +
1714                "' was provided too many operands!");
1715       return false;
1716     }
1717 
1718     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1719       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1720     return MadeChange;
1721   }
1722 
1723   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1724 
1725   // Node transforms always take one operand.
1726   if (getNumChildren() != 1) {
1727     TP.error("Node transform '" + getOperator()->getName() +
1728              "' requires one operand!");
1729     return false;
1730   }
1731 
1732   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1733 
1734 
1735   // If either the output or input of the xform does not have exact
1736   // type info. We assume they must be the same. Otherwise, it is perfectly
1737   // legal to transform from one type to a completely different type.
1738 #if 0
1739   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1740     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1741     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1742     return MadeChange;
1743   }
1744 #endif
1745   return MadeChange;
1746 }
1747 
1748 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1749 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1750 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1751   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1752     return true;
1753   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1754     return true;
1755   return false;
1756 }
1757 
1758 
1759 /// canPatternMatch - If it is impossible for this pattern to match on this
1760 /// target, fill in Reason and return false.  Otherwise, return true.  This is
1761 /// used as a sanity check for .td files (to prevent people from writing stuff
1762 /// that can never possibly work), and to prevent the pattern permuter from
1763 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)1764 bool TreePatternNode::canPatternMatch(std::string &Reason,
1765                                       const CodeGenDAGPatterns &CDP) {
1766   if (isLeaf()) return true;
1767 
1768   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1769     if (!getChild(i)->canPatternMatch(Reason, CDP))
1770       return false;
1771 
1772   // If this is an intrinsic, handle cases that would make it not match.  For
1773   // example, if an operand is required to be an immediate.
1774   if (getOperator()->isSubClassOf("Intrinsic")) {
1775     // TODO:
1776     return true;
1777   }
1778 
1779   // If this node is a commutative operator, check that the LHS isn't an
1780   // immediate.
1781   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1782   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1783   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1784     // Scan all of the operands of the node and make sure that only the last one
1785     // is a constant node, unless the RHS also is.
1786     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1787       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1788       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1789         if (OnlyOnRHSOfCommutative(getChild(i))) {
1790           Reason="Immediate value must be on the RHS of commutative operators!";
1791           return false;
1792         }
1793     }
1794   }
1795 
1796   return true;
1797 }
1798 
1799 //===----------------------------------------------------------------------===//
1800 // TreePattern implementation
1801 //
1802 
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)1803 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1804                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1805                          isInputPattern(isInput), HasError(false) {
1806   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1807     Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1808 }
1809 
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)1810 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1811                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1812                          isInputPattern(isInput), HasError(false) {
1813   Trees.push_back(ParseTreePattern(Pat, ""));
1814 }
1815 
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)1816 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1817                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1818                          isInputPattern(isInput), HasError(false) {
1819   Trees.push_back(Pat);
1820 }
1821 
error(const std::string & Msg)1822 void TreePattern::error(const std::string &Msg) {
1823   if (HasError)
1824     return;
1825   dump();
1826   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1827   HasError = true;
1828 }
1829 
ComputeNamedNodes()1830 void TreePattern::ComputeNamedNodes() {
1831   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1832     ComputeNamedNodes(Trees[i]);
1833 }
1834 
ComputeNamedNodes(TreePatternNode * N)1835 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1836   if (!N->getName().empty())
1837     NamedNodes[N->getName()].push_back(N);
1838 
1839   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1840     ComputeNamedNodes(N->getChild(i));
1841 }
1842 
1843 
ParseTreePattern(Init * TheInit,StringRef OpName)1844 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1845   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1846     Record *R = DI->getDef();
1847 
1848     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1849     // TreePatternNode of its own.  For example:
1850     ///   (foo GPR, imm) -> (foo GPR, (imm))
1851     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1852       return ParseTreePattern(
1853         DagInit::get(DI, "",
1854                      std::vector<std::pair<Init*, std::string> >()),
1855         OpName);
1856 
1857     // Input argument?
1858     TreePatternNode *Res = new TreePatternNode(DI, 1);
1859     if (R->getName() == "node" && !OpName.empty()) {
1860       if (OpName.empty())
1861         error("'node' argument requires a name to match with operand list");
1862       Args.push_back(OpName);
1863     }
1864 
1865     Res->setName(OpName);
1866     return Res;
1867   }
1868 
1869   // ?:$name or just $name.
1870   if (TheInit == UnsetInit::get()) {
1871     if (OpName.empty())
1872       error("'?' argument requires a name to match with operand list");
1873     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
1874     Args.push_back(OpName);
1875     Res->setName(OpName);
1876     return Res;
1877   }
1878 
1879   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1880     if (!OpName.empty())
1881       error("Constant int argument should not have a name!");
1882     return new TreePatternNode(II, 1);
1883   }
1884 
1885   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1886     // Turn this into an IntInit.
1887     Init *II = BI->convertInitializerTo(IntRecTy::get());
1888     if (II == 0 || !isa<IntInit>(II))
1889       error("Bits value must be constants!");
1890     return ParseTreePattern(II, OpName);
1891   }
1892 
1893   DagInit *Dag = dyn_cast<DagInit>(TheInit);
1894   if (!Dag) {
1895     TheInit->dump();
1896     error("Pattern has unexpected init kind!");
1897   }
1898   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
1899   if (!OpDef) error("Pattern has unexpected operator type!");
1900   Record *Operator = OpDef->getDef();
1901 
1902   if (Operator->isSubClassOf("ValueType")) {
1903     // If the operator is a ValueType, then this must be "type cast" of a leaf
1904     // node.
1905     if (Dag->getNumArgs() != 1)
1906       error("Type cast only takes one operand!");
1907 
1908     TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1909 
1910     // Apply the type cast.
1911     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1912     New->UpdateNodeType(0, getValueType(Operator), *this);
1913 
1914     if (!OpName.empty())
1915       error("ValueType cast should not have a name!");
1916     return New;
1917   }
1918 
1919   // Verify that this is something that makes sense for an operator.
1920   if (!Operator->isSubClassOf("PatFrag") &&
1921       !Operator->isSubClassOf("SDNode") &&
1922       !Operator->isSubClassOf("Instruction") &&
1923       !Operator->isSubClassOf("SDNodeXForm") &&
1924       !Operator->isSubClassOf("Intrinsic") &&
1925       Operator->getName() != "set" &&
1926       Operator->getName() != "implicit")
1927     error("Unrecognized node '" + Operator->getName() + "'!");
1928 
1929   //  Check to see if this is something that is illegal in an input pattern.
1930   if (isInputPattern) {
1931     if (Operator->isSubClassOf("Instruction") ||
1932         Operator->isSubClassOf("SDNodeXForm"))
1933       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1934   } else {
1935     if (Operator->isSubClassOf("Intrinsic"))
1936       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1937 
1938     if (Operator->isSubClassOf("SDNode") &&
1939         Operator->getName() != "imm" &&
1940         Operator->getName() != "fpimm" &&
1941         Operator->getName() != "tglobaltlsaddr" &&
1942         Operator->getName() != "tconstpool" &&
1943         Operator->getName() != "tjumptable" &&
1944         Operator->getName() != "tframeindex" &&
1945         Operator->getName() != "texternalsym" &&
1946         Operator->getName() != "tblockaddress" &&
1947         Operator->getName() != "tglobaladdr" &&
1948         Operator->getName() != "bb" &&
1949         Operator->getName() != "vt")
1950       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1951   }
1952 
1953   std::vector<TreePatternNode*> Children;
1954 
1955   // Parse all the operands.
1956   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1957     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1958 
1959   // If the operator is an intrinsic, then this is just syntactic sugar for for
1960   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1961   // convert the intrinsic name to a number.
1962   if (Operator->isSubClassOf("Intrinsic")) {
1963     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1964     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1965 
1966     // If this intrinsic returns void, it must have side-effects and thus a
1967     // chain.
1968     if (Int.IS.RetVTs.empty())
1969       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1970     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1971       // Has side-effects, requires chain.
1972       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1973     else // Otherwise, no chain.
1974       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1975 
1976     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1977     Children.insert(Children.begin(), IIDNode);
1978   }
1979 
1980   unsigned NumResults = GetNumNodeResults(Operator, CDP);
1981   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1982   Result->setName(OpName);
1983 
1984   if (!Dag->getName().empty()) {
1985     assert(Result->getName().empty());
1986     Result->setName(Dag->getName());
1987   }
1988   return Result;
1989 }
1990 
1991 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1992 /// will never match in favor of something obvious that will.  This is here
1993 /// strictly as a convenience to target authors because it allows them to write
1994 /// more type generic things and have useless type casts fold away.
1995 ///
1996 /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)1997 static bool SimplifyTree(TreePatternNode *&N) {
1998   if (N->isLeaf())
1999     return false;
2000 
2001   // If we have a bitconvert with a resolved type and if the source and
2002   // destination types are the same, then the bitconvert is useless, remove it.
2003   if (N->getOperator()->getName() == "bitconvert" &&
2004       N->getExtType(0).isConcrete() &&
2005       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2006       N->getName().empty()) {
2007     N = N->getChild(0);
2008     SimplifyTree(N);
2009     return true;
2010   }
2011 
2012   // Walk all children.
2013   bool MadeChange = false;
2014   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2015     TreePatternNode *Child = N->getChild(i);
2016     MadeChange |= SimplifyTree(Child);
2017     N->setChild(i, Child);
2018   }
2019   return MadeChange;
2020 }
2021 
2022 
2023 
2024 /// InferAllTypes - Infer/propagate as many types throughout the expression
2025 /// patterns as possible.  Return true if all types are inferred, false
2026 /// otherwise.  Flags an error if a type contradiction is found.
2027 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2028 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2029   if (NamedNodes.empty())
2030     ComputeNamedNodes();
2031 
2032   bool MadeChange = true;
2033   while (MadeChange) {
2034     MadeChange = false;
2035     for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2036       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
2037       MadeChange |= SimplifyTree(Trees[i]);
2038     }
2039 
2040     // If there are constraints on our named nodes, apply them.
2041     for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
2042          I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
2043       SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
2044 
2045       // If we have input named node types, propagate their types to the named
2046       // values here.
2047       if (InNamedTypes) {
2048         // FIXME: Should be error?
2049         assert(InNamedTypes->count(I->getKey()) &&
2050                "Named node in output pattern but not input pattern?");
2051 
2052         const SmallVectorImpl<TreePatternNode*> &InNodes =
2053           InNamedTypes->find(I->getKey())->second;
2054 
2055         // The input types should be fully resolved by now.
2056         for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2057           // If this node is a register class, and it is the root of the pattern
2058           // then we're mapping something onto an input register.  We allow
2059           // changing the type of the input register in this case.  This allows
2060           // us to match things like:
2061           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2062           if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2063             DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2064             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2065                        DI->getDef()->isSubClassOf("RegisterOperand")))
2066               continue;
2067           }
2068 
2069           assert(Nodes[i]->getNumTypes() == 1 &&
2070                  InNodes[0]->getNumTypes() == 1 &&
2071                  "FIXME: cannot name multiple result nodes yet");
2072           MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2073                                                  *this);
2074         }
2075       }
2076 
2077       // If there are multiple nodes with the same name, they must all have the
2078       // same type.
2079       if (I->second.size() > 1) {
2080         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2081           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2082           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2083                  "FIXME: cannot name multiple result nodes yet");
2084 
2085           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2086           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2087         }
2088       }
2089     }
2090   }
2091 
2092   bool HasUnresolvedTypes = false;
2093   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2094     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2095   return !HasUnresolvedTypes;
2096 }
2097 
print(raw_ostream & OS) const2098 void TreePattern::print(raw_ostream &OS) const {
2099   OS << getRecord()->getName();
2100   if (!Args.empty()) {
2101     OS << "(" << Args[0];
2102     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2103       OS << ", " << Args[i];
2104     OS << ")";
2105   }
2106   OS << ": ";
2107 
2108   if (Trees.size() > 1)
2109     OS << "[\n";
2110   for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2111     OS << "\t";
2112     Trees[i]->print(OS);
2113     OS << "\n";
2114   }
2115 
2116   if (Trees.size() > 1)
2117     OS << "]\n";
2118 }
2119 
dump() const2120 void TreePattern::dump() const { print(errs()); }
2121 
2122 //===----------------------------------------------------------------------===//
2123 // CodeGenDAGPatterns implementation
2124 //
2125 
CodeGenDAGPatterns(RecordKeeper & R)2126 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2127   Records(R), Target(R) {
2128 
2129   Intrinsics = LoadIntrinsics(Records, false);
2130   TgtIntrinsics = LoadIntrinsics(Records, true);
2131   ParseNodeInfo();
2132   ParseNodeTransforms();
2133   ParseComplexPatterns();
2134   ParsePatternFragments();
2135   ParseDefaultOperands();
2136   ParseInstructions();
2137   ParsePatterns();
2138 
2139   // Generate variants.  For example, commutative patterns can match
2140   // multiple ways.  Add them to PatternsToMatch as well.
2141   GenerateVariants();
2142 
2143   // Infer instruction flags.  For example, we can detect loads,
2144   // stores, and side effects in many cases by examining an
2145   // instruction's pattern.
2146   InferInstructionFlags();
2147 
2148   // Verify that instruction flags match the patterns.
2149   VerifyInstructionFlags();
2150 }
2151 
~CodeGenDAGPatterns()2152 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2153   for (pf_iterator I = PatternFragments.begin(),
2154        E = PatternFragments.end(); I != E; ++I)
2155     delete I->second;
2156 }
2157 
2158 
getSDNodeNamed(const std::string & Name) const2159 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2160   Record *N = Records.getDef(Name);
2161   if (!N || !N->isSubClassOf("SDNode")) {
2162     errs() << "Error getting SDNode '" << Name << "'!\n";
2163     exit(1);
2164   }
2165   return N;
2166 }
2167 
2168 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2169 void CodeGenDAGPatterns::ParseNodeInfo() {
2170   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2171   while (!Nodes.empty()) {
2172     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2173     Nodes.pop_back();
2174   }
2175 
2176   // Get the builtin intrinsic nodes.
2177   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2178   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2179   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2180 }
2181 
2182 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2183 /// map, and emit them to the file as functions.
ParseNodeTransforms()2184 void CodeGenDAGPatterns::ParseNodeTransforms() {
2185   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2186   while (!Xforms.empty()) {
2187     Record *XFormNode = Xforms.back();
2188     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2189     std::string Code = XFormNode->getValueAsString("XFormFunction");
2190     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2191 
2192     Xforms.pop_back();
2193   }
2194 }
2195 
ParseComplexPatterns()2196 void CodeGenDAGPatterns::ParseComplexPatterns() {
2197   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2198   while (!AMs.empty()) {
2199     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2200     AMs.pop_back();
2201   }
2202 }
2203 
2204 
2205 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2206 /// file, building up the PatternFragments map.  After we've collected them all,
2207 /// inline fragments together as necessary, so that there are no references left
2208 /// inside a pattern fragment to a pattern fragment.
2209 ///
ParsePatternFragments()2210 void CodeGenDAGPatterns::ParsePatternFragments() {
2211   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2212 
2213   // First step, parse all of the fragments.
2214   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2215     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2216     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2217     PatternFragments[Fragments[i]] = P;
2218 
2219     // Validate the argument list, converting it to set, to discard duplicates.
2220     std::vector<std::string> &Args = P->getArgList();
2221     std::set<std::string> OperandsSet(Args.begin(), Args.end());
2222 
2223     if (OperandsSet.count(""))
2224       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2225 
2226     // Parse the operands list.
2227     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2228     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2229     // Special cases: ops == outs == ins. Different names are used to
2230     // improve readability.
2231     if (!OpsOp ||
2232         (OpsOp->getDef()->getName() != "ops" &&
2233          OpsOp->getDef()->getName() != "outs" &&
2234          OpsOp->getDef()->getName() != "ins"))
2235       P->error("Operands list should start with '(ops ... '!");
2236 
2237     // Copy over the arguments.
2238     Args.clear();
2239     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2240       if (!isa<DefInit>(OpsList->getArg(j)) ||
2241           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2242         P->error("Operands list should all be 'node' values.");
2243       if (OpsList->getArgName(j).empty())
2244         P->error("Operands list should have names for each operand!");
2245       if (!OperandsSet.count(OpsList->getArgName(j)))
2246         P->error("'" + OpsList->getArgName(j) +
2247                  "' does not occur in pattern or was multiply specified!");
2248       OperandsSet.erase(OpsList->getArgName(j));
2249       Args.push_back(OpsList->getArgName(j));
2250     }
2251 
2252     if (!OperandsSet.empty())
2253       P->error("Operands list does not contain an entry for operand '" +
2254                *OperandsSet.begin() + "'!");
2255 
2256     // If there is a code init for this fragment, keep track of the fact that
2257     // this fragment uses it.
2258     TreePredicateFn PredFn(P);
2259     if (!PredFn.isAlwaysTrue())
2260       P->getOnlyTree()->addPredicateFn(PredFn);
2261 
2262     // If there is a node transformation corresponding to this, keep track of
2263     // it.
2264     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2265     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2266       P->getOnlyTree()->setTransformFn(Transform);
2267   }
2268 
2269   // Now that we've parsed all of the tree fragments, do a closure on them so
2270   // that there are not references to PatFrags left inside of them.
2271   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2272     TreePattern *ThePat = PatternFragments[Fragments[i]];
2273     ThePat->InlinePatternFragments();
2274 
2275     // Infer as many types as possible.  Don't worry about it if we don't infer
2276     // all of them, some may depend on the inputs of the pattern.
2277     ThePat->InferAllTypes();
2278     ThePat->resetError();
2279 
2280     // If debugging, print out the pattern fragment result.
2281     DEBUG(ThePat->dump());
2282   }
2283 }
2284 
ParseDefaultOperands()2285 void CodeGenDAGPatterns::ParseDefaultOperands() {
2286   std::vector<Record*> DefaultOps;
2287   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2288 
2289   // Find some SDNode.
2290   assert(!SDNodes.empty() && "No SDNodes parsed?");
2291   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2292 
2293   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2294     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2295 
2296     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2297     // SomeSDnode so that we can parse this.
2298     std::vector<std::pair<Init*, std::string> > Ops;
2299     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2300       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2301                                    DefaultInfo->getArgName(op)));
2302     DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2303 
2304     // Create a TreePattern to parse this.
2305     TreePattern P(DefaultOps[i], DI, false, *this);
2306     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2307 
2308     // Copy the operands over into a DAGDefaultOperand.
2309     DAGDefaultOperand DefaultOpInfo;
2310 
2311     TreePatternNode *T = P.getTree(0);
2312     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2313       TreePatternNode *TPN = T->getChild(op);
2314       while (TPN->ApplyTypeConstraints(P, false))
2315         /* Resolve all types */;
2316 
2317       if (TPN->ContainsUnresolvedType()) {
2318         PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2319           DefaultOps[i]->getName() +"' doesn't have a concrete type!");
2320       }
2321       DefaultOpInfo.DefaultOps.push_back(TPN);
2322     }
2323 
2324     // Insert it into the DefaultOperands map so we can find it later.
2325     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2326   }
2327 }
2328 
2329 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2330 /// instruction input.  Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2331 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2332                       std::map<std::string, TreePatternNode*> &InstInputs) {
2333   // No name -> not interesting.
2334   if (Pat->getName().empty()) {
2335     if (Pat->isLeaf()) {
2336       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2337       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2338                  DI->getDef()->isSubClassOf("RegisterOperand")))
2339         I->error("Input " + DI->getDef()->getName() + " must be named!");
2340     }
2341     return false;
2342   }
2343 
2344   Record *Rec;
2345   if (Pat->isLeaf()) {
2346     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2347     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2348     Rec = DI->getDef();
2349   } else {
2350     Rec = Pat->getOperator();
2351   }
2352 
2353   // SRCVALUE nodes are ignored.
2354   if (Rec->getName() == "srcvalue")
2355     return false;
2356 
2357   TreePatternNode *&Slot = InstInputs[Pat->getName()];
2358   if (!Slot) {
2359     Slot = Pat;
2360     return true;
2361   }
2362   Record *SlotRec;
2363   if (Slot->isLeaf()) {
2364     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2365   } else {
2366     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2367     SlotRec = Slot->getOperator();
2368   }
2369 
2370   // Ensure that the inputs agree if we've already seen this input.
2371   if (Rec != SlotRec)
2372     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2373   if (Slot->getExtTypes() != Pat->getExtTypes())
2374     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2375   return true;
2376 }
2377 
2378 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2379 /// part of "I", the instruction), computing the set of inputs and outputs of
2380 /// the pattern.  Report errors if we see anything naughty.
2381 void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2382 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2383                             std::map<std::string, TreePatternNode*> &InstInputs,
2384                             std::map<std::string, TreePatternNode*>&InstResults,
2385                             std::vector<Record*> &InstImpResults) {
2386   if (Pat->isLeaf()) {
2387     bool isUse = HandleUse(I, Pat, InstInputs);
2388     if (!isUse && Pat->getTransformFn())
2389       I->error("Cannot specify a transform function for a non-input value!");
2390     return;
2391   }
2392 
2393   if (Pat->getOperator()->getName() == "implicit") {
2394     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2395       TreePatternNode *Dest = Pat->getChild(i);
2396       if (!Dest->isLeaf())
2397         I->error("implicitly defined value should be a register!");
2398 
2399       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2400       if (!Val || !Val->getDef()->isSubClassOf("Register"))
2401         I->error("implicitly defined value should be a register!");
2402       InstImpResults.push_back(Val->getDef());
2403     }
2404     return;
2405   }
2406 
2407   if (Pat->getOperator()->getName() != "set") {
2408     // If this is not a set, verify that the children nodes are not void typed,
2409     // and recurse.
2410     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2411       if (Pat->getChild(i)->getNumTypes() == 0)
2412         I->error("Cannot have void nodes inside of patterns!");
2413       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2414                                   InstImpResults);
2415     }
2416 
2417     // If this is a non-leaf node with no children, treat it basically as if
2418     // it were a leaf.  This handles nodes like (imm).
2419     bool isUse = HandleUse(I, Pat, InstInputs);
2420 
2421     if (!isUse && Pat->getTransformFn())
2422       I->error("Cannot specify a transform function for a non-input value!");
2423     return;
2424   }
2425 
2426   // Otherwise, this is a set, validate and collect instruction results.
2427   if (Pat->getNumChildren() == 0)
2428     I->error("set requires operands!");
2429 
2430   if (Pat->getTransformFn())
2431     I->error("Cannot specify a transform function on a set node!");
2432 
2433   // Check the set destinations.
2434   unsigned NumDests = Pat->getNumChildren()-1;
2435   for (unsigned i = 0; i != NumDests; ++i) {
2436     TreePatternNode *Dest = Pat->getChild(i);
2437     if (!Dest->isLeaf())
2438       I->error("set destination should be a register!");
2439 
2440     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2441     if (!Val)
2442       I->error("set destination should be a register!");
2443 
2444     if (Val->getDef()->isSubClassOf("RegisterClass") ||
2445         Val->getDef()->isSubClassOf("ValueType") ||
2446         Val->getDef()->isSubClassOf("RegisterOperand") ||
2447         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2448       if (Dest->getName().empty())
2449         I->error("set destination must have a name!");
2450       if (InstResults.count(Dest->getName()))
2451         I->error("cannot set '" + Dest->getName() +"' multiple times");
2452       InstResults[Dest->getName()] = Dest;
2453     } else if (Val->getDef()->isSubClassOf("Register")) {
2454       InstImpResults.push_back(Val->getDef());
2455     } else {
2456       I->error("set destination should be a register!");
2457     }
2458   }
2459 
2460   // Verify and collect info from the computation.
2461   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2462                               InstInputs, InstResults, InstImpResults);
2463 }
2464 
2465 //===----------------------------------------------------------------------===//
2466 // Instruction Analysis
2467 //===----------------------------------------------------------------------===//
2468 
2469 class InstAnalyzer {
2470   const CodeGenDAGPatterns &CDP;
2471 public:
2472   bool hasSideEffects;
2473   bool mayStore;
2474   bool mayLoad;
2475   bool isBitcast;
2476   bool isVariadic;
2477 
InstAnalyzer(const CodeGenDAGPatterns & cdp)2478   InstAnalyzer(const CodeGenDAGPatterns &cdp)
2479     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2480       isBitcast(false), isVariadic(false) {}
2481 
Analyze(const TreePattern * Pat)2482   void Analyze(const TreePattern *Pat) {
2483     // Assume only the first tree is the pattern. The others are clobber nodes.
2484     AnalyzeNode(Pat->getTree(0));
2485   }
2486 
Analyze(const PatternToMatch * Pat)2487   void Analyze(const PatternToMatch *Pat) {
2488     AnalyzeNode(Pat->getSrcPattern());
2489   }
2490 
2491 private:
IsNodeBitcast(const TreePatternNode * N) const2492   bool IsNodeBitcast(const TreePatternNode *N) const {
2493     if (hasSideEffects || mayLoad || mayStore || isVariadic)
2494       return false;
2495 
2496     if (N->getNumChildren() != 2)
2497       return false;
2498 
2499     const TreePatternNode *N0 = N->getChild(0);
2500     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2501       return false;
2502 
2503     const TreePatternNode *N1 = N->getChild(1);
2504     if (N1->isLeaf())
2505       return false;
2506     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2507       return false;
2508 
2509     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2510     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2511       return false;
2512     return OpInfo.getEnumName() == "ISD::BITCAST";
2513   }
2514 
2515 public:
AnalyzeNode(const TreePatternNode * N)2516   void AnalyzeNode(const TreePatternNode *N) {
2517     if (N->isLeaf()) {
2518       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2519         Record *LeafRec = DI->getDef();
2520         // Handle ComplexPattern leaves.
2521         if (LeafRec->isSubClassOf("ComplexPattern")) {
2522           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2523           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2524           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2525           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2526         }
2527       }
2528       return;
2529     }
2530 
2531     // Analyze children.
2532     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2533       AnalyzeNode(N->getChild(i));
2534 
2535     // Ignore set nodes, which are not SDNodes.
2536     if (N->getOperator()->getName() == "set") {
2537       isBitcast = IsNodeBitcast(N);
2538       return;
2539     }
2540 
2541     // Get information about the SDNode for the operator.
2542     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2543 
2544     // Notice properties of the node.
2545     if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2546     if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2547     if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2548     if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2549 
2550     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2551       // If this is an intrinsic, analyze it.
2552       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2553         mayLoad = true;// These may load memory.
2554 
2555       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2556         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2557 
2558       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2559         // WriteMem intrinsics can have other strange effects.
2560         hasSideEffects = true;
2561     }
2562   }
2563 
2564 };
2565 
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2566 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2567                              const InstAnalyzer &PatInfo,
2568                              Record *PatDef) {
2569   bool Error = false;
2570 
2571   // Remember where InstInfo got its flags.
2572   if (InstInfo.hasUndefFlags())
2573       InstInfo.InferredFrom = PatDef;
2574 
2575   // Check explicitly set flags for consistency.
2576   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2577       !InstInfo.hasSideEffects_Unset) {
2578     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2579     // the pattern has no side effects. That could be useful for div/rem
2580     // instructions that may trap.
2581     if (!InstInfo.hasSideEffects) {
2582       Error = true;
2583       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2584                  Twine(InstInfo.hasSideEffects));
2585     }
2586   }
2587 
2588   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2589     Error = true;
2590     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2591                Twine(InstInfo.mayStore));
2592   }
2593 
2594   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2595     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2596     // Some targets translate imediates to loads.
2597     if (!InstInfo.mayLoad) {
2598       Error = true;
2599       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2600                  Twine(InstInfo.mayLoad));
2601     }
2602   }
2603 
2604   // Transfer inferred flags.
2605   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2606   InstInfo.mayStore |= PatInfo.mayStore;
2607   InstInfo.mayLoad |= PatInfo.mayLoad;
2608 
2609   // These flags are silently added without any verification.
2610   InstInfo.isBitcast |= PatInfo.isBitcast;
2611 
2612   // Don't infer isVariadic. This flag means something different on SDNodes and
2613   // instructions. For example, a CALL SDNode is variadic because it has the
2614   // call arguments as operands, but a CALL instruction is not variadic - it
2615   // has argument registers as implicit, not explicit uses.
2616 
2617   return Error;
2618 }
2619 
2620 /// hasNullFragReference - Return true if the DAG has any reference to the
2621 /// null_frag operator.
hasNullFragReference(DagInit * DI)2622 static bool hasNullFragReference(DagInit *DI) {
2623   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2624   if (!OpDef) return false;
2625   Record *Operator = OpDef->getDef();
2626 
2627   // If this is the null fragment, return true.
2628   if (Operator->getName() == "null_frag") return true;
2629   // If any of the arguments reference the null fragment, return true.
2630   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2631     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2632     if (Arg && hasNullFragReference(Arg))
2633       return true;
2634   }
2635 
2636   return false;
2637 }
2638 
2639 /// hasNullFragReference - Return true if any DAG in the list references
2640 /// the null_frag operator.
hasNullFragReference(ListInit * LI)2641 static bool hasNullFragReference(ListInit *LI) {
2642   for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2643     DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2644     assert(DI && "non-dag in an instruction Pattern list?!");
2645     if (hasNullFragReference(DI))
2646       return true;
2647   }
2648   return false;
2649 }
2650 
2651 /// Get all the instructions in a tree.
2652 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2653 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2654   if (Tree->isLeaf())
2655     return;
2656   if (Tree->getOperator()->isSubClassOf("Instruction"))
2657     Instrs.push_back(Tree->getOperator());
2658   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2659     getInstructionsInTree(Tree->getChild(i), Instrs);
2660 }
2661 
2662 /// Check the class of a pattern leaf node against the instruction operand it
2663 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)2664 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2665                               Record *Leaf) {
2666   if (OI.Rec == Leaf)
2667     return true;
2668 
2669   // Allow direct value types to be used in instruction set patterns.
2670   // The type will be checked later.
2671   if (Leaf->isSubClassOf("ValueType"))
2672     return true;
2673 
2674   // Patterns can also be ComplexPattern instances.
2675   if (Leaf->isSubClassOf("ComplexPattern"))
2676     return true;
2677 
2678   return false;
2679 }
2680 
2681 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2682 /// any fragments involved.  This populates the Instructions list with fully
2683 /// resolved instructions.
ParseInstructions()2684 void CodeGenDAGPatterns::ParseInstructions() {
2685   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2686 
2687   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2688     ListInit *LI = 0;
2689 
2690     if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2691       LI = Instrs[i]->getValueAsListInit("Pattern");
2692 
2693     // If there is no pattern, only collect minimal information about the
2694     // instruction for its operand list.  We have to assume that there is one
2695     // result, as we have no detailed info. A pattern which references the
2696     // null_frag operator is as-if no pattern were specified. Normally this
2697     // is from a multiclass expansion w/ a SDPatternOperator passed in as
2698     // null_frag.
2699     if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2700       std::vector<Record*> Results;
2701       std::vector<Record*> Operands;
2702 
2703       CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2704 
2705       if (InstInfo.Operands.size() != 0) {
2706         if (InstInfo.Operands.NumDefs == 0) {
2707           // These produce no results
2708           for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2709             Operands.push_back(InstInfo.Operands[j].Rec);
2710         } else {
2711           // Assume the first operand is the result.
2712           Results.push_back(InstInfo.Operands[0].Rec);
2713 
2714           // The rest are inputs.
2715           for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2716             Operands.push_back(InstInfo.Operands[j].Rec);
2717         }
2718       }
2719 
2720       // Create and insert the instruction.
2721       std::vector<Record*> ImpResults;
2722       Instructions.insert(std::make_pair(Instrs[i],
2723                           DAGInstruction(0, Results, Operands, ImpResults)));
2724       continue;  // no pattern.
2725     }
2726 
2727     // Parse the instruction.
2728     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2729     // Inline pattern fragments into it.
2730     I->InlinePatternFragments();
2731 
2732     // Infer as many types as possible.  If we cannot infer all of them, we can
2733     // never do anything with this instruction pattern: report it to the user.
2734     if (!I->InferAllTypes())
2735       I->error("Could not infer all types in pattern!");
2736 
2737     // InstInputs - Keep track of all of the inputs of the instruction, along
2738     // with the record they are declared as.
2739     std::map<std::string, TreePatternNode*> InstInputs;
2740 
2741     // InstResults - Keep track of all the virtual registers that are 'set'
2742     // in the instruction, including what reg class they are.
2743     std::map<std::string, TreePatternNode*> InstResults;
2744 
2745     std::vector<Record*> InstImpResults;
2746 
2747     // Verify that the top-level forms in the instruction are of void type, and
2748     // fill in the InstResults map.
2749     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2750       TreePatternNode *Pat = I->getTree(j);
2751       if (Pat->getNumTypes() != 0)
2752         I->error("Top-level forms in instruction pattern should have"
2753                  " void types");
2754 
2755       // Find inputs and outputs, and verify the structure of the uses/defs.
2756       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2757                                   InstImpResults);
2758     }
2759 
2760     // Now that we have inputs and outputs of the pattern, inspect the operands
2761     // list for the instruction.  This determines the order that operands are
2762     // added to the machine instruction the node corresponds to.
2763     unsigned NumResults = InstResults.size();
2764 
2765     // Parse the operands list from the (ops) list, validating it.
2766     assert(I->getArgList().empty() && "Args list should still be empty here!");
2767     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2768 
2769     // Check that all of the results occur first in the list.
2770     std::vector<Record*> Results;
2771     TreePatternNode *Res0Node = 0;
2772     for (unsigned i = 0; i != NumResults; ++i) {
2773       if (i == CGI.Operands.size())
2774         I->error("'" + InstResults.begin()->first +
2775                  "' set but does not appear in operand list!");
2776       const std::string &OpName = CGI.Operands[i].Name;
2777 
2778       // Check that it exists in InstResults.
2779       TreePatternNode *RNode = InstResults[OpName];
2780       if (RNode == 0)
2781         I->error("Operand $" + OpName + " does not exist in operand list!");
2782 
2783       if (i == 0)
2784         Res0Node = RNode;
2785       Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2786       if (R == 0)
2787         I->error("Operand $" + OpName + " should be a set destination: all "
2788                  "outputs must occur before inputs in operand list!");
2789 
2790       if (!checkOperandClass(CGI.Operands[i], R))
2791         I->error("Operand $" + OpName + " class mismatch!");
2792 
2793       // Remember the return type.
2794       Results.push_back(CGI.Operands[i].Rec);
2795 
2796       // Okay, this one checks out.
2797       InstResults.erase(OpName);
2798     }
2799 
2800     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2801     // the copy while we're checking the inputs.
2802     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2803 
2804     std::vector<TreePatternNode*> ResultNodeOperands;
2805     std::vector<Record*> Operands;
2806     for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2807       CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2808       const std::string &OpName = Op.Name;
2809       if (OpName.empty())
2810         I->error("Operand #" + utostr(i) + " in operands list has no name!");
2811 
2812       if (!InstInputsCheck.count(OpName)) {
2813         // If this is an operand with a DefaultOps set filled in, we can ignore
2814         // this.  When we codegen it, we will do so as always executed.
2815         if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2816           // Does it have a non-empty DefaultOps field?  If so, ignore this
2817           // operand.
2818           if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2819             continue;
2820         }
2821         I->error("Operand $" + OpName +
2822                  " does not appear in the instruction pattern");
2823       }
2824       TreePatternNode *InVal = InstInputsCheck[OpName];
2825       InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2826 
2827       if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2828         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2829         if (!checkOperandClass(Op, InRec))
2830           I->error("Operand $" + OpName + "'s register class disagrees"
2831                    " between the operand and pattern");
2832       }
2833       Operands.push_back(Op.Rec);
2834 
2835       // Construct the result for the dest-pattern operand list.
2836       TreePatternNode *OpNode = InVal->clone();
2837 
2838       // No predicate is useful on the result.
2839       OpNode->clearPredicateFns();
2840 
2841       // Promote the xform function to be an explicit node if set.
2842       if (Record *Xform = OpNode->getTransformFn()) {
2843         OpNode->setTransformFn(0);
2844         std::vector<TreePatternNode*> Children;
2845         Children.push_back(OpNode);
2846         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2847       }
2848 
2849       ResultNodeOperands.push_back(OpNode);
2850     }
2851 
2852     if (!InstInputsCheck.empty())
2853       I->error("Input operand $" + InstInputsCheck.begin()->first +
2854                " occurs in pattern but not in operands list!");
2855 
2856     TreePatternNode *ResultPattern =
2857       new TreePatternNode(I->getRecord(), ResultNodeOperands,
2858                           GetNumNodeResults(I->getRecord(), *this));
2859     // Copy fully inferred output node type to instruction result pattern.
2860     for (unsigned i = 0; i != NumResults; ++i)
2861       ResultPattern->setType(i, Res0Node->getExtType(i));
2862 
2863     // Create and insert the instruction.
2864     // FIXME: InstImpResults should not be part of DAGInstruction.
2865     DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2866     Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2867 
2868     // Use a temporary tree pattern to infer all types and make sure that the
2869     // constructed result is correct.  This depends on the instruction already
2870     // being inserted into the Instructions map.
2871     TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2872     Temp.InferAllTypes(&I->getNamedNodesMap());
2873 
2874     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2875     TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2876 
2877     DEBUG(I->dump());
2878   }
2879 
2880   // If we can, convert the instructions to be patterns that are matched!
2881   for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2882         Instructions.begin(),
2883        E = Instructions.end(); II != E; ++II) {
2884     DAGInstruction &TheInst = II->second;
2885     TreePattern *I = TheInst.getPattern();
2886     if (I == 0) continue;  // No pattern.
2887 
2888     // FIXME: Assume only the first tree is the pattern. The others are clobber
2889     // nodes.
2890     TreePatternNode *Pattern = I->getTree(0);
2891     TreePatternNode *SrcPattern;
2892     if (Pattern->getOperator()->getName() == "set") {
2893       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2894     } else{
2895       // Not a set (store or something?)
2896       SrcPattern = Pattern;
2897     }
2898 
2899     Record *Instr = II->first;
2900     AddPatternToMatch(I,
2901                       PatternToMatch(Instr,
2902                                      Instr->getValueAsListInit("Predicates"),
2903                                      SrcPattern,
2904                                      TheInst.getResultPattern(),
2905                                      TheInst.getImpResults(),
2906                                      Instr->getValueAsInt("AddedComplexity"),
2907                                      Instr->getID()));
2908   }
2909 }
2910 
2911 
2912 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2913 
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)2914 static void FindNames(const TreePatternNode *P,
2915                       std::map<std::string, NameRecord> &Names,
2916                       TreePattern *PatternTop) {
2917   if (!P->getName().empty()) {
2918     NameRecord &Rec = Names[P->getName()];
2919     // If this is the first instance of the name, remember the node.
2920     if (Rec.second++ == 0)
2921       Rec.first = P;
2922     else if (Rec.first->getExtTypes() != P->getExtTypes())
2923       PatternTop->error("repetition of value: $" + P->getName() +
2924                         " where different uses have different types!");
2925   }
2926 
2927   if (!P->isLeaf()) {
2928     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2929       FindNames(P->getChild(i), Names, PatternTop);
2930   }
2931 }
2932 
AddPatternToMatch(TreePattern * Pattern,const PatternToMatch & PTM)2933 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
2934                                            const PatternToMatch &PTM) {
2935   // Do some sanity checking on the pattern we're about to match.
2936   std::string Reason;
2937   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2938     PrintWarning(Pattern->getRecord()->getLoc(),
2939       Twine("Pattern can never match: ") + Reason);
2940     return;
2941   }
2942 
2943   // If the source pattern's root is a complex pattern, that complex pattern
2944   // must specify the nodes it can potentially match.
2945   if (const ComplexPattern *CP =
2946         PTM.getSrcPattern()->getComplexPatternInfo(*this))
2947     if (CP->getRootNodes().empty())
2948       Pattern->error("ComplexPattern at root must specify list of opcodes it"
2949                      " could match");
2950 
2951 
2952   // Find all of the named values in the input and output, ensure they have the
2953   // same type.
2954   std::map<std::string, NameRecord> SrcNames, DstNames;
2955   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2956   FindNames(PTM.getDstPattern(), DstNames, Pattern);
2957 
2958   // Scan all of the named values in the destination pattern, rejecting them if
2959   // they don't exist in the input pattern.
2960   for (std::map<std::string, NameRecord>::iterator
2961        I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2962     if (SrcNames[I->first].first == 0)
2963       Pattern->error("Pattern has input without matching name in output: $" +
2964                      I->first);
2965   }
2966 
2967   // Scan all of the named values in the source pattern, rejecting them if the
2968   // name isn't used in the dest, and isn't used to tie two values together.
2969   for (std::map<std::string, NameRecord>::iterator
2970        I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2971     if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2972       Pattern->error("Pattern has dead named input: $" + I->first);
2973 
2974   PatternsToMatch.push_back(PTM);
2975 }
2976 
2977 
2978 
InferInstructionFlags()2979 void CodeGenDAGPatterns::InferInstructionFlags() {
2980   const std::vector<const CodeGenInstruction*> &Instructions =
2981     Target.getInstructionsByEnumValue();
2982 
2983   // First try to infer flags from the primary instruction pattern, if any.
2984   SmallVector<CodeGenInstruction*, 8> Revisit;
2985   unsigned Errors = 0;
2986   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2987     CodeGenInstruction &InstInfo =
2988       const_cast<CodeGenInstruction &>(*Instructions[i]);
2989 
2990     // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2991     // This flag is obsolete and will be removed.
2992     if (InstInfo.neverHasSideEffects) {
2993       assert(!InstInfo.hasSideEffects);
2994       InstInfo.hasSideEffects_Unset = false;
2995     }
2996 
2997     // Get the primary instruction pattern.
2998     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2999     if (!Pattern) {
3000       if (InstInfo.hasUndefFlags())
3001         Revisit.push_back(&InstInfo);
3002       continue;
3003     }
3004     InstAnalyzer PatInfo(*this);
3005     PatInfo.Analyze(Pattern);
3006     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3007   }
3008 
3009   // Second, look for single-instruction patterns defined outside the
3010   // instruction.
3011   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3012     const PatternToMatch &PTM = *I;
3013 
3014     // We can only infer from single-instruction patterns, otherwise we won't
3015     // know which instruction should get the flags.
3016     SmallVector<Record*, 8> PatInstrs;
3017     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3018     if (PatInstrs.size() != 1)
3019       continue;
3020 
3021     // Get the single instruction.
3022     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3023 
3024     // Only infer properties from the first pattern. We'll verify the others.
3025     if (InstInfo.InferredFrom)
3026       continue;
3027 
3028     InstAnalyzer PatInfo(*this);
3029     PatInfo.Analyze(&PTM);
3030     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3031   }
3032 
3033   if (Errors)
3034     PrintFatalError("pattern conflicts");
3035 
3036   // Revisit instructions with undefined flags and no pattern.
3037   if (Target.guessInstructionProperties()) {
3038     for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3039       CodeGenInstruction &InstInfo = *Revisit[i];
3040       if (InstInfo.InferredFrom)
3041         continue;
3042       // The mayLoad and mayStore flags default to false.
3043       // Conservatively assume hasSideEffects if it wasn't explicit.
3044       if (InstInfo.hasSideEffects_Unset)
3045         InstInfo.hasSideEffects = true;
3046     }
3047     return;
3048   }
3049 
3050   // Complain about any flags that are still undefined.
3051   for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3052     CodeGenInstruction &InstInfo = *Revisit[i];
3053     if (InstInfo.InferredFrom)
3054       continue;
3055     if (InstInfo.hasSideEffects_Unset)
3056       PrintError(InstInfo.TheDef->getLoc(),
3057                  "Can't infer hasSideEffects from patterns");
3058     if (InstInfo.mayStore_Unset)
3059       PrintError(InstInfo.TheDef->getLoc(),
3060                  "Can't infer mayStore from patterns");
3061     if (InstInfo.mayLoad_Unset)
3062       PrintError(InstInfo.TheDef->getLoc(),
3063                  "Can't infer mayLoad from patterns");
3064   }
3065 }
3066 
3067 
3068 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3069 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3070   unsigned Errors = 0;
3071   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3072     const PatternToMatch &PTM = *I;
3073     SmallVector<Record*, 8> Instrs;
3074     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3075     if (Instrs.empty())
3076       continue;
3077 
3078     // Count the number of instructions with each flag set.
3079     unsigned NumSideEffects = 0;
3080     unsigned NumStores = 0;
3081     unsigned NumLoads = 0;
3082     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3083       const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3084       NumSideEffects += InstInfo.hasSideEffects;
3085       NumStores += InstInfo.mayStore;
3086       NumLoads += InstInfo.mayLoad;
3087     }
3088 
3089     // Analyze the source pattern.
3090     InstAnalyzer PatInfo(*this);
3091     PatInfo.Analyze(&PTM);
3092 
3093     // Collect error messages.
3094     SmallVector<std::string, 4> Msgs;
3095 
3096     // Check for missing flags in the output.
3097     // Permit extra flags for now at least.
3098     if (PatInfo.hasSideEffects && !NumSideEffects)
3099       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3100 
3101     // Don't verify store flags on instructions with side effects. At least for
3102     // intrinsics, side effects implies mayStore.
3103     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3104       Msgs.push_back("pattern may store, but mayStore isn't set");
3105 
3106     // Similarly, mayStore implies mayLoad on intrinsics.
3107     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3108       Msgs.push_back("pattern may load, but mayLoad isn't set");
3109 
3110     // Print error messages.
3111     if (Msgs.empty())
3112       continue;
3113     ++Errors;
3114 
3115     for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3116       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3117                  (Instrs.size() == 1 ?
3118                   "instruction" : "output instructions"));
3119     // Provide the location of the relevant instruction definitions.
3120     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3121       if (Instrs[i] != PTM.getSrcRecord())
3122         PrintError(Instrs[i]->getLoc(), "defined here");
3123       const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3124       if (InstInfo.InferredFrom &&
3125           InstInfo.InferredFrom != InstInfo.TheDef &&
3126           InstInfo.InferredFrom != PTM.getSrcRecord())
3127         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3128     }
3129   }
3130   if (Errors)
3131     PrintFatalError("Errors in DAG patterns");
3132 }
3133 
3134 /// Given a pattern result with an unresolved type, see if we can find one
3135 /// instruction with an unresolved result type.  Force this result type to an
3136 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3137 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3138   if (N->isLeaf())
3139     return false;
3140 
3141   // Analyze children.
3142   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3143     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3144       return true;
3145 
3146   if (!N->getOperator()->isSubClassOf("Instruction"))
3147     return false;
3148 
3149   // If this type is already concrete or completely unknown we can't do
3150   // anything.
3151   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3152     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3153       continue;
3154 
3155     // Otherwise, force its type to the first possibility (an arbitrary choice).
3156     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3157       return true;
3158   }
3159 
3160   return false;
3161 }
3162 
ParsePatterns()3163 void CodeGenDAGPatterns::ParsePatterns() {
3164   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3165 
3166   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3167     Record *CurPattern = Patterns[i];
3168     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3169 
3170     // If the pattern references the null_frag, there's nothing to do.
3171     if (hasNullFragReference(Tree))
3172       continue;
3173 
3174     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3175 
3176     // Inline pattern fragments into it.
3177     Pattern->InlinePatternFragments();
3178 
3179     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3180     if (LI->getSize() == 0) continue;  // no pattern.
3181 
3182     // Parse the instruction.
3183     TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3184 
3185     // Inline pattern fragments into it.
3186     Result->InlinePatternFragments();
3187 
3188     if (Result->getNumTrees() != 1)
3189       Result->error("Cannot handle instructions producing instructions "
3190                     "with temporaries yet!");
3191 
3192     bool IterateInference;
3193     bool InferredAllPatternTypes, InferredAllResultTypes;
3194     do {
3195       // Infer as many types as possible.  If we cannot infer all of them, we
3196       // can never do anything with this pattern: report it to the user.
3197       InferredAllPatternTypes =
3198         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3199 
3200       // Infer as many types as possible.  If we cannot infer all of them, we
3201       // can never do anything with this pattern: report it to the user.
3202       InferredAllResultTypes =
3203         Result->InferAllTypes(&Pattern->getNamedNodesMap());
3204 
3205       IterateInference = false;
3206 
3207       // Apply the type of the result to the source pattern.  This helps us
3208       // resolve cases where the input type is known to be a pointer type (which
3209       // is considered resolved), but the result knows it needs to be 32- or
3210       // 64-bits.  Infer the other way for good measure.
3211       for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3212                                         Pattern->getTree(0)->getNumTypes());
3213            i != e; ++i) {
3214         IterateInference = Pattern->getTree(0)->
3215           UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3216         IterateInference |= Result->getTree(0)->
3217           UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3218       }
3219 
3220       // If our iteration has converged and the input pattern's types are fully
3221       // resolved but the result pattern is not fully resolved, we may have a
3222       // situation where we have two instructions in the result pattern and
3223       // the instructions require a common register class, but don't care about
3224       // what actual MVT is used.  This is actually a bug in our modelling:
3225       // output patterns should have register classes, not MVTs.
3226       //
3227       // In any case, to handle this, we just go through and disambiguate some
3228       // arbitrary types to the result pattern's nodes.
3229       if (!IterateInference && InferredAllPatternTypes &&
3230           !InferredAllResultTypes)
3231         IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3232                                                         *Result);
3233     } while (IterateInference);
3234 
3235     // Verify that we inferred enough types that we can do something with the
3236     // pattern and result.  If these fire the user has to add type casts.
3237     if (!InferredAllPatternTypes)
3238       Pattern->error("Could not infer all types in pattern!");
3239     if (!InferredAllResultTypes) {
3240       Pattern->dump();
3241       Result->error("Could not infer all types in pattern result!");
3242     }
3243 
3244     // Validate that the input pattern is correct.
3245     std::map<std::string, TreePatternNode*> InstInputs;
3246     std::map<std::string, TreePatternNode*> InstResults;
3247     std::vector<Record*> InstImpResults;
3248     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3249       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3250                                   InstInputs, InstResults,
3251                                   InstImpResults);
3252 
3253     // Promote the xform function to be an explicit node if set.
3254     TreePatternNode *DstPattern = Result->getOnlyTree();
3255     std::vector<TreePatternNode*> ResultNodeOperands;
3256     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3257       TreePatternNode *OpNode = DstPattern->getChild(ii);
3258       if (Record *Xform = OpNode->getTransformFn()) {
3259         OpNode->setTransformFn(0);
3260         std::vector<TreePatternNode*> Children;
3261         Children.push_back(OpNode);
3262         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3263       }
3264       ResultNodeOperands.push_back(OpNode);
3265     }
3266     DstPattern = Result->getOnlyTree();
3267     if (!DstPattern->isLeaf())
3268       DstPattern = new TreePatternNode(DstPattern->getOperator(),
3269                                        ResultNodeOperands,
3270                                        DstPattern->getNumTypes());
3271 
3272     for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3273       DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3274 
3275     TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3276     Temp.InferAllTypes();
3277 
3278 
3279     AddPatternToMatch(Pattern,
3280                     PatternToMatch(CurPattern,
3281                                    CurPattern->getValueAsListInit("Predicates"),
3282                                    Pattern->getTree(0),
3283                                    Temp.getOnlyTree(), InstImpResults,
3284                                    CurPattern->getValueAsInt("AddedComplexity"),
3285                                    CurPattern->getID()));
3286   }
3287 }
3288 
3289 /// CombineChildVariants - Given a bunch of permutations of each child of the
3290 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3291 static void CombineChildVariants(TreePatternNode *Orig,
3292                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3293                                  std::vector<TreePatternNode*> &OutVariants,
3294                                  CodeGenDAGPatterns &CDP,
3295                                  const MultipleUseVarSet &DepVars) {
3296   // Make sure that each operand has at least one variant to choose from.
3297   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3298     if (ChildVariants[i].empty())
3299       return;
3300 
3301   // The end result is an all-pairs construction of the resultant pattern.
3302   std::vector<unsigned> Idxs;
3303   Idxs.resize(ChildVariants.size());
3304   bool NotDone;
3305   do {
3306 #ifndef NDEBUG
3307     DEBUG(if (!Idxs.empty()) {
3308             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3309               for (unsigned i = 0; i < Idxs.size(); ++i) {
3310                 errs() << Idxs[i] << " ";
3311             }
3312             errs() << "]\n";
3313           });
3314 #endif
3315     // Create the variant and add it to the output list.
3316     std::vector<TreePatternNode*> NewChildren;
3317     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3318       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3319     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3320                                              Orig->getNumTypes());
3321 
3322     // Copy over properties.
3323     R->setName(Orig->getName());
3324     R->setPredicateFns(Orig->getPredicateFns());
3325     R->setTransformFn(Orig->getTransformFn());
3326     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3327       R->setType(i, Orig->getExtType(i));
3328 
3329     // If this pattern cannot match, do not include it as a variant.
3330     std::string ErrString;
3331     if (!R->canPatternMatch(ErrString, CDP)) {
3332       delete R;
3333     } else {
3334       bool AlreadyExists = false;
3335 
3336       // Scan to see if this pattern has already been emitted.  We can get
3337       // duplication due to things like commuting:
3338       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3339       // which are the same pattern.  Ignore the dups.
3340       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3341         if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3342           AlreadyExists = true;
3343           break;
3344         }
3345 
3346       if (AlreadyExists)
3347         delete R;
3348       else
3349         OutVariants.push_back(R);
3350     }
3351 
3352     // Increment indices to the next permutation by incrementing the
3353     // indicies from last index backward, e.g., generate the sequence
3354     // [0, 0], [0, 1], [1, 0], [1, 1].
3355     int IdxsIdx;
3356     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3357       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3358         Idxs[IdxsIdx] = 0;
3359       else
3360         break;
3361     }
3362     NotDone = (IdxsIdx >= 0);
3363   } while (NotDone);
3364 }
3365 
3366 /// CombineChildVariants - A helper function for binary operators.
3367 ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3368 static void CombineChildVariants(TreePatternNode *Orig,
3369                                  const std::vector<TreePatternNode*> &LHS,
3370                                  const std::vector<TreePatternNode*> &RHS,
3371                                  std::vector<TreePatternNode*> &OutVariants,
3372                                  CodeGenDAGPatterns &CDP,
3373                                  const MultipleUseVarSet &DepVars) {
3374   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3375   ChildVariants.push_back(LHS);
3376   ChildVariants.push_back(RHS);
3377   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3378 }
3379 
3380 
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3381 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3382                                      std::vector<TreePatternNode *> &Children) {
3383   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3384   Record *Operator = N->getOperator();
3385 
3386   // Only permit raw nodes.
3387   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3388       N->getTransformFn()) {
3389     Children.push_back(N);
3390     return;
3391   }
3392 
3393   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3394     Children.push_back(N->getChild(0));
3395   else
3396     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3397 
3398   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3399     Children.push_back(N->getChild(1));
3400   else
3401     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3402 }
3403 
3404 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3405 /// the (potentially recursive) pattern by using algebraic laws.
3406 ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3407 static void GenerateVariantsOf(TreePatternNode *N,
3408                                std::vector<TreePatternNode*> &OutVariants,
3409                                CodeGenDAGPatterns &CDP,
3410                                const MultipleUseVarSet &DepVars) {
3411   // We cannot permute leaves.
3412   if (N->isLeaf()) {
3413     OutVariants.push_back(N);
3414     return;
3415   }
3416 
3417   // Look up interesting info about the node.
3418   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3419 
3420   // If this node is associative, re-associate.
3421   if (NodeInfo.hasProperty(SDNPAssociative)) {
3422     // Re-associate by pulling together all of the linked operators
3423     std::vector<TreePatternNode*> MaximalChildren;
3424     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3425 
3426     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3427     // permutations.
3428     if (MaximalChildren.size() == 3) {
3429       // Find the variants of all of our maximal children.
3430       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3431       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3432       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3433       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3434 
3435       // There are only two ways we can permute the tree:
3436       //   (A op B) op C    and    A op (B op C)
3437       // Within these forms, we can also permute A/B/C.
3438 
3439       // Generate legal pair permutations of A/B/C.
3440       std::vector<TreePatternNode*> ABVariants;
3441       std::vector<TreePatternNode*> BAVariants;
3442       std::vector<TreePatternNode*> ACVariants;
3443       std::vector<TreePatternNode*> CAVariants;
3444       std::vector<TreePatternNode*> BCVariants;
3445       std::vector<TreePatternNode*> CBVariants;
3446       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3447       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3448       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3449       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3450       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3451       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3452 
3453       // Combine those into the result: (x op x) op x
3454       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3455       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3456       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3457       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3458       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3459       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3460 
3461       // Combine those into the result: x op (x op x)
3462       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3463       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3464       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3465       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3466       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3467       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3468       return;
3469     }
3470   }
3471 
3472   // Compute permutations of all children.
3473   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3474   ChildVariants.resize(N->getNumChildren());
3475   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3476     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3477 
3478   // Build all permutations based on how the children were formed.
3479   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3480 
3481   // If this node is commutative, consider the commuted order.
3482   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3483   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3484     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3485            "Commutative but doesn't have 2 children!");
3486     // Don't count children which are actually register references.
3487     unsigned NC = 0;
3488     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3489       TreePatternNode *Child = N->getChild(i);
3490       if (Child->isLeaf())
3491         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3492           Record *RR = DI->getDef();
3493           if (RR->isSubClassOf("Register"))
3494             continue;
3495         }
3496       NC++;
3497     }
3498     // Consider the commuted order.
3499     if (isCommIntrinsic) {
3500       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3501       // operands are the commutative operands, and there might be more operands
3502       // after those.
3503       assert(NC >= 3 &&
3504              "Commutative intrinsic should have at least 3 childrean!");
3505       std::vector<std::vector<TreePatternNode*> > Variants;
3506       Variants.push_back(ChildVariants[0]); // Intrinsic id.
3507       Variants.push_back(ChildVariants[2]);
3508       Variants.push_back(ChildVariants[1]);
3509       for (unsigned i = 3; i != NC; ++i)
3510         Variants.push_back(ChildVariants[i]);
3511       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3512     } else if (NC == 2)
3513       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3514                            OutVariants, CDP, DepVars);
3515   }
3516 }
3517 
3518 
3519 // GenerateVariants - Generate variants.  For example, commutative patterns can
3520 // match multiple ways.  Add them to PatternsToMatch as well.
GenerateVariants()3521 void CodeGenDAGPatterns::GenerateVariants() {
3522   DEBUG(errs() << "Generating instruction variants.\n");
3523 
3524   // Loop over all of the patterns we've collected, checking to see if we can
3525   // generate variants of the instruction, through the exploitation of
3526   // identities.  This permits the target to provide aggressive matching without
3527   // the .td file having to contain tons of variants of instructions.
3528   //
3529   // Note that this loop adds new patterns to the PatternsToMatch list, but we
3530   // intentionally do not reconsider these.  Any variants of added patterns have
3531   // already been added.
3532   //
3533   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3534     MultipleUseVarSet             DepVars;
3535     std::vector<TreePatternNode*> Variants;
3536     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3537     DEBUG(errs() << "Dependent/multiply used variables: ");
3538     DEBUG(DumpDepVars(DepVars));
3539     DEBUG(errs() << "\n");
3540     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3541                        DepVars);
3542 
3543     assert(!Variants.empty() && "Must create at least original variant!");
3544     Variants.erase(Variants.begin());  // Remove the original pattern.
3545 
3546     if (Variants.empty())  // No variants for this pattern.
3547       continue;
3548 
3549     DEBUG(errs() << "FOUND VARIANTS OF: ";
3550           PatternsToMatch[i].getSrcPattern()->dump();
3551           errs() << "\n");
3552 
3553     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3554       TreePatternNode *Variant = Variants[v];
3555 
3556       DEBUG(errs() << "  VAR#" << v <<  ": ";
3557             Variant->dump();
3558             errs() << "\n");
3559 
3560       // Scan to see if an instruction or explicit pattern already matches this.
3561       bool AlreadyExists = false;
3562       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3563         // Skip if the top level predicates do not match.
3564         if (PatternsToMatch[i].getPredicates() !=
3565             PatternsToMatch[p].getPredicates())
3566           continue;
3567         // Check to see if this variant already exists.
3568         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3569                                     DepVars)) {
3570           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3571           AlreadyExists = true;
3572           break;
3573         }
3574       }
3575       // If we already have it, ignore the variant.
3576       if (AlreadyExists) continue;
3577 
3578       // Otherwise, add it to the list of patterns we have.
3579       PatternsToMatch.
3580         push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3581                                  PatternsToMatch[i].getPredicates(),
3582                                  Variant, PatternsToMatch[i].getDstPattern(),
3583                                  PatternsToMatch[i].getDstRegs(),
3584                                  PatternsToMatch[i].getAddedComplexity(),
3585                                  Record::getNewUID()));
3586     }
3587 
3588     DEBUG(errs() << "\n");
3589   }
3590 }
3591