• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 //     function-scope locals)
17 //   - All functions/classes/etc reside in namespace __tsan, except for those
18 //     declared in tsan_interface.h.
19 //   - Platform-specific files should be used instead of ifdefs (*).
20 //   - No system headers included in header files (*).
21 //   - Platform specific headres included only into platform-specific files (*).
22 //
23 //  (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28 
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_suppressions.h"
33 #include "sanitizer_common/sanitizer_thread_registry.h"
34 #include "tsan_clock.h"
35 #include "tsan_defs.h"
36 #include "tsan_flags.h"
37 #include "tsan_sync.h"
38 #include "tsan_trace.h"
39 #include "tsan_vector.h"
40 #include "tsan_report.h"
41 #include "tsan_platform.h"
42 #include "tsan_mutexset.h"
43 
44 #if SANITIZER_WORDSIZE != 64
45 # error "ThreadSanitizer is supported only on 64-bit platforms"
46 #endif
47 
48 namespace __tsan {
49 
50 // Descriptor of user's memory block.
51 struct MBlock {
52   /*
53   u64 mtx : 1;  // must be first
54   u64 lst : 44;
55   u64 stk : 31;  // on word boundary
56   u64 tid : kTidBits;
57   u64 siz : 128 - 1 - 31 - 44 - kTidBits;  // 39
58   */
59   u64 raw[2];
60 
InitMBlock61   void Init(uptr siz, u32 tid, u32 stk) {
62     raw[0] = raw[1] = 0;
63     raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
64     raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
65     raw[0] |= (u64)stk << (1 + 44);
66     raw[1] |= (u64)stk >> (64 - 44 - 1);
67     DCHECK_EQ(Size(), siz);
68     DCHECK_EQ(Tid(), tid);
69     DCHECK_EQ(StackId(), stk);
70   }
71 
TidMBlock72   u32 Tid() const {
73     return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
74   }
75 
SizeMBlock76   uptr Size() const {
77     return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
78   }
79 
StackIdMBlock80   u32 StackId() const {
81     return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
82   }
83 
ListHeadMBlock84   SyncVar *ListHead() const {
85     return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
86   }
87 
ListPushMBlock88   void ListPush(SyncVar *v) {
89     SyncVar *lst = ListHead();
90     v->next = lst;
91     u64 x = (u64)v ^ (u64)lst;
92     x = (x >> 3) << 1;
93     raw[0] ^= x;
94     DCHECK_EQ(ListHead(), v);
95   }
96 
ListPopMBlock97   SyncVar *ListPop() {
98     SyncVar *lst = ListHead();
99     SyncVar *nxt = lst->next;
100     lst->next = 0;
101     u64 x = (u64)lst ^ (u64)nxt;
102     x = (x >> 3) << 1;
103     raw[0] ^= x;
104     DCHECK_EQ(ListHead(), nxt);
105     return lst;
106   }
107 
ListResetMBlock108   void ListReset() {
109     SyncVar *lst = ListHead();
110     u64 x = (u64)lst;
111     x = (x >> 3) << 1;
112     raw[0] ^= x;
113     DCHECK_EQ(ListHead(), 0);
114   }
115 
116   void Lock();
117   void Unlock();
118   typedef GenericScopedLock<MBlock> ScopedLock;
119 };
120 
121 #ifndef TSAN_GO
122 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
123 const uptr kAllocatorSpace = 0x7d0000000000ULL;
124 #else
125 const uptr kAllocatorSpace = 0x7d0000000000ULL;
126 #endif
127 const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
128 
129 struct MapUnmapCallback;
130 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
131     DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
132 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
133 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
134 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
135     SecondaryAllocator> Allocator;
136 Allocator *allocator();
137 #endif
138 
139 void TsanCheckFailed(const char *file, int line, const char *cond,
140                      u64 v1, u64 v2);
141 
142 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
143 
144 // FastState (from most significant bit):
145 //   ignore          : 1
146 //   tid             : kTidBits
147 //   epoch           : kClkBits
148 //   unused          : -
149 //   history_size    : 3
150 class FastState {
151  public:
FastState(u64 tid,u64 epoch)152   FastState(u64 tid, u64 epoch) {
153     x_ = tid << kTidShift;
154     x_ |= epoch << kClkShift;
155     DCHECK_EQ(tid, this->tid());
156     DCHECK_EQ(epoch, this->epoch());
157     DCHECK_EQ(GetIgnoreBit(), false);
158   }
159 
FastState(u64 x)160   explicit FastState(u64 x)
161       : x_(x) {
162   }
163 
raw()164   u64 raw() const {
165     return x_;
166   }
167 
tid()168   u64 tid() const {
169     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
170     return res;
171   }
172 
TidWithIgnore()173   u64 TidWithIgnore() const {
174     u64 res = x_ >> kTidShift;
175     return res;
176   }
177 
epoch()178   u64 epoch() const {
179     u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
180     return res;
181   }
182 
IncrementEpoch()183   void IncrementEpoch() {
184     u64 old_epoch = epoch();
185     x_ += 1 << kClkShift;
186     DCHECK_EQ(old_epoch + 1, epoch());
187     (void)old_epoch;
188   }
189 
SetIgnoreBit()190   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()191   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()192   bool GetIgnoreBit() const { return (s64)x_ < 0; }
193 
SetHistorySize(int hs)194   void SetHistorySize(int hs) {
195     CHECK_GE(hs, 0);
196     CHECK_LE(hs, 7);
197     x_ = (x_ & ~7) | hs;
198   }
199 
GetHistorySize()200   int GetHistorySize() const {
201     return (int)(x_ & 7);
202   }
203 
ClearHistorySize()204   void ClearHistorySize() {
205     x_ &= ~7;
206   }
207 
GetTracePos()208   u64 GetTracePos() const {
209     const int hs = GetHistorySize();
210     // When hs == 0, the trace consists of 2 parts.
211     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
212     return epoch() & mask;
213   }
214 
215  private:
216   friend class Shadow;
217   static const int kTidShift = 64 - kTidBits - 1;
218   static const int kClkShift = kTidShift - kClkBits;
219   static const u64 kIgnoreBit = 1ull << 63;
220   static const u64 kFreedBit = 1ull << 63;
221   u64 x_;
222 };
223 
224 // Shadow (from most significant bit):
225 //   freed           : 1
226 //   tid             : kTidBits
227 //   epoch           : kClkBits
228 //   is_atomic       : 1
229 //   is_read         : 1
230 //   size_log        : 2
231 //   addr0           : 3
232 class Shadow : public FastState {
233  public:
Shadow(u64 x)234   explicit Shadow(u64 x)
235       : FastState(x) {
236   }
237 
Shadow(const FastState & s)238   explicit Shadow(const FastState &s)
239       : FastState(s.x_) {
240     ClearHistorySize();
241   }
242 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)243   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
244     DCHECK_EQ(x_ & 31, 0);
245     DCHECK_LE(addr0, 7);
246     DCHECK_LE(kAccessSizeLog, 3);
247     x_ |= (kAccessSizeLog << 3) | addr0;
248     DCHECK_EQ(kAccessSizeLog, size_log());
249     DCHECK_EQ(addr0, this->addr0());
250   }
251 
SetWrite(unsigned kAccessIsWrite)252   void SetWrite(unsigned kAccessIsWrite) {
253     DCHECK_EQ(x_ & kReadBit, 0);
254     if (!kAccessIsWrite)
255       x_ |= kReadBit;
256     DCHECK_EQ(kAccessIsWrite, IsWrite());
257   }
258 
SetAtomic(bool kIsAtomic)259   void SetAtomic(bool kIsAtomic) {
260     DCHECK(!IsAtomic());
261     if (kIsAtomic)
262       x_ |= kAtomicBit;
263     DCHECK_EQ(IsAtomic(), kIsAtomic);
264   }
265 
IsAtomic()266   bool IsAtomic() const {
267     return x_ & kAtomicBit;
268   }
269 
IsZero()270   bool IsZero() const {
271     return x_ == 0;
272   }
273 
TidsAreEqual(const Shadow s1,const Shadow s2)274   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
275     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
276     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
277     return shifted_xor == 0;
278   }
279 
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)280   static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
281     u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
282     return masked_xor == 0;
283   }
284 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)285   static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
286       unsigned kS2AccessSize) {
287     bool res = false;
288     u64 diff = s1.addr0() - s2.addr0();
289     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
290       // if (s1.addr0() + size1) > s2.addr0()) return true;
291       if (s1.size() > -diff)  res = true;
292     } else {
293       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
294       if (kS2AccessSize > diff) res = true;
295     }
296     DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
297     DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
298     return res;
299   }
300 
301   // The idea behind the offset is as follows.
302   // Consider that we have 8 bool's contained within a single 8-byte block
303   // (mapped to a single shadow "cell"). Now consider that we write to the bools
304   // from a single thread (which we consider the common case).
305   // W/o offsetting each access will have to scan 4 shadow values at average
306   // to find the corresponding shadow value for the bool.
307   // With offsetting we start scanning shadow with the offset so that
308   // each access hits necessary shadow straight off (at least in an expected
309   // optimistic case).
310   // This logic works seamlessly for any layout of user data. For example,
311   // if user data is {int, short, char, char}, then accesses to the int are
312   // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
313   // from a single thread won't need to scan all 8 shadow values.
ComputeSearchOffset()314   unsigned ComputeSearchOffset() {
315     return x_ & 7;
316   }
addr0()317   u64 addr0() const { return x_ & 7; }
size()318   u64 size() const { return 1ull << size_log(); }
IsWrite()319   bool IsWrite() const { return !IsRead(); }
IsRead()320   bool IsRead() const { return x_ & kReadBit; }
321 
322   // The idea behind the freed bit is as follows.
323   // When the memory is freed (or otherwise unaccessible) we write to the shadow
324   // values with tid/epoch related to the free and the freed bit set.
325   // During memory accesses processing the freed bit is considered
326   // as msb of tid. So any access races with shadow with freed bit set
327   // (it is as if write from a thread with which we never synchronized before).
328   // This allows us to detect accesses to freed memory w/o additional
329   // overheads in memory access processing and at the same time restore
330   // tid/epoch of free.
MarkAsFreed()331   void MarkAsFreed() {
332      x_ |= kFreedBit;
333   }
334 
IsFreed()335   bool IsFreed() const {
336     return x_ & kFreedBit;
337   }
338 
GetFreedAndReset()339   bool GetFreedAndReset() {
340     bool res = x_ & kFreedBit;
341     x_ &= ~kFreedBit;
342     return res;
343   }
344 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)345   bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
346     // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
347     bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
348         | (kIsAtomic << kAtomicShift));
349     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
350     return v;
351   }
352 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)353   bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
354     bool v = ((x_ >> kReadShift) & 3)
355         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
356     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
357         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
358     return v;
359   }
360 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)361   bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
362     bool v = ((x_ >> kReadShift) & 3)
363         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
364     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
365         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
366     return v;
367   }
368 
369  private:
370   static const u64 kReadShift   = 5;
371   static const u64 kReadBit     = 1ull << kReadShift;
372   static const u64 kAtomicShift = 6;
373   static const u64 kAtomicBit   = 1ull << kAtomicShift;
374 
size_log()375   u64 size_log() const { return (x_ >> 3) & 3; }
376 
TwoRangesIntersectSLOW(const Shadow s1,const Shadow s2)377   static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
378     if (s1.addr0() == s2.addr0()) return true;
379     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
380       return true;
381     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
382       return true;
383     return false;
384   }
385 };
386 
387 struct SignalContext;
388 
389 struct JmpBuf {
390   uptr sp;
391   uptr mangled_sp;
392   uptr *shadow_stack_pos;
393 };
394 
395 // This struct is stored in TLS.
396 struct ThreadState {
397   FastState fast_state;
398   // Synch epoch represents the threads's epoch before the last synchronization
399   // action. It allows to reduce number of shadow state updates.
400   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
401   // if we are processing write to X from the same thread at epoch=200,
402   // we do nothing, because both writes happen in the same 'synch epoch'.
403   // That is, if another memory access does not race with the former write,
404   // it does not race with the latter as well.
405   // QUESTION: can we can squeeze this into ThreadState::Fast?
406   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
407   // taken by epoch between synchs.
408   // This way we can save one load from tls.
409   u64 fast_synch_epoch;
410   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
411   // We do not distinguish beteween ignoring reads and writes
412   // for better performance.
413   int ignore_reads_and_writes;
414   uptr *shadow_stack_pos;
415   u64 *racy_shadow_addr;
416   u64 racy_state[2];
417 #ifndef TSAN_GO
418   // C/C++ uses embed shadow stack of fixed size.
419   uptr shadow_stack[kShadowStackSize];
420 #else
421   // Go uses satellite shadow stack with dynamic size.
422   uptr *shadow_stack;
423   uptr *shadow_stack_end;
424 #endif
425   MutexSet mset;
426   ThreadClock clock;
427 #ifndef TSAN_GO
428   AllocatorCache alloc_cache;
429   InternalAllocatorCache internal_alloc_cache;
430   Vector<JmpBuf> jmp_bufs;
431 #endif
432   u64 stat[StatCnt];
433   const int tid;
434   const int unique_id;
435   int in_rtl;
436   bool in_symbolizer;
437   bool is_alive;
438   bool is_freeing;
439   bool is_vptr_access;
440   const uptr stk_addr;
441   const uptr stk_size;
442   const uptr tls_addr;
443   const uptr tls_size;
444 
445   DeadlockDetector deadlock_detector;
446 
447   bool in_signal_handler;
448   SignalContext *signal_ctx;
449 
450 #ifndef TSAN_GO
451   u32 last_sleep_stack_id;
452   ThreadClock last_sleep_clock;
453 #endif
454 
455   // Set in regions of runtime that must be signal-safe and fork-safe.
456   // If set, malloc must not be called.
457   int nomalloc;
458 
459   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
460                        uptr stk_addr, uptr stk_size,
461                        uptr tls_addr, uptr tls_size);
462 };
463 
464 Context *CTX();
465 
466 #ifndef TSAN_GO
467 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()468 INLINE ThreadState *cur_thread() {
469   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
470 }
471 #endif
472 
473 class ThreadContext : public ThreadContextBase {
474  public:
475   explicit ThreadContext(int tid);
476   ~ThreadContext();
477   ThreadState *thr;
478 #ifdef TSAN_GO
479   StackTrace creation_stack;
480 #else
481   u32 creation_stack_id;
482 #endif
483   SyncClock sync;
484   // Epoch at which the thread had started.
485   // If we see an event from the thread stamped by an older epoch,
486   // the event is from a dead thread that shared tid with this thread.
487   u64 epoch0;
488   u64 epoch1;
489 
490   // Override superclass callbacks.
491   void OnDead();
492   void OnJoined(void *arg);
493   void OnFinished();
494   void OnStarted(void *arg);
495   void OnCreated(void *arg);
496   void OnReset();
497 };
498 
499 struct RacyStacks {
500   MD5Hash hash[2];
501   bool operator==(const RacyStacks &other) const {
502     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
503       return true;
504     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
505       return true;
506     return false;
507   }
508 };
509 
510 struct RacyAddress {
511   uptr addr_min;
512   uptr addr_max;
513 };
514 
515 struct FiredSuppression {
516   ReportType type;
517   uptr pc;
518   Suppression *supp;
519 };
520 
521 struct Context {
522   Context();
523 
524   bool initialized;
525 
526   SyncTab synctab;
527 
528   Mutex report_mtx;
529   int nreported;
530   int nmissed_expected;
531   atomic_uint64_t last_symbolize_time_ns;
532 
533   ThreadRegistry *thread_registry;
534 
535   Vector<RacyStacks> racy_stacks;
536   Vector<RacyAddress> racy_addresses;
537   // Number of fired suppressions may be large enough.
538   InternalMmapVector<FiredSuppression> fired_suppressions;
539 
540   Flags flags;
541 
542   u64 stat[StatCnt];
543   u64 int_alloc_cnt[MBlockTypeCount];
544   u64 int_alloc_siz[MBlockTypeCount];
545 };
546 
547 class ScopedInRtl {
548  public:
549   ScopedInRtl();
550   ~ScopedInRtl();
551  private:
552   ThreadState*thr_;
553   int in_rtl_;
554   int errno_;
555 };
556 
557 class ScopedReport {
558  public:
559   explicit ScopedReport(ReportType typ);
560   ~ScopedReport();
561 
562   void AddStack(const StackTrace *stack);
563   void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
564                        const MutexSet *mset);
565   void AddThread(const ThreadContext *tctx);
566   void AddMutex(const SyncVar *s);
567   void AddLocation(uptr addr, uptr size);
568   void AddSleep(u32 stack_id);
569   void SetCount(int count);
570 
571   const ReportDesc *GetReport() const;
572 
573  private:
574   Context *ctx_;
575   ReportDesc *rep_;
576 
577   void AddMutex(u64 id);
578 
579   ScopedReport(const ScopedReport&);
580   void operator = (const ScopedReport&);
581 };
582 
583 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
584 
585 void StatAggregate(u64 *dst, u64 *src);
586 void StatOutput(u64 *stat);
587 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
588   if (kCollectStats)
589     thr->stat[typ] += n;
590 }
StatSet(ThreadState * thr,StatType typ,u64 n)591 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
592   if (kCollectStats)
593     thr->stat[typ] = n;
594 }
595 
596 void MapShadow(uptr addr, uptr size);
597 void MapThreadTrace(uptr addr, uptr size);
598 void DontNeedShadowFor(uptr addr, uptr size);
599 void InitializeShadowMemory();
600 void InitializeInterceptors();
601 void InitializeDynamicAnnotations();
602 
603 void ReportRace(ThreadState *thr);
604 bool OutputReport(Context *ctx,
605                   const ScopedReport &srep,
606                   const ReportStack *suppress_stack1 = 0,
607                   const ReportStack *suppress_stack2 = 0,
608                   const ReportLocation *suppress_loc = 0);
609 bool IsFiredSuppression(Context *ctx,
610                         const ScopedReport &srep,
611                         const StackTrace &trace);
612 bool IsExpectedReport(uptr addr, uptr size);
613 void PrintMatchedBenignRaces();
614 bool FrameIsInternal(const ReportStack *frame);
615 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
616 
617 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
618 # define DPrintf Printf
619 #else
620 # define DPrintf(...)
621 #endif
622 
623 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
624 # define DPrintf2 Printf
625 #else
626 # define DPrintf2(...)
627 #endif
628 
629 u32 CurrentStackId(ThreadState *thr, uptr pc);
630 void PrintCurrentStack(ThreadState *thr, uptr pc);
631 void PrintCurrentStackSlow();  // uses libunwind
632 
633 void Initialize(ThreadState *thr);
634 int Finalize(ThreadState *thr);
635 
636 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
637                      bool write_lock, bool create);
638 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
639 
640 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
641     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
642 void MemoryAccessImpl(ThreadState *thr, uptr addr,
643     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
644     u64 *shadow_mem, Shadow cur);
645 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
646     uptr size, bool is_write);
647 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
648     uptr size, uptr step, bool is_write);
649 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
650     int size, bool kAccessIsWrite, bool kIsAtomic);
651 
652 const int kSizeLog1 = 0;
653 const int kSizeLog2 = 1;
654 const int kSizeLog4 = 2;
655 const int kSizeLog8 = 3;
656 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)657 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
658                                      uptr addr, int kAccessSizeLog) {
659   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
660 }
661 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)662 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
663                                       uptr addr, int kAccessSizeLog) {
664   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
665 }
666 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)667 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
668                                            uptr addr, int kAccessSizeLog) {
669   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
670 }
671 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)672 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
673                                             uptr addr, int kAccessSizeLog) {
674   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
675 }
676 
677 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
678 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
679 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
680 void IgnoreCtl(ThreadState *thr, bool write, bool begin);
681 
682 void FuncEntry(ThreadState *thr, uptr pc);
683 void FuncExit(ThreadState *thr);
684 
685 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
686 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
687 void ThreadFinish(ThreadState *thr);
688 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
689 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
690 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
691 void ThreadFinalize(ThreadState *thr);
692 void ThreadSetName(ThreadState *thr, const char *name);
693 int ThreadCount(ThreadState *thr);
694 void ProcessPendingSignals(ThreadState *thr);
695 
696 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
697                  bool rw, bool recursive, bool linker_init);
698 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
699 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1);
700 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
701 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
702 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
703 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
704 
705 void Acquire(ThreadState *thr, uptr pc, uptr addr);
706 void AcquireGlobal(ThreadState *thr, uptr pc);
707 void Release(ThreadState *thr, uptr pc, uptr addr);
708 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
709 void AfterSleep(ThreadState *thr, uptr pc);
710 
711 // The hacky call uses custom calling convention and an assembly thunk.
712 // It is considerably faster that a normal call for the caller
713 // if it is not executed (it is intended for slow paths from hot functions).
714 // The trick is that the call preserves all registers and the compiler
715 // does not treat it as a call.
716 // If it does not work for you, use normal call.
717 #if TSAN_DEBUG == 0
718 // The caller may not create the stack frame for itself at all,
719 // so we create a reserve stack frame for it (1024b must be enough).
720 #define HACKY_CALL(f) \
721   __asm__ __volatile__("sub $1024, %%rsp;" \
722                        "/*.cfi_adjust_cfa_offset 1024;*/" \
723                        ".hidden " #f "_thunk;" \
724                        "call " #f "_thunk;" \
725                        "add $1024, %%rsp;" \
726                        "/*.cfi_adjust_cfa_offset -1024;*/" \
727                        ::: "memory", "cc");
728 #else
729 #define HACKY_CALL(f) f()
730 #endif
731 
732 void TraceSwitch(ThreadState *thr);
733 uptr TraceTopPC(ThreadState *thr);
734 uptr TraceSize();
735 uptr TraceParts();
736 Trace *ThreadTrace(int tid);
737 
738 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)739 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
740                                         EventType typ, u64 addr) {
741   DCHECK_GE((int)typ, 0);
742   DCHECK_LE((int)typ, 7);
743   DCHECK_EQ(GetLsb(addr, 61), addr);
744   StatInc(thr, StatEvents);
745   u64 pos = fs.GetTracePos();
746   if (UNLIKELY((pos % kTracePartSize) == 0)) {
747 #ifndef TSAN_GO
748     HACKY_CALL(__tsan_trace_switch);
749 #else
750     TraceSwitch(thr);
751 #endif
752   }
753   Event *trace = (Event*)GetThreadTrace(fs.tid());
754   Event *evp = &trace[pos];
755   Event ev = (u64)addr | ((u64)typ << 61);
756   *evp = ev;
757 }
758 
759 }  // namespace __tsan
760 
761 #endif  // TSAN_RTL_H
762