1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the XCoreTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "xcore-lower"
15
16 #include "XCoreISelLowering.h"
17 #include "XCore.h"
18 #include "XCoreMachineFunctionInfo.h"
19 #include "XCoreSubtarget.h"
20 #include "XCoreTargetMachine.h"
21 #include "XCoreTargetObjectFile.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40
41 using namespace llvm;
42
43 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const44 getTargetNodeName(unsigned Opcode) const
45 {
46 switch (Opcode)
47 {
48 case XCoreISD::BL : return "XCoreISD::BL";
49 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
50 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
51 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
52 case XCoreISD::STWSP : return "XCoreISD::STWSP";
53 case XCoreISD::RETSP : return "XCoreISD::RETSP";
54 case XCoreISD::LADD : return "XCoreISD::LADD";
55 case XCoreISD::LSUB : return "XCoreISD::LSUB";
56 case XCoreISD::LMUL : return "XCoreISD::LMUL";
57 case XCoreISD::MACCU : return "XCoreISD::MACCU";
58 case XCoreISD::MACCS : return "XCoreISD::MACCS";
59 case XCoreISD::CRC8 : return "XCoreISD::CRC8";
60 case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
61 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
62 default : return NULL;
63 }
64 }
65
XCoreTargetLowering(XCoreTargetMachine & XTM)66 XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
67 : TargetLowering(XTM, new XCoreTargetObjectFile()),
68 TM(XTM),
69 Subtarget(*XTM.getSubtargetImpl()) {
70
71 // Set up the register classes.
72 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
73
74 // Compute derived properties from the register classes
75 computeRegisterProperties();
76
77 // Division is expensive
78 setIntDivIsCheap(false);
79
80 setStackPointerRegisterToSaveRestore(XCore::SP);
81
82 setSchedulingPreference(Sched::RegPressure);
83
84 // Use i32 for setcc operations results (slt, sgt, ...).
85 setBooleanContents(ZeroOrOneBooleanContent);
86 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
87
88 // XCore does not have the NodeTypes below.
89 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91 setOperationAction(ISD::ADDC, MVT::i32, Expand);
92 setOperationAction(ISD::ADDE, MVT::i32, Expand);
93 setOperationAction(ISD::SUBC, MVT::i32, Expand);
94 setOperationAction(ISD::SUBE, MVT::i32, Expand);
95
96 // Stop the combiner recombining select and set_cc
97 setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
98
99 // 64bit
100 setOperationAction(ISD::ADD, MVT::i64, Custom);
101 setOperationAction(ISD::SUB, MVT::i64, Custom);
102 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
103 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
104 setOperationAction(ISD::MULHS, MVT::i32, Expand);
105 setOperationAction(ISD::MULHU, MVT::i32, Expand);
106 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
107 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
108 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
109
110 // Bit Manipulation
111 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
112 setOperationAction(ISD::ROTL , MVT::i32, Expand);
113 setOperationAction(ISD::ROTR , MVT::i32, Expand);
114 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
115 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
116
117 setOperationAction(ISD::TRAP, MVT::Other, Legal);
118
119 // Jump tables.
120 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
121
122 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
123 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
124
125 // Conversion of i64 -> double produces constantpool nodes
126 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
127
128 // Loads
129 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
130 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
131 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
132
133 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
134 setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
135
136 // Custom expand misaligned loads / stores.
137 setOperationAction(ISD::LOAD, MVT::i32, Custom);
138 setOperationAction(ISD::STORE, MVT::i32, Custom);
139
140 // Varargs
141 setOperationAction(ISD::VAEND, MVT::Other, Expand);
142 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
143 setOperationAction(ISD::VAARG, MVT::Other, Custom);
144 setOperationAction(ISD::VASTART, MVT::Other, Custom);
145
146 // Dynamic stack
147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
149 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
150
151 // TRAMPOLINE is custom lowered.
152 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
153 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
154
155 // We want to custom lower some of our intrinsics.
156 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
157
158 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
159 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
160 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
161
162 // We have target-specific dag combine patterns for the following nodes:
163 setTargetDAGCombine(ISD::STORE);
164 setTargetDAGCombine(ISD::ADD);
165
166 setMinFunctionAlignment(1);
167 }
168
169 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const170 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
171 switch (Op.getOpcode())
172 {
173 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
174 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
175 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
176 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
177 case ISD::LOAD: return LowerLOAD(Op, DAG);
178 case ISD::STORE: return LowerSTORE(Op, DAG);
179 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
180 case ISD::VAARG: return LowerVAARG(Op, DAG);
181 case ISD::VASTART: return LowerVASTART(Op, DAG);
182 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
183 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
184 // FIXME: Remove these when LegalizeDAGTypes lands.
185 case ISD::ADD:
186 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
187 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
188 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
189 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
190 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
191 default:
192 llvm_unreachable("unimplemented operand");
193 }
194 }
195
196 /// ReplaceNodeResults - Replace the results of node with an illegal result
197 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const198 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
199 SmallVectorImpl<SDValue>&Results,
200 SelectionDAG &DAG) const {
201 switch (N->getOpcode()) {
202 default:
203 llvm_unreachable("Don't know how to custom expand this!");
204 case ISD::ADD:
205 case ISD::SUB:
206 Results.push_back(ExpandADDSUB(N, DAG));
207 return;
208 }
209 }
210
211 //===----------------------------------------------------------------------===//
212 // Misc Lower Operation implementation
213 //===----------------------------------------------------------------------===//
214
215 SDValue XCoreTargetLowering::
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const216 LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
217 {
218 SDLoc dl(Op);
219 SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i32, Op.getOperand(2),
220 Op.getOperand(3), Op.getOperand(4));
221 return DAG.getNode(ISD::SELECT, dl, MVT::i32, Cond, Op.getOperand(0),
222 Op.getOperand(1));
223 }
224
225 SDValue XCoreTargetLowering::
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const226 getGlobalAddressWrapper(SDValue GA, const GlobalValue *GV,
227 SelectionDAG &DAG) const
228 {
229 // FIXME there is no actual debug info here
230 SDLoc dl(GA);
231 const GlobalValue *UnderlyingGV = GV;
232 // If GV is an alias then use the aliasee to determine the wrapper type
233 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
234 UnderlyingGV = GA->resolveAliasedGlobal();
235 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(UnderlyingGV)) {
236 if (GVar->isConstant())
237 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
238 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
239 }
240 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
241 }
242
243 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const244 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
245 {
246 SDLoc DL(Op);
247 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
248 const GlobalValue *GV = GN->getGlobal();
249 int64_t Offset = GN->getOffset();
250 // We can only fold positive offsets that are a multiple of the word size.
251 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
252 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
253 GA = getGlobalAddressWrapper(GA, GV, DAG);
254 // Handle the rest of the offset.
255 if (Offset != FoldedOffset) {
256 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
257 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
258 }
259 return GA;
260 }
261
BuildGetId(SelectionDAG & DAG,SDLoc dl)262 static inline SDValue BuildGetId(SelectionDAG &DAG, SDLoc dl) {
263 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
264 DAG.getConstant(Intrinsic::xcore_getid, MVT::i32));
265 }
266
267 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const268 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
269 {
270 SDLoc DL(Op);
271
272 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
273 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
274
275 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
276 }
277
278 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const279 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
280 {
281 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
282 // FIXME there isn't really debug info here
283 SDLoc dl(CP);
284 EVT PtrVT = Op.getValueType();
285 SDValue Res;
286 if (CP->isMachineConstantPoolEntry()) {
287 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
288 CP->getAlignment());
289 } else {
290 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
291 CP->getAlignment());
292 }
293 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
294 }
295
getJumpTableEncoding() const296 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
297 return MachineJumpTableInfo::EK_Inline;
298 }
299
300 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const301 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
302 {
303 SDValue Chain = Op.getOperand(0);
304 SDValue Table = Op.getOperand(1);
305 SDValue Index = Op.getOperand(2);
306 SDLoc dl(Op);
307 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
308 unsigned JTI = JT->getIndex();
309 MachineFunction &MF = DAG.getMachineFunction();
310 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
311 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
312
313 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
314 if (NumEntries <= 32) {
315 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
316 }
317 assert((NumEntries >> 31) == 0);
318 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
319 DAG.getConstant(1, MVT::i32));
320 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
321 ScaledIndex);
322 }
323
324 SDValue XCoreTargetLowering::
lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const325 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
326 int64_t Offset, SelectionDAG &DAG) const
327 {
328 if ((Offset & 0x3) == 0) {
329 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
330 false, false, false, 0);
331 }
332 // Lower to pair of consecutive word aligned loads plus some bit shifting.
333 int32_t HighOffset = RoundUpToAlignment(Offset, 4);
334 int32_t LowOffset = HighOffset - 4;
335 SDValue LowAddr, HighAddr;
336 if (GlobalAddressSDNode *GASD =
337 dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
338 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
339 LowOffset);
340 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
341 HighOffset);
342 } else {
343 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
344 DAG.getConstant(LowOffset, MVT::i32));
345 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
346 DAG.getConstant(HighOffset, MVT::i32));
347 }
348 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
349 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
350
351 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
352 LowAddr, MachinePointerInfo(),
353 false, false, false, 0);
354 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
355 HighAddr, MachinePointerInfo(),
356 false, false, false, 0);
357 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
358 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
359 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
360 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
361 High.getValue(1));
362 SDValue Ops[] = { Result, Chain };
363 return DAG.getMergeValues(Ops, 2, DL);
364 }
365
isWordAligned(SDValue Value,SelectionDAG & DAG)366 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
367 {
368 APInt KnownZero, KnownOne;
369 DAG.ComputeMaskedBits(Value, KnownZero, KnownOne);
370 return KnownZero.countTrailingOnes() >= 2;
371 }
372
373 SDValue XCoreTargetLowering::
LowerLOAD(SDValue Op,SelectionDAG & DAG) const374 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
375 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
376 LoadSDNode *LD = cast<LoadSDNode>(Op);
377 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
378 "Unexpected extension type");
379 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
380 if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
381 return SDValue();
382
383 unsigned ABIAlignment = getDataLayout()->
384 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
385 // Leave aligned load alone.
386 if (LD->getAlignment() >= ABIAlignment)
387 return SDValue();
388
389 SDValue Chain = LD->getChain();
390 SDValue BasePtr = LD->getBasePtr();
391 SDLoc DL(Op);
392
393 if (!LD->isVolatile()) {
394 const GlobalValue *GV;
395 int64_t Offset = 0;
396 if (DAG.isBaseWithConstantOffset(BasePtr) &&
397 isWordAligned(BasePtr->getOperand(0), DAG)) {
398 SDValue NewBasePtr = BasePtr->getOperand(0);
399 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
400 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
401 Offset, DAG);
402 }
403 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
404 MinAlign(GV->getAlignment(), 4) == 4) {
405 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
406 BasePtr->getValueType(0));
407 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
408 Offset, DAG);
409 }
410 }
411
412 if (LD->getAlignment() == 2) {
413 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
414 BasePtr, LD->getPointerInfo(), MVT::i16,
415 LD->isVolatile(), LD->isNonTemporal(), 2);
416 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
417 DAG.getConstant(2, MVT::i32));
418 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
419 HighAddr,
420 LD->getPointerInfo().getWithOffset(2),
421 MVT::i16, LD->isVolatile(),
422 LD->isNonTemporal(), 2);
423 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
424 DAG.getConstant(16, MVT::i32));
425 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
426 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
427 High.getValue(1));
428 SDValue Ops[] = { Result, Chain };
429 return DAG.getMergeValues(Ops, 2, DL);
430 }
431
432 // Lower to a call to __misaligned_load(BasePtr).
433 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
434 TargetLowering::ArgListTy Args;
435 TargetLowering::ArgListEntry Entry;
436
437 Entry.Ty = IntPtrTy;
438 Entry.Node = BasePtr;
439 Args.push_back(Entry);
440
441 TargetLowering::CallLoweringInfo CLI(Chain, IntPtrTy, false, false,
442 false, false, 0, CallingConv::C, /*isTailCall=*/false,
443 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
444 DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
445 Args, DAG, DL);
446 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
447
448 SDValue Ops[] =
449 { CallResult.first, CallResult.second };
450
451 return DAG.getMergeValues(Ops, 2, DL);
452 }
453
454 SDValue XCoreTargetLowering::
LowerSTORE(SDValue Op,SelectionDAG & DAG) const455 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
456 {
457 StoreSDNode *ST = cast<StoreSDNode>(Op);
458 assert(!ST->isTruncatingStore() && "Unexpected store type");
459 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
460 if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
461 return SDValue();
462 }
463 unsigned ABIAlignment = getDataLayout()->
464 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
465 // Leave aligned store alone.
466 if (ST->getAlignment() >= ABIAlignment) {
467 return SDValue();
468 }
469 SDValue Chain = ST->getChain();
470 SDValue BasePtr = ST->getBasePtr();
471 SDValue Value = ST->getValue();
472 SDLoc dl(Op);
473
474 if (ST->getAlignment() == 2) {
475 SDValue Low = Value;
476 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
477 DAG.getConstant(16, MVT::i32));
478 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
479 ST->getPointerInfo(), MVT::i16,
480 ST->isVolatile(), ST->isNonTemporal(),
481 2);
482 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
483 DAG.getConstant(2, MVT::i32));
484 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
485 ST->getPointerInfo().getWithOffset(2),
486 MVT::i16, ST->isVolatile(),
487 ST->isNonTemporal(), 2);
488 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
489 }
490
491 // Lower to a call to __misaligned_store(BasePtr, Value).
492 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
493 TargetLowering::ArgListTy Args;
494 TargetLowering::ArgListEntry Entry;
495
496 Entry.Ty = IntPtrTy;
497 Entry.Node = BasePtr;
498 Args.push_back(Entry);
499
500 Entry.Node = Value;
501 Args.push_back(Entry);
502
503 TargetLowering::CallLoweringInfo CLI(Chain,
504 Type::getVoidTy(*DAG.getContext()), false, false,
505 false, false, 0, CallingConv::C, /*isTailCall=*/false,
506 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
507 DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
508 Args, DAG, dl);
509 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
510
511 return CallResult.second;
512 }
513
514 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const515 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
516 {
517 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
518 "Unexpected operand to lower!");
519 SDLoc dl(Op);
520 SDValue LHS = Op.getOperand(0);
521 SDValue RHS = Op.getOperand(1);
522 SDValue Zero = DAG.getConstant(0, MVT::i32);
523 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
524 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
525 LHS, RHS);
526 SDValue Lo(Hi.getNode(), 1);
527 SDValue Ops[] = { Lo, Hi };
528 return DAG.getMergeValues(Ops, 2, dl);
529 }
530
531 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const532 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
533 {
534 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
535 "Unexpected operand to lower!");
536 SDLoc dl(Op);
537 SDValue LHS = Op.getOperand(0);
538 SDValue RHS = Op.getOperand(1);
539 SDValue Zero = DAG.getConstant(0, MVT::i32);
540 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
541 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
542 Zero, Zero);
543 SDValue Lo(Hi.getNode(), 1);
544 SDValue Ops[] = { Lo, Hi };
545 return DAG.getMergeValues(Ops, 2, dl);
546 }
547
548 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
549 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
550 /// each intermediate result in the calculation must also have a single use.
551 /// If the Op is in the correct form the constituent parts are written to Mul0,
552 /// Mul1, Addend0 and Addend1.
553 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)554 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
555 SDValue &Addend1, bool requireIntermediatesHaveOneUse)
556 {
557 if (Op.getOpcode() != ISD::ADD)
558 return false;
559 SDValue N0 = Op.getOperand(0);
560 SDValue N1 = Op.getOperand(1);
561 SDValue AddOp;
562 SDValue OtherOp;
563 if (N0.getOpcode() == ISD::ADD) {
564 AddOp = N0;
565 OtherOp = N1;
566 } else if (N1.getOpcode() == ISD::ADD) {
567 AddOp = N1;
568 OtherOp = N0;
569 } else {
570 return false;
571 }
572 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
573 return false;
574 if (OtherOp.getOpcode() == ISD::MUL) {
575 // add(add(a,b),mul(x,y))
576 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
577 return false;
578 Mul0 = OtherOp.getOperand(0);
579 Mul1 = OtherOp.getOperand(1);
580 Addend0 = AddOp.getOperand(0);
581 Addend1 = AddOp.getOperand(1);
582 return true;
583 }
584 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
585 // add(add(mul(x,y),a),b)
586 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
587 return false;
588 Mul0 = AddOp.getOperand(0).getOperand(0);
589 Mul1 = AddOp.getOperand(0).getOperand(1);
590 Addend0 = AddOp.getOperand(1);
591 Addend1 = OtherOp;
592 return true;
593 }
594 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
595 // add(add(a,mul(x,y)),b)
596 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
597 return false;
598 Mul0 = AddOp.getOperand(1).getOperand(0);
599 Mul1 = AddOp.getOperand(1).getOperand(1);
600 Addend0 = AddOp.getOperand(0);
601 Addend1 = OtherOp;
602 return true;
603 }
604 return false;
605 }
606
607 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const608 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
609 {
610 SDValue Mul;
611 SDValue Other;
612 if (N->getOperand(0).getOpcode() == ISD::MUL) {
613 Mul = N->getOperand(0);
614 Other = N->getOperand(1);
615 } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
616 Mul = N->getOperand(1);
617 Other = N->getOperand(0);
618 } else {
619 return SDValue();
620 }
621 SDLoc dl(N);
622 SDValue LL, RL, AddendL, AddendH;
623 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
624 Mul.getOperand(0), DAG.getConstant(0, MVT::i32));
625 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
626 Mul.getOperand(1), DAG.getConstant(0, MVT::i32));
627 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
628 Other, DAG.getConstant(0, MVT::i32));
629 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
630 Other, DAG.getConstant(1, MVT::i32));
631 APInt HighMask = APInt::getHighBitsSet(64, 32);
632 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
633 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
634 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
635 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
636 // The inputs are both zero-extended.
637 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
638 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
639 AddendL, LL, RL);
640 SDValue Lo(Hi.getNode(), 1);
641 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
642 }
643 if (LHSSB > 32 && RHSSB > 32) {
644 // The inputs are both sign-extended.
645 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
646 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
647 AddendL, LL, RL);
648 SDValue Lo(Hi.getNode(), 1);
649 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
650 }
651 SDValue LH, RH;
652 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
653 Mul.getOperand(0), DAG.getConstant(1, MVT::i32));
654 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
655 Mul.getOperand(1), DAG.getConstant(1, MVT::i32));
656 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
657 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
658 AddendL, LL, RL);
659 SDValue Lo(Hi.getNode(), 1);
660 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
661 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
662 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
663 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
664 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
665 }
666
667 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const668 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
669 {
670 assert(N->getValueType(0) == MVT::i64 &&
671 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
672 "Unknown operand to lower!");
673
674 if (N->getOpcode() == ISD::ADD) {
675 SDValue Result = TryExpandADDWithMul(N, DAG);
676 if (Result.getNode() != 0)
677 return Result;
678 }
679
680 SDLoc dl(N);
681
682 // Extract components
683 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
684 N->getOperand(0), DAG.getConstant(0, MVT::i32));
685 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
686 N->getOperand(0), DAG.getConstant(1, MVT::i32));
687 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
688 N->getOperand(1), DAG.getConstant(0, MVT::i32));
689 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
690 N->getOperand(1), DAG.getConstant(1, MVT::i32));
691
692 // Expand
693 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
694 XCoreISD::LSUB;
695 SDValue Zero = DAG.getConstant(0, MVT::i32);
696 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
697 LHSL, RHSL, Zero);
698 SDValue Carry(Lo.getNode(), 1);
699
700 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
701 LHSH, RHSH, Carry);
702 SDValue Ignored(Hi.getNode(), 1);
703 // Merge the pieces
704 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
705 }
706
707 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const708 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
709 {
710 // Whist llvm does not support aggregate varargs we can ignore
711 // the possibility of the ValueType being an implicit byVal vararg.
712 SDNode *Node = Op.getNode();
713 EVT VT = Node->getValueType(0); // not an aggregate
714 SDValue InChain = Node->getOperand(0);
715 SDValue VAListPtr = Node->getOperand(1);
716 EVT PtrVT = VAListPtr.getValueType();
717 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
718 SDLoc dl(Node);
719 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
720 VAListPtr, MachinePointerInfo(SV),
721 false, false, false, 0);
722 // Increment the pointer, VAList, to the next vararg
723 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
724 DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
725 // Store the incremented VAList to the legalized pointer
726 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
727 MachinePointerInfo(SV), false, false, 0);
728 // Load the actual argument out of the pointer VAList
729 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
730 false, false, false, 0);
731 }
732
733 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const734 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
735 {
736 SDLoc dl(Op);
737 // vastart stores the address of the VarArgsFrameIndex slot into the
738 // memory location argument
739 MachineFunction &MF = DAG.getMachineFunction();
740 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
741 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
742 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
743 MachinePointerInfo(), false, false, 0);
744 }
745
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const746 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
747 SelectionDAG &DAG) const {
748 SDLoc dl(Op);
749 // Depths > 0 not supported yet!
750 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
751 return SDValue();
752
753 MachineFunction &MF = DAG.getMachineFunction();
754 const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
755 return DAG.getCopyFromReg(DAG.getEntryNode(), dl,
756 RegInfo->getFrameRegister(MF), MVT::i32);
757 }
758
759 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const760 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
761 return Op.getOperand(0);
762 }
763
764 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const765 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
766 SDValue Chain = Op.getOperand(0);
767 SDValue Trmp = Op.getOperand(1); // trampoline
768 SDValue FPtr = Op.getOperand(2); // nested function
769 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
770
771 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
772
773 // .align 4
774 // LDAPF_u10 r11, nest
775 // LDW_2rus r11, r11[0]
776 // STWSP_ru6 r11, sp[0]
777 // LDAPF_u10 r11, fptr
778 // LDW_2rus r11, r11[0]
779 // BAU_1r r11
780 // nest:
781 // .word nest
782 // fptr:
783 // .word fptr
784 SDValue OutChains[5];
785
786 SDValue Addr = Trmp;
787
788 SDLoc dl(Op);
789 OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
790 Addr, MachinePointerInfo(TrmpAddr), false, false,
791 0);
792
793 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
794 DAG.getConstant(4, MVT::i32));
795 OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
796 Addr, MachinePointerInfo(TrmpAddr, 4), false,
797 false, 0);
798
799 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
800 DAG.getConstant(8, MVT::i32));
801 OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
802 Addr, MachinePointerInfo(TrmpAddr, 8), false,
803 false, 0);
804
805 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
806 DAG.getConstant(12, MVT::i32));
807 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
808 MachinePointerInfo(TrmpAddr, 12), false, false,
809 0);
810
811 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
812 DAG.getConstant(16, MVT::i32));
813 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
814 MachinePointerInfo(TrmpAddr, 16), false, false,
815 0);
816
817 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 5);
818 }
819
820 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const821 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
822 SDLoc DL(Op);
823 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
824 switch (IntNo) {
825 case Intrinsic::xcore_crc8:
826 EVT VT = Op.getValueType();
827 SDValue Data =
828 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
829 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
830 SDValue Crc(Data.getNode(), 1);
831 SDValue Results[] = { Crc, Data };
832 return DAG.getMergeValues(Results, 2, DL);
833 }
834 return SDValue();
835 }
836
837 //===----------------------------------------------------------------------===//
838 // Calling Convention Implementation
839 //===----------------------------------------------------------------------===//
840
841 #include "XCoreGenCallingConv.inc"
842
843 //===----------------------------------------------------------------------===//
844 // Call Calling Convention Implementation
845 //===----------------------------------------------------------------------===//
846
847 /// XCore call implementation
848 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const849 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
850 SmallVectorImpl<SDValue> &InVals) const {
851 SelectionDAG &DAG = CLI.DAG;
852 SDLoc &dl = CLI.DL;
853 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
854 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
855 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
856 SDValue Chain = CLI.Chain;
857 SDValue Callee = CLI.Callee;
858 bool &isTailCall = CLI.IsTailCall;
859 CallingConv::ID CallConv = CLI.CallConv;
860 bool isVarArg = CLI.IsVarArg;
861
862 // XCore target does not yet support tail call optimization.
863 isTailCall = false;
864
865 // For now, only CallingConv::C implemented
866 switch (CallConv)
867 {
868 default:
869 llvm_unreachable("Unsupported calling convention");
870 case CallingConv::Fast:
871 case CallingConv::C:
872 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
873 Outs, OutVals, Ins, dl, DAG, InVals);
874 }
875 }
876
877 /// LowerCCCCallTo - functions arguments are copied from virtual
878 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
879 /// CALLSEQ_END are emitted.
880 /// TODO: isTailCall, sret.
881 SDValue
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const882 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
883 CallingConv::ID CallConv, bool isVarArg,
884 bool isTailCall,
885 const SmallVectorImpl<ISD::OutputArg> &Outs,
886 const SmallVectorImpl<SDValue> &OutVals,
887 const SmallVectorImpl<ISD::InputArg> &Ins,
888 SDLoc dl, SelectionDAG &DAG,
889 SmallVectorImpl<SDValue> &InVals) const {
890
891 // Analyze operands of the call, assigning locations to each operand.
892 SmallVector<CCValAssign, 16> ArgLocs;
893 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
894 getTargetMachine(), ArgLocs, *DAG.getContext());
895
896 // The ABI dictates there should be one stack slot available to the callee
897 // on function entry (for saving lr).
898 CCInfo.AllocateStack(4, 4);
899
900 CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
901
902 // Get a count of how many bytes are to be pushed on the stack.
903 unsigned NumBytes = CCInfo.getNextStackOffset();
904
905 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
906 getPointerTy(), true), dl);
907
908 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
909 SmallVector<SDValue, 12> MemOpChains;
910
911 // Walk the register/memloc assignments, inserting copies/loads.
912 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
913 CCValAssign &VA = ArgLocs[i];
914 SDValue Arg = OutVals[i];
915
916 // Promote the value if needed.
917 switch (VA.getLocInfo()) {
918 default: llvm_unreachable("Unknown loc info!");
919 case CCValAssign::Full: break;
920 case CCValAssign::SExt:
921 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
922 break;
923 case CCValAssign::ZExt:
924 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
925 break;
926 case CCValAssign::AExt:
927 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
928 break;
929 }
930
931 // Arguments that can be passed on register must be kept at
932 // RegsToPass vector
933 if (VA.isRegLoc()) {
934 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
935 } else {
936 assert(VA.isMemLoc());
937
938 int Offset = VA.getLocMemOffset();
939
940 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
941 Chain, Arg,
942 DAG.getConstant(Offset/4, MVT::i32)));
943 }
944 }
945
946 // Transform all store nodes into one single node because
947 // all store nodes are independent of each other.
948 if (!MemOpChains.empty())
949 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
950 &MemOpChains[0], MemOpChains.size());
951
952 // Build a sequence of copy-to-reg nodes chained together with token
953 // chain and flag operands which copy the outgoing args into registers.
954 // The InFlag in necessary since all emitted instructions must be
955 // stuck together.
956 SDValue InFlag;
957 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
958 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
959 RegsToPass[i].second, InFlag);
960 InFlag = Chain.getValue(1);
961 }
962
963 // If the callee is a GlobalAddress node (quite common, every direct call is)
964 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
965 // Likewise ExternalSymbol -> TargetExternalSymbol.
966 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
967 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
968 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
969 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
970
971 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
972 // = Chain, Callee, Reg#1, Reg#2, ...
973 //
974 // Returns a chain & a flag for retval copy to use.
975 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
976 SmallVector<SDValue, 8> Ops;
977 Ops.push_back(Chain);
978 Ops.push_back(Callee);
979
980 // Add argument registers to the end of the list so that they are
981 // known live into the call.
982 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
983 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
984 RegsToPass[i].second.getValueType()));
985
986 if (InFlag.getNode())
987 Ops.push_back(InFlag);
988
989 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, &Ops[0], Ops.size());
990 InFlag = Chain.getValue(1);
991
992 // Create the CALLSEQ_END node.
993 Chain = DAG.getCALLSEQ_END(Chain,
994 DAG.getConstant(NumBytes, getPointerTy(), true),
995 DAG.getConstant(0, getPointerTy(), true),
996 InFlag, dl);
997 InFlag = Chain.getValue(1);
998
999 // Handle result values, copying them out of physregs into vregs that we
1000 // return.
1001 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
1002 Ins, dl, DAG, InVals);
1003 }
1004
1005 /// LowerCallResult - Lower the result values of a call into the
1006 /// appropriate copies out of appropriate physical registers.
1007 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1008 XCoreTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1009 CallingConv::ID CallConv, bool isVarArg,
1010 const SmallVectorImpl<ISD::InputArg> &Ins,
1011 SDLoc dl, SelectionDAG &DAG,
1012 SmallVectorImpl<SDValue> &InVals) const {
1013
1014 // Assign locations to each value returned by this call.
1015 SmallVector<CCValAssign, 16> RVLocs;
1016 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1017 getTargetMachine(), RVLocs, *DAG.getContext());
1018
1019 CCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1020
1021 // Copy all of the result registers out of their specified physreg.
1022 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1023 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
1024 RVLocs[i].getValVT(), InFlag).getValue(1);
1025 InFlag = Chain.getValue(2);
1026 InVals.push_back(Chain.getValue(0));
1027 }
1028
1029 return Chain;
1030 }
1031
1032 //===----------------------------------------------------------------------===//
1033 // Formal Arguments Calling Convention Implementation
1034 //===----------------------------------------------------------------------===//
1035
1036 namespace {
1037 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1038 }
1039
1040 /// XCore formal arguments implementation
1041 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1042 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1043 CallingConv::ID CallConv,
1044 bool isVarArg,
1045 const SmallVectorImpl<ISD::InputArg> &Ins,
1046 SDLoc dl,
1047 SelectionDAG &DAG,
1048 SmallVectorImpl<SDValue> &InVals)
1049 const {
1050 switch (CallConv)
1051 {
1052 default:
1053 llvm_unreachable("Unsupported calling convention");
1054 case CallingConv::C:
1055 case CallingConv::Fast:
1056 return LowerCCCArguments(Chain, CallConv, isVarArg,
1057 Ins, dl, DAG, InVals);
1058 }
1059 }
1060
1061 /// LowerCCCArguments - transform physical registers into
1062 /// virtual registers and generate load operations for
1063 /// arguments places on the stack.
1064 /// TODO: sret
1065 SDValue
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1066 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1067 CallingConv::ID CallConv,
1068 bool isVarArg,
1069 const SmallVectorImpl<ISD::InputArg>
1070 &Ins,
1071 SDLoc dl,
1072 SelectionDAG &DAG,
1073 SmallVectorImpl<SDValue> &InVals) const {
1074 MachineFunction &MF = DAG.getMachineFunction();
1075 MachineFrameInfo *MFI = MF.getFrameInfo();
1076 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1077
1078 // Assign locations to all of the incoming arguments.
1079 SmallVector<CCValAssign, 16> ArgLocs;
1080 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1081 getTargetMachine(), ArgLocs, *DAG.getContext());
1082
1083 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1084
1085 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1086
1087 unsigned LRSaveSize = StackSlotSize;
1088
1089 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1090 // scheduler clobbering a register before it has been copied.
1091 // The stages are:
1092 // 1. CopyFromReg (and load) arg & vararg registers.
1093 // 2. Chain CopyFromReg nodes into a TokenFactor.
1094 // 3. Memcpy 'byVal' args & push final InVals.
1095 // 4. Chain mem ops nodes into a TokenFactor.
1096 SmallVector<SDValue, 4> CFRegNode;
1097 SmallVector<ArgDataPair, 4> ArgData;
1098 SmallVector<SDValue, 4> MemOps;
1099
1100 // 1a. CopyFromReg (and load) arg registers.
1101 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1102
1103 CCValAssign &VA = ArgLocs[i];
1104 SDValue ArgIn;
1105
1106 if (VA.isRegLoc()) {
1107 // Arguments passed in registers
1108 EVT RegVT = VA.getLocVT();
1109 switch (RegVT.getSimpleVT().SimpleTy) {
1110 default:
1111 {
1112 #ifndef NDEBUG
1113 errs() << "LowerFormalArguments Unhandled argument type: "
1114 << RegVT.getSimpleVT().SimpleTy << "\n";
1115 #endif
1116 llvm_unreachable(0);
1117 }
1118 case MVT::i32:
1119 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1120 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1121 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1122 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1123 }
1124 } else {
1125 // sanity check
1126 assert(VA.isMemLoc());
1127 // Load the argument to a virtual register
1128 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1129 if (ObjSize > StackSlotSize) {
1130 errs() << "LowerFormalArguments Unhandled argument type: "
1131 << EVT(VA.getLocVT()).getEVTString()
1132 << "\n";
1133 }
1134 // Create the frame index object for this incoming parameter...
1135 int FI = MFI->CreateFixedObject(ObjSize,
1136 LRSaveSize + VA.getLocMemOffset(),
1137 true);
1138
1139 // Create the SelectionDAG nodes corresponding to a load
1140 //from this parameter
1141 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1142 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1143 MachinePointerInfo::getFixedStack(FI),
1144 false, false, false, 0);
1145 }
1146 const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1147 ArgData.push_back(ADP);
1148 }
1149
1150 // 1b. CopyFromReg vararg registers.
1151 if (isVarArg) {
1152 // Argument registers
1153 static const uint16_t ArgRegs[] = {
1154 XCore::R0, XCore::R1, XCore::R2, XCore::R3
1155 };
1156 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1157 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
1158 array_lengthof(ArgRegs));
1159 if (FirstVAReg < array_lengthof(ArgRegs)) {
1160 int offset = 0;
1161 // Save remaining registers, storing higher register numbers at a higher
1162 // address
1163 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1164 // Create a stack slot
1165 int FI = MFI->CreateFixedObject(4, offset, true);
1166 if (i == (int)FirstVAReg) {
1167 XFI->setVarArgsFrameIndex(FI);
1168 }
1169 offset -= StackSlotSize;
1170 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1171 // Move argument from phys reg -> virt reg
1172 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1173 RegInfo.addLiveIn(ArgRegs[i], VReg);
1174 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1175 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1176 // Move argument from virt reg -> stack
1177 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1178 MachinePointerInfo(), false, false, 0);
1179 MemOps.push_back(Store);
1180 }
1181 } else {
1182 // This will point to the next argument passed via stack.
1183 XFI->setVarArgsFrameIndex(
1184 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1185 true));
1186 }
1187 }
1188
1189 // 2. chain CopyFromReg nodes into a TokenFactor.
1190 if (!CFRegNode.empty())
1191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &CFRegNode[0],
1192 CFRegNode.size());
1193
1194 // 3. Memcpy 'byVal' args & push final InVals.
1195 // Aggregates passed "byVal" need to be copied by the callee.
1196 // The callee will use a pointer to this copy, rather than the original
1197 // pointer.
1198 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1199 ArgDE = ArgData.end();
1200 ArgDI != ArgDE; ++ArgDI) {
1201 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1202 unsigned Size = ArgDI->Flags.getByValSize();
1203 unsigned Align = ArgDI->Flags.getByValAlign();
1204 // Create a new object on the stack and copy the pointee into it.
1205 int FI = MFI->CreateStackObject(Size, Align, false, false);
1206 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1207 InVals.push_back(FIN);
1208 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1209 DAG.getConstant(Size, MVT::i32),
1210 Align, false, false,
1211 MachinePointerInfo(),
1212 MachinePointerInfo()));
1213 } else {
1214 InVals.push_back(ArgDI->SDV);
1215 }
1216 }
1217
1218 // 4, chain mem ops nodes into a TokenFactor.
1219 if (!MemOps.empty()) {
1220 MemOps.push_back(Chain);
1221 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0],
1222 MemOps.size());
1223 }
1224
1225 return Chain;
1226 }
1227
1228 //===----------------------------------------------------------------------===//
1229 // Return Value Calling Convention Implementation
1230 //===----------------------------------------------------------------------===//
1231
1232 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1233 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1234 bool isVarArg,
1235 const SmallVectorImpl<ISD::OutputArg> &Outs,
1236 LLVMContext &Context) const {
1237 SmallVector<CCValAssign, 16> RVLocs;
1238 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1239 return CCInfo.CheckReturn(Outs, RetCC_XCore);
1240 }
1241
1242 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const1243 XCoreTargetLowering::LowerReturn(SDValue Chain,
1244 CallingConv::ID CallConv, bool isVarArg,
1245 const SmallVectorImpl<ISD::OutputArg> &Outs,
1246 const SmallVectorImpl<SDValue> &OutVals,
1247 SDLoc dl, SelectionDAG &DAG) const {
1248
1249 // CCValAssign - represent the assignment of
1250 // the return value to a location
1251 SmallVector<CCValAssign, 16> RVLocs;
1252
1253 // CCState - Info about the registers and stack slot.
1254 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1255 getTargetMachine(), RVLocs, *DAG.getContext());
1256
1257 // Analyze return values.
1258 CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1259
1260 SDValue Flag;
1261 SmallVector<SDValue, 4> RetOps(1, Chain);
1262
1263 // Return on XCore is always a "retsp 0"
1264 RetOps.push_back(DAG.getConstant(0, MVT::i32));
1265
1266 // Copy the result values into the output registers.
1267 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1268 CCValAssign &VA = RVLocs[i];
1269 assert(VA.isRegLoc() && "Can only return in registers!");
1270
1271 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1272 OutVals[i], Flag);
1273
1274 // guarantee that all emitted copies are
1275 // stuck together, avoiding something bad
1276 Flag = Chain.getValue(1);
1277 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1278 }
1279
1280 RetOps[0] = Chain; // Update chain.
1281
1282 // Add the flag if we have it.
1283 if (Flag.getNode())
1284 RetOps.push_back(Flag);
1285
1286 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other,
1287 &RetOps[0], RetOps.size());
1288 }
1289
1290 //===----------------------------------------------------------------------===//
1291 // Other Lowering Code
1292 //===----------------------------------------------------------------------===//
1293
1294 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1295 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1296 MachineBasicBlock *BB) const {
1297 const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
1298 DebugLoc dl = MI->getDebugLoc();
1299 assert((MI->getOpcode() == XCore::SELECT_CC) &&
1300 "Unexpected instr type to insert");
1301
1302 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1303 // control-flow pattern. The incoming instruction knows the destination vreg
1304 // to set, the condition code register to branch on, the true/false values to
1305 // select between, and a branch opcode to use.
1306 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1307 MachineFunction::iterator It = BB;
1308 ++It;
1309
1310 // thisMBB:
1311 // ...
1312 // TrueVal = ...
1313 // cmpTY ccX, r1, r2
1314 // bCC copy1MBB
1315 // fallthrough --> copy0MBB
1316 MachineBasicBlock *thisMBB = BB;
1317 MachineFunction *F = BB->getParent();
1318 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1319 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1320 F->insert(It, copy0MBB);
1321 F->insert(It, sinkMBB);
1322
1323 // Transfer the remainder of BB and its successor edges to sinkMBB.
1324 sinkMBB->splice(sinkMBB->begin(), BB,
1325 llvm::next(MachineBasicBlock::iterator(MI)),
1326 BB->end());
1327 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1328
1329 // Next, add the true and fallthrough blocks as its successors.
1330 BB->addSuccessor(copy0MBB);
1331 BB->addSuccessor(sinkMBB);
1332
1333 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1334 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1335
1336 // copy0MBB:
1337 // %FalseValue = ...
1338 // # fallthrough to sinkMBB
1339 BB = copy0MBB;
1340
1341 // Update machine-CFG edges
1342 BB->addSuccessor(sinkMBB);
1343
1344 // sinkMBB:
1345 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1346 // ...
1347 BB = sinkMBB;
1348 BuildMI(*BB, BB->begin(), dl,
1349 TII.get(XCore::PHI), MI->getOperand(0).getReg())
1350 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1351 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1352
1353 MI->eraseFromParent(); // The pseudo instruction is gone now.
1354 return BB;
1355 }
1356
1357 //===----------------------------------------------------------------------===//
1358 // Target Optimization Hooks
1359 //===----------------------------------------------------------------------===//
1360
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1361 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1362 DAGCombinerInfo &DCI) const {
1363 SelectionDAG &DAG = DCI.DAG;
1364 SDLoc dl(N);
1365 switch (N->getOpcode()) {
1366 default: break;
1367 case XCoreISD::LADD: {
1368 SDValue N0 = N->getOperand(0);
1369 SDValue N1 = N->getOperand(1);
1370 SDValue N2 = N->getOperand(2);
1371 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1372 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1373 EVT VT = N0.getValueType();
1374
1375 // canonicalize constant to RHS
1376 if (N0C && !N1C)
1377 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1378
1379 // fold (ladd 0, 0, x) -> 0, x & 1
1380 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1381 SDValue Carry = DAG.getConstant(0, VT);
1382 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1383 DAG.getConstant(1, VT));
1384 SDValue Ops[] = { Result, Carry };
1385 return DAG.getMergeValues(Ops, 2, dl);
1386 }
1387
1388 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1389 // low bit set
1390 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1391 APInt KnownZero, KnownOne;
1392 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1393 VT.getSizeInBits() - 1);
1394 DAG.ComputeMaskedBits(N2, KnownZero, KnownOne);
1395 if ((KnownZero & Mask) == Mask) {
1396 SDValue Carry = DAG.getConstant(0, VT);
1397 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1398 SDValue Ops[] = { Result, Carry };
1399 return DAG.getMergeValues(Ops, 2, dl);
1400 }
1401 }
1402 }
1403 break;
1404 case XCoreISD::LSUB: {
1405 SDValue N0 = N->getOperand(0);
1406 SDValue N1 = N->getOperand(1);
1407 SDValue N2 = N->getOperand(2);
1408 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1409 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1410 EVT VT = N0.getValueType();
1411
1412 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1413 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1414 APInt KnownZero, KnownOne;
1415 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1416 VT.getSizeInBits() - 1);
1417 DAG.ComputeMaskedBits(N2, KnownZero, KnownOne);
1418 if ((KnownZero & Mask) == Mask) {
1419 SDValue Borrow = N2;
1420 SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1421 DAG.getConstant(0, VT), N2);
1422 SDValue Ops[] = { Result, Borrow };
1423 return DAG.getMergeValues(Ops, 2, dl);
1424 }
1425 }
1426
1427 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1428 // low bit set
1429 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1430 APInt KnownZero, KnownOne;
1431 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1432 VT.getSizeInBits() - 1);
1433 DAG.ComputeMaskedBits(N2, KnownZero, KnownOne);
1434 if ((KnownZero & Mask) == Mask) {
1435 SDValue Borrow = DAG.getConstant(0, VT);
1436 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1437 SDValue Ops[] = { Result, Borrow };
1438 return DAG.getMergeValues(Ops, 2, dl);
1439 }
1440 }
1441 }
1442 break;
1443 case XCoreISD::LMUL: {
1444 SDValue N0 = N->getOperand(0);
1445 SDValue N1 = N->getOperand(1);
1446 SDValue N2 = N->getOperand(2);
1447 SDValue N3 = N->getOperand(3);
1448 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1449 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1450 EVT VT = N0.getValueType();
1451 // Canonicalize multiplicative constant to RHS. If both multiplicative
1452 // operands are constant canonicalize smallest to RHS.
1453 if ((N0C && !N1C) ||
1454 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1455 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1456 N1, N0, N2, N3);
1457
1458 // lmul(x, 0, a, b)
1459 if (N1C && N1C->isNullValue()) {
1460 // If the high result is unused fold to add(a, b)
1461 if (N->hasNUsesOfValue(0, 0)) {
1462 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1463 SDValue Ops[] = { Lo, Lo };
1464 return DAG.getMergeValues(Ops, 2, dl);
1465 }
1466 // Otherwise fold to ladd(a, b, 0)
1467 SDValue Result =
1468 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1469 SDValue Carry(Result.getNode(), 1);
1470 SDValue Ops[] = { Carry, Result };
1471 return DAG.getMergeValues(Ops, 2, dl);
1472 }
1473 }
1474 break;
1475 case ISD::ADD: {
1476 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1477 // lmul(x, y, a, b). The high result of lmul will be ignored.
1478 // This is only profitable if the intermediate results are unused
1479 // elsewhere.
1480 SDValue Mul0, Mul1, Addend0, Addend1;
1481 if (N->getValueType(0) == MVT::i32 &&
1482 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1483 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1484 DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1485 Mul1, Addend0, Addend1);
1486 SDValue Result(Ignored.getNode(), 1);
1487 return Result;
1488 }
1489 APInt HighMask = APInt::getHighBitsSet(64, 32);
1490 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1491 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1492 // before type legalization as it is messy to match the operands after
1493 // that.
1494 if (N->getValueType(0) == MVT::i64 &&
1495 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1496 DAG.MaskedValueIsZero(Mul0, HighMask) &&
1497 DAG.MaskedValueIsZero(Mul1, HighMask) &&
1498 DAG.MaskedValueIsZero(Addend0, HighMask) &&
1499 DAG.MaskedValueIsZero(Addend1, HighMask)) {
1500 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1501 Mul0, DAG.getConstant(0, MVT::i32));
1502 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1503 Mul1, DAG.getConstant(0, MVT::i32));
1504 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1505 Addend0, DAG.getConstant(0, MVT::i32));
1506 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1507 Addend1, DAG.getConstant(0, MVT::i32));
1508 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1509 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1510 Addend0L, Addend1L);
1511 SDValue Lo(Hi.getNode(), 1);
1512 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1513 }
1514 }
1515 break;
1516 case ISD::STORE: {
1517 // Replace unaligned store of unaligned load with memmove.
1518 StoreSDNode *ST = cast<StoreSDNode>(N);
1519 if (!DCI.isBeforeLegalize() ||
1520 allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
1521 ST->isVolatile() || ST->isIndexed()) {
1522 break;
1523 }
1524 SDValue Chain = ST->getChain();
1525
1526 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1527 if (StoreBits % 8) {
1528 break;
1529 }
1530 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1531 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1532 unsigned Alignment = ST->getAlignment();
1533 if (Alignment >= ABIAlignment) {
1534 break;
1535 }
1536
1537 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1538 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1539 LD->getAlignment() == Alignment &&
1540 !LD->isVolatile() && !LD->isIndexed() &&
1541 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1542 return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1543 LD->getBasePtr(),
1544 DAG.getConstant(StoreBits/8, MVT::i32),
1545 Alignment, false, ST->getPointerInfo(),
1546 LD->getPointerInfo());
1547 }
1548 }
1549 break;
1550 }
1551 }
1552 return SDValue();
1553 }
1554
computeMaskedBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1555 void XCoreTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1556 APInt &KnownZero,
1557 APInt &KnownOne,
1558 const SelectionDAG &DAG,
1559 unsigned Depth) const {
1560 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1561 switch (Op.getOpcode()) {
1562 default: break;
1563 case XCoreISD::LADD:
1564 case XCoreISD::LSUB:
1565 if (Op.getResNo() == 1) {
1566 // Top bits of carry / borrow are clear.
1567 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1568 KnownZero.getBitWidth() - 1);
1569 }
1570 break;
1571 }
1572 }
1573
1574 //===----------------------------------------------------------------------===//
1575 // Addressing mode description hooks
1576 //===----------------------------------------------------------------------===//
1577
isImmUs(int64_t val)1578 static inline bool isImmUs(int64_t val)
1579 {
1580 return (val >= 0 && val <= 11);
1581 }
1582
isImmUs2(int64_t val)1583 static inline bool isImmUs2(int64_t val)
1584 {
1585 return (val%2 == 0 && isImmUs(val/2));
1586 }
1587
isImmUs4(int64_t val)1588 static inline bool isImmUs4(int64_t val)
1589 {
1590 return (val%4 == 0 && isImmUs(val/4));
1591 }
1592
1593 /// isLegalAddressingMode - Return true if the addressing mode represented
1594 /// by AM is legal for this target, for a load/store of the specified type.
1595 bool
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const1596 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1597 Type *Ty) const {
1598 if (Ty->getTypeID() == Type::VoidTyID)
1599 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1600
1601 const DataLayout *TD = TM.getDataLayout();
1602 unsigned Size = TD->getTypeAllocSize(Ty);
1603 if (AM.BaseGV) {
1604 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1605 AM.BaseOffs%4 == 0;
1606 }
1607
1608 switch (Size) {
1609 case 1:
1610 // reg + imm
1611 if (AM.Scale == 0) {
1612 return isImmUs(AM.BaseOffs);
1613 }
1614 // reg + reg
1615 return AM.Scale == 1 && AM.BaseOffs == 0;
1616 case 2:
1617 case 3:
1618 // reg + imm
1619 if (AM.Scale == 0) {
1620 return isImmUs2(AM.BaseOffs);
1621 }
1622 // reg + reg<<1
1623 return AM.Scale == 2 && AM.BaseOffs == 0;
1624 default:
1625 // reg + imm
1626 if (AM.Scale == 0) {
1627 return isImmUs4(AM.BaseOffs);
1628 }
1629 // reg + reg<<2
1630 return AM.Scale == 4 && AM.BaseOffs == 0;
1631 }
1632 }
1633
1634 //===----------------------------------------------------------------------===//
1635 // XCore Inline Assembly Support
1636 //===----------------------------------------------------------------------===//
1637
1638 std::pair<unsigned, const TargetRegisterClass*>
1639 XCoreTargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,MVT VT) const1640 getRegForInlineAsmConstraint(const std::string &Constraint,
1641 MVT VT) const {
1642 if (Constraint.size() == 1) {
1643 switch (Constraint[0]) {
1644 default : break;
1645 case 'r':
1646 return std::make_pair(0U, &XCore::GRRegsRegClass);
1647 }
1648 }
1649 // Use the default implementation in TargetLowering to convert the register
1650 // constraint into a member of a register class.
1651 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1652 }
1653