• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "compiler_internals.h"
18 #include "local_value_numbering.h"
19 #include "dataflow_iterator-inl.h"
20 
21 namespace art {
22 
23 /*
24  * Main table containing data flow attributes for each bytecode. The
25  * first kNumPackedOpcodes entries are for Dalvik bytecode
26  * instructions, where extended opcode at the MIR level are appended
27  * afterwards.
28  *
29  * TODO - many optimization flags are incomplete - they will only limit the
30  * scope of optimizations but will not cause mis-optimizations.
31  */
32 const int MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
33   // 00 NOP
34   DF_NOP,
35 
36   // 01 MOVE vA, vB
37   DF_DA | DF_UB | DF_IS_MOVE,
38 
39   // 02 MOVE_FROM16 vAA, vBBBB
40   DF_DA | DF_UB | DF_IS_MOVE,
41 
42   // 03 MOVE_16 vAAAA, vBBBB
43   DF_DA | DF_UB | DF_IS_MOVE,
44 
45   // 04 MOVE_WIDE vA, vB
46   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
47 
48   // 05 MOVE_WIDE_FROM16 vAA, vBBBB
49   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
50 
51   // 06 MOVE_WIDE_16 vAAAA, vBBBB
52   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
53 
54   // 07 MOVE_OBJECT vA, vB
55   DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
56 
57   // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
58   DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
59 
60   // 09 MOVE_OBJECT_16 vAAAA, vBBBB
61   DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
62 
63   // 0A MOVE_RESULT vAA
64   DF_DA,
65 
66   // 0B MOVE_RESULT_WIDE vAA
67   DF_DA | DF_A_WIDE,
68 
69   // 0C MOVE_RESULT_OBJECT vAA
70   DF_DA | DF_REF_A,
71 
72   // 0D MOVE_EXCEPTION vAA
73   DF_DA | DF_REF_A | DF_NON_NULL_DST,
74 
75   // 0E RETURN_VOID
76   DF_NOP,
77 
78   // 0F RETURN vAA
79   DF_UA,
80 
81   // 10 RETURN_WIDE vAA
82   DF_UA | DF_A_WIDE,
83 
84   // 11 RETURN_OBJECT vAA
85   DF_UA | DF_REF_A,
86 
87   // 12 CONST_4 vA, #+B
88   DF_DA | DF_SETS_CONST,
89 
90   // 13 CONST_16 vAA, #+BBBB
91   DF_DA | DF_SETS_CONST,
92 
93   // 14 CONST vAA, #+BBBBBBBB
94   DF_DA | DF_SETS_CONST,
95 
96   // 15 CONST_HIGH16 VAA, #+BBBB0000
97   DF_DA | DF_SETS_CONST,
98 
99   // 16 CONST_WIDE_16 vAA, #+BBBB
100   DF_DA | DF_A_WIDE | DF_SETS_CONST,
101 
102   // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
103   DF_DA | DF_A_WIDE | DF_SETS_CONST,
104 
105   // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
106   DF_DA | DF_A_WIDE | DF_SETS_CONST,
107 
108   // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
109   DF_DA | DF_A_WIDE | DF_SETS_CONST,
110 
111   // 1A CONST_STRING vAA, string@BBBB
112   DF_DA | DF_REF_A | DF_NON_NULL_DST,
113 
114   // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
115   DF_DA | DF_REF_A | DF_NON_NULL_DST,
116 
117   // 1C CONST_CLASS vAA, type@BBBB
118   DF_DA | DF_REF_A | DF_NON_NULL_DST,
119 
120   // 1D MONITOR_ENTER vAA
121   DF_UA | DF_NULL_CHK_0 | DF_REF_A,
122 
123   // 1E MONITOR_EXIT vAA
124   DF_UA | DF_NULL_CHK_0 | DF_REF_A,
125 
126   // 1F CHK_CAST vAA, type@BBBB
127   DF_UA | DF_REF_A | DF_UMS,
128 
129   // 20 INSTANCE_OF vA, vB, type@CCCC
130   DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
131 
132   // 21 ARRAY_LENGTH vA, vB
133   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
134 
135   // 22 NEW_INSTANCE vAA, type@BBBB
136   DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
137 
138   // 23 NEW_ARRAY vA, vB, type@CCCC
139   DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
140 
141   // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
142   DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
143 
144   // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
145   DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
146 
147   // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
148   DF_UA | DF_REF_A | DF_UMS,
149 
150   // 27 THROW vAA
151   DF_UA | DF_REF_A | DF_UMS,
152 
153   // 28 GOTO
154   DF_NOP,
155 
156   // 29 GOTO_16
157   DF_NOP,
158 
159   // 2A GOTO_32
160   DF_NOP,
161 
162   // 2B PACKED_SWITCH vAA, +BBBBBBBB
163   DF_UA,
164 
165   // 2C SPARSE_SWITCH vAA, +BBBBBBBB
166   DF_UA,
167 
168   // 2D CMPL_FLOAT vAA, vBB, vCC
169   DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
170 
171   // 2E CMPG_FLOAT vAA, vBB, vCC
172   DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
173 
174   // 2F CMPL_DOUBLE vAA, vBB, vCC
175   DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
176 
177   // 30 CMPG_DOUBLE vAA, vBB, vCC
178   DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
179 
180   // 31 CMP_LONG vAA, vBB, vCC
181   DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
182 
183   // 32 IF_EQ vA, vB, +CCCC
184   DF_UA | DF_UB,
185 
186   // 33 IF_NE vA, vB, +CCCC
187   DF_UA | DF_UB,
188 
189   // 34 IF_LT vA, vB, +CCCC
190   DF_UA | DF_UB,
191 
192   // 35 IF_GE vA, vB, +CCCC
193   DF_UA | DF_UB,
194 
195   // 36 IF_GT vA, vB, +CCCC
196   DF_UA | DF_UB,
197 
198   // 37 IF_LE vA, vB, +CCCC
199   DF_UA | DF_UB,
200 
201   // 38 IF_EQZ vAA, +BBBB
202   DF_UA,
203 
204   // 39 IF_NEZ vAA, +BBBB
205   DF_UA,
206 
207   // 3A IF_LTZ vAA, +BBBB
208   DF_UA,
209 
210   // 3B IF_GEZ vAA, +BBBB
211   DF_UA,
212 
213   // 3C IF_GTZ vAA, +BBBB
214   DF_UA,
215 
216   // 3D IF_LEZ vAA, +BBBB
217   DF_UA,
218 
219   // 3E UNUSED_3E
220   DF_NOP,
221 
222   // 3F UNUSED_3F
223   DF_NOP,
224 
225   // 40 UNUSED_40
226   DF_NOP,
227 
228   // 41 UNUSED_41
229   DF_NOP,
230 
231   // 42 UNUSED_42
232   DF_NOP,
233 
234   // 43 UNUSED_43
235   DF_NOP,
236 
237   // 44 AGET vAA, vBB, vCC
238   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
239 
240   // 45 AGET_WIDE vAA, vBB, vCC
241   DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
242 
243   // 46 AGET_OBJECT vAA, vBB, vCC
244   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C,
245 
246   // 47 AGET_BOOLEAN vAA, vBB, vCC
247   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
248 
249   // 48 AGET_BYTE vAA, vBB, vCC
250   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
251 
252   // 49 AGET_CHAR vAA, vBB, vCC
253   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
254 
255   // 4A AGET_SHORT vAA, vBB, vCC
256   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
257 
258   // 4B APUT vAA, vBB, vCC
259   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
260 
261   // 4C APUT_WIDE vAA, vBB, vCC
262   DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C,
263 
264   // 4D APUT_OBJECT vAA, vBB, vCC
265   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C,
266 
267   // 4E APUT_BOOLEAN vAA, vBB, vCC
268   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
269 
270   // 4F APUT_BYTE vAA, vBB, vCC
271   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
272 
273   // 50 APUT_CHAR vAA, vBB, vCC
274   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
275 
276   // 51 APUT_SHORT vAA, vBB, vCC
277   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
278 
279   // 52 IGET vA, vB, field@CCCC
280   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
281 
282   // 53 IGET_WIDE vA, vB, field@CCCC
283   DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
284 
285   // 54 IGET_OBJECT vA, vB, field@CCCC
286   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
287 
288   // 55 IGET_BOOLEAN vA, vB, field@CCCC
289   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
290 
291   // 56 IGET_BYTE vA, vB, field@CCCC
292   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
293 
294   // 57 IGET_CHAR vA, vB, field@CCCC
295   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
296 
297   // 58 IGET_SHORT vA, vB, field@CCCC
298   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
299 
300   // 59 IPUT vA, vB, field@CCCC
301   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
302 
303   // 5A IPUT_WIDE vA, vB, field@CCCC
304   DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
305 
306   // 5B IPUT_OBJECT vA, vB, field@CCCC
307   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
308 
309   // 5C IPUT_BOOLEAN vA, vB, field@CCCC
310   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
311 
312   // 5D IPUT_BYTE vA, vB, field@CCCC
313   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
314 
315   // 5E IPUT_CHAR vA, vB, field@CCCC
316   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
317 
318   // 5F IPUT_SHORT vA, vB, field@CCCC
319   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
320 
321   // 60 SGET vAA, field@BBBB
322   DF_DA | DF_UMS,
323 
324   // 61 SGET_WIDE vAA, field@BBBB
325   DF_DA | DF_A_WIDE | DF_UMS,
326 
327   // 62 SGET_OBJECT vAA, field@BBBB
328   DF_DA | DF_REF_A | DF_UMS,
329 
330   // 63 SGET_BOOLEAN vAA, field@BBBB
331   DF_DA | DF_UMS,
332 
333   // 64 SGET_BYTE vAA, field@BBBB
334   DF_DA | DF_UMS,
335 
336   // 65 SGET_CHAR vAA, field@BBBB
337   DF_DA | DF_UMS,
338 
339   // 66 SGET_SHORT vAA, field@BBBB
340   DF_DA | DF_UMS,
341 
342   // 67 SPUT vAA, field@BBBB
343   DF_UA | DF_UMS,
344 
345   // 68 SPUT_WIDE vAA, field@BBBB
346   DF_UA | DF_A_WIDE | DF_UMS,
347 
348   // 69 SPUT_OBJECT vAA, field@BBBB
349   DF_UA | DF_REF_A | DF_UMS,
350 
351   // 6A SPUT_BOOLEAN vAA, field@BBBB
352   DF_UA | DF_UMS,
353 
354   // 6B SPUT_BYTE vAA, field@BBBB
355   DF_UA | DF_UMS,
356 
357   // 6C SPUT_CHAR vAA, field@BBBB
358   DF_UA | DF_UMS,
359 
360   // 6D SPUT_SHORT vAA, field@BBBB
361   DF_UA | DF_UMS,
362 
363   // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
364   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
365 
366   // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
367   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
368 
369   // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
370   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
371 
372   // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
373   DF_FORMAT_35C | DF_UMS,
374 
375   // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
376   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
377 
378   // 73 UNUSED_73
379   DF_NOP,
380 
381   // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
382   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
383 
384   // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
385   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
386 
387   // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
388   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
389 
390   // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
391   DF_FORMAT_3RC | DF_UMS,
392 
393   // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
394   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
395 
396   // 79 UNUSED_79
397   DF_NOP,
398 
399   // 7A UNUSED_7A
400   DF_NOP,
401 
402   // 7B NEG_INT vA, vB
403   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
404 
405   // 7C NOT_INT vA, vB
406   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
407 
408   // 7D NEG_LONG vA, vB
409   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
410 
411   // 7E NOT_LONG vA, vB
412   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
413 
414   // 7F NEG_FLOAT vA, vB
415   DF_DA | DF_UB | DF_FP_A | DF_FP_B,
416 
417   // 80 NEG_DOUBLE vA, vB
418   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
419 
420   // 81 INT_TO_LONG vA, vB
421   DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
422 
423   // 82 INT_TO_FLOAT vA, vB
424   DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
425 
426   // 83 INT_TO_DOUBLE vA, vB
427   DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
428 
429   // 84 LONG_TO_INT vA, vB
430   DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
431 
432   // 85 LONG_TO_FLOAT vA, vB
433   DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
434 
435   // 86 LONG_TO_DOUBLE vA, vB
436   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
437 
438   // 87 FLOAT_TO_INT vA, vB
439   DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
440 
441   // 88 FLOAT_TO_LONG vA, vB
442   DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
443 
444   // 89 FLOAT_TO_DOUBLE vA, vB
445   DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
446 
447   // 8A DOUBLE_TO_INT vA, vB
448   DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
449 
450   // 8B DOUBLE_TO_LONG vA, vB
451   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
452 
453   // 8C DOUBLE_TO_FLOAT vA, vB
454   DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
455 
456   // 8D INT_TO_BYTE vA, vB
457   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
458 
459   // 8E INT_TO_CHAR vA, vB
460   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
461 
462   // 8F INT_TO_SHORT vA, vB
463   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
464 
465   // 90 ADD_INT vAA, vBB, vCC
466   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
467 
468   // 91 SUB_INT vAA, vBB, vCC
469   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
470 
471   // 92 MUL_INT vAA, vBB, vCC
472   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
473 
474   // 93 DIV_INT vAA, vBB, vCC
475   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
476 
477   // 94 REM_INT vAA, vBB, vCC
478   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
479 
480   // 95 AND_INT vAA, vBB, vCC
481   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
482 
483   // 96 OR_INT vAA, vBB, vCC
484   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
485 
486   // 97 XOR_INT vAA, vBB, vCC
487   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
488 
489   // 98 SHL_INT vAA, vBB, vCC
490   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
491 
492   // 99 SHR_INT vAA, vBB, vCC
493   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
494 
495   // 9A USHR_INT vAA, vBB, vCC
496   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
497 
498   // 9B ADD_LONG vAA, vBB, vCC
499   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
500 
501   // 9C SUB_LONG vAA, vBB, vCC
502   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
503 
504   // 9D MUL_LONG vAA, vBB, vCC
505   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
506 
507   // 9E DIV_LONG vAA, vBB, vCC
508   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
509 
510   // 9F REM_LONG vAA, vBB, vCC
511   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
512 
513   // A0 AND_LONG vAA, vBB, vCC
514   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
515 
516   // A1 OR_LONG vAA, vBB, vCC
517   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
518 
519   // A2 XOR_LONG vAA, vBB, vCC
520   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
521 
522   // A3 SHL_LONG vAA, vBB, vCC
523   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
524 
525   // A4 SHR_LONG vAA, vBB, vCC
526   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
527 
528   // A5 USHR_LONG vAA, vBB, vCC
529   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
530 
531   // A6 ADD_FLOAT vAA, vBB, vCC
532   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
533 
534   // A7 SUB_FLOAT vAA, vBB, vCC
535   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
536 
537   // A8 MUL_FLOAT vAA, vBB, vCC
538   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
539 
540   // A9 DIV_FLOAT vAA, vBB, vCC
541   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
542 
543   // AA REM_FLOAT vAA, vBB, vCC
544   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
545 
546   // AB ADD_DOUBLE vAA, vBB, vCC
547   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
548 
549   // AC SUB_DOUBLE vAA, vBB, vCC
550   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
551 
552   // AD MUL_DOUBLE vAA, vBB, vCC
553   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
554 
555   // AE DIV_DOUBLE vAA, vBB, vCC
556   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
557 
558   // AF REM_DOUBLE vAA, vBB, vCC
559   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
560 
561   // B0 ADD_INT_2ADDR vA, vB
562   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
563 
564   // B1 SUB_INT_2ADDR vA, vB
565   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
566 
567   // B2 MUL_INT_2ADDR vA, vB
568   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
569 
570   // B3 DIV_INT_2ADDR vA, vB
571   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
572 
573   // B4 REM_INT_2ADDR vA, vB
574   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
575 
576   // B5 AND_INT_2ADDR vA, vB
577   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
578 
579   // B6 OR_INT_2ADDR vA, vB
580   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
581 
582   // B7 XOR_INT_2ADDR vA, vB
583   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
584 
585   // B8 SHL_INT_2ADDR vA, vB
586   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
587 
588   // B9 SHR_INT_2ADDR vA, vB
589   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
590 
591   // BA USHR_INT_2ADDR vA, vB
592   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
593 
594   // BB ADD_LONG_2ADDR vA, vB
595   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
596 
597   // BC SUB_LONG_2ADDR vA, vB
598   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
599 
600   // BD MUL_LONG_2ADDR vA, vB
601   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
602 
603   // BE DIV_LONG_2ADDR vA, vB
604   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
605 
606   // BF REM_LONG_2ADDR vA, vB
607   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
608 
609   // C0 AND_LONG_2ADDR vA, vB
610   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
611 
612   // C1 OR_LONG_2ADDR vA, vB
613   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
614 
615   // C2 XOR_LONG_2ADDR vA, vB
616   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
617 
618   // C3 SHL_LONG_2ADDR vA, vB
619   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
620 
621   // C4 SHR_LONG_2ADDR vA, vB
622   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
623 
624   // C5 USHR_LONG_2ADDR vA, vB
625   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
626 
627   // C6 ADD_FLOAT_2ADDR vA, vB
628   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
629 
630   // C7 SUB_FLOAT_2ADDR vA, vB
631   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
632 
633   // C8 MUL_FLOAT_2ADDR vA, vB
634   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
635 
636   // C9 DIV_FLOAT_2ADDR vA, vB
637   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
638 
639   // CA REM_FLOAT_2ADDR vA, vB
640   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
641 
642   // CB ADD_DOUBLE_2ADDR vA, vB
643   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
644 
645   // CC SUB_DOUBLE_2ADDR vA, vB
646   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
647 
648   // CD MUL_DOUBLE_2ADDR vA, vB
649   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
650 
651   // CE DIV_DOUBLE_2ADDR vA, vB
652   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
653 
654   // CF REM_DOUBLE_2ADDR vA, vB
655   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
656 
657   // D0 ADD_INT_LIT16 vA, vB, #+CCCC
658   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
659 
660   // D1 RSUB_INT vA, vB, #+CCCC
661   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
662 
663   // D2 MUL_INT_LIT16 vA, vB, #+CCCC
664   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
665 
666   // D3 DIV_INT_LIT16 vA, vB, #+CCCC
667   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
668 
669   // D4 REM_INT_LIT16 vA, vB, #+CCCC
670   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
671 
672   // D5 AND_INT_LIT16 vA, vB, #+CCCC
673   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
674 
675   // D6 OR_INT_LIT16 vA, vB, #+CCCC
676   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
677 
678   // D7 XOR_INT_LIT16 vA, vB, #+CCCC
679   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
680 
681   // D8 ADD_INT_LIT8 vAA, vBB, #+CC
682   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
683 
684   // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
685   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
686 
687   // DA MUL_INT_LIT8 vAA, vBB, #+CC
688   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
689 
690   // DB DIV_INT_LIT8 vAA, vBB, #+CC
691   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
692 
693   // DC REM_INT_LIT8 vAA, vBB, #+CC
694   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
695 
696   // DD AND_INT_LIT8 vAA, vBB, #+CC
697   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
698 
699   // DE OR_INT_LIT8 vAA, vBB, #+CC
700   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
701 
702   // DF XOR_INT_LIT8 vAA, vBB, #+CC
703   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
704 
705   // E0 SHL_INT_LIT8 vAA, vBB, #+CC
706   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
707 
708   // E1 SHR_INT_LIT8 vAA, vBB, #+CC
709   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
710 
711   // E2 USHR_INT_LIT8 vAA, vBB, #+CC
712   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
713 
714   // E3 IGET_VOLATILE
715   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
716 
717   // E4 IPUT_VOLATILE
718   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
719 
720   // E5 SGET_VOLATILE
721   DF_DA | DF_UMS,
722 
723   // E6 SPUT_VOLATILE
724   DF_UA | DF_UMS,
725 
726   // E7 IGET_OBJECT_VOLATILE
727   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
728 
729   // E8 IGET_WIDE_VOLATILE
730   DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
731 
732   // E9 IPUT_WIDE_VOLATILE
733   DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
734 
735   // EA SGET_WIDE_VOLATILE
736   DF_DA | DF_A_WIDE | DF_UMS,
737 
738   // EB SPUT_WIDE_VOLATILE
739   DF_UA | DF_A_WIDE | DF_UMS,
740 
741   // EC BREAKPOINT
742   DF_NOP,
743 
744   // ED THROW_VERIFICATION_ERROR
745   DF_NOP | DF_UMS,
746 
747   // EE EXECUTE_INLINE
748   DF_FORMAT_35C,
749 
750   // EF EXECUTE_INLINE_RANGE
751   DF_FORMAT_3RC,
752 
753   // F0 INVOKE_OBJECT_INIT_RANGE
754   DF_NOP | DF_NULL_CHK_0,
755 
756   // F1 RETURN_VOID_BARRIER
757   DF_NOP,
758 
759   // F2 IGET_QUICK
760   DF_DA | DF_UB | DF_NULL_CHK_0,
761 
762   // F3 IGET_WIDE_QUICK
763   DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0,
764 
765   // F4 IGET_OBJECT_QUICK
766   DF_DA | DF_UB | DF_NULL_CHK_0,
767 
768   // F5 IPUT_QUICK
769   DF_UA | DF_UB | DF_NULL_CHK_1,
770 
771   // F6 IPUT_WIDE_QUICK
772   DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2,
773 
774   // F7 IPUT_OBJECT_QUICK
775   DF_UA | DF_UB | DF_NULL_CHK_1,
776 
777   // F8 INVOKE_VIRTUAL_QUICK
778   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
779 
780   // F9 INVOKE_VIRTUAL_QUICK_RANGE
781   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
782 
783   // FA INVOKE_SUPER_QUICK
784   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
785 
786   // FB INVOKE_SUPER_QUICK_RANGE
787   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
788 
789   // FC IPUT_OBJECT_VOLATILE
790   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
791 
792   // FD SGET_OBJECT_VOLATILE
793   DF_DA | DF_REF_A | DF_UMS,
794 
795   // FE SPUT_OBJECT_VOLATILE
796   DF_UA | DF_REF_A | DF_UMS,
797 
798   // FF UNUSED_FF
799   DF_NOP,
800 
801   // Beginning of extended MIR opcodes
802   // 100 MIR_PHI
803   DF_DA | DF_NULL_TRANSFER_N,
804 
805   // 101 MIR_COPY
806   DF_DA | DF_UB | DF_IS_MOVE,
807 
808   // 102 MIR_FUSED_CMPL_FLOAT
809   DF_UA | DF_UB | DF_FP_A | DF_FP_B,
810 
811   // 103 MIR_FUSED_CMPG_FLOAT
812   DF_UA | DF_UB | DF_FP_A | DF_FP_B,
813 
814   // 104 MIR_FUSED_CMPL_DOUBLE
815   DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
816 
817   // 105 MIR_FUSED_CMPG_DOUBLE
818   DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
819 
820   // 106 MIR_FUSED_CMP_LONG
821   DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
822 
823   // 107 MIR_NOP
824   DF_NOP,
825 
826   // 108 MIR_NULL_CHECK
827   0,
828 
829   // 109 MIR_RANGE_CHECK
830   0,
831 
832   // 110 MIR_DIV_ZERO_CHECK
833   0,
834 
835   // 111 MIR_CHECK
836   0,
837 
838   // 112 MIR_CHECKPART2
839   0,
840 
841   // 113 MIR_SELECT
842   DF_DA | DF_UB,
843 };
844 
845 /* Return the base virtual register for a SSA name */
SRegToVReg(int ssa_reg) const846 int MIRGraph::SRegToVReg(int ssa_reg) const {
847   return ssa_base_vregs_->Get(ssa_reg);
848 }
849 
850 /* Any register that is used before being defined is considered live-in */
HandleLiveInUse(ArenaBitVector * use_v,ArenaBitVector * def_v,ArenaBitVector * live_in_v,int dalvik_reg_id)851 void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
852                             ArenaBitVector* live_in_v, int dalvik_reg_id) {
853   use_v->SetBit(dalvik_reg_id);
854   if (!def_v->IsBitSet(dalvik_reg_id)) {
855     live_in_v->SetBit(dalvik_reg_id);
856   }
857 }
858 
859 /* Mark a reg as being defined */
HandleDef(ArenaBitVector * def_v,int dalvik_reg_id)860 void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
861   def_v->SetBit(dalvik_reg_id);
862 }
863 
864 /*
865  * Find out live-in variables for natural loops. Variables that are live-in in
866  * the main loop body are considered to be defined in the entry block.
867  */
FindLocalLiveIn(BasicBlock * bb)868 bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
869   MIR* mir;
870   ArenaBitVector *use_v, *def_v, *live_in_v;
871 
872   if (bb->data_flow_info == NULL) return false;
873 
874   use_v = bb->data_flow_info->use_v =
875       new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse);
876   def_v = bb->data_flow_info->def_v =
877       new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef);
878   live_in_v = bb->data_flow_info->live_in_v =
879       new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn);
880 
881   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
882     int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
883     DecodedInstruction *d_insn = &mir->dalvikInsn;
884 
885     if (df_attributes & DF_HAS_USES) {
886       if (df_attributes & DF_UA) {
887         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
888         if (df_attributes & DF_A_WIDE) {
889           HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
890         }
891       }
892       if (df_attributes & DF_UB) {
893         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
894         if (df_attributes & DF_B_WIDE) {
895           HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
896         }
897       }
898       if (df_attributes & DF_UC) {
899         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
900         if (df_attributes & DF_C_WIDE) {
901           HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
902         }
903       }
904     }
905     if (df_attributes & DF_FORMAT_35C) {
906       for (unsigned int i = 0; i < d_insn->vA; i++) {
907         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
908       }
909     }
910     if (df_attributes & DF_FORMAT_3RC) {
911       for (unsigned int i = 0; i < d_insn->vA; i++) {
912         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
913       }
914     }
915     if (df_attributes & DF_HAS_DEFS) {
916       HandleDef(def_v, d_insn->vA);
917       if (df_attributes & DF_A_WIDE) {
918         HandleDef(def_v, d_insn->vA+1);
919       }
920     }
921   }
922   return true;
923 }
924 
AddNewSReg(int v_reg)925 int MIRGraph::AddNewSReg(int v_reg) {
926   // Compiler temps always have a subscript of 0
927   int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg];
928   int ssa_reg = GetNumSSARegs();
929   SetNumSSARegs(ssa_reg + 1);
930   ssa_base_vregs_->Insert(v_reg);
931   ssa_subscripts_->Insert(subscript);
932   DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size());
933   return ssa_reg;
934 }
935 
936 /* Find out the latest SSA register for a given Dalvik register */
HandleSSAUse(int * uses,int dalvik_reg,int reg_index)937 void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
938   DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
939   uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
940 }
941 
942 /* Setup a new SSA register for a given Dalvik register */
HandleSSADef(int * defs,int dalvik_reg,int reg_index)943 void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
944   DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
945   int ssa_reg = AddNewSReg(dalvik_reg);
946   vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
947   defs[reg_index] = ssa_reg;
948 }
949 
950 /* Look up new SSA names for format_35c instructions */
DataFlowSSAFormat35C(MIR * mir)951 void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
952   DecodedInstruction *d_insn = &mir->dalvikInsn;
953   int num_uses = d_insn->vA;
954   int i;
955 
956   mir->ssa_rep->num_uses = num_uses;
957   mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
958                                                        ArenaAllocator::kAllocDFInfo));
959   // NOTE: will be filled in during type & size inference pass
960   mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
961                                                           ArenaAllocator::kAllocDFInfo));
962 
963   for (i = 0; i < num_uses; i++) {
964     HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
965   }
966 }
967 
968 /* Look up new SSA names for format_3rc instructions */
DataFlowSSAFormat3RC(MIR * mir)969 void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
970   DecodedInstruction *d_insn = &mir->dalvikInsn;
971   int num_uses = d_insn->vA;
972   int i;
973 
974   mir->ssa_rep->num_uses = num_uses;
975   mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
976                                                        ArenaAllocator::kAllocDFInfo));
977   // NOTE: will be filled in during type & size inference pass
978   mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
979                                                           ArenaAllocator::kAllocDFInfo));
980 
981   for (i = 0; i < num_uses; i++) {
982     HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
983   }
984 }
985 
986 /* Entry function to convert a block into SSA representation */
DoSSAConversion(BasicBlock * bb)987 bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
988   MIR* mir;
989 
990   if (bb->data_flow_info == NULL) return false;
991 
992   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
993     mir->ssa_rep =
994         static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
995                                                               ArenaAllocator::kAllocDFInfo));
996 
997     int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
998 
999       // If not a pseudo-op, note non-leaf or can throw
1000     if (static_cast<int>(mir->dalvikInsn.opcode) <
1001         static_cast<int>(kNumPackedOpcodes)) {
1002       int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode);
1003 
1004       if (flags & Instruction::kInvoke) {
1005         attributes_ &= ~METHOD_IS_LEAF;
1006       }
1007     }
1008 
1009     int num_uses = 0;
1010 
1011     if (df_attributes & DF_FORMAT_35C) {
1012       DataFlowSSAFormat35C(mir);
1013       continue;
1014     }
1015 
1016     if (df_attributes & DF_FORMAT_3RC) {
1017       DataFlowSSAFormat3RC(mir);
1018       continue;
1019     }
1020 
1021     if (df_attributes & DF_HAS_USES) {
1022       if (df_attributes & DF_UA) {
1023         num_uses++;
1024         if (df_attributes & DF_A_WIDE) {
1025           num_uses++;
1026         }
1027       }
1028       if (df_attributes & DF_UB) {
1029         num_uses++;
1030         if (df_attributes & DF_B_WIDE) {
1031           num_uses++;
1032         }
1033       }
1034       if (df_attributes & DF_UC) {
1035         num_uses++;
1036         if (df_attributes & DF_C_WIDE) {
1037           num_uses++;
1038         }
1039       }
1040     }
1041 
1042     if (num_uses) {
1043       mir->ssa_rep->num_uses = num_uses;
1044       mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
1045                                                            ArenaAllocator::kAllocDFInfo));
1046       mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
1047                                                               ArenaAllocator::kAllocDFInfo));
1048     }
1049 
1050     int num_defs = 0;
1051 
1052     if (df_attributes & DF_HAS_DEFS) {
1053       num_defs++;
1054       if (df_attributes & DF_A_WIDE) {
1055         num_defs++;
1056       }
1057     }
1058 
1059     if (num_defs) {
1060       mir->ssa_rep->num_defs = num_defs;
1061       mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs,
1062                                                            ArenaAllocator::kAllocDFInfo));
1063       mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs,
1064                                                               ArenaAllocator::kAllocDFInfo));
1065     }
1066 
1067     DecodedInstruction *d_insn = &mir->dalvikInsn;
1068 
1069     if (df_attributes & DF_HAS_USES) {
1070       num_uses = 0;
1071       if (df_attributes & DF_UA) {
1072         mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1073         HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
1074         if (df_attributes & DF_A_WIDE) {
1075           mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1076           HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
1077         }
1078       }
1079       if (df_attributes & DF_UB) {
1080         mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1081         HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
1082         if (df_attributes & DF_B_WIDE) {
1083           mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1084           HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
1085         }
1086       }
1087       if (df_attributes & DF_UC) {
1088         mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1089         HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
1090         if (df_attributes & DF_C_WIDE) {
1091           mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1092           HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
1093         }
1094       }
1095     }
1096     if (df_attributes & DF_HAS_DEFS) {
1097       mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
1098       HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
1099       if (df_attributes & DF_A_WIDE) {
1100         mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
1101         HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
1102       }
1103     }
1104   }
1105 
1106   /*
1107    * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
1108    * input to PHI nodes can be derived from the snapshot of all
1109    * predecessor blocks.
1110    */
1111   bb->data_flow_info->vreg_to_ssa_map =
1112       static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers,
1113                                       ArenaAllocator::kAllocDFInfo));
1114 
1115   memcpy(bb->data_flow_info->vreg_to_ssa_map, vreg_to_ssa_map_,
1116          sizeof(int) * cu_->num_dalvik_registers);
1117   return true;
1118 }
1119 
1120 /* Setup the basic data structures for SSA conversion */
CompilerInitializeSSAConversion()1121 void MIRGraph::CompilerInitializeSSAConversion() {
1122   size_t num_dalvik_reg = cu_->num_dalvik_registers;
1123 
1124   ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
1125                                                     kGrowableArraySSAtoDalvikMap);
1126   ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
1127                                                     kGrowableArraySSAtoDalvikMap);
1128   /*
1129    * Initial number of SSA registers is equal to the number of Dalvik
1130    * registers.
1131    */
1132   SetNumSSARegs(num_dalvik_reg);
1133 
1134   /*
1135    * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
1136    * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
1137    * into "(0 << 16) | i"
1138    */
1139   for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1140     ssa_base_vregs_->Insert(i);
1141     ssa_subscripts_->Insert(0);
1142   }
1143 
1144   /*
1145    * Initialize the DalvikToSSAMap map. There is one entry for each
1146    * Dalvik register, and the SSA names for those are the same.
1147    */
1148   vreg_to_ssa_map_ =
1149       static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
1150                                       ArenaAllocator::kAllocDFInfo));
1151   /* Keep track of the higest def for each dalvik reg */
1152   ssa_last_defs_ =
1153       static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
1154                                       ArenaAllocator::kAllocDFInfo));
1155 
1156   for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1157     vreg_to_ssa_map_[i] = i;
1158     ssa_last_defs_[i] = 0;
1159   }
1160 
1161   /* Add ssa reg for Method* */
1162   method_sreg_ = AddNewSReg(SSA_METHOD_BASEREG);
1163 
1164   /*
1165    * Allocate the BasicBlockDataFlow structure for the entry and code blocks
1166    */
1167   GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1168 
1169   while (true) {
1170     BasicBlock* bb = iterator.Next();
1171     if (bb == NULL) break;
1172     if (bb->hidden == true) continue;
1173     if (bb->block_type == kDalvikByteCode ||
1174       bb->block_type == kEntryBlock ||
1175       bb->block_type == kExitBlock) {
1176       bb->data_flow_info =
1177           static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
1178                                                          ArenaAllocator::kAllocDFInfo));
1179       }
1180   }
1181 }
1182 
1183 /*
1184  * This function will make a best guess at whether the invoke will
1185  * end up using Method*.  It isn't critical to get it exactly right,
1186  * and attempting to do would involve more complexity than it's
1187  * worth.
1188  */
InvokeUsesMethodStar(MIR * mir)1189 bool MIRGraph::InvokeUsesMethodStar(MIR* mir) {
1190   InvokeType type;
1191   Instruction::Code opcode = mir->dalvikInsn.opcode;
1192   switch (opcode) {
1193     case Instruction::INVOKE_STATIC:
1194     case Instruction::INVOKE_STATIC_RANGE:
1195       type = kStatic;
1196       break;
1197     case Instruction::INVOKE_DIRECT:
1198     case Instruction::INVOKE_DIRECT_RANGE:
1199       type = kDirect;
1200       break;
1201     case Instruction::INVOKE_VIRTUAL:
1202     case Instruction::INVOKE_VIRTUAL_RANGE:
1203       type = kVirtual;
1204       break;
1205     case Instruction::INVOKE_INTERFACE:
1206     case Instruction::INVOKE_INTERFACE_RANGE:
1207       return false;
1208     case Instruction::INVOKE_SUPER_RANGE:
1209     case Instruction::INVOKE_SUPER:
1210       type = kSuper;
1211       break;
1212     default:
1213       LOG(WARNING) << "Unexpected invoke op: " << opcode;
1214       return false;
1215   }
1216   DexCompilationUnit m_unit(cu_);
1217   MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB);
1218   int vtable_idx;
1219   uintptr_t direct_code;
1220   uintptr_t direct_method;
1221   uint32_t current_offset = static_cast<uint32_t>(current_offset_);
1222   bool fast_path =
1223       cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset,
1224                                               type, target_method,
1225                                               vtable_idx,
1226                                               direct_code, direct_method,
1227                                               false) &&
1228                                               !(cu_->enable_debug & (1 << kDebugSlowInvokePath));
1229   return (((type == kDirect) || (type == kStatic)) &&
1230           fast_path && ((direct_code == 0) || (direct_method == 0)));
1231 }
1232 
1233 /*
1234  * Count uses, weighting by loop nesting depth.  This code only
1235  * counts explicitly used s_regs.  A later phase will add implicit
1236  * counts for things such as Method*, null-checked references, etc.
1237  */
CountUses(struct BasicBlock * bb)1238 bool MIRGraph::CountUses(struct BasicBlock* bb) {
1239   if (bb->block_type != kDalvikByteCode) {
1240     return false;
1241   }
1242   for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
1243     if (mir->ssa_rep == NULL) {
1244       continue;
1245     }
1246     uint32_t weight = std::min(16U, static_cast<uint32_t>(bb->nesting_depth));
1247     for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
1248       int s_reg = mir->ssa_rep->uses[i];
1249       raw_use_counts_.Increment(s_reg);
1250       use_counts_.Put(s_reg, use_counts_.Get(s_reg) + (1 << weight));
1251     }
1252     if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) {
1253       int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
1254       // Implicit use of Method* ? */
1255       if (df_attributes & DF_UMS) {
1256         /*
1257          * Some invokes will not use Method* - need to perform test similar
1258          * to that found in GenInvoke() to decide whether to count refs
1259          * for Method* on invoke-class opcodes.
1260          * TODO: refactor for common test here, save results for GenInvoke
1261          */
1262         int uses_method_star = true;
1263         if ((df_attributes & (DF_FORMAT_35C | DF_FORMAT_3RC)) &&
1264             !(df_attributes & DF_NON_NULL_RET)) {
1265           uses_method_star &= InvokeUsesMethodStar(mir);
1266         }
1267         if (uses_method_star) {
1268           raw_use_counts_.Increment(method_sreg_);
1269           use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + (1 << weight));
1270         }
1271       }
1272     }
1273   }
1274   return false;
1275 }
1276 
MethodUseCount()1277 void MIRGraph::MethodUseCount() {
1278   // Now that we know, resize the lists.
1279   int num_ssa_regs = GetNumSSARegs();
1280   use_counts_.Resize(num_ssa_regs + 32);
1281   raw_use_counts_.Resize(num_ssa_regs + 32);
1282   // Initialize list
1283   for (int i = 0; i < num_ssa_regs; i++) {
1284     use_counts_.Insert(0);
1285     raw_use_counts_.Insert(0);
1286   }
1287   if (cu_->disable_opt & (1 << kPromoteRegs)) {
1288     return;
1289   }
1290   AllNodesIterator iter(this, false /* not iterative */);
1291   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1292     CountUses(bb);
1293   }
1294 }
1295 
1296 /* Verify if all the successor is connected with all the claimed predecessors */
VerifyPredInfo(BasicBlock * bb)1297 bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
1298   GrowableArray<BasicBlock*>::Iterator iter(bb->predecessors);
1299 
1300   while (true) {
1301     BasicBlock *pred_bb = iter.Next();
1302     if (!pred_bb) break;
1303     bool found = false;
1304     if (pred_bb->taken == bb) {
1305         found = true;
1306     } else if (pred_bb->fall_through == bb) {
1307         found = true;
1308     } else if (pred_bb->successor_block_list.block_list_type != kNotUsed) {
1309       GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_block_list.blocks);
1310       while (true) {
1311         SuccessorBlockInfo *successor_block_info = iterator.Next();
1312         if (successor_block_info == NULL) break;
1313         BasicBlock *succ_bb = successor_block_info->block;
1314         if (succ_bb == bb) {
1315             found = true;
1316             break;
1317         }
1318       }
1319     }
1320     if (found == false) {
1321       char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
1322       GetBlockName(bb, block_name1);
1323       GetBlockName(pred_bb, block_name2);
1324       DumpCFG("/sdcard/cfg/", false);
1325       LOG(FATAL) << "Successor " << block_name1 << "not found from "
1326                  << block_name2;
1327     }
1328   }
1329   return true;
1330 }
1331 
VerifyDataflow()1332 void MIRGraph::VerifyDataflow() {
1333     /* Verify if all blocks are connected as claimed */
1334   AllNodesIterator iter(this, false /* not iterative */);
1335   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1336     VerifyPredInfo(bb);
1337   }
1338 }
1339 
1340 }  // namespace art
1341