• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 /**
17  ******************************************************************************
18  * @file     M4VIFI_ResizeYUV420toYUV420.c
19  * @brief    Contain video library function
20  * @note     This file has a Resize filter function
21  *           -# Generic resizing of YUV420 (Planar) image
22  ******************************************************************************
23 */
24 
25 /* Prototypes of functions, and type definitions */
26 #include    "M4VIFI_FiltersAPI.h"
27 /* Macro definitions */
28 #include    "M4VIFI_Defines.h"
29 /* Clip table declaration */
30 #include    "M4VIFI_Clip.h"
31 
32 /**
33  ***********************************************************************************************
34  * M4VIFI_UInt8 M4VIFI_ResizeBilinearRGB888toRGB888(void *pUserData, M4VIFI_ImagePlane *pPlaneIn,
35  *                                                                  M4VIFI_ImagePlane *pPlaneOut)
36  * @brief   Resizes YUV420 Planar plane.
37  * @note    Basic structure of the function
38  *          Loop on each row (step 2)
39  *              Loop on each column (step 2)
40  *                  Get four Y samples and 1 U & V sample
41  *                  Resize the Y with corresponing U and V samples
42  *                  Place the YUV in the ouput plane
43  *              end loop column
44  *          end loop row
45  *          For resizing bilinear interpolation linearly interpolates along
46  *          each row, and then uses that result in a linear interpolation down each column.
47  *          Each estimated pixel in the output image is a weighted
48  *          combination of its four neighbours. The ratio of compression
49  *          or dilatation is estimated using input and output sizes.
50  * @param   pUserData: (IN) User Data
51  * @param   pPlaneIn: (IN) Pointer to YUV420 (Planar) plane buffer
52  * @param   pPlaneOut: (OUT) Pointer to YUV420 (Planar) plane
53  * @return  M4VIFI_OK: there is no error
54  * @return  M4VIFI_ILLEGAL_FRAME_HEIGHT: Error in height
55  * @return  M4VIFI_ILLEGAL_FRAME_WIDTH:  Error in width
56  ***********************************************************************************************
57 */
M4VIFI_ResizeBilinearRGB888toRGB888(void * pUserData,M4VIFI_ImagePlane * pPlaneIn,M4VIFI_ImagePlane * pPlaneOut)58 M4VIFI_UInt8    M4VIFI_ResizeBilinearRGB888toRGB888(void *pUserData,
59                                                                 M4VIFI_ImagePlane *pPlaneIn,
60                                                                 M4VIFI_ImagePlane *pPlaneOut)
61 {
62     M4VIFI_UInt8    *pu8_data_in;
63     M4VIFI_UInt8    *pu8_data_out;
64     M4VIFI_UInt32   u32_width_in, u32_width_out, u32_height_in, u32_height_out;
65     M4VIFI_UInt32   u32_stride_in, u32_stride_out;
66     M4VIFI_UInt32   u32_x_inc, u32_y_inc;
67     M4VIFI_UInt32   u32_x_accum, u32_y_accum, u32_x_accum_start;
68     M4VIFI_UInt32   u32_width, u32_height;
69     M4VIFI_UInt32   u32_y_frac;
70     M4VIFI_UInt32   u32_x_frac;
71     M4VIFI_UInt32   u32_Rtemp_value,u32_Gtemp_value,u32_Btemp_value;
72     M4VIFI_UInt8    *pu8_src_top;
73     M4VIFI_UInt8    *pu8_src_bottom;
74     M4VIFI_UInt32    i32_b00, i32_g00, i32_r00;
75     M4VIFI_UInt32    i32_b01, i32_g01, i32_r01;
76     M4VIFI_UInt32    i32_b02, i32_g02, i32_r02;
77     M4VIFI_UInt32    i32_b03, i32_g03, i32_r03;
78 
79     /* Check for the YUV width and height are even */
80     if ((IS_EVEN(pPlaneIn->u_height) == FALSE)    ||
81         (IS_EVEN(pPlaneOut->u_height) == FALSE))
82     {
83         return M4VIFI_ILLEGAL_FRAME_HEIGHT;
84     }
85 
86     if ((IS_EVEN(pPlaneIn->u_width) == FALSE) ||
87         (IS_EVEN(pPlaneOut->u_width) == FALSE))
88     {
89         return M4VIFI_ILLEGAL_FRAME_WIDTH;
90     }
91 
92 
93         /* Set the working pointers at the beginning of the input/output data field */
94         pu8_data_in     = (M4VIFI_UInt8*)(pPlaneIn->pac_data + pPlaneIn->u_topleft);
95         pu8_data_out    = (M4VIFI_UInt8*)(pPlaneOut->pac_data + pPlaneOut->u_topleft);
96 
97         /* Get the memory jump corresponding to a row jump */
98         u32_stride_in   = pPlaneIn->u_stride;
99         u32_stride_out  = pPlaneOut->u_stride;
100 
101         /* Set the bounds of the active image */
102         u32_width_in    = pPlaneIn->u_width;
103         u32_height_in   = pPlaneIn->u_height;
104 
105         u32_width_out   = pPlaneOut->u_width;
106         u32_height_out  = pPlaneOut->u_height;
107 
108         /* Compute horizontal ratio between src and destination width.*/
109         if (u32_width_out >= u32_width_in)
110         {
111             u32_x_inc   = ((u32_width_in-1) * MAX_SHORT) / (u32_width_out-1);
112         }
113         else
114         {
115             u32_x_inc   = (u32_width_in * MAX_SHORT) / (u32_width_out);
116         }
117 
118         /* Compute vertical ratio between src and destination height.*/
119         if (u32_height_out >= u32_height_in)
120         {
121             u32_y_inc   = ((u32_height_in - 1) * MAX_SHORT) / (u32_height_out-1);
122         }
123         else
124         {
125             u32_y_inc = (u32_height_in * MAX_SHORT) / (u32_height_out);
126         }
127 
128         /*
129         Calculate initial accumulator value : u32_y_accum_start.
130         u32_y_accum_start is coded on 15 bits, and represents a value between 0 and 0.5
131         */
132         if (u32_y_inc >= MAX_SHORT)
133         {
134             /*
135                 Keep the fractionnal part, assimung that integer  part is coded
136                 on the 16 high bits and the fractionnal on the 15 low bits
137             */
138             u32_y_accum = u32_y_inc & 0xffff;
139 
140             if (!u32_y_accum)
141             {
142                 u32_y_accum = MAX_SHORT;
143             }
144 
145             u32_y_accum >>= 1;
146         }
147         else
148         {
149             u32_y_accum = 0;
150         }
151 
152 
153         /*
154             Calculate initial accumulator value : u32_x_accum_start.
155             u32_x_accum_start is coded on 15 bits, and represents a value between 0 and 0.5
156         */
157         if (u32_x_inc >= MAX_SHORT)
158         {
159             u32_x_accum_start = u32_x_inc & 0xffff;
160 
161             if (!u32_x_accum_start)
162             {
163                 u32_x_accum_start = MAX_SHORT;
164             }
165 
166             u32_x_accum_start >>= 1;
167         }
168         else
169         {
170             u32_x_accum_start = 0;
171         }
172 
173         u32_height = u32_height_out;
174 
175         /*
176         Bilinear interpolation linearly interpolates along each row, and then uses that
177         result in a linear interpolation donw each column. Each estimated pixel in the
178         output image is a weighted combination of its four neighbours according to the formula:
179         F(p',q')=f(p,q)R(-a)R(b)+f(p,q-1)R(-a)R(b-1)+f(p+1,q)R(1-a)R(b)+f(p+&,q+1)R(1-a)R(b-1)
180         with  R(x) = / x+1  -1 =< x =< 0 \ 1-x  0 =< x =< 1 and a (resp. b)weighting coefficient
181         is the distance from the nearest neighbor in the p (resp. q) direction
182         */
183 
184         do { /* Scan all the row */
185 
186             /* Vertical weight factor */
187             u32_y_frac = (u32_y_accum>>12)&15;
188 
189             /* Reinit accumulator */
190             u32_x_accum = u32_x_accum_start;
191 
192             u32_width = u32_width_out;
193 
194             do { /* Scan along each row */
195                 pu8_src_top = pu8_data_in + (u32_x_accum >> 16)*3;
196                 pu8_src_bottom = pu8_src_top + (u32_stride_in);
197                 u32_x_frac = (u32_x_accum >> 12)&15; /* Horizontal weight factor */
198 
199                 if ((u32_width == 1) && (u32_width_in == u32_width_out)) {
200                     /*
201                        When input height is equal to output height and input width
202                        equal to output width, replicate the corner pixels for
203                        interpolation
204                     */
205                     if ((u32_height == 1) && (u32_height_in == u32_height_out)) {
206                         GET_RGB24(i32_b00,i32_g00,i32_r00,pu8_src_top,0);
207                         GET_RGB24(i32_b01,i32_g01,i32_r01,pu8_src_top,0);
208                         GET_RGB24(i32_b02,i32_g02,i32_r02,pu8_src_top,0);
209                         GET_RGB24(i32_b03,i32_g03,i32_r03,pu8_src_top,0);
210                     }
211                     /*
212                        When input height is not equal to output height and
213                        input width equal to output width, replicate the
214                        column for interpolation
215                     */
216                     else {
217                         GET_RGB24(i32_b00,i32_g00,i32_r00,pu8_src_top,0);
218                         GET_RGB24(i32_b01,i32_g01,i32_r01,pu8_src_top,0);
219                         GET_RGB24(i32_b02,i32_g02,i32_r02,pu8_src_bottom,0);
220                         GET_RGB24(i32_b03,i32_g03,i32_r03,pu8_src_bottom,0);
221                     }
222                 } else {
223                     /*
224                        When input height is equal to output height and
225                        input width not equal to output width, replicate the
226                        row for interpolation
227                     */
228                     if ((u32_height == 1) && (u32_height_in == u32_height_out)) {
229                         GET_RGB24(i32_b00,i32_g00,i32_r00,pu8_src_top,0);
230                         GET_RGB24(i32_b01,i32_g01,i32_r01,pu8_src_top,3);
231                         GET_RGB24(i32_b02,i32_g02,i32_r02,pu8_src_top,0);
232                         GET_RGB24(i32_b03,i32_g03,i32_r03,pu8_src_top,3);
233                     } else {
234                         GET_RGB24(i32_b00,i32_g00,i32_r00,pu8_src_top,0);
235                         GET_RGB24(i32_b01,i32_g01,i32_r01,pu8_src_top,3);
236                         GET_RGB24(i32_b02,i32_g02,i32_r02,pu8_src_bottom,0);
237                         GET_RGB24(i32_b03,i32_g03,i32_r03,pu8_src_bottom,3);
238                     }
239                 }
240                 u32_Rtemp_value = (M4VIFI_UInt8)(((i32_r00*(16-u32_x_frac) +
241                                  i32_r01*u32_x_frac)*(16-u32_y_frac) +
242                                 (i32_r02*(16-u32_x_frac) +
243                                  i32_r03*u32_x_frac)*u32_y_frac )>>8);
244 
245                 u32_Gtemp_value = (M4VIFI_UInt8)(((i32_g00*(16-u32_x_frac) +
246                                  i32_g01*u32_x_frac)*(16-u32_y_frac) +
247                                 (i32_g02*(16-u32_x_frac) +
248                                  i32_g03*u32_x_frac)*u32_y_frac )>>8);
249 
250                 u32_Btemp_value =  (M4VIFI_UInt8)(((i32_b00*(16-u32_x_frac) +
251                                  i32_b01*u32_x_frac)*(16-u32_y_frac) +
252                                 (i32_b02*(16-u32_x_frac) +
253                                  i32_b03*u32_x_frac)*u32_y_frac )>>8);
254 
255                 *pu8_data_out++ = u32_Btemp_value ;
256                 *pu8_data_out++ = u32_Gtemp_value ;
257                 *pu8_data_out++ = u32_Rtemp_value ;
258 
259                 /* Update horizontal accumulator */
260                 u32_x_accum += u32_x_inc;
261 
262             } while(--u32_width);
263 
264             //pu16_data_out = pu16_data_out + (u32_stride_out>>1) - (u32_width_out);
265 
266             /* Update vertical accumulator */
267             u32_y_accum += u32_y_inc;
268             if (u32_y_accum>>16)
269             {
270                 pu8_data_in = pu8_data_in + (u32_y_accum >> 16) * (u32_stride_in) ;
271                 u32_y_accum &= 0xffff;
272             }
273         } while(--u32_height);
274 
275     return M4VIFI_OK;
276 }
277 /* End of file M4VIFI_ResizeRGB565toRGB565.c */
278 
279