1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Lookup.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Sema/DeclSpec.h"
27 #include "clang/Sema/ExternalSemaSource.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/ScopeInfo.h"
31 #include "clang/Sema/Sema.h"
32 #include "clang/Sema/SemaInternal.h"
33 #include "clang/Sema/TemplateDeduction.h"
34 #include "clang/Sema/TypoCorrection.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/StringMap.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/ADT/edit_distance.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <map>
47 #include <set>
48 #include <utility>
49 #include <vector>
50
51 using namespace clang;
52 using namespace sema;
53
54 namespace {
55 class UnqualUsingEntry {
56 const DeclContext *Nominated;
57 const DeclContext *CommonAncestor;
58
59 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)60 UnqualUsingEntry(const DeclContext *Nominated,
61 const DeclContext *CommonAncestor)
62 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63 }
64
getCommonAncestor() const65 const DeclContext *getCommonAncestor() const {
66 return CommonAncestor;
67 }
68
getNominatedNamespace() const69 const DeclContext *getNominatedNamespace() const {
70 return Nominated;
71 }
72
73 // Sort by the pointer value of the common ancestor.
74 struct Comparator {
operator ()__anon9813915b0111::UnqualUsingEntry::Comparator75 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76 return L.getCommonAncestor() < R.getCommonAncestor();
77 }
78
operator ()__anon9813915b0111::UnqualUsingEntry::Comparator79 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80 return E.getCommonAncestor() < DC;
81 }
82
operator ()__anon9813915b0111::UnqualUsingEntry::Comparator83 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84 return DC < E.getCommonAncestor();
85 }
86 };
87 };
88
89 /// A collection of using directives, as used by C++ unqualified
90 /// lookup.
91 class UnqualUsingDirectiveSet {
92 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94 ListTy list;
95 llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97 public:
UnqualUsingDirectiveSet()98 UnqualUsingDirectiveSet() {}
99
visitScopeChain(Scope * S,Scope * InnermostFileScope)100 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101 // C++ [namespace.udir]p1:
102 // During unqualified name lookup, the names appear as if they
103 // were declared in the nearest enclosing namespace which contains
104 // both the using-directive and the nominated namespace.
105 DeclContext *InnermostFileDC
106 = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107 assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 Scope::udir_iterator I = S->using_directives_begin(),
118 End = S->using_directives_end();
119 for (; I != End; ++I)
120 visit(*I, InnermostFileDC);
121 }
122 }
123 }
124
125 // Visits a context and collect all of its using directives
126 // recursively. Treats all using directives as if they were
127 // declared in the context.
128 //
129 // A given context is only every visited once, so it is important
130 // that contexts be visited from the inside out in order to get
131 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)132 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133 if (!visited.insert(DC))
134 return;
135
136 addUsingDirectives(DC, EffectiveDC);
137 }
138
139 // Visits a using directive and collects all of its using
140 // directives recursively. Treats all using directives as if they
141 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)142 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143 DeclContext *NS = UD->getNominatedNamespace();
144 if (!visited.insert(NS))
145 return;
146
147 addUsingDirective(UD, EffectiveDC);
148 addUsingDirectives(NS, EffectiveDC);
149 }
150
151 // Adds all the using directives in a context (and those nominated
152 // by its using directives, transitively) as if they appeared in
153 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)154 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155 SmallVector<DeclContext*,4> queue;
156 while (true) {
157 DeclContext::udir_iterator I, End;
158 for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159 UsingDirectiveDecl *UD = *I;
160 DeclContext *NS = UD->getNominatedNamespace();
161 if (visited.insert(NS)) {
162 addUsingDirective(UD, EffectiveDC);
163 queue.push_back(NS);
164 }
165 }
166
167 if (queue.empty())
168 return;
169
170 DC = queue.back();
171 queue.pop_back();
172 }
173 }
174
175 // Add a using directive as if it had been declared in the given
176 // context. This helps implement C++ [namespace.udir]p3:
177 // The using-directive is transitive: if a scope contains a
178 // using-directive that nominates a second namespace that itself
179 // contains using-directives, the effect is as if the
180 // using-directives from the second namespace also appeared in
181 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)182 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183 // Find the common ancestor between the effective context and
184 // the nominated namespace.
185 DeclContext *Common = UD->getNominatedNamespace();
186 while (!Common->Encloses(EffectiveDC))
187 Common = Common->getParent();
188 Common = Common->getPrimaryContext();
189
190 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191 }
192
done()193 void done() {
194 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195 }
196
197 typedef ListTy::const_iterator const_iterator;
198
begin() const199 const_iterator begin() const { return list.begin(); }
end() const200 const_iterator end() const { return list.end(); }
201
202 std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const203 getNamespacesFor(DeclContext *DC) const {
204 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator());
206 }
207 };
208 }
209
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 IDNS = Decl::IDNS_Ordinary;
221 if (CPlusPlus) {
222 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223 if (Redeclaration)
224 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225 }
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup");
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250 case Sema::LookupLabel:
251 IDNS = Decl::IDNS_Label;
252 break;
253
254 case Sema::LookupMemberName:
255 IDNS = Decl::IDNS_Member;
256 if (CPlusPlus)
257 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258 break;
259
260 case Sema::LookupNestedNameSpecifierName:
261 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262 break;
263
264 case Sema::LookupNamespaceName:
265 IDNS = Decl::IDNS_Namespace;
266 break;
267
268 case Sema::LookupUsingDeclName:
269 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270 | Decl::IDNS_Member | Decl::IDNS_Using;
271 break;
272
273 case Sema::LookupObjCProtocolName:
274 IDNS = Decl::IDNS_ObjCProtocol;
275 break;
276
277 case Sema::LookupAnyName:
278 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280 | Decl::IDNS_Type;
281 break;
282 }
283 return IDNS;
284 }
285
configure()286 void LookupResult::configure() {
287 IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288 isForRedeclaration());
289
290 if (!isForRedeclaration()) {
291 // If we're looking for one of the allocation or deallocation
292 // operators, make sure that the implicitly-declared new and delete
293 // operators can be found.
294 switch (NameInfo.getName().getCXXOverloadedOperator()) {
295 case OO_New:
296 case OO_Delete:
297 case OO_Array_New:
298 case OO_Array_Delete:
299 SemaRef.DeclareGlobalNewDelete();
300 break;
301
302 default:
303 break;
304 }
305
306 // Compiler builtins are always visible, regardless of where they end
307 // up being declared.
308 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
309 if (unsigned BuiltinID = Id->getBuiltinID()) {
310 if (!SemaRef.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
311 AllowHidden = true;
312 }
313 }
314 }
315 }
316
sanityImpl() const317 void LookupResult::sanityImpl() const {
318 // Note that this function is never called by NDEBUG builds. See
319 // LookupResult::sanity().
320 assert(ResultKind != NotFound || Decls.size() == 0);
321 assert(ResultKind != Found || Decls.size() == 1);
322 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
323 (Decls.size() == 1 &&
324 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
325 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
326 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
327 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
328 Ambiguity == AmbiguousBaseSubobjectTypes)));
329 assert((Paths != NULL) == (ResultKind == Ambiguous &&
330 (Ambiguity == AmbiguousBaseSubobjectTypes ||
331 Ambiguity == AmbiguousBaseSubobjects)));
332 }
333
334 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)335 void LookupResult::deletePaths(CXXBasePaths *Paths) {
336 delete Paths;
337 }
338
339 /// Resolves the result kind of this lookup.
resolveKind()340 void LookupResult::resolveKind() {
341 unsigned N = Decls.size();
342
343 // Fast case: no possible ambiguity.
344 if (N == 0) {
345 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
346 return;
347 }
348
349 // If there's a single decl, we need to examine it to decide what
350 // kind of lookup this is.
351 if (N == 1) {
352 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
353 if (isa<FunctionTemplateDecl>(D))
354 ResultKind = FoundOverloaded;
355 else if (isa<UnresolvedUsingValueDecl>(D))
356 ResultKind = FoundUnresolvedValue;
357 return;
358 }
359
360 // Don't do any extra resolution if we've already resolved as ambiguous.
361 if (ResultKind == Ambiguous) return;
362
363 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
364 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
365
366 bool Ambiguous = false;
367 bool HasTag = false, HasFunction = false, HasNonFunction = false;
368 bool HasFunctionTemplate = false, HasUnresolved = false;
369
370 unsigned UniqueTagIndex = 0;
371
372 unsigned I = 0;
373 while (I < N) {
374 NamedDecl *D = Decls[I]->getUnderlyingDecl();
375 D = cast<NamedDecl>(D->getCanonicalDecl());
376
377 // Ignore an invalid declaration unless it's the only one left.
378 if (D->isInvalidDecl() && I < N-1) {
379 Decls[I] = Decls[--N];
380 continue;
381 }
382
383 // Redeclarations of types via typedef can occur both within a scope
384 // and, through using declarations and directives, across scopes. There is
385 // no ambiguity if they all refer to the same type, so unique based on the
386 // canonical type.
387 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
388 if (!TD->getDeclContext()->isRecord()) {
389 QualType T = SemaRef.Context.getTypeDeclType(TD);
390 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
391 // The type is not unique; pull something off the back and continue
392 // at this index.
393 Decls[I] = Decls[--N];
394 continue;
395 }
396 }
397 }
398
399 if (!Unique.insert(D)) {
400 // If it's not unique, pull something off the back (and
401 // continue at this index).
402 Decls[I] = Decls[--N];
403 continue;
404 }
405
406 // Otherwise, do some decl type analysis and then continue.
407
408 if (isa<UnresolvedUsingValueDecl>(D)) {
409 HasUnresolved = true;
410 } else if (isa<TagDecl>(D)) {
411 if (HasTag)
412 Ambiguous = true;
413 UniqueTagIndex = I;
414 HasTag = true;
415 } else if (isa<FunctionTemplateDecl>(D)) {
416 HasFunction = true;
417 HasFunctionTemplate = true;
418 } else if (isa<FunctionDecl>(D)) {
419 HasFunction = true;
420 } else {
421 if (HasNonFunction)
422 Ambiguous = true;
423 HasNonFunction = true;
424 }
425 I++;
426 }
427
428 // C++ [basic.scope.hiding]p2:
429 // A class name or enumeration name can be hidden by the name of
430 // an object, function, or enumerator declared in the same
431 // scope. If a class or enumeration name and an object, function,
432 // or enumerator are declared in the same scope (in any order)
433 // with the same name, the class or enumeration name is hidden
434 // wherever the object, function, or enumerator name is visible.
435 // But it's still an error if there are distinct tag types found,
436 // even if they're not visible. (ref?)
437 if (HideTags && HasTag && !Ambiguous &&
438 (HasFunction || HasNonFunction || HasUnresolved)) {
439 if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
440 Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
441 Decls[UniqueTagIndex] = Decls[--N];
442 else
443 Ambiguous = true;
444 }
445
446 Decls.set_size(N);
447
448 if (HasNonFunction && (HasFunction || HasUnresolved))
449 Ambiguous = true;
450
451 if (Ambiguous)
452 setAmbiguous(LookupResult::AmbiguousReference);
453 else if (HasUnresolved)
454 ResultKind = LookupResult::FoundUnresolvedValue;
455 else if (N > 1 || HasFunctionTemplate)
456 ResultKind = LookupResult::FoundOverloaded;
457 else
458 ResultKind = LookupResult::Found;
459 }
460
addDeclsFromBasePaths(const CXXBasePaths & P)461 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
462 CXXBasePaths::const_paths_iterator I, E;
463 for (I = P.begin(), E = P.end(); I != E; ++I)
464 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
465 DE = I->Decls.end(); DI != DE; ++DI)
466 addDecl(*DI);
467 }
468
setAmbiguousBaseSubobjects(CXXBasePaths & P)469 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
470 Paths = new CXXBasePaths;
471 Paths->swap(P);
472 addDeclsFromBasePaths(*Paths);
473 resolveKind();
474 setAmbiguous(AmbiguousBaseSubobjects);
475 }
476
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)477 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
478 Paths = new CXXBasePaths;
479 Paths->swap(P);
480 addDeclsFromBasePaths(*Paths);
481 resolveKind();
482 setAmbiguous(AmbiguousBaseSubobjectTypes);
483 }
484
print(raw_ostream & Out)485 void LookupResult::print(raw_ostream &Out) {
486 Out << Decls.size() << " result(s)";
487 if (isAmbiguous()) Out << ", ambiguous";
488 if (Paths) Out << ", base paths present";
489
490 for (iterator I = begin(), E = end(); I != E; ++I) {
491 Out << "\n";
492 (*I)->print(Out, 2);
493 }
494 }
495
496 /// \brief Lookup a builtin function, when name lookup would otherwise
497 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)498 static bool LookupBuiltin(Sema &S, LookupResult &R) {
499 Sema::LookupNameKind NameKind = R.getLookupKind();
500
501 // If we didn't find a use of this identifier, and if the identifier
502 // corresponds to a compiler builtin, create the decl object for the builtin
503 // now, injecting it into translation unit scope, and return it.
504 if (NameKind == Sema::LookupOrdinaryName ||
505 NameKind == Sema::LookupRedeclarationWithLinkage) {
506 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
507 if (II) {
508 if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
509 II == S.getFloat128Identifier()) {
510 // libstdc++4.7's type_traits expects type __float128 to exist, so
511 // insert a dummy type to make that header build in gnu++11 mode.
512 R.addDecl(S.getASTContext().getFloat128StubType());
513 return true;
514 }
515
516 // If this is a builtin on this (or all) targets, create the decl.
517 if (unsigned BuiltinID = II->getBuiltinID()) {
518 // In C++, we don't have any predefined library functions like
519 // 'malloc'. Instead, we'll just error.
520 if (S.getLangOpts().CPlusPlus &&
521 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
522 return false;
523
524 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
525 BuiltinID, S.TUScope,
526 R.isForRedeclaration(),
527 R.getNameLoc())) {
528 R.addDecl(D);
529 return true;
530 }
531
532 if (R.isForRedeclaration()) {
533 // If we're redeclaring this function anyway, forget that
534 // this was a builtin at all.
535 S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
536 }
537
538 return false;
539 }
540 }
541 }
542
543 return false;
544 }
545
546 /// \brief Determine whether we can declare a special member function within
547 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)548 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
549 // We need to have a definition for the class.
550 if (!Class->getDefinition() || Class->isDependentContext())
551 return false;
552
553 // We can't be in the middle of defining the class.
554 return !Class->isBeingDefined();
555 }
556
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)557 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
558 if (!CanDeclareSpecialMemberFunction(Class))
559 return;
560
561 // If the default constructor has not yet been declared, do so now.
562 if (Class->needsImplicitDefaultConstructor())
563 DeclareImplicitDefaultConstructor(Class);
564
565 // If the copy constructor has not yet been declared, do so now.
566 if (Class->needsImplicitCopyConstructor())
567 DeclareImplicitCopyConstructor(Class);
568
569 // If the copy assignment operator has not yet been declared, do so now.
570 if (Class->needsImplicitCopyAssignment())
571 DeclareImplicitCopyAssignment(Class);
572
573 if (getLangOpts().CPlusPlus11) {
574 // If the move constructor has not yet been declared, do so now.
575 if (Class->needsImplicitMoveConstructor())
576 DeclareImplicitMoveConstructor(Class); // might not actually do it
577
578 // If the move assignment operator has not yet been declared, do so now.
579 if (Class->needsImplicitMoveAssignment())
580 DeclareImplicitMoveAssignment(Class); // might not actually do it
581 }
582
583 // If the destructor has not yet been declared, do so now.
584 if (Class->needsImplicitDestructor())
585 DeclareImplicitDestructor(Class);
586 }
587
588 /// \brief Determine whether this is the name of an implicitly-declared
589 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)590 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
591 switch (Name.getNameKind()) {
592 case DeclarationName::CXXConstructorName:
593 case DeclarationName::CXXDestructorName:
594 return true;
595
596 case DeclarationName::CXXOperatorName:
597 return Name.getCXXOverloadedOperator() == OO_Equal;
598
599 default:
600 break;
601 }
602
603 return false;
604 }
605
606 /// \brief If there are any implicit member functions with the given name
607 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)608 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
609 DeclarationName Name,
610 const DeclContext *DC) {
611 if (!DC)
612 return;
613
614 switch (Name.getNameKind()) {
615 case DeclarationName::CXXConstructorName:
616 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
617 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
618 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
619 if (Record->needsImplicitDefaultConstructor())
620 S.DeclareImplicitDefaultConstructor(Class);
621 if (Record->needsImplicitCopyConstructor())
622 S.DeclareImplicitCopyConstructor(Class);
623 if (S.getLangOpts().CPlusPlus11 &&
624 Record->needsImplicitMoveConstructor())
625 S.DeclareImplicitMoveConstructor(Class);
626 }
627 break;
628
629 case DeclarationName::CXXDestructorName:
630 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
631 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
632 CanDeclareSpecialMemberFunction(Record))
633 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
634 break;
635
636 case DeclarationName::CXXOperatorName:
637 if (Name.getCXXOverloadedOperator() != OO_Equal)
638 break;
639
640 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
641 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
642 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
643 if (Record->needsImplicitCopyAssignment())
644 S.DeclareImplicitCopyAssignment(Class);
645 if (S.getLangOpts().CPlusPlus11 &&
646 Record->needsImplicitMoveAssignment())
647 S.DeclareImplicitMoveAssignment(Class);
648 }
649 }
650 break;
651
652 default:
653 break;
654 }
655 }
656
657 // Adds all qualifying matches for a name within a decl context to the
658 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)659 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
660 bool Found = false;
661
662 // Lazily declare C++ special member functions.
663 if (S.getLangOpts().CPlusPlus)
664 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
665
666 // Perform lookup into this declaration context.
667 DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
668 for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
669 ++I) {
670 NamedDecl *D = *I;
671 if ((D = R.getAcceptableDecl(D))) {
672 R.addDecl(D);
673 Found = true;
674 }
675 }
676
677 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
678 return true;
679
680 if (R.getLookupName().getNameKind()
681 != DeclarationName::CXXConversionFunctionName ||
682 R.getLookupName().getCXXNameType()->isDependentType() ||
683 !isa<CXXRecordDecl>(DC))
684 return Found;
685
686 // C++ [temp.mem]p6:
687 // A specialization of a conversion function template is not found by
688 // name lookup. Instead, any conversion function templates visible in the
689 // context of the use are considered. [...]
690 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
691 if (!Record->isCompleteDefinition())
692 return Found;
693
694 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
695 UEnd = Record->conversion_end(); U != UEnd; ++U) {
696 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
697 if (!ConvTemplate)
698 continue;
699
700 // When we're performing lookup for the purposes of redeclaration, just
701 // add the conversion function template. When we deduce template
702 // arguments for specializations, we'll end up unifying the return
703 // type of the new declaration with the type of the function template.
704 if (R.isForRedeclaration()) {
705 R.addDecl(ConvTemplate);
706 Found = true;
707 continue;
708 }
709
710 // C++ [temp.mem]p6:
711 // [...] For each such operator, if argument deduction succeeds
712 // (14.9.2.3), the resulting specialization is used as if found by
713 // name lookup.
714 //
715 // When referencing a conversion function for any purpose other than
716 // a redeclaration (such that we'll be building an expression with the
717 // result), perform template argument deduction and place the
718 // specialization into the result set. We do this to avoid forcing all
719 // callers to perform special deduction for conversion functions.
720 TemplateDeductionInfo Info(R.getNameLoc());
721 FunctionDecl *Specialization = 0;
722
723 const FunctionProtoType *ConvProto
724 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
725 assert(ConvProto && "Nonsensical conversion function template type");
726
727 // Compute the type of the function that we would expect the conversion
728 // function to have, if it were to match the name given.
729 // FIXME: Calling convention!
730 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
731 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
732 EPI.ExceptionSpecType = EST_None;
733 EPI.NumExceptions = 0;
734 QualType ExpectedType
735 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
736 None, EPI);
737
738 // Perform template argument deduction against the type that we would
739 // expect the function to have.
740 if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
741 Specialization, Info)
742 == Sema::TDK_Success) {
743 R.addDecl(Specialization);
744 Found = true;
745 }
746 }
747
748 return Found;
749 }
750
751 // Performs C++ unqualified lookup into the given file context.
752 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)753 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
754 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
755
756 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
757
758 // Perform direct name lookup into the LookupCtx.
759 bool Found = LookupDirect(S, R, NS);
760
761 // Perform direct name lookup into the namespaces nominated by the
762 // using directives whose common ancestor is this namespace.
763 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
764 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
765
766 for (; UI != UEnd; ++UI)
767 if (LookupDirect(S, R, UI->getNominatedNamespace()))
768 Found = true;
769
770 R.resolveKind();
771
772 return Found;
773 }
774
isNamespaceOrTranslationUnitScope(Scope * S)775 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
776 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
777 return Ctx->isFileContext();
778 return false;
779 }
780
781 // Find the next outer declaration context from this scope. This
782 // routine actually returns the semantic outer context, which may
783 // differ from the lexical context (encoded directly in the Scope
784 // stack) when we are parsing a member of a class template. In this
785 // case, the second element of the pair will be true, to indicate that
786 // name lookup should continue searching in this semantic context when
787 // it leaves the current template parameter scope.
findOuterContext(Scope * S)788 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
789 DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
790 DeclContext *Lexical = 0;
791 for (Scope *OuterS = S->getParent(); OuterS;
792 OuterS = OuterS->getParent()) {
793 if (OuterS->getEntity()) {
794 Lexical = static_cast<DeclContext *>(OuterS->getEntity());
795 break;
796 }
797 }
798
799 // C++ [temp.local]p8:
800 // In the definition of a member of a class template that appears
801 // outside of the namespace containing the class template
802 // definition, the name of a template-parameter hides the name of
803 // a member of this namespace.
804 //
805 // Example:
806 //
807 // namespace N {
808 // class C { };
809 //
810 // template<class T> class B {
811 // void f(T);
812 // };
813 // }
814 //
815 // template<class C> void N::B<C>::f(C) {
816 // C b; // C is the template parameter, not N::C
817 // }
818 //
819 // In this example, the lexical context we return is the
820 // TranslationUnit, while the semantic context is the namespace N.
821 if (!Lexical || !DC || !S->getParent() ||
822 !S->getParent()->isTemplateParamScope())
823 return std::make_pair(Lexical, false);
824
825 // Find the outermost template parameter scope.
826 // For the example, this is the scope for the template parameters of
827 // template<class C>.
828 Scope *OutermostTemplateScope = S->getParent();
829 while (OutermostTemplateScope->getParent() &&
830 OutermostTemplateScope->getParent()->isTemplateParamScope())
831 OutermostTemplateScope = OutermostTemplateScope->getParent();
832
833 // Find the namespace context in which the original scope occurs. In
834 // the example, this is namespace N.
835 DeclContext *Semantic = DC;
836 while (!Semantic->isFileContext())
837 Semantic = Semantic->getParent();
838
839 // Find the declaration context just outside of the template
840 // parameter scope. This is the context in which the template is
841 // being lexically declaration (a namespace context). In the
842 // example, this is the global scope.
843 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
844 Lexical->Encloses(Semantic))
845 return std::make_pair(Semantic, true);
846
847 return std::make_pair(Lexical, false);
848 }
849
CppLookupName(LookupResult & R,Scope * S)850 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
851 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
852
853 DeclarationName Name = R.getLookupName();
854
855 // If this is the name of an implicitly-declared special member function,
856 // go through the scope stack to implicitly declare
857 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
858 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
859 if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
860 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
861 }
862
863 // Implicitly declare member functions with the name we're looking for, if in
864 // fact we are in a scope where it matters.
865
866 Scope *Initial = S;
867 IdentifierResolver::iterator
868 I = IdResolver.begin(Name),
869 IEnd = IdResolver.end();
870
871 // First we lookup local scope.
872 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
873 // ...During unqualified name lookup (3.4.1), the names appear as if
874 // they were declared in the nearest enclosing namespace which contains
875 // both the using-directive and the nominated namespace.
876 // [Note: in this context, "contains" means "contains directly or
877 // indirectly".
878 //
879 // For example:
880 // namespace A { int i; }
881 // void foo() {
882 // int i;
883 // {
884 // using namespace A;
885 // ++i; // finds local 'i', A::i appears at global scope
886 // }
887 // }
888 //
889 UnqualUsingDirectiveSet UDirs;
890 bool VisitedUsingDirectives = false;
891 DeclContext *OutsideOfTemplateParamDC = 0;
892 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
893 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
894
895 // Check whether the IdResolver has anything in this scope.
896 bool Found = false;
897 for (; I != IEnd && S->isDeclScope(*I); ++I) {
898 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
899 Found = true;
900 R.addDecl(ND);
901 }
902 }
903 if (Found) {
904 R.resolveKind();
905 if (S->isClassScope())
906 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
907 R.setNamingClass(Record);
908 return true;
909 }
910
911 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
912 S->getParent() && !S->getParent()->isTemplateParamScope()) {
913 // We've just searched the last template parameter scope and
914 // found nothing, so look into the contexts between the
915 // lexical and semantic declaration contexts returned by
916 // findOuterContext(). This implements the name lookup behavior
917 // of C++ [temp.local]p8.
918 Ctx = OutsideOfTemplateParamDC;
919 OutsideOfTemplateParamDC = 0;
920 }
921
922 if (Ctx) {
923 DeclContext *OuterCtx;
924 bool SearchAfterTemplateScope;
925 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
926 if (SearchAfterTemplateScope)
927 OutsideOfTemplateParamDC = OuterCtx;
928
929 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
930 // We do not directly look into transparent contexts, since
931 // those entities will be found in the nearest enclosing
932 // non-transparent context.
933 if (Ctx->isTransparentContext())
934 continue;
935
936 // We do not look directly into function or method contexts,
937 // since all of the local variables and parameters of the
938 // function/method are present within the Scope.
939 if (Ctx->isFunctionOrMethod()) {
940 // If we have an Objective-C instance method, look for ivars
941 // in the corresponding interface.
942 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
943 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
944 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
945 ObjCInterfaceDecl *ClassDeclared;
946 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
947 Name.getAsIdentifierInfo(),
948 ClassDeclared)) {
949 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
950 R.addDecl(ND);
951 R.resolveKind();
952 return true;
953 }
954 }
955 }
956 }
957
958 continue;
959 }
960
961 // If this is a file context, we need to perform unqualified name
962 // lookup considering using directives.
963 if (Ctx->isFileContext()) {
964 // If we haven't handled using directives yet, do so now.
965 if (!VisitedUsingDirectives) {
966 // Add using directives from this context up to the top level.
967 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
968 if (UCtx->isTransparentContext())
969 continue;
970
971 UDirs.visit(UCtx, UCtx);
972 }
973
974 // Find the innermost file scope, so we can add using directives
975 // from local scopes.
976 Scope *InnermostFileScope = S;
977 while (InnermostFileScope &&
978 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
979 InnermostFileScope = InnermostFileScope->getParent();
980 UDirs.visitScopeChain(Initial, InnermostFileScope);
981
982 UDirs.done();
983
984 VisitedUsingDirectives = true;
985 }
986
987 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
988 R.resolveKind();
989 return true;
990 }
991
992 continue;
993 }
994
995 // Perform qualified name lookup into this context.
996 // FIXME: In some cases, we know that every name that could be found by
997 // this qualified name lookup will also be on the identifier chain. For
998 // example, inside a class without any base classes, we never need to
999 // perform qualified lookup because all of the members are on top of the
1000 // identifier chain.
1001 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1002 return true;
1003 }
1004 }
1005 }
1006
1007 // Stop if we ran out of scopes.
1008 // FIXME: This really, really shouldn't be happening.
1009 if (!S) return false;
1010
1011 // If we are looking for members, no need to look into global/namespace scope.
1012 if (R.getLookupKind() == LookupMemberName)
1013 return false;
1014
1015 // Collect UsingDirectiveDecls in all scopes, and recursively all
1016 // nominated namespaces by those using-directives.
1017 //
1018 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1019 // don't build it for each lookup!
1020 if (!VisitedUsingDirectives) {
1021 UDirs.visitScopeChain(Initial, S);
1022 UDirs.done();
1023 }
1024
1025 // Lookup namespace scope, and global scope.
1026 // Unqualified name lookup in C++ requires looking into scopes
1027 // that aren't strictly lexical, and therefore we walk through the
1028 // context as well as walking through the scopes.
1029 for (; S; S = S->getParent()) {
1030 // Check whether the IdResolver has anything in this scope.
1031 bool Found = false;
1032 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1033 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1034 // We found something. Look for anything else in our scope
1035 // with this same name and in an acceptable identifier
1036 // namespace, so that we can construct an overload set if we
1037 // need to.
1038 Found = true;
1039 R.addDecl(ND);
1040 }
1041 }
1042
1043 if (Found && S->isTemplateParamScope()) {
1044 R.resolveKind();
1045 return true;
1046 }
1047
1048 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1049 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1050 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1051 // We've just searched the last template parameter scope and
1052 // found nothing, so look into the contexts between the
1053 // lexical and semantic declaration contexts returned by
1054 // findOuterContext(). This implements the name lookup behavior
1055 // of C++ [temp.local]p8.
1056 Ctx = OutsideOfTemplateParamDC;
1057 OutsideOfTemplateParamDC = 0;
1058 }
1059
1060 if (Ctx) {
1061 DeclContext *OuterCtx;
1062 bool SearchAfterTemplateScope;
1063 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1064 if (SearchAfterTemplateScope)
1065 OutsideOfTemplateParamDC = OuterCtx;
1066
1067 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1068 // We do not directly look into transparent contexts, since
1069 // those entities will be found in the nearest enclosing
1070 // non-transparent context.
1071 if (Ctx->isTransparentContext())
1072 continue;
1073
1074 // If we have a context, and it's not a context stashed in the
1075 // template parameter scope for an out-of-line definition, also
1076 // look into that context.
1077 if (!(Found && S && S->isTemplateParamScope())) {
1078 assert(Ctx->isFileContext() &&
1079 "We should have been looking only at file context here already.");
1080
1081 // Look into context considering using-directives.
1082 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1083 Found = true;
1084 }
1085
1086 if (Found) {
1087 R.resolveKind();
1088 return true;
1089 }
1090
1091 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1092 return false;
1093 }
1094 }
1095
1096 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1097 return false;
1098 }
1099
1100 return !R.empty();
1101 }
1102
1103 /// \brief Find the declaration that a class temploid member specialization was
1104 /// instantiated from, or the member itself if it is an explicit specialization.
getInstantiatedFrom(Decl * D,MemberSpecializationInfo * MSInfo)1105 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1106 return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1107 }
1108
1109 /// \brief Find the module in which the given declaration was defined.
getDefiningModule(Decl * Entity)1110 static Module *getDefiningModule(Decl *Entity) {
1111 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1112 // If this function was instantiated from a template, the defining module is
1113 // the module containing the pattern.
1114 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1115 Entity = Pattern;
1116 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1117 // If it's a class template specialization, find the template or partial
1118 // specialization from which it was instantiated.
1119 if (ClassTemplateSpecializationDecl *SpecRD =
1120 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1121 llvm::PointerUnion<ClassTemplateDecl*,
1122 ClassTemplatePartialSpecializationDecl*> From =
1123 SpecRD->getInstantiatedFrom();
1124 if (ClassTemplateDecl *FromTemplate = From.dyn_cast<ClassTemplateDecl*>())
1125 Entity = FromTemplate->getTemplatedDecl();
1126 else if (From)
1127 Entity = From.get<ClassTemplatePartialSpecializationDecl*>();
1128 // Otherwise, it's an explicit specialization.
1129 } else if (MemberSpecializationInfo *MSInfo =
1130 RD->getMemberSpecializationInfo())
1131 Entity = getInstantiatedFrom(RD, MSInfo);
1132 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1133 if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1134 Entity = getInstantiatedFrom(ED, MSInfo);
1135 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1136 // FIXME: Map from variable template specializations back to the template.
1137 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1138 Entity = getInstantiatedFrom(VD, MSInfo);
1139 }
1140
1141 // Walk up to the containing context. That might also have been instantiated
1142 // from a template.
1143 DeclContext *Context = Entity->getDeclContext();
1144 if (Context->isFileContext())
1145 return Entity->getOwningModule();
1146 return getDefiningModule(cast<Decl>(Context));
1147 }
1148
getLookupModules()1149 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1150 unsigned N = ActiveTemplateInstantiations.size();
1151 for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1152 I != N; ++I) {
1153 Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
1154 if (M && !LookupModulesCache.insert(M).second)
1155 M = 0;
1156 ActiveTemplateInstantiationLookupModules.push_back(M);
1157 }
1158 return LookupModulesCache;
1159 }
1160
1161 /// \brief Determine whether a declaration is visible to name lookup.
1162 ///
1163 /// This routine determines whether the declaration D is visible in the current
1164 /// lookup context, taking into account the current template instantiation
1165 /// stack. During template instantiation, a declaration is visible if it is
1166 /// visible from a module containing any entity on the template instantiation
1167 /// path (by instantiating a template, you allow it to see the declarations that
1168 /// your module can see, including those later on in your module).
isVisibleSlow(Sema & SemaRef,NamedDecl * D)1169 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1170 assert(D->isHidden() && !SemaRef.ActiveTemplateInstantiations.empty() &&
1171 "should not call this: not in slow case");
1172 Module *DeclModule = D->getOwningModule();
1173 assert(DeclModule && "hidden decl not from a module");
1174
1175 // Find the extra places where we need to look.
1176 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1177 if (LookupModules.empty())
1178 return false;
1179
1180 // If our lookup set contains the decl's module, it's visible.
1181 if (LookupModules.count(DeclModule))
1182 return true;
1183
1184 // If the declaration isn't exported, it's not visible in any other module.
1185 if (D->isModulePrivate())
1186 return false;
1187
1188 // Check whether DeclModule is transitively exported to an import of
1189 // the lookup set.
1190 for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
1191 E = LookupModules.end();
1192 I != E; ++I)
1193 if ((*I)->isModuleVisible(DeclModule))
1194 return true;
1195 return false;
1196 }
1197
1198 /// \brief Retrieve the visible declaration corresponding to D, if any.
1199 ///
1200 /// This routine determines whether the declaration D is visible in the current
1201 /// module, with the current imports. If not, it checks whether any
1202 /// redeclaration of D is visible, and if so, returns that declaration.
1203 ///
1204 /// \returns D, or a visible previous declaration of D, whichever is more recent
1205 /// and visible. If no declaration of D is visible, returns null.
getAcceptableDeclSlow(NamedDecl * D) const1206 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1207 assert(!isVisible(SemaRef, D) && "not in slow case");
1208
1209 for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1210 RD != RDEnd; ++RD) {
1211 if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1212 if (isVisible(SemaRef, ND))
1213 return ND;
1214 }
1215 }
1216
1217 return 0;
1218 }
1219
1220 /// @brief Perform unqualified name lookup starting from a given
1221 /// scope.
1222 ///
1223 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1224 /// used to find names within the current scope. For example, 'x' in
1225 /// @code
1226 /// int x;
1227 /// int f() {
1228 /// return x; // unqualified name look finds 'x' in the global scope
1229 /// }
1230 /// @endcode
1231 ///
1232 /// Different lookup criteria can find different names. For example, a
1233 /// particular scope can have both a struct and a function of the same
1234 /// name, and each can be found by certain lookup criteria. For more
1235 /// information about lookup criteria, see the documentation for the
1236 /// class LookupCriteria.
1237 ///
1238 /// @param S The scope from which unqualified name lookup will
1239 /// begin. If the lookup criteria permits, name lookup may also search
1240 /// in the parent scopes.
1241 ///
1242 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1243 /// look up and the lookup kind), and is updated with the results of lookup
1244 /// including zero or more declarations and possibly additional information
1245 /// used to diagnose ambiguities.
1246 ///
1247 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1248 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1249 DeclarationName Name = R.getLookupName();
1250 if (!Name) return false;
1251
1252 LookupNameKind NameKind = R.getLookupKind();
1253
1254 if (!getLangOpts().CPlusPlus) {
1255 // Unqualified name lookup in C/Objective-C is purely lexical, so
1256 // search in the declarations attached to the name.
1257 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1258 // Find the nearest non-transparent declaration scope.
1259 while (!(S->getFlags() & Scope::DeclScope) ||
1260 (S->getEntity() &&
1261 static_cast<DeclContext *>(S->getEntity())
1262 ->isTransparentContext()))
1263 S = S->getParent();
1264 }
1265
1266 // Scan up the scope chain looking for a decl that matches this
1267 // identifier that is in the appropriate namespace. This search
1268 // should not take long, as shadowing of names is uncommon, and
1269 // deep shadowing is extremely uncommon.
1270 bool LeftStartingScope = false;
1271
1272 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1273 IEnd = IdResolver.end();
1274 I != IEnd; ++I)
1275 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1276 if (NameKind == LookupRedeclarationWithLinkage) {
1277 // Determine whether this (or a previous) declaration is
1278 // out-of-scope.
1279 if (!LeftStartingScope && !S->isDeclScope(*I))
1280 LeftStartingScope = true;
1281
1282 // If we found something outside of our starting scope that
1283 // does not have linkage, skip it.
1284 if (LeftStartingScope && !((*I)->hasLinkage()))
1285 continue;
1286 }
1287 else if (NameKind == LookupObjCImplicitSelfParam &&
1288 !isa<ImplicitParamDecl>(*I))
1289 continue;
1290
1291 R.addDecl(D);
1292
1293 // Check whether there are any other declarations with the same name
1294 // and in the same scope.
1295 if (I != IEnd) {
1296 // Find the scope in which this declaration was declared (if it
1297 // actually exists in a Scope).
1298 while (S && !S->isDeclScope(D))
1299 S = S->getParent();
1300
1301 // If the scope containing the declaration is the translation unit,
1302 // then we'll need to perform our checks based on the matching
1303 // DeclContexts rather than matching scopes.
1304 if (S && isNamespaceOrTranslationUnitScope(S))
1305 S = 0;
1306
1307 // Compute the DeclContext, if we need it.
1308 DeclContext *DC = 0;
1309 if (!S)
1310 DC = (*I)->getDeclContext()->getRedeclContext();
1311
1312 IdentifierResolver::iterator LastI = I;
1313 for (++LastI; LastI != IEnd; ++LastI) {
1314 if (S) {
1315 // Match based on scope.
1316 if (!S->isDeclScope(*LastI))
1317 break;
1318 } else {
1319 // Match based on DeclContext.
1320 DeclContext *LastDC
1321 = (*LastI)->getDeclContext()->getRedeclContext();
1322 if (!LastDC->Equals(DC))
1323 break;
1324 }
1325
1326 // If the declaration is in the right namespace and visible, add it.
1327 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1328 R.addDecl(LastD);
1329 }
1330
1331 R.resolveKind();
1332 }
1333 return true;
1334 }
1335 } else {
1336 // Perform C++ unqualified name lookup.
1337 if (CppLookupName(R, S))
1338 return true;
1339 }
1340
1341 // If we didn't find a use of this identifier, and if the identifier
1342 // corresponds to a compiler builtin, create the decl object for the builtin
1343 // now, injecting it into translation unit scope, and return it.
1344 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1345 return true;
1346
1347 // If we didn't find a use of this identifier, the ExternalSource
1348 // may be able to handle the situation.
1349 // Note: some lookup failures are expected!
1350 // See e.g. R.isForRedeclaration().
1351 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1352 }
1353
1354 /// @brief Perform qualified name lookup in the namespaces nominated by
1355 /// using directives by the given context.
1356 ///
1357 /// C++98 [namespace.qual]p2:
1358 /// Given X::m (where X is a user-declared namespace), or given \::m
1359 /// (where X is the global namespace), let S be the set of all
1360 /// declarations of m in X and in the transitive closure of all
1361 /// namespaces nominated by using-directives in X and its used
1362 /// namespaces, except that using-directives are ignored in any
1363 /// namespace, including X, directly containing one or more
1364 /// declarations of m. No namespace is searched more than once in
1365 /// the lookup of a name. If S is the empty set, the program is
1366 /// ill-formed. Otherwise, if S has exactly one member, or if the
1367 /// context of the reference is a using-declaration
1368 /// (namespace.udecl), S is the required set of declarations of
1369 /// m. Otherwise if the use of m is not one that allows a unique
1370 /// declaration to be chosen from S, the program is ill-formed.
1371 ///
1372 /// C++98 [namespace.qual]p5:
1373 /// During the lookup of a qualified namespace member name, if the
1374 /// lookup finds more than one declaration of the member, and if one
1375 /// declaration introduces a class name or enumeration name and the
1376 /// other declarations either introduce the same object, the same
1377 /// enumerator or a set of functions, the non-type name hides the
1378 /// class or enumeration name if and only if the declarations are
1379 /// from the same namespace; otherwise (the declarations are from
1380 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1381 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1382 DeclContext *StartDC) {
1383 assert(StartDC->isFileContext() && "start context is not a file context");
1384
1385 DeclContext::udir_iterator I = StartDC->using_directives_begin();
1386 DeclContext::udir_iterator E = StartDC->using_directives_end();
1387
1388 if (I == E) return false;
1389
1390 // We have at least added all these contexts to the queue.
1391 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1392 Visited.insert(StartDC);
1393
1394 // We have not yet looked into these namespaces, much less added
1395 // their "using-children" to the queue.
1396 SmallVector<NamespaceDecl*, 8> Queue;
1397
1398 // We have already looked into the initial namespace; seed the queue
1399 // with its using-children.
1400 for (; I != E; ++I) {
1401 NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1402 if (Visited.insert(ND))
1403 Queue.push_back(ND);
1404 }
1405
1406 // The easiest way to implement the restriction in [namespace.qual]p5
1407 // is to check whether any of the individual results found a tag
1408 // and, if so, to declare an ambiguity if the final result is not
1409 // a tag.
1410 bool FoundTag = false;
1411 bool FoundNonTag = false;
1412
1413 LookupResult LocalR(LookupResult::Temporary, R);
1414
1415 bool Found = false;
1416 while (!Queue.empty()) {
1417 NamespaceDecl *ND = Queue.back();
1418 Queue.pop_back();
1419
1420 // We go through some convolutions here to avoid copying results
1421 // between LookupResults.
1422 bool UseLocal = !R.empty();
1423 LookupResult &DirectR = UseLocal ? LocalR : R;
1424 bool FoundDirect = LookupDirect(S, DirectR, ND);
1425
1426 if (FoundDirect) {
1427 // First do any local hiding.
1428 DirectR.resolveKind();
1429
1430 // If the local result is a tag, remember that.
1431 if (DirectR.isSingleTagDecl())
1432 FoundTag = true;
1433 else
1434 FoundNonTag = true;
1435
1436 // Append the local results to the total results if necessary.
1437 if (UseLocal) {
1438 R.addAllDecls(LocalR);
1439 LocalR.clear();
1440 }
1441 }
1442
1443 // If we find names in this namespace, ignore its using directives.
1444 if (FoundDirect) {
1445 Found = true;
1446 continue;
1447 }
1448
1449 for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1450 NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1451 if (Visited.insert(Nom))
1452 Queue.push_back(Nom);
1453 }
1454 }
1455
1456 if (Found) {
1457 if (FoundTag && FoundNonTag)
1458 R.setAmbiguousQualifiedTagHiding();
1459 else
1460 R.resolveKind();
1461 }
1462
1463 return Found;
1464 }
1465
1466 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1467 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1468 CXXBasePath &Path,
1469 void *Name) {
1470 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1471
1472 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1473 Path.Decls = BaseRecord->lookup(N);
1474 return !Path.Decls.empty();
1475 }
1476
1477 /// \brief Determine whether the given set of member declarations contains only
1478 /// static members, nested types, and enumerators.
1479 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1480 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1481 Decl *D = (*First)->getUnderlyingDecl();
1482 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1483 return true;
1484
1485 if (isa<CXXMethodDecl>(D)) {
1486 // Determine whether all of the methods are static.
1487 bool AllMethodsAreStatic = true;
1488 for(; First != Last; ++First) {
1489 D = (*First)->getUnderlyingDecl();
1490
1491 if (!isa<CXXMethodDecl>(D)) {
1492 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1493 break;
1494 }
1495
1496 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1497 AllMethodsAreStatic = false;
1498 break;
1499 }
1500 }
1501
1502 if (AllMethodsAreStatic)
1503 return true;
1504 }
1505
1506 return false;
1507 }
1508
1509 /// \brief Perform qualified name lookup into a given context.
1510 ///
1511 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1512 /// names when the context of those names is explicit specified, e.g.,
1513 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1514 ///
1515 /// Different lookup criteria can find different names. For example, a
1516 /// particular scope can have both a struct and a function of the same
1517 /// name, and each can be found by certain lookup criteria. For more
1518 /// information about lookup criteria, see the documentation for the
1519 /// class LookupCriteria.
1520 ///
1521 /// \param R captures both the lookup criteria and any lookup results found.
1522 ///
1523 /// \param LookupCtx The context in which qualified name lookup will
1524 /// search. If the lookup criteria permits, name lookup may also search
1525 /// in the parent contexts or (for C++ classes) base classes.
1526 ///
1527 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1528 /// occurs as part of unqualified name lookup.
1529 ///
1530 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1531 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1532 bool InUnqualifiedLookup) {
1533 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1534
1535 if (!R.getLookupName())
1536 return false;
1537
1538 // Make sure that the declaration context is complete.
1539 assert((!isa<TagDecl>(LookupCtx) ||
1540 LookupCtx->isDependentContext() ||
1541 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1542 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1543 "Declaration context must already be complete!");
1544
1545 // Perform qualified name lookup into the LookupCtx.
1546 if (LookupDirect(*this, R, LookupCtx)) {
1547 R.resolveKind();
1548 if (isa<CXXRecordDecl>(LookupCtx))
1549 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1550 return true;
1551 }
1552
1553 // Don't descend into implied contexts for redeclarations.
1554 // C++98 [namespace.qual]p6:
1555 // In a declaration for a namespace member in which the
1556 // declarator-id is a qualified-id, given that the qualified-id
1557 // for the namespace member has the form
1558 // nested-name-specifier unqualified-id
1559 // the unqualified-id shall name a member of the namespace
1560 // designated by the nested-name-specifier.
1561 // See also [class.mfct]p5 and [class.static.data]p2.
1562 if (R.isForRedeclaration())
1563 return false;
1564
1565 // If this is a namespace, look it up in the implied namespaces.
1566 if (LookupCtx->isFileContext())
1567 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1568
1569 // If this isn't a C++ class, we aren't allowed to look into base
1570 // classes, we're done.
1571 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1572 if (!LookupRec || !LookupRec->getDefinition())
1573 return false;
1574
1575 // If we're performing qualified name lookup into a dependent class,
1576 // then we are actually looking into a current instantiation. If we have any
1577 // dependent base classes, then we either have to delay lookup until
1578 // template instantiation time (at which point all bases will be available)
1579 // or we have to fail.
1580 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1581 LookupRec->hasAnyDependentBases()) {
1582 R.setNotFoundInCurrentInstantiation();
1583 return false;
1584 }
1585
1586 // Perform lookup into our base classes.
1587 CXXBasePaths Paths;
1588 Paths.setOrigin(LookupRec);
1589
1590 // Look for this member in our base classes
1591 CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1592 switch (R.getLookupKind()) {
1593 case LookupObjCImplicitSelfParam:
1594 case LookupOrdinaryName:
1595 case LookupMemberName:
1596 case LookupRedeclarationWithLinkage:
1597 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1598 break;
1599
1600 case LookupTagName:
1601 BaseCallback = &CXXRecordDecl::FindTagMember;
1602 break;
1603
1604 case LookupAnyName:
1605 BaseCallback = &LookupAnyMember;
1606 break;
1607
1608 case LookupUsingDeclName:
1609 // This lookup is for redeclarations only.
1610
1611 case LookupOperatorName:
1612 case LookupNamespaceName:
1613 case LookupObjCProtocolName:
1614 case LookupLabel:
1615 // These lookups will never find a member in a C++ class (or base class).
1616 return false;
1617
1618 case LookupNestedNameSpecifierName:
1619 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1620 break;
1621 }
1622
1623 if (!LookupRec->lookupInBases(BaseCallback,
1624 R.getLookupName().getAsOpaquePtr(), Paths))
1625 return false;
1626
1627 R.setNamingClass(LookupRec);
1628
1629 // C++ [class.member.lookup]p2:
1630 // [...] If the resulting set of declarations are not all from
1631 // sub-objects of the same type, or the set has a nonstatic member
1632 // and includes members from distinct sub-objects, there is an
1633 // ambiguity and the program is ill-formed. Otherwise that set is
1634 // the result of the lookup.
1635 QualType SubobjectType;
1636 int SubobjectNumber = 0;
1637 AccessSpecifier SubobjectAccess = AS_none;
1638
1639 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1640 Path != PathEnd; ++Path) {
1641 const CXXBasePathElement &PathElement = Path->back();
1642
1643 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1644 // across all paths.
1645 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1646
1647 // Determine whether we're looking at a distinct sub-object or not.
1648 if (SubobjectType.isNull()) {
1649 // This is the first subobject we've looked at. Record its type.
1650 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1651 SubobjectNumber = PathElement.SubobjectNumber;
1652 continue;
1653 }
1654
1655 if (SubobjectType
1656 != Context.getCanonicalType(PathElement.Base->getType())) {
1657 // We found members of the given name in two subobjects of
1658 // different types. If the declaration sets aren't the same, this
1659 // this lookup is ambiguous.
1660 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1661 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1662 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1663 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1664
1665 while (FirstD != FirstPath->Decls.end() &&
1666 CurrentD != Path->Decls.end()) {
1667 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1668 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1669 break;
1670
1671 ++FirstD;
1672 ++CurrentD;
1673 }
1674
1675 if (FirstD == FirstPath->Decls.end() &&
1676 CurrentD == Path->Decls.end())
1677 continue;
1678 }
1679
1680 R.setAmbiguousBaseSubobjectTypes(Paths);
1681 return true;
1682 }
1683
1684 if (SubobjectNumber != PathElement.SubobjectNumber) {
1685 // We have a different subobject of the same type.
1686
1687 // C++ [class.member.lookup]p5:
1688 // A static member, a nested type or an enumerator defined in
1689 // a base class T can unambiguously be found even if an object
1690 // has more than one base class subobject of type T.
1691 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1692 continue;
1693
1694 // We have found a nonstatic member name in multiple, distinct
1695 // subobjects. Name lookup is ambiguous.
1696 R.setAmbiguousBaseSubobjects(Paths);
1697 return true;
1698 }
1699 }
1700
1701 // Lookup in a base class succeeded; return these results.
1702
1703 DeclContext::lookup_result DR = Paths.front().Decls;
1704 for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
1705 NamedDecl *D = *I;
1706 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1707 D->getAccess());
1708 R.addDecl(D, AS);
1709 }
1710 R.resolveKind();
1711 return true;
1712 }
1713
1714 /// @brief Performs name lookup for a name that was parsed in the
1715 /// source code, and may contain a C++ scope specifier.
1716 ///
1717 /// This routine is a convenience routine meant to be called from
1718 /// contexts that receive a name and an optional C++ scope specifier
1719 /// (e.g., "N::M::x"). It will then perform either qualified or
1720 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1721 /// respectively) on the given name and return those results.
1722 ///
1723 /// @param S The scope from which unqualified name lookup will
1724 /// begin.
1725 ///
1726 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1727 ///
1728 /// @param EnteringContext Indicates whether we are going to enter the
1729 /// context of the scope-specifier SS (if present).
1730 ///
1731 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1732 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1733 bool AllowBuiltinCreation, bool EnteringContext) {
1734 if (SS && SS->isInvalid()) {
1735 // When the scope specifier is invalid, don't even look for
1736 // anything.
1737 return false;
1738 }
1739
1740 if (SS && SS->isSet()) {
1741 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1742 // We have resolved the scope specifier to a particular declaration
1743 // contex, and will perform name lookup in that context.
1744 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1745 return false;
1746
1747 R.setContextRange(SS->getRange());
1748 return LookupQualifiedName(R, DC);
1749 }
1750
1751 // We could not resolve the scope specified to a specific declaration
1752 // context, which means that SS refers to an unknown specialization.
1753 // Name lookup can't find anything in this case.
1754 R.setNotFoundInCurrentInstantiation();
1755 R.setContextRange(SS->getRange());
1756 return false;
1757 }
1758
1759 // Perform unqualified name lookup starting in the given scope.
1760 return LookupName(R, S, AllowBuiltinCreation);
1761 }
1762
1763
1764 /// \brief Produce a diagnostic describing the ambiguity that resulted
1765 /// from name lookup.
1766 ///
1767 /// \param Result The result of the ambiguous lookup to be diagnosed.
1768 ///
1769 /// \returns true
DiagnoseAmbiguousLookup(LookupResult & Result)1770 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1771 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1772
1773 DeclarationName Name = Result.getLookupName();
1774 SourceLocation NameLoc = Result.getNameLoc();
1775 SourceRange LookupRange = Result.getContextRange();
1776
1777 switch (Result.getAmbiguityKind()) {
1778 case LookupResult::AmbiguousBaseSubobjects: {
1779 CXXBasePaths *Paths = Result.getBasePaths();
1780 QualType SubobjectType = Paths->front().back().Base->getType();
1781 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1782 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1783 << LookupRange;
1784
1785 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1786 while (isa<CXXMethodDecl>(*Found) &&
1787 cast<CXXMethodDecl>(*Found)->isStatic())
1788 ++Found;
1789
1790 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1791
1792 return true;
1793 }
1794
1795 case LookupResult::AmbiguousBaseSubobjectTypes: {
1796 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1797 << Name << LookupRange;
1798
1799 CXXBasePaths *Paths = Result.getBasePaths();
1800 std::set<Decl *> DeclsPrinted;
1801 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1802 PathEnd = Paths->end();
1803 Path != PathEnd; ++Path) {
1804 Decl *D = Path->Decls.front();
1805 if (DeclsPrinted.insert(D).second)
1806 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1807 }
1808
1809 return true;
1810 }
1811
1812 case LookupResult::AmbiguousTagHiding: {
1813 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1814
1815 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1816
1817 LookupResult::iterator DI, DE = Result.end();
1818 for (DI = Result.begin(); DI != DE; ++DI)
1819 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1820 TagDecls.insert(TD);
1821 Diag(TD->getLocation(), diag::note_hidden_tag);
1822 }
1823
1824 for (DI = Result.begin(); DI != DE; ++DI)
1825 if (!isa<TagDecl>(*DI))
1826 Diag((*DI)->getLocation(), diag::note_hiding_object);
1827
1828 // For recovery purposes, go ahead and implement the hiding.
1829 LookupResult::Filter F = Result.makeFilter();
1830 while (F.hasNext()) {
1831 if (TagDecls.count(F.next()))
1832 F.erase();
1833 }
1834 F.done();
1835
1836 return true;
1837 }
1838
1839 case LookupResult::AmbiguousReference: {
1840 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1841
1842 LookupResult::iterator DI = Result.begin(), DE = Result.end();
1843 for (; DI != DE; ++DI)
1844 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1845
1846 return true;
1847 }
1848 }
1849
1850 llvm_unreachable("unknown ambiguity kind");
1851 }
1852
1853 namespace {
1854 struct AssociatedLookup {
AssociatedLookup__anon9813915b0211::AssociatedLookup1855 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1856 Sema::AssociatedNamespaceSet &Namespaces,
1857 Sema::AssociatedClassSet &Classes)
1858 : S(S), Namespaces(Namespaces), Classes(Classes),
1859 InstantiationLoc(InstantiationLoc) {
1860 }
1861
1862 Sema &S;
1863 Sema::AssociatedNamespaceSet &Namespaces;
1864 Sema::AssociatedClassSet &Classes;
1865 SourceLocation InstantiationLoc;
1866 };
1867 }
1868
1869 static void
1870 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1871
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1872 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1873 DeclContext *Ctx) {
1874 // Add the associated namespace for this class.
1875
1876 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1877 // be a locally scoped record.
1878
1879 // We skip out of inline namespaces. The innermost non-inline namespace
1880 // contains all names of all its nested inline namespaces anyway, so we can
1881 // replace the entire inline namespace tree with its root.
1882 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1883 Ctx->isInlineNamespace())
1884 Ctx = Ctx->getParent();
1885
1886 if (Ctx->isFileContext())
1887 Namespaces.insert(Ctx->getPrimaryContext());
1888 }
1889
1890 // \brief Add the associated classes and namespaces for argument-dependent
1891 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1892 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1893 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1894 const TemplateArgument &Arg) {
1895 // C++ [basic.lookup.koenig]p2, last bullet:
1896 // -- [...] ;
1897 switch (Arg.getKind()) {
1898 case TemplateArgument::Null:
1899 break;
1900
1901 case TemplateArgument::Type:
1902 // [...] the namespaces and classes associated with the types of the
1903 // template arguments provided for template type parameters (excluding
1904 // template template parameters)
1905 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1906 break;
1907
1908 case TemplateArgument::Template:
1909 case TemplateArgument::TemplateExpansion: {
1910 // [...] the namespaces in which any template template arguments are
1911 // defined; and the classes in which any member templates used as
1912 // template template arguments are defined.
1913 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1914 if (ClassTemplateDecl *ClassTemplate
1915 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1916 DeclContext *Ctx = ClassTemplate->getDeclContext();
1917 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1918 Result.Classes.insert(EnclosingClass);
1919 // Add the associated namespace for this class.
1920 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1921 }
1922 break;
1923 }
1924
1925 case TemplateArgument::Declaration:
1926 case TemplateArgument::Integral:
1927 case TemplateArgument::Expression:
1928 case TemplateArgument::NullPtr:
1929 // [Note: non-type template arguments do not contribute to the set of
1930 // associated namespaces. ]
1931 break;
1932
1933 case TemplateArgument::Pack:
1934 for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1935 PEnd = Arg.pack_end();
1936 P != PEnd; ++P)
1937 addAssociatedClassesAndNamespaces(Result, *P);
1938 break;
1939 }
1940 }
1941
1942 // \brief Add the associated classes and namespaces for
1943 // argument-dependent lookup with an argument of class type
1944 // (C++ [basic.lookup.koenig]p2).
1945 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)1946 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1947 CXXRecordDecl *Class) {
1948
1949 // Just silently ignore anything whose name is __va_list_tag.
1950 if (Class->getDeclName() == Result.S.VAListTagName)
1951 return;
1952
1953 // C++ [basic.lookup.koenig]p2:
1954 // [...]
1955 // -- If T is a class type (including unions), its associated
1956 // classes are: the class itself; the class of which it is a
1957 // member, if any; and its direct and indirect base
1958 // classes. Its associated namespaces are the namespaces in
1959 // which its associated classes are defined.
1960
1961 // Add the class of which it is a member, if any.
1962 DeclContext *Ctx = Class->getDeclContext();
1963 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1964 Result.Classes.insert(EnclosingClass);
1965 // Add the associated namespace for this class.
1966 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1967
1968 // Add the class itself. If we've already seen this class, we don't
1969 // need to visit base classes.
1970 if (!Result.Classes.insert(Class))
1971 return;
1972
1973 // -- If T is a template-id, its associated namespaces and classes are
1974 // the namespace in which the template is defined; for member
1975 // templates, the member template's class; the namespaces and classes
1976 // associated with the types of the template arguments provided for
1977 // template type parameters (excluding template template parameters); the
1978 // namespaces in which any template template arguments are defined; and
1979 // the classes in which any member templates used as template template
1980 // arguments are defined. [Note: non-type template arguments do not
1981 // contribute to the set of associated namespaces. ]
1982 if (ClassTemplateSpecializationDecl *Spec
1983 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1984 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1985 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1986 Result.Classes.insert(EnclosingClass);
1987 // Add the associated namespace for this class.
1988 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1989
1990 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1991 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1992 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1993 }
1994
1995 // Only recurse into base classes for complete types.
1996 if (!Class->hasDefinition()) {
1997 QualType type = Result.S.Context.getTypeDeclType(Class);
1998 if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
1999 /*no diagnostic*/ 0))
2000 return;
2001 }
2002
2003 // Add direct and indirect base classes along with their associated
2004 // namespaces.
2005 SmallVector<CXXRecordDecl *, 32> Bases;
2006 Bases.push_back(Class);
2007 while (!Bases.empty()) {
2008 // Pop this class off the stack.
2009 Class = Bases.back();
2010 Bases.pop_back();
2011
2012 // Visit the base classes.
2013 for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
2014 BaseEnd = Class->bases_end();
2015 Base != BaseEnd; ++Base) {
2016 const RecordType *BaseType = Base->getType()->getAs<RecordType>();
2017 // In dependent contexts, we do ADL twice, and the first time around,
2018 // the base type might be a dependent TemplateSpecializationType, or a
2019 // TemplateTypeParmType. If that happens, simply ignore it.
2020 // FIXME: If we want to support export, we probably need to add the
2021 // namespace of the template in a TemplateSpecializationType, or even
2022 // the classes and namespaces of known non-dependent arguments.
2023 if (!BaseType)
2024 continue;
2025 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2026 if (Result.Classes.insert(BaseDecl)) {
2027 // Find the associated namespace for this base class.
2028 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2029 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2030
2031 // Make sure we visit the bases of this base class.
2032 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2033 Bases.push_back(BaseDecl);
2034 }
2035 }
2036 }
2037 }
2038
2039 // \brief Add the associated classes and namespaces for
2040 // argument-dependent lookup with an argument of type T
2041 // (C++ [basic.lookup.koenig]p2).
2042 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)2043 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2044 // C++ [basic.lookup.koenig]p2:
2045 //
2046 // For each argument type T in the function call, there is a set
2047 // of zero or more associated namespaces and a set of zero or more
2048 // associated classes to be considered. The sets of namespaces and
2049 // classes is determined entirely by the types of the function
2050 // arguments (and the namespace of any template template
2051 // argument). Typedef names and using-declarations used to specify
2052 // the types do not contribute to this set. The sets of namespaces
2053 // and classes are determined in the following way:
2054
2055 SmallVector<const Type *, 16> Queue;
2056 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2057
2058 while (true) {
2059 switch (T->getTypeClass()) {
2060
2061 #define TYPE(Class, Base)
2062 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2063 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2064 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2065 #define ABSTRACT_TYPE(Class, Base)
2066 #include "clang/AST/TypeNodes.def"
2067 // T is canonical. We can also ignore dependent types because
2068 // we don't need to do ADL at the definition point, but if we
2069 // wanted to implement template export (or if we find some other
2070 // use for associated classes and namespaces...) this would be
2071 // wrong.
2072 break;
2073
2074 // -- If T is a pointer to U or an array of U, its associated
2075 // namespaces and classes are those associated with U.
2076 case Type::Pointer:
2077 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2078 continue;
2079 case Type::ConstantArray:
2080 case Type::IncompleteArray:
2081 case Type::VariableArray:
2082 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2083 continue;
2084
2085 // -- If T is a fundamental type, its associated sets of
2086 // namespaces and classes are both empty.
2087 case Type::Builtin:
2088 break;
2089
2090 // -- If T is a class type (including unions), its associated
2091 // classes are: the class itself; the class of which it is a
2092 // member, if any; and its direct and indirect base
2093 // classes. Its associated namespaces are the namespaces in
2094 // which its associated classes are defined.
2095 case Type::Record: {
2096 CXXRecordDecl *Class
2097 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2098 addAssociatedClassesAndNamespaces(Result, Class);
2099 break;
2100 }
2101
2102 // -- If T is an enumeration type, its associated namespace is
2103 // the namespace in which it is defined. If it is class
2104 // member, its associated class is the member's class; else
2105 // it has no associated class.
2106 case Type::Enum: {
2107 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2108
2109 DeclContext *Ctx = Enum->getDeclContext();
2110 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2111 Result.Classes.insert(EnclosingClass);
2112
2113 // Add the associated namespace for this class.
2114 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2115
2116 break;
2117 }
2118
2119 // -- If T is a function type, its associated namespaces and
2120 // classes are those associated with the function parameter
2121 // types and those associated with the return type.
2122 case Type::FunctionProto: {
2123 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2124 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2125 ArgEnd = Proto->arg_type_end();
2126 Arg != ArgEnd; ++Arg)
2127 Queue.push_back(Arg->getTypePtr());
2128 // fallthrough
2129 }
2130 case Type::FunctionNoProto: {
2131 const FunctionType *FnType = cast<FunctionType>(T);
2132 T = FnType->getResultType().getTypePtr();
2133 continue;
2134 }
2135
2136 // -- If T is a pointer to a member function of a class X, its
2137 // associated namespaces and classes are those associated
2138 // with the function parameter types and return type,
2139 // together with those associated with X.
2140 //
2141 // -- If T is a pointer to a data member of class X, its
2142 // associated namespaces and classes are those associated
2143 // with the member type together with those associated with
2144 // X.
2145 case Type::MemberPointer: {
2146 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2147
2148 // Queue up the class type into which this points.
2149 Queue.push_back(MemberPtr->getClass());
2150
2151 // And directly continue with the pointee type.
2152 T = MemberPtr->getPointeeType().getTypePtr();
2153 continue;
2154 }
2155
2156 // As an extension, treat this like a normal pointer.
2157 case Type::BlockPointer:
2158 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2159 continue;
2160
2161 // References aren't covered by the standard, but that's such an
2162 // obvious defect that we cover them anyway.
2163 case Type::LValueReference:
2164 case Type::RValueReference:
2165 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2166 continue;
2167
2168 // These are fundamental types.
2169 case Type::Vector:
2170 case Type::ExtVector:
2171 case Type::Complex:
2172 break;
2173
2174 // Non-deduced auto types only get here for error cases.
2175 case Type::Auto:
2176 break;
2177
2178 // If T is an Objective-C object or interface type, or a pointer to an
2179 // object or interface type, the associated namespace is the global
2180 // namespace.
2181 case Type::ObjCObject:
2182 case Type::ObjCInterface:
2183 case Type::ObjCObjectPointer:
2184 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2185 break;
2186
2187 // Atomic types are just wrappers; use the associations of the
2188 // contained type.
2189 case Type::Atomic:
2190 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2191 continue;
2192 }
2193
2194 if (Queue.empty()) break;
2195 T = Queue.back();
2196 Queue.pop_back();
2197 }
2198 }
2199
2200 /// \brief Find the associated classes and namespaces for
2201 /// argument-dependent lookup for a call with the given set of
2202 /// arguments.
2203 ///
2204 /// This routine computes the sets of associated classes and associated
2205 /// namespaces searched by argument-dependent lookup
2206 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2207 void
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,llvm::ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2208 Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
2209 llvm::ArrayRef<Expr *> Args,
2210 AssociatedNamespaceSet &AssociatedNamespaces,
2211 AssociatedClassSet &AssociatedClasses) {
2212 AssociatedNamespaces.clear();
2213 AssociatedClasses.clear();
2214
2215 AssociatedLookup Result(*this, InstantiationLoc,
2216 AssociatedNamespaces, AssociatedClasses);
2217
2218 // C++ [basic.lookup.koenig]p2:
2219 // For each argument type T in the function call, there is a set
2220 // of zero or more associated namespaces and a set of zero or more
2221 // associated classes to be considered. The sets of namespaces and
2222 // classes is determined entirely by the types of the function
2223 // arguments (and the namespace of any template template
2224 // argument).
2225 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2226 Expr *Arg = Args[ArgIdx];
2227
2228 if (Arg->getType() != Context.OverloadTy) {
2229 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2230 continue;
2231 }
2232
2233 // [...] In addition, if the argument is the name or address of a
2234 // set of overloaded functions and/or function templates, its
2235 // associated classes and namespaces are the union of those
2236 // associated with each of the members of the set: the namespace
2237 // in which the function or function template is defined and the
2238 // classes and namespaces associated with its (non-dependent)
2239 // parameter types and return type.
2240 Arg = Arg->IgnoreParens();
2241 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2242 if (unaryOp->getOpcode() == UO_AddrOf)
2243 Arg = unaryOp->getSubExpr();
2244
2245 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2246 if (!ULE) continue;
2247
2248 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2249 I != E; ++I) {
2250 // Look through any using declarations to find the underlying function.
2251 NamedDecl *Fn = (*I)->getUnderlyingDecl();
2252
2253 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2254 if (!FDecl)
2255 FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2256
2257 // Add the classes and namespaces associated with the parameter
2258 // types and return type of this function.
2259 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2260 }
2261 }
2262 }
2263
2264 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2265 /// an acceptable non-member overloaded operator for a call whose
2266 /// arguments have types T1 (and, if non-empty, T2). This routine
2267 /// implements the check in C++ [over.match.oper]p3b2 concerning
2268 /// enumeration types.
2269 static bool
IsAcceptableNonMemberOperatorCandidate(FunctionDecl * Fn,QualType T1,QualType T2,ASTContext & Context)2270 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2271 QualType T1, QualType T2,
2272 ASTContext &Context) {
2273 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2274 return true;
2275
2276 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2277 return true;
2278
2279 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2280 if (Proto->getNumArgs() < 1)
2281 return false;
2282
2283 if (T1->isEnumeralType()) {
2284 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2285 if (Context.hasSameUnqualifiedType(T1, ArgType))
2286 return true;
2287 }
2288
2289 if (Proto->getNumArgs() < 2)
2290 return false;
2291
2292 if (!T2.isNull() && T2->isEnumeralType()) {
2293 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2294 if (Context.hasSameUnqualifiedType(T2, ArgType))
2295 return true;
2296 }
2297
2298 return false;
2299 }
2300
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2301 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2302 SourceLocation Loc,
2303 LookupNameKind NameKind,
2304 RedeclarationKind Redecl) {
2305 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2306 LookupName(R, S);
2307 return R.getAsSingle<NamedDecl>();
2308 }
2309
2310 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2311 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2312 SourceLocation IdLoc,
2313 RedeclarationKind Redecl) {
2314 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2315 LookupObjCProtocolName, Redecl);
2316 return cast_or_null<ObjCProtocolDecl>(D);
2317 }
2318
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2319 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2320 QualType T1, QualType T2,
2321 UnresolvedSetImpl &Functions) {
2322 // C++ [over.match.oper]p3:
2323 // -- The set of non-member candidates is the result of the
2324 // unqualified lookup of operator@ in the context of the
2325 // expression according to the usual rules for name lookup in
2326 // unqualified function calls (3.4.2) except that all member
2327 // functions are ignored. However, if no operand has a class
2328 // type, only those non-member functions in the lookup set
2329 // that have a first parameter of type T1 or "reference to
2330 // (possibly cv-qualified) T1", when T1 is an enumeration
2331 // type, or (if there is a right operand) a second parameter
2332 // of type T2 or "reference to (possibly cv-qualified) T2",
2333 // when T2 is an enumeration type, are candidate functions.
2334 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2335 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2336 LookupName(Operators, S);
2337
2338 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2339
2340 if (Operators.empty())
2341 return;
2342
2343 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2344 Op != OpEnd; ++Op) {
2345 NamedDecl *Found = (*Op)->getUnderlyingDecl();
2346 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2347 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2348 Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2349 } else if (FunctionTemplateDecl *FunTmpl
2350 = dyn_cast<FunctionTemplateDecl>(Found)) {
2351 // FIXME: friend operators?
2352 // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2353 // later?
2354 if (!FunTmpl->getDeclContext()->isRecord())
2355 Functions.addDecl(*Op, Op.getAccess());
2356 }
2357 }
2358 }
2359
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2360 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2361 CXXSpecialMember SM,
2362 bool ConstArg,
2363 bool VolatileArg,
2364 bool RValueThis,
2365 bool ConstThis,
2366 bool VolatileThis) {
2367 assert(CanDeclareSpecialMemberFunction(RD) &&
2368 "doing special member lookup into record that isn't fully complete");
2369 RD = RD->getDefinition();
2370 if (RValueThis || ConstThis || VolatileThis)
2371 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2372 "constructors and destructors always have unqualified lvalue this");
2373 if (ConstArg || VolatileArg)
2374 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2375 "parameter-less special members can't have qualified arguments");
2376
2377 llvm::FoldingSetNodeID ID;
2378 ID.AddPointer(RD);
2379 ID.AddInteger(SM);
2380 ID.AddInteger(ConstArg);
2381 ID.AddInteger(VolatileArg);
2382 ID.AddInteger(RValueThis);
2383 ID.AddInteger(ConstThis);
2384 ID.AddInteger(VolatileThis);
2385
2386 void *InsertPoint;
2387 SpecialMemberOverloadResult *Result =
2388 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2389
2390 // This was already cached
2391 if (Result)
2392 return Result;
2393
2394 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2395 Result = new (Result) SpecialMemberOverloadResult(ID);
2396 SpecialMemberCache.InsertNode(Result, InsertPoint);
2397
2398 if (SM == CXXDestructor) {
2399 if (RD->needsImplicitDestructor())
2400 DeclareImplicitDestructor(RD);
2401 CXXDestructorDecl *DD = RD->getDestructor();
2402 assert(DD && "record without a destructor");
2403 Result->setMethod(DD);
2404 Result->setKind(DD->isDeleted() ?
2405 SpecialMemberOverloadResult::NoMemberOrDeleted :
2406 SpecialMemberOverloadResult::Success);
2407 return Result;
2408 }
2409
2410 // Prepare for overload resolution. Here we construct a synthetic argument
2411 // if necessary and make sure that implicit functions are declared.
2412 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2413 DeclarationName Name;
2414 Expr *Arg = 0;
2415 unsigned NumArgs;
2416
2417 QualType ArgType = CanTy;
2418 ExprValueKind VK = VK_LValue;
2419
2420 if (SM == CXXDefaultConstructor) {
2421 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2422 NumArgs = 0;
2423 if (RD->needsImplicitDefaultConstructor())
2424 DeclareImplicitDefaultConstructor(RD);
2425 } else {
2426 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2427 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2428 if (RD->needsImplicitCopyConstructor())
2429 DeclareImplicitCopyConstructor(RD);
2430 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2431 DeclareImplicitMoveConstructor(RD);
2432 } else {
2433 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2434 if (RD->needsImplicitCopyAssignment())
2435 DeclareImplicitCopyAssignment(RD);
2436 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2437 DeclareImplicitMoveAssignment(RD);
2438 }
2439
2440 if (ConstArg)
2441 ArgType.addConst();
2442 if (VolatileArg)
2443 ArgType.addVolatile();
2444
2445 // This isn't /really/ specified by the standard, but it's implied
2446 // we should be working from an RValue in the case of move to ensure
2447 // that we prefer to bind to rvalue references, and an LValue in the
2448 // case of copy to ensure we don't bind to rvalue references.
2449 // Possibly an XValue is actually correct in the case of move, but
2450 // there is no semantic difference for class types in this restricted
2451 // case.
2452 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2453 VK = VK_LValue;
2454 else
2455 VK = VK_RValue;
2456 }
2457
2458 OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2459
2460 if (SM != CXXDefaultConstructor) {
2461 NumArgs = 1;
2462 Arg = &FakeArg;
2463 }
2464
2465 // Create the object argument
2466 QualType ThisTy = CanTy;
2467 if (ConstThis)
2468 ThisTy.addConst();
2469 if (VolatileThis)
2470 ThisTy.addVolatile();
2471 Expr::Classification Classification =
2472 OpaqueValueExpr(SourceLocation(), ThisTy,
2473 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2474
2475 // Now we perform lookup on the name we computed earlier and do overload
2476 // resolution. Lookup is only performed directly into the class since there
2477 // will always be a (possibly implicit) declaration to shadow any others.
2478 OverloadCandidateSet OCS((SourceLocation()));
2479 DeclContext::lookup_result R = RD->lookup(Name);
2480
2481 assert(!R.empty() &&
2482 "lookup for a constructor or assignment operator was empty");
2483 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
2484 Decl *Cand = *I;
2485
2486 if (Cand->isInvalidDecl())
2487 continue;
2488
2489 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2490 // FIXME: [namespace.udecl]p15 says that we should only consider a
2491 // using declaration here if it does not match a declaration in the
2492 // derived class. We do not implement this correctly in other cases
2493 // either.
2494 Cand = U->getTargetDecl();
2495
2496 if (Cand->isInvalidDecl())
2497 continue;
2498 }
2499
2500 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2501 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2502 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2503 Classification, llvm::makeArrayRef(&Arg, NumArgs),
2504 OCS, true);
2505 else
2506 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2507 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2508 } else if (FunctionTemplateDecl *Tmpl =
2509 dyn_cast<FunctionTemplateDecl>(Cand)) {
2510 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2511 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2512 RD, 0, ThisTy, Classification,
2513 llvm::makeArrayRef(&Arg, NumArgs),
2514 OCS, true);
2515 else
2516 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2517 0, llvm::makeArrayRef(&Arg, NumArgs),
2518 OCS, true);
2519 } else {
2520 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2521 }
2522 }
2523
2524 OverloadCandidateSet::iterator Best;
2525 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2526 case OR_Success:
2527 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2528 Result->setKind(SpecialMemberOverloadResult::Success);
2529 break;
2530
2531 case OR_Deleted:
2532 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2533 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2534 break;
2535
2536 case OR_Ambiguous:
2537 Result->setMethod(0);
2538 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2539 break;
2540
2541 case OR_No_Viable_Function:
2542 Result->setMethod(0);
2543 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2544 break;
2545 }
2546
2547 return Result;
2548 }
2549
2550 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2551 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2552 SpecialMemberOverloadResult *Result =
2553 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2554 false, false);
2555
2556 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2557 }
2558
2559 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)2560 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2561 unsigned Quals) {
2562 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2563 "non-const, non-volatile qualifiers for copy ctor arg");
2564 SpecialMemberOverloadResult *Result =
2565 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2566 Quals & Qualifiers::Volatile, false, false, false);
2567
2568 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2569 }
2570
2571 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)2572 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2573 unsigned Quals) {
2574 SpecialMemberOverloadResult *Result =
2575 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2576 Quals & Qualifiers::Volatile, false, false, false);
2577
2578 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2579 }
2580
2581 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2582 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2583 // If the implicit constructors have not yet been declared, do so now.
2584 if (CanDeclareSpecialMemberFunction(Class)) {
2585 if (Class->needsImplicitDefaultConstructor())
2586 DeclareImplicitDefaultConstructor(Class);
2587 if (Class->needsImplicitCopyConstructor())
2588 DeclareImplicitCopyConstructor(Class);
2589 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2590 DeclareImplicitMoveConstructor(Class);
2591 }
2592
2593 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2594 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2595 return Class->lookup(Name);
2596 }
2597
2598 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2599 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2600 unsigned Quals, bool RValueThis,
2601 unsigned ThisQuals) {
2602 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2603 "non-const, non-volatile qualifiers for copy assignment arg");
2604 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2605 "non-const, non-volatile qualifiers for copy assignment this");
2606 SpecialMemberOverloadResult *Result =
2607 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2608 Quals & Qualifiers::Volatile, RValueThis,
2609 ThisQuals & Qualifiers::Const,
2610 ThisQuals & Qualifiers::Volatile);
2611
2612 return Result->getMethod();
2613 }
2614
2615 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)2616 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2617 unsigned Quals,
2618 bool RValueThis,
2619 unsigned ThisQuals) {
2620 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2621 "non-const, non-volatile qualifiers for copy assignment this");
2622 SpecialMemberOverloadResult *Result =
2623 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2624 Quals & Qualifiers::Volatile, RValueThis,
2625 ThisQuals & Qualifiers::Const,
2626 ThisQuals & Qualifiers::Volatile);
2627
2628 return Result->getMethod();
2629 }
2630
2631 /// \brief Look for the destructor of the given class.
2632 ///
2633 /// During semantic analysis, this routine should be used in lieu of
2634 /// CXXRecordDecl::getDestructor().
2635 ///
2636 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2637 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2638 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2639 false, false, false,
2640 false, false)->getMethod());
2641 }
2642
2643 /// LookupLiteralOperator - Determine which literal operator should be used for
2644 /// a user-defined literal, per C++11 [lex.ext].
2645 ///
2646 /// Normal overload resolution is not used to select which literal operator to
2647 /// call for a user-defined literal. Look up the provided literal operator name,
2648 /// and filter the results to the appropriate set for the given argument types.
2649 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRawAndTemplate)2650 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2651 ArrayRef<QualType> ArgTys,
2652 bool AllowRawAndTemplate) {
2653 LookupName(R, S);
2654 assert(R.getResultKind() != LookupResult::Ambiguous &&
2655 "literal operator lookup can't be ambiguous");
2656
2657 // Filter the lookup results appropriately.
2658 LookupResult::Filter F = R.makeFilter();
2659
2660 bool FoundTemplate = false;
2661 bool FoundRaw = false;
2662 bool FoundExactMatch = false;
2663
2664 while (F.hasNext()) {
2665 Decl *D = F.next();
2666 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2667 D = USD->getTargetDecl();
2668
2669 bool IsTemplate = isa<FunctionTemplateDecl>(D);
2670 bool IsRaw = false;
2671 bool IsExactMatch = false;
2672
2673 // If the declaration we found is invalid, skip it.
2674 if (D->isInvalidDecl()) {
2675 F.erase();
2676 continue;
2677 }
2678
2679 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2680 if (FD->getNumParams() == 1 &&
2681 FD->getParamDecl(0)->getType()->getAs<PointerType>())
2682 IsRaw = true;
2683 else if (FD->getNumParams() == ArgTys.size()) {
2684 IsExactMatch = true;
2685 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2686 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2687 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2688 IsExactMatch = false;
2689 break;
2690 }
2691 }
2692 }
2693 }
2694
2695 if (IsExactMatch) {
2696 FoundExactMatch = true;
2697 AllowRawAndTemplate = false;
2698 if (FoundRaw || FoundTemplate) {
2699 // Go through again and remove the raw and template decls we've
2700 // already found.
2701 F.restart();
2702 FoundRaw = FoundTemplate = false;
2703 }
2704 } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2705 FoundTemplate |= IsTemplate;
2706 FoundRaw |= IsRaw;
2707 } else {
2708 F.erase();
2709 }
2710 }
2711
2712 F.done();
2713
2714 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2715 // parameter type, that is used in preference to a raw literal operator
2716 // or literal operator template.
2717 if (FoundExactMatch)
2718 return LOLR_Cooked;
2719
2720 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2721 // operator template, but not both.
2722 if (FoundRaw && FoundTemplate) {
2723 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2724 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2725 Decl *D = *I;
2726 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2727 D = USD->getTargetDecl();
2728 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2729 D = FunTmpl->getTemplatedDecl();
2730 NoteOverloadCandidate(cast<FunctionDecl>(D));
2731 }
2732 return LOLR_Error;
2733 }
2734
2735 if (FoundRaw)
2736 return LOLR_Raw;
2737
2738 if (FoundTemplate)
2739 return LOLR_Template;
2740
2741 // Didn't find anything we could use.
2742 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2743 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2744 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2745 return LOLR_Error;
2746 }
2747
insert(NamedDecl * New)2748 void ADLResult::insert(NamedDecl *New) {
2749 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2750
2751 // If we haven't yet seen a decl for this key, or the last decl
2752 // was exactly this one, we're done.
2753 if (Old == 0 || Old == New) {
2754 Old = New;
2755 return;
2756 }
2757
2758 // Otherwise, decide which is a more recent redeclaration.
2759 FunctionDecl *OldFD, *NewFD;
2760 if (isa<FunctionTemplateDecl>(New)) {
2761 OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2762 NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2763 } else {
2764 OldFD = cast<FunctionDecl>(Old);
2765 NewFD = cast<FunctionDecl>(New);
2766 }
2767
2768 FunctionDecl *Cursor = NewFD;
2769 while (true) {
2770 Cursor = Cursor->getPreviousDecl();
2771
2772 // If we got to the end without finding OldFD, OldFD is the newer
2773 // declaration; leave things as they are.
2774 if (!Cursor) return;
2775
2776 // If we do find OldFD, then NewFD is newer.
2777 if (Cursor == OldFD) break;
2778
2779 // Otherwise, keep looking.
2780 }
2781
2782 Old = New;
2783 }
2784
ArgumentDependentLookup(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,ADLResult & Result)2785 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2786 SourceLocation Loc,
2787 llvm::ArrayRef<Expr *> Args,
2788 ADLResult &Result) {
2789 // Find all of the associated namespaces and classes based on the
2790 // arguments we have.
2791 AssociatedNamespaceSet AssociatedNamespaces;
2792 AssociatedClassSet AssociatedClasses;
2793 FindAssociatedClassesAndNamespaces(Loc, Args,
2794 AssociatedNamespaces,
2795 AssociatedClasses);
2796
2797 QualType T1, T2;
2798 if (Operator) {
2799 T1 = Args[0]->getType();
2800 if (Args.size() >= 2)
2801 T2 = Args[1]->getType();
2802 }
2803
2804 // C++ [basic.lookup.argdep]p3:
2805 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2806 // and let Y be the lookup set produced by argument dependent
2807 // lookup (defined as follows). If X contains [...] then Y is
2808 // empty. Otherwise Y is the set of declarations found in the
2809 // namespaces associated with the argument types as described
2810 // below. The set of declarations found by the lookup of the name
2811 // is the union of X and Y.
2812 //
2813 // Here, we compute Y and add its members to the overloaded
2814 // candidate set.
2815 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2816 NSEnd = AssociatedNamespaces.end();
2817 NS != NSEnd; ++NS) {
2818 // When considering an associated namespace, the lookup is the
2819 // same as the lookup performed when the associated namespace is
2820 // used as a qualifier (3.4.3.2) except that:
2821 //
2822 // -- Any using-directives in the associated namespace are
2823 // ignored.
2824 //
2825 // -- Any namespace-scope friend functions declared in
2826 // associated classes are visible within their respective
2827 // namespaces even if they are not visible during an ordinary
2828 // lookup (11.4).
2829 DeclContext::lookup_result R = (*NS)->lookup(Name);
2830 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2831 ++I) {
2832 NamedDecl *D = *I;
2833 // If the only declaration here is an ordinary friend, consider
2834 // it only if it was declared in an associated classes.
2835 if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2836 bool DeclaredInAssociatedClass = false;
2837 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
2838 DeclContext *LexDC = DI->getLexicalDeclContext();
2839 if (isa<CXXRecordDecl>(LexDC) &&
2840 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
2841 DeclaredInAssociatedClass = true;
2842 break;
2843 }
2844 }
2845 if (!DeclaredInAssociatedClass)
2846 continue;
2847 }
2848
2849 if (isa<UsingShadowDecl>(D))
2850 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2851
2852 if (isa<FunctionDecl>(D)) {
2853 if (Operator &&
2854 !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2855 T1, T2, Context))
2856 continue;
2857 } else if (!isa<FunctionTemplateDecl>(D))
2858 continue;
2859
2860 Result.insert(D);
2861 }
2862 }
2863 }
2864
2865 //----------------------------------------------------------------------------
2866 // Search for all visible declarations.
2867 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2868 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2869
2870 namespace {
2871
2872 class ShadowContextRAII;
2873
2874 class VisibleDeclsRecord {
2875 public:
2876 /// \brief An entry in the shadow map, which is optimized to store a
2877 /// single declaration (the common case) but can also store a list
2878 /// of declarations.
2879 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2880
2881 private:
2882 /// \brief A mapping from declaration names to the declarations that have
2883 /// this name within a particular scope.
2884 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2885
2886 /// \brief A list of shadow maps, which is used to model name hiding.
2887 std::list<ShadowMap> ShadowMaps;
2888
2889 /// \brief The declaration contexts we have already visited.
2890 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2891
2892 friend class ShadowContextRAII;
2893
2894 public:
2895 /// \brief Determine whether we have already visited this context
2896 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2897 bool visitedContext(DeclContext *Ctx) {
2898 return !VisitedContexts.insert(Ctx);
2899 }
2900
alreadyVisitedContext(DeclContext * Ctx)2901 bool alreadyVisitedContext(DeclContext *Ctx) {
2902 return VisitedContexts.count(Ctx);
2903 }
2904
2905 /// \brief Determine whether the given declaration is hidden in the
2906 /// current scope.
2907 ///
2908 /// \returns the declaration that hides the given declaration, or
2909 /// NULL if no such declaration exists.
2910 NamedDecl *checkHidden(NamedDecl *ND);
2911
2912 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2913 void add(NamedDecl *ND) {
2914 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2915 }
2916 };
2917
2918 /// \brief RAII object that records when we've entered a shadow context.
2919 class ShadowContextRAII {
2920 VisibleDeclsRecord &Visible;
2921
2922 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2923
2924 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2925 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2926 Visible.ShadowMaps.push_back(ShadowMap());
2927 }
2928
~ShadowContextRAII()2929 ~ShadowContextRAII() {
2930 Visible.ShadowMaps.pop_back();
2931 }
2932 };
2933
2934 } // end anonymous namespace
2935
checkHidden(NamedDecl * ND)2936 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2937 // Look through using declarations.
2938 ND = ND->getUnderlyingDecl();
2939
2940 unsigned IDNS = ND->getIdentifierNamespace();
2941 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2942 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2943 SM != SMEnd; ++SM) {
2944 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2945 if (Pos == SM->end())
2946 continue;
2947
2948 for (ShadowMapEntry::iterator I = Pos->second.begin(),
2949 IEnd = Pos->second.end();
2950 I != IEnd; ++I) {
2951 // A tag declaration does not hide a non-tag declaration.
2952 if ((*I)->hasTagIdentifierNamespace() &&
2953 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2954 Decl::IDNS_ObjCProtocol)))
2955 continue;
2956
2957 // Protocols are in distinct namespaces from everything else.
2958 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2959 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2960 (*I)->getIdentifierNamespace() != IDNS)
2961 continue;
2962
2963 // Functions and function templates in the same scope overload
2964 // rather than hide. FIXME: Look for hiding based on function
2965 // signatures!
2966 if ((*I)->isFunctionOrFunctionTemplate() &&
2967 ND->isFunctionOrFunctionTemplate() &&
2968 SM == ShadowMaps.rbegin())
2969 continue;
2970
2971 // We've found a declaration that hides this one.
2972 return *I;
2973 }
2974 }
2975
2976 return 0;
2977 }
2978
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2979 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2980 bool QualifiedNameLookup,
2981 bool InBaseClass,
2982 VisibleDeclConsumer &Consumer,
2983 VisibleDeclsRecord &Visited) {
2984 if (!Ctx)
2985 return;
2986
2987 // Make sure we don't visit the same context twice.
2988 if (Visited.visitedContext(Ctx->getPrimaryContext()))
2989 return;
2990
2991 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2992 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2993
2994 // Enumerate all of the results in this context.
2995 for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2996 LEnd = Ctx->lookups_end();
2997 L != LEnd; ++L) {
2998 DeclContext::lookup_result R = *L;
2999 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
3000 ++I) {
3001 if (NamedDecl *ND = dyn_cast<NamedDecl>(*I)) {
3002 if ((ND = Result.getAcceptableDecl(ND))) {
3003 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3004 Visited.add(ND);
3005 }
3006 }
3007 }
3008 }
3009
3010 // Traverse using directives for qualified name lookup.
3011 if (QualifiedNameLookup) {
3012 ShadowContextRAII Shadow(Visited);
3013 DeclContext::udir_iterator I, E;
3014 for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
3015 LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
3016 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3017 }
3018 }
3019
3020 // Traverse the contexts of inherited C++ classes.
3021 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3022 if (!Record->hasDefinition())
3023 return;
3024
3025 for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
3026 BEnd = Record->bases_end();
3027 B != BEnd; ++B) {
3028 QualType BaseType = B->getType();
3029
3030 // Don't look into dependent bases, because name lookup can't look
3031 // there anyway.
3032 if (BaseType->isDependentType())
3033 continue;
3034
3035 const RecordType *Record = BaseType->getAs<RecordType>();
3036 if (!Record)
3037 continue;
3038
3039 // FIXME: It would be nice to be able to determine whether referencing
3040 // a particular member would be ambiguous. For example, given
3041 //
3042 // struct A { int member; };
3043 // struct B { int member; };
3044 // struct C : A, B { };
3045 //
3046 // void f(C *c) { c->### }
3047 //
3048 // accessing 'member' would result in an ambiguity. However, we
3049 // could be smart enough to qualify the member with the base
3050 // class, e.g.,
3051 //
3052 // c->B::member
3053 //
3054 // or
3055 //
3056 // c->A::member
3057
3058 // Find results in this base class (and its bases).
3059 ShadowContextRAII Shadow(Visited);
3060 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3061 true, Consumer, Visited);
3062 }
3063 }
3064
3065 // Traverse the contexts of Objective-C classes.
3066 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3067 // Traverse categories.
3068 for (ObjCInterfaceDecl::visible_categories_iterator
3069 Cat = IFace->visible_categories_begin(),
3070 CatEnd = IFace->visible_categories_end();
3071 Cat != CatEnd; ++Cat) {
3072 ShadowContextRAII Shadow(Visited);
3073 LookupVisibleDecls(*Cat, Result, QualifiedNameLookup, false,
3074 Consumer, Visited);
3075 }
3076
3077 // Traverse protocols.
3078 for (ObjCInterfaceDecl::all_protocol_iterator
3079 I = IFace->all_referenced_protocol_begin(),
3080 E = IFace->all_referenced_protocol_end(); I != E; ++I) {
3081 ShadowContextRAII Shadow(Visited);
3082 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
3083 Visited);
3084 }
3085
3086 // Traverse the superclass.
3087 if (IFace->getSuperClass()) {
3088 ShadowContextRAII Shadow(Visited);
3089 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3090 true, Consumer, Visited);
3091 }
3092
3093 // If there is an implementation, traverse it. We do this to find
3094 // synthesized ivars.
3095 if (IFace->getImplementation()) {
3096 ShadowContextRAII Shadow(Visited);
3097 LookupVisibleDecls(IFace->getImplementation(), Result,
3098 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3099 }
3100 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3101 for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
3102 E = Protocol->protocol_end(); I != E; ++I) {
3103 ShadowContextRAII Shadow(Visited);
3104 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
3105 Visited);
3106 }
3107 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3108 for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
3109 E = Category->protocol_end(); I != E; ++I) {
3110 ShadowContextRAII Shadow(Visited);
3111 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
3112 Visited);
3113 }
3114
3115 // If there is an implementation, traverse it.
3116 if (Category->getImplementation()) {
3117 ShadowContextRAII Shadow(Visited);
3118 LookupVisibleDecls(Category->getImplementation(), Result,
3119 QualifiedNameLookup, true, Consumer, Visited);
3120 }
3121 }
3122 }
3123
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3124 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3125 UnqualUsingDirectiveSet &UDirs,
3126 VisibleDeclConsumer &Consumer,
3127 VisibleDeclsRecord &Visited) {
3128 if (!S)
3129 return;
3130
3131 if (!S->getEntity() ||
3132 (!S->getParent() &&
3133 !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
3134 ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
3135 // Walk through the declarations in this Scope.
3136 for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
3137 D != DEnd; ++D) {
3138 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
3139 if ((ND = Result.getAcceptableDecl(ND))) {
3140 Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
3141 Visited.add(ND);
3142 }
3143 }
3144 }
3145
3146 // FIXME: C++ [temp.local]p8
3147 DeclContext *Entity = 0;
3148 if (S->getEntity()) {
3149 // Look into this scope's declaration context, along with any of its
3150 // parent lookup contexts (e.g., enclosing classes), up to the point
3151 // where we hit the context stored in the next outer scope.
3152 Entity = (DeclContext *)S->getEntity();
3153 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3154
3155 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3156 Ctx = Ctx->getLookupParent()) {
3157 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3158 if (Method->isInstanceMethod()) {
3159 // For instance methods, look for ivars in the method's interface.
3160 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3161 Result.getNameLoc(), Sema::LookupMemberName);
3162 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3163 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3164 /*InBaseClass=*/false, Consumer, Visited);
3165 }
3166 }
3167
3168 // We've already performed all of the name lookup that we need
3169 // to for Objective-C methods; the next context will be the
3170 // outer scope.
3171 break;
3172 }
3173
3174 if (Ctx->isFunctionOrMethod())
3175 continue;
3176
3177 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3178 /*InBaseClass=*/false, Consumer, Visited);
3179 }
3180 } else if (!S->getParent()) {
3181 // Look into the translation unit scope. We walk through the translation
3182 // unit's declaration context, because the Scope itself won't have all of
3183 // the declarations if we loaded a precompiled header.
3184 // FIXME: We would like the translation unit's Scope object to point to the
3185 // translation unit, so we don't need this special "if" branch. However,
3186 // doing so would force the normal C++ name-lookup code to look into the
3187 // translation unit decl when the IdentifierInfo chains would suffice.
3188 // Once we fix that problem (which is part of a more general "don't look
3189 // in DeclContexts unless we have to" optimization), we can eliminate this.
3190 Entity = Result.getSema().Context.getTranslationUnitDecl();
3191 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3192 /*InBaseClass=*/false, Consumer, Visited);
3193 }
3194
3195 if (Entity) {
3196 // Lookup visible declarations in any namespaces found by using
3197 // directives.
3198 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3199 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3200 for (; UI != UEnd; ++UI)
3201 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3202 Result, /*QualifiedNameLookup=*/false,
3203 /*InBaseClass=*/false, Consumer, Visited);
3204 }
3205
3206 // Lookup names in the parent scope.
3207 ShadowContextRAII Shadow(Visited);
3208 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3209 }
3210
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3211 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3212 VisibleDeclConsumer &Consumer,
3213 bool IncludeGlobalScope) {
3214 // Determine the set of using directives available during
3215 // unqualified name lookup.
3216 Scope *Initial = S;
3217 UnqualUsingDirectiveSet UDirs;
3218 if (getLangOpts().CPlusPlus) {
3219 // Find the first namespace or translation-unit scope.
3220 while (S && !isNamespaceOrTranslationUnitScope(S))
3221 S = S->getParent();
3222
3223 UDirs.visitScopeChain(Initial, S);
3224 }
3225 UDirs.done();
3226
3227 // Look for visible declarations.
3228 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3229 VisibleDeclsRecord Visited;
3230 if (!IncludeGlobalScope)
3231 Visited.visitedContext(Context.getTranslationUnitDecl());
3232 ShadowContextRAII Shadow(Visited);
3233 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3234 }
3235
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3236 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3237 VisibleDeclConsumer &Consumer,
3238 bool IncludeGlobalScope) {
3239 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3240 VisibleDeclsRecord Visited;
3241 if (!IncludeGlobalScope)
3242 Visited.visitedContext(Context.getTranslationUnitDecl());
3243 ShadowContextRAII Shadow(Visited);
3244 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3245 /*InBaseClass=*/false, Consumer, Visited);
3246 }
3247
3248 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3249 /// If GnuLabelLoc is a valid source location, then this is a definition
3250 /// of an __label__ label name, otherwise it is a normal label definition
3251 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3252 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3253 SourceLocation GnuLabelLoc) {
3254 // Do a lookup to see if we have a label with this name already.
3255 NamedDecl *Res = 0;
3256
3257 if (GnuLabelLoc.isValid()) {
3258 // Local label definitions always shadow existing labels.
3259 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3260 Scope *S = CurScope;
3261 PushOnScopeChains(Res, S, true);
3262 return cast<LabelDecl>(Res);
3263 }
3264
3265 // Not a GNU local label.
3266 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3267 // If we found a label, check to see if it is in the same context as us.
3268 // When in a Block, we don't want to reuse a label in an enclosing function.
3269 if (Res && Res->getDeclContext() != CurContext)
3270 Res = 0;
3271 if (Res == 0) {
3272 // If not forward referenced or defined already, create the backing decl.
3273 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3274 Scope *S = CurScope->getFnParent();
3275 assert(S && "Not in a function?");
3276 PushOnScopeChains(Res, S, true);
3277 }
3278 return cast<LabelDecl>(Res);
3279 }
3280
3281 //===----------------------------------------------------------------------===//
3282 // Typo correction
3283 //===----------------------------------------------------------------------===//
3284
3285 namespace {
3286
3287 typedef SmallVector<TypoCorrection, 1> TypoResultList;
3288 typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3289 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3290
3291 static const unsigned MaxTypoDistanceResultSets = 5;
3292
3293 class TypoCorrectionConsumer : public VisibleDeclConsumer {
3294 /// \brief The name written that is a typo in the source.
3295 StringRef Typo;
3296
3297 /// \brief The results found that have the smallest edit distance
3298 /// found (so far) with the typo name.
3299 ///
3300 /// The pointer value being set to the current DeclContext indicates
3301 /// whether there is a keyword with this name.
3302 TypoEditDistanceMap CorrectionResults;
3303
3304 Sema &SemaRef;
3305
3306 public:
TypoCorrectionConsumer(Sema & SemaRef,IdentifierInfo * Typo)3307 explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3308 : Typo(Typo->getName()),
3309 SemaRef(SemaRef) { }
3310
3311 virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3312 bool InBaseClass);
3313 void FoundName(StringRef Name);
3314 void addKeywordResult(StringRef Keyword);
3315 void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3316 NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3317 void addCorrection(TypoCorrection Correction);
3318
3319 typedef TypoResultsMap::iterator result_iterator;
3320 typedef TypoEditDistanceMap::iterator distance_iterator;
begin()3321 distance_iterator begin() { return CorrectionResults.begin(); }
end()3322 distance_iterator end() { return CorrectionResults.end(); }
erase(distance_iterator I)3323 void erase(distance_iterator I) { CorrectionResults.erase(I); }
size() const3324 unsigned size() const { return CorrectionResults.size(); }
empty() const3325 bool empty() const { return CorrectionResults.empty(); }
3326
operator [](StringRef Name)3327 TypoResultList &operator[](StringRef Name) {
3328 return CorrectionResults.begin()->second[Name];
3329 }
3330
getBestEditDistance(bool Normalized)3331 unsigned getBestEditDistance(bool Normalized) {
3332 if (CorrectionResults.empty())
3333 return (std::numeric_limits<unsigned>::max)();
3334
3335 unsigned BestED = CorrectionResults.begin()->first;
3336 return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3337 }
3338
getBestResults()3339 TypoResultsMap &getBestResults() {
3340 return CorrectionResults.begin()->second;
3341 }
3342
3343 };
3344
3345 }
3346
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3347 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3348 DeclContext *Ctx, bool InBaseClass) {
3349 // Don't consider hidden names for typo correction.
3350 if (Hiding)
3351 return;
3352
3353 // Only consider entities with identifiers for names, ignoring
3354 // special names (constructors, overloaded operators, selectors,
3355 // etc.).
3356 IdentifierInfo *Name = ND->getIdentifier();
3357 if (!Name)
3358 return;
3359
3360 FoundName(Name->getName());
3361 }
3362
FoundName(StringRef Name)3363 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3364 // Use a simple length-based heuristic to determine the minimum possible
3365 // edit distance. If the minimum isn't good enough, bail out early.
3366 unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3367 if (MinED && Typo.size() / MinED < 3)
3368 return;
3369
3370 // Compute an upper bound on the allowable edit distance, so that the
3371 // edit-distance algorithm can short-circuit.
3372 unsigned UpperBound = (Typo.size() + 2) / 3;
3373
3374 // Compute the edit distance between the typo and the name of this
3375 // entity, and add the identifier to the list of results.
3376 addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3377 }
3378
addKeywordResult(StringRef Keyword)3379 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3380 // Compute the edit distance between the typo and this keyword,
3381 // and add the keyword to the list of results.
3382 addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3383 }
3384
addName(StringRef Name,NamedDecl * ND,unsigned Distance,NestedNameSpecifier * NNS,bool isKeyword)3385 void TypoCorrectionConsumer::addName(StringRef Name,
3386 NamedDecl *ND,
3387 unsigned Distance,
3388 NestedNameSpecifier *NNS,
3389 bool isKeyword) {
3390 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3391 if (isKeyword) TC.makeKeyword();
3392 addCorrection(TC);
3393 }
3394
addCorrection(TypoCorrection Correction)3395 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3396 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3397 TypoResultList &CList =
3398 CorrectionResults[Correction.getEditDistance(false)][Name];
3399
3400 if (!CList.empty() && !CList.back().isResolved())
3401 CList.pop_back();
3402 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3403 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3404 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3405 RI != RIEnd; ++RI) {
3406 // If the Correction refers to a decl already in the result list,
3407 // replace the existing result if the string representation of Correction
3408 // comes before the current result alphabetically, then stop as there is
3409 // nothing more to be done to add Correction to the candidate set.
3410 if (RI->getCorrectionDecl() == NewND) {
3411 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3412 *RI = Correction;
3413 return;
3414 }
3415 }
3416 }
3417 if (CList.empty() || Correction.isResolved())
3418 CList.push_back(Correction);
3419
3420 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3421 erase(llvm::prior(CorrectionResults.end()));
3422 }
3423
3424 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3425 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3426 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3427 static void getNestedNameSpecifierIdentifiers(
3428 NestedNameSpecifier *NNS,
3429 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3430 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3431 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3432 else
3433 Identifiers.clear();
3434
3435 const IdentifierInfo *II = NULL;
3436
3437 switch (NNS->getKind()) {
3438 case NestedNameSpecifier::Identifier:
3439 II = NNS->getAsIdentifier();
3440 break;
3441
3442 case NestedNameSpecifier::Namespace:
3443 if (NNS->getAsNamespace()->isAnonymousNamespace())
3444 return;
3445 II = NNS->getAsNamespace()->getIdentifier();
3446 break;
3447
3448 case NestedNameSpecifier::NamespaceAlias:
3449 II = NNS->getAsNamespaceAlias()->getIdentifier();
3450 break;
3451
3452 case NestedNameSpecifier::TypeSpecWithTemplate:
3453 case NestedNameSpecifier::TypeSpec:
3454 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3455 break;
3456
3457 case NestedNameSpecifier::Global:
3458 return;
3459 }
3460
3461 if (II)
3462 Identifiers.push_back(II);
3463 }
3464
3465 namespace {
3466
3467 class SpecifierInfo {
3468 public:
3469 DeclContext* DeclCtx;
3470 NestedNameSpecifier* NameSpecifier;
3471 unsigned EditDistance;
3472
SpecifierInfo(DeclContext * Ctx,NestedNameSpecifier * NNS,unsigned ED)3473 SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3474 : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3475 };
3476
3477 typedef SmallVector<DeclContext*, 4> DeclContextList;
3478 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3479
3480 class NamespaceSpecifierSet {
3481 ASTContext &Context;
3482 DeclContextList CurContextChain;
3483 SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3484 SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3485 bool isSorted;
3486
3487 SpecifierInfoList Specifiers;
3488 llvm::SmallSetVector<unsigned, 4> Distances;
3489 llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3490
3491 /// \brief Helper for building the list of DeclContexts between the current
3492 /// context and the top of the translation unit
3493 static DeclContextList BuildContextChain(DeclContext *Start);
3494
3495 void SortNamespaces();
3496
3497 public:
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3498 NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3499 CXXScopeSpec *CurScopeSpec)
3500 : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3501 isSorted(false) {
3502 if (CurScopeSpec && CurScopeSpec->getScopeRep())
3503 getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3504 CurNameSpecifierIdentifiers);
3505 // Build the list of identifiers that would be used for an absolute
3506 // (from the global context) NestedNameSpecifier referring to the current
3507 // context.
3508 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3509 CEnd = CurContextChain.rend();
3510 C != CEnd; ++C) {
3511 if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3512 CurContextIdentifiers.push_back(ND->getIdentifier());
3513 }
3514
3515 // Add the global context as a NestedNameSpecifier
3516 Distances.insert(1);
3517 DistanceMap[1].push_back(
3518 SpecifierInfo(cast<DeclContext>(Context.getTranslationUnitDecl()),
3519 NestedNameSpecifier::GlobalSpecifier(Context), 1));
3520 }
3521
3522 /// \brief Add the namespace to the set, computing the corresponding
3523 /// NestedNameSpecifier and its distance in the process.
3524 void AddNamespace(NamespaceDecl *ND);
3525
3526 typedef SpecifierInfoList::iterator iterator;
begin()3527 iterator begin() {
3528 if (!isSorted) SortNamespaces();
3529 return Specifiers.begin();
3530 }
end()3531 iterator end() { return Specifiers.end(); }
3532 };
3533
3534 }
3535
BuildContextChain(DeclContext * Start)3536 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3537 assert(Start && "Building a context chain from a null context");
3538 DeclContextList Chain;
3539 for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3540 DC = DC->getLookupParent()) {
3541 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3542 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3543 !(ND && ND->isAnonymousNamespace()))
3544 Chain.push_back(DC->getPrimaryContext());
3545 }
3546 return Chain;
3547 }
3548
SortNamespaces()3549 void NamespaceSpecifierSet::SortNamespaces() {
3550 SmallVector<unsigned, 4> sortedDistances;
3551 sortedDistances.append(Distances.begin(), Distances.end());
3552
3553 if (sortedDistances.size() > 1)
3554 std::sort(sortedDistances.begin(), sortedDistances.end());
3555
3556 Specifiers.clear();
3557 for (SmallVectorImpl<unsigned>::iterator DI = sortedDistances.begin(),
3558 DIEnd = sortedDistances.end();
3559 DI != DIEnd; ++DI) {
3560 SpecifierInfoList &SpecList = DistanceMap[*DI];
3561 Specifiers.append(SpecList.begin(), SpecList.end());
3562 }
3563
3564 isSorted = true;
3565 }
3566
AddNamespace(NamespaceDecl * ND)3567 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3568 DeclContext *Ctx = cast<DeclContext>(ND);
3569 NestedNameSpecifier *NNS = NULL;
3570 unsigned NumSpecifiers = 0;
3571 DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3572 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3573
3574 // Eliminate common elements from the two DeclContext chains.
3575 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3576 CEnd = CurContextChain.rend();
3577 C != CEnd && !NamespaceDeclChain.empty() &&
3578 NamespaceDeclChain.back() == *C; ++C) {
3579 NamespaceDeclChain.pop_back();
3580 }
3581
3582 // Add an explicit leading '::' specifier if needed.
3583 if (NamespaceDeclChain.empty()) {
3584 NamespaceDeclChain = FullNamespaceDeclChain;
3585 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3586 } else if (NamespaceDecl *ND =
3587 dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3588 IdentifierInfo *Name = ND->getIdentifier();
3589 if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3590 Name) != CurContextIdentifiers.end() ||
3591 std::find(CurNameSpecifierIdentifiers.begin(),
3592 CurNameSpecifierIdentifiers.end(),
3593 Name) != CurNameSpecifierIdentifiers.end()) {
3594 NamespaceDeclChain = FullNamespaceDeclChain;
3595 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3596 }
3597 }
3598
3599 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3600 for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3601 CEnd = NamespaceDeclChain.rend();
3602 C != CEnd; ++C) {
3603 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3604 if (ND) {
3605 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3606 ++NumSpecifiers;
3607 }
3608 }
3609
3610 // If the built NestedNameSpecifier would be replacing an existing
3611 // NestedNameSpecifier, use the number of component identifiers that
3612 // would need to be changed as the edit distance instead of the number
3613 // of components in the built NestedNameSpecifier.
3614 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3615 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3616 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3617 NumSpecifiers = llvm::ComputeEditDistance(
3618 llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3619 llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3620 }
3621
3622 isSorted = false;
3623 Distances.insert(NumSpecifiers);
3624 DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3625 }
3626
3627 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup)3628 static void LookupPotentialTypoResult(Sema &SemaRef,
3629 LookupResult &Res,
3630 IdentifierInfo *Name,
3631 Scope *S, CXXScopeSpec *SS,
3632 DeclContext *MemberContext,
3633 bool EnteringContext,
3634 bool isObjCIvarLookup) {
3635 Res.suppressDiagnostics();
3636 Res.clear();
3637 Res.setLookupName(Name);
3638 if (MemberContext) {
3639 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3640 if (isObjCIvarLookup) {
3641 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3642 Res.addDecl(Ivar);
3643 Res.resolveKind();
3644 return;
3645 }
3646 }
3647
3648 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3649 Res.addDecl(Prop);
3650 Res.resolveKind();
3651 return;
3652 }
3653 }
3654
3655 SemaRef.LookupQualifiedName(Res, MemberContext);
3656 return;
3657 }
3658
3659 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3660 EnteringContext);
3661
3662 // Fake ivar lookup; this should really be part of
3663 // LookupParsedName.
3664 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3665 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3666 (Res.empty() ||
3667 (Res.isSingleResult() &&
3668 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3669 if (ObjCIvarDecl *IV
3670 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3671 Res.addDecl(IV);
3672 Res.resolveKind();
3673 }
3674 }
3675 }
3676 }
3677
3678 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)3679 static void AddKeywordsToConsumer(Sema &SemaRef,
3680 TypoCorrectionConsumer &Consumer,
3681 Scope *S, CorrectionCandidateCallback &CCC,
3682 bool AfterNestedNameSpecifier) {
3683 if (AfterNestedNameSpecifier) {
3684 // For 'X::', we know exactly which keywords can appear next.
3685 Consumer.addKeywordResult("template");
3686 if (CCC.WantExpressionKeywords)
3687 Consumer.addKeywordResult("operator");
3688 return;
3689 }
3690
3691 if (CCC.WantObjCSuper)
3692 Consumer.addKeywordResult("super");
3693
3694 if (CCC.WantTypeSpecifiers) {
3695 // Add type-specifier keywords to the set of results.
3696 static const char *const CTypeSpecs[] = {
3697 "char", "const", "double", "enum", "float", "int", "long", "short",
3698 "signed", "struct", "union", "unsigned", "void", "volatile",
3699 "_Complex", "_Imaginary",
3700 // storage-specifiers as well
3701 "extern", "inline", "static", "typedef"
3702 };
3703
3704 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
3705 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3706 Consumer.addKeywordResult(CTypeSpecs[I]);
3707
3708 if (SemaRef.getLangOpts().C99)
3709 Consumer.addKeywordResult("restrict");
3710 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3711 Consumer.addKeywordResult("bool");
3712 else if (SemaRef.getLangOpts().C99)
3713 Consumer.addKeywordResult("_Bool");
3714
3715 if (SemaRef.getLangOpts().CPlusPlus) {
3716 Consumer.addKeywordResult("class");
3717 Consumer.addKeywordResult("typename");
3718 Consumer.addKeywordResult("wchar_t");
3719
3720 if (SemaRef.getLangOpts().CPlusPlus11) {
3721 Consumer.addKeywordResult("char16_t");
3722 Consumer.addKeywordResult("char32_t");
3723 Consumer.addKeywordResult("constexpr");
3724 Consumer.addKeywordResult("decltype");
3725 Consumer.addKeywordResult("thread_local");
3726 }
3727 }
3728
3729 if (SemaRef.getLangOpts().GNUMode)
3730 Consumer.addKeywordResult("typeof");
3731 }
3732
3733 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3734 Consumer.addKeywordResult("const_cast");
3735 Consumer.addKeywordResult("dynamic_cast");
3736 Consumer.addKeywordResult("reinterpret_cast");
3737 Consumer.addKeywordResult("static_cast");
3738 }
3739
3740 if (CCC.WantExpressionKeywords) {
3741 Consumer.addKeywordResult("sizeof");
3742 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3743 Consumer.addKeywordResult("false");
3744 Consumer.addKeywordResult("true");
3745 }
3746
3747 if (SemaRef.getLangOpts().CPlusPlus) {
3748 static const char *const CXXExprs[] = {
3749 "delete", "new", "operator", "throw", "typeid"
3750 };
3751 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
3752 for (unsigned I = 0; I != NumCXXExprs; ++I)
3753 Consumer.addKeywordResult(CXXExprs[I]);
3754
3755 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3756 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3757 Consumer.addKeywordResult("this");
3758
3759 if (SemaRef.getLangOpts().CPlusPlus11) {
3760 Consumer.addKeywordResult("alignof");
3761 Consumer.addKeywordResult("nullptr");
3762 }
3763 }
3764
3765 if (SemaRef.getLangOpts().C11) {
3766 // FIXME: We should not suggest _Alignof if the alignof macro
3767 // is present.
3768 Consumer.addKeywordResult("_Alignof");
3769 }
3770 }
3771
3772 if (CCC.WantRemainingKeywords) {
3773 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3774 // Statements.
3775 static const char *const CStmts[] = {
3776 "do", "else", "for", "goto", "if", "return", "switch", "while" };
3777 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
3778 for (unsigned I = 0; I != NumCStmts; ++I)
3779 Consumer.addKeywordResult(CStmts[I]);
3780
3781 if (SemaRef.getLangOpts().CPlusPlus) {
3782 Consumer.addKeywordResult("catch");
3783 Consumer.addKeywordResult("try");
3784 }
3785
3786 if (S && S->getBreakParent())
3787 Consumer.addKeywordResult("break");
3788
3789 if (S && S->getContinueParent())
3790 Consumer.addKeywordResult("continue");
3791
3792 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3793 Consumer.addKeywordResult("case");
3794 Consumer.addKeywordResult("default");
3795 }
3796 } else {
3797 if (SemaRef.getLangOpts().CPlusPlus) {
3798 Consumer.addKeywordResult("namespace");
3799 Consumer.addKeywordResult("template");
3800 }
3801
3802 if (S && S->isClassScope()) {
3803 Consumer.addKeywordResult("explicit");
3804 Consumer.addKeywordResult("friend");
3805 Consumer.addKeywordResult("mutable");
3806 Consumer.addKeywordResult("private");
3807 Consumer.addKeywordResult("protected");
3808 Consumer.addKeywordResult("public");
3809 Consumer.addKeywordResult("virtual");
3810 }
3811 }
3812
3813 if (SemaRef.getLangOpts().CPlusPlus) {
3814 Consumer.addKeywordResult("using");
3815
3816 if (SemaRef.getLangOpts().CPlusPlus11)
3817 Consumer.addKeywordResult("static_assert");
3818 }
3819 }
3820 }
3821
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3822 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3823 TypoCorrection &Candidate) {
3824 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3825 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3826 }
3827
3828 /// \brief Try to "correct" a typo in the source code by finding
3829 /// visible declarations whose names are similar to the name that was
3830 /// present in the source code.
3831 ///
3832 /// \param TypoName the \c DeclarationNameInfo structure that contains
3833 /// the name that was present in the source code along with its location.
3834 ///
3835 /// \param LookupKind the name-lookup criteria used to search for the name.
3836 ///
3837 /// \param S the scope in which name lookup occurs.
3838 ///
3839 /// \param SS the nested-name-specifier that precedes the name we're
3840 /// looking for, if present.
3841 ///
3842 /// \param CCC A CorrectionCandidateCallback object that provides further
3843 /// validation of typo correction candidates. It also provides flags for
3844 /// determining the set of keywords permitted.
3845 ///
3846 /// \param MemberContext if non-NULL, the context in which to look for
3847 /// a member access expression.
3848 ///
3849 /// \param EnteringContext whether we're entering the context described by
3850 /// the nested-name-specifier SS.
3851 ///
3852 /// \param OPT when non-NULL, the search for visible declarations will
3853 /// also walk the protocols in the qualified interfaces of \p OPT.
3854 ///
3855 /// \returns a \c TypoCorrection containing the corrected name if the typo
3856 /// along with information such as the \c NamedDecl where the corrected name
3857 /// was declared, and any additional \c NestedNameSpecifier needed to access
3858 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)3859 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3860 Sema::LookupNameKind LookupKind,
3861 Scope *S, CXXScopeSpec *SS,
3862 CorrectionCandidateCallback &CCC,
3863 DeclContext *MemberContext,
3864 bool EnteringContext,
3865 const ObjCObjectPointerType *OPT) {
3866 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3867 return TypoCorrection();
3868
3869 // In Microsoft mode, don't perform typo correction in a template member
3870 // function dependent context because it interferes with the "lookup into
3871 // dependent bases of class templates" feature.
3872 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3873 isa<CXXMethodDecl>(CurContext))
3874 return TypoCorrection();
3875
3876 // We only attempt to correct typos for identifiers.
3877 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3878 if (!Typo)
3879 return TypoCorrection();
3880
3881 // If the scope specifier itself was invalid, don't try to correct
3882 // typos.
3883 if (SS && SS->isInvalid())
3884 return TypoCorrection();
3885
3886 // Never try to correct typos during template deduction or
3887 // instantiation.
3888 if (!ActiveTemplateInstantiations.empty())
3889 return TypoCorrection();
3890
3891 // Don't try to correct 'super'.
3892 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
3893 return TypoCorrection();
3894
3895 NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3896
3897 TypoCorrectionConsumer Consumer(*this, Typo);
3898
3899 // If a callback object considers an empty typo correction candidate to be
3900 // viable, assume it does not do any actual validation of the candidates.
3901 TypoCorrection EmptyCorrection;
3902 bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3903
3904 // Perform name lookup to find visible, similarly-named entities.
3905 bool IsUnqualifiedLookup = false;
3906 DeclContext *QualifiedDC = MemberContext;
3907 if (MemberContext) {
3908 LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3909
3910 // Look in qualified interfaces.
3911 if (OPT) {
3912 for (ObjCObjectPointerType::qual_iterator
3913 I = OPT->qual_begin(), E = OPT->qual_end();
3914 I != E; ++I)
3915 LookupVisibleDecls(*I, LookupKind, Consumer);
3916 }
3917 } else if (SS && SS->isSet()) {
3918 QualifiedDC = computeDeclContext(*SS, EnteringContext);
3919 if (!QualifiedDC)
3920 return TypoCorrection();
3921
3922 // Provide a stop gap for files that are just seriously broken. Trying
3923 // to correct all typos can turn into a HUGE performance penalty, causing
3924 // some files to take minutes to get rejected by the parser.
3925 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3926 return TypoCorrection();
3927 ++TyposCorrected;
3928
3929 LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3930 } else {
3931 IsUnqualifiedLookup = true;
3932 UnqualifiedTyposCorrectedMap::iterator Cached
3933 = UnqualifiedTyposCorrected.find(Typo);
3934 if (Cached != UnqualifiedTyposCorrected.end()) {
3935 // Add the cached value, unless it's a keyword or fails validation. In the
3936 // keyword case, we'll end up adding the keyword below.
3937 if (Cached->second) {
3938 if (!Cached->second.isKeyword() &&
3939 isCandidateViable(CCC, Cached->second))
3940 Consumer.addCorrection(Cached->second);
3941 } else {
3942 // Only honor no-correction cache hits when a callback that will validate
3943 // correction candidates is not being used.
3944 if (!ValidatingCallback)
3945 return TypoCorrection();
3946 }
3947 }
3948 if (Cached == UnqualifiedTyposCorrected.end()) {
3949 // Provide a stop gap for files that are just seriously broken. Trying
3950 // to correct all typos can turn into a HUGE performance penalty, causing
3951 // some files to take minutes to get rejected by the parser.
3952 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3953 return TypoCorrection();
3954 }
3955 }
3956
3957 // Determine whether we are going to search in the various namespaces for
3958 // corrections.
3959 bool SearchNamespaces
3960 = getLangOpts().CPlusPlus &&
3961 (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3962 // In a few cases we *only* want to search for corrections bases on just
3963 // adding or changing the nested name specifier.
3964 bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3965
3966 if (IsUnqualifiedLookup || SearchNamespaces) {
3967 // For unqualified lookup, look through all of the names that we have
3968 // seen in this translation unit.
3969 // FIXME: Re-add the ability to skip very unlikely potential corrections.
3970 for (IdentifierTable::iterator I = Context.Idents.begin(),
3971 IEnd = Context.Idents.end();
3972 I != IEnd; ++I)
3973 Consumer.FoundName(I->getKey());
3974
3975 // Walk through identifiers in external identifier sources.
3976 // FIXME: Re-add the ability to skip very unlikely potential corrections.
3977 if (IdentifierInfoLookup *External
3978 = Context.Idents.getExternalIdentifierLookup()) {
3979 OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3980 do {
3981 StringRef Name = Iter->Next();
3982 if (Name.empty())
3983 break;
3984
3985 Consumer.FoundName(Name);
3986 } while (true);
3987 }
3988 }
3989
3990 AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3991
3992 // If we haven't found anything, we're done.
3993 if (Consumer.empty()) {
3994 // If this was an unqualified lookup, note that no correction was found.
3995 if (IsUnqualifiedLookup)
3996 (void)UnqualifiedTyposCorrected[Typo];
3997
3998 return TypoCorrection();
3999 }
4000
4001 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4002 // is not more that about a third of the length of the typo's identifier.
4003 unsigned ED = Consumer.getBestEditDistance(true);
4004 if (ED > 0 && Typo->getName().size() / ED < 3) {
4005 // If this was an unqualified lookup, note that no correction was found.
4006 if (IsUnqualifiedLookup)
4007 (void)UnqualifiedTyposCorrected[Typo];
4008
4009 return TypoCorrection();
4010 }
4011
4012 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4013 // to search those namespaces.
4014 if (SearchNamespaces) {
4015 // Load any externally-known namespaces.
4016 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4017 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4018 LoadedExternalKnownNamespaces = true;
4019 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4020 for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
4021 KnownNamespaces[ExternalKnownNamespaces[I]] = true;
4022 }
4023
4024 for (llvm::MapVector<NamespaceDecl*, bool>::iterator
4025 KNI = KnownNamespaces.begin(),
4026 KNIEnd = KnownNamespaces.end();
4027 KNI != KNIEnd; ++KNI)
4028 Namespaces.AddNamespace(KNI->first);
4029 }
4030
4031 // Weed out any names that could not be found by name lookup or, if a
4032 // CorrectionCandidateCallback object was provided, failed validation.
4033 SmallVector<TypoCorrection, 16> QualifiedResults;
4034 LookupResult TmpRes(*this, TypoName, LookupKind);
4035 TmpRes.suppressDiagnostics();
4036 while (!Consumer.empty()) {
4037 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
4038 unsigned ED = DI->first;
4039 for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
4040 IEnd = DI->second.end();
4041 I != IEnd; /* Increment in loop. */) {
4042 // If we only want nested name specifier corrections, ignore potential
4043 // corrections that have a different base identifier from the typo.
4044 if (AllowOnlyNNSChanges &&
4045 I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
4046 TypoCorrectionConsumer::result_iterator Prev = I;
4047 ++I;
4048 DI->second.erase(Prev);
4049 continue;
4050 }
4051
4052 // If the item already has been looked up or is a keyword, keep it.
4053 // If a validator callback object was given, drop the correction
4054 // unless it passes validation.
4055 bool Viable = false;
4056 for (TypoResultList::iterator RI = I->second.begin();
4057 RI != I->second.end(); /* Increment in loop. */) {
4058 TypoResultList::iterator Prev = RI;
4059 ++RI;
4060 if (Prev->isResolved()) {
4061 if (!isCandidateViable(CCC, *Prev))
4062 RI = I->second.erase(Prev);
4063 else
4064 Viable = true;
4065 }
4066 }
4067 if (Viable || I->second.empty()) {
4068 TypoCorrectionConsumer::result_iterator Prev = I;
4069 ++I;
4070 if (!Viable)
4071 DI->second.erase(Prev);
4072 continue;
4073 }
4074 assert(I->second.size() == 1 && "Expected a single unresolved candidate");
4075
4076 // Perform name lookup on this name.
4077 TypoCorrection &Candidate = I->second.front();
4078 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4079 DeclContext *TempMemberContext = MemberContext;
4080 CXXScopeSpec *TempSS = SS;
4081 retry_lookup:
4082 LookupPotentialTypoResult(*this, TmpRes, Name, S, TempSS,
4083 TempMemberContext, EnteringContext,
4084 CCC.IsObjCIvarLookup);
4085
4086 switch (TmpRes.getResultKind()) {
4087 case LookupResult::NotFound:
4088 case LookupResult::NotFoundInCurrentInstantiation:
4089 case LookupResult::FoundUnresolvedValue:
4090 if (TempSS) {
4091 // Immediately retry the lookup without the given CXXScopeSpec
4092 TempSS = NULL;
4093 Candidate.WillReplaceSpecifier(true);
4094 goto retry_lookup;
4095 }
4096 if (TempMemberContext) {
4097 if (SS && !TempSS)
4098 TempSS = SS;
4099 TempMemberContext = NULL;
4100 goto retry_lookup;
4101 }
4102 QualifiedResults.push_back(Candidate);
4103 // We didn't find this name in our scope, or didn't like what we found;
4104 // ignore it.
4105 {
4106 TypoCorrectionConsumer::result_iterator Next = I;
4107 ++Next;
4108 DI->second.erase(I);
4109 I = Next;
4110 }
4111 break;
4112
4113 case LookupResult::Ambiguous:
4114 // We don't deal with ambiguities.
4115 return TypoCorrection();
4116
4117 case LookupResult::FoundOverloaded: {
4118 TypoCorrectionConsumer::result_iterator Prev = I;
4119 // Store all of the Decls for overloaded symbols
4120 for (LookupResult::iterator TRD = TmpRes.begin(),
4121 TRDEnd = TmpRes.end();
4122 TRD != TRDEnd; ++TRD)
4123 Candidate.addCorrectionDecl(*TRD);
4124 ++I;
4125 if (!isCandidateViable(CCC, Candidate)) {
4126 QualifiedResults.push_back(Candidate);
4127 DI->second.erase(Prev);
4128 }
4129 break;
4130 }
4131
4132 case LookupResult::Found: {
4133 TypoCorrectionConsumer::result_iterator Prev = I;
4134 Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
4135 ++I;
4136 if (!isCandidateViable(CCC, Candidate)) {
4137 QualifiedResults.push_back(Candidate);
4138 DI->second.erase(Prev);
4139 }
4140 break;
4141 }
4142
4143 }
4144 }
4145
4146 if (DI->second.empty())
4147 Consumer.erase(DI);
4148 else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
4149 // If there are results in the closest possible bucket, stop
4150 break;
4151
4152 // Only perform the qualified lookups for C++
4153 if (SearchNamespaces) {
4154 TmpRes.suppressDiagnostics();
4155 for (SmallVector<TypoCorrection,
4156 16>::iterator QRI = QualifiedResults.begin(),
4157 QRIEnd = QualifiedResults.end();
4158 QRI != QRIEnd; ++QRI) {
4159 for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
4160 NIEnd = Namespaces.end();
4161 NI != NIEnd; ++NI) {
4162 DeclContext *Ctx = NI->DeclCtx;
4163
4164 // FIXME: Stop searching once the namespaces are too far away to create
4165 // acceptable corrections for this identifier (since the namespaces
4166 // are sorted in ascending order by edit distance).
4167
4168 TmpRes.clear();
4169 TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
4170 if (!LookupQualifiedName(TmpRes, Ctx)) continue;
4171
4172 // Any corrections added below will be validated in subsequent
4173 // iterations of the main while() loop over the Consumer's contents.
4174 switch (TmpRes.getResultKind()) {
4175 case LookupResult::Found:
4176 case LookupResult::FoundOverloaded: {
4177 TypoCorrection TC(*QRI);
4178 TC.setCorrectionSpecifier(NI->NameSpecifier);
4179 TC.setQualifierDistance(NI->EditDistance);
4180 TC.setCallbackDistance(0); // Reset the callback distance
4181 for (LookupResult::iterator TRD = TmpRes.begin(),
4182 TRDEnd = TmpRes.end();
4183 TRD != TRDEnd; ++TRD)
4184 TC.addCorrectionDecl(*TRD);
4185 Consumer.addCorrection(TC);
4186 break;
4187 }
4188 case LookupResult::NotFound:
4189 case LookupResult::NotFoundInCurrentInstantiation:
4190 case LookupResult::Ambiguous:
4191 case LookupResult::FoundUnresolvedValue:
4192 break;
4193 }
4194 }
4195 }
4196 }
4197
4198 QualifiedResults.clear();
4199 }
4200
4201 // No corrections remain...
4202 if (Consumer.empty()) return TypoCorrection();
4203
4204 TypoResultsMap &BestResults = Consumer.getBestResults();
4205 ED = Consumer.getBestEditDistance(true);
4206
4207 if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4208 // If this was an unqualified lookup and we believe the callback
4209 // object wouldn't have filtered out possible corrections, note
4210 // that no correction was found.
4211 if (IsUnqualifiedLookup && !ValidatingCallback)
4212 (void)UnqualifiedTyposCorrected[Typo];
4213
4214 return TypoCorrection();
4215 }
4216
4217 // If only a single name remains, return that result.
4218 if (BestResults.size() == 1) {
4219 const TypoResultList &CorrectionList = BestResults.begin()->second;
4220 const TypoCorrection &Result = CorrectionList.front();
4221 if (CorrectionList.size() != 1) return TypoCorrection();
4222
4223 // Don't correct to a keyword that's the same as the typo; the keyword
4224 // wasn't actually in scope.
4225 if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4226
4227 // Record the correction for unqualified lookup.
4228 if (IsUnqualifiedLookup)
4229 UnqualifiedTyposCorrected[Typo] = Result;
4230
4231 TypoCorrection TC = Result;
4232 TC.setCorrectionRange(SS, TypoName);
4233 return TC;
4234 }
4235 else if (BestResults.size() > 1
4236 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4237 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4238 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4239 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4240 && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4241 && BestResults["super"].front().isKeyword()) {
4242 // Prefer 'super' when we're completing in a message-receiver
4243 // context.
4244
4245 // Don't correct to a keyword that's the same as the typo; the keyword
4246 // wasn't actually in scope.
4247 if (ED == 0) return TypoCorrection();
4248
4249 // Record the correction for unqualified lookup.
4250 if (IsUnqualifiedLookup)
4251 UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4252
4253 TypoCorrection TC = BestResults["super"].front();
4254 TC.setCorrectionRange(SS, TypoName);
4255 return TC;
4256 }
4257
4258 // If this was an unqualified lookup and we believe the callback object did
4259 // not filter out possible corrections, note that no correction was found.
4260 if (IsUnqualifiedLookup && !ValidatingCallback)
4261 (void)UnqualifiedTyposCorrected[Typo];
4262
4263 return TypoCorrection();
4264 }
4265
addCorrectionDecl(NamedDecl * CDecl)4266 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4267 if (!CDecl) return;
4268
4269 if (isKeyword())
4270 CorrectionDecls.clear();
4271
4272 CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4273
4274 if (!CorrectionName)
4275 CorrectionName = CDecl->getDeclName();
4276 }
4277
getAsString(const LangOptions & LO) const4278 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4279 if (CorrectionNameSpec) {
4280 std::string tmpBuffer;
4281 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4282 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4283 PrefixOStream << CorrectionName;
4284 return PrefixOStream.str();
4285 }
4286
4287 return CorrectionName.getAsString();
4288 }
4289
ValidateCandidate(const TypoCorrection & candidate)4290 bool CorrectionCandidateCallback::ValidateCandidate(const TypoCorrection &candidate) {
4291 if (!candidate.isResolved())
4292 return true;
4293
4294 if (candidate.isKeyword())
4295 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4296 WantRemainingKeywords || WantObjCSuper;
4297
4298 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4299 CDeclEnd = candidate.end();
4300 CDecl != CDeclEnd; ++CDecl) {
4301 if (!isa<TypeDecl>(*CDecl))
4302 return true;
4303 }
4304
4305 return WantTypeSpecifiers;
4306 }
4307
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs)4308 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4309 bool HasExplicitTemplateArgs)
4310 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
4311 WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
4312 WantRemainingKeywords = false;
4313 }
4314
ValidateCandidate(const TypoCorrection & candidate)4315 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4316 if (!candidate.getCorrectionDecl())
4317 return candidate.isKeyword();
4318
4319 for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
4320 DIEnd = candidate.end();
4321 DI != DIEnd; ++DI) {
4322 FunctionDecl *FD = 0;
4323 NamedDecl *ND = (*DI)->getUnderlyingDecl();
4324 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4325 FD = FTD->getTemplatedDecl();
4326 if (!HasExplicitTemplateArgs && !FD) {
4327 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4328 // If the Decl is neither a function nor a template function,
4329 // determine if it is a pointer or reference to a function. If so,
4330 // check against the number of arguments expected for the pointee.
4331 QualType ValType = cast<ValueDecl>(ND)->getType();
4332 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4333 ValType = ValType->getPointeeType();
4334 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4335 if (FPT->getNumArgs() == NumArgs)
4336 return true;
4337 }
4338 }
4339 if (FD && FD->getNumParams() >= NumArgs &&
4340 FD->getMinRequiredArguments() <= NumArgs)
4341 return true;
4342 }
4343 return false;
4344 }
4345