1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 // function-scope locals)
17 // - All functions/classes/etc reside in namespace __tsan, except for those
18 // declared in tsan_interface.h.
19 // - Platform-specific files should be used instead of ifdefs (*).
20 // - No system headers included in header files (*).
21 // - Platform specific headres included only into platform-specific files (*).
22 //
23 // (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_suppressions.h"
33 #include "sanitizer_common/sanitizer_thread_registry.h"
34 #include "tsan_clock.h"
35 #include "tsan_defs.h"
36 #include "tsan_flags.h"
37 #include "tsan_sync.h"
38 #include "tsan_trace.h"
39 #include "tsan_vector.h"
40 #include "tsan_report.h"
41 #include "tsan_platform.h"
42 #include "tsan_mutexset.h"
43
44 #if SANITIZER_WORDSIZE != 64
45 # error "ThreadSanitizer is supported only on 64-bit platforms"
46 #endif
47
48 namespace __tsan {
49
50 // Descriptor of user's memory block.
51 struct MBlock {
52 /*
53 u64 mtx : 1; // must be first
54 u64 lst : 44;
55 u64 stk : 31; // on word boundary
56 u64 tid : kTidBits;
57 u64 siz : 128 - 1 - 31 - 44 - kTidBits; // 39
58 */
59 u64 raw[2];
60
InitMBlock61 void Init(uptr siz, u32 tid, u32 stk) {
62 raw[0] = raw[1] = 0;
63 raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
64 raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
65 raw[0] |= (u64)stk << (1 + 44);
66 raw[1] |= (u64)stk >> (64 - 44 - 1);
67 DCHECK_EQ(Size(), siz);
68 DCHECK_EQ(Tid(), tid);
69 DCHECK_EQ(StackId(), stk);
70 }
71
TidMBlock72 u32 Tid() const {
73 return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
74 }
75
SizeMBlock76 uptr Size() const {
77 return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
78 }
79
StackIdMBlock80 u32 StackId() const {
81 return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
82 }
83
ListHeadMBlock84 SyncVar *ListHead() const {
85 return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
86 }
87
ListPushMBlock88 void ListPush(SyncVar *v) {
89 SyncVar *lst = ListHead();
90 v->next = lst;
91 u64 x = (u64)v ^ (u64)lst;
92 x = (x >> 3) << 1;
93 raw[0] ^= x;
94 DCHECK_EQ(ListHead(), v);
95 }
96
ListPopMBlock97 SyncVar *ListPop() {
98 SyncVar *lst = ListHead();
99 SyncVar *nxt = lst->next;
100 lst->next = 0;
101 u64 x = (u64)lst ^ (u64)nxt;
102 x = (x >> 3) << 1;
103 raw[0] ^= x;
104 DCHECK_EQ(ListHead(), nxt);
105 return lst;
106 }
107
ListResetMBlock108 void ListReset() {
109 SyncVar *lst = ListHead();
110 u64 x = (u64)lst;
111 x = (x >> 3) << 1;
112 raw[0] ^= x;
113 DCHECK_EQ(ListHead(), 0);
114 }
115
116 void Lock();
117 void Unlock();
118 typedef GenericScopedLock<MBlock> ScopedLock;
119 };
120
121 #ifndef TSAN_GO
122 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
123 const uptr kAllocatorSpace = 0x7d0000000000ULL;
124 #else
125 const uptr kAllocatorSpace = 0x7d0000000000ULL;
126 #endif
127 const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
128
129 struct MapUnmapCallback;
130 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
131 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
132 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
133 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
134 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
135 SecondaryAllocator> Allocator;
136 Allocator *allocator();
137 #endif
138
139 void TsanCheckFailed(const char *file, int line, const char *cond,
140 u64 v1, u64 v2);
141
142 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
143
144 // FastState (from most significant bit):
145 // ignore : 1
146 // tid : kTidBits
147 // epoch : kClkBits
148 // unused : -
149 // history_size : 3
150 class FastState {
151 public:
FastState(u64 tid,u64 epoch)152 FastState(u64 tid, u64 epoch) {
153 x_ = tid << kTidShift;
154 x_ |= epoch << kClkShift;
155 DCHECK_EQ(tid, this->tid());
156 DCHECK_EQ(epoch, this->epoch());
157 DCHECK_EQ(GetIgnoreBit(), false);
158 }
159
FastState(u64 x)160 explicit FastState(u64 x)
161 : x_(x) {
162 }
163
raw()164 u64 raw() const {
165 return x_;
166 }
167
tid()168 u64 tid() const {
169 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
170 return res;
171 }
172
TidWithIgnore()173 u64 TidWithIgnore() const {
174 u64 res = x_ >> kTidShift;
175 return res;
176 }
177
epoch()178 u64 epoch() const {
179 u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
180 return res;
181 }
182
IncrementEpoch()183 void IncrementEpoch() {
184 u64 old_epoch = epoch();
185 x_ += 1 << kClkShift;
186 DCHECK_EQ(old_epoch + 1, epoch());
187 (void)old_epoch;
188 }
189
SetIgnoreBit()190 void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()191 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()192 bool GetIgnoreBit() const { return (s64)x_ < 0; }
193
SetHistorySize(int hs)194 void SetHistorySize(int hs) {
195 CHECK_GE(hs, 0);
196 CHECK_LE(hs, 7);
197 x_ = (x_ & ~7) | hs;
198 }
199
GetHistorySize()200 int GetHistorySize() const {
201 return (int)(x_ & 7);
202 }
203
ClearHistorySize()204 void ClearHistorySize() {
205 x_ &= ~7;
206 }
207
GetTracePos()208 u64 GetTracePos() const {
209 const int hs = GetHistorySize();
210 // When hs == 0, the trace consists of 2 parts.
211 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
212 return epoch() & mask;
213 }
214
215 private:
216 friend class Shadow;
217 static const int kTidShift = 64 - kTidBits - 1;
218 static const int kClkShift = kTidShift - kClkBits;
219 static const u64 kIgnoreBit = 1ull << 63;
220 static const u64 kFreedBit = 1ull << 63;
221 u64 x_;
222 };
223
224 // Shadow (from most significant bit):
225 // freed : 1
226 // tid : kTidBits
227 // epoch : kClkBits
228 // is_atomic : 1
229 // is_read : 1
230 // size_log : 2
231 // addr0 : 3
232 class Shadow : public FastState {
233 public:
Shadow(u64 x)234 explicit Shadow(u64 x)
235 : FastState(x) {
236 }
237
Shadow(const FastState & s)238 explicit Shadow(const FastState &s)
239 : FastState(s.x_) {
240 ClearHistorySize();
241 }
242
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)243 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
244 DCHECK_EQ(x_ & 31, 0);
245 DCHECK_LE(addr0, 7);
246 DCHECK_LE(kAccessSizeLog, 3);
247 x_ |= (kAccessSizeLog << 3) | addr0;
248 DCHECK_EQ(kAccessSizeLog, size_log());
249 DCHECK_EQ(addr0, this->addr0());
250 }
251
SetWrite(unsigned kAccessIsWrite)252 void SetWrite(unsigned kAccessIsWrite) {
253 DCHECK_EQ(x_ & kReadBit, 0);
254 if (!kAccessIsWrite)
255 x_ |= kReadBit;
256 DCHECK_EQ(kAccessIsWrite, IsWrite());
257 }
258
SetAtomic(bool kIsAtomic)259 void SetAtomic(bool kIsAtomic) {
260 DCHECK(!IsAtomic());
261 if (kIsAtomic)
262 x_ |= kAtomicBit;
263 DCHECK_EQ(IsAtomic(), kIsAtomic);
264 }
265
IsAtomic()266 bool IsAtomic() const {
267 return x_ & kAtomicBit;
268 }
269
IsZero()270 bool IsZero() const {
271 return x_ == 0;
272 }
273
TidsAreEqual(const Shadow s1,const Shadow s2)274 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
275 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
276 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
277 return shifted_xor == 0;
278 }
279
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)280 static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
281 u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
282 return masked_xor == 0;
283 }
284
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)285 static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
286 unsigned kS2AccessSize) {
287 bool res = false;
288 u64 diff = s1.addr0() - s2.addr0();
289 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
290 // if (s1.addr0() + size1) > s2.addr0()) return true;
291 if (s1.size() > -diff) res = true;
292 } else {
293 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
294 if (kS2AccessSize > diff) res = true;
295 }
296 DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
297 DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
298 return res;
299 }
300
301 // The idea behind the offset is as follows.
302 // Consider that we have 8 bool's contained within a single 8-byte block
303 // (mapped to a single shadow "cell"). Now consider that we write to the bools
304 // from a single thread (which we consider the common case).
305 // W/o offsetting each access will have to scan 4 shadow values at average
306 // to find the corresponding shadow value for the bool.
307 // With offsetting we start scanning shadow with the offset so that
308 // each access hits necessary shadow straight off (at least in an expected
309 // optimistic case).
310 // This logic works seamlessly for any layout of user data. For example,
311 // if user data is {int, short, char, char}, then accesses to the int are
312 // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
313 // from a single thread won't need to scan all 8 shadow values.
ComputeSearchOffset()314 unsigned ComputeSearchOffset() {
315 return x_ & 7;
316 }
addr0()317 u64 addr0() const { return x_ & 7; }
size()318 u64 size() const { return 1ull << size_log(); }
IsWrite()319 bool IsWrite() const { return !IsRead(); }
IsRead()320 bool IsRead() const { return x_ & kReadBit; }
321
322 // The idea behind the freed bit is as follows.
323 // When the memory is freed (or otherwise unaccessible) we write to the shadow
324 // values with tid/epoch related to the free and the freed bit set.
325 // During memory accesses processing the freed bit is considered
326 // as msb of tid. So any access races with shadow with freed bit set
327 // (it is as if write from a thread with which we never synchronized before).
328 // This allows us to detect accesses to freed memory w/o additional
329 // overheads in memory access processing and at the same time restore
330 // tid/epoch of free.
MarkAsFreed()331 void MarkAsFreed() {
332 x_ |= kFreedBit;
333 }
334
IsFreed()335 bool IsFreed() const {
336 return x_ & kFreedBit;
337 }
338
GetFreedAndReset()339 bool GetFreedAndReset() {
340 bool res = x_ & kFreedBit;
341 x_ &= ~kFreedBit;
342 return res;
343 }
344
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)345 bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
346 // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
347 bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
348 | (kIsAtomic << kAtomicShift));
349 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
350 return v;
351 }
352
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)353 bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
354 bool v = ((x_ >> kReadShift) & 3)
355 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
356 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
357 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
358 return v;
359 }
360
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)361 bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
362 bool v = ((x_ >> kReadShift) & 3)
363 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
364 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
365 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
366 return v;
367 }
368
369 private:
370 static const u64 kReadShift = 5;
371 static const u64 kReadBit = 1ull << kReadShift;
372 static const u64 kAtomicShift = 6;
373 static const u64 kAtomicBit = 1ull << kAtomicShift;
374
size_log()375 u64 size_log() const { return (x_ >> 3) & 3; }
376
TwoRangesIntersectSLOW(const Shadow s1,const Shadow s2)377 static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
378 if (s1.addr0() == s2.addr0()) return true;
379 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
380 return true;
381 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
382 return true;
383 return false;
384 }
385 };
386
387 struct SignalContext;
388
389 struct JmpBuf {
390 uptr sp;
391 uptr mangled_sp;
392 uptr *shadow_stack_pos;
393 };
394
395 // This struct is stored in TLS.
396 struct ThreadState {
397 FastState fast_state;
398 // Synch epoch represents the threads's epoch before the last synchronization
399 // action. It allows to reduce number of shadow state updates.
400 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
401 // if we are processing write to X from the same thread at epoch=200,
402 // we do nothing, because both writes happen in the same 'synch epoch'.
403 // That is, if another memory access does not race with the former write,
404 // it does not race with the latter as well.
405 // QUESTION: can we can squeeze this into ThreadState::Fast?
406 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
407 // taken by epoch between synchs.
408 // This way we can save one load from tls.
409 u64 fast_synch_epoch;
410 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
411 // We do not distinguish beteween ignoring reads and writes
412 // for better performance.
413 int ignore_reads_and_writes;
414 uptr *shadow_stack_pos;
415 u64 *racy_shadow_addr;
416 u64 racy_state[2];
417 #ifndef TSAN_GO
418 // C/C++ uses embed shadow stack of fixed size.
419 uptr shadow_stack[kShadowStackSize];
420 #else
421 // Go uses satellite shadow stack with dynamic size.
422 uptr *shadow_stack;
423 uptr *shadow_stack_end;
424 #endif
425 MutexSet mset;
426 ThreadClock clock;
427 #ifndef TSAN_GO
428 AllocatorCache alloc_cache;
429 InternalAllocatorCache internal_alloc_cache;
430 Vector<JmpBuf> jmp_bufs;
431 #endif
432 u64 stat[StatCnt];
433 const int tid;
434 const int unique_id;
435 int in_rtl;
436 bool in_symbolizer;
437 bool is_alive;
438 bool is_freeing;
439 bool is_vptr_access;
440 const uptr stk_addr;
441 const uptr stk_size;
442 const uptr tls_addr;
443 const uptr tls_size;
444
445 DeadlockDetector deadlock_detector;
446
447 bool in_signal_handler;
448 SignalContext *signal_ctx;
449
450 #ifndef TSAN_GO
451 u32 last_sleep_stack_id;
452 ThreadClock last_sleep_clock;
453 #endif
454
455 // Set in regions of runtime that must be signal-safe and fork-safe.
456 // If set, malloc must not be called.
457 int nomalloc;
458
459 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
460 uptr stk_addr, uptr stk_size,
461 uptr tls_addr, uptr tls_size);
462 };
463
464 Context *CTX();
465
466 #ifndef TSAN_GO
467 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()468 INLINE ThreadState *cur_thread() {
469 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
470 }
471 #endif
472
473 class ThreadContext : public ThreadContextBase {
474 public:
475 explicit ThreadContext(int tid);
476 ~ThreadContext();
477 ThreadState *thr;
478 #ifdef TSAN_GO
479 StackTrace creation_stack;
480 #else
481 u32 creation_stack_id;
482 #endif
483 SyncClock sync;
484 // Epoch at which the thread had started.
485 // If we see an event from the thread stamped by an older epoch,
486 // the event is from a dead thread that shared tid with this thread.
487 u64 epoch0;
488 u64 epoch1;
489
490 // Override superclass callbacks.
491 void OnDead();
492 void OnJoined(void *arg);
493 void OnFinished();
494 void OnStarted(void *arg);
495 void OnCreated(void *arg);
496 void OnReset();
497 };
498
499 struct RacyStacks {
500 MD5Hash hash[2];
501 bool operator==(const RacyStacks &other) const {
502 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
503 return true;
504 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
505 return true;
506 return false;
507 }
508 };
509
510 struct RacyAddress {
511 uptr addr_min;
512 uptr addr_max;
513 };
514
515 struct FiredSuppression {
516 ReportType type;
517 uptr pc;
518 Suppression *supp;
519 };
520
521 struct Context {
522 Context();
523
524 bool initialized;
525
526 SyncTab synctab;
527
528 Mutex report_mtx;
529 int nreported;
530 int nmissed_expected;
531 atomic_uint64_t last_symbolize_time_ns;
532
533 ThreadRegistry *thread_registry;
534
535 Vector<RacyStacks> racy_stacks;
536 Vector<RacyAddress> racy_addresses;
537 // Number of fired suppressions may be large enough.
538 InternalMmapVector<FiredSuppression> fired_suppressions;
539
540 Flags flags;
541
542 u64 stat[StatCnt];
543 u64 int_alloc_cnt[MBlockTypeCount];
544 u64 int_alloc_siz[MBlockTypeCount];
545 };
546
547 class ScopedInRtl {
548 public:
549 ScopedInRtl();
550 ~ScopedInRtl();
551 private:
552 ThreadState*thr_;
553 int in_rtl_;
554 int errno_;
555 };
556
557 class ScopedReport {
558 public:
559 explicit ScopedReport(ReportType typ);
560 ~ScopedReport();
561
562 void AddStack(const StackTrace *stack);
563 void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
564 const MutexSet *mset);
565 void AddThread(const ThreadContext *tctx);
566 void AddMutex(const SyncVar *s);
567 void AddLocation(uptr addr, uptr size);
568 void AddSleep(u32 stack_id);
569 void SetCount(int count);
570
571 const ReportDesc *GetReport() const;
572
573 private:
574 Context *ctx_;
575 ReportDesc *rep_;
576
577 void AddMutex(u64 id);
578
579 ScopedReport(const ScopedReport&);
580 void operator = (const ScopedReport&);
581 };
582
583 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
584
585 void StatAggregate(u64 *dst, u64 *src);
586 void StatOutput(u64 *stat);
587 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
588 if (kCollectStats)
589 thr->stat[typ] += n;
590 }
StatSet(ThreadState * thr,StatType typ,u64 n)591 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
592 if (kCollectStats)
593 thr->stat[typ] = n;
594 }
595
596 void MapShadow(uptr addr, uptr size);
597 void MapThreadTrace(uptr addr, uptr size);
598 void DontNeedShadowFor(uptr addr, uptr size);
599 void InitializeShadowMemory();
600 void InitializeInterceptors();
601 void InitializeDynamicAnnotations();
602
603 void ReportRace(ThreadState *thr);
604 bool OutputReport(Context *ctx,
605 const ScopedReport &srep,
606 const ReportStack *suppress_stack1 = 0,
607 const ReportStack *suppress_stack2 = 0,
608 const ReportLocation *suppress_loc = 0);
609 bool IsFiredSuppression(Context *ctx,
610 const ScopedReport &srep,
611 const StackTrace &trace);
612 bool IsExpectedReport(uptr addr, uptr size);
613 void PrintMatchedBenignRaces();
614 bool FrameIsInternal(const ReportStack *frame);
615 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
616
617 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
618 # define DPrintf Printf
619 #else
620 # define DPrintf(...)
621 #endif
622
623 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
624 # define DPrintf2 Printf
625 #else
626 # define DPrintf2(...)
627 #endif
628
629 u32 CurrentStackId(ThreadState *thr, uptr pc);
630 void PrintCurrentStack(ThreadState *thr, uptr pc);
631 void PrintCurrentStackSlow(); // uses libunwind
632
633 void Initialize(ThreadState *thr);
634 int Finalize(ThreadState *thr);
635
636 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
637 bool write_lock, bool create);
638 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
639
640 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
641 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
642 void MemoryAccessImpl(ThreadState *thr, uptr addr,
643 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
644 u64 *shadow_mem, Shadow cur);
645 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
646 uptr size, bool is_write);
647 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
648 uptr size, uptr step, bool is_write);
649 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
650 int size, bool kAccessIsWrite, bool kIsAtomic);
651
652 const int kSizeLog1 = 0;
653 const int kSizeLog2 = 1;
654 const int kSizeLog4 = 2;
655 const int kSizeLog8 = 3;
656
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)657 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
658 uptr addr, int kAccessSizeLog) {
659 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
660 }
661
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)662 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
663 uptr addr, int kAccessSizeLog) {
664 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
665 }
666
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)667 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
668 uptr addr, int kAccessSizeLog) {
669 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
670 }
671
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)672 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
673 uptr addr, int kAccessSizeLog) {
674 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
675 }
676
677 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
678 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
679 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
680 void IgnoreCtl(ThreadState *thr, bool write, bool begin);
681
682 void FuncEntry(ThreadState *thr, uptr pc);
683 void FuncExit(ThreadState *thr);
684
685 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
686 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
687 void ThreadFinish(ThreadState *thr);
688 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
689 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
690 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
691 void ThreadFinalize(ThreadState *thr);
692 void ThreadSetName(ThreadState *thr, const char *name);
693 int ThreadCount(ThreadState *thr);
694 void ProcessPendingSignals(ThreadState *thr);
695
696 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
697 bool rw, bool recursive, bool linker_init);
698 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
699 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1);
700 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
701 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
702 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
703 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
704
705 void Acquire(ThreadState *thr, uptr pc, uptr addr);
706 void AcquireGlobal(ThreadState *thr, uptr pc);
707 void Release(ThreadState *thr, uptr pc, uptr addr);
708 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
709 void AfterSleep(ThreadState *thr, uptr pc);
710
711 // The hacky call uses custom calling convention and an assembly thunk.
712 // It is considerably faster that a normal call for the caller
713 // if it is not executed (it is intended for slow paths from hot functions).
714 // The trick is that the call preserves all registers and the compiler
715 // does not treat it as a call.
716 // If it does not work for you, use normal call.
717 #if TSAN_DEBUG == 0
718 // The caller may not create the stack frame for itself at all,
719 // so we create a reserve stack frame for it (1024b must be enough).
720 #define HACKY_CALL(f) \
721 __asm__ __volatile__("sub $1024, %%rsp;" \
722 "/*.cfi_adjust_cfa_offset 1024;*/" \
723 ".hidden " #f "_thunk;" \
724 "call " #f "_thunk;" \
725 "add $1024, %%rsp;" \
726 "/*.cfi_adjust_cfa_offset -1024;*/" \
727 ::: "memory", "cc");
728 #else
729 #define HACKY_CALL(f) f()
730 #endif
731
732 void TraceSwitch(ThreadState *thr);
733 uptr TraceTopPC(ThreadState *thr);
734 uptr TraceSize();
735 uptr TraceParts();
736 Trace *ThreadTrace(int tid);
737
738 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)739 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
740 EventType typ, u64 addr) {
741 DCHECK_GE((int)typ, 0);
742 DCHECK_LE((int)typ, 7);
743 DCHECK_EQ(GetLsb(addr, 61), addr);
744 StatInc(thr, StatEvents);
745 u64 pos = fs.GetTracePos();
746 if (UNLIKELY((pos % kTracePartSize) == 0)) {
747 #ifndef TSAN_GO
748 HACKY_CALL(__tsan_trace_switch);
749 #else
750 TraceSwitch(thr);
751 #endif
752 }
753 Event *trace = (Event*)GetThreadTrace(fs.tid());
754 Event *evp = &trace[pos];
755 Event ev = (u64)addr | ((u64)typ << 61);
756 *evp = ev;
757 }
758
759 } // namespace __tsan
760
761 #endif // TSAN_RTL_H
762