1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 #include "thread.h"
20
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32
33 #include "arch/context.h"
34 #include "base/mutex.h"
35 #include "class_linker.h"
36 #include "class_linker-inl.h"
37 #include "cutils/atomic.h"
38 #include "cutils/atomic-inline.h"
39 #include "debugger.h"
40 #include "dex_file-inl.h"
41 #include "entrypoints/entrypoint_utils.h"
42 #include "gc_map.h"
43 #include "gc/accounting/card_table-inl.h"
44 #include "gc/heap.h"
45 #include "gc/space/space.h"
46 #include "invoke_arg_array_builder.h"
47 #include "jni_internal.h"
48 #include "mirror/art_field-inl.h"
49 #include "mirror/art_method-inl.h"
50 #include "mirror/class-inl.h"
51 #include "mirror/class_loader.h"
52 #include "mirror/object_array-inl.h"
53 #include "mirror/stack_trace_element.h"
54 #include "monitor.h"
55 #include "object_utils.h"
56 #include "reflection.h"
57 #include "runtime.h"
58 #include "scoped_thread_state_change.h"
59 #include "ScopedLocalRef.h"
60 #include "ScopedUtfChars.h"
61 #include "sirt_ref.h"
62 #include "stack.h"
63 #include "stack_indirect_reference_table.h"
64 #include "thread-inl.h"
65 #include "thread_list.h"
66 #include "utils.h"
67 #include "verifier/dex_gc_map.h"
68 #include "verifier/method_verifier.h"
69 #include "vmap_table.h"
70 #include "well_known_classes.h"
71
72 namespace art {
73
74 bool Thread::is_started_ = false;
75 pthread_key_t Thread::pthread_key_self_;
76 ConditionVariable* Thread::resume_cond_ = NULL;
77
78 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
79
InitCardTable()80 void Thread::InitCardTable() {
81 card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
82 }
83
84 #if !defined(__APPLE__)
UnimplementedEntryPoint()85 static void UnimplementedEntryPoint() {
86 UNIMPLEMENTED(FATAL);
87 }
88 #endif
89
90 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
91 PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
92
InitTlsEntryPoints()93 void Thread::InitTlsEntryPoints() {
94 #if !defined(__APPLE__) // The Mac GCC is too old to accept this code.
95 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
97 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
98 for (uintptr_t* it = begin; it != end; ++it) {
99 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
100 }
101 begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
102 end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
103 for (uintptr_t* it = begin; it != end; ++it) {
104 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
105 }
106 #endif
107 InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
108 &quick_entrypoints_);
109 }
110
SetDeoptimizationShadowFrame(ShadowFrame * sf)111 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
112 deoptimization_shadow_frame_ = sf;
113 }
114
SetDeoptimizationReturnValue(const JValue & ret_val)115 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
116 deoptimization_return_value_.SetJ(ret_val.GetJ());
117 }
118
GetAndClearDeoptimizationShadowFrame(JValue * ret_val)119 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
120 ShadowFrame* sf = deoptimization_shadow_frame_;
121 deoptimization_shadow_frame_ = NULL;
122 ret_val->SetJ(deoptimization_return_value_.GetJ());
123 return sf;
124 }
125
InitTid()126 void Thread::InitTid() {
127 tid_ = ::art::GetTid();
128 }
129
InitAfterFork()130 void Thread::InitAfterFork() {
131 // One thread (us) survived the fork, but we have a new tid so we need to
132 // update the value stashed in this Thread*.
133 InitTid();
134 }
135
CreateCallback(void * arg)136 void* Thread::CreateCallback(void* arg) {
137 Thread* self = reinterpret_cast<Thread*>(arg);
138 Runtime* runtime = Runtime::Current();
139 if (runtime == NULL) {
140 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
141 return NULL;
142 }
143 {
144 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
145 // after self->Init().
146 MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
147 // Check that if we got here we cannot be shutting down (as shutdown should never have started
148 // while threads are being born).
149 CHECK(!runtime->IsShuttingDown());
150 self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
151 Runtime::Current()->EndThreadBirth();
152 }
153 {
154 ScopedObjectAccess soa(self);
155
156 // Copy peer into self, deleting global reference when done.
157 CHECK(self->jpeer_ != NULL);
158 self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
159 self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
160 self->jpeer_ = NULL;
161
162 {
163 SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
164 self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
165 }
166 Dbg::PostThreadStart(self);
167
168 // Invoke the 'run' method of our java.lang.Thread.
169 mirror::Object* receiver = self->opeer_;
170 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
171 mirror::ArtMethod* m =
172 receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
173 JValue result;
174 ArgArray arg_array(NULL, 0);
175 arg_array.Append(reinterpret_cast<uint32_t>(receiver));
176 m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
177 }
178 // Detach and delete self.
179 Runtime::Current()->GetThreadList()->Unregister(self);
180
181 return NULL;
182 }
183
FromManagedThread(const ScopedObjectAccessUnchecked & soa,mirror::Object * thread_peer)184 Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
185 mirror::Object* thread_peer) {
186 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
188 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189 // to stop it from going away.
190 if (kIsDebugBuild) {
191 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192 if (result != NULL && !result->IsSuspended()) {
193 Locks::thread_list_lock_->AssertHeld(soa.Self());
194 }
195 }
196 return result;
197 }
198
FromManagedThread(const ScopedObjectAccessUnchecked & soa,jobject java_thread)199 Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
200 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
201 }
202
FixStackSize(size_t stack_size)203 static size_t FixStackSize(size_t stack_size) {
204 // A stack size of zero means "use the default".
205 if (stack_size == 0) {
206 stack_size = Runtime::Current()->GetDefaultStackSize();
207 }
208
209 // Dalvik used the bionic pthread default stack size for native threads,
210 // so include that here to support apps that expect large native stacks.
211 stack_size += 1 * MB;
212
213 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
214 if (stack_size < PTHREAD_STACK_MIN) {
215 stack_size = PTHREAD_STACK_MIN;
216 }
217
218 // It's likely that callers are trying to ensure they have at least a certain amount of
219 // stack space, so we should add our reserved space on top of what they requested, rather
220 // than implicitly take it away from them.
221 stack_size += Thread::kStackOverflowReservedBytes;
222
223 // Some systems require the stack size to be a multiple of the system page size, so round up.
224 stack_size = RoundUp(stack_size, kPageSize);
225
226 return stack_size;
227 }
228
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)229 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
230 CHECK(java_peer != NULL);
231 Thread* self = static_cast<JNIEnvExt*>(env)->self;
232 Runtime* runtime = Runtime::Current();
233
234 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
235 bool thread_start_during_shutdown = false;
236 {
237 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
238 if (runtime->IsShuttingDown()) {
239 thread_start_during_shutdown = true;
240 } else {
241 runtime->StartThreadBirth();
242 }
243 }
244 if (thread_start_during_shutdown) {
245 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
246 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
247 return;
248 }
249
250 Thread* child_thread = new Thread(is_daemon);
251 // Use global JNI ref to hold peer live while child thread starts.
252 child_thread->jpeer_ = env->NewGlobalRef(java_peer);
253 stack_size = FixStackSize(stack_size);
254
255 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
256 // assign it.
257 env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
258 reinterpret_cast<jint>(child_thread));
259
260 pthread_t new_pthread;
261 pthread_attr_t attr;
262 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
263 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
264 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
265 int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
266 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
267
268 if (pthread_create_result != 0) {
269 // pthread_create(3) failed, so clean up.
270 {
271 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
272 runtime->EndThreadBirth();
273 }
274 // Manually delete the global reference since Thread::Init will not have been run.
275 env->DeleteGlobalRef(child_thread->jpeer_);
276 child_thread->jpeer_ = NULL;
277 delete child_thread;
278 child_thread = NULL;
279 // TODO: remove from thread group?
280 env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
281 {
282 std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
283 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
284 ScopedObjectAccess soa(env);
285 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
286 }
287 }
288 }
289
Init(ThreadList * thread_list,JavaVMExt * java_vm)290 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
291 // This function does all the initialization that must be run by the native thread it applies to.
292 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
293 // we can handshake with the corresponding native thread when it's ready.) Check this native
294 // thread hasn't been through here already...
295 CHECK(Thread::Current() == NULL);
296 SetUpAlternateSignalStack();
297 InitCpu();
298 InitTlsEntryPoints();
299 InitCardTable();
300 InitTid();
301 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
302 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
303 pthread_self_ = pthread_self();
304 CHECK(is_started_);
305 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
306 DCHECK_EQ(Thread::Current(), this);
307
308 thin_lock_id_ = thread_list->AllocThreadId(this);
309 InitStackHwm();
310
311 jni_env_ = new JNIEnvExt(this, java_vm);
312 thread_list->Register(this);
313 }
314
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)315 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
316 bool create_peer) {
317 Thread* self;
318 Runtime* runtime = Runtime::Current();
319 if (runtime == NULL) {
320 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
321 return NULL;
322 }
323 {
324 MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
325 if (runtime->IsShuttingDown()) {
326 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
327 return NULL;
328 } else {
329 Runtime::Current()->StartThreadBirth();
330 self = new Thread(as_daemon);
331 self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
332 Runtime::Current()->EndThreadBirth();
333 }
334 }
335
336 CHECK_NE(self->GetState(), kRunnable);
337 self->SetState(kNative);
338
339 // If we're the main thread, ClassLinker won't be created until after we're attached,
340 // so that thread needs a two-stage attach. Regular threads don't need this hack.
341 // In the compiler, all threads need this hack, because no-one's going to be getting
342 // a native peer!
343 if (create_peer) {
344 self->CreatePeer(thread_name, as_daemon, thread_group);
345 } else {
346 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
347 if (thread_name != NULL) {
348 self->name_->assign(thread_name);
349 ::art::SetThreadName(thread_name);
350 }
351 }
352
353 return self;
354 }
355
CreatePeer(const char * name,bool as_daemon,jobject thread_group)356 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
357 Runtime* runtime = Runtime::Current();
358 CHECK(runtime->IsStarted());
359 JNIEnv* env = jni_env_;
360
361 if (thread_group == NULL) {
362 thread_group = runtime->GetMainThreadGroup();
363 }
364 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
365 jint thread_priority = GetNativePriority();
366 jboolean thread_is_daemon = as_daemon;
367
368 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
369 if (peer.get() == NULL) {
370 CHECK(IsExceptionPending());
371 return;
372 }
373 {
374 ScopedObjectAccess soa(this);
375 opeer_ = soa.Decode<mirror::Object*>(peer.get());
376 }
377 env->CallNonvirtualVoidMethod(peer.get(),
378 WellKnownClasses::java_lang_Thread,
379 WellKnownClasses::java_lang_Thread_init,
380 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
381 AssertNoPendingException();
382
383 Thread* self = this;
384 DCHECK_EQ(self, Thread::Current());
385 jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
386 reinterpret_cast<jint>(self));
387
388 ScopedObjectAccess soa(self);
389 SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
390 if (peer_thread_name.get() == NULL) {
391 // The Thread constructor should have set the Thread.name to a
392 // non-null value. However, because we can run without code
393 // available (in the compiler, in tests), we manually assign the
394 // fields the constructor should have set.
395 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
396 SetBoolean(opeer_, thread_is_daemon);
397 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
398 SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
399 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
400 SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
401 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
402 SetInt(opeer_, thread_priority);
403 peer_thread_name.reset(GetThreadName(soa));
404 }
405 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
406 if (peer_thread_name.get() != NULL) {
407 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
408 }
409 }
410
SetThreadName(const char * name)411 void Thread::SetThreadName(const char* name) {
412 name_->assign(name);
413 ::art::SetThreadName(name);
414 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
415 }
416
InitStackHwm()417 void Thread::InitStackHwm() {
418 void* stack_base;
419 size_t stack_size;
420 GetThreadStack(pthread_self_, stack_base, stack_size);
421
422 // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
423 VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
424
425 stack_begin_ = reinterpret_cast<byte*>(stack_base);
426 stack_size_ = stack_size;
427
428 if (stack_size_ <= kStackOverflowReservedBytes) {
429 LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
430 }
431
432 // TODO: move this into the Linux GetThreadStack implementation.
433 #if !defined(__APPLE__)
434 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
435 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
436 // will be broken because we'll die long before we get close to 2GB.
437 bool is_main_thread = (::art::GetTid() == getpid());
438 if (is_main_thread) {
439 rlimit stack_limit;
440 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
441 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
442 }
443 if (stack_limit.rlim_cur == RLIM_INFINITY) {
444 // Find the default stack size for new threads...
445 pthread_attr_t default_attributes;
446 size_t default_stack_size;
447 CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
448 CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
449 "default stack size query");
450 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
451
452 // ...and use that as our limit.
453 size_t old_stack_size = stack_size_;
454 stack_size_ = default_stack_size;
455 stack_begin_ += (old_stack_size - stack_size_);
456 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
457 << " to " << PrettySize(stack_size_)
458 << " with base " << reinterpret_cast<void*>(stack_begin_);
459 }
460 }
461 #endif
462
463 // Set stack_end_ to the bottom of the stack saving space of stack overflows
464 ResetDefaultStackEnd();
465
466 // Sanity check.
467 int stack_variable;
468 CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
469 }
470
ShortDump(std::ostream & os) const471 void Thread::ShortDump(std::ostream& os) const {
472 os << "Thread[";
473 if (GetThinLockId() != 0) {
474 // If we're in kStarting, we won't have a thin lock id or tid yet.
475 os << GetThinLockId()
476 << ",tid=" << GetTid() << ',';
477 }
478 os << GetState()
479 << ",Thread*=" << this
480 << ",peer=" << opeer_
481 << ",\"" << *name_ << "\""
482 << "]";
483 }
484
Dump(std::ostream & os) const485 void Thread::Dump(std::ostream& os) const {
486 DumpState(os);
487 DumpStack(os);
488 }
489
GetThreadName(const ScopedObjectAccessUnchecked & soa) const490 mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
491 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
492 return (opeer_ != NULL) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : NULL;
493 }
494
GetThreadName(std::string & name) const495 void Thread::GetThreadName(std::string& name) const {
496 name.assign(*name_);
497 }
498
GetCpuMicroTime() const499 uint64_t Thread::GetCpuMicroTime() const {
500 #if defined(HAVE_POSIX_CLOCKS)
501 clockid_t cpu_clock_id;
502 pthread_getcpuclockid(pthread_self_, &cpu_clock_id);
503 timespec now;
504 clock_gettime(cpu_clock_id, &now);
505 return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
506 #else
507 UNIMPLEMENTED(WARNING);
508 return -1;
509 #endif
510 }
511
AtomicSetFlag(ThreadFlag flag)512 void Thread::AtomicSetFlag(ThreadFlag flag) {
513 android_atomic_or(flag, &state_and_flags_.as_int);
514 }
515
AtomicClearFlag(ThreadFlag flag)516 void Thread::AtomicClearFlag(ThreadFlag flag) {
517 android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
518 }
519
520 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)521 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
522 LOG(ERROR) << *thread << " suspend count already zero.";
523 Locks::thread_suspend_count_lock_->Unlock(self);
524 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
525 Locks::mutator_lock_->SharedTryLock(self);
526 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
527 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
528 }
529 }
530 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
531 Locks::thread_list_lock_->TryLock(self);
532 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
533 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
534 }
535 }
536 std::ostringstream ss;
537 Runtime::Current()->GetThreadList()->DumpLocked(ss);
538 LOG(FATAL) << ss.str();
539 }
540
ModifySuspendCount(Thread * self,int delta,bool for_debugger)541 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
542 DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
543 << delta << " " << debug_suspend_count_ << " " << this;
544 DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
545 Locks::thread_suspend_count_lock_->AssertHeld(self);
546 if (this != self && !IsSuspended()) {
547 Locks::thread_list_lock_->AssertHeld(self);
548 }
549 if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
550 UnsafeLogFatalForSuspendCount(self, this);
551 return;
552 }
553
554 suspend_count_ += delta;
555 if (for_debugger) {
556 debug_suspend_count_ += delta;
557 }
558
559 if (suspend_count_ == 0) {
560 AtomicClearFlag(kSuspendRequest);
561 } else {
562 AtomicSetFlag(kSuspendRequest);
563 }
564 }
565
RunCheckpointFunction()566 void Thread::RunCheckpointFunction() {
567 CHECK(checkpoint_function_ != NULL);
568 ATRACE_BEGIN("Checkpoint function");
569 checkpoint_function_->Run(this);
570 ATRACE_END();
571 }
572
RequestCheckpoint(Closure * function)573 bool Thread::RequestCheckpoint(Closure* function) {
574 CHECK(!ReadFlag(kCheckpointRequest)) << "Already have a pending checkpoint request";
575 checkpoint_function_ = function;
576 union StateAndFlags old_state_and_flags = state_and_flags_;
577 // We must be runnable to request a checkpoint.
578 old_state_and_flags.as_struct.state = kRunnable;
579 union StateAndFlags new_state_and_flags = old_state_and_flags;
580 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
581 int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int,
582 &state_and_flags_.as_int);
583 return succeeded == 0;
584 }
585
FullSuspendCheck()586 void Thread::FullSuspendCheck() {
587 VLOG(threads) << this << " self-suspending";
588 ATRACE_BEGIN("Full suspend check");
589 // Make thread appear suspended to other threads, release mutator_lock_.
590 TransitionFromRunnableToSuspended(kSuspended);
591 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
592 TransitionFromSuspendedToRunnable();
593 ATRACE_END();
594 VLOG(threads) << this << " self-reviving";
595 }
596
SuspendForDebugger(jobject peer,bool request_suspension,bool * timed_out)597 Thread* Thread::SuspendForDebugger(jobject peer, bool request_suspension, bool* timed_out) {
598 static const useconds_t kTimeoutUs = 30 * 1000000; // 30s.
599 useconds_t total_delay_us = 0;
600 useconds_t delay_us = 0;
601 bool did_suspend_request = false;
602 *timed_out = false;
603 while (true) {
604 Thread* thread;
605 {
606 ScopedObjectAccess soa(Thread::Current());
607 Thread* self = soa.Self();
608 MutexLock mu(self, *Locks::thread_list_lock_);
609 thread = Thread::FromManagedThread(soa, peer);
610 if (thread == NULL) {
611 JNIEnv* env = self->GetJniEnv();
612 ScopedLocalRef<jstring> scoped_name_string(env,
613 (jstring)env->GetObjectField(peer,
614 WellKnownClasses::java_lang_Thread_name));
615 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
616 if (scoped_name_chars.c_str() == NULL) {
617 LOG(WARNING) << "No such thread for suspend: " << peer;
618 env->ExceptionClear();
619 } else {
620 LOG(WARNING) << "No such thread for suspend: " << peer << ":" << scoped_name_chars.c_str();
621 }
622
623 return NULL;
624 }
625 {
626 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
627 if (request_suspension) {
628 thread->ModifySuspendCount(soa.Self(), +1, true /* for_debugger */);
629 request_suspension = false;
630 did_suspend_request = true;
631 }
632 // IsSuspended on the current thread will fail as the current thread is changed into
633 // Runnable above. As the suspend count is now raised if this is the current thread
634 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
635 // to just explicitly handle the current thread in the callers to this code.
636 CHECK_NE(thread, soa.Self()) << "Attempt to suspend the current thread for the debugger";
637 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
638 // count, or else we've waited and it has self suspended) or is the current thread, we're
639 // done.
640 if (thread->IsSuspended()) {
641 return thread;
642 }
643 if (total_delay_us >= kTimeoutUs) {
644 LOG(ERROR) << "Thread suspension timed out: " << peer;
645 if (did_suspend_request) {
646 thread->ModifySuspendCount(soa.Self(), -1, true /* for_debugger */);
647 }
648 *timed_out = true;
649 return NULL;
650 }
651 }
652 // Release locks and come out of runnable state.
653 }
654 for (int i = kLockLevelCount - 1; i >= 0; --i) {
655 BaseMutex* held_mutex = Thread::Current()->GetHeldMutex(static_cast<LockLevel>(i));
656 if (held_mutex != NULL) {
657 LOG(FATAL) << "Holding " << held_mutex->GetName()
658 << " while sleeping for thread suspension";
659 }
660 }
661 {
662 useconds_t new_delay_us = delay_us * 2;
663 CHECK_GE(new_delay_us, delay_us);
664 if (new_delay_us < 500000) { // Don't allow sleeping to be more than 0.5s.
665 delay_us = new_delay_us;
666 }
667 }
668 if (delay_us == 0) {
669 sched_yield();
670 // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep).
671 delay_us = 500;
672 } else {
673 usleep(delay_us);
674 total_delay_us += delay_us;
675 }
676 }
677 }
678
DumpState(std::ostream & os,const Thread * thread,pid_t tid)679 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
680 std::string group_name;
681 int priority;
682 bool is_daemon = false;
683 Thread* self = Thread::Current();
684
685 if (self != NULL && thread != NULL && thread->opeer_ != NULL) {
686 ScopedObjectAccessUnchecked soa(self);
687 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
688 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
689
690 mirror::Object* thread_group =
691 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
692
693 if (thread_group != NULL) {
694 mirror::ArtField* group_name_field =
695 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
696 mirror::String* group_name_string =
697 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
698 group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
699 }
700 } else {
701 priority = GetNativePriority();
702 }
703
704 std::string scheduler_group_name(GetSchedulerGroupName(tid));
705 if (scheduler_group_name.empty()) {
706 scheduler_group_name = "default";
707 }
708
709 if (thread != NULL) {
710 os << '"' << *thread->name_ << '"';
711 if (is_daemon) {
712 os << " daemon";
713 }
714 os << " prio=" << priority
715 << " tid=" << thread->GetThinLockId()
716 << " " << thread->GetState();
717 if (thread->IsStillStarting()) {
718 os << " (still starting up)";
719 }
720 os << "\n";
721 } else {
722 os << '"' << ::art::GetThreadName(tid) << '"'
723 << " prio=" << priority
724 << " (not attached)\n";
725 }
726
727 if (thread != NULL) {
728 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
729 os << " | group=\"" << group_name << "\""
730 << " sCount=" << thread->suspend_count_
731 << " dsCount=" << thread->debug_suspend_count_
732 << " obj=" << reinterpret_cast<void*>(thread->opeer_)
733 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
734 }
735
736 os << " | sysTid=" << tid
737 << " nice=" << getpriority(PRIO_PROCESS, tid)
738 << " cgrp=" << scheduler_group_name;
739 if (thread != NULL) {
740 int policy;
741 sched_param sp;
742 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
743 os << " sched=" << policy << "/" << sp.sched_priority
744 << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
745 }
746 os << "\n";
747
748 // Grab the scheduler stats for this thread.
749 std::string scheduler_stats;
750 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
751 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
752 } else {
753 scheduler_stats = "0 0 0";
754 }
755
756 char native_thread_state = '?';
757 int utime = 0;
758 int stime = 0;
759 int task_cpu = 0;
760 GetTaskStats(tid, native_thread_state, utime, stime, task_cpu);
761
762 os << " | state=" << native_thread_state
763 << " schedstat=( " << scheduler_stats << " )"
764 << " utm=" << utime
765 << " stm=" << stime
766 << " core=" << task_cpu
767 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
768 if (thread != NULL) {
769 os << " | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
770 << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
771 }
772 }
773
DumpState(std::ostream & os) const774 void Thread::DumpState(std::ostream& os) const {
775 Thread::DumpState(os, this, GetTid());
776 }
777
778 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor779 StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
780 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
781 : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
782 last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) {
783 }
784
~StackDumpVisitorart::StackDumpVisitor785 virtual ~StackDumpVisitor() {
786 if (frame_count == 0) {
787 os << " (no managed stack frames)\n";
788 }
789 }
790
VisitFrameart::StackDumpVisitor791 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
792 mirror::ArtMethod* m = GetMethod();
793 if (m->IsRuntimeMethod()) {
794 return true;
795 }
796 const int kMaxRepetition = 3;
797 mirror::Class* c = m->GetDeclaringClass();
798 const mirror::DexCache* dex_cache = c->GetDexCache();
799 int line_number = -1;
800 if (dex_cache != NULL) { // be tolerant of bad input
801 const DexFile& dex_file = *dex_cache->GetDexFile();
802 line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
803 }
804 if (line_number == last_line_number && last_method == m) {
805 repetition_count++;
806 } else {
807 if (repetition_count >= kMaxRepetition) {
808 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
809 }
810 repetition_count = 0;
811 last_line_number = line_number;
812 last_method = m;
813 }
814 if (repetition_count < kMaxRepetition) {
815 os << " at " << PrettyMethod(m, false);
816 if (m->IsNative()) {
817 os << "(Native method)";
818 } else {
819 mh.ChangeMethod(m);
820 const char* source_file(mh.GetDeclaringClassSourceFile());
821 os << "(" << (source_file != NULL ? source_file : "unavailable")
822 << ":" << line_number << ")";
823 }
824 os << "\n";
825 if (frame_count == 0) {
826 Monitor::DescribeWait(os, thread);
827 }
828 if (can_allocate) {
829 Monitor::VisitLocks(this, DumpLockedObject, &os);
830 }
831 }
832
833 ++frame_count;
834 return true;
835 }
836
DumpLockedObjectart::StackDumpVisitor837 static void DumpLockedObject(mirror::Object* o, void* context)
838 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
839 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
840 os << " - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
841 }
842
843 std::ostream& os;
844 const Thread* thread;
845 const bool can_allocate;
846 MethodHelper mh;
847 mirror::ArtMethod* last_method;
848 int last_line_number;
849 int repetition_count;
850 int frame_count;
851 };
852
ShouldShowNativeStack(const Thread * thread)853 static bool ShouldShowNativeStack(const Thread* thread)
854 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
855 ThreadState state = thread->GetState();
856
857 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
858 if (state > kWaiting && state < kStarting) {
859 return true;
860 }
861
862 // In an Object.wait variant or Thread.sleep? That's not interesting.
863 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
864 return false;
865 }
866
867 // In some other native method? That's interesting.
868 // We don't just check kNative because native methods will be in state kSuspended if they're
869 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
870 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
871 mirror::ArtMethod* current_method = thread->GetCurrentMethod(NULL);
872 return current_method != NULL && current_method->IsNative();
873 }
874
DumpStack(std::ostream & os) const875 void Thread::DumpStack(std::ostream& os) const {
876 // TODO: we call this code when dying but may not have suspended the thread ourself. The
877 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
878 // the race with the thread_suspend_count_lock_).
879 // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
880 bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
881 if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
882 // If we're currently in native code, dump that stack before dumping the managed stack.
883 if (dump_for_abort || ShouldShowNativeStack(this)) {
884 DumpKernelStack(os, GetTid(), " kernel: ", false);
885 DumpNativeStack(os, GetTid(), " native: ", false);
886 }
887 UniquePtr<Context> context(Context::Create());
888 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
889 dumper.WalkStack();
890 } else {
891 os << "Not able to dump stack of thread that isn't suspended";
892 }
893 }
894
ThreadExitCallback(void * arg)895 void Thread::ThreadExitCallback(void* arg) {
896 Thread* self = reinterpret_cast<Thread*>(arg);
897 if (self->thread_exit_check_count_ == 0) {
898 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
899 CHECK(is_started_);
900 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
901 self->thread_exit_check_count_ = 1;
902 } else {
903 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
904 }
905 }
906
Startup()907 void Thread::Startup() {
908 CHECK(!is_started_);
909 is_started_ = true;
910 {
911 // MutexLock to keep annotalysis happy.
912 //
913 // Note we use NULL for the thread because Thread::Current can
914 // return garbage since (is_started_ == true) and
915 // Thread::pthread_key_self_ is not yet initialized.
916 // This was seen on glibc.
917 MutexLock mu(NULL, *Locks::thread_suspend_count_lock_);
918 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
919 *Locks::thread_suspend_count_lock_);
920 }
921
922 // Allocate a TLS slot.
923 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
924
925 // Double-check the TLS slot allocation.
926 if (pthread_getspecific(pthread_key_self_) != NULL) {
927 LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
928 }
929 }
930
FinishStartup()931 void Thread::FinishStartup() {
932 Runtime* runtime = Runtime::Current();
933 CHECK(runtime->IsStarted());
934
935 // Finish attaching the main thread.
936 ScopedObjectAccess soa(Thread::Current());
937 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
938
939 Runtime::Current()->GetClassLinker()->RunRootClinits();
940 }
941
Shutdown()942 void Thread::Shutdown() {
943 CHECK(is_started_);
944 is_started_ = false;
945 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
946 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
947 if (resume_cond_ != NULL) {
948 delete resume_cond_;
949 resume_cond_ = NULL;
950 }
951 }
952
Thread(bool daemon)953 Thread::Thread(bool daemon)
954 : suspend_count_(0),
955 card_table_(NULL),
956 exception_(NULL),
957 stack_end_(NULL),
958 managed_stack_(),
959 jni_env_(NULL),
960 self_(NULL),
961 opeer_(NULL),
962 jpeer_(NULL),
963 stack_begin_(NULL),
964 stack_size_(0),
965 stack_trace_sample_(NULL),
966 trace_clock_base_(0),
967 thin_lock_id_(0),
968 tid_(0),
969 wait_mutex_(new Mutex("a thread wait mutex")),
970 wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
971 wait_monitor_(NULL),
972 interrupted_(false),
973 wait_next_(NULL),
974 monitor_enter_object_(NULL),
975 top_sirt_(NULL),
976 runtime_(NULL),
977 class_loader_override_(NULL),
978 long_jump_context_(NULL),
979 throwing_OutOfMemoryError_(false),
980 debug_suspend_count_(0),
981 debug_invoke_req_(new DebugInvokeReq),
982 deoptimization_shadow_frame_(NULL),
983 instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
984 name_(new std::string(kThreadNameDuringStartup)),
985 daemon_(daemon),
986 pthread_self_(0),
987 no_thread_suspension_(0),
988 last_no_thread_suspension_cause_(NULL),
989 checkpoint_function_(0),
990 thread_exit_check_count_(0) {
991 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
992 state_and_flags_.as_struct.flags = 0;
993 state_and_flags_.as_struct.state = kNative;
994 memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
995 }
996
IsStillStarting() const997 bool Thread::IsStillStarting() const {
998 // You might think you can check whether the state is kStarting, but for much of thread startup,
999 // the thread is in kNative; it might also be in kVmWait.
1000 // You might think you can check whether the peer is NULL, but the peer is actually created and
1001 // assigned fairly early on, and needs to be.
1002 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1003 // this thread _ever_ entered kRunnable".
1004 return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup);
1005 }
1006
AssertNoPendingException() const1007 void Thread::AssertNoPendingException() const {
1008 if (UNLIKELY(IsExceptionPending())) {
1009 ScopedObjectAccess soa(Thread::Current());
1010 mirror::Throwable* exception = GetException(NULL);
1011 LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1012 }
1013 }
1014
MonitorExitVisitor(const mirror::Object * object,void * arg)1015 static void MonitorExitVisitor(const mirror::Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS {
1016 Thread* self = reinterpret_cast<Thread*>(arg);
1017 mirror::Object* entered_monitor = const_cast<mirror::Object*>(object);
1018 if (self->HoldsLock(entered_monitor)) {
1019 LOG(WARNING) << "Calling MonitorExit on object "
1020 << object << " (" << PrettyTypeOf(object) << ")"
1021 << " left locked by native thread "
1022 << *Thread::Current() << " which is detaching";
1023 entered_monitor->MonitorExit(self);
1024 }
1025 }
1026
Destroy()1027 void Thread::Destroy() {
1028 Thread* self = this;
1029 DCHECK_EQ(self, Thread::Current());
1030
1031 if (opeer_ != NULL) {
1032 ScopedObjectAccess soa(self);
1033 // We may need to call user-supplied managed code, do this before final clean-up.
1034 HandleUncaughtExceptions(soa);
1035 RemoveFromThreadGroup(soa);
1036
1037 // this.nativePeer = 0;
1038 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0);
1039 Dbg::PostThreadDeath(self);
1040
1041 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1042 // who is waiting.
1043 mirror::Object* lock =
1044 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1045 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1046 if (lock != NULL) {
1047 ObjectLock locker(self, lock);
1048 locker.Notify();
1049 }
1050 }
1051
1052 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1053 if (jni_env_ != NULL) {
1054 jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
1055 }
1056 }
1057
~Thread()1058 Thread::~Thread() {
1059 if (jni_env_ != NULL && jpeer_ != NULL) {
1060 // If pthread_create fails we don't have a jni env here.
1061 jni_env_->DeleteGlobalRef(jpeer_);
1062 jpeer_ = NULL;
1063 }
1064 opeer_ = NULL;
1065
1066 delete jni_env_;
1067 jni_env_ = NULL;
1068
1069 CHECK_NE(GetState(), kRunnable);
1070 // We may be deleting a still born thread.
1071 SetStateUnsafe(kTerminated);
1072
1073 delete wait_cond_;
1074 delete wait_mutex_;
1075
1076 if (long_jump_context_ != NULL) {
1077 delete long_jump_context_;
1078 }
1079
1080 delete debug_invoke_req_;
1081 delete instrumentation_stack_;
1082 delete name_;
1083 delete stack_trace_sample_;
1084
1085 TearDownAlternateSignalStack();
1086 }
1087
HandleUncaughtExceptions(ScopedObjectAccess & soa)1088 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1089 if (!IsExceptionPending()) {
1090 return;
1091 }
1092 ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1093 ScopedThreadStateChange tsc(this, kNative);
1094
1095 // Get and clear the exception.
1096 ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1097 jni_env_->ExceptionClear();
1098
1099 // If the thread has its own handler, use that.
1100 ScopedLocalRef<jobject> handler(jni_env_,
1101 jni_env_->GetObjectField(peer.get(),
1102 WellKnownClasses::java_lang_Thread_uncaughtHandler));
1103 if (handler.get() == NULL) {
1104 // Otherwise use the thread group's default handler.
1105 handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1106 }
1107
1108 // Call the handler.
1109 jni_env_->CallVoidMethod(handler.get(),
1110 WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1111 peer.get(), exception.get());
1112
1113 // If the handler threw, clear that exception too.
1114 jni_env_->ExceptionClear();
1115 }
1116
RemoveFromThreadGroup(ScopedObjectAccess & soa)1117 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1118 // this.group.removeThread(this);
1119 // group can be null if we're in the compiler or a test.
1120 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1121 if (ogroup != NULL) {
1122 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1123 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1124 ScopedThreadStateChange tsc(soa.Self(), kNative);
1125 jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1126 peer.get());
1127 }
1128 }
1129
NumSirtReferences()1130 size_t Thread::NumSirtReferences() {
1131 size_t count = 0;
1132 for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1133 count += cur->NumberOfReferences();
1134 }
1135 return count;
1136 }
1137
SirtContains(jobject obj) const1138 bool Thread::SirtContains(jobject obj) const {
1139 mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj);
1140 for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1141 if (cur->Contains(sirt_entry)) {
1142 return true;
1143 }
1144 }
1145 // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1146 return managed_stack_.ShadowFramesContain(sirt_entry);
1147 }
1148
SirtVisitRoots(RootVisitor * visitor,void * arg)1149 void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
1150 for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1151 size_t num_refs = cur->NumberOfReferences();
1152 for (size_t j = 0; j < num_refs; j++) {
1153 mirror::Object* object = cur->GetReference(j);
1154 if (object != NULL) {
1155 visitor(object, arg);
1156 }
1157 }
1158 }
1159 }
1160
DecodeJObject(jobject obj) const1161 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1162 Locks::mutator_lock_->AssertSharedHeld(this);
1163 if (obj == NULL) {
1164 return NULL;
1165 }
1166 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1167 IndirectRefKind kind = GetIndirectRefKind(ref);
1168 mirror::Object* result;
1169 // The "kinds" below are sorted by the frequency we expect to encounter them.
1170 if (kind == kLocal) {
1171 IndirectReferenceTable& locals = jni_env_->locals;
1172 result = const_cast<mirror::Object*>(locals.Get(ref));
1173 } else if (kind == kSirtOrInvalid) {
1174 // TODO: make stack indirect reference table lookup more efficient
1175 // Check if this is a local reference in the SIRT
1176 if (LIKELY(SirtContains(obj))) {
1177 result = *reinterpret_cast<mirror::Object**>(obj); // Read from SIRT
1178 } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1179 // Assume an invalid local reference is actually a direct pointer.
1180 result = reinterpret_cast<mirror::Object*>(obj);
1181 } else {
1182 result = kInvalidIndirectRefObject;
1183 }
1184 } else if (kind == kGlobal) {
1185 JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1186 IndirectReferenceTable& globals = vm->globals;
1187 ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1188 result = const_cast<mirror::Object*>(globals.Get(ref));
1189 } else {
1190 DCHECK_EQ(kind, kWeakGlobal);
1191 result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1192 if (result == kClearedJniWeakGlobal) {
1193 // This is a special case where it's okay to return NULL.
1194 return nullptr;
1195 }
1196 }
1197
1198 if (UNLIKELY(result == NULL)) {
1199 JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1200 } else {
1201 if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1202 Runtime::Current()->GetHeap()->VerifyObject(result);
1203 }
1204 }
1205 return result;
1206 }
1207
1208 // Implements java.lang.Thread.interrupted.
Interrupted()1209 bool Thread::Interrupted() {
1210 MutexLock mu(Thread::Current(), *wait_mutex_);
1211 bool interrupted = interrupted_;
1212 interrupted_ = false;
1213 return interrupted;
1214 }
1215
1216 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1217 bool Thread::IsInterrupted() {
1218 MutexLock mu(Thread::Current(), *wait_mutex_);
1219 return interrupted_;
1220 }
1221
Interrupt()1222 void Thread::Interrupt() {
1223 Thread* self = Thread::Current();
1224 MutexLock mu(self, *wait_mutex_);
1225 if (interrupted_) {
1226 return;
1227 }
1228 interrupted_ = true;
1229 NotifyLocked(self);
1230 }
1231
Notify()1232 void Thread::Notify() {
1233 Thread* self = Thread::Current();
1234 MutexLock mu(self, *wait_mutex_);
1235 NotifyLocked(self);
1236 }
1237
NotifyLocked(Thread * self)1238 void Thread::NotifyLocked(Thread* self) {
1239 if (wait_monitor_ != NULL) {
1240 wait_cond_->Signal(self);
1241 }
1242 }
1243
1244 class CountStackDepthVisitor : public StackVisitor {
1245 public:
1246 explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1247 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1248 : StackVisitor(thread, NULL),
1249 depth_(0), skip_depth_(0), skipping_(true) {}
1250
VisitFrame()1251 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1252 // We want to skip frames up to and including the exception's constructor.
1253 // Note we also skip the frame if it doesn't have a method (namely the callee
1254 // save frame)
1255 mirror::ArtMethod* m = GetMethod();
1256 if (skipping_ && !m->IsRuntimeMethod() &&
1257 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1258 skipping_ = false;
1259 }
1260 if (!skipping_) {
1261 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
1262 ++depth_;
1263 }
1264 } else {
1265 ++skip_depth_;
1266 }
1267 return true;
1268 }
1269
GetDepth() const1270 int GetDepth() const {
1271 return depth_;
1272 }
1273
GetSkipDepth() const1274 int GetSkipDepth() const {
1275 return skip_depth_;
1276 }
1277
1278 private:
1279 uint32_t depth_;
1280 uint32_t skip_depth_;
1281 bool skipping_;
1282 };
1283
1284 class BuildInternalStackTraceVisitor : public StackVisitor {
1285 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1286 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1287 : StackVisitor(thread, NULL), self_(self),
1288 skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {}
1289
Init(int depth)1290 bool Init(int depth)
1291 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1292 // Allocate method trace with an extra slot that will hold the PC trace
1293 SirtRef<mirror::ObjectArray<mirror::Object> >
1294 method_trace(self_,
1295 Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1296 depth + 1));
1297 if (method_trace.get() == NULL) {
1298 return false;
1299 }
1300 mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1301 if (dex_pc_trace == NULL) {
1302 return false;
1303 }
1304 // Save PC trace in last element of method trace, also places it into the
1305 // object graph.
1306 method_trace->Set(depth, dex_pc_trace);
1307 // Set the Object*s and assert that no thread suspension is now possible.
1308 const char* last_no_suspend_cause =
1309 self_->StartAssertNoThreadSuspension("Building internal stack trace");
1310 CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause;
1311 method_trace_ = method_trace.get();
1312 dex_pc_trace_ = dex_pc_trace;
1313 return true;
1314 }
1315
~BuildInternalStackTraceVisitor()1316 virtual ~BuildInternalStackTraceVisitor() {
1317 if (method_trace_ != NULL) {
1318 self_->EndAssertNoThreadSuspension(NULL);
1319 }
1320 }
1321
VisitFrame()1322 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1323 if (method_trace_ == NULL || dex_pc_trace_ == NULL) {
1324 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1325 }
1326 if (skip_depth_ > 0) {
1327 skip_depth_--;
1328 return true;
1329 }
1330 mirror::ArtMethod* m = GetMethod();
1331 if (m->IsRuntimeMethod()) {
1332 return true; // Ignore runtime frames (in particular callee save).
1333 }
1334 method_trace_->Set(count_, m);
1335 dex_pc_trace_->Set(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1336 ++count_;
1337 return true;
1338 }
1339
GetInternalStackTrace() const1340 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1341 return method_trace_;
1342 }
1343
1344 private:
1345 Thread* const self_;
1346 // How many more frames to skip.
1347 int32_t skip_depth_;
1348 // Current position down stack trace.
1349 uint32_t count_;
1350 // Array of dex PC values.
1351 mirror::IntArray* dex_pc_trace_;
1352 // An array of the methods on the stack, the last entry is a reference to the PC trace.
1353 mirror::ObjectArray<mirror::Object>* method_trace_;
1354 };
1355
CreateInternalStackTrace(const ScopedObjectAccessUnchecked & soa) const1356 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1357 // Compute depth of stack
1358 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1359 count_visitor.WalkStack();
1360 int32_t depth = count_visitor.GetDepth();
1361 int32_t skip_depth = count_visitor.GetSkipDepth();
1362
1363 // Build internal stack trace.
1364 BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1365 skip_depth);
1366 if (!build_trace_visitor.Init(depth)) {
1367 return NULL; // Allocation failed.
1368 }
1369 build_trace_visitor.WalkStack();
1370 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1371 if (kIsDebugBuild) {
1372 for (int32_t i = 0; i < trace->GetLength(); ++i) {
1373 CHECK(trace->Get(i) != NULL);
1374 }
1375 }
1376 return soa.AddLocalReference<jobjectArray>(trace);
1377 }
1378
InternalStackTraceToStackTraceElementArray(JNIEnv * env,jobject internal,jobjectArray output_array,int * stack_depth)1379 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1380 jobjectArray output_array, int* stack_depth) {
1381 // Transition into runnable state to work on Object*/Array*
1382 ScopedObjectAccess soa(env);
1383 // Decode the internal stack trace into the depth, method trace and PC trace
1384 mirror::ObjectArray<mirror::Object>* method_trace =
1385 soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1386 int32_t depth = method_trace->GetLength() - 1;
1387
1388 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1389
1390 jobjectArray result;
1391 mirror::ObjectArray<mirror::StackTraceElement>* java_traces;
1392 if (output_array != NULL) {
1393 // Reuse the array we were given.
1394 result = output_array;
1395 java_traces = soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(output_array);
1396 // ...adjusting the number of frames we'll write to not exceed the array length.
1397 depth = std::min(depth, java_traces->GetLength());
1398 } else {
1399 // Create java_trace array and place in local reference table
1400 java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1401 if (java_traces == NULL) {
1402 return NULL;
1403 }
1404 result = soa.AddLocalReference<jobjectArray>(java_traces);
1405 }
1406
1407 if (stack_depth != NULL) {
1408 *stack_depth = depth;
1409 }
1410
1411 MethodHelper mh;
1412 for (int32_t i = 0; i < depth; ++i) {
1413 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1414 mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1415 MethodHelper mh(method);
1416 int32_t line_number;
1417 SirtRef<mirror::String> class_name_object(soa.Self(), nullptr);
1418 SirtRef<mirror::String> source_name_object(soa.Self(), nullptr);
1419 if (method->IsProxyMethod()) {
1420 line_number = -1;
1421 class_name_object.reset(method->GetDeclaringClass()->GetName());
1422 // source_name_object intentionally left null for proxy methods
1423 } else {
1424 mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1425 uint32_t dex_pc = pc_trace->Get(i);
1426 line_number = mh.GetLineNumFromDexPC(dex_pc);
1427 // Allocate element, potentially triggering GC
1428 // TODO: reuse class_name_object via Class::name_?
1429 const char* descriptor = mh.GetDeclaringClassDescriptor();
1430 CHECK(descriptor != nullptr);
1431 std::string class_name(PrettyDescriptor(descriptor));
1432 class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1433 if (class_name_object.get() == nullptr) {
1434 return nullptr;
1435 }
1436 const char* source_file = mh.GetDeclaringClassSourceFile();
1437 if (source_file != nullptr) {
1438 source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1439 if (source_name_object.get() == nullptr) {
1440 return nullptr;
1441 }
1442 }
1443 }
1444 const char* method_name = mh.GetName();
1445 CHECK(method_name != NULL);
1446 SirtRef<mirror::String> method_name_object(soa.Self(),
1447 mirror::String::AllocFromModifiedUtf8(soa.Self(),
1448 method_name));
1449 if (method_name_object.get() == NULL) {
1450 return NULL;
1451 }
1452 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(soa.Self(),
1453 class_name_object.get(), method_name_object.get(), source_name_object.get(), line_number);
1454 if (obj == NULL) {
1455 return NULL;
1456 }
1457 #ifdef MOVING_GARBAGE_COLLECTOR
1458 // Re-read after potential GC
1459 java_traces = Decode<ObjectArray<Object>*>(soa.Env(), result);
1460 method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(soa.Env(), internal));
1461 pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
1462 #endif
1463 java_traces->Set(i, obj);
1464 }
1465 return result;
1466 }
1467
ThrowNewExceptionF(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,...)1468 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1469 const char* exception_class_descriptor, const char* fmt, ...) {
1470 va_list args;
1471 va_start(args, fmt);
1472 ThrowNewExceptionV(throw_location, exception_class_descriptor,
1473 fmt, args);
1474 va_end(args);
1475 }
1476
ThrowNewExceptionV(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,va_list ap)1477 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1478 const char* exception_class_descriptor,
1479 const char* fmt, va_list ap) {
1480 std::string msg;
1481 StringAppendV(&msg, fmt, ap);
1482 ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1483 }
1484
ThrowNewException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1485 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1486 const char* msg) {
1487 AssertNoPendingException(); // Callers should either clear or call ThrowNewWrappedException.
1488 ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1489 }
1490
ThrowNewWrappedException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1491 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1492 const char* exception_class_descriptor,
1493 const char* msg) {
1494 DCHECK_EQ(this, Thread::Current());
1495 // Ensure we don't forget arguments over object allocation.
1496 SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1497 SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1498 // Ignore the cause throw location. TODO: should we report this as a re-throw?
1499 SirtRef<mirror::Throwable> cause(this, GetException(NULL));
1500 ClearException();
1501 Runtime* runtime = Runtime::Current();
1502
1503 mirror::ClassLoader* cl = NULL;
1504 if (throw_location.GetMethod() != NULL) {
1505 cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader();
1506 }
1507 SirtRef<mirror::Class>
1508 exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor, cl));
1509 if (UNLIKELY(exception_class.get() == NULL)) {
1510 CHECK(IsExceptionPending());
1511 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1512 return;
1513 }
1514
1515 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) {
1516 DCHECK(IsExceptionPending());
1517 return;
1518 }
1519 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1520 SirtRef<mirror::Throwable> exception(this,
1521 down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1522
1523 // Choose an appropriate constructor and set up the arguments.
1524 const char* signature;
1525 SirtRef<mirror::String> msg_string(this, NULL);
1526 if (msg != NULL) {
1527 // Ensure we remember this and the method over the String allocation.
1528 msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1529 if (UNLIKELY(msg_string.get() == NULL)) {
1530 CHECK(IsExceptionPending()); // OOME.
1531 return;
1532 }
1533 if (cause.get() == NULL) {
1534 signature = "(Ljava/lang/String;)V";
1535 } else {
1536 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1537 }
1538 } else {
1539 if (cause.get() == NULL) {
1540 signature = "()V";
1541 } else {
1542 signature = "(Ljava/lang/Throwable;)V";
1543 }
1544 }
1545 mirror::ArtMethod* exception_init_method =
1546 exception_class->FindDeclaredDirectMethod("<init>", signature);
1547
1548 CHECK(exception_init_method != NULL) << "No <init>" << signature << " in "
1549 << PrettyDescriptor(exception_class_descriptor);
1550
1551 if (UNLIKELY(!runtime->IsStarted())) {
1552 // Something is trying to throw an exception without a started runtime, which is the common
1553 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1554 // the exception fields directly.
1555 if (msg != NULL) {
1556 exception->SetDetailMessage(msg_string.get());
1557 }
1558 if (cause.get() != NULL) {
1559 exception->SetCause(cause.get());
1560 }
1561 ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1562 throw_location.GetDexPc());
1563 SetException(gc_safe_throw_location, exception.get());
1564 } else {
1565 ArgArray args("VLL", 3);
1566 args.Append(reinterpret_cast<uint32_t>(exception.get()));
1567 if (msg != NULL) {
1568 args.Append(reinterpret_cast<uint32_t>(msg_string.get()));
1569 }
1570 if (cause.get() != NULL) {
1571 args.Append(reinterpret_cast<uint32_t>(cause.get()));
1572 }
1573 JValue result;
1574 exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
1575 if (LIKELY(!IsExceptionPending())) {
1576 ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1577 throw_location.GetDexPc());
1578 SetException(gc_safe_throw_location, exception.get());
1579 }
1580 }
1581 }
1582
ThrowOutOfMemoryError(const char * msg)1583 void Thread::ThrowOutOfMemoryError(const char* msg) {
1584 LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1585 msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1586 ThrowLocation throw_location = GetCurrentLocationForThrow();
1587 if (!throwing_OutOfMemoryError_) {
1588 throwing_OutOfMemoryError_ = true;
1589 ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1590 throwing_OutOfMemoryError_ = false;
1591 } else {
1592 Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one.
1593 SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1594 }
1595 }
1596
CurrentFromGdb()1597 Thread* Thread::CurrentFromGdb() {
1598 return Thread::Current();
1599 }
1600
DumpFromGdb() const1601 void Thread::DumpFromGdb() const {
1602 std::ostringstream ss;
1603 Dump(ss);
1604 std::string str(ss.str());
1605 // log to stderr for debugging command line processes
1606 std::cerr << str;
1607 #ifdef HAVE_ANDROID_OS
1608 // log to logcat for debugging frameworks processes
1609 LOG(INFO) << str;
1610 #endif
1611 }
1612
1613 struct EntryPointInfo {
1614 uint32_t offset;
1615 const char* name;
1616 };
1617 #define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1618 #define JNI_ENTRY_POINT_INFO(x) { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1619 #define PORTABLE_ENTRY_POINT_INFO(x) { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1620 #define QUICK_ENTRY_POINT_INFO(x) { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1621 static const EntryPointInfo gThreadEntryPointInfo[] = {
1622 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1623 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1624 JNI_ENTRY_POINT_INFO(pDlsymLookup),
1625 PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1626 PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1627 QUICK_ENTRY_POINT_INFO(pAllocArray),
1628 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1629 QUICK_ENTRY_POINT_INFO(pAllocObject),
1630 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1631 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1632 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1633 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1634 QUICK_ENTRY_POINT_INFO(pCanPutArrayElement),
1635 QUICK_ENTRY_POINT_INFO(pCheckCast),
1636 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1637 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1638 QUICK_ENTRY_POINT_INFO(pInitializeType),
1639 QUICK_ENTRY_POINT_INFO(pResolveString),
1640 QUICK_ENTRY_POINT_INFO(pSet32Instance),
1641 QUICK_ENTRY_POINT_INFO(pSet32Static),
1642 QUICK_ENTRY_POINT_INFO(pSet64Instance),
1643 QUICK_ENTRY_POINT_INFO(pSet64Static),
1644 QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1645 QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1646 QUICK_ENTRY_POINT_INFO(pGet32Instance),
1647 QUICK_ENTRY_POINT_INFO(pGet32Static),
1648 QUICK_ENTRY_POINT_INFO(pGet64Instance),
1649 QUICK_ENTRY_POINT_INFO(pGet64Static),
1650 QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1651 QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1652 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1653 QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1654 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1655 QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1656 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1657 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1658 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1659 QUICK_ENTRY_POINT_INFO(pLockObject),
1660 QUICK_ENTRY_POINT_INFO(pUnlockObject),
1661 QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1662 QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1663 QUICK_ENTRY_POINT_INFO(pCmplDouble),
1664 QUICK_ENTRY_POINT_INFO(pCmplFloat),
1665 QUICK_ENTRY_POINT_INFO(pFmod),
1666 QUICK_ENTRY_POINT_INFO(pSqrt),
1667 QUICK_ENTRY_POINT_INFO(pL2d),
1668 QUICK_ENTRY_POINT_INFO(pFmodf),
1669 QUICK_ENTRY_POINT_INFO(pL2f),
1670 QUICK_ENTRY_POINT_INFO(pD2iz),
1671 QUICK_ENTRY_POINT_INFO(pF2iz),
1672 QUICK_ENTRY_POINT_INFO(pIdivmod),
1673 QUICK_ENTRY_POINT_INFO(pD2l),
1674 QUICK_ENTRY_POINT_INFO(pF2l),
1675 QUICK_ENTRY_POINT_INFO(pLdiv),
1676 QUICK_ENTRY_POINT_INFO(pLdivmod),
1677 QUICK_ENTRY_POINT_INFO(pLmul),
1678 QUICK_ENTRY_POINT_INFO(pShlLong),
1679 QUICK_ENTRY_POINT_INFO(pShrLong),
1680 QUICK_ENTRY_POINT_INFO(pUshrLong),
1681 QUICK_ENTRY_POINT_INFO(pIndexOf),
1682 QUICK_ENTRY_POINT_INFO(pMemcmp16),
1683 QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1684 QUICK_ENTRY_POINT_INFO(pMemcpy),
1685 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1686 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1687 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1688 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampoline),
1689 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1690 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1691 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1692 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1693 QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1694 QUICK_ENTRY_POINT_INFO(pTestSuspend),
1695 QUICK_ENTRY_POINT_INFO(pDeliverException),
1696 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1697 QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1698 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1699 QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1700 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1701 };
1702 #undef QUICK_ENTRY_POINT_INFO
1703
DumpThreadOffset(std::ostream & os,uint32_t offset,size_t size_of_pointers)1704 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1705 CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets.
1706
1707 #define DO_THREAD_OFFSET(x) \
1708 if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1709 os << # x; \
1710 return; \
1711 }
1712 DO_THREAD_OFFSET(state_and_flags_);
1713 DO_THREAD_OFFSET(card_table_);
1714 DO_THREAD_OFFSET(exception_);
1715 DO_THREAD_OFFSET(opeer_);
1716 DO_THREAD_OFFSET(jni_env_);
1717 DO_THREAD_OFFSET(self_);
1718 DO_THREAD_OFFSET(stack_end_);
1719 DO_THREAD_OFFSET(suspend_count_);
1720 DO_THREAD_OFFSET(thin_lock_id_);
1721 // DO_THREAD_OFFSET(top_of_managed_stack_);
1722 // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1723 DO_THREAD_OFFSET(top_sirt_);
1724 #undef DO_THREAD_OFFSET
1725
1726 size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1727 CHECK_EQ(entry_point_count * size_of_pointers,
1728 sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1729 sizeof(QuickEntryPoints));
1730 uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1731 for (size_t i = 0; i < entry_point_count; ++i) {
1732 CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1733 expected_offset += size_of_pointers;
1734 if (gThreadEntryPointInfo[i].offset == offset) {
1735 os << gThreadEntryPointInfo[i].name;
1736 return;
1737 }
1738 }
1739 os << offset;
1740 }
1741
1742 static const bool kDebugExceptionDelivery = false;
1743 class CatchBlockStackVisitor : public StackVisitor {
1744 public:
CatchBlockStackVisitor(Thread * self,const ThrowLocation & throw_location,mirror::Throwable * exception,bool is_deoptimization)1745 CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location,
1746 mirror::Throwable* exception, bool is_deoptimization)
1747 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1748 : StackVisitor(self, self->GetLongJumpContext()),
1749 self_(self), exception_(exception), is_deoptimization_(is_deoptimization),
1750 to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location),
1751 handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0),
1752 native_method_count_(0), clear_exception_(false),
1753 method_tracing_active_(is_deoptimization ||
1754 Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()),
1755 instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) {
1756 // Exception not in root sets, can't allow GC.
1757 last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block");
1758 }
1759
~CatchBlockStackVisitor()1760 ~CatchBlockStackVisitor() {
1761 LOG(FATAL) << "UNREACHABLE"; // Expected to take long jump.
1762 }
1763
VisitFrame()1764 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1765 mirror::ArtMethod* method = GetMethod();
1766 if (method == NULL) {
1767 // This is the upcall, we remember the frame and last pc so that we may long jump to them.
1768 handler_quick_frame_pc_ = GetCurrentQuickFramePc();
1769 handler_quick_frame_ = GetCurrentQuickFrame();
1770 return false; // End stack walk.
1771 } else {
1772 if (UNLIKELY(method_tracing_active_ &&
1773 GetQuickInstrumentationExitPc() == GetReturnPc())) {
1774 // Keep count of the number of unwinds during instrumentation.
1775 instrumentation_frames_to_pop_++;
1776 }
1777 if (method->IsRuntimeMethod()) {
1778 // Ignore callee save method.
1779 DCHECK(method->IsCalleeSaveMethod());
1780 return true;
1781 } else if (is_deoptimization_) {
1782 return HandleDeoptimization(method);
1783 } else {
1784 return HandleTryItems(method);
1785 }
1786 }
1787 }
1788
HandleTryItems(mirror::ArtMethod * method)1789 bool HandleTryItems(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1790 uint32_t dex_pc = DexFile::kDexNoIndex;
1791 if (method->IsNative()) {
1792 native_method_count_++;
1793 } else {
1794 dex_pc = GetDexPc();
1795 }
1796 if (dex_pc != DexFile::kDexNoIndex) {
1797 uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc, &clear_exception_);
1798 if (found_dex_pc != DexFile::kDexNoIndex) {
1799 handler_dex_pc_ = found_dex_pc;
1800 handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc);
1801 handler_quick_frame_ = GetCurrentQuickFrame();
1802 return false; // End stack walk.
1803 }
1804 }
1805 return true; // Continue stack walk.
1806 }
1807
HandleDeoptimization(mirror::ArtMethod * m)1808 bool HandleDeoptimization(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1809 MethodHelper mh(m);
1810 const DexFile::CodeItem* code_item = mh.GetCodeItem();
1811 CHECK(code_item != NULL);
1812 uint16_t num_regs = code_item->registers_size_;
1813 uint32_t dex_pc = GetDexPc();
1814 const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc);
1815 uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits();
1816 ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc);
1817 verifier::MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
1818 &mh.GetClassDef(), code_item,
1819 m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true);
1820 verifier.Verify();
1821 std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc);
1822 for (uint16_t reg = 0; reg < num_regs; reg++) {
1823 VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
1824 switch (kind) {
1825 case kUndefined:
1826 new_frame->SetVReg(reg, 0xEBADDE09);
1827 break;
1828 case kConstant:
1829 new_frame->SetVReg(reg, kinds.at((reg * 2) + 1));
1830 break;
1831 case kReferenceVReg:
1832 new_frame->SetVRegReference(reg,
1833 reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind)));
1834 break;
1835 default:
1836 new_frame->SetVReg(reg, GetVReg(m, reg, kind));
1837 break;
1838 }
1839 }
1840 if (prev_shadow_frame_ != NULL) {
1841 prev_shadow_frame_->SetLink(new_frame);
1842 } else {
1843 top_shadow_frame_ = new_frame;
1844 }
1845 prev_shadow_frame_ = new_frame;
1846 return true;
1847 }
1848
DoLongJump()1849 void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1850 mirror::ArtMethod* catch_method = *handler_quick_frame_;
1851 if (catch_method == NULL) {
1852 if (kDebugExceptionDelivery) {
1853 LOG(INFO) << "Handler is upcall";
1854 }
1855 } else {
1856 CHECK(!is_deoptimization_);
1857 if (kDebugExceptionDelivery) {
1858 const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1859 int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_);
1860 LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
1861 }
1862 }
1863 if (clear_exception_) {
1864 // Exception was cleared as part of delivery.
1865 DCHECK(!self_->IsExceptionPending());
1866 } else {
1867 // Put exception back in root set with clear throw location.
1868 self_->SetException(ThrowLocation(), exception_);
1869 }
1870 self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_);
1871 // Do instrumentation events after allowing thread suspension again.
1872 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1873 for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) {
1874 // We pop the instrumentation stack here so as not to corrupt it during the stack walk.
1875 if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) {
1876 // Don't pop the instrumentation frame of the catch handler.
1877 instrumentation->PopMethodForUnwind(self_, is_deoptimization_);
1878 }
1879 }
1880 if (!is_deoptimization_) {
1881 instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_,
1882 exception_);
1883 } else {
1884 // TODO: proper return value.
1885 self_->SetDeoptimizationShadowFrame(top_shadow_frame_);
1886 }
1887 // Place context back on thread so it will be available when we continue.
1888 self_->ReleaseLongJumpContext(context_);
1889 context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_));
1890 CHECK_NE(handler_quick_frame_pc_, 0u);
1891 context_->SetPC(handler_quick_frame_pc_);
1892 context_->SmashCallerSaves();
1893 context_->DoLongJump();
1894 }
1895
1896 private:
1897 Thread* const self_;
1898 mirror::Throwable* const exception_;
1899 const bool is_deoptimization_;
1900 // The type of the exception catch block to find.
1901 mirror::Class* const to_find_;
1902 // Location of the throw.
1903 const ThrowLocation& throw_location_;
1904 // Quick frame with found handler or last frame if no handler found.
1905 mirror::ArtMethod** handler_quick_frame_;
1906 // PC to branch to for the handler.
1907 uintptr_t handler_quick_frame_pc_;
1908 // Associated dex PC.
1909 uint32_t handler_dex_pc_;
1910 // Number of native methods passed in crawl (equates to number of SIRTs to pop)
1911 uint32_t native_method_count_;
1912 // Should the exception be cleared as the catch block has no move-exception?
1913 bool clear_exception_;
1914 // Is method tracing active?
1915 const bool method_tracing_active_;
1916 // Support for nesting no thread suspension checks.
1917 const char* last_no_assert_suspension_cause_;
1918 // Number of frames to pop in long jump.
1919 size_t instrumentation_frames_to_pop_;
1920 ShadowFrame* top_shadow_frame_;
1921 ShadowFrame* prev_shadow_frame_;
1922 };
1923
QuickDeliverException()1924 void Thread::QuickDeliverException() {
1925 // Get exception from thread.
1926 ThrowLocation throw_location;
1927 mirror::Throwable* exception = GetException(&throw_location);
1928 CHECK(exception != NULL);
1929 // Don't leave exception visible while we try to find the handler, which may cause class
1930 // resolution.
1931 ClearException();
1932 bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1933 if (kDebugExceptionDelivery) {
1934 if (!is_deoptimization) {
1935 mirror::String* msg = exception->GetDetailMessage();
1936 std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
1937 DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1938 << ": " << str_msg << "\n");
1939 } else {
1940 DumpStack(LOG(INFO) << "Deoptimizing: ");
1941 }
1942 }
1943 CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization);
1944 catch_finder.WalkStack(true);
1945 catch_finder.DoLongJump();
1946 LOG(FATAL) << "UNREACHABLE";
1947 }
1948
GetLongJumpContext()1949 Context* Thread::GetLongJumpContext() {
1950 Context* result = long_jump_context_;
1951 if (result == NULL) {
1952 result = Context::Create();
1953 } else {
1954 long_jump_context_ = NULL; // Avoid context being shared.
1955 result->Reset();
1956 }
1957 return result;
1958 }
1959
1960 struct CurrentMethodVisitor : public StackVisitor {
CurrentMethodVisitorart::CurrentMethodVisitor1961 CurrentMethodVisitor(Thread* thread, Context* context)
1962 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1963 : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {}
VisitFrameart::CurrentMethodVisitor1964 virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1965 mirror::ArtMethod* m = GetMethod();
1966 if (m->IsRuntimeMethod()) {
1967 // Continue if this is a runtime method.
1968 return true;
1969 }
1970 if (context_ != NULL) {
1971 this_object_ = GetThisObject();
1972 }
1973 method_ = m;
1974 dex_pc_ = GetDexPc();
1975 return false;
1976 }
1977 mirror::Object* this_object_;
1978 mirror::ArtMethod* method_;
1979 uint32_t dex_pc_;
1980 };
1981
GetCurrentMethod(uint32_t * dex_pc) const1982 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1983 CurrentMethodVisitor visitor(const_cast<Thread*>(this), NULL);
1984 visitor.WalkStack(false);
1985 if (dex_pc != NULL) {
1986 *dex_pc = visitor.dex_pc_;
1987 }
1988 return visitor.method_;
1989 }
1990
GetCurrentLocationForThrow()1991 ThrowLocation Thread::GetCurrentLocationForThrow() {
1992 Context* context = GetLongJumpContext();
1993 CurrentMethodVisitor visitor(this, context);
1994 visitor.WalkStack(false);
1995 ReleaseLongJumpContext(context);
1996 return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1997 }
1998
HoldsLock(mirror::Object * object)1999 bool Thread::HoldsLock(mirror::Object* object) {
2000 if (object == NULL) {
2001 return false;
2002 }
2003 return object->GetThinLockId() == thin_lock_id_;
2004 }
2005
2006 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2007 template <typename RootVisitor>
2008 class ReferenceMapVisitor : public StackVisitor {
2009 public:
ReferenceMapVisitor(Thread * thread,Context * context,const RootVisitor & visitor)2010 ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2011 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2012 : StackVisitor(thread, context), visitor_(visitor) {}
2013
VisitFrame()2014 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2015 if (false) {
2016 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2017 << StringPrintf("@ PC:%04x", GetDexPc());
2018 }
2019 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2020 if (shadow_frame != NULL) {
2021 mirror::ArtMethod* m = shadow_frame->GetMethod();
2022 size_t num_regs = shadow_frame->NumberOfVRegs();
2023 if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2024 // SIRT for JNI or References for interpreter.
2025 for (size_t reg = 0; reg < num_regs; ++reg) {
2026 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2027 if (ref != NULL) {
2028 visitor_(ref, reg, this);
2029 }
2030 }
2031 } else {
2032 // Java method.
2033 // Portable path use DexGcMap and store in Method.native_gc_map_.
2034 const uint8_t* gc_map = m->GetNativeGcMap();
2035 CHECK(gc_map != NULL) << PrettyMethod(m);
2036 uint32_t gc_map_length = static_cast<uint32_t>((gc_map[0] << 24) |
2037 (gc_map[1] << 16) |
2038 (gc_map[2] << 8) |
2039 (gc_map[3] << 0));
2040 verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length);
2041 uint32_t dex_pc = GetDexPc();
2042 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2043 DCHECK(reg_bitmap != NULL);
2044 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2045 for (size_t reg = 0; reg < num_regs; ++reg) {
2046 if (TestBitmap(reg, reg_bitmap)) {
2047 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2048 if (ref != NULL) {
2049 visitor_(ref, reg, this);
2050 }
2051 }
2052 }
2053 }
2054 } else {
2055 mirror::ArtMethod* m = GetMethod();
2056 // Process register map (which native and runtime methods don't have)
2057 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2058 const uint8_t* native_gc_map = m->GetNativeGcMap();
2059 CHECK(native_gc_map != NULL) << PrettyMethod(m);
2060 mh_.ChangeMethod(m);
2061 const DexFile::CodeItem* code_item = mh_.GetCodeItem();
2062 DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions?
2063 NativePcOffsetToReferenceMap map(native_gc_map);
2064 size_t num_regs = std::min(map.RegWidth() * 8,
2065 static_cast<size_t>(code_item->registers_size_));
2066 if (num_regs > 0) {
2067 const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
2068 DCHECK(reg_bitmap != NULL);
2069 const VmapTable vmap_table(m->GetVmapTable());
2070 uint32_t core_spills = m->GetCoreSpillMask();
2071 uint32_t fp_spills = m->GetFpSpillMask();
2072 size_t frame_size = m->GetFrameSizeInBytes();
2073 // For all dex registers in the bitmap
2074 mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2075 DCHECK(cur_quick_frame != NULL);
2076 for (size_t reg = 0; reg < num_regs; ++reg) {
2077 // Does this register hold a reference?
2078 if (TestBitmap(reg, reg_bitmap)) {
2079 uint32_t vmap_offset;
2080 mirror::Object* ref;
2081 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2082 uintptr_t val = GetGPR(vmap_table.ComputeRegister(core_spills, vmap_offset,
2083 kReferenceVReg));
2084 ref = reinterpret_cast<mirror::Object*>(val);
2085 } else {
2086 ref = reinterpret_cast<mirror::Object*>(GetVReg(cur_quick_frame, code_item,
2087 core_spills, fp_spills, frame_size,
2088 reg));
2089 }
2090
2091 if (ref != NULL) {
2092 visitor_(ref, reg, this);
2093 }
2094 }
2095 }
2096 }
2097 }
2098 }
2099 return true;
2100 }
2101
2102 private:
TestBitmap(int reg,const uint8_t * reg_vector)2103 static bool TestBitmap(int reg, const uint8_t* reg_vector) {
2104 return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
2105 }
2106
2107 // Visitor for when we visit a root.
2108 const RootVisitor& visitor_;
2109
2110 // A method helper we keep around to avoid dex file/cache re-computations.
2111 MethodHelper mh_;
2112 };
2113
2114 class RootCallbackVisitor {
2115 public:
RootCallbackVisitor(RootVisitor * visitor,void * arg)2116 RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {}
2117
operator ()(const mirror::Object * obj,size_t,const StackVisitor *) const2118 void operator()(const mirror::Object* obj, size_t, const StackVisitor*) const {
2119 visitor_(obj, arg_);
2120 }
2121
2122 private:
2123 RootVisitor* visitor_;
2124 void* arg_;
2125 };
2126
2127 class VerifyCallbackVisitor {
2128 public:
VerifyCallbackVisitor(VerifyRootVisitor * visitor,void * arg)2129 VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
2130 : visitor_(visitor),
2131 arg_(arg) {
2132 }
2133
operator ()(const mirror::Object * obj,size_t vreg,const StackVisitor * visitor) const2134 void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
2135 visitor_(obj, arg_, vreg, visitor);
2136 }
2137
2138 private:
2139 VerifyRootVisitor* const visitor_;
2140 void* const arg_;
2141 };
2142
2143 struct VerifyRootWrapperArg {
2144 VerifyRootVisitor* visitor;
2145 void* arg;
2146 };
2147
VerifyRootWrapperCallback(const mirror::Object * root,void * arg)2148 static void VerifyRootWrapperCallback(const mirror::Object* root, void* arg) {
2149 VerifyRootWrapperArg* wrapperArg = reinterpret_cast<VerifyRootWrapperArg*>(arg);
2150 wrapperArg->visitor(root, wrapperArg->arg, 0, NULL);
2151 }
2152
VerifyRoots(VerifyRootVisitor * visitor,void * arg)2153 void Thread::VerifyRoots(VerifyRootVisitor* visitor, void* arg) {
2154 // We need to map from a RootVisitor to VerifyRootVisitor, so pass in nulls for arguments we
2155 // don't have.
2156 VerifyRootWrapperArg wrapperArg;
2157 wrapperArg.arg = arg;
2158 wrapperArg.visitor = visitor;
2159
2160 if (opeer_ != NULL) {
2161 VerifyRootWrapperCallback(opeer_, &wrapperArg);
2162 }
2163 if (exception_ != NULL) {
2164 VerifyRootWrapperCallback(exception_, &wrapperArg);
2165 }
2166 throw_location_.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2167 if (class_loader_override_ != NULL) {
2168 VerifyRootWrapperCallback(class_loader_override_, &wrapperArg);
2169 }
2170 jni_env_->locals.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2171 jni_env_->monitors.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2172
2173 SirtVisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2174
2175 // Visit roots on this thread's stack
2176 Context* context = GetLongJumpContext();
2177 VerifyCallbackVisitor visitorToCallback(visitor, arg);
2178 ReferenceMapVisitor<VerifyCallbackVisitor> mapper(this, context, visitorToCallback);
2179 mapper.WalkStack();
2180 ReleaseLongJumpContext(context);
2181
2182 std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
2183 typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
2184 for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
2185 mirror::Object* this_object = (*it).this_object_;
2186 if (this_object != NULL) {
2187 VerifyRootWrapperCallback(this_object, &wrapperArg);
2188 }
2189 mirror::ArtMethod* method = (*it).method_;
2190 VerifyRootWrapperCallback(method, &wrapperArg);
2191 }
2192 }
2193
VisitRoots(RootVisitor * visitor,void * arg)2194 void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
2195 if (opeer_ != NULL) {
2196 visitor(opeer_, arg);
2197 }
2198 if (exception_ != NULL) {
2199 visitor(exception_, arg);
2200 }
2201 throw_location_.VisitRoots(visitor, arg);
2202 if (class_loader_override_ != NULL) {
2203 visitor(class_loader_override_, arg);
2204 }
2205 jni_env_->locals.VisitRoots(visitor, arg);
2206 jni_env_->monitors.VisitRoots(visitor, arg);
2207
2208 SirtVisitRoots(visitor, arg);
2209
2210 // Visit roots on this thread's stack
2211 Context* context = GetLongJumpContext();
2212 RootCallbackVisitor visitorToCallback(visitor, arg);
2213 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2214 mapper.WalkStack();
2215 ReleaseLongJumpContext(context);
2216
2217 for (const instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2218 mirror::Object* this_object = frame.this_object_;
2219 if (this_object != NULL) {
2220 visitor(this_object, arg);
2221 }
2222 mirror::ArtMethod* method = frame.method_;
2223 visitor(method, arg);
2224 }
2225 }
2226
VerifyObject(const mirror::Object * root,void * arg)2227 static void VerifyObject(const mirror::Object* root, void* arg) {
2228 gc::Heap* heap = reinterpret_cast<gc::Heap*>(arg);
2229 heap->VerifyObject(root);
2230 }
2231
VerifyStackImpl()2232 void Thread::VerifyStackImpl() {
2233 UniquePtr<Context> context(Context::Create());
2234 RootCallbackVisitor visitorToCallback(VerifyObject, Runtime::Current()->GetHeap());
2235 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2236 mapper.WalkStack();
2237 }
2238
2239 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2240 void Thread::SetStackEndForStackOverflow() {
2241 // During stack overflow we allow use of the full stack.
2242 if (stack_end_ == stack_begin_) {
2243 // However, we seem to have already extended to use the full stack.
2244 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2245 << kStackOverflowReservedBytes << ")?";
2246 DumpStack(LOG(ERROR));
2247 LOG(FATAL) << "Recursive stack overflow.";
2248 }
2249
2250 stack_end_ = stack_begin_;
2251 }
2252
operator <<(std::ostream & os,const Thread & thread)2253 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2254 thread.ShortDump(os);
2255 return os;
2256 }
2257
2258 } // namespace art
2259