1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Comment.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExternalASTSource.h"
27 #include "clang/AST/Mangle.h"
28 #include "clang/AST/RecordLayout.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/TypeLoc.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/Capacity.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <map>
40
41 using namespace clang;
42
43 unsigned ASTContext::NumImplicitDefaultConstructors;
44 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
45 unsigned ASTContext::NumImplicitCopyConstructors;
46 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
47 unsigned ASTContext::NumImplicitMoveConstructors;
48 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
49 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
50 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
51 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
52 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
53 unsigned ASTContext::NumImplicitDestructors;
54 unsigned ASTContext::NumImplicitDestructorsDeclared;
55
56 enum FloatingRank {
57 HalfRank, FloatRank, DoubleRank, LongDoubleRank
58 };
59
getRawCommentForDeclNoCache(const Decl * D) const60 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
61 if (!CommentsLoaded && ExternalSource) {
62 ExternalSource->ReadComments();
63 CommentsLoaded = true;
64 }
65
66 assert(D);
67
68 // User can not attach documentation to implicit declarations.
69 if (D->isImplicit())
70 return NULL;
71
72 // User can not attach documentation to implicit instantiations.
73 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
75 return NULL;
76 }
77
78 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
79 if (VD->isStaticDataMember() &&
80 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
81 return NULL;
82 }
83
84 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
85 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
86 return NULL;
87 }
88
89 if (const ClassTemplateSpecializationDecl *CTSD =
90 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
91 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
92 if (TSK == TSK_ImplicitInstantiation ||
93 TSK == TSK_Undeclared)
94 return NULL;
95 }
96
97 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
98 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
99 return NULL;
100 }
101 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
102 // When tag declaration (but not definition!) is part of the
103 // decl-specifier-seq of some other declaration, it doesn't get comment
104 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
105 return NULL;
106 }
107 // TODO: handle comments for function parameters properly.
108 if (isa<ParmVarDecl>(D))
109 return NULL;
110
111 // TODO: we could look up template parameter documentation in the template
112 // documentation.
113 if (isa<TemplateTypeParmDecl>(D) ||
114 isa<NonTypeTemplateParmDecl>(D) ||
115 isa<TemplateTemplateParmDecl>(D))
116 return NULL;
117
118 ArrayRef<RawComment *> RawComments = Comments.getComments();
119
120 // If there are no comments anywhere, we won't find anything.
121 if (RawComments.empty())
122 return NULL;
123
124 // Find declaration location.
125 // For Objective-C declarations we generally don't expect to have multiple
126 // declarators, thus use declaration starting location as the "declaration
127 // location".
128 // For all other declarations multiple declarators are used quite frequently,
129 // so we use the location of the identifier as the "declaration location".
130 SourceLocation DeclLoc;
131 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
132 isa<ObjCPropertyDecl>(D) ||
133 isa<RedeclarableTemplateDecl>(D) ||
134 isa<ClassTemplateSpecializationDecl>(D))
135 DeclLoc = D->getLocStart();
136 else {
137 DeclLoc = D->getLocation();
138 // If location of the typedef name is in a macro, it is because being
139 // declared via a macro. Try using declaration's starting location
140 // as the "declaration location".
141 if (DeclLoc.isMacroID() && isa<TypedefDecl>(D))
142 DeclLoc = D->getLocStart();
143 }
144
145 // If the declaration doesn't map directly to a location in a file, we
146 // can't find the comment.
147 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
148 return NULL;
149
150 // Find the comment that occurs just after this declaration.
151 ArrayRef<RawComment *>::iterator Comment;
152 {
153 // When searching for comments during parsing, the comment we are looking
154 // for is usually among the last two comments we parsed -- check them
155 // first.
156 RawComment CommentAtDeclLoc(
157 SourceMgr, SourceRange(DeclLoc), false,
158 LangOpts.CommentOpts.ParseAllComments);
159 BeforeThanCompare<RawComment> Compare(SourceMgr);
160 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
161 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
162 if (!Found && RawComments.size() >= 2) {
163 MaybeBeforeDecl--;
164 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
165 }
166
167 if (Found) {
168 Comment = MaybeBeforeDecl + 1;
169 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
170 &CommentAtDeclLoc, Compare));
171 } else {
172 // Slow path.
173 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
174 &CommentAtDeclLoc, Compare);
175 }
176 }
177
178 // Decompose the location for the declaration and find the beginning of the
179 // file buffer.
180 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
181
182 // First check whether we have a trailing comment.
183 if (Comment != RawComments.end() &&
184 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
185 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
186 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
187 std::pair<FileID, unsigned> CommentBeginDecomp
188 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
189 // Check that Doxygen trailing comment comes after the declaration, starts
190 // on the same line and in the same file as the declaration.
191 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
192 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
193 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
194 CommentBeginDecomp.second)) {
195 return *Comment;
196 }
197 }
198
199 // The comment just after the declaration was not a trailing comment.
200 // Let's look at the previous comment.
201 if (Comment == RawComments.begin())
202 return NULL;
203 --Comment;
204
205 // Check that we actually have a non-member Doxygen comment.
206 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
207 return NULL;
208
209 // Decompose the end of the comment.
210 std::pair<FileID, unsigned> CommentEndDecomp
211 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
212
213 // If the comment and the declaration aren't in the same file, then they
214 // aren't related.
215 if (DeclLocDecomp.first != CommentEndDecomp.first)
216 return NULL;
217
218 // Get the corresponding buffer.
219 bool Invalid = false;
220 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
221 &Invalid).data();
222 if (Invalid)
223 return NULL;
224
225 // Extract text between the comment and declaration.
226 StringRef Text(Buffer + CommentEndDecomp.second,
227 DeclLocDecomp.second - CommentEndDecomp.second);
228
229 // There should be no other declarations or preprocessor directives between
230 // comment and declaration.
231 if (Text.find_first_of(";{}#@") != StringRef::npos)
232 return NULL;
233
234 return *Comment;
235 }
236
237 namespace {
238 /// If we have a 'templated' declaration for a template, adjust 'D' to
239 /// refer to the actual template.
240 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)241 const Decl *adjustDeclToTemplate(const Decl *D) {
242 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
243 // Is this function declaration part of a function template?
244 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
245 return FTD;
246
247 // Nothing to do if function is not an implicit instantiation.
248 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
249 return D;
250
251 // Function is an implicit instantiation of a function template?
252 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
253 return FTD;
254
255 // Function is instantiated from a member definition of a class template?
256 if (const FunctionDecl *MemberDecl =
257 FD->getInstantiatedFromMemberFunction())
258 return MemberDecl;
259
260 return D;
261 }
262 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
263 // Static data member is instantiated from a member definition of a class
264 // template?
265 if (VD->isStaticDataMember())
266 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
267 return MemberDecl;
268
269 return D;
270 }
271 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
272 // Is this class declaration part of a class template?
273 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
274 return CTD;
275
276 // Class is an implicit instantiation of a class template or partial
277 // specialization?
278 if (const ClassTemplateSpecializationDecl *CTSD =
279 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
280 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
281 return D;
282 llvm::PointerUnion<ClassTemplateDecl *,
283 ClassTemplatePartialSpecializationDecl *>
284 PU = CTSD->getSpecializedTemplateOrPartial();
285 return PU.is<ClassTemplateDecl*>() ?
286 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
287 static_cast<const Decl*>(
288 PU.get<ClassTemplatePartialSpecializationDecl *>());
289 }
290
291 // Class is instantiated from a member definition of a class template?
292 if (const MemberSpecializationInfo *Info =
293 CRD->getMemberSpecializationInfo())
294 return Info->getInstantiatedFrom();
295
296 return D;
297 }
298 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
299 // Enum is instantiated from a member definition of a class template?
300 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
301 return MemberDecl;
302
303 return D;
304 }
305 // FIXME: Adjust alias templates?
306 return D;
307 }
308 } // unnamed namespace
309
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const310 const RawComment *ASTContext::getRawCommentForAnyRedecl(
311 const Decl *D,
312 const Decl **OriginalDecl) const {
313 D = adjustDeclToTemplate(D);
314
315 // Check whether we have cached a comment for this declaration already.
316 {
317 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
318 RedeclComments.find(D);
319 if (Pos != RedeclComments.end()) {
320 const RawCommentAndCacheFlags &Raw = Pos->second;
321 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
322 if (OriginalDecl)
323 *OriginalDecl = Raw.getOriginalDecl();
324 return Raw.getRaw();
325 }
326 }
327 }
328
329 // Search for comments attached to declarations in the redeclaration chain.
330 const RawComment *RC = NULL;
331 const Decl *OriginalDeclForRC = NULL;
332 for (Decl::redecl_iterator I = D->redecls_begin(),
333 E = D->redecls_end();
334 I != E; ++I) {
335 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
336 RedeclComments.find(*I);
337 if (Pos != RedeclComments.end()) {
338 const RawCommentAndCacheFlags &Raw = Pos->second;
339 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
340 RC = Raw.getRaw();
341 OriginalDeclForRC = Raw.getOriginalDecl();
342 break;
343 }
344 } else {
345 RC = getRawCommentForDeclNoCache(*I);
346 OriginalDeclForRC = *I;
347 RawCommentAndCacheFlags Raw;
348 if (RC) {
349 Raw.setRaw(RC);
350 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
351 } else
352 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
353 Raw.setOriginalDecl(*I);
354 RedeclComments[*I] = Raw;
355 if (RC)
356 break;
357 }
358 }
359
360 // If we found a comment, it should be a documentation comment.
361 assert(!RC || RC->isDocumentation());
362
363 if (OriginalDecl)
364 *OriginalDecl = OriginalDeclForRC;
365
366 // Update cache for every declaration in the redeclaration chain.
367 RawCommentAndCacheFlags Raw;
368 Raw.setRaw(RC);
369 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
370 Raw.setOriginalDecl(OriginalDeclForRC);
371
372 for (Decl::redecl_iterator I = D->redecls_begin(),
373 E = D->redecls_end();
374 I != E; ++I) {
375 RawCommentAndCacheFlags &R = RedeclComments[*I];
376 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
377 R = Raw;
378 }
379
380 return RC;
381 }
382
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)383 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
384 SmallVectorImpl<const NamedDecl *> &Redeclared) {
385 const DeclContext *DC = ObjCMethod->getDeclContext();
386 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
387 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
388 if (!ID)
389 return;
390 // Add redeclared method here.
391 for (ObjCInterfaceDecl::known_extensions_iterator
392 Ext = ID->known_extensions_begin(),
393 ExtEnd = ID->known_extensions_end();
394 Ext != ExtEnd; ++Ext) {
395 if (ObjCMethodDecl *RedeclaredMethod =
396 Ext->getMethod(ObjCMethod->getSelector(),
397 ObjCMethod->isInstanceMethod()))
398 Redeclared.push_back(RedeclaredMethod);
399 }
400 }
401 }
402
cloneFullComment(comments::FullComment * FC,const Decl * D) const403 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
404 const Decl *D) const {
405 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
406 ThisDeclInfo->CommentDecl = D;
407 ThisDeclInfo->IsFilled = false;
408 ThisDeclInfo->fill();
409 ThisDeclInfo->CommentDecl = FC->getDecl();
410 comments::FullComment *CFC =
411 new (*this) comments::FullComment(FC->getBlocks(),
412 ThisDeclInfo);
413 return CFC;
414
415 }
416
getLocalCommentForDeclUncached(const Decl * D) const417 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
418 const RawComment *RC = getRawCommentForDeclNoCache(D);
419 return RC ? RC->parse(*this, 0, D) : 0;
420 }
421
getCommentForDecl(const Decl * D,const Preprocessor * PP) const422 comments::FullComment *ASTContext::getCommentForDecl(
423 const Decl *D,
424 const Preprocessor *PP) const {
425 if (D->isInvalidDecl())
426 return NULL;
427 D = adjustDeclToTemplate(D);
428
429 const Decl *Canonical = D->getCanonicalDecl();
430 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
431 ParsedComments.find(Canonical);
432
433 if (Pos != ParsedComments.end()) {
434 if (Canonical != D) {
435 comments::FullComment *FC = Pos->second;
436 comments::FullComment *CFC = cloneFullComment(FC, D);
437 return CFC;
438 }
439 return Pos->second;
440 }
441
442 const Decl *OriginalDecl;
443
444 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
445 if (!RC) {
446 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
447 SmallVector<const NamedDecl*, 8> Overridden;
448 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
449 if (OMD && OMD->isPropertyAccessor())
450 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
451 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
452 return cloneFullComment(FC, D);
453 if (OMD)
454 addRedeclaredMethods(OMD, Overridden);
455 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
456 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
457 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
458 return cloneFullComment(FC, D);
459 }
460 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
461 // Attach any tag type's documentation to its typedef if latter
462 // does not have one of its own.
463 QualType QT = TD->getUnderlyingType();
464 if (const TagType *TT = QT->getAs<TagType>())
465 if (const Decl *TD = TT->getDecl())
466 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
467 return cloneFullComment(FC, D);
468 }
469 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
470 while (IC->getSuperClass()) {
471 IC = IC->getSuperClass();
472 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
473 return cloneFullComment(FC, D);
474 }
475 }
476 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
477 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
478 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
479 return cloneFullComment(FC, D);
480 }
481 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
482 if (!(RD = RD->getDefinition()))
483 return NULL;
484 // Check non-virtual bases.
485 for (CXXRecordDecl::base_class_const_iterator I =
486 RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
487 if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
488 continue;
489 QualType Ty = I->getType();
490 if (Ty.isNull())
491 continue;
492 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
493 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
494 continue;
495
496 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
497 return cloneFullComment(FC, D);
498 }
499 }
500 // Check virtual bases.
501 for (CXXRecordDecl::base_class_const_iterator I =
502 RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
503 if (I->getAccessSpecifier() != AS_public)
504 continue;
505 QualType Ty = I->getType();
506 if (Ty.isNull())
507 continue;
508 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
509 if (!(VirtualBase= VirtualBase->getDefinition()))
510 continue;
511 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
512 return cloneFullComment(FC, D);
513 }
514 }
515 }
516 return NULL;
517 }
518
519 // If the RawComment was attached to other redeclaration of this Decl, we
520 // should parse the comment in context of that other Decl. This is important
521 // because comments can contain references to parameter names which can be
522 // different across redeclarations.
523 if (D != OriginalDecl)
524 return getCommentForDecl(OriginalDecl, PP);
525
526 comments::FullComment *FC = RC->parse(*this, PP, D);
527 ParsedComments[Canonical] = FC;
528 return FC;
529 }
530
531 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)532 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
533 TemplateTemplateParmDecl *Parm) {
534 ID.AddInteger(Parm->getDepth());
535 ID.AddInteger(Parm->getPosition());
536 ID.AddBoolean(Parm->isParameterPack());
537
538 TemplateParameterList *Params = Parm->getTemplateParameters();
539 ID.AddInteger(Params->size());
540 for (TemplateParameterList::const_iterator P = Params->begin(),
541 PEnd = Params->end();
542 P != PEnd; ++P) {
543 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
544 ID.AddInteger(0);
545 ID.AddBoolean(TTP->isParameterPack());
546 continue;
547 }
548
549 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
550 ID.AddInteger(1);
551 ID.AddBoolean(NTTP->isParameterPack());
552 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
553 if (NTTP->isExpandedParameterPack()) {
554 ID.AddBoolean(true);
555 ID.AddInteger(NTTP->getNumExpansionTypes());
556 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
557 QualType T = NTTP->getExpansionType(I);
558 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
559 }
560 } else
561 ID.AddBoolean(false);
562 continue;
563 }
564
565 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
566 ID.AddInteger(2);
567 Profile(ID, TTP);
568 }
569 }
570
571 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const572 ASTContext::getCanonicalTemplateTemplateParmDecl(
573 TemplateTemplateParmDecl *TTP) const {
574 // Check if we already have a canonical template template parameter.
575 llvm::FoldingSetNodeID ID;
576 CanonicalTemplateTemplateParm::Profile(ID, TTP);
577 void *InsertPos = 0;
578 CanonicalTemplateTemplateParm *Canonical
579 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
580 if (Canonical)
581 return Canonical->getParam();
582
583 // Build a canonical template parameter list.
584 TemplateParameterList *Params = TTP->getTemplateParameters();
585 SmallVector<NamedDecl *, 4> CanonParams;
586 CanonParams.reserve(Params->size());
587 for (TemplateParameterList::const_iterator P = Params->begin(),
588 PEnd = Params->end();
589 P != PEnd; ++P) {
590 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
591 CanonParams.push_back(
592 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
593 SourceLocation(),
594 SourceLocation(),
595 TTP->getDepth(),
596 TTP->getIndex(), 0, false,
597 TTP->isParameterPack()));
598 else if (NonTypeTemplateParmDecl *NTTP
599 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
600 QualType T = getCanonicalType(NTTP->getType());
601 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
602 NonTypeTemplateParmDecl *Param;
603 if (NTTP->isExpandedParameterPack()) {
604 SmallVector<QualType, 2> ExpandedTypes;
605 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
606 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
607 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
608 ExpandedTInfos.push_back(
609 getTrivialTypeSourceInfo(ExpandedTypes.back()));
610 }
611
612 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
613 SourceLocation(),
614 SourceLocation(),
615 NTTP->getDepth(),
616 NTTP->getPosition(), 0,
617 T,
618 TInfo,
619 ExpandedTypes.data(),
620 ExpandedTypes.size(),
621 ExpandedTInfos.data());
622 } else {
623 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
624 SourceLocation(),
625 SourceLocation(),
626 NTTP->getDepth(),
627 NTTP->getPosition(), 0,
628 T,
629 NTTP->isParameterPack(),
630 TInfo);
631 }
632 CanonParams.push_back(Param);
633
634 } else
635 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
636 cast<TemplateTemplateParmDecl>(*P)));
637 }
638
639 TemplateTemplateParmDecl *CanonTTP
640 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
641 SourceLocation(), TTP->getDepth(),
642 TTP->getPosition(),
643 TTP->isParameterPack(),
644 0,
645 TemplateParameterList::Create(*this, SourceLocation(),
646 SourceLocation(),
647 CanonParams.data(),
648 CanonParams.size(),
649 SourceLocation()));
650
651 // Get the new insert position for the node we care about.
652 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
653 assert(Canonical == 0 && "Shouldn't be in the map!");
654 (void)Canonical;
655
656 // Create the canonical template template parameter entry.
657 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
658 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
659 return CanonTTP;
660 }
661
createCXXABI(const TargetInfo & T)662 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
663 if (!LangOpts.CPlusPlus) return 0;
664
665 switch (T.getCXXABI().getKind()) {
666 case TargetCXXABI::GenericARM:
667 case TargetCXXABI::iOS:
668 return CreateARMCXXABI(*this);
669 case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
670 case TargetCXXABI::GenericItanium:
671 return CreateItaniumCXXABI(*this);
672 case TargetCXXABI::Microsoft:
673 return CreateMicrosoftCXXABI(*this);
674 }
675 llvm_unreachable("Invalid CXXABI type!");
676 }
677
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)678 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
679 const LangOptions &LOpts) {
680 if (LOpts.FakeAddressSpaceMap) {
681 // The fake address space map must have a distinct entry for each
682 // language-specific address space.
683 static const unsigned FakeAddrSpaceMap[] = {
684 1, // opencl_global
685 2, // opencl_local
686 3, // opencl_constant
687 4, // cuda_device
688 5, // cuda_constant
689 6 // cuda_shared
690 };
691 return &FakeAddrSpaceMap;
692 } else {
693 return &T.getAddressSpaceMap();
694 }
695 }
696
ASTContext(LangOptions & LOpts,SourceManager & SM,const TargetInfo * t,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins,unsigned size_reserve,bool DelayInitialization)697 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
698 const TargetInfo *t,
699 IdentifierTable &idents, SelectorTable &sels,
700 Builtin::Context &builtins,
701 unsigned size_reserve,
702 bool DelayInitialization)
703 : FunctionProtoTypes(this_()),
704 TemplateSpecializationTypes(this_()),
705 DependentTemplateSpecializationTypes(this_()),
706 SubstTemplateTemplateParmPacks(this_()),
707 GlobalNestedNameSpecifier(0),
708 Int128Decl(0), UInt128Decl(0), Float128StubDecl(0),
709 BuiltinVaListDecl(0),
710 ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
711 BOOLDecl(0),
712 CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
713 FILEDecl(0),
714 jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
715 BlockDescriptorType(0), BlockDescriptorExtendedType(0),
716 cudaConfigureCallDecl(0),
717 NullTypeSourceInfo(QualType()),
718 FirstLocalImport(), LastLocalImport(),
719 SourceMgr(SM), LangOpts(LOpts),
720 AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
721 Idents(idents), Selectors(sels),
722 BuiltinInfo(builtins),
723 DeclarationNames(*this),
724 ExternalSource(0), Listener(0),
725 Comments(SM), CommentsLoaded(false),
726 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
727 LastSDM(0, 0)
728 {
729 if (size_reserve > 0) Types.reserve(size_reserve);
730 TUDecl = TranslationUnitDecl::Create(*this);
731
732 if (!DelayInitialization) {
733 assert(t && "No target supplied for ASTContext initialization");
734 InitBuiltinTypes(*t);
735 }
736 }
737
~ASTContext()738 ASTContext::~ASTContext() {
739 // Release the DenseMaps associated with DeclContext objects.
740 // FIXME: Is this the ideal solution?
741 ReleaseDeclContextMaps();
742
743 // Call all of the deallocation functions on all of their targets.
744 for (DeallocationMap::const_iterator I = Deallocations.begin(),
745 E = Deallocations.end(); I != E; ++I)
746 for (unsigned J = 0, N = I->second.size(); J != N; ++J)
747 (I->first)((I->second)[J]);
748
749 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
750 // because they can contain DenseMaps.
751 for (llvm::DenseMap<const ObjCContainerDecl*,
752 const ASTRecordLayout*>::iterator
753 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
754 // Increment in loop to prevent using deallocated memory.
755 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
756 R->Destroy(*this);
757
758 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
759 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
760 // Increment in loop to prevent using deallocated memory.
761 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
762 R->Destroy(*this);
763 }
764
765 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
766 AEnd = DeclAttrs.end();
767 A != AEnd; ++A)
768 A->second->~AttrVec();
769 }
770
AddDeallocation(void (* Callback)(void *),void * Data)771 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
772 Deallocations[Callback].push_back(Data);
773 }
774
775 void
setExternalSource(OwningPtr<ExternalASTSource> & Source)776 ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
777 ExternalSource.reset(Source.take());
778 }
779
PrintStats() const780 void ASTContext::PrintStats() const {
781 llvm::errs() << "\n*** AST Context Stats:\n";
782 llvm::errs() << " " << Types.size() << " types total.\n";
783
784 unsigned counts[] = {
785 #define TYPE(Name, Parent) 0,
786 #define ABSTRACT_TYPE(Name, Parent)
787 #include "clang/AST/TypeNodes.def"
788 0 // Extra
789 };
790
791 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
792 Type *T = Types[i];
793 counts[(unsigned)T->getTypeClass()]++;
794 }
795
796 unsigned Idx = 0;
797 unsigned TotalBytes = 0;
798 #define TYPE(Name, Parent) \
799 if (counts[Idx]) \
800 llvm::errs() << " " << counts[Idx] << " " << #Name \
801 << " types\n"; \
802 TotalBytes += counts[Idx] * sizeof(Name##Type); \
803 ++Idx;
804 #define ABSTRACT_TYPE(Name, Parent)
805 #include "clang/AST/TypeNodes.def"
806
807 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
808
809 // Implicit special member functions.
810 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
811 << NumImplicitDefaultConstructors
812 << " implicit default constructors created\n";
813 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
814 << NumImplicitCopyConstructors
815 << " implicit copy constructors created\n";
816 if (getLangOpts().CPlusPlus)
817 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
818 << NumImplicitMoveConstructors
819 << " implicit move constructors created\n";
820 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
821 << NumImplicitCopyAssignmentOperators
822 << " implicit copy assignment operators created\n";
823 if (getLangOpts().CPlusPlus)
824 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
825 << NumImplicitMoveAssignmentOperators
826 << " implicit move assignment operators created\n";
827 llvm::errs() << NumImplicitDestructorsDeclared << "/"
828 << NumImplicitDestructors
829 << " implicit destructors created\n";
830
831 if (ExternalSource.get()) {
832 llvm::errs() << "\n";
833 ExternalSource->PrintStats();
834 }
835
836 BumpAlloc.PrintStats();
837 }
838
getInt128Decl() const839 TypedefDecl *ASTContext::getInt128Decl() const {
840 if (!Int128Decl) {
841 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
842 Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
843 getTranslationUnitDecl(),
844 SourceLocation(),
845 SourceLocation(),
846 &Idents.get("__int128_t"),
847 TInfo);
848 }
849
850 return Int128Decl;
851 }
852
getUInt128Decl() const853 TypedefDecl *ASTContext::getUInt128Decl() const {
854 if (!UInt128Decl) {
855 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
856 UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
857 getTranslationUnitDecl(),
858 SourceLocation(),
859 SourceLocation(),
860 &Idents.get("__uint128_t"),
861 TInfo);
862 }
863
864 return UInt128Decl;
865 }
866
getFloat128StubType() const867 TypeDecl *ASTContext::getFloat128StubType() const {
868 assert(LangOpts.CPlusPlus && "should only be called for c++");
869 if (!Float128StubDecl) {
870 Float128StubDecl = CXXRecordDecl::Create(const_cast<ASTContext &>(*this),
871 TTK_Struct,
872 getTranslationUnitDecl(),
873 SourceLocation(),
874 SourceLocation(),
875 &Idents.get("__float128"));
876 }
877
878 return Float128StubDecl;
879 }
880
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)881 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
882 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
883 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
884 Types.push_back(Ty);
885 }
886
InitBuiltinTypes(const TargetInfo & Target)887 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
888 assert((!this->Target || this->Target == &Target) &&
889 "Incorrect target reinitialization");
890 assert(VoidTy.isNull() && "Context reinitialized?");
891
892 this->Target = &Target;
893
894 ABI.reset(createCXXABI(Target));
895 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
896
897 // C99 6.2.5p19.
898 InitBuiltinType(VoidTy, BuiltinType::Void);
899
900 // C99 6.2.5p2.
901 InitBuiltinType(BoolTy, BuiltinType::Bool);
902 // C99 6.2.5p3.
903 if (LangOpts.CharIsSigned)
904 InitBuiltinType(CharTy, BuiltinType::Char_S);
905 else
906 InitBuiltinType(CharTy, BuiltinType::Char_U);
907 // C99 6.2.5p4.
908 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
909 InitBuiltinType(ShortTy, BuiltinType::Short);
910 InitBuiltinType(IntTy, BuiltinType::Int);
911 InitBuiltinType(LongTy, BuiltinType::Long);
912 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
913
914 // C99 6.2.5p6.
915 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
916 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
917 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
918 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
919 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
920
921 // C99 6.2.5p10.
922 InitBuiltinType(FloatTy, BuiltinType::Float);
923 InitBuiltinType(DoubleTy, BuiltinType::Double);
924 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
925
926 // GNU extension, 128-bit integers.
927 InitBuiltinType(Int128Ty, BuiltinType::Int128);
928 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
929
930 // C++ 3.9.1p5
931 if (TargetInfo::isTypeSigned(Target.getWCharType()))
932 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
933 else // -fshort-wchar makes wchar_t be unsigned.
934 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
935 if (LangOpts.CPlusPlus && LangOpts.WChar)
936 WideCharTy = WCharTy;
937 else {
938 // C99 (or C++ using -fno-wchar).
939 WideCharTy = getFromTargetType(Target.getWCharType());
940 }
941
942 WIntTy = getFromTargetType(Target.getWIntType());
943
944 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
945 InitBuiltinType(Char16Ty, BuiltinType::Char16);
946 else // C99
947 Char16Ty = getFromTargetType(Target.getChar16Type());
948
949 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
950 InitBuiltinType(Char32Ty, BuiltinType::Char32);
951 else // C99
952 Char32Ty = getFromTargetType(Target.getChar32Type());
953
954 // Placeholder type for type-dependent expressions whose type is
955 // completely unknown. No code should ever check a type against
956 // DependentTy and users should never see it; however, it is here to
957 // help diagnose failures to properly check for type-dependent
958 // expressions.
959 InitBuiltinType(DependentTy, BuiltinType::Dependent);
960
961 // Placeholder type for functions.
962 InitBuiltinType(OverloadTy, BuiltinType::Overload);
963
964 // Placeholder type for bound members.
965 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
966
967 // Placeholder type for pseudo-objects.
968 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
969
970 // "any" type; useful for debugger-like clients.
971 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
972
973 // Placeholder type for unbridged ARC casts.
974 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
975
976 // Placeholder type for builtin functions.
977 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
978
979 // C99 6.2.5p11.
980 FloatComplexTy = getComplexType(FloatTy);
981 DoubleComplexTy = getComplexType(DoubleTy);
982 LongDoubleComplexTy = getComplexType(LongDoubleTy);
983
984 // Builtin types for 'id', 'Class', and 'SEL'.
985 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
986 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
987 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
988
989 if (LangOpts.OpenCL) {
990 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
991 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
992 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
993 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
994 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
995 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
996
997 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
998 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
999 }
1000
1001 // Builtin type for __objc_yes and __objc_no
1002 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1003 SignedCharTy : BoolTy);
1004
1005 ObjCConstantStringType = QualType();
1006
1007 ObjCSuperType = QualType();
1008
1009 // void * type
1010 VoidPtrTy = getPointerType(VoidTy);
1011
1012 // nullptr type (C++0x 2.14.7)
1013 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1014
1015 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1016 InitBuiltinType(HalfTy, BuiltinType::Half);
1017
1018 // Builtin type used to help define __builtin_va_list.
1019 VaListTagTy = QualType();
1020 }
1021
getDiagnostics() const1022 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1023 return SourceMgr.getDiagnostics();
1024 }
1025
getDeclAttrs(const Decl * D)1026 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1027 AttrVec *&Result = DeclAttrs[D];
1028 if (!Result) {
1029 void *Mem = Allocate(sizeof(AttrVec));
1030 Result = new (Mem) AttrVec;
1031 }
1032
1033 return *Result;
1034 }
1035
1036 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1037 void ASTContext::eraseDeclAttrs(const Decl *D) {
1038 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1039 if (Pos != DeclAttrs.end()) {
1040 Pos->second->~AttrVec();
1041 DeclAttrs.erase(Pos);
1042 }
1043 }
1044
1045 // FIXME: Remove ?
1046 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1047 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1048 assert(Var->isStaticDataMember() && "Not a static data member");
1049 return getTemplateOrSpecializationInfo(Var)
1050 .dyn_cast<MemberSpecializationInfo *>();
1051 }
1052
1053 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1054 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1055 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1056 TemplateOrInstantiation.find(Var);
1057 if (Pos == TemplateOrInstantiation.end())
1058 return TemplateOrSpecializationInfo();
1059
1060 return Pos->second;
1061 }
1062
1063 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1064 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1065 TemplateSpecializationKind TSK,
1066 SourceLocation PointOfInstantiation) {
1067 assert(Inst->isStaticDataMember() && "Not a static data member");
1068 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1069 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1070 Tmpl, TSK, PointOfInstantiation));
1071 }
1072
1073 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1074 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1075 TemplateOrSpecializationInfo TSI) {
1076 assert(!TemplateOrInstantiation[Inst] &&
1077 "Already noted what the variable was instantiated from");
1078 TemplateOrInstantiation[Inst] = TSI;
1079 }
1080
getClassScopeSpecializationPattern(const FunctionDecl * FD)1081 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1082 const FunctionDecl *FD){
1083 assert(FD && "Specialization is 0");
1084 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1085 = ClassScopeSpecializationPattern.find(FD);
1086 if (Pos == ClassScopeSpecializationPattern.end())
1087 return 0;
1088
1089 return Pos->second;
1090 }
1091
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1092 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1093 FunctionDecl *Pattern) {
1094 assert(FD && "Specialization is 0");
1095 assert(Pattern && "Class scope specialization pattern is 0");
1096 ClassScopeSpecializationPattern[FD] = Pattern;
1097 }
1098
1099 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)1100 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1101 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1102 = InstantiatedFromUsingDecl.find(UUD);
1103 if (Pos == InstantiatedFromUsingDecl.end())
1104 return 0;
1105
1106 return Pos->second;
1107 }
1108
1109 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1110 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1111 assert((isa<UsingDecl>(Pattern) ||
1112 isa<UnresolvedUsingValueDecl>(Pattern) ||
1113 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1114 "pattern decl is not a using decl");
1115 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1116 InstantiatedFromUsingDecl[Inst] = Pattern;
1117 }
1118
1119 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1120 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1121 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1122 = InstantiatedFromUsingShadowDecl.find(Inst);
1123 if (Pos == InstantiatedFromUsingShadowDecl.end())
1124 return 0;
1125
1126 return Pos->second;
1127 }
1128
1129 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1130 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1131 UsingShadowDecl *Pattern) {
1132 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1133 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1134 }
1135
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1136 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1137 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1138 = InstantiatedFromUnnamedFieldDecl.find(Field);
1139 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1140 return 0;
1141
1142 return Pos->second;
1143 }
1144
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1145 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1146 FieldDecl *Tmpl) {
1147 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1148 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1149 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1150 "Already noted what unnamed field was instantiated from");
1151
1152 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1153 }
1154
1155 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1156 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1157 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1158 = OverriddenMethods.find(Method->getCanonicalDecl());
1159 if (Pos == OverriddenMethods.end())
1160 return 0;
1161
1162 return Pos->second.begin();
1163 }
1164
1165 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1166 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1167 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1168 = OverriddenMethods.find(Method->getCanonicalDecl());
1169 if (Pos == OverriddenMethods.end())
1170 return 0;
1171
1172 return Pos->second.end();
1173 }
1174
1175 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1176 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1177 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1178 = OverriddenMethods.find(Method->getCanonicalDecl());
1179 if (Pos == OverriddenMethods.end())
1180 return 0;
1181
1182 return Pos->second.size();
1183 }
1184
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1185 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1186 const CXXMethodDecl *Overridden) {
1187 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1188 OverriddenMethods[Method].push_back(Overridden);
1189 }
1190
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1191 void ASTContext::getOverriddenMethods(
1192 const NamedDecl *D,
1193 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1194 assert(D);
1195
1196 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1197 Overridden.append(overridden_methods_begin(CXXMethod),
1198 overridden_methods_end(CXXMethod));
1199 return;
1200 }
1201
1202 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1203 if (!Method)
1204 return;
1205
1206 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1207 Method->getOverriddenMethods(OverDecls);
1208 Overridden.append(OverDecls.begin(), OverDecls.end());
1209 }
1210
addedLocalImportDecl(ImportDecl * Import)1211 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1212 assert(!Import->NextLocalImport && "Import declaration already in the chain");
1213 assert(!Import->isFromASTFile() && "Non-local import declaration");
1214 if (!FirstLocalImport) {
1215 FirstLocalImport = Import;
1216 LastLocalImport = Import;
1217 return;
1218 }
1219
1220 LastLocalImport->NextLocalImport = Import;
1221 LastLocalImport = Import;
1222 }
1223
1224 //===----------------------------------------------------------------------===//
1225 // Type Sizing and Analysis
1226 //===----------------------------------------------------------------------===//
1227
1228 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1229 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1230 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1231 const BuiltinType *BT = T->getAs<BuiltinType>();
1232 assert(BT && "Not a floating point type!");
1233 switch (BT->getKind()) {
1234 default: llvm_unreachable("Not a floating point type!");
1235 case BuiltinType::Half: return Target->getHalfFormat();
1236 case BuiltinType::Float: return Target->getFloatFormat();
1237 case BuiltinType::Double: return Target->getDoubleFormat();
1238 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1239 }
1240 }
1241
1242 /// getDeclAlign - Return a conservative estimate of the alignment of the
1243 /// specified decl. Note that bitfields do not have a valid alignment, so
1244 /// this method will assert on them.
1245 /// If @p RefAsPointee, references are treated like their underlying type
1246 /// (for alignof), else they're treated like pointers (for CodeGen).
getDeclAlign(const Decl * D,bool RefAsPointee) const1247 CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1248 unsigned Align = Target->getCharWidth();
1249
1250 bool UseAlignAttrOnly = false;
1251 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1252 Align = AlignFromAttr;
1253
1254 // __attribute__((aligned)) can increase or decrease alignment
1255 // *except* on a struct or struct member, where it only increases
1256 // alignment unless 'packed' is also specified.
1257 //
1258 // It is an error for alignas to decrease alignment, so we can
1259 // ignore that possibility; Sema should diagnose it.
1260 if (isa<FieldDecl>(D)) {
1261 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1262 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1263 } else {
1264 UseAlignAttrOnly = true;
1265 }
1266 }
1267 else if (isa<FieldDecl>(D))
1268 UseAlignAttrOnly =
1269 D->hasAttr<PackedAttr>() ||
1270 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1271
1272 // If we're using the align attribute only, just ignore everything
1273 // else about the declaration and its type.
1274 if (UseAlignAttrOnly) {
1275 // do nothing
1276
1277 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1278 QualType T = VD->getType();
1279 if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1280 if (RefAsPointee)
1281 T = RT->getPointeeType();
1282 else
1283 T = getPointerType(RT->getPointeeType());
1284 }
1285 if (!T->isIncompleteType() && !T->isFunctionType()) {
1286 // Adjust alignments of declarations with array type by the
1287 // large-array alignment on the target.
1288 unsigned MinWidth = Target->getLargeArrayMinWidth();
1289 if (const ArrayType *arrayType = getAsArrayType(T)) {
1290 if (MinWidth) {
1291 if (isa<VariableArrayType>(arrayType))
1292 Align = std::max(Align, Target->getLargeArrayAlign());
1293 else if (isa<ConstantArrayType>(arrayType) &&
1294 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1295 Align = std::max(Align, Target->getLargeArrayAlign());
1296 }
1297
1298 // Walk through any array types while we're at it.
1299 T = getBaseElementType(arrayType);
1300 }
1301 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1302 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1303 if (VD->hasGlobalStorage())
1304 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1305 }
1306 }
1307
1308 // Fields can be subject to extra alignment constraints, like if
1309 // the field is packed, the struct is packed, or the struct has a
1310 // a max-field-alignment constraint (#pragma pack). So calculate
1311 // the actual alignment of the field within the struct, and then
1312 // (as we're expected to) constrain that by the alignment of the type.
1313 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1314 const RecordDecl *Parent = Field->getParent();
1315 // We can only produce a sensible answer if the record is valid.
1316 if (!Parent->isInvalidDecl()) {
1317 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1318
1319 // Start with the record's overall alignment.
1320 unsigned FieldAlign = toBits(Layout.getAlignment());
1321
1322 // Use the GCD of that and the offset within the record.
1323 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1324 if (Offset > 0) {
1325 // Alignment is always a power of 2, so the GCD will be a power of 2,
1326 // which means we get to do this crazy thing instead of Euclid's.
1327 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1328 if (LowBitOfOffset < FieldAlign)
1329 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1330 }
1331
1332 Align = std::min(Align, FieldAlign);
1333 }
1334 }
1335 }
1336
1337 return toCharUnitsFromBits(Align);
1338 }
1339
1340 // getTypeInfoDataSizeInChars - Return the size of a type, in
1341 // chars. If the type is a record, its data size is returned. This is
1342 // the size of the memcpy that's performed when assigning this type
1343 // using a trivial copy/move assignment operator.
1344 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1345 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1346 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1347
1348 // In C++, objects can sometimes be allocated into the tail padding
1349 // of a base-class subobject. We decide whether that's possible
1350 // during class layout, so here we can just trust the layout results.
1351 if (getLangOpts().CPlusPlus) {
1352 if (const RecordType *RT = T->getAs<RecordType>()) {
1353 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1354 sizeAndAlign.first = layout.getDataSize();
1355 }
1356 }
1357
1358 return sizeAndAlign;
1359 }
1360
1361 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1362 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1363 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1364 static getConstantArrayInfoInChars(const ASTContext &Context,
1365 const ConstantArrayType *CAT) {
1366 std::pair<CharUnits, CharUnits> EltInfo =
1367 Context.getTypeInfoInChars(CAT->getElementType());
1368 uint64_t Size = CAT->getSize().getZExtValue();
1369 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1370 (uint64_t)(-1)/Size) &&
1371 "Overflow in array type char size evaluation");
1372 uint64_t Width = EltInfo.first.getQuantity() * Size;
1373 unsigned Align = EltInfo.second.getQuantity();
1374 Width = llvm::RoundUpToAlignment(Width, Align);
1375 return std::make_pair(CharUnits::fromQuantity(Width),
1376 CharUnits::fromQuantity(Align));
1377 }
1378
1379 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1380 ASTContext::getTypeInfoInChars(const Type *T) const {
1381 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1382 return getConstantArrayInfoInChars(*this, CAT);
1383 std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1384 return std::make_pair(toCharUnitsFromBits(Info.first),
1385 toCharUnitsFromBits(Info.second));
1386 }
1387
1388 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1389 ASTContext::getTypeInfoInChars(QualType T) const {
1390 return getTypeInfoInChars(T.getTypePtr());
1391 }
1392
getTypeInfo(const Type * T) const1393 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1394 TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1395 if (it != MemoizedTypeInfo.end())
1396 return it->second;
1397
1398 std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1399 MemoizedTypeInfo.insert(std::make_pair(T, Info));
1400 return Info;
1401 }
1402
1403 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1404 /// method does not work on incomplete types.
1405 ///
1406 /// FIXME: Pointers into different addr spaces could have different sizes and
1407 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1408 /// should take a QualType, &c.
1409 std::pair<uint64_t, unsigned>
getTypeInfoImpl(const Type * T) const1410 ASTContext::getTypeInfoImpl(const Type *T) const {
1411 uint64_t Width=0;
1412 unsigned Align=8;
1413 switch (T->getTypeClass()) {
1414 #define TYPE(Class, Base)
1415 #define ABSTRACT_TYPE(Class, Base)
1416 #define NON_CANONICAL_TYPE(Class, Base)
1417 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1418 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1419 case Type::Class: \
1420 assert(!T->isDependentType() && "should not see dependent types here"); \
1421 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1422 #include "clang/AST/TypeNodes.def"
1423 llvm_unreachable("Should not see dependent types");
1424
1425 case Type::FunctionNoProto:
1426 case Type::FunctionProto:
1427 // GCC extension: alignof(function) = 32 bits
1428 Width = 0;
1429 Align = 32;
1430 break;
1431
1432 case Type::IncompleteArray:
1433 case Type::VariableArray:
1434 Width = 0;
1435 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1436 break;
1437
1438 case Type::ConstantArray: {
1439 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1440
1441 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1442 uint64_t Size = CAT->getSize().getZExtValue();
1443 assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1444 "Overflow in array type bit size evaluation");
1445 Width = EltInfo.first*Size;
1446 Align = EltInfo.second;
1447 Width = llvm::RoundUpToAlignment(Width, Align);
1448 break;
1449 }
1450 case Type::ExtVector:
1451 case Type::Vector: {
1452 const VectorType *VT = cast<VectorType>(T);
1453 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1454 Width = EltInfo.first*VT->getNumElements();
1455 Align = Width;
1456 // If the alignment is not a power of 2, round up to the next power of 2.
1457 // This happens for non-power-of-2 length vectors.
1458 if (Align & (Align-1)) {
1459 Align = llvm::NextPowerOf2(Align);
1460 Width = llvm::RoundUpToAlignment(Width, Align);
1461 }
1462 // Adjust the alignment based on the target max.
1463 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1464 if (TargetVectorAlign && TargetVectorAlign < Align)
1465 Align = TargetVectorAlign;
1466 break;
1467 }
1468
1469 case Type::Builtin:
1470 switch (cast<BuiltinType>(T)->getKind()) {
1471 default: llvm_unreachable("Unknown builtin type!");
1472 case BuiltinType::Void:
1473 // GCC extension: alignof(void) = 8 bits.
1474 Width = 0;
1475 Align = 8;
1476 break;
1477
1478 case BuiltinType::Bool:
1479 Width = Target->getBoolWidth();
1480 Align = Target->getBoolAlign();
1481 break;
1482 case BuiltinType::Char_S:
1483 case BuiltinType::Char_U:
1484 case BuiltinType::UChar:
1485 case BuiltinType::SChar:
1486 Width = Target->getCharWidth();
1487 Align = Target->getCharAlign();
1488 break;
1489 case BuiltinType::WChar_S:
1490 case BuiltinType::WChar_U:
1491 Width = Target->getWCharWidth();
1492 Align = Target->getWCharAlign();
1493 break;
1494 case BuiltinType::Char16:
1495 Width = Target->getChar16Width();
1496 Align = Target->getChar16Align();
1497 break;
1498 case BuiltinType::Char32:
1499 Width = Target->getChar32Width();
1500 Align = Target->getChar32Align();
1501 break;
1502 case BuiltinType::UShort:
1503 case BuiltinType::Short:
1504 Width = Target->getShortWidth();
1505 Align = Target->getShortAlign();
1506 break;
1507 case BuiltinType::UInt:
1508 case BuiltinType::Int:
1509 Width = Target->getIntWidth();
1510 Align = Target->getIntAlign();
1511 break;
1512 case BuiltinType::ULong:
1513 case BuiltinType::Long:
1514 Width = Target->getLongWidth();
1515 Align = Target->getLongAlign();
1516 break;
1517 case BuiltinType::ULongLong:
1518 case BuiltinType::LongLong:
1519 Width = Target->getLongLongWidth();
1520 Align = Target->getLongLongAlign();
1521 break;
1522 case BuiltinType::Int128:
1523 case BuiltinType::UInt128:
1524 Width = 128;
1525 Align = 128; // int128_t is 128-bit aligned on all targets.
1526 break;
1527 case BuiltinType::Half:
1528 Width = Target->getHalfWidth();
1529 Align = Target->getHalfAlign();
1530 break;
1531 case BuiltinType::Float:
1532 Width = Target->getFloatWidth();
1533 Align = Target->getFloatAlign();
1534 break;
1535 case BuiltinType::Double:
1536 Width = Target->getDoubleWidth();
1537 Align = Target->getDoubleAlign();
1538 break;
1539 case BuiltinType::LongDouble:
1540 Width = Target->getLongDoubleWidth();
1541 Align = Target->getLongDoubleAlign();
1542 break;
1543 case BuiltinType::NullPtr:
1544 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1545 Align = Target->getPointerAlign(0); // == sizeof(void*)
1546 break;
1547 case BuiltinType::ObjCId:
1548 case BuiltinType::ObjCClass:
1549 case BuiltinType::ObjCSel:
1550 Width = Target->getPointerWidth(0);
1551 Align = Target->getPointerAlign(0);
1552 break;
1553 case BuiltinType::OCLSampler:
1554 // Samplers are modeled as integers.
1555 Width = Target->getIntWidth();
1556 Align = Target->getIntAlign();
1557 break;
1558 case BuiltinType::OCLEvent:
1559 case BuiltinType::OCLImage1d:
1560 case BuiltinType::OCLImage1dArray:
1561 case BuiltinType::OCLImage1dBuffer:
1562 case BuiltinType::OCLImage2d:
1563 case BuiltinType::OCLImage2dArray:
1564 case BuiltinType::OCLImage3d:
1565 // Currently these types are pointers to opaque types.
1566 Width = Target->getPointerWidth(0);
1567 Align = Target->getPointerAlign(0);
1568 break;
1569 }
1570 break;
1571 case Type::ObjCObjectPointer:
1572 Width = Target->getPointerWidth(0);
1573 Align = Target->getPointerAlign(0);
1574 break;
1575 case Type::BlockPointer: {
1576 unsigned AS = getTargetAddressSpace(
1577 cast<BlockPointerType>(T)->getPointeeType());
1578 Width = Target->getPointerWidth(AS);
1579 Align = Target->getPointerAlign(AS);
1580 break;
1581 }
1582 case Type::LValueReference:
1583 case Type::RValueReference: {
1584 // alignof and sizeof should never enter this code path here, so we go
1585 // the pointer route.
1586 unsigned AS = getTargetAddressSpace(
1587 cast<ReferenceType>(T)->getPointeeType());
1588 Width = Target->getPointerWidth(AS);
1589 Align = Target->getPointerAlign(AS);
1590 break;
1591 }
1592 case Type::Pointer: {
1593 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1594 Width = Target->getPointerWidth(AS);
1595 Align = Target->getPointerAlign(AS);
1596 break;
1597 }
1598 case Type::MemberPointer: {
1599 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1600 llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1601 break;
1602 }
1603 case Type::Complex: {
1604 // Complex types have the same alignment as their elements, but twice the
1605 // size.
1606 std::pair<uint64_t, unsigned> EltInfo =
1607 getTypeInfo(cast<ComplexType>(T)->getElementType());
1608 Width = EltInfo.first*2;
1609 Align = EltInfo.second;
1610 break;
1611 }
1612 case Type::ObjCObject:
1613 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1614 case Type::Decayed:
1615 return getTypeInfo(cast<DecayedType>(T)->getDecayedType().getTypePtr());
1616 case Type::ObjCInterface: {
1617 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1618 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1619 Width = toBits(Layout.getSize());
1620 Align = toBits(Layout.getAlignment());
1621 break;
1622 }
1623 case Type::Record:
1624 case Type::Enum: {
1625 const TagType *TT = cast<TagType>(T);
1626
1627 if (TT->getDecl()->isInvalidDecl()) {
1628 Width = 8;
1629 Align = 8;
1630 break;
1631 }
1632
1633 if (const EnumType *ET = dyn_cast<EnumType>(TT))
1634 return getTypeInfo(ET->getDecl()->getIntegerType());
1635
1636 const RecordType *RT = cast<RecordType>(TT);
1637 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1638 Width = toBits(Layout.getSize());
1639 Align = toBits(Layout.getAlignment());
1640 break;
1641 }
1642
1643 case Type::SubstTemplateTypeParm:
1644 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1645 getReplacementType().getTypePtr());
1646
1647 case Type::Auto: {
1648 const AutoType *A = cast<AutoType>(T);
1649 assert(!A->getDeducedType().isNull() &&
1650 "cannot request the size of an undeduced or dependent auto type");
1651 return getTypeInfo(A->getDeducedType().getTypePtr());
1652 }
1653
1654 case Type::Paren:
1655 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1656
1657 case Type::Typedef: {
1658 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1659 std::pair<uint64_t, unsigned> Info
1660 = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1661 // If the typedef has an aligned attribute on it, it overrides any computed
1662 // alignment we have. This violates the GCC documentation (which says that
1663 // attribute(aligned) can only round up) but matches its implementation.
1664 if (unsigned AttrAlign = Typedef->getMaxAlignment())
1665 Align = AttrAlign;
1666 else
1667 Align = Info.second;
1668 Width = Info.first;
1669 break;
1670 }
1671
1672 case Type::Elaborated:
1673 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1674
1675 case Type::Attributed:
1676 return getTypeInfo(
1677 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1678
1679 case Type::Atomic: {
1680 // Start with the base type information.
1681 std::pair<uint64_t, unsigned> Info
1682 = getTypeInfo(cast<AtomicType>(T)->getValueType());
1683 Width = Info.first;
1684 Align = Info.second;
1685
1686 // If the size of the type doesn't exceed the platform's max
1687 // atomic promotion width, make the size and alignment more
1688 // favorable to atomic operations:
1689 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1690 // Round the size up to a power of 2.
1691 if (!llvm::isPowerOf2_64(Width))
1692 Width = llvm::NextPowerOf2(Width);
1693
1694 // Set the alignment equal to the size.
1695 Align = static_cast<unsigned>(Width);
1696 }
1697 }
1698
1699 }
1700
1701 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1702 return std::make_pair(Width, Align);
1703 }
1704
1705 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1706 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1707 return CharUnits::fromQuantity(BitSize / getCharWidth());
1708 }
1709
1710 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1711 int64_t ASTContext::toBits(CharUnits CharSize) const {
1712 return CharSize.getQuantity() * getCharWidth();
1713 }
1714
1715 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1716 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1717 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1718 return getTypeInfoInChars(T).first;
1719 }
getTypeSizeInChars(const Type * T) const1720 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1721 return getTypeInfoInChars(T).first;
1722 }
1723
1724 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1725 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1726 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1727 return toCharUnitsFromBits(getTypeAlign(T));
1728 }
getTypeAlignInChars(const Type * T) const1729 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1730 return toCharUnitsFromBits(getTypeAlign(T));
1731 }
1732
1733 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1734 /// type for the current target in bits. This can be different than the ABI
1735 /// alignment in cases where it is beneficial for performance to overalign
1736 /// a data type.
getPreferredTypeAlign(const Type * T) const1737 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1738 unsigned ABIAlign = getTypeAlign(T);
1739
1740 // Double and long long should be naturally aligned if possible.
1741 if (const ComplexType* CT = T->getAs<ComplexType>())
1742 T = CT->getElementType().getTypePtr();
1743 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1744 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1745 T->isSpecificBuiltinType(BuiltinType::ULongLong))
1746 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1747
1748 return ABIAlign;
1749 }
1750
1751 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
1752 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const1753 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1754 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1755 }
1756
1757 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
1758 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const1759 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1760 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1761 }
1762
1763 /// DeepCollectObjCIvars -
1764 /// This routine first collects all declared, but not synthesized, ivars in
1765 /// super class and then collects all ivars, including those synthesized for
1766 /// current class. This routine is used for implementation of current class
1767 /// when all ivars, declared and synthesized are known.
1768 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1769 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1770 bool leafClass,
1771 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1772 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1773 DeepCollectObjCIvars(SuperClass, false, Ivars);
1774 if (!leafClass) {
1775 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1776 E = OI->ivar_end(); I != E; ++I)
1777 Ivars.push_back(*I);
1778 } else {
1779 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1780 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1781 Iv= Iv->getNextIvar())
1782 Ivars.push_back(Iv);
1783 }
1784 }
1785
1786 /// CollectInheritedProtocols - Collect all protocols in current class and
1787 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1788 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1789 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1790 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1791 // We can use protocol_iterator here instead of
1792 // all_referenced_protocol_iterator since we are walking all categories.
1793 for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1794 PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1795 ObjCProtocolDecl *Proto = (*P);
1796 Protocols.insert(Proto->getCanonicalDecl());
1797 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1798 PE = Proto->protocol_end(); P != PE; ++P) {
1799 Protocols.insert((*P)->getCanonicalDecl());
1800 CollectInheritedProtocols(*P, Protocols);
1801 }
1802 }
1803
1804 // Categories of this Interface.
1805 for (ObjCInterfaceDecl::visible_categories_iterator
1806 Cat = OI->visible_categories_begin(),
1807 CatEnd = OI->visible_categories_end();
1808 Cat != CatEnd; ++Cat) {
1809 CollectInheritedProtocols(*Cat, Protocols);
1810 }
1811
1812 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1813 while (SD) {
1814 CollectInheritedProtocols(SD, Protocols);
1815 SD = SD->getSuperClass();
1816 }
1817 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1818 for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1819 PE = OC->protocol_end(); P != PE; ++P) {
1820 ObjCProtocolDecl *Proto = (*P);
1821 Protocols.insert(Proto->getCanonicalDecl());
1822 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1823 PE = Proto->protocol_end(); P != PE; ++P)
1824 CollectInheritedProtocols(*P, Protocols);
1825 }
1826 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1827 for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1828 PE = OP->protocol_end(); P != PE; ++P) {
1829 ObjCProtocolDecl *Proto = (*P);
1830 Protocols.insert(Proto->getCanonicalDecl());
1831 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1832 PE = Proto->protocol_end(); P != PE; ++P)
1833 CollectInheritedProtocols(*P, Protocols);
1834 }
1835 }
1836 }
1837
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1838 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1839 unsigned count = 0;
1840 // Count ivars declared in class extension.
1841 for (ObjCInterfaceDecl::known_extensions_iterator
1842 Ext = OI->known_extensions_begin(),
1843 ExtEnd = OI->known_extensions_end();
1844 Ext != ExtEnd; ++Ext) {
1845 count += Ext->ivar_size();
1846 }
1847
1848 // Count ivar defined in this class's implementation. This
1849 // includes synthesized ivars.
1850 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1851 count += ImplDecl->ivar_size();
1852
1853 return count;
1854 }
1855
isSentinelNullExpr(const Expr * E)1856 bool ASTContext::isSentinelNullExpr(const Expr *E) {
1857 if (!E)
1858 return false;
1859
1860 // nullptr_t is always treated as null.
1861 if (E->getType()->isNullPtrType()) return true;
1862
1863 if (E->getType()->isAnyPointerType() &&
1864 E->IgnoreParenCasts()->isNullPointerConstant(*this,
1865 Expr::NPC_ValueDependentIsNull))
1866 return true;
1867
1868 // Unfortunately, __null has type 'int'.
1869 if (isa<GNUNullExpr>(E)) return true;
1870
1871 return false;
1872 }
1873
1874 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1875 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1876 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1877 I = ObjCImpls.find(D);
1878 if (I != ObjCImpls.end())
1879 return cast<ObjCImplementationDecl>(I->second);
1880 return 0;
1881 }
1882 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1883 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1884 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1885 I = ObjCImpls.find(D);
1886 if (I != ObjCImpls.end())
1887 return cast<ObjCCategoryImplDecl>(I->second);
1888 return 0;
1889 }
1890
1891 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1892 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1893 ObjCImplementationDecl *ImplD) {
1894 assert(IFaceD && ImplD && "Passed null params");
1895 ObjCImpls[IFaceD] = ImplD;
1896 }
1897 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1898 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1899 ObjCCategoryImplDecl *ImplD) {
1900 assert(CatD && ImplD && "Passed null params");
1901 ObjCImpls[CatD] = ImplD;
1902 }
1903
getObjContainingInterface(const NamedDecl * ND) const1904 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1905 const NamedDecl *ND) const {
1906 if (const ObjCInterfaceDecl *ID =
1907 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1908 return ID;
1909 if (const ObjCCategoryDecl *CD =
1910 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1911 return CD->getClassInterface();
1912 if (const ObjCImplDecl *IMD =
1913 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1914 return IMD->getClassInterface();
1915
1916 return 0;
1917 }
1918
1919 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1920 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1921 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1922 assert(VD && "Passed null params");
1923 assert(VD->hasAttr<BlocksAttr>() &&
1924 "getBlockVarCopyInits - not __block var");
1925 llvm::DenseMap<const VarDecl*, Expr*>::iterator
1926 I = BlockVarCopyInits.find(VD);
1927 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1928 }
1929
1930 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1931 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1932 assert(VD && Init && "Passed null params");
1933 assert(VD->hasAttr<BlocksAttr>() &&
1934 "setBlockVarCopyInits - not __block var");
1935 BlockVarCopyInits[VD] = Init;
1936 }
1937
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1938 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1939 unsigned DataSize) const {
1940 if (!DataSize)
1941 DataSize = TypeLoc::getFullDataSizeForType(T);
1942 else
1943 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1944 "incorrect data size provided to CreateTypeSourceInfo!");
1945
1946 TypeSourceInfo *TInfo =
1947 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1948 new (TInfo) TypeSourceInfo(T);
1949 return TInfo;
1950 }
1951
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const1952 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1953 SourceLocation L) const {
1954 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1955 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1956 return DI;
1957 }
1958
1959 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const1960 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1961 return getObjCLayout(D, 0);
1962 }
1963
1964 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const1965 ASTContext::getASTObjCImplementationLayout(
1966 const ObjCImplementationDecl *D) const {
1967 return getObjCLayout(D->getClassInterface(), D);
1968 }
1969
1970 //===----------------------------------------------------------------------===//
1971 // Type creation/memoization methods
1972 //===----------------------------------------------------------------------===//
1973
1974 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const1975 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1976 unsigned fastQuals = quals.getFastQualifiers();
1977 quals.removeFastQualifiers();
1978
1979 // Check if we've already instantiated this type.
1980 llvm::FoldingSetNodeID ID;
1981 ExtQuals::Profile(ID, baseType, quals);
1982 void *insertPos = 0;
1983 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1984 assert(eq->getQualifiers() == quals);
1985 return QualType(eq, fastQuals);
1986 }
1987
1988 // If the base type is not canonical, make the appropriate canonical type.
1989 QualType canon;
1990 if (!baseType->isCanonicalUnqualified()) {
1991 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1992 canonSplit.Quals.addConsistentQualifiers(quals);
1993 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1994
1995 // Re-find the insert position.
1996 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1997 }
1998
1999 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2000 ExtQualNodes.InsertNode(eq, insertPos);
2001 return QualType(eq, fastQuals);
2002 }
2003
2004 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const2005 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2006 QualType CanT = getCanonicalType(T);
2007 if (CanT.getAddressSpace() == AddressSpace)
2008 return T;
2009
2010 // If we are composing extended qualifiers together, merge together
2011 // into one ExtQuals node.
2012 QualifierCollector Quals;
2013 const Type *TypeNode = Quals.strip(T);
2014
2015 // If this type already has an address space specified, it cannot get
2016 // another one.
2017 assert(!Quals.hasAddressSpace() &&
2018 "Type cannot be in multiple addr spaces!");
2019 Quals.addAddressSpace(AddressSpace);
2020
2021 return getExtQualType(TypeNode, Quals);
2022 }
2023
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2024 QualType ASTContext::getObjCGCQualType(QualType T,
2025 Qualifiers::GC GCAttr) const {
2026 QualType CanT = getCanonicalType(T);
2027 if (CanT.getObjCGCAttr() == GCAttr)
2028 return T;
2029
2030 if (const PointerType *ptr = T->getAs<PointerType>()) {
2031 QualType Pointee = ptr->getPointeeType();
2032 if (Pointee->isAnyPointerType()) {
2033 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2034 return getPointerType(ResultType);
2035 }
2036 }
2037
2038 // If we are composing extended qualifiers together, merge together
2039 // into one ExtQuals node.
2040 QualifierCollector Quals;
2041 const Type *TypeNode = Quals.strip(T);
2042
2043 // If this type already has an ObjCGC specified, it cannot get
2044 // another one.
2045 assert(!Quals.hasObjCGCAttr() &&
2046 "Type cannot have multiple ObjCGCs!");
2047 Quals.addObjCGCAttr(GCAttr);
2048
2049 return getExtQualType(TypeNode, Quals);
2050 }
2051
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2052 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2053 FunctionType::ExtInfo Info) {
2054 if (T->getExtInfo() == Info)
2055 return T;
2056
2057 QualType Result;
2058 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2059 Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2060 } else {
2061 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2062 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2063 EPI.ExtInfo = Info;
2064 Result = getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI);
2065 }
2066
2067 return cast<FunctionType>(Result.getTypePtr());
2068 }
2069
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2070 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2071 QualType ResultType) {
2072 FD = FD->getMostRecentDecl();
2073 while (true) {
2074 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2075 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2076 FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2077 if (FunctionDecl *Next = FD->getPreviousDecl())
2078 FD = Next;
2079 else
2080 break;
2081 }
2082 if (ASTMutationListener *L = getASTMutationListener())
2083 L->DeducedReturnType(FD, ResultType);
2084 }
2085
2086 /// getComplexType - Return the uniqued reference to the type for a complex
2087 /// number with the specified element type.
getComplexType(QualType T) const2088 QualType ASTContext::getComplexType(QualType T) const {
2089 // Unique pointers, to guarantee there is only one pointer of a particular
2090 // structure.
2091 llvm::FoldingSetNodeID ID;
2092 ComplexType::Profile(ID, T);
2093
2094 void *InsertPos = 0;
2095 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2096 return QualType(CT, 0);
2097
2098 // If the pointee type isn't canonical, this won't be a canonical type either,
2099 // so fill in the canonical type field.
2100 QualType Canonical;
2101 if (!T.isCanonical()) {
2102 Canonical = getComplexType(getCanonicalType(T));
2103
2104 // Get the new insert position for the node we care about.
2105 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2106 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2107 }
2108 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2109 Types.push_back(New);
2110 ComplexTypes.InsertNode(New, InsertPos);
2111 return QualType(New, 0);
2112 }
2113
2114 /// getPointerType - Return the uniqued reference to the type for a pointer to
2115 /// the specified type.
getPointerType(QualType T) const2116 QualType ASTContext::getPointerType(QualType T) const {
2117 // Unique pointers, to guarantee there is only one pointer of a particular
2118 // structure.
2119 llvm::FoldingSetNodeID ID;
2120 PointerType::Profile(ID, T);
2121
2122 void *InsertPos = 0;
2123 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2124 return QualType(PT, 0);
2125
2126 // If the pointee type isn't canonical, this won't be a canonical type either,
2127 // so fill in the canonical type field.
2128 QualType Canonical;
2129 if (!T.isCanonical()) {
2130 Canonical = getPointerType(getCanonicalType(T));
2131
2132 // Get the new insert position for the node we care about.
2133 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2134 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2135 }
2136 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2137 Types.push_back(New);
2138 PointerTypes.InsertNode(New, InsertPos);
2139 return QualType(New, 0);
2140 }
2141
getDecayedType(QualType T) const2142 QualType ASTContext::getDecayedType(QualType T) const {
2143 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2144
2145 llvm::FoldingSetNodeID ID;
2146 DecayedType::Profile(ID, T);
2147 void *InsertPos = 0;
2148 if (DecayedType *DT = DecayedTypes.FindNodeOrInsertPos(ID, InsertPos))
2149 return QualType(DT, 0);
2150
2151 QualType Decayed;
2152
2153 // C99 6.7.5.3p7:
2154 // A declaration of a parameter as "array of type" shall be
2155 // adjusted to "qualified pointer to type", where the type
2156 // qualifiers (if any) are those specified within the [ and ] of
2157 // the array type derivation.
2158 if (T->isArrayType())
2159 Decayed = getArrayDecayedType(T);
2160
2161 // C99 6.7.5.3p8:
2162 // A declaration of a parameter as "function returning type"
2163 // shall be adjusted to "pointer to function returning type", as
2164 // in 6.3.2.1.
2165 if (T->isFunctionType())
2166 Decayed = getPointerType(T);
2167
2168 QualType Canonical = getCanonicalType(Decayed);
2169
2170 // Get the new insert position for the node we care about.
2171 DecayedType *NewIP = DecayedTypes.FindNodeOrInsertPos(ID, InsertPos);
2172 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2173
2174 DecayedType *New =
2175 new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2176 Types.push_back(New);
2177 DecayedTypes.InsertNode(New, InsertPos);
2178 return QualType(New, 0);
2179 }
2180
2181 /// getBlockPointerType - Return the uniqued reference to the type for
2182 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2183 QualType ASTContext::getBlockPointerType(QualType T) const {
2184 assert(T->isFunctionType() && "block of function types only");
2185 // Unique pointers, to guarantee there is only one block of a particular
2186 // structure.
2187 llvm::FoldingSetNodeID ID;
2188 BlockPointerType::Profile(ID, T);
2189
2190 void *InsertPos = 0;
2191 if (BlockPointerType *PT =
2192 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2193 return QualType(PT, 0);
2194
2195 // If the block pointee type isn't canonical, this won't be a canonical
2196 // type either so fill in the canonical type field.
2197 QualType Canonical;
2198 if (!T.isCanonical()) {
2199 Canonical = getBlockPointerType(getCanonicalType(T));
2200
2201 // Get the new insert position for the node we care about.
2202 BlockPointerType *NewIP =
2203 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2204 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2205 }
2206 BlockPointerType *New
2207 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2208 Types.push_back(New);
2209 BlockPointerTypes.InsertNode(New, InsertPos);
2210 return QualType(New, 0);
2211 }
2212
2213 /// getLValueReferenceType - Return the uniqued reference to the type for an
2214 /// lvalue reference to the specified type.
2215 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2216 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2217 assert(getCanonicalType(T) != OverloadTy &&
2218 "Unresolved overloaded function type");
2219
2220 // Unique pointers, to guarantee there is only one pointer of a particular
2221 // structure.
2222 llvm::FoldingSetNodeID ID;
2223 ReferenceType::Profile(ID, T, SpelledAsLValue);
2224
2225 void *InsertPos = 0;
2226 if (LValueReferenceType *RT =
2227 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2228 return QualType(RT, 0);
2229
2230 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2231
2232 // If the referencee type isn't canonical, this won't be a canonical type
2233 // either, so fill in the canonical type field.
2234 QualType Canonical;
2235 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2236 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2237 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2238
2239 // Get the new insert position for the node we care about.
2240 LValueReferenceType *NewIP =
2241 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2242 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2243 }
2244
2245 LValueReferenceType *New
2246 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2247 SpelledAsLValue);
2248 Types.push_back(New);
2249 LValueReferenceTypes.InsertNode(New, InsertPos);
2250
2251 return QualType(New, 0);
2252 }
2253
2254 /// getRValueReferenceType - Return the uniqued reference to the type for an
2255 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2256 QualType ASTContext::getRValueReferenceType(QualType T) const {
2257 // Unique pointers, to guarantee there is only one pointer of a particular
2258 // structure.
2259 llvm::FoldingSetNodeID ID;
2260 ReferenceType::Profile(ID, T, false);
2261
2262 void *InsertPos = 0;
2263 if (RValueReferenceType *RT =
2264 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2265 return QualType(RT, 0);
2266
2267 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2268
2269 // If the referencee type isn't canonical, this won't be a canonical type
2270 // either, so fill in the canonical type field.
2271 QualType Canonical;
2272 if (InnerRef || !T.isCanonical()) {
2273 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2274 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2275
2276 // Get the new insert position for the node we care about.
2277 RValueReferenceType *NewIP =
2278 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2279 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2280 }
2281
2282 RValueReferenceType *New
2283 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2284 Types.push_back(New);
2285 RValueReferenceTypes.InsertNode(New, InsertPos);
2286 return QualType(New, 0);
2287 }
2288
2289 /// getMemberPointerType - Return the uniqued reference to the type for a
2290 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2291 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2292 // Unique pointers, to guarantee there is only one pointer of a particular
2293 // structure.
2294 llvm::FoldingSetNodeID ID;
2295 MemberPointerType::Profile(ID, T, Cls);
2296
2297 void *InsertPos = 0;
2298 if (MemberPointerType *PT =
2299 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2300 return QualType(PT, 0);
2301
2302 // If the pointee or class type isn't canonical, this won't be a canonical
2303 // type either, so fill in the canonical type field.
2304 QualType Canonical;
2305 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2306 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2307
2308 // Get the new insert position for the node we care about.
2309 MemberPointerType *NewIP =
2310 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2311 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2312 }
2313 MemberPointerType *New
2314 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2315 Types.push_back(New);
2316 MemberPointerTypes.InsertNode(New, InsertPos);
2317 return QualType(New, 0);
2318 }
2319
2320 /// getConstantArrayType - Return the unique reference to the type for an
2321 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2322 QualType ASTContext::getConstantArrayType(QualType EltTy,
2323 const llvm::APInt &ArySizeIn,
2324 ArrayType::ArraySizeModifier ASM,
2325 unsigned IndexTypeQuals) const {
2326 assert((EltTy->isDependentType() ||
2327 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2328 "Constant array of VLAs is illegal!");
2329
2330 // Convert the array size into a canonical width matching the pointer size for
2331 // the target.
2332 llvm::APInt ArySize(ArySizeIn);
2333 ArySize =
2334 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2335
2336 llvm::FoldingSetNodeID ID;
2337 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2338
2339 void *InsertPos = 0;
2340 if (ConstantArrayType *ATP =
2341 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2342 return QualType(ATP, 0);
2343
2344 // If the element type isn't canonical or has qualifiers, this won't
2345 // be a canonical type either, so fill in the canonical type field.
2346 QualType Canon;
2347 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2348 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2349 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2350 ASM, IndexTypeQuals);
2351 Canon = getQualifiedType(Canon, canonSplit.Quals);
2352
2353 // Get the new insert position for the node we care about.
2354 ConstantArrayType *NewIP =
2355 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2356 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2357 }
2358
2359 ConstantArrayType *New = new(*this,TypeAlignment)
2360 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2361 ConstantArrayTypes.InsertNode(New, InsertPos);
2362 Types.push_back(New);
2363 return QualType(New, 0);
2364 }
2365
2366 /// getVariableArrayDecayedType - Turns the given type, which may be
2367 /// variably-modified, into the corresponding type with all the known
2368 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2369 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2370 // Vastly most common case.
2371 if (!type->isVariablyModifiedType()) return type;
2372
2373 QualType result;
2374
2375 SplitQualType split = type.getSplitDesugaredType();
2376 const Type *ty = split.Ty;
2377 switch (ty->getTypeClass()) {
2378 #define TYPE(Class, Base)
2379 #define ABSTRACT_TYPE(Class, Base)
2380 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2381 #include "clang/AST/TypeNodes.def"
2382 llvm_unreachable("didn't desugar past all non-canonical types?");
2383
2384 // These types should never be variably-modified.
2385 case Type::Builtin:
2386 case Type::Complex:
2387 case Type::Vector:
2388 case Type::ExtVector:
2389 case Type::DependentSizedExtVector:
2390 case Type::ObjCObject:
2391 case Type::ObjCInterface:
2392 case Type::ObjCObjectPointer:
2393 case Type::Record:
2394 case Type::Enum:
2395 case Type::UnresolvedUsing:
2396 case Type::TypeOfExpr:
2397 case Type::TypeOf:
2398 case Type::Decltype:
2399 case Type::UnaryTransform:
2400 case Type::DependentName:
2401 case Type::InjectedClassName:
2402 case Type::TemplateSpecialization:
2403 case Type::DependentTemplateSpecialization:
2404 case Type::TemplateTypeParm:
2405 case Type::SubstTemplateTypeParmPack:
2406 case Type::Auto:
2407 case Type::PackExpansion:
2408 llvm_unreachable("type should never be variably-modified");
2409
2410 // These types can be variably-modified but should never need to
2411 // further decay.
2412 case Type::FunctionNoProto:
2413 case Type::FunctionProto:
2414 case Type::BlockPointer:
2415 case Type::MemberPointer:
2416 return type;
2417
2418 // These types can be variably-modified. All these modifications
2419 // preserve structure except as noted by comments.
2420 // TODO: if we ever care about optimizing VLAs, there are no-op
2421 // optimizations available here.
2422 case Type::Pointer:
2423 result = getPointerType(getVariableArrayDecayedType(
2424 cast<PointerType>(ty)->getPointeeType()));
2425 break;
2426
2427 case Type::LValueReference: {
2428 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2429 result = getLValueReferenceType(
2430 getVariableArrayDecayedType(lv->getPointeeType()),
2431 lv->isSpelledAsLValue());
2432 break;
2433 }
2434
2435 case Type::RValueReference: {
2436 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2437 result = getRValueReferenceType(
2438 getVariableArrayDecayedType(lv->getPointeeType()));
2439 break;
2440 }
2441
2442 case Type::Atomic: {
2443 const AtomicType *at = cast<AtomicType>(ty);
2444 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2445 break;
2446 }
2447
2448 case Type::ConstantArray: {
2449 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2450 result = getConstantArrayType(
2451 getVariableArrayDecayedType(cat->getElementType()),
2452 cat->getSize(),
2453 cat->getSizeModifier(),
2454 cat->getIndexTypeCVRQualifiers());
2455 break;
2456 }
2457
2458 case Type::DependentSizedArray: {
2459 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2460 result = getDependentSizedArrayType(
2461 getVariableArrayDecayedType(dat->getElementType()),
2462 dat->getSizeExpr(),
2463 dat->getSizeModifier(),
2464 dat->getIndexTypeCVRQualifiers(),
2465 dat->getBracketsRange());
2466 break;
2467 }
2468
2469 // Turn incomplete types into [*] types.
2470 case Type::IncompleteArray: {
2471 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2472 result = getVariableArrayType(
2473 getVariableArrayDecayedType(iat->getElementType()),
2474 /*size*/ 0,
2475 ArrayType::Normal,
2476 iat->getIndexTypeCVRQualifiers(),
2477 SourceRange());
2478 break;
2479 }
2480
2481 // Turn VLA types into [*] types.
2482 case Type::VariableArray: {
2483 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2484 result = getVariableArrayType(
2485 getVariableArrayDecayedType(vat->getElementType()),
2486 /*size*/ 0,
2487 ArrayType::Star,
2488 vat->getIndexTypeCVRQualifiers(),
2489 vat->getBracketsRange());
2490 break;
2491 }
2492 }
2493
2494 // Apply the top-level qualifiers from the original.
2495 return getQualifiedType(result, split.Quals);
2496 }
2497
2498 /// getVariableArrayType - Returns a non-unique reference to the type for a
2499 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2500 QualType ASTContext::getVariableArrayType(QualType EltTy,
2501 Expr *NumElts,
2502 ArrayType::ArraySizeModifier ASM,
2503 unsigned IndexTypeQuals,
2504 SourceRange Brackets) const {
2505 // Since we don't unique expressions, it isn't possible to unique VLA's
2506 // that have an expression provided for their size.
2507 QualType Canon;
2508
2509 // Be sure to pull qualifiers off the element type.
2510 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2511 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2512 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2513 IndexTypeQuals, Brackets);
2514 Canon = getQualifiedType(Canon, canonSplit.Quals);
2515 }
2516
2517 VariableArrayType *New = new(*this, TypeAlignment)
2518 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2519
2520 VariableArrayTypes.push_back(New);
2521 Types.push_back(New);
2522 return QualType(New, 0);
2523 }
2524
2525 /// getDependentSizedArrayType - Returns a non-unique reference to
2526 /// the type for a dependently-sized array of the specified element
2527 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2528 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2529 Expr *numElements,
2530 ArrayType::ArraySizeModifier ASM,
2531 unsigned elementTypeQuals,
2532 SourceRange brackets) const {
2533 assert((!numElements || numElements->isTypeDependent() ||
2534 numElements->isValueDependent()) &&
2535 "Size must be type- or value-dependent!");
2536
2537 // Dependently-sized array types that do not have a specified number
2538 // of elements will have their sizes deduced from a dependent
2539 // initializer. We do no canonicalization here at all, which is okay
2540 // because they can't be used in most locations.
2541 if (!numElements) {
2542 DependentSizedArrayType *newType
2543 = new (*this, TypeAlignment)
2544 DependentSizedArrayType(*this, elementType, QualType(),
2545 numElements, ASM, elementTypeQuals,
2546 brackets);
2547 Types.push_back(newType);
2548 return QualType(newType, 0);
2549 }
2550
2551 // Otherwise, we actually build a new type every time, but we
2552 // also build a canonical type.
2553
2554 SplitQualType canonElementType = getCanonicalType(elementType).split();
2555
2556 void *insertPos = 0;
2557 llvm::FoldingSetNodeID ID;
2558 DependentSizedArrayType::Profile(ID, *this,
2559 QualType(canonElementType.Ty, 0),
2560 ASM, elementTypeQuals, numElements);
2561
2562 // Look for an existing type with these properties.
2563 DependentSizedArrayType *canonTy =
2564 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2565
2566 // If we don't have one, build one.
2567 if (!canonTy) {
2568 canonTy = new (*this, TypeAlignment)
2569 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2570 QualType(), numElements, ASM, elementTypeQuals,
2571 brackets);
2572 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2573 Types.push_back(canonTy);
2574 }
2575
2576 // Apply qualifiers from the element type to the array.
2577 QualType canon = getQualifiedType(QualType(canonTy,0),
2578 canonElementType.Quals);
2579
2580 // If we didn't need extra canonicalization for the element type,
2581 // then just use that as our result.
2582 if (QualType(canonElementType.Ty, 0) == elementType)
2583 return canon;
2584
2585 // Otherwise, we need to build a type which follows the spelling
2586 // of the element type.
2587 DependentSizedArrayType *sugaredType
2588 = new (*this, TypeAlignment)
2589 DependentSizedArrayType(*this, elementType, canon, numElements,
2590 ASM, elementTypeQuals, brackets);
2591 Types.push_back(sugaredType);
2592 return QualType(sugaredType, 0);
2593 }
2594
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2595 QualType ASTContext::getIncompleteArrayType(QualType elementType,
2596 ArrayType::ArraySizeModifier ASM,
2597 unsigned elementTypeQuals) const {
2598 llvm::FoldingSetNodeID ID;
2599 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2600
2601 void *insertPos = 0;
2602 if (IncompleteArrayType *iat =
2603 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2604 return QualType(iat, 0);
2605
2606 // If the element type isn't canonical, this won't be a canonical type
2607 // either, so fill in the canonical type field. We also have to pull
2608 // qualifiers off the element type.
2609 QualType canon;
2610
2611 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2612 SplitQualType canonSplit = getCanonicalType(elementType).split();
2613 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2614 ASM, elementTypeQuals);
2615 canon = getQualifiedType(canon, canonSplit.Quals);
2616
2617 // Get the new insert position for the node we care about.
2618 IncompleteArrayType *existing =
2619 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2620 assert(!existing && "Shouldn't be in the map!"); (void) existing;
2621 }
2622
2623 IncompleteArrayType *newType = new (*this, TypeAlignment)
2624 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2625
2626 IncompleteArrayTypes.InsertNode(newType, insertPos);
2627 Types.push_back(newType);
2628 return QualType(newType, 0);
2629 }
2630
2631 /// getVectorType - Return the unique reference to a vector type of
2632 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2633 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2634 VectorType::VectorKind VecKind) const {
2635 assert(vecType->isBuiltinType());
2636
2637 // Check if we've already instantiated a vector of this type.
2638 llvm::FoldingSetNodeID ID;
2639 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2640
2641 void *InsertPos = 0;
2642 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2643 return QualType(VTP, 0);
2644
2645 // If the element type isn't canonical, this won't be a canonical type either,
2646 // so fill in the canonical type field.
2647 QualType Canonical;
2648 if (!vecType.isCanonical()) {
2649 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2650
2651 // Get the new insert position for the node we care about.
2652 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2653 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2654 }
2655 VectorType *New = new (*this, TypeAlignment)
2656 VectorType(vecType, NumElts, Canonical, VecKind);
2657 VectorTypes.InsertNode(New, InsertPos);
2658 Types.push_back(New);
2659 return QualType(New, 0);
2660 }
2661
2662 /// getExtVectorType - Return the unique reference to an extended vector type of
2663 /// the specified element type and size. VectorType must be a built-in type.
2664 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2665 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2666 assert(vecType->isBuiltinType() || vecType->isDependentType());
2667
2668 // Check if we've already instantiated a vector of this type.
2669 llvm::FoldingSetNodeID ID;
2670 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2671 VectorType::GenericVector);
2672 void *InsertPos = 0;
2673 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2674 return QualType(VTP, 0);
2675
2676 // If the element type isn't canonical, this won't be a canonical type either,
2677 // so fill in the canonical type field.
2678 QualType Canonical;
2679 if (!vecType.isCanonical()) {
2680 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2681
2682 // Get the new insert position for the node we care about.
2683 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2684 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2685 }
2686 ExtVectorType *New = new (*this, TypeAlignment)
2687 ExtVectorType(vecType, NumElts, Canonical);
2688 VectorTypes.InsertNode(New, InsertPos);
2689 Types.push_back(New);
2690 return QualType(New, 0);
2691 }
2692
2693 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2694 ASTContext::getDependentSizedExtVectorType(QualType vecType,
2695 Expr *SizeExpr,
2696 SourceLocation AttrLoc) const {
2697 llvm::FoldingSetNodeID ID;
2698 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2699 SizeExpr);
2700
2701 void *InsertPos = 0;
2702 DependentSizedExtVectorType *Canon
2703 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2704 DependentSizedExtVectorType *New;
2705 if (Canon) {
2706 // We already have a canonical version of this array type; use it as
2707 // the canonical type for a newly-built type.
2708 New = new (*this, TypeAlignment)
2709 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2710 SizeExpr, AttrLoc);
2711 } else {
2712 QualType CanonVecTy = getCanonicalType(vecType);
2713 if (CanonVecTy == vecType) {
2714 New = new (*this, TypeAlignment)
2715 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2716 AttrLoc);
2717
2718 DependentSizedExtVectorType *CanonCheck
2719 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2720 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2721 (void)CanonCheck;
2722 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2723 } else {
2724 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2725 SourceLocation());
2726 New = new (*this, TypeAlignment)
2727 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2728 }
2729 }
2730
2731 Types.push_back(New);
2732 return QualType(New, 0);
2733 }
2734
2735 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2736 ///
2737 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2738 ASTContext::getFunctionNoProtoType(QualType ResultTy,
2739 const FunctionType::ExtInfo &Info) const {
2740 const CallingConv DefaultCC = Info.getCC();
2741 const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2742 CC_X86StdCall : DefaultCC;
2743 // Unique functions, to guarantee there is only one function of a particular
2744 // structure.
2745 llvm::FoldingSetNodeID ID;
2746 FunctionNoProtoType::Profile(ID, ResultTy, Info);
2747
2748 void *InsertPos = 0;
2749 if (FunctionNoProtoType *FT =
2750 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2751 return QualType(FT, 0);
2752
2753 QualType Canonical;
2754 if (!ResultTy.isCanonical() ||
2755 getCanonicalCallConv(CallConv) != CallConv) {
2756 Canonical =
2757 getFunctionNoProtoType(getCanonicalType(ResultTy),
2758 Info.withCallingConv(getCanonicalCallConv(CallConv)));
2759
2760 // Get the new insert position for the node we care about.
2761 FunctionNoProtoType *NewIP =
2762 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2763 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2764 }
2765
2766 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2767 FunctionNoProtoType *New = new (*this, TypeAlignment)
2768 FunctionNoProtoType(ResultTy, Canonical, newInfo);
2769 Types.push_back(New);
2770 FunctionNoProtoTypes.InsertNode(New, InsertPos);
2771 return QualType(New, 0);
2772 }
2773
2774 /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)2775 static bool isCanonicalResultType(QualType T) {
2776 return T.isCanonical() &&
2777 (T.getObjCLifetime() == Qualifiers::OCL_None ||
2778 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2779 }
2780
2781 /// getFunctionType - Return a normal function type with a typed argument
2782 /// list. isVariadic indicates whether the argument list includes '...'.
2783 QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const2784 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2785 const FunctionProtoType::ExtProtoInfo &EPI) const {
2786 size_t NumArgs = ArgArray.size();
2787
2788 // Unique functions, to guarantee there is only one function of a particular
2789 // structure.
2790 llvm::FoldingSetNodeID ID;
2791 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2792 *this);
2793
2794 void *InsertPos = 0;
2795 if (FunctionProtoType *FTP =
2796 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2797 return QualType(FTP, 0);
2798
2799 // Determine whether the type being created is already canonical or not.
2800 bool isCanonical =
2801 EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2802 !EPI.HasTrailingReturn;
2803 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2804 if (!ArgArray[i].isCanonicalAsParam())
2805 isCanonical = false;
2806
2807 const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2808 const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2809 CC_X86StdCall : DefaultCC;
2810
2811 // If this type isn't canonical, get the canonical version of it.
2812 // The exception spec is not part of the canonical type.
2813 QualType Canonical;
2814 if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2815 SmallVector<QualType, 16> CanonicalArgs;
2816 CanonicalArgs.reserve(NumArgs);
2817 for (unsigned i = 0; i != NumArgs; ++i)
2818 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2819
2820 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2821 CanonicalEPI.HasTrailingReturn = false;
2822 CanonicalEPI.ExceptionSpecType = EST_None;
2823 CanonicalEPI.NumExceptions = 0;
2824 CanonicalEPI.ExtInfo
2825 = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2826
2827 // Result types do not have ARC lifetime qualifiers.
2828 QualType CanResultTy = getCanonicalType(ResultTy);
2829 if (ResultTy.getQualifiers().hasObjCLifetime()) {
2830 Qualifiers Qs = CanResultTy.getQualifiers();
2831 Qs.removeObjCLifetime();
2832 CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2833 }
2834
2835 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2836
2837 // Get the new insert position for the node we care about.
2838 FunctionProtoType *NewIP =
2839 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2840 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2841 }
2842
2843 // FunctionProtoType objects are allocated with extra bytes after
2844 // them for three variable size arrays at the end:
2845 // - parameter types
2846 // - exception types
2847 // - consumed-arguments flags
2848 // Instead of the exception types, there could be a noexcept
2849 // expression, or information used to resolve the exception
2850 // specification.
2851 size_t Size = sizeof(FunctionProtoType) +
2852 NumArgs * sizeof(QualType);
2853 if (EPI.ExceptionSpecType == EST_Dynamic) {
2854 Size += EPI.NumExceptions * sizeof(QualType);
2855 } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2856 Size += sizeof(Expr*);
2857 } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2858 Size += 2 * sizeof(FunctionDecl*);
2859 } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2860 Size += sizeof(FunctionDecl*);
2861 }
2862 if (EPI.ConsumedArguments)
2863 Size += NumArgs * sizeof(bool);
2864
2865 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2866 FunctionProtoType::ExtProtoInfo newEPI = EPI;
2867 newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2868 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2869 Types.push_back(FTP);
2870 FunctionProtoTypes.InsertNode(FTP, InsertPos);
2871 return QualType(FTP, 0);
2872 }
2873
2874 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2875 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2876 if (!isa<CXXRecordDecl>(D)) return false;
2877 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2878 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2879 return true;
2880 if (RD->getDescribedClassTemplate() &&
2881 !isa<ClassTemplateSpecializationDecl>(RD))
2882 return true;
2883 return false;
2884 }
2885 #endif
2886
2887 /// getInjectedClassNameType - Return the unique reference to the
2888 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const2889 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2890 QualType TST) const {
2891 assert(NeedsInjectedClassNameType(Decl));
2892 if (Decl->TypeForDecl) {
2893 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2894 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2895 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2896 Decl->TypeForDecl = PrevDecl->TypeForDecl;
2897 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2898 } else {
2899 Type *newType =
2900 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2901 Decl->TypeForDecl = newType;
2902 Types.push_back(newType);
2903 }
2904 return QualType(Decl->TypeForDecl, 0);
2905 }
2906
2907 /// getTypeDeclType - Return the unique reference to the type for the
2908 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const2909 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2910 assert(Decl && "Passed null for Decl param");
2911 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2912
2913 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2914 return getTypedefType(Typedef);
2915
2916 assert(!isa<TemplateTypeParmDecl>(Decl) &&
2917 "Template type parameter types are always available.");
2918
2919 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2920 assert(!Record->getPreviousDecl() &&
2921 "struct/union has previous declaration");
2922 assert(!NeedsInjectedClassNameType(Record));
2923 return getRecordType(Record);
2924 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2925 assert(!Enum->getPreviousDecl() &&
2926 "enum has previous declaration");
2927 return getEnumType(Enum);
2928 } else if (const UnresolvedUsingTypenameDecl *Using =
2929 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2930 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2931 Decl->TypeForDecl = newType;
2932 Types.push_back(newType);
2933 } else
2934 llvm_unreachable("TypeDecl without a type?");
2935
2936 return QualType(Decl->TypeForDecl, 0);
2937 }
2938
2939 /// getTypedefType - Return the unique reference to the type for the
2940 /// specified typedef name decl.
2941 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const2942 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2943 QualType Canonical) const {
2944 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2945
2946 if (Canonical.isNull())
2947 Canonical = getCanonicalType(Decl->getUnderlyingType());
2948 TypedefType *newType = new(*this, TypeAlignment)
2949 TypedefType(Type::Typedef, Decl, Canonical);
2950 Decl->TypeForDecl = newType;
2951 Types.push_back(newType);
2952 return QualType(newType, 0);
2953 }
2954
getRecordType(const RecordDecl * Decl) const2955 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2956 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2957
2958 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2959 if (PrevDecl->TypeForDecl)
2960 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2961
2962 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2963 Decl->TypeForDecl = newType;
2964 Types.push_back(newType);
2965 return QualType(newType, 0);
2966 }
2967
getEnumType(const EnumDecl * Decl) const2968 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2969 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2970
2971 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2972 if (PrevDecl->TypeForDecl)
2973 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2974
2975 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2976 Decl->TypeForDecl = newType;
2977 Types.push_back(newType);
2978 return QualType(newType, 0);
2979 }
2980
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)2981 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2982 QualType modifiedType,
2983 QualType equivalentType) {
2984 llvm::FoldingSetNodeID id;
2985 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2986
2987 void *insertPos = 0;
2988 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2989 if (type) return QualType(type, 0);
2990
2991 QualType canon = getCanonicalType(equivalentType);
2992 type = new (*this, TypeAlignment)
2993 AttributedType(canon, attrKind, modifiedType, equivalentType);
2994
2995 Types.push_back(type);
2996 AttributedTypes.InsertNode(type, insertPos);
2997
2998 return QualType(type, 0);
2999 }
3000
3001
3002 /// \brief Retrieve a substitution-result type.
3003 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3004 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3005 QualType Replacement) const {
3006 assert(Replacement.isCanonical()
3007 && "replacement types must always be canonical");
3008
3009 llvm::FoldingSetNodeID ID;
3010 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3011 void *InsertPos = 0;
3012 SubstTemplateTypeParmType *SubstParm
3013 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3014
3015 if (!SubstParm) {
3016 SubstParm = new (*this, TypeAlignment)
3017 SubstTemplateTypeParmType(Parm, Replacement);
3018 Types.push_back(SubstParm);
3019 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3020 }
3021
3022 return QualType(SubstParm, 0);
3023 }
3024
3025 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3026 QualType ASTContext::getSubstTemplateTypeParmPackType(
3027 const TemplateTypeParmType *Parm,
3028 const TemplateArgument &ArgPack) {
3029 #ifndef NDEBUG
3030 for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3031 PEnd = ArgPack.pack_end();
3032 P != PEnd; ++P) {
3033 assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3034 assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3035 }
3036 #endif
3037
3038 llvm::FoldingSetNodeID ID;
3039 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3040 void *InsertPos = 0;
3041 if (SubstTemplateTypeParmPackType *SubstParm
3042 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3043 return QualType(SubstParm, 0);
3044
3045 QualType Canon;
3046 if (!Parm->isCanonicalUnqualified()) {
3047 Canon = getCanonicalType(QualType(Parm, 0));
3048 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3049 ArgPack);
3050 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3051 }
3052
3053 SubstTemplateTypeParmPackType *SubstParm
3054 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3055 ArgPack);
3056 Types.push_back(SubstParm);
3057 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3058 return QualType(SubstParm, 0);
3059 }
3060
3061 /// \brief Retrieve the template type parameter type for a template
3062 /// parameter or parameter pack with the given depth, index, and (optionally)
3063 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const3064 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3065 bool ParameterPack,
3066 TemplateTypeParmDecl *TTPDecl) const {
3067 llvm::FoldingSetNodeID ID;
3068 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3069 void *InsertPos = 0;
3070 TemplateTypeParmType *TypeParm
3071 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3072
3073 if (TypeParm)
3074 return QualType(TypeParm, 0);
3075
3076 if (TTPDecl) {
3077 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3078 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3079
3080 TemplateTypeParmType *TypeCheck
3081 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3082 assert(!TypeCheck && "Template type parameter canonical type broken");
3083 (void)TypeCheck;
3084 } else
3085 TypeParm = new (*this, TypeAlignment)
3086 TemplateTypeParmType(Depth, Index, ParameterPack);
3087
3088 Types.push_back(TypeParm);
3089 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3090
3091 return QualType(TypeParm, 0);
3092 }
3093
3094 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const3095 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3096 SourceLocation NameLoc,
3097 const TemplateArgumentListInfo &Args,
3098 QualType Underlying) const {
3099 assert(!Name.getAsDependentTemplateName() &&
3100 "No dependent template names here!");
3101 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3102
3103 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3104 TemplateSpecializationTypeLoc TL =
3105 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3106 TL.setTemplateKeywordLoc(SourceLocation());
3107 TL.setTemplateNameLoc(NameLoc);
3108 TL.setLAngleLoc(Args.getLAngleLoc());
3109 TL.setRAngleLoc(Args.getRAngleLoc());
3110 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3111 TL.setArgLocInfo(i, Args[i].getLocInfo());
3112 return DI;
3113 }
3114
3115 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const3116 ASTContext::getTemplateSpecializationType(TemplateName Template,
3117 const TemplateArgumentListInfo &Args,
3118 QualType Underlying) const {
3119 assert(!Template.getAsDependentTemplateName() &&
3120 "No dependent template names here!");
3121
3122 unsigned NumArgs = Args.size();
3123
3124 SmallVector<TemplateArgument, 4> ArgVec;
3125 ArgVec.reserve(NumArgs);
3126 for (unsigned i = 0; i != NumArgs; ++i)
3127 ArgVec.push_back(Args[i].getArgument());
3128
3129 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3130 Underlying);
3131 }
3132
3133 #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)3134 static bool hasAnyPackExpansions(const TemplateArgument *Args,
3135 unsigned NumArgs) {
3136 for (unsigned I = 0; I != NumArgs; ++I)
3137 if (Args[I].isPackExpansion())
3138 return true;
3139
3140 return true;
3141 }
3142 #endif
3143
3144 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3145 ASTContext::getTemplateSpecializationType(TemplateName Template,
3146 const TemplateArgument *Args,
3147 unsigned NumArgs,
3148 QualType Underlying) const {
3149 assert(!Template.getAsDependentTemplateName() &&
3150 "No dependent template names here!");
3151 // Look through qualified template names.
3152 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3153 Template = TemplateName(QTN->getTemplateDecl());
3154
3155 bool IsTypeAlias =
3156 Template.getAsTemplateDecl() &&
3157 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3158 QualType CanonType;
3159 if (!Underlying.isNull())
3160 CanonType = getCanonicalType(Underlying);
3161 else {
3162 // We can get here with an alias template when the specialization contains
3163 // a pack expansion that does not match up with a parameter pack.
3164 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3165 "Caller must compute aliased type");
3166 IsTypeAlias = false;
3167 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3168 NumArgs);
3169 }
3170
3171 // Allocate the (non-canonical) template specialization type, but don't
3172 // try to unique it: these types typically have location information that
3173 // we don't unique and don't want to lose.
3174 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3175 sizeof(TemplateArgument) * NumArgs +
3176 (IsTypeAlias? sizeof(QualType) : 0),
3177 TypeAlignment);
3178 TemplateSpecializationType *Spec
3179 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3180 IsTypeAlias ? Underlying : QualType());
3181
3182 Types.push_back(Spec);
3183 return QualType(Spec, 0);
3184 }
3185
3186 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3187 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3188 const TemplateArgument *Args,
3189 unsigned NumArgs) const {
3190 assert(!Template.getAsDependentTemplateName() &&
3191 "No dependent template names here!");
3192
3193 // Look through qualified template names.
3194 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3195 Template = TemplateName(QTN->getTemplateDecl());
3196
3197 // Build the canonical template specialization type.
3198 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3199 SmallVector<TemplateArgument, 4> CanonArgs;
3200 CanonArgs.reserve(NumArgs);
3201 for (unsigned I = 0; I != NumArgs; ++I)
3202 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3203
3204 // Determine whether this canonical template specialization type already
3205 // exists.
3206 llvm::FoldingSetNodeID ID;
3207 TemplateSpecializationType::Profile(ID, CanonTemplate,
3208 CanonArgs.data(), NumArgs, *this);
3209
3210 void *InsertPos = 0;
3211 TemplateSpecializationType *Spec
3212 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3213
3214 if (!Spec) {
3215 // Allocate a new canonical template specialization type.
3216 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3217 sizeof(TemplateArgument) * NumArgs),
3218 TypeAlignment);
3219 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3220 CanonArgs.data(), NumArgs,
3221 QualType(), QualType());
3222 Types.push_back(Spec);
3223 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3224 }
3225
3226 assert(Spec->isDependentType() &&
3227 "Non-dependent template-id type must have a canonical type");
3228 return QualType(Spec, 0);
3229 }
3230
3231 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3232 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3233 NestedNameSpecifier *NNS,
3234 QualType NamedType) const {
3235 llvm::FoldingSetNodeID ID;
3236 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3237
3238 void *InsertPos = 0;
3239 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3240 if (T)
3241 return QualType(T, 0);
3242
3243 QualType Canon = NamedType;
3244 if (!Canon.isCanonical()) {
3245 Canon = getCanonicalType(NamedType);
3246 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3247 assert(!CheckT && "Elaborated canonical type broken");
3248 (void)CheckT;
3249 }
3250
3251 T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3252 Types.push_back(T);
3253 ElaboratedTypes.InsertNode(T, InsertPos);
3254 return QualType(T, 0);
3255 }
3256
3257 QualType
getParenType(QualType InnerType) const3258 ASTContext::getParenType(QualType InnerType) const {
3259 llvm::FoldingSetNodeID ID;
3260 ParenType::Profile(ID, InnerType);
3261
3262 void *InsertPos = 0;
3263 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3264 if (T)
3265 return QualType(T, 0);
3266
3267 QualType Canon = InnerType;
3268 if (!Canon.isCanonical()) {
3269 Canon = getCanonicalType(InnerType);
3270 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3271 assert(!CheckT && "Paren canonical type broken");
3272 (void)CheckT;
3273 }
3274
3275 T = new (*this) ParenType(InnerType, Canon);
3276 Types.push_back(T);
3277 ParenTypes.InsertNode(T, InsertPos);
3278 return QualType(T, 0);
3279 }
3280
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3281 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3282 NestedNameSpecifier *NNS,
3283 const IdentifierInfo *Name,
3284 QualType Canon) const {
3285 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3286
3287 if (Canon.isNull()) {
3288 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3289 ElaboratedTypeKeyword CanonKeyword = Keyword;
3290 if (Keyword == ETK_None)
3291 CanonKeyword = ETK_Typename;
3292
3293 if (CanonNNS != NNS || CanonKeyword != Keyword)
3294 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3295 }
3296
3297 llvm::FoldingSetNodeID ID;
3298 DependentNameType::Profile(ID, Keyword, NNS, Name);
3299
3300 void *InsertPos = 0;
3301 DependentNameType *T
3302 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3303 if (T)
3304 return QualType(T, 0);
3305
3306 T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3307 Types.push_back(T);
3308 DependentNameTypes.InsertNode(T, InsertPos);
3309 return QualType(T, 0);
3310 }
3311
3312 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3313 ASTContext::getDependentTemplateSpecializationType(
3314 ElaboratedTypeKeyword Keyword,
3315 NestedNameSpecifier *NNS,
3316 const IdentifierInfo *Name,
3317 const TemplateArgumentListInfo &Args) const {
3318 // TODO: avoid this copy
3319 SmallVector<TemplateArgument, 16> ArgCopy;
3320 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3321 ArgCopy.push_back(Args[I].getArgument());
3322 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3323 ArgCopy.size(),
3324 ArgCopy.data());
3325 }
3326
3327 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3328 ASTContext::getDependentTemplateSpecializationType(
3329 ElaboratedTypeKeyword Keyword,
3330 NestedNameSpecifier *NNS,
3331 const IdentifierInfo *Name,
3332 unsigned NumArgs,
3333 const TemplateArgument *Args) const {
3334 assert((!NNS || NNS->isDependent()) &&
3335 "nested-name-specifier must be dependent");
3336
3337 llvm::FoldingSetNodeID ID;
3338 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3339 Name, NumArgs, Args);
3340
3341 void *InsertPos = 0;
3342 DependentTemplateSpecializationType *T
3343 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3344 if (T)
3345 return QualType(T, 0);
3346
3347 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3348
3349 ElaboratedTypeKeyword CanonKeyword = Keyword;
3350 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3351
3352 bool AnyNonCanonArgs = false;
3353 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3354 for (unsigned I = 0; I != NumArgs; ++I) {
3355 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3356 if (!CanonArgs[I].structurallyEquals(Args[I]))
3357 AnyNonCanonArgs = true;
3358 }
3359
3360 QualType Canon;
3361 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3362 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3363 Name, NumArgs,
3364 CanonArgs.data());
3365
3366 // Find the insert position again.
3367 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3368 }
3369
3370 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3371 sizeof(TemplateArgument) * NumArgs),
3372 TypeAlignment);
3373 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3374 Name, NumArgs, Args, Canon);
3375 Types.push_back(T);
3376 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3377 return QualType(T, 0);
3378 }
3379
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3380 QualType ASTContext::getPackExpansionType(QualType Pattern,
3381 Optional<unsigned> NumExpansions) {
3382 llvm::FoldingSetNodeID ID;
3383 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3384
3385 assert(Pattern->containsUnexpandedParameterPack() &&
3386 "Pack expansions must expand one or more parameter packs");
3387 void *InsertPos = 0;
3388 PackExpansionType *T
3389 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3390 if (T)
3391 return QualType(T, 0);
3392
3393 QualType Canon;
3394 if (!Pattern.isCanonical()) {
3395 Canon = getCanonicalType(Pattern);
3396 // The canonical type might not contain an unexpanded parameter pack, if it
3397 // contains an alias template specialization which ignores one of its
3398 // parameters.
3399 if (Canon->containsUnexpandedParameterPack()) {
3400 Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3401
3402 // Find the insert position again, in case we inserted an element into
3403 // PackExpansionTypes and invalidated our insert position.
3404 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3405 }
3406 }
3407
3408 T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3409 Types.push_back(T);
3410 PackExpansionTypes.InsertNode(T, InsertPos);
3411 return QualType(T, 0);
3412 }
3413
3414 /// CmpProtocolNames - Comparison predicate for sorting protocols
3415 /// alphabetically.
CmpProtocolNames(const ObjCProtocolDecl * LHS,const ObjCProtocolDecl * RHS)3416 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3417 const ObjCProtocolDecl *RHS) {
3418 return LHS->getDeclName() < RHS->getDeclName();
3419 }
3420
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3421 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3422 unsigned NumProtocols) {
3423 if (NumProtocols == 0) return true;
3424
3425 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3426 return false;
3427
3428 for (unsigned i = 1; i != NumProtocols; ++i)
3429 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3430 Protocols[i]->getCanonicalDecl() != Protocols[i])
3431 return false;
3432 return true;
3433 }
3434
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)3435 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3436 unsigned &NumProtocols) {
3437 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3438
3439 // Sort protocols, keyed by name.
3440 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3441
3442 // Canonicalize.
3443 for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3444 Protocols[I] = Protocols[I]->getCanonicalDecl();
3445
3446 // Remove duplicates.
3447 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3448 NumProtocols = ProtocolsEnd-Protocols;
3449 }
3450
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3451 QualType ASTContext::getObjCObjectType(QualType BaseType,
3452 ObjCProtocolDecl * const *Protocols,
3453 unsigned NumProtocols) const {
3454 // If the base type is an interface and there aren't any protocols
3455 // to add, then the interface type will do just fine.
3456 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3457 return BaseType;
3458
3459 // Look in the folding set for an existing type.
3460 llvm::FoldingSetNodeID ID;
3461 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3462 void *InsertPos = 0;
3463 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3464 return QualType(QT, 0);
3465
3466 // Build the canonical type, which has the canonical base type and
3467 // a sorted-and-uniqued list of protocols.
3468 QualType Canonical;
3469 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3470 if (!ProtocolsSorted || !BaseType.isCanonical()) {
3471 if (!ProtocolsSorted) {
3472 SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3473 Protocols + NumProtocols);
3474 unsigned UniqueCount = NumProtocols;
3475
3476 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3477 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3478 &Sorted[0], UniqueCount);
3479 } else {
3480 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3481 Protocols, NumProtocols);
3482 }
3483
3484 // Regenerate InsertPos.
3485 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3486 }
3487
3488 unsigned Size = sizeof(ObjCObjectTypeImpl);
3489 Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3490 void *Mem = Allocate(Size, TypeAlignment);
3491 ObjCObjectTypeImpl *T =
3492 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3493
3494 Types.push_back(T);
3495 ObjCObjectTypes.InsertNode(T, InsertPos);
3496 return QualType(T, 0);
3497 }
3498
3499 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3500 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3501 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3502 llvm::FoldingSetNodeID ID;
3503 ObjCObjectPointerType::Profile(ID, ObjectT);
3504
3505 void *InsertPos = 0;
3506 if (ObjCObjectPointerType *QT =
3507 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3508 return QualType(QT, 0);
3509
3510 // Find the canonical object type.
3511 QualType Canonical;
3512 if (!ObjectT.isCanonical()) {
3513 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3514
3515 // Regenerate InsertPos.
3516 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3517 }
3518
3519 // No match.
3520 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3521 ObjCObjectPointerType *QType =
3522 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3523
3524 Types.push_back(QType);
3525 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3526 return QualType(QType, 0);
3527 }
3528
3529 /// getObjCInterfaceType - Return the unique reference to the type for the
3530 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3531 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3532 ObjCInterfaceDecl *PrevDecl) const {
3533 if (Decl->TypeForDecl)
3534 return QualType(Decl->TypeForDecl, 0);
3535
3536 if (PrevDecl) {
3537 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3538 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3539 return QualType(PrevDecl->TypeForDecl, 0);
3540 }
3541
3542 // Prefer the definition, if there is one.
3543 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3544 Decl = Def;
3545
3546 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3547 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3548 Decl->TypeForDecl = T;
3549 Types.push_back(T);
3550 return QualType(T, 0);
3551 }
3552
3553 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3554 /// TypeOfExprType AST's (since expression's are never shared). For example,
3555 /// multiple declarations that refer to "typeof(x)" all contain different
3556 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3557 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3558 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3559 TypeOfExprType *toe;
3560 if (tofExpr->isTypeDependent()) {
3561 llvm::FoldingSetNodeID ID;
3562 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3563
3564 void *InsertPos = 0;
3565 DependentTypeOfExprType *Canon
3566 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3567 if (Canon) {
3568 // We already have a "canonical" version of an identical, dependent
3569 // typeof(expr) type. Use that as our canonical type.
3570 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3571 QualType((TypeOfExprType*)Canon, 0));
3572 } else {
3573 // Build a new, canonical typeof(expr) type.
3574 Canon
3575 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3576 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3577 toe = Canon;
3578 }
3579 } else {
3580 QualType Canonical = getCanonicalType(tofExpr->getType());
3581 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3582 }
3583 Types.push_back(toe);
3584 return QualType(toe, 0);
3585 }
3586
3587 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
3588 /// TypeOfType AST's. The only motivation to unique these nodes would be
3589 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3590 /// an issue. This doesn't effect the type checker, since it operates
3591 /// on canonical type's (which are always unique).
getTypeOfType(QualType tofType) const3592 QualType ASTContext::getTypeOfType(QualType tofType) const {
3593 QualType Canonical = getCanonicalType(tofType);
3594 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3595 Types.push_back(tot);
3596 return QualType(tot, 0);
3597 }
3598
3599
3600 /// getDecltypeType - Unlike many "get<Type>" functions, we don't unique
3601 /// DecltypeType AST's. The only motivation to unique these nodes would be
3602 /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3603 /// an issue. This doesn't effect the type checker, since it operates
3604 /// on canonical types (which are always unique).
getDecltypeType(Expr * e,QualType UnderlyingType) const3605 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3606 DecltypeType *dt;
3607
3608 // C++0x [temp.type]p2:
3609 // If an expression e involves a template parameter, decltype(e) denotes a
3610 // unique dependent type. Two such decltype-specifiers refer to the same
3611 // type only if their expressions are equivalent (14.5.6.1).
3612 if (e->isInstantiationDependent()) {
3613 llvm::FoldingSetNodeID ID;
3614 DependentDecltypeType::Profile(ID, *this, e);
3615
3616 void *InsertPos = 0;
3617 DependentDecltypeType *Canon
3618 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3619 if (Canon) {
3620 // We already have a "canonical" version of an equivalent, dependent
3621 // decltype type. Use that as our canonical type.
3622 dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3623 QualType((DecltypeType*)Canon, 0));
3624 } else {
3625 // Build a new, canonical typeof(expr) type.
3626 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3627 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3628 dt = Canon;
3629 }
3630 } else {
3631 dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3632 getCanonicalType(UnderlyingType));
3633 }
3634 Types.push_back(dt);
3635 return QualType(dt, 0);
3636 }
3637
3638 /// getUnaryTransformationType - We don't unique these, since the memory
3639 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3640 QualType ASTContext::getUnaryTransformType(QualType BaseType,
3641 QualType UnderlyingType,
3642 UnaryTransformType::UTTKind Kind)
3643 const {
3644 UnaryTransformType *Ty =
3645 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3646 Kind,
3647 UnderlyingType->isDependentType() ?
3648 QualType() : getCanonicalType(UnderlyingType));
3649 Types.push_back(Ty);
3650 return QualType(Ty, 0);
3651 }
3652
3653 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
3654 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3655 /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,bool IsDecltypeAuto,bool IsDependent) const3656 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3657 bool IsDependent) const {
3658 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3659 return getAutoDeductType();
3660
3661 // Look in the folding set for an existing type.
3662 void *InsertPos = 0;
3663 llvm::FoldingSetNodeID ID;
3664 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3665 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3666 return QualType(AT, 0);
3667
3668 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3669 IsDecltypeAuto,
3670 IsDependent);
3671 Types.push_back(AT);
3672 if (InsertPos)
3673 AutoTypes.InsertNode(AT, InsertPos);
3674 return QualType(AT, 0);
3675 }
3676
3677 /// getAtomicType - Return the uniqued reference to the atomic type for
3678 /// the given value type.
getAtomicType(QualType T) const3679 QualType ASTContext::getAtomicType(QualType T) const {
3680 // Unique pointers, to guarantee there is only one pointer of a particular
3681 // structure.
3682 llvm::FoldingSetNodeID ID;
3683 AtomicType::Profile(ID, T);
3684
3685 void *InsertPos = 0;
3686 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3687 return QualType(AT, 0);
3688
3689 // If the atomic value type isn't canonical, this won't be a canonical type
3690 // either, so fill in the canonical type field.
3691 QualType Canonical;
3692 if (!T.isCanonical()) {
3693 Canonical = getAtomicType(getCanonicalType(T));
3694
3695 // Get the new insert position for the node we care about.
3696 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3697 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3698 }
3699 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3700 Types.push_back(New);
3701 AtomicTypes.InsertNode(New, InsertPos);
3702 return QualType(New, 0);
3703 }
3704
3705 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const3706 QualType ASTContext::getAutoDeductType() const {
3707 if (AutoDeductTy.isNull())
3708 AutoDeductTy = QualType(
3709 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3710 /*dependent*/false),
3711 0);
3712 return AutoDeductTy;
3713 }
3714
3715 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const3716 QualType ASTContext::getAutoRRefDeductType() const {
3717 if (AutoRRefDeductTy.isNull())
3718 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3719 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3720 return AutoRRefDeductTy;
3721 }
3722
3723 /// getTagDeclType - Return the unique reference to the type for the
3724 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const3725 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3726 assert (Decl);
3727 // FIXME: What is the design on getTagDeclType when it requires casting
3728 // away const? mutable?
3729 return getTypeDeclType(const_cast<TagDecl*>(Decl));
3730 }
3731
3732 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3733 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3734 /// needs to agree with the definition in <stddef.h>.
getSizeType() const3735 CanQualType ASTContext::getSizeType() const {
3736 return getFromTargetType(Target->getSizeType());
3737 }
3738
3739 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const3740 CanQualType ASTContext::getIntMaxType() const {
3741 return getFromTargetType(Target->getIntMaxType());
3742 }
3743
3744 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const3745 CanQualType ASTContext::getUIntMaxType() const {
3746 return getFromTargetType(Target->getUIntMaxType());
3747 }
3748
3749 /// getSignedWCharType - Return the type of "signed wchar_t".
3750 /// Used when in C++, as a GCC extension.
getSignedWCharType() const3751 QualType ASTContext::getSignedWCharType() const {
3752 // FIXME: derive from "Target" ?
3753 return WCharTy;
3754 }
3755
3756 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3757 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const3758 QualType ASTContext::getUnsignedWCharType() const {
3759 // FIXME: derive from "Target" ?
3760 return UnsignedIntTy;
3761 }
3762
getIntPtrType() const3763 QualType ASTContext::getIntPtrType() const {
3764 return getFromTargetType(Target->getIntPtrType());
3765 }
3766
getUIntPtrType() const3767 QualType ASTContext::getUIntPtrType() const {
3768 return getCorrespondingUnsignedType(getIntPtrType());
3769 }
3770
3771 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3772 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const3773 QualType ASTContext::getPointerDiffType() const {
3774 return getFromTargetType(Target->getPtrDiffType(0));
3775 }
3776
3777 /// \brief Return the unique type for "pid_t" defined in
3778 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const3779 QualType ASTContext::getProcessIDType() const {
3780 return getFromTargetType(Target->getProcessIDType());
3781 }
3782
3783 //===----------------------------------------------------------------------===//
3784 // Type Operators
3785 //===----------------------------------------------------------------------===//
3786
getCanonicalParamType(QualType T) const3787 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3788 // Push qualifiers into arrays, and then discard any remaining
3789 // qualifiers.
3790 T = getCanonicalType(T);
3791 T = getVariableArrayDecayedType(T);
3792 const Type *Ty = T.getTypePtr();
3793 QualType Result;
3794 if (isa<ArrayType>(Ty)) {
3795 Result = getArrayDecayedType(QualType(Ty,0));
3796 } else if (isa<FunctionType>(Ty)) {
3797 Result = getPointerType(QualType(Ty, 0));
3798 } else {
3799 Result = QualType(Ty, 0);
3800 }
3801
3802 return CanQualType::CreateUnsafe(Result);
3803 }
3804
getUnqualifiedArrayType(QualType type,Qualifiers & quals)3805 QualType ASTContext::getUnqualifiedArrayType(QualType type,
3806 Qualifiers &quals) {
3807 SplitQualType splitType = type.getSplitUnqualifiedType();
3808
3809 // FIXME: getSplitUnqualifiedType() actually walks all the way to
3810 // the unqualified desugared type and then drops it on the floor.
3811 // We then have to strip that sugar back off with
3812 // getUnqualifiedDesugaredType(), which is silly.
3813 const ArrayType *AT =
3814 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3815
3816 // If we don't have an array, just use the results in splitType.
3817 if (!AT) {
3818 quals = splitType.Quals;
3819 return QualType(splitType.Ty, 0);
3820 }
3821
3822 // Otherwise, recurse on the array's element type.
3823 QualType elementType = AT->getElementType();
3824 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3825
3826 // If that didn't change the element type, AT has no qualifiers, so we
3827 // can just use the results in splitType.
3828 if (elementType == unqualElementType) {
3829 assert(quals.empty()); // from the recursive call
3830 quals = splitType.Quals;
3831 return QualType(splitType.Ty, 0);
3832 }
3833
3834 // Otherwise, add in the qualifiers from the outermost type, then
3835 // build the type back up.
3836 quals.addConsistentQualifiers(splitType.Quals);
3837
3838 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3839 return getConstantArrayType(unqualElementType, CAT->getSize(),
3840 CAT->getSizeModifier(), 0);
3841 }
3842
3843 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3844 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3845 }
3846
3847 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3848 return getVariableArrayType(unqualElementType,
3849 VAT->getSizeExpr(),
3850 VAT->getSizeModifier(),
3851 VAT->getIndexTypeCVRQualifiers(),
3852 VAT->getBracketsRange());
3853 }
3854
3855 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3856 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3857 DSAT->getSizeModifier(), 0,
3858 SourceRange());
3859 }
3860
3861 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
3862 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3863 /// they point to and return true. If T1 and T2 aren't pointer types
3864 /// or pointer-to-member types, or if they are not similar at this
3865 /// level, returns false and leaves T1 and T2 unchanged. Top-level
3866 /// qualifiers on T1 and T2 are ignored. This function will typically
3867 /// be called in a loop that successively "unwraps" pointer and
3868 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)3869 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3870 const PointerType *T1PtrType = T1->getAs<PointerType>(),
3871 *T2PtrType = T2->getAs<PointerType>();
3872 if (T1PtrType && T2PtrType) {
3873 T1 = T1PtrType->getPointeeType();
3874 T2 = T2PtrType->getPointeeType();
3875 return true;
3876 }
3877
3878 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3879 *T2MPType = T2->getAs<MemberPointerType>();
3880 if (T1MPType && T2MPType &&
3881 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3882 QualType(T2MPType->getClass(), 0))) {
3883 T1 = T1MPType->getPointeeType();
3884 T2 = T2MPType->getPointeeType();
3885 return true;
3886 }
3887
3888 if (getLangOpts().ObjC1) {
3889 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3890 *T2OPType = T2->getAs<ObjCObjectPointerType>();
3891 if (T1OPType && T2OPType) {
3892 T1 = T1OPType->getPointeeType();
3893 T2 = T2OPType->getPointeeType();
3894 return true;
3895 }
3896 }
3897
3898 // FIXME: Block pointers, too?
3899
3900 return false;
3901 }
3902
3903 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const3904 ASTContext::getNameForTemplate(TemplateName Name,
3905 SourceLocation NameLoc) const {
3906 switch (Name.getKind()) {
3907 case TemplateName::QualifiedTemplate:
3908 case TemplateName::Template:
3909 // DNInfo work in progress: CHECKME: what about DNLoc?
3910 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3911 NameLoc);
3912
3913 case TemplateName::OverloadedTemplate: {
3914 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3915 // DNInfo work in progress: CHECKME: what about DNLoc?
3916 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3917 }
3918
3919 case TemplateName::DependentTemplate: {
3920 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3921 DeclarationName DName;
3922 if (DTN->isIdentifier()) {
3923 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3924 return DeclarationNameInfo(DName, NameLoc);
3925 } else {
3926 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3927 // DNInfo work in progress: FIXME: source locations?
3928 DeclarationNameLoc DNLoc;
3929 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3930 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3931 return DeclarationNameInfo(DName, NameLoc, DNLoc);
3932 }
3933 }
3934
3935 case TemplateName::SubstTemplateTemplateParm: {
3936 SubstTemplateTemplateParmStorage *subst
3937 = Name.getAsSubstTemplateTemplateParm();
3938 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3939 NameLoc);
3940 }
3941
3942 case TemplateName::SubstTemplateTemplateParmPack: {
3943 SubstTemplateTemplateParmPackStorage *subst
3944 = Name.getAsSubstTemplateTemplateParmPack();
3945 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3946 NameLoc);
3947 }
3948 }
3949
3950 llvm_unreachable("bad template name kind!");
3951 }
3952
getCanonicalTemplateName(TemplateName Name) const3953 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3954 switch (Name.getKind()) {
3955 case TemplateName::QualifiedTemplate:
3956 case TemplateName::Template: {
3957 TemplateDecl *Template = Name.getAsTemplateDecl();
3958 if (TemplateTemplateParmDecl *TTP
3959 = dyn_cast<TemplateTemplateParmDecl>(Template))
3960 Template = getCanonicalTemplateTemplateParmDecl(TTP);
3961
3962 // The canonical template name is the canonical template declaration.
3963 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3964 }
3965
3966 case TemplateName::OverloadedTemplate:
3967 llvm_unreachable("cannot canonicalize overloaded template");
3968
3969 case TemplateName::DependentTemplate: {
3970 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3971 assert(DTN && "Non-dependent template names must refer to template decls.");
3972 return DTN->CanonicalTemplateName;
3973 }
3974
3975 case TemplateName::SubstTemplateTemplateParm: {
3976 SubstTemplateTemplateParmStorage *subst
3977 = Name.getAsSubstTemplateTemplateParm();
3978 return getCanonicalTemplateName(subst->getReplacement());
3979 }
3980
3981 case TemplateName::SubstTemplateTemplateParmPack: {
3982 SubstTemplateTemplateParmPackStorage *subst
3983 = Name.getAsSubstTemplateTemplateParmPack();
3984 TemplateTemplateParmDecl *canonParameter
3985 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3986 TemplateArgument canonArgPack
3987 = getCanonicalTemplateArgument(subst->getArgumentPack());
3988 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3989 }
3990 }
3991
3992 llvm_unreachable("bad template name!");
3993 }
3994
hasSameTemplateName(TemplateName X,TemplateName Y)3995 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3996 X = getCanonicalTemplateName(X);
3997 Y = getCanonicalTemplateName(Y);
3998 return X.getAsVoidPointer() == Y.getAsVoidPointer();
3999 }
4000
4001 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const4002 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4003 switch (Arg.getKind()) {
4004 case TemplateArgument::Null:
4005 return Arg;
4006
4007 case TemplateArgument::Expression:
4008 return Arg;
4009
4010 case TemplateArgument::Declaration: {
4011 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4012 return TemplateArgument(D, Arg.isDeclForReferenceParam());
4013 }
4014
4015 case TemplateArgument::NullPtr:
4016 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4017 /*isNullPtr*/true);
4018
4019 case TemplateArgument::Template:
4020 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4021
4022 case TemplateArgument::TemplateExpansion:
4023 return TemplateArgument(getCanonicalTemplateName(
4024 Arg.getAsTemplateOrTemplatePattern()),
4025 Arg.getNumTemplateExpansions());
4026
4027 case TemplateArgument::Integral:
4028 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4029
4030 case TemplateArgument::Type:
4031 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4032
4033 case TemplateArgument::Pack: {
4034 if (Arg.pack_size() == 0)
4035 return Arg;
4036
4037 TemplateArgument *CanonArgs
4038 = new (*this) TemplateArgument[Arg.pack_size()];
4039 unsigned Idx = 0;
4040 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4041 AEnd = Arg.pack_end();
4042 A != AEnd; (void)++A, ++Idx)
4043 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4044
4045 return TemplateArgument(CanonArgs, Arg.pack_size());
4046 }
4047 }
4048
4049 // Silence GCC warning
4050 llvm_unreachable("Unhandled template argument kind");
4051 }
4052
4053 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const4054 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4055 if (!NNS)
4056 return 0;
4057
4058 switch (NNS->getKind()) {
4059 case NestedNameSpecifier::Identifier:
4060 // Canonicalize the prefix but keep the identifier the same.
4061 return NestedNameSpecifier::Create(*this,
4062 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4063 NNS->getAsIdentifier());
4064
4065 case NestedNameSpecifier::Namespace:
4066 // A namespace is canonical; build a nested-name-specifier with
4067 // this namespace and no prefix.
4068 return NestedNameSpecifier::Create(*this, 0,
4069 NNS->getAsNamespace()->getOriginalNamespace());
4070
4071 case NestedNameSpecifier::NamespaceAlias:
4072 // A namespace is canonical; build a nested-name-specifier with
4073 // this namespace and no prefix.
4074 return NestedNameSpecifier::Create(*this, 0,
4075 NNS->getAsNamespaceAlias()->getNamespace()
4076 ->getOriginalNamespace());
4077
4078 case NestedNameSpecifier::TypeSpec:
4079 case NestedNameSpecifier::TypeSpecWithTemplate: {
4080 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4081
4082 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4083 // break it apart into its prefix and identifier, then reconsititute those
4084 // as the canonical nested-name-specifier. This is required to canonicalize
4085 // a dependent nested-name-specifier involving typedefs of dependent-name
4086 // types, e.g.,
4087 // typedef typename T::type T1;
4088 // typedef typename T1::type T2;
4089 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4090 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4091 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4092
4093 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4094 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4095 // first place?
4096 return NestedNameSpecifier::Create(*this, 0, false,
4097 const_cast<Type*>(T.getTypePtr()));
4098 }
4099
4100 case NestedNameSpecifier::Global:
4101 // The global specifier is canonical and unique.
4102 return NNS;
4103 }
4104
4105 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4106 }
4107
4108
getAsArrayType(QualType T) const4109 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4110 // Handle the non-qualified case efficiently.
4111 if (!T.hasLocalQualifiers()) {
4112 // Handle the common positive case fast.
4113 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4114 return AT;
4115 }
4116
4117 // Handle the common negative case fast.
4118 if (!isa<ArrayType>(T.getCanonicalType()))
4119 return 0;
4120
4121 // Apply any qualifiers from the array type to the element type. This
4122 // implements C99 6.7.3p8: "If the specification of an array type includes
4123 // any type qualifiers, the element type is so qualified, not the array type."
4124
4125 // If we get here, we either have type qualifiers on the type, or we have
4126 // sugar such as a typedef in the way. If we have type qualifiers on the type
4127 // we must propagate them down into the element type.
4128
4129 SplitQualType split = T.getSplitDesugaredType();
4130 Qualifiers qs = split.Quals;
4131
4132 // If we have a simple case, just return now.
4133 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4134 if (ATy == 0 || qs.empty())
4135 return ATy;
4136
4137 // Otherwise, we have an array and we have qualifiers on it. Push the
4138 // qualifiers into the array element type and return a new array type.
4139 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4140
4141 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4142 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4143 CAT->getSizeModifier(),
4144 CAT->getIndexTypeCVRQualifiers()));
4145 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4146 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4147 IAT->getSizeModifier(),
4148 IAT->getIndexTypeCVRQualifiers()));
4149
4150 if (const DependentSizedArrayType *DSAT
4151 = dyn_cast<DependentSizedArrayType>(ATy))
4152 return cast<ArrayType>(
4153 getDependentSizedArrayType(NewEltTy,
4154 DSAT->getSizeExpr(),
4155 DSAT->getSizeModifier(),
4156 DSAT->getIndexTypeCVRQualifiers(),
4157 DSAT->getBracketsRange()));
4158
4159 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4160 return cast<ArrayType>(getVariableArrayType(NewEltTy,
4161 VAT->getSizeExpr(),
4162 VAT->getSizeModifier(),
4163 VAT->getIndexTypeCVRQualifiers(),
4164 VAT->getBracketsRange()));
4165 }
4166
getAdjustedParameterType(QualType T) const4167 QualType ASTContext::getAdjustedParameterType(QualType T) const {
4168 if (T->isArrayType() || T->isFunctionType())
4169 return getDecayedType(T);
4170 return T;
4171 }
4172
getSignatureParameterType(QualType T) const4173 QualType ASTContext::getSignatureParameterType(QualType T) const {
4174 T = getVariableArrayDecayedType(T);
4175 T = getAdjustedParameterType(T);
4176 return T.getUnqualifiedType();
4177 }
4178
4179 /// getArrayDecayedType - Return the properly qualified result of decaying the
4180 /// specified array type to a pointer. This operation is non-trivial when
4181 /// handling typedefs etc. The canonical type of "T" must be an array type,
4182 /// this returns a pointer to a properly qualified element of the array.
4183 ///
4184 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4185 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4186 // Get the element type with 'getAsArrayType' so that we don't lose any
4187 // typedefs in the element type of the array. This also handles propagation
4188 // of type qualifiers from the array type into the element type if present
4189 // (C99 6.7.3p8).
4190 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4191 assert(PrettyArrayType && "Not an array type!");
4192
4193 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4194
4195 // int x[restrict 4] -> int *restrict
4196 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4197 }
4198
getBaseElementType(const ArrayType * array) const4199 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4200 return getBaseElementType(array->getElementType());
4201 }
4202
getBaseElementType(QualType type) const4203 QualType ASTContext::getBaseElementType(QualType type) const {
4204 Qualifiers qs;
4205 while (true) {
4206 SplitQualType split = type.getSplitDesugaredType();
4207 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4208 if (!array) break;
4209
4210 type = array->getElementType();
4211 qs.addConsistentQualifiers(split.Quals);
4212 }
4213
4214 return getQualifiedType(type, qs);
4215 }
4216
4217 /// getConstantArrayElementCount - Returns number of constant array elements.
4218 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4219 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
4220 uint64_t ElementCount = 1;
4221 do {
4222 ElementCount *= CA->getSize().getZExtValue();
4223 CA = dyn_cast_or_null<ConstantArrayType>(
4224 CA->getElementType()->getAsArrayTypeUnsafe());
4225 } while (CA);
4226 return ElementCount;
4227 }
4228
4229 /// getFloatingRank - Return a relative rank for floating point types.
4230 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4231 static FloatingRank getFloatingRank(QualType T) {
4232 if (const ComplexType *CT = T->getAs<ComplexType>())
4233 return getFloatingRank(CT->getElementType());
4234
4235 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4236 switch (T->getAs<BuiltinType>()->getKind()) {
4237 default: llvm_unreachable("getFloatingRank(): not a floating type");
4238 case BuiltinType::Half: return HalfRank;
4239 case BuiltinType::Float: return FloatRank;
4240 case BuiltinType::Double: return DoubleRank;
4241 case BuiltinType::LongDouble: return LongDoubleRank;
4242 }
4243 }
4244
4245 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4246 /// point or a complex type (based on typeDomain/typeSize).
4247 /// 'typeDomain' is a real floating point or complex type.
4248 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4249 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4250 QualType Domain) const {
4251 FloatingRank EltRank = getFloatingRank(Size);
4252 if (Domain->isComplexType()) {
4253 switch (EltRank) {
4254 case HalfRank: llvm_unreachable("Complex half is not supported");
4255 case FloatRank: return FloatComplexTy;
4256 case DoubleRank: return DoubleComplexTy;
4257 case LongDoubleRank: return LongDoubleComplexTy;
4258 }
4259 }
4260
4261 assert(Domain->isRealFloatingType() && "Unknown domain!");
4262 switch (EltRank) {
4263 case HalfRank: return HalfTy;
4264 case FloatRank: return FloatTy;
4265 case DoubleRank: return DoubleTy;
4266 case LongDoubleRank: return LongDoubleTy;
4267 }
4268 llvm_unreachable("getFloatingRank(): illegal value for rank");
4269 }
4270
4271 /// getFloatingTypeOrder - Compare the rank of the two specified floating
4272 /// point types, ignoring the domain of the type (i.e. 'double' ==
4273 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
4274 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4275 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4276 FloatingRank LHSR = getFloatingRank(LHS);
4277 FloatingRank RHSR = getFloatingRank(RHS);
4278
4279 if (LHSR == RHSR)
4280 return 0;
4281 if (LHSR > RHSR)
4282 return 1;
4283 return -1;
4284 }
4285
4286 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4287 /// routine will assert if passed a built-in type that isn't an integer or enum,
4288 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4289 unsigned ASTContext::getIntegerRank(const Type *T) const {
4290 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4291
4292 switch (cast<BuiltinType>(T)->getKind()) {
4293 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4294 case BuiltinType::Bool:
4295 return 1 + (getIntWidth(BoolTy) << 3);
4296 case BuiltinType::Char_S:
4297 case BuiltinType::Char_U:
4298 case BuiltinType::SChar:
4299 case BuiltinType::UChar:
4300 return 2 + (getIntWidth(CharTy) << 3);
4301 case BuiltinType::Short:
4302 case BuiltinType::UShort:
4303 return 3 + (getIntWidth(ShortTy) << 3);
4304 case BuiltinType::Int:
4305 case BuiltinType::UInt:
4306 return 4 + (getIntWidth(IntTy) << 3);
4307 case BuiltinType::Long:
4308 case BuiltinType::ULong:
4309 return 5 + (getIntWidth(LongTy) << 3);
4310 case BuiltinType::LongLong:
4311 case BuiltinType::ULongLong:
4312 return 6 + (getIntWidth(LongLongTy) << 3);
4313 case BuiltinType::Int128:
4314 case BuiltinType::UInt128:
4315 return 7 + (getIntWidth(Int128Ty) << 3);
4316 }
4317 }
4318
4319 /// \brief Whether this is a promotable bitfield reference according
4320 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4321 ///
4322 /// \returns the type this bit-field will promote to, or NULL if no
4323 /// promotion occurs.
isPromotableBitField(Expr * E) const4324 QualType ASTContext::isPromotableBitField(Expr *E) const {
4325 if (E->isTypeDependent() || E->isValueDependent())
4326 return QualType();
4327
4328 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4329 if (!Field)
4330 return QualType();
4331
4332 QualType FT = Field->getType();
4333
4334 uint64_t BitWidth = Field->getBitWidthValue(*this);
4335 uint64_t IntSize = getTypeSize(IntTy);
4336 // GCC extension compatibility: if the bit-field size is less than or equal
4337 // to the size of int, it gets promoted no matter what its type is.
4338 // For instance, unsigned long bf : 4 gets promoted to signed int.
4339 if (BitWidth < IntSize)
4340 return IntTy;
4341
4342 if (BitWidth == IntSize)
4343 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4344
4345 // Types bigger than int are not subject to promotions, and therefore act
4346 // like the base type.
4347 // FIXME: This doesn't quite match what gcc does, but what gcc does here
4348 // is ridiculous.
4349 return QualType();
4350 }
4351
4352 /// getPromotedIntegerType - Returns the type that Promotable will
4353 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4354 /// integer type.
getPromotedIntegerType(QualType Promotable) const4355 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4356 assert(!Promotable.isNull());
4357 assert(Promotable->isPromotableIntegerType());
4358 if (const EnumType *ET = Promotable->getAs<EnumType>())
4359 return ET->getDecl()->getPromotionType();
4360
4361 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4362 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4363 // (3.9.1) can be converted to a prvalue of the first of the following
4364 // types that can represent all the values of its underlying type:
4365 // int, unsigned int, long int, unsigned long int, long long int, or
4366 // unsigned long long int [...]
4367 // FIXME: Is there some better way to compute this?
4368 if (BT->getKind() == BuiltinType::WChar_S ||
4369 BT->getKind() == BuiltinType::WChar_U ||
4370 BT->getKind() == BuiltinType::Char16 ||
4371 BT->getKind() == BuiltinType::Char32) {
4372 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4373 uint64_t FromSize = getTypeSize(BT);
4374 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4375 LongLongTy, UnsignedLongLongTy };
4376 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4377 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4378 if (FromSize < ToSize ||
4379 (FromSize == ToSize &&
4380 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4381 return PromoteTypes[Idx];
4382 }
4383 llvm_unreachable("char type should fit into long long");
4384 }
4385 }
4386
4387 // At this point, we should have a signed or unsigned integer type.
4388 if (Promotable->isSignedIntegerType())
4389 return IntTy;
4390 uint64_t PromotableSize = getIntWidth(Promotable);
4391 uint64_t IntSize = getIntWidth(IntTy);
4392 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4393 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4394 }
4395
4396 /// \brief Recurses in pointer/array types until it finds an objc retainable
4397 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4398 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4399 while (!T.isNull()) {
4400 if (T.getObjCLifetime() != Qualifiers::OCL_None)
4401 return T.getObjCLifetime();
4402 if (T->isArrayType())
4403 T = getBaseElementType(T);
4404 else if (const PointerType *PT = T->getAs<PointerType>())
4405 T = PT->getPointeeType();
4406 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4407 T = RT->getPointeeType();
4408 else
4409 break;
4410 }
4411
4412 return Qualifiers::OCL_None;
4413 }
4414
4415 /// getIntegerTypeOrder - Returns the highest ranked integer type:
4416 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
4417 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4418 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4419 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4420 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4421 if (LHSC == RHSC) return 0;
4422
4423 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4424 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4425
4426 unsigned LHSRank = getIntegerRank(LHSC);
4427 unsigned RHSRank = getIntegerRank(RHSC);
4428
4429 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
4430 if (LHSRank == RHSRank) return 0;
4431 return LHSRank > RHSRank ? 1 : -1;
4432 }
4433
4434 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4435 if (LHSUnsigned) {
4436 // If the unsigned [LHS] type is larger, return it.
4437 if (LHSRank >= RHSRank)
4438 return 1;
4439
4440 // If the signed type can represent all values of the unsigned type, it
4441 // wins. Because we are dealing with 2's complement and types that are
4442 // powers of two larger than each other, this is always safe.
4443 return -1;
4444 }
4445
4446 // If the unsigned [RHS] type is larger, return it.
4447 if (RHSRank >= LHSRank)
4448 return -1;
4449
4450 // If the signed type can represent all values of the unsigned type, it
4451 // wins. Because we are dealing with 2's complement and types that are
4452 // powers of two larger than each other, this is always safe.
4453 return 1;
4454 }
4455
4456 static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)4457 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4458 DeclContext *DC, IdentifierInfo *Id) {
4459 SourceLocation Loc;
4460 if (Ctx.getLangOpts().CPlusPlus)
4461 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4462 else
4463 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4464 }
4465
4466 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4467 QualType ASTContext::getCFConstantStringType() const {
4468 if (!CFConstantStringTypeDecl) {
4469 CFConstantStringTypeDecl =
4470 CreateRecordDecl(*this, TTK_Struct, TUDecl,
4471 &Idents.get("NSConstantString"));
4472 CFConstantStringTypeDecl->startDefinition();
4473
4474 QualType FieldTypes[4];
4475
4476 // const int *isa;
4477 FieldTypes[0] = getPointerType(IntTy.withConst());
4478 // int flags;
4479 FieldTypes[1] = IntTy;
4480 // const char *str;
4481 FieldTypes[2] = getPointerType(CharTy.withConst());
4482 // long length;
4483 FieldTypes[3] = LongTy;
4484
4485 // Create fields
4486 for (unsigned i = 0; i < 4; ++i) {
4487 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4488 SourceLocation(),
4489 SourceLocation(), 0,
4490 FieldTypes[i], /*TInfo=*/0,
4491 /*BitWidth=*/0,
4492 /*Mutable=*/false,
4493 ICIS_NoInit);
4494 Field->setAccess(AS_public);
4495 CFConstantStringTypeDecl->addDecl(Field);
4496 }
4497
4498 CFConstantStringTypeDecl->completeDefinition();
4499 }
4500
4501 return getTagDeclType(CFConstantStringTypeDecl);
4502 }
4503
getObjCSuperType() const4504 QualType ASTContext::getObjCSuperType() const {
4505 if (ObjCSuperType.isNull()) {
4506 RecordDecl *ObjCSuperTypeDecl =
4507 CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4508 TUDecl->addDecl(ObjCSuperTypeDecl);
4509 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4510 }
4511 return ObjCSuperType;
4512 }
4513
setCFConstantStringType(QualType T)4514 void ASTContext::setCFConstantStringType(QualType T) {
4515 const RecordType *Rec = T->getAs<RecordType>();
4516 assert(Rec && "Invalid CFConstantStringType");
4517 CFConstantStringTypeDecl = Rec->getDecl();
4518 }
4519
getBlockDescriptorType() const4520 QualType ASTContext::getBlockDescriptorType() const {
4521 if (BlockDescriptorType)
4522 return getTagDeclType(BlockDescriptorType);
4523
4524 RecordDecl *T;
4525 // FIXME: Needs the FlagAppleBlock bit.
4526 T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4527 &Idents.get("__block_descriptor"));
4528 T->startDefinition();
4529
4530 QualType FieldTypes[] = {
4531 UnsignedLongTy,
4532 UnsignedLongTy,
4533 };
4534
4535 static const char *const FieldNames[] = {
4536 "reserved",
4537 "Size"
4538 };
4539
4540 for (size_t i = 0; i < 2; ++i) {
4541 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4542 SourceLocation(),
4543 &Idents.get(FieldNames[i]),
4544 FieldTypes[i], /*TInfo=*/0,
4545 /*BitWidth=*/0,
4546 /*Mutable=*/false,
4547 ICIS_NoInit);
4548 Field->setAccess(AS_public);
4549 T->addDecl(Field);
4550 }
4551
4552 T->completeDefinition();
4553
4554 BlockDescriptorType = T;
4555
4556 return getTagDeclType(BlockDescriptorType);
4557 }
4558
getBlockDescriptorExtendedType() const4559 QualType ASTContext::getBlockDescriptorExtendedType() const {
4560 if (BlockDescriptorExtendedType)
4561 return getTagDeclType(BlockDescriptorExtendedType);
4562
4563 RecordDecl *T;
4564 // FIXME: Needs the FlagAppleBlock bit.
4565 T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4566 &Idents.get("__block_descriptor_withcopydispose"));
4567 T->startDefinition();
4568
4569 QualType FieldTypes[] = {
4570 UnsignedLongTy,
4571 UnsignedLongTy,
4572 getPointerType(VoidPtrTy),
4573 getPointerType(VoidPtrTy)
4574 };
4575
4576 static const char *const FieldNames[] = {
4577 "reserved",
4578 "Size",
4579 "CopyFuncPtr",
4580 "DestroyFuncPtr"
4581 };
4582
4583 for (size_t i = 0; i < 4; ++i) {
4584 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4585 SourceLocation(),
4586 &Idents.get(FieldNames[i]),
4587 FieldTypes[i], /*TInfo=*/0,
4588 /*BitWidth=*/0,
4589 /*Mutable=*/false,
4590 ICIS_NoInit);
4591 Field->setAccess(AS_public);
4592 T->addDecl(Field);
4593 }
4594
4595 T->completeDefinition();
4596
4597 BlockDescriptorExtendedType = T;
4598
4599 return getTagDeclType(BlockDescriptorExtendedType);
4600 }
4601
4602 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4603 /// requires copy/dispose. Note that this must match the logic
4604 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4605 bool ASTContext::BlockRequiresCopying(QualType Ty,
4606 const VarDecl *D) {
4607 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4608 const Expr *copyExpr = getBlockVarCopyInits(D);
4609 if (!copyExpr && record->hasTrivialDestructor()) return false;
4610
4611 return true;
4612 }
4613
4614 if (!Ty->isObjCRetainableType()) return false;
4615
4616 Qualifiers qs = Ty.getQualifiers();
4617
4618 // If we have lifetime, that dominates.
4619 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4620 assert(getLangOpts().ObjCAutoRefCount);
4621
4622 switch (lifetime) {
4623 case Qualifiers::OCL_None: llvm_unreachable("impossible");
4624
4625 // These are just bits as far as the runtime is concerned.
4626 case Qualifiers::OCL_ExplicitNone:
4627 case Qualifiers::OCL_Autoreleasing:
4628 return false;
4629
4630 // Tell the runtime that this is ARC __weak, called by the
4631 // byref routines.
4632 case Qualifiers::OCL_Weak:
4633 // ARC __strong __block variables need to be retained.
4634 case Qualifiers::OCL_Strong:
4635 return true;
4636 }
4637 llvm_unreachable("fell out of lifetime switch!");
4638 }
4639 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4640 Ty->isObjCObjectPointerType());
4641 }
4642
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4643 bool ASTContext::getByrefLifetime(QualType Ty,
4644 Qualifiers::ObjCLifetime &LifeTime,
4645 bool &HasByrefExtendedLayout) const {
4646
4647 if (!getLangOpts().ObjC1 ||
4648 getLangOpts().getGC() != LangOptions::NonGC)
4649 return false;
4650
4651 HasByrefExtendedLayout = false;
4652 if (Ty->isRecordType()) {
4653 HasByrefExtendedLayout = true;
4654 LifeTime = Qualifiers::OCL_None;
4655 }
4656 else if (getLangOpts().ObjCAutoRefCount)
4657 LifeTime = Ty.getObjCLifetime();
4658 // MRR.
4659 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4660 LifeTime = Qualifiers::OCL_ExplicitNone;
4661 else
4662 LifeTime = Qualifiers::OCL_None;
4663 return true;
4664 }
4665
getObjCInstanceTypeDecl()4666 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4667 if (!ObjCInstanceTypeDecl)
4668 ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4669 getTranslationUnitDecl(),
4670 SourceLocation(),
4671 SourceLocation(),
4672 &Idents.get("instancetype"),
4673 getTrivialTypeSourceInfo(getObjCIdType()));
4674 return ObjCInstanceTypeDecl;
4675 }
4676
4677 // This returns true if a type has been typedefed to BOOL:
4678 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)4679 static bool isTypeTypedefedAsBOOL(QualType T) {
4680 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4681 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4682 return II->isStr("BOOL");
4683
4684 return false;
4685 }
4686
4687 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
4688 /// purpose.
getObjCEncodingTypeSize(QualType type) const4689 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4690 if (!type->isIncompleteArrayType() && type->isIncompleteType())
4691 return CharUnits::Zero();
4692
4693 CharUnits sz = getTypeSizeInChars(type);
4694
4695 // Make all integer and enum types at least as large as an int
4696 if (sz.isPositive() && type->isIntegralOrEnumerationType())
4697 sz = std::max(sz, getTypeSizeInChars(IntTy));
4698 // Treat arrays as pointers, since that's how they're passed in.
4699 else if (type->isArrayType())
4700 sz = getTypeSizeInChars(VoidPtrTy);
4701 return sz;
4702 }
4703
4704 static inline
charUnitsToString(const CharUnits & CU)4705 std::string charUnitsToString(const CharUnits &CU) {
4706 return llvm::itostr(CU.getQuantity());
4707 }
4708
4709 /// getObjCEncodingForBlock - Return the encoded type for this block
4710 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const4711 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4712 std::string S;
4713
4714 const BlockDecl *Decl = Expr->getBlockDecl();
4715 QualType BlockTy =
4716 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4717 // Encode result type.
4718 if (getLangOpts().EncodeExtendedBlockSig)
4719 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4720 BlockTy->getAs<FunctionType>()->getResultType(),
4721 S, true /*Extended*/);
4722 else
4723 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4724 S);
4725 // Compute size of all parameters.
4726 // Start with computing size of a pointer in number of bytes.
4727 // FIXME: There might(should) be a better way of doing this computation!
4728 SourceLocation Loc;
4729 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4730 CharUnits ParmOffset = PtrSize;
4731 for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4732 E = Decl->param_end(); PI != E; ++PI) {
4733 QualType PType = (*PI)->getType();
4734 CharUnits sz = getObjCEncodingTypeSize(PType);
4735 if (sz.isZero())
4736 continue;
4737 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4738 ParmOffset += sz;
4739 }
4740 // Size of the argument frame
4741 S += charUnitsToString(ParmOffset);
4742 // Block pointer and offset.
4743 S += "@?0";
4744
4745 // Argument types.
4746 ParmOffset = PtrSize;
4747 for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4748 Decl->param_end(); PI != E; ++PI) {
4749 ParmVarDecl *PVDecl = *PI;
4750 QualType PType = PVDecl->getOriginalType();
4751 if (const ArrayType *AT =
4752 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4753 // Use array's original type only if it has known number of
4754 // elements.
4755 if (!isa<ConstantArrayType>(AT))
4756 PType = PVDecl->getType();
4757 } else if (PType->isFunctionType())
4758 PType = PVDecl->getType();
4759 if (getLangOpts().EncodeExtendedBlockSig)
4760 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4761 S, true /*Extended*/);
4762 else
4763 getObjCEncodingForType(PType, S);
4764 S += charUnitsToString(ParmOffset);
4765 ParmOffset += getObjCEncodingTypeSize(PType);
4766 }
4767
4768 return S;
4769 }
4770
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)4771 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4772 std::string& S) {
4773 // Encode result type.
4774 getObjCEncodingForType(Decl->getResultType(), S);
4775 CharUnits ParmOffset;
4776 // Compute size of all parameters.
4777 for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4778 E = Decl->param_end(); PI != E; ++PI) {
4779 QualType PType = (*PI)->getType();
4780 CharUnits sz = getObjCEncodingTypeSize(PType);
4781 if (sz.isZero())
4782 continue;
4783
4784 assert (sz.isPositive() &&
4785 "getObjCEncodingForFunctionDecl - Incomplete param type");
4786 ParmOffset += sz;
4787 }
4788 S += charUnitsToString(ParmOffset);
4789 ParmOffset = CharUnits::Zero();
4790
4791 // Argument types.
4792 for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4793 E = Decl->param_end(); PI != E; ++PI) {
4794 ParmVarDecl *PVDecl = *PI;
4795 QualType PType = PVDecl->getOriginalType();
4796 if (const ArrayType *AT =
4797 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4798 // Use array's original type only if it has known number of
4799 // elements.
4800 if (!isa<ConstantArrayType>(AT))
4801 PType = PVDecl->getType();
4802 } else if (PType->isFunctionType())
4803 PType = PVDecl->getType();
4804 getObjCEncodingForType(PType, S);
4805 S += charUnitsToString(ParmOffset);
4806 ParmOffset += getObjCEncodingTypeSize(PType);
4807 }
4808
4809 return false;
4810 }
4811
4812 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
4813 /// method parameter or return type. If Extended, include class names and
4814 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const4815 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4816 QualType T, std::string& S,
4817 bool Extended) const {
4818 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4819 getObjCEncodingForTypeQualifier(QT, S);
4820 // Encode parameter type.
4821 getObjCEncodingForTypeImpl(T, S, true, true, 0,
4822 true /*OutermostType*/,
4823 false /*EncodingProperty*/,
4824 false /*StructField*/,
4825 Extended /*EncodeBlockParameters*/,
4826 Extended /*EncodeClassNames*/);
4827 }
4828
4829 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
4830 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const4831 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4832 std::string& S,
4833 bool Extended) const {
4834 // FIXME: This is not very efficient.
4835 // Encode return type.
4836 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4837 Decl->getResultType(), S, Extended);
4838 // Compute size of all parameters.
4839 // Start with computing size of a pointer in number of bytes.
4840 // FIXME: There might(should) be a better way of doing this computation!
4841 SourceLocation Loc;
4842 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4843 // The first two arguments (self and _cmd) are pointers; account for
4844 // their size.
4845 CharUnits ParmOffset = 2 * PtrSize;
4846 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4847 E = Decl->sel_param_end(); PI != E; ++PI) {
4848 QualType PType = (*PI)->getType();
4849 CharUnits sz = getObjCEncodingTypeSize(PType);
4850 if (sz.isZero())
4851 continue;
4852
4853 assert (sz.isPositive() &&
4854 "getObjCEncodingForMethodDecl - Incomplete param type");
4855 ParmOffset += sz;
4856 }
4857 S += charUnitsToString(ParmOffset);
4858 S += "@0:";
4859 S += charUnitsToString(PtrSize);
4860
4861 // Argument types.
4862 ParmOffset = 2 * PtrSize;
4863 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4864 E = Decl->sel_param_end(); PI != E; ++PI) {
4865 const ParmVarDecl *PVDecl = *PI;
4866 QualType PType = PVDecl->getOriginalType();
4867 if (const ArrayType *AT =
4868 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4869 // Use array's original type only if it has known number of
4870 // elements.
4871 if (!isa<ConstantArrayType>(AT))
4872 PType = PVDecl->getType();
4873 } else if (PType->isFunctionType())
4874 PType = PVDecl->getType();
4875 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4876 PType, S, Extended);
4877 S += charUnitsToString(ParmOffset);
4878 ParmOffset += getObjCEncodingTypeSize(PType);
4879 }
4880
4881 return false;
4882 }
4883
4884 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
4885 /// property declaration. If non-NULL, Container must be either an
4886 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4887 /// NULL when getting encodings for protocol properties.
4888 /// Property attributes are stored as a comma-delimited C string. The simple
4889 /// attributes readonly and bycopy are encoded as single characters. The
4890 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
4891 /// encoded as single characters, followed by an identifier. Property types
4892 /// are also encoded as a parametrized attribute. The characters used to encode
4893 /// these attributes are defined by the following enumeration:
4894 /// @code
4895 /// enum PropertyAttributes {
4896 /// kPropertyReadOnly = 'R', // property is read-only.
4897 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned
4898 /// kPropertyByref = '&', // property is a reference to the value last assigned
4899 /// kPropertyDynamic = 'D', // property is dynamic
4900 /// kPropertyGetter = 'G', // followed by getter selector name
4901 /// kPropertySetter = 'S', // followed by setter selector name
4902 /// kPropertyInstanceVariable = 'V' // followed by instance variable name
4903 /// kPropertyType = 'T' // followed by old-style type encoding.
4904 /// kPropertyWeak = 'W' // 'weak' property
4905 /// kPropertyStrong = 'P' // property GC'able
4906 /// kPropertyNonAtomic = 'N' // property non-atomic
4907 /// };
4908 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const4909 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4910 const Decl *Container,
4911 std::string& S) const {
4912 // Collect information from the property implementation decl(s).
4913 bool Dynamic = false;
4914 ObjCPropertyImplDecl *SynthesizePID = 0;
4915
4916 // FIXME: Duplicated code due to poor abstraction.
4917 if (Container) {
4918 if (const ObjCCategoryImplDecl *CID =
4919 dyn_cast<ObjCCategoryImplDecl>(Container)) {
4920 for (ObjCCategoryImplDecl::propimpl_iterator
4921 i = CID->propimpl_begin(), e = CID->propimpl_end();
4922 i != e; ++i) {
4923 ObjCPropertyImplDecl *PID = *i;
4924 if (PID->getPropertyDecl() == PD) {
4925 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4926 Dynamic = true;
4927 } else {
4928 SynthesizePID = PID;
4929 }
4930 }
4931 }
4932 } else {
4933 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4934 for (ObjCCategoryImplDecl::propimpl_iterator
4935 i = OID->propimpl_begin(), e = OID->propimpl_end();
4936 i != e; ++i) {
4937 ObjCPropertyImplDecl *PID = *i;
4938 if (PID->getPropertyDecl() == PD) {
4939 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4940 Dynamic = true;
4941 } else {
4942 SynthesizePID = PID;
4943 }
4944 }
4945 }
4946 }
4947 }
4948
4949 // FIXME: This is not very efficient.
4950 S = "T";
4951
4952 // Encode result type.
4953 // GCC has some special rules regarding encoding of properties which
4954 // closely resembles encoding of ivars.
4955 getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4956 true /* outermost type */,
4957 true /* encoding for property */);
4958
4959 if (PD->isReadOnly()) {
4960 S += ",R";
4961 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4962 S += ",C";
4963 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4964 S += ",&";
4965 } else {
4966 switch (PD->getSetterKind()) {
4967 case ObjCPropertyDecl::Assign: break;
4968 case ObjCPropertyDecl::Copy: S += ",C"; break;
4969 case ObjCPropertyDecl::Retain: S += ",&"; break;
4970 case ObjCPropertyDecl::Weak: S += ",W"; break;
4971 }
4972 }
4973
4974 // It really isn't clear at all what this means, since properties
4975 // are "dynamic by default".
4976 if (Dynamic)
4977 S += ",D";
4978
4979 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4980 S += ",N";
4981
4982 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4983 S += ",G";
4984 S += PD->getGetterName().getAsString();
4985 }
4986
4987 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4988 S += ",S";
4989 S += PD->getSetterName().getAsString();
4990 }
4991
4992 if (SynthesizePID) {
4993 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4994 S += ",V";
4995 S += OID->getNameAsString();
4996 }
4997
4998 // FIXME: OBJCGC: weak & strong
4999 }
5000
5001 /// getLegacyIntegralTypeEncoding -
5002 /// Another legacy compatibility encoding: 32-bit longs are encoded as
5003 /// 'l' or 'L' , but not always. For typedefs, we need to use
5004 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
5005 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const5006 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5007 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5008 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5009 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5010 PointeeTy = UnsignedIntTy;
5011 else
5012 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5013 PointeeTy = IntTy;
5014 }
5015 }
5016 }
5017
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field) const5018 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5019 const FieldDecl *Field) const {
5020 // We follow the behavior of gcc, expanding structures which are
5021 // directly pointed to, and expanding embedded structures. Note that
5022 // these rules are sufficient to prevent recursive encoding of the
5023 // same type.
5024 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5025 true /* outermost type */);
5026 }
5027
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)5028 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5029 BuiltinType::Kind kind) {
5030 switch (kind) {
5031 case BuiltinType::Void: return 'v';
5032 case BuiltinType::Bool: return 'B';
5033 case BuiltinType::Char_U:
5034 case BuiltinType::UChar: return 'C';
5035 case BuiltinType::Char16:
5036 case BuiltinType::UShort: return 'S';
5037 case BuiltinType::Char32:
5038 case BuiltinType::UInt: return 'I';
5039 case BuiltinType::ULong:
5040 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5041 case BuiltinType::UInt128: return 'T';
5042 case BuiltinType::ULongLong: return 'Q';
5043 case BuiltinType::Char_S:
5044 case BuiltinType::SChar: return 'c';
5045 case BuiltinType::Short: return 's';
5046 case BuiltinType::WChar_S:
5047 case BuiltinType::WChar_U:
5048 case BuiltinType::Int: return 'i';
5049 case BuiltinType::Long:
5050 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5051 case BuiltinType::LongLong: return 'q';
5052 case BuiltinType::Int128: return 't';
5053 case BuiltinType::Float: return 'f';
5054 case BuiltinType::Double: return 'd';
5055 case BuiltinType::LongDouble: return 'D';
5056 case BuiltinType::NullPtr: return '*'; // like char*
5057
5058 case BuiltinType::Half:
5059 // FIXME: potentially need @encodes for these!
5060 return ' ';
5061
5062 case BuiltinType::ObjCId:
5063 case BuiltinType::ObjCClass:
5064 case BuiltinType::ObjCSel:
5065 llvm_unreachable("@encoding ObjC primitive type");
5066
5067 // OpenCL and placeholder types don't need @encodings.
5068 case BuiltinType::OCLImage1d:
5069 case BuiltinType::OCLImage1dArray:
5070 case BuiltinType::OCLImage1dBuffer:
5071 case BuiltinType::OCLImage2d:
5072 case BuiltinType::OCLImage2dArray:
5073 case BuiltinType::OCLImage3d:
5074 case BuiltinType::OCLEvent:
5075 case BuiltinType::OCLSampler:
5076 case BuiltinType::Dependent:
5077 #define BUILTIN_TYPE(KIND, ID)
5078 #define PLACEHOLDER_TYPE(KIND, ID) \
5079 case BuiltinType::KIND:
5080 #include "clang/AST/BuiltinTypes.def"
5081 llvm_unreachable("invalid builtin type for @encode");
5082 }
5083 llvm_unreachable("invalid BuiltinType::Kind value");
5084 }
5085
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)5086 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5087 EnumDecl *Enum = ET->getDecl();
5088
5089 // The encoding of an non-fixed enum type is always 'i', regardless of size.
5090 if (!Enum->isFixed())
5091 return 'i';
5092
5093 // The encoding of a fixed enum type matches its fixed underlying type.
5094 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5095 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5096 }
5097
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)5098 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5099 QualType T, const FieldDecl *FD) {
5100 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5101 S += 'b';
5102 // The NeXT runtime encodes bit fields as b followed by the number of bits.
5103 // The GNU runtime requires more information; bitfields are encoded as b,
5104 // then the offset (in bits) of the first element, then the type of the
5105 // bitfield, then the size in bits. For example, in this structure:
5106 //
5107 // struct
5108 // {
5109 // int integer;
5110 // int flags:2;
5111 // };
5112 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5113 // runtime, but b32i2 for the GNU runtime. The reason for this extra
5114 // information is not especially sensible, but we're stuck with it for
5115 // compatibility with GCC, although providing it breaks anything that
5116 // actually uses runtime introspection and wants to work on both runtimes...
5117 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5118 const RecordDecl *RD = FD->getParent();
5119 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5120 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5121 if (const EnumType *ET = T->getAs<EnumType>())
5122 S += ObjCEncodingForEnumType(Ctx, ET);
5123 else {
5124 const BuiltinType *BT = T->castAs<BuiltinType>();
5125 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5126 }
5127 }
5128 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5129 }
5130
5131 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef) const5132 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5133 bool ExpandPointedToStructures,
5134 bool ExpandStructures,
5135 const FieldDecl *FD,
5136 bool OutermostType,
5137 bool EncodingProperty,
5138 bool StructField,
5139 bool EncodeBlockParameters,
5140 bool EncodeClassNames,
5141 bool EncodePointerToObjCTypedef) const {
5142 CanQualType CT = getCanonicalType(T);
5143 switch (CT->getTypeClass()) {
5144 case Type::Builtin:
5145 case Type::Enum:
5146 if (FD && FD->isBitField())
5147 return EncodeBitField(this, S, T, FD);
5148 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5149 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5150 else
5151 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5152 return;
5153
5154 case Type::Complex: {
5155 const ComplexType *CT = T->castAs<ComplexType>();
5156 S += 'j';
5157 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5158 false);
5159 return;
5160 }
5161
5162 case Type::Atomic: {
5163 const AtomicType *AT = T->castAs<AtomicType>();
5164 S += 'A';
5165 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5166 false, false);
5167 return;
5168 }
5169
5170 // encoding for pointer or reference types.
5171 case Type::Pointer:
5172 case Type::LValueReference:
5173 case Type::RValueReference: {
5174 QualType PointeeTy;
5175 if (isa<PointerType>(CT)) {
5176 const PointerType *PT = T->castAs<PointerType>();
5177 if (PT->isObjCSelType()) {
5178 S += ':';
5179 return;
5180 }
5181 PointeeTy = PT->getPointeeType();
5182 } else {
5183 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5184 }
5185
5186 bool isReadOnly = false;
5187 // For historical/compatibility reasons, the read-only qualifier of the
5188 // pointee gets emitted _before_ the '^'. The read-only qualifier of
5189 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5190 // Also, do not emit the 'r' for anything but the outermost type!
5191 if (isa<TypedefType>(T.getTypePtr())) {
5192 if (OutermostType && T.isConstQualified()) {
5193 isReadOnly = true;
5194 S += 'r';
5195 }
5196 } else if (OutermostType) {
5197 QualType P = PointeeTy;
5198 while (P->getAs<PointerType>())
5199 P = P->getAs<PointerType>()->getPointeeType();
5200 if (P.isConstQualified()) {
5201 isReadOnly = true;
5202 S += 'r';
5203 }
5204 }
5205 if (isReadOnly) {
5206 // Another legacy compatibility encoding. Some ObjC qualifier and type
5207 // combinations need to be rearranged.
5208 // Rewrite "in const" from "nr" to "rn"
5209 if (StringRef(S).endswith("nr"))
5210 S.replace(S.end()-2, S.end(), "rn");
5211 }
5212
5213 if (PointeeTy->isCharType()) {
5214 // char pointer types should be encoded as '*' unless it is a
5215 // type that has been typedef'd to 'BOOL'.
5216 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5217 S += '*';
5218 return;
5219 }
5220 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5221 // GCC binary compat: Need to convert "struct objc_class *" to "#".
5222 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5223 S += '#';
5224 return;
5225 }
5226 // GCC binary compat: Need to convert "struct objc_object *" to "@".
5227 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5228 S += '@';
5229 return;
5230 }
5231 // fall through...
5232 }
5233 S += '^';
5234 getLegacyIntegralTypeEncoding(PointeeTy);
5235
5236 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5237 NULL);
5238 return;
5239 }
5240
5241 case Type::ConstantArray:
5242 case Type::IncompleteArray:
5243 case Type::VariableArray: {
5244 const ArrayType *AT = cast<ArrayType>(CT);
5245
5246 if (isa<IncompleteArrayType>(AT) && !StructField) {
5247 // Incomplete arrays are encoded as a pointer to the array element.
5248 S += '^';
5249
5250 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5251 false, ExpandStructures, FD);
5252 } else {
5253 S += '[';
5254
5255 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5256 S += llvm::utostr(CAT->getSize().getZExtValue());
5257 else {
5258 //Variable length arrays are encoded as a regular array with 0 elements.
5259 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5260 "Unknown array type!");
5261 S += '0';
5262 }
5263
5264 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5265 false, ExpandStructures, FD);
5266 S += ']';
5267 }
5268 return;
5269 }
5270
5271 case Type::FunctionNoProto:
5272 case Type::FunctionProto:
5273 S += '?';
5274 return;
5275
5276 case Type::Record: {
5277 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5278 S += RDecl->isUnion() ? '(' : '{';
5279 // Anonymous structures print as '?'
5280 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5281 S += II->getName();
5282 if (ClassTemplateSpecializationDecl *Spec
5283 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5284 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5285 llvm::raw_string_ostream OS(S);
5286 TemplateSpecializationType::PrintTemplateArgumentList(OS,
5287 TemplateArgs.data(),
5288 TemplateArgs.size(),
5289 (*this).getPrintingPolicy());
5290 }
5291 } else {
5292 S += '?';
5293 }
5294 if (ExpandStructures) {
5295 S += '=';
5296 if (!RDecl->isUnion()) {
5297 getObjCEncodingForStructureImpl(RDecl, S, FD);
5298 } else {
5299 for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5300 FieldEnd = RDecl->field_end();
5301 Field != FieldEnd; ++Field) {
5302 if (FD) {
5303 S += '"';
5304 S += Field->getNameAsString();
5305 S += '"';
5306 }
5307
5308 // Special case bit-fields.
5309 if (Field->isBitField()) {
5310 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5311 *Field);
5312 } else {
5313 QualType qt = Field->getType();
5314 getLegacyIntegralTypeEncoding(qt);
5315 getObjCEncodingForTypeImpl(qt, S, false, true,
5316 FD, /*OutermostType*/false,
5317 /*EncodingProperty*/false,
5318 /*StructField*/true);
5319 }
5320 }
5321 }
5322 }
5323 S += RDecl->isUnion() ? ')' : '}';
5324 return;
5325 }
5326
5327 case Type::BlockPointer: {
5328 const BlockPointerType *BT = T->castAs<BlockPointerType>();
5329 S += "@?"; // Unlike a pointer-to-function, which is "^?".
5330 if (EncodeBlockParameters) {
5331 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5332
5333 S += '<';
5334 // Block return type
5335 getObjCEncodingForTypeImpl(FT->getResultType(), S,
5336 ExpandPointedToStructures, ExpandStructures,
5337 FD,
5338 false /* OutermostType */,
5339 EncodingProperty,
5340 false /* StructField */,
5341 EncodeBlockParameters,
5342 EncodeClassNames);
5343 // Block self
5344 S += "@?";
5345 // Block parameters
5346 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5347 for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5348 E = FPT->arg_type_end(); I && (I != E); ++I) {
5349 getObjCEncodingForTypeImpl(*I, S,
5350 ExpandPointedToStructures,
5351 ExpandStructures,
5352 FD,
5353 false /* OutermostType */,
5354 EncodingProperty,
5355 false /* StructField */,
5356 EncodeBlockParameters,
5357 EncodeClassNames);
5358 }
5359 }
5360 S += '>';
5361 }
5362 return;
5363 }
5364
5365 case Type::ObjCObject:
5366 case Type::ObjCInterface: {
5367 // Ignore protocol qualifiers when mangling at this level.
5368 T = T->castAs<ObjCObjectType>()->getBaseType();
5369
5370 // The assumption seems to be that this assert will succeed
5371 // because nested levels will have filtered out 'id' and 'Class'.
5372 const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5373 // @encode(class_name)
5374 ObjCInterfaceDecl *OI = OIT->getDecl();
5375 S += '{';
5376 const IdentifierInfo *II = OI->getIdentifier();
5377 S += II->getName();
5378 S += '=';
5379 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5380 DeepCollectObjCIvars(OI, true, Ivars);
5381 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5382 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5383 if (Field->isBitField())
5384 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5385 else
5386 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5387 false, false, false, false, false,
5388 EncodePointerToObjCTypedef);
5389 }
5390 S += '}';
5391 return;
5392 }
5393
5394 case Type::ObjCObjectPointer: {
5395 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5396 if (OPT->isObjCIdType()) {
5397 S += '@';
5398 return;
5399 }
5400
5401 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5402 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5403 // Since this is a binary compatibility issue, need to consult with runtime
5404 // folks. Fortunately, this is a *very* obsure construct.
5405 S += '#';
5406 return;
5407 }
5408
5409 if (OPT->isObjCQualifiedIdType()) {
5410 getObjCEncodingForTypeImpl(getObjCIdType(), S,
5411 ExpandPointedToStructures,
5412 ExpandStructures, FD);
5413 if (FD || EncodingProperty || EncodeClassNames) {
5414 // Note that we do extended encoding of protocol qualifer list
5415 // Only when doing ivar or property encoding.
5416 S += '"';
5417 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5418 E = OPT->qual_end(); I != E; ++I) {
5419 S += '<';
5420 S += (*I)->getNameAsString();
5421 S += '>';
5422 }
5423 S += '"';
5424 }
5425 return;
5426 }
5427
5428 QualType PointeeTy = OPT->getPointeeType();
5429 if (!EncodingProperty &&
5430 isa<TypedefType>(PointeeTy.getTypePtr()) &&
5431 !EncodePointerToObjCTypedef) {
5432 // Another historical/compatibility reason.
5433 // We encode the underlying type which comes out as
5434 // {...};
5435 S += '^';
5436 if (FD && OPT->getInterfaceDecl()) {
5437 // Prevent recursive encoding of fields in some rare cases.
5438 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5439 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5440 DeepCollectObjCIvars(OI, true, Ivars);
5441 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5442 if (cast<FieldDecl>(Ivars[i]) == FD) {
5443 S += '{';
5444 S += OI->getIdentifier()->getName();
5445 S += '}';
5446 return;
5447 }
5448 }
5449 }
5450 getObjCEncodingForTypeImpl(PointeeTy, S,
5451 false, ExpandPointedToStructures,
5452 NULL,
5453 false, false, false, false, false,
5454 /*EncodePointerToObjCTypedef*/true);
5455 return;
5456 }
5457
5458 S += '@';
5459 if (OPT->getInterfaceDecl() &&
5460 (FD || EncodingProperty || EncodeClassNames)) {
5461 S += '"';
5462 S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5463 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5464 E = OPT->qual_end(); I != E; ++I) {
5465 S += '<';
5466 S += (*I)->getNameAsString();
5467 S += '>';
5468 }
5469 S += '"';
5470 }
5471 return;
5472 }
5473
5474 // gcc just blithely ignores member pointers.
5475 // FIXME: we shoul do better than that. 'M' is available.
5476 case Type::MemberPointer:
5477 return;
5478
5479 case Type::Vector:
5480 case Type::ExtVector:
5481 // This matches gcc's encoding, even though technically it is
5482 // insufficient.
5483 // FIXME. We should do a better job than gcc.
5484 return;
5485
5486 case Type::Auto:
5487 // We could see an undeduced auto type here during error recovery.
5488 // Just ignore it.
5489 return;
5490
5491 #define ABSTRACT_TYPE(KIND, BASE)
5492 #define TYPE(KIND, BASE)
5493 #define DEPENDENT_TYPE(KIND, BASE) \
5494 case Type::KIND:
5495 #define NON_CANONICAL_TYPE(KIND, BASE) \
5496 case Type::KIND:
5497 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5498 case Type::KIND:
5499 #include "clang/AST/TypeNodes.def"
5500 llvm_unreachable("@encode for dependent type!");
5501 }
5502 llvm_unreachable("bad type kind!");
5503 }
5504
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases) const5505 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5506 std::string &S,
5507 const FieldDecl *FD,
5508 bool includeVBases) const {
5509 assert(RDecl && "Expected non-null RecordDecl");
5510 assert(!RDecl->isUnion() && "Should not be called for unions");
5511 if (!RDecl->getDefinition())
5512 return;
5513
5514 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5515 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5516 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5517
5518 if (CXXRec) {
5519 for (CXXRecordDecl::base_class_iterator
5520 BI = CXXRec->bases_begin(),
5521 BE = CXXRec->bases_end(); BI != BE; ++BI) {
5522 if (!BI->isVirtual()) {
5523 CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5524 if (base->isEmpty())
5525 continue;
5526 uint64_t offs = toBits(layout.getBaseClassOffset(base));
5527 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5528 std::make_pair(offs, base));
5529 }
5530 }
5531 }
5532
5533 unsigned i = 0;
5534 for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5535 FieldEnd = RDecl->field_end();
5536 Field != FieldEnd; ++Field, ++i) {
5537 uint64_t offs = layout.getFieldOffset(i);
5538 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5539 std::make_pair(offs, *Field));
5540 }
5541
5542 if (CXXRec && includeVBases) {
5543 for (CXXRecordDecl::base_class_iterator
5544 BI = CXXRec->vbases_begin(),
5545 BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5546 CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5547 if (base->isEmpty())
5548 continue;
5549 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5550 if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5551 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5552 std::make_pair(offs, base));
5553 }
5554 }
5555
5556 CharUnits size;
5557 if (CXXRec) {
5558 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5559 } else {
5560 size = layout.getSize();
5561 }
5562
5563 uint64_t CurOffs = 0;
5564 std::multimap<uint64_t, NamedDecl *>::iterator
5565 CurLayObj = FieldOrBaseOffsets.begin();
5566
5567 if (CXXRec && CXXRec->isDynamicClass() &&
5568 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5569 if (FD) {
5570 S += "\"_vptr$";
5571 std::string recname = CXXRec->getNameAsString();
5572 if (recname.empty()) recname = "?";
5573 S += recname;
5574 S += '"';
5575 }
5576 S += "^^?";
5577 CurOffs += getTypeSize(VoidPtrTy);
5578 }
5579
5580 if (!RDecl->hasFlexibleArrayMember()) {
5581 // Mark the end of the structure.
5582 uint64_t offs = toBits(size);
5583 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5584 std::make_pair(offs, (NamedDecl*)0));
5585 }
5586
5587 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5588 assert(CurOffs <= CurLayObj->first);
5589
5590 if (CurOffs < CurLayObj->first) {
5591 uint64_t padding = CurLayObj->first - CurOffs;
5592 // FIXME: There doesn't seem to be a way to indicate in the encoding that
5593 // packing/alignment of members is different that normal, in which case
5594 // the encoding will be out-of-sync with the real layout.
5595 // If the runtime switches to just consider the size of types without
5596 // taking into account alignment, we could make padding explicit in the
5597 // encoding (e.g. using arrays of chars). The encoding strings would be
5598 // longer then though.
5599 CurOffs += padding;
5600 }
5601
5602 NamedDecl *dcl = CurLayObj->second;
5603 if (dcl == 0)
5604 break; // reached end of structure.
5605
5606 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5607 // We expand the bases without their virtual bases since those are going
5608 // in the initial structure. Note that this differs from gcc which
5609 // expands virtual bases each time one is encountered in the hierarchy,
5610 // making the encoding type bigger than it really is.
5611 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5612 assert(!base->isEmpty());
5613 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5614 } else {
5615 FieldDecl *field = cast<FieldDecl>(dcl);
5616 if (FD) {
5617 S += '"';
5618 S += field->getNameAsString();
5619 S += '"';
5620 }
5621
5622 if (field->isBitField()) {
5623 EncodeBitField(this, S, field->getType(), field);
5624 CurOffs += field->getBitWidthValue(*this);
5625 } else {
5626 QualType qt = field->getType();
5627 getLegacyIntegralTypeEncoding(qt);
5628 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5629 /*OutermostType*/false,
5630 /*EncodingProperty*/false,
5631 /*StructField*/true);
5632 CurOffs += getTypeSize(field->getType());
5633 }
5634 }
5635 }
5636 }
5637
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const5638 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5639 std::string& S) const {
5640 if (QT & Decl::OBJC_TQ_In)
5641 S += 'n';
5642 if (QT & Decl::OBJC_TQ_Inout)
5643 S += 'N';
5644 if (QT & Decl::OBJC_TQ_Out)
5645 S += 'o';
5646 if (QT & Decl::OBJC_TQ_Bycopy)
5647 S += 'O';
5648 if (QT & Decl::OBJC_TQ_Byref)
5649 S += 'R';
5650 if (QT & Decl::OBJC_TQ_Oneway)
5651 S += 'V';
5652 }
5653
getObjCIdDecl() const5654 TypedefDecl *ASTContext::getObjCIdDecl() const {
5655 if (!ObjCIdDecl) {
5656 QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5657 T = getObjCObjectPointerType(T);
5658 TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5659 ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5660 getTranslationUnitDecl(),
5661 SourceLocation(), SourceLocation(),
5662 &Idents.get("id"), IdInfo);
5663 }
5664
5665 return ObjCIdDecl;
5666 }
5667
getObjCSelDecl() const5668 TypedefDecl *ASTContext::getObjCSelDecl() const {
5669 if (!ObjCSelDecl) {
5670 QualType SelT = getPointerType(ObjCBuiltinSelTy);
5671 TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5672 ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5673 getTranslationUnitDecl(),
5674 SourceLocation(), SourceLocation(),
5675 &Idents.get("SEL"), SelInfo);
5676 }
5677 return ObjCSelDecl;
5678 }
5679
getObjCClassDecl() const5680 TypedefDecl *ASTContext::getObjCClassDecl() const {
5681 if (!ObjCClassDecl) {
5682 QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5683 T = getObjCObjectPointerType(T);
5684 TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5685 ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5686 getTranslationUnitDecl(),
5687 SourceLocation(), SourceLocation(),
5688 &Idents.get("Class"), ClassInfo);
5689 }
5690
5691 return ObjCClassDecl;
5692 }
5693
getObjCProtocolDecl() const5694 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5695 if (!ObjCProtocolClassDecl) {
5696 ObjCProtocolClassDecl
5697 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5698 SourceLocation(),
5699 &Idents.get("Protocol"),
5700 /*PrevDecl=*/0,
5701 SourceLocation(), true);
5702 }
5703
5704 return ObjCProtocolClassDecl;
5705 }
5706
5707 //===----------------------------------------------------------------------===//
5708 // __builtin_va_list Construction Functions
5709 //===----------------------------------------------------------------------===//
5710
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)5711 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5712 // typedef char* __builtin_va_list;
5713 QualType CharPtrType = Context->getPointerType(Context->CharTy);
5714 TypeSourceInfo *TInfo
5715 = Context->getTrivialTypeSourceInfo(CharPtrType);
5716
5717 TypedefDecl *VaListTypeDecl
5718 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5719 Context->getTranslationUnitDecl(),
5720 SourceLocation(), SourceLocation(),
5721 &Context->Idents.get("__builtin_va_list"),
5722 TInfo);
5723 return VaListTypeDecl;
5724 }
5725
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)5726 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5727 // typedef void* __builtin_va_list;
5728 QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5729 TypeSourceInfo *TInfo
5730 = Context->getTrivialTypeSourceInfo(VoidPtrType);
5731
5732 TypedefDecl *VaListTypeDecl
5733 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5734 Context->getTranslationUnitDecl(),
5735 SourceLocation(), SourceLocation(),
5736 &Context->Idents.get("__builtin_va_list"),
5737 TInfo);
5738 return VaListTypeDecl;
5739 }
5740
5741 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)5742 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5743 RecordDecl *VaListTagDecl;
5744 if (Context->getLangOpts().CPlusPlus) {
5745 // namespace std { struct __va_list {
5746 NamespaceDecl *NS;
5747 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5748 Context->getTranslationUnitDecl(),
5749 /*Inline*/false, SourceLocation(),
5750 SourceLocation(), &Context->Idents.get("std"),
5751 /*PrevDecl*/0);
5752
5753 VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5754 Context->getTranslationUnitDecl(),
5755 SourceLocation(), SourceLocation(),
5756 &Context->Idents.get("__va_list"));
5757 VaListTagDecl->setDeclContext(NS);
5758 } else {
5759 // struct __va_list
5760 VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5761 Context->getTranslationUnitDecl(),
5762 &Context->Idents.get("__va_list"));
5763 }
5764
5765 VaListTagDecl->startDefinition();
5766
5767 const size_t NumFields = 5;
5768 QualType FieldTypes[NumFields];
5769 const char *FieldNames[NumFields];
5770
5771 // void *__stack;
5772 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5773 FieldNames[0] = "__stack";
5774
5775 // void *__gr_top;
5776 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5777 FieldNames[1] = "__gr_top";
5778
5779 // void *__vr_top;
5780 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5781 FieldNames[2] = "__vr_top";
5782
5783 // int __gr_offs;
5784 FieldTypes[3] = Context->IntTy;
5785 FieldNames[3] = "__gr_offs";
5786
5787 // int __vr_offs;
5788 FieldTypes[4] = Context->IntTy;
5789 FieldNames[4] = "__vr_offs";
5790
5791 // Create fields
5792 for (unsigned i = 0; i < NumFields; ++i) {
5793 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5794 VaListTagDecl,
5795 SourceLocation(),
5796 SourceLocation(),
5797 &Context->Idents.get(FieldNames[i]),
5798 FieldTypes[i], /*TInfo=*/0,
5799 /*BitWidth=*/0,
5800 /*Mutable=*/false,
5801 ICIS_NoInit);
5802 Field->setAccess(AS_public);
5803 VaListTagDecl->addDecl(Field);
5804 }
5805 VaListTagDecl->completeDefinition();
5806 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5807 Context->VaListTagTy = VaListTagType;
5808
5809 // } __builtin_va_list;
5810 TypedefDecl *VaListTypedefDecl
5811 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5812 Context->getTranslationUnitDecl(),
5813 SourceLocation(), SourceLocation(),
5814 &Context->Idents.get("__builtin_va_list"),
5815 Context->getTrivialTypeSourceInfo(VaListTagType));
5816
5817 return VaListTypedefDecl;
5818 }
5819
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)5820 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5821 // typedef struct __va_list_tag {
5822 RecordDecl *VaListTagDecl;
5823
5824 VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5825 Context->getTranslationUnitDecl(),
5826 &Context->Idents.get("__va_list_tag"));
5827 VaListTagDecl->startDefinition();
5828
5829 const size_t NumFields = 5;
5830 QualType FieldTypes[NumFields];
5831 const char *FieldNames[NumFields];
5832
5833 // unsigned char gpr;
5834 FieldTypes[0] = Context->UnsignedCharTy;
5835 FieldNames[0] = "gpr";
5836
5837 // unsigned char fpr;
5838 FieldTypes[1] = Context->UnsignedCharTy;
5839 FieldNames[1] = "fpr";
5840
5841 // unsigned short reserved;
5842 FieldTypes[2] = Context->UnsignedShortTy;
5843 FieldNames[2] = "reserved";
5844
5845 // void* overflow_arg_area;
5846 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5847 FieldNames[3] = "overflow_arg_area";
5848
5849 // void* reg_save_area;
5850 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5851 FieldNames[4] = "reg_save_area";
5852
5853 // Create fields
5854 for (unsigned i = 0; i < NumFields; ++i) {
5855 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5856 SourceLocation(),
5857 SourceLocation(),
5858 &Context->Idents.get(FieldNames[i]),
5859 FieldTypes[i], /*TInfo=*/0,
5860 /*BitWidth=*/0,
5861 /*Mutable=*/false,
5862 ICIS_NoInit);
5863 Field->setAccess(AS_public);
5864 VaListTagDecl->addDecl(Field);
5865 }
5866 VaListTagDecl->completeDefinition();
5867 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5868 Context->VaListTagTy = VaListTagType;
5869
5870 // } __va_list_tag;
5871 TypedefDecl *VaListTagTypedefDecl
5872 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5873 Context->getTranslationUnitDecl(),
5874 SourceLocation(), SourceLocation(),
5875 &Context->Idents.get("__va_list_tag"),
5876 Context->getTrivialTypeSourceInfo(VaListTagType));
5877 QualType VaListTagTypedefType =
5878 Context->getTypedefType(VaListTagTypedefDecl);
5879
5880 // typedef __va_list_tag __builtin_va_list[1];
5881 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5882 QualType VaListTagArrayType
5883 = Context->getConstantArrayType(VaListTagTypedefType,
5884 Size, ArrayType::Normal, 0);
5885 TypeSourceInfo *TInfo
5886 = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5887 TypedefDecl *VaListTypedefDecl
5888 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5889 Context->getTranslationUnitDecl(),
5890 SourceLocation(), SourceLocation(),
5891 &Context->Idents.get("__builtin_va_list"),
5892 TInfo);
5893
5894 return VaListTypedefDecl;
5895 }
5896
5897 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)5898 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5899 // typedef struct __va_list_tag {
5900 RecordDecl *VaListTagDecl;
5901 VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5902 Context->getTranslationUnitDecl(),
5903 &Context->Idents.get("__va_list_tag"));
5904 VaListTagDecl->startDefinition();
5905
5906 const size_t NumFields = 4;
5907 QualType FieldTypes[NumFields];
5908 const char *FieldNames[NumFields];
5909
5910 // unsigned gp_offset;
5911 FieldTypes[0] = Context->UnsignedIntTy;
5912 FieldNames[0] = "gp_offset";
5913
5914 // unsigned fp_offset;
5915 FieldTypes[1] = Context->UnsignedIntTy;
5916 FieldNames[1] = "fp_offset";
5917
5918 // void* overflow_arg_area;
5919 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5920 FieldNames[2] = "overflow_arg_area";
5921
5922 // void* reg_save_area;
5923 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5924 FieldNames[3] = "reg_save_area";
5925
5926 // Create fields
5927 for (unsigned i = 0; i < NumFields; ++i) {
5928 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5929 VaListTagDecl,
5930 SourceLocation(),
5931 SourceLocation(),
5932 &Context->Idents.get(FieldNames[i]),
5933 FieldTypes[i], /*TInfo=*/0,
5934 /*BitWidth=*/0,
5935 /*Mutable=*/false,
5936 ICIS_NoInit);
5937 Field->setAccess(AS_public);
5938 VaListTagDecl->addDecl(Field);
5939 }
5940 VaListTagDecl->completeDefinition();
5941 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5942 Context->VaListTagTy = VaListTagType;
5943
5944 // } __va_list_tag;
5945 TypedefDecl *VaListTagTypedefDecl
5946 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5947 Context->getTranslationUnitDecl(),
5948 SourceLocation(), SourceLocation(),
5949 &Context->Idents.get("__va_list_tag"),
5950 Context->getTrivialTypeSourceInfo(VaListTagType));
5951 QualType VaListTagTypedefType =
5952 Context->getTypedefType(VaListTagTypedefDecl);
5953
5954 // typedef __va_list_tag __builtin_va_list[1];
5955 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5956 QualType VaListTagArrayType
5957 = Context->getConstantArrayType(VaListTagTypedefType,
5958 Size, ArrayType::Normal,0);
5959 TypeSourceInfo *TInfo
5960 = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5961 TypedefDecl *VaListTypedefDecl
5962 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5963 Context->getTranslationUnitDecl(),
5964 SourceLocation(), SourceLocation(),
5965 &Context->Idents.get("__builtin_va_list"),
5966 TInfo);
5967
5968 return VaListTypedefDecl;
5969 }
5970
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)5971 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5972 // typedef int __builtin_va_list[4];
5973 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5974 QualType IntArrayType
5975 = Context->getConstantArrayType(Context->IntTy,
5976 Size, ArrayType::Normal, 0);
5977 TypedefDecl *VaListTypedefDecl
5978 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5979 Context->getTranslationUnitDecl(),
5980 SourceLocation(), SourceLocation(),
5981 &Context->Idents.get("__builtin_va_list"),
5982 Context->getTrivialTypeSourceInfo(IntArrayType));
5983
5984 return VaListTypedefDecl;
5985 }
5986
5987 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)5988 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5989 RecordDecl *VaListDecl;
5990 if (Context->getLangOpts().CPlusPlus) {
5991 // namespace std { struct __va_list {
5992 NamespaceDecl *NS;
5993 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5994 Context->getTranslationUnitDecl(),
5995 /*Inline*/false, SourceLocation(),
5996 SourceLocation(), &Context->Idents.get("std"),
5997 /*PrevDecl*/0);
5998
5999 VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
6000 Context->getTranslationUnitDecl(),
6001 SourceLocation(), SourceLocation(),
6002 &Context->Idents.get("__va_list"));
6003
6004 VaListDecl->setDeclContext(NS);
6005
6006 } else {
6007 // struct __va_list {
6008 VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
6009 Context->getTranslationUnitDecl(),
6010 &Context->Idents.get("__va_list"));
6011 }
6012
6013 VaListDecl->startDefinition();
6014
6015 // void * __ap;
6016 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6017 VaListDecl,
6018 SourceLocation(),
6019 SourceLocation(),
6020 &Context->Idents.get("__ap"),
6021 Context->getPointerType(Context->VoidTy),
6022 /*TInfo=*/0,
6023 /*BitWidth=*/0,
6024 /*Mutable=*/false,
6025 ICIS_NoInit);
6026 Field->setAccess(AS_public);
6027 VaListDecl->addDecl(Field);
6028
6029 // };
6030 VaListDecl->completeDefinition();
6031
6032 // typedef struct __va_list __builtin_va_list;
6033 TypeSourceInfo *TInfo
6034 = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
6035
6036 TypedefDecl *VaListTypeDecl
6037 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6038 Context->getTranslationUnitDecl(),
6039 SourceLocation(), SourceLocation(),
6040 &Context->Idents.get("__builtin_va_list"),
6041 TInfo);
6042
6043 return VaListTypeDecl;
6044 }
6045
6046 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)6047 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6048 // typedef struct __va_list_tag {
6049 RecordDecl *VaListTagDecl;
6050 VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6051 Context->getTranslationUnitDecl(),
6052 &Context->Idents.get("__va_list_tag"));
6053 VaListTagDecl->startDefinition();
6054
6055 const size_t NumFields = 4;
6056 QualType FieldTypes[NumFields];
6057 const char *FieldNames[NumFields];
6058
6059 // long __gpr;
6060 FieldTypes[0] = Context->LongTy;
6061 FieldNames[0] = "__gpr";
6062
6063 // long __fpr;
6064 FieldTypes[1] = Context->LongTy;
6065 FieldNames[1] = "__fpr";
6066
6067 // void *__overflow_arg_area;
6068 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6069 FieldNames[2] = "__overflow_arg_area";
6070
6071 // void *__reg_save_area;
6072 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6073 FieldNames[3] = "__reg_save_area";
6074
6075 // Create fields
6076 for (unsigned i = 0; i < NumFields; ++i) {
6077 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6078 VaListTagDecl,
6079 SourceLocation(),
6080 SourceLocation(),
6081 &Context->Idents.get(FieldNames[i]),
6082 FieldTypes[i], /*TInfo=*/0,
6083 /*BitWidth=*/0,
6084 /*Mutable=*/false,
6085 ICIS_NoInit);
6086 Field->setAccess(AS_public);
6087 VaListTagDecl->addDecl(Field);
6088 }
6089 VaListTagDecl->completeDefinition();
6090 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6091 Context->VaListTagTy = VaListTagType;
6092
6093 // } __va_list_tag;
6094 TypedefDecl *VaListTagTypedefDecl
6095 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6096 Context->getTranslationUnitDecl(),
6097 SourceLocation(), SourceLocation(),
6098 &Context->Idents.get("__va_list_tag"),
6099 Context->getTrivialTypeSourceInfo(VaListTagType));
6100 QualType VaListTagTypedefType =
6101 Context->getTypedefType(VaListTagTypedefDecl);
6102
6103 // typedef __va_list_tag __builtin_va_list[1];
6104 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6105 QualType VaListTagArrayType
6106 = Context->getConstantArrayType(VaListTagTypedefType,
6107 Size, ArrayType::Normal,0);
6108 TypeSourceInfo *TInfo
6109 = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6110 TypedefDecl *VaListTypedefDecl
6111 = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6112 Context->getTranslationUnitDecl(),
6113 SourceLocation(), SourceLocation(),
6114 &Context->Idents.get("__builtin_va_list"),
6115 TInfo);
6116
6117 return VaListTypedefDecl;
6118 }
6119
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)6120 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6121 TargetInfo::BuiltinVaListKind Kind) {
6122 switch (Kind) {
6123 case TargetInfo::CharPtrBuiltinVaList:
6124 return CreateCharPtrBuiltinVaListDecl(Context);
6125 case TargetInfo::VoidPtrBuiltinVaList:
6126 return CreateVoidPtrBuiltinVaListDecl(Context);
6127 case TargetInfo::AArch64ABIBuiltinVaList:
6128 return CreateAArch64ABIBuiltinVaListDecl(Context);
6129 case TargetInfo::PowerABIBuiltinVaList:
6130 return CreatePowerABIBuiltinVaListDecl(Context);
6131 case TargetInfo::X86_64ABIBuiltinVaList:
6132 return CreateX86_64ABIBuiltinVaListDecl(Context);
6133 case TargetInfo::PNaClABIBuiltinVaList:
6134 return CreatePNaClABIBuiltinVaListDecl(Context);
6135 case TargetInfo::AAPCSABIBuiltinVaList:
6136 return CreateAAPCSABIBuiltinVaListDecl(Context);
6137 case TargetInfo::SystemZBuiltinVaList:
6138 return CreateSystemZBuiltinVaListDecl(Context);
6139 }
6140
6141 llvm_unreachable("Unhandled __builtin_va_list type kind");
6142 }
6143
getBuiltinVaListDecl() const6144 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6145 if (!BuiltinVaListDecl)
6146 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6147
6148 return BuiltinVaListDecl;
6149 }
6150
getVaListTagType() const6151 QualType ASTContext::getVaListTagType() const {
6152 // Force the creation of VaListTagTy by building the __builtin_va_list
6153 // declaration.
6154 if (VaListTagTy.isNull())
6155 (void) getBuiltinVaListDecl();
6156
6157 return VaListTagTy;
6158 }
6159
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)6160 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6161 assert(ObjCConstantStringType.isNull() &&
6162 "'NSConstantString' type already set!");
6163
6164 ObjCConstantStringType = getObjCInterfaceType(Decl);
6165 }
6166
6167 /// \brief Retrieve the template name that corresponds to a non-empty
6168 /// lookup.
6169 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const6170 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6171 UnresolvedSetIterator End) const {
6172 unsigned size = End - Begin;
6173 assert(size > 1 && "set is not overloaded!");
6174
6175 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6176 size * sizeof(FunctionTemplateDecl*));
6177 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6178
6179 NamedDecl **Storage = OT->getStorage();
6180 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6181 NamedDecl *D = *I;
6182 assert(isa<FunctionTemplateDecl>(D) ||
6183 (isa<UsingShadowDecl>(D) &&
6184 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6185 *Storage++ = D;
6186 }
6187
6188 return TemplateName(OT);
6189 }
6190
6191 /// \brief Retrieve the template name that represents a qualified
6192 /// template name such as \c std::vector.
6193 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const6194 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6195 bool TemplateKeyword,
6196 TemplateDecl *Template) const {
6197 assert(NNS && "Missing nested-name-specifier in qualified template name");
6198
6199 // FIXME: Canonicalization?
6200 llvm::FoldingSetNodeID ID;
6201 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6202
6203 void *InsertPos = 0;
6204 QualifiedTemplateName *QTN =
6205 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6206 if (!QTN) {
6207 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6208 QualifiedTemplateName(NNS, TemplateKeyword, Template);
6209 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6210 }
6211
6212 return TemplateName(QTN);
6213 }
6214
6215 /// \brief Retrieve the template name that represents a dependent
6216 /// template name such as \c MetaFun::template apply.
6217 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const6218 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6219 const IdentifierInfo *Name) const {
6220 assert((!NNS || NNS->isDependent()) &&
6221 "Nested name specifier must be dependent");
6222
6223 llvm::FoldingSetNodeID ID;
6224 DependentTemplateName::Profile(ID, NNS, Name);
6225
6226 void *InsertPos = 0;
6227 DependentTemplateName *QTN =
6228 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6229
6230 if (QTN)
6231 return TemplateName(QTN);
6232
6233 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6234 if (CanonNNS == NNS) {
6235 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6236 DependentTemplateName(NNS, Name);
6237 } else {
6238 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6239 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6240 DependentTemplateName(NNS, Name, Canon);
6241 DependentTemplateName *CheckQTN =
6242 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6243 assert(!CheckQTN && "Dependent type name canonicalization broken");
6244 (void)CheckQTN;
6245 }
6246
6247 DependentTemplateNames.InsertNode(QTN, InsertPos);
6248 return TemplateName(QTN);
6249 }
6250
6251 /// \brief Retrieve the template name that represents a dependent
6252 /// template name such as \c MetaFun::template operator+.
6253 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6254 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6255 OverloadedOperatorKind Operator) const {
6256 assert((!NNS || NNS->isDependent()) &&
6257 "Nested name specifier must be dependent");
6258
6259 llvm::FoldingSetNodeID ID;
6260 DependentTemplateName::Profile(ID, NNS, Operator);
6261
6262 void *InsertPos = 0;
6263 DependentTemplateName *QTN
6264 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6265
6266 if (QTN)
6267 return TemplateName(QTN);
6268
6269 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6270 if (CanonNNS == NNS) {
6271 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6272 DependentTemplateName(NNS, Operator);
6273 } else {
6274 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6275 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6276 DependentTemplateName(NNS, Operator, Canon);
6277
6278 DependentTemplateName *CheckQTN
6279 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6280 assert(!CheckQTN && "Dependent template name canonicalization broken");
6281 (void)CheckQTN;
6282 }
6283
6284 DependentTemplateNames.InsertNode(QTN, InsertPos);
6285 return TemplateName(QTN);
6286 }
6287
6288 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6289 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6290 TemplateName replacement) const {
6291 llvm::FoldingSetNodeID ID;
6292 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6293
6294 void *insertPos = 0;
6295 SubstTemplateTemplateParmStorage *subst
6296 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6297
6298 if (!subst) {
6299 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6300 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6301 }
6302
6303 return TemplateName(subst);
6304 }
6305
6306 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6307 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6308 const TemplateArgument &ArgPack) const {
6309 ASTContext &Self = const_cast<ASTContext &>(*this);
6310 llvm::FoldingSetNodeID ID;
6311 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6312
6313 void *InsertPos = 0;
6314 SubstTemplateTemplateParmPackStorage *Subst
6315 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6316
6317 if (!Subst) {
6318 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6319 ArgPack.pack_size(),
6320 ArgPack.pack_begin());
6321 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6322 }
6323
6324 return TemplateName(Subst);
6325 }
6326
6327 /// getFromTargetType - Given one of the integer types provided by
6328 /// TargetInfo, produce the corresponding type. The unsigned @p Type
6329 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6330 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6331 switch (Type) {
6332 case TargetInfo::NoInt: return CanQualType();
6333 case TargetInfo::SignedShort: return ShortTy;
6334 case TargetInfo::UnsignedShort: return UnsignedShortTy;
6335 case TargetInfo::SignedInt: return IntTy;
6336 case TargetInfo::UnsignedInt: return UnsignedIntTy;
6337 case TargetInfo::SignedLong: return LongTy;
6338 case TargetInfo::UnsignedLong: return UnsignedLongTy;
6339 case TargetInfo::SignedLongLong: return LongLongTy;
6340 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6341 }
6342
6343 llvm_unreachable("Unhandled TargetInfo::IntType value");
6344 }
6345
6346 //===----------------------------------------------------------------------===//
6347 // Type Predicates.
6348 //===----------------------------------------------------------------------===//
6349
6350 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6351 /// garbage collection attribute.
6352 ///
getObjCGCAttrKind(QualType Ty) const6353 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6354 if (getLangOpts().getGC() == LangOptions::NonGC)
6355 return Qualifiers::GCNone;
6356
6357 assert(getLangOpts().ObjC1);
6358 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6359
6360 // Default behaviour under objective-C's gc is for ObjC pointers
6361 // (or pointers to them) be treated as though they were declared
6362 // as __strong.
6363 if (GCAttrs == Qualifiers::GCNone) {
6364 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6365 return Qualifiers::Strong;
6366 else if (Ty->isPointerType())
6367 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6368 } else {
6369 // It's not valid to set GC attributes on anything that isn't a
6370 // pointer.
6371 #ifndef NDEBUG
6372 QualType CT = Ty->getCanonicalTypeInternal();
6373 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6374 CT = AT->getElementType();
6375 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6376 #endif
6377 }
6378 return GCAttrs;
6379 }
6380
6381 //===----------------------------------------------------------------------===//
6382 // Type Compatibility Testing
6383 //===----------------------------------------------------------------------===//
6384
6385 /// areCompatVectorTypes - Return true if the two specified vector types are
6386 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6387 static bool areCompatVectorTypes(const VectorType *LHS,
6388 const VectorType *RHS) {
6389 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6390 return LHS->getElementType() == RHS->getElementType() &&
6391 LHS->getNumElements() == RHS->getNumElements();
6392 }
6393
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6394 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6395 QualType SecondVec) {
6396 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6397 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6398
6399 if (hasSameUnqualifiedType(FirstVec, SecondVec))
6400 return true;
6401
6402 // Treat Neon vector types and most AltiVec vector types as if they are the
6403 // equivalent GCC vector types.
6404 const VectorType *First = FirstVec->getAs<VectorType>();
6405 const VectorType *Second = SecondVec->getAs<VectorType>();
6406 if (First->getNumElements() == Second->getNumElements() &&
6407 hasSameType(First->getElementType(), Second->getElementType()) &&
6408 First->getVectorKind() != VectorType::AltiVecPixel &&
6409 First->getVectorKind() != VectorType::AltiVecBool &&
6410 Second->getVectorKind() != VectorType::AltiVecPixel &&
6411 Second->getVectorKind() != VectorType::AltiVecBool)
6412 return true;
6413
6414 return false;
6415 }
6416
6417 //===----------------------------------------------------------------------===//
6418 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6419 //===----------------------------------------------------------------------===//
6420
6421 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6422 /// inheritance hierarchy of 'rProto'.
6423 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6424 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6425 ObjCProtocolDecl *rProto) const {
6426 if (declaresSameEntity(lProto, rProto))
6427 return true;
6428 for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6429 E = rProto->protocol_end(); PI != E; ++PI)
6430 if (ProtocolCompatibleWithProtocol(lProto, *PI))
6431 return true;
6432 return false;
6433 }
6434
6435 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
6436 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6437 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6438 QualType rhs) {
6439 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6440 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6441 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6442
6443 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6444 E = lhsQID->qual_end(); I != E; ++I) {
6445 bool match = false;
6446 ObjCProtocolDecl *lhsProto = *I;
6447 for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6448 E = rhsOPT->qual_end(); J != E; ++J) {
6449 ObjCProtocolDecl *rhsProto = *J;
6450 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6451 match = true;
6452 break;
6453 }
6454 }
6455 if (!match)
6456 return false;
6457 }
6458 return true;
6459 }
6460
6461 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6462 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6463 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6464 bool compare) {
6465 // Allow id<P..> and an 'id' or void* type in all cases.
6466 if (lhs->isVoidPointerType() ||
6467 lhs->isObjCIdType() || lhs->isObjCClassType())
6468 return true;
6469 else if (rhs->isVoidPointerType() ||
6470 rhs->isObjCIdType() || rhs->isObjCClassType())
6471 return true;
6472
6473 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6474 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6475
6476 if (!rhsOPT) return false;
6477
6478 if (rhsOPT->qual_empty()) {
6479 // If the RHS is a unqualified interface pointer "NSString*",
6480 // make sure we check the class hierarchy.
6481 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6482 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6483 E = lhsQID->qual_end(); I != E; ++I) {
6484 // when comparing an id<P> on lhs with a static type on rhs,
6485 // see if static class implements all of id's protocols, directly or
6486 // through its super class and categories.
6487 if (!rhsID->ClassImplementsProtocol(*I, true))
6488 return false;
6489 }
6490 }
6491 // If there are no qualifiers and no interface, we have an 'id'.
6492 return true;
6493 }
6494 // Both the right and left sides have qualifiers.
6495 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6496 E = lhsQID->qual_end(); I != E; ++I) {
6497 ObjCProtocolDecl *lhsProto = *I;
6498 bool match = false;
6499
6500 // when comparing an id<P> on lhs with a static type on rhs,
6501 // see if static class implements all of id's protocols, directly or
6502 // through its super class and categories.
6503 for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6504 E = rhsOPT->qual_end(); J != E; ++J) {
6505 ObjCProtocolDecl *rhsProto = *J;
6506 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6507 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6508 match = true;
6509 break;
6510 }
6511 }
6512 // If the RHS is a qualified interface pointer "NSString<P>*",
6513 // make sure we check the class hierarchy.
6514 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6515 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6516 E = lhsQID->qual_end(); I != E; ++I) {
6517 // when comparing an id<P> on lhs with a static type on rhs,
6518 // see if static class implements all of id's protocols, directly or
6519 // through its super class and categories.
6520 if (rhsID->ClassImplementsProtocol(*I, true)) {
6521 match = true;
6522 break;
6523 }
6524 }
6525 }
6526 if (!match)
6527 return false;
6528 }
6529
6530 return true;
6531 }
6532
6533 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6534 assert(rhsQID && "One of the LHS/RHS should be id<x>");
6535
6536 if (const ObjCObjectPointerType *lhsOPT =
6537 lhs->getAsObjCInterfacePointerType()) {
6538 // If both the right and left sides have qualifiers.
6539 for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6540 E = lhsOPT->qual_end(); I != E; ++I) {
6541 ObjCProtocolDecl *lhsProto = *I;
6542 bool match = false;
6543
6544 // when comparing an id<P> on rhs with a static type on lhs,
6545 // see if static class implements all of id's protocols, directly or
6546 // through its super class and categories.
6547 // First, lhs protocols in the qualifier list must be found, direct
6548 // or indirect in rhs's qualifier list or it is a mismatch.
6549 for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6550 E = rhsQID->qual_end(); J != E; ++J) {
6551 ObjCProtocolDecl *rhsProto = *J;
6552 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6553 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6554 match = true;
6555 break;
6556 }
6557 }
6558 if (!match)
6559 return false;
6560 }
6561
6562 // Static class's protocols, or its super class or category protocols
6563 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6564 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6565 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6566 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6567 // This is rather dubious but matches gcc's behavior. If lhs has
6568 // no type qualifier and its class has no static protocol(s)
6569 // assume that it is mismatch.
6570 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6571 return false;
6572 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6573 LHSInheritedProtocols.begin(),
6574 E = LHSInheritedProtocols.end(); I != E; ++I) {
6575 bool match = false;
6576 ObjCProtocolDecl *lhsProto = (*I);
6577 for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6578 E = rhsQID->qual_end(); J != E; ++J) {
6579 ObjCProtocolDecl *rhsProto = *J;
6580 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6581 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6582 match = true;
6583 break;
6584 }
6585 }
6586 if (!match)
6587 return false;
6588 }
6589 }
6590 return true;
6591 }
6592 return false;
6593 }
6594
6595 /// canAssignObjCInterfaces - Return true if the two interface types are
6596 /// compatible for assignment from RHS to LHS. This handles validation of any
6597 /// protocol qualifiers on the LHS or RHS.
6598 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6599 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6600 const ObjCObjectPointerType *RHSOPT) {
6601 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6602 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6603
6604 // If either type represents the built-in 'id' or 'Class' types, return true.
6605 if (LHS->isObjCUnqualifiedIdOrClass() ||
6606 RHS->isObjCUnqualifiedIdOrClass())
6607 return true;
6608
6609 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6610 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6611 QualType(RHSOPT,0),
6612 false);
6613
6614 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6615 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6616 QualType(RHSOPT,0));
6617
6618 // If we have 2 user-defined types, fall into that path.
6619 if (LHS->getInterface() && RHS->getInterface())
6620 return canAssignObjCInterfaces(LHS, RHS);
6621
6622 return false;
6623 }
6624
6625 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6626 /// for providing type-safety for objective-c pointers used to pass/return
6627 /// arguments in block literals. When passed as arguments, passing 'A*' where
6628 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6629 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6630 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6631 const ObjCObjectPointerType *LHSOPT,
6632 const ObjCObjectPointerType *RHSOPT,
6633 bool BlockReturnType) {
6634 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6635 return true;
6636
6637 if (LHSOPT->isObjCBuiltinType()) {
6638 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6639 }
6640
6641 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6642 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6643 QualType(RHSOPT,0),
6644 false);
6645
6646 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6647 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6648 if (LHS && RHS) { // We have 2 user-defined types.
6649 if (LHS != RHS) {
6650 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6651 return BlockReturnType;
6652 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6653 return !BlockReturnType;
6654 }
6655 else
6656 return true;
6657 }
6658 return false;
6659 }
6660
6661 /// getIntersectionOfProtocols - This routine finds the intersection of set
6662 /// of protocols inherited from two distinct objective-c pointer objects.
6663 /// It is used to build composite qualifier list of the composite type of
6664 /// the conditional expression involving two objective-c pointer objects.
6665 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)6666 void getIntersectionOfProtocols(ASTContext &Context,
6667 const ObjCObjectPointerType *LHSOPT,
6668 const ObjCObjectPointerType *RHSOPT,
6669 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6670
6671 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6672 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6673 assert(LHS->getInterface() && "LHS must have an interface base");
6674 assert(RHS->getInterface() && "RHS must have an interface base");
6675
6676 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6677 unsigned LHSNumProtocols = LHS->getNumProtocols();
6678 if (LHSNumProtocols > 0)
6679 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6680 else {
6681 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6682 Context.CollectInheritedProtocols(LHS->getInterface(),
6683 LHSInheritedProtocols);
6684 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6685 LHSInheritedProtocols.end());
6686 }
6687
6688 unsigned RHSNumProtocols = RHS->getNumProtocols();
6689 if (RHSNumProtocols > 0) {
6690 ObjCProtocolDecl **RHSProtocols =
6691 const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6692 for (unsigned i = 0; i < RHSNumProtocols; ++i)
6693 if (InheritedProtocolSet.count(RHSProtocols[i]))
6694 IntersectionOfProtocols.push_back(RHSProtocols[i]);
6695 } else {
6696 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6697 Context.CollectInheritedProtocols(RHS->getInterface(),
6698 RHSInheritedProtocols);
6699 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6700 RHSInheritedProtocols.begin(),
6701 E = RHSInheritedProtocols.end(); I != E; ++I)
6702 if (InheritedProtocolSet.count((*I)))
6703 IntersectionOfProtocols.push_back((*I));
6704 }
6705 }
6706
6707 /// areCommonBaseCompatible - Returns common base class of the two classes if
6708 /// one found. Note that this is O'2 algorithm. But it will be called as the
6709 /// last type comparison in a ?-exp of ObjC pointer types before a
6710 /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)6711 QualType ASTContext::areCommonBaseCompatible(
6712 const ObjCObjectPointerType *Lptr,
6713 const ObjCObjectPointerType *Rptr) {
6714 const ObjCObjectType *LHS = Lptr->getObjectType();
6715 const ObjCObjectType *RHS = Rptr->getObjectType();
6716 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6717 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6718 if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6719 return QualType();
6720
6721 do {
6722 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6723 if (canAssignObjCInterfaces(LHS, RHS)) {
6724 SmallVector<ObjCProtocolDecl *, 8> Protocols;
6725 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6726
6727 QualType Result = QualType(LHS, 0);
6728 if (!Protocols.empty())
6729 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6730 Result = getObjCObjectPointerType(Result);
6731 return Result;
6732 }
6733 } while ((LDecl = LDecl->getSuperClass()));
6734
6735 return QualType();
6736 }
6737
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)6738 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6739 const ObjCObjectType *RHS) {
6740 assert(LHS->getInterface() && "LHS is not an interface type");
6741 assert(RHS->getInterface() && "RHS is not an interface type");
6742
6743 // Verify that the base decls are compatible: the RHS must be a subclass of
6744 // the LHS.
6745 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6746 return false;
6747
6748 // RHS must have a superset of the protocols in the LHS. If the LHS is not
6749 // protocol qualified at all, then we are good.
6750 if (LHS->getNumProtocols() == 0)
6751 return true;
6752
6753 // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't,
6754 // more detailed analysis is required.
6755 if (RHS->getNumProtocols() == 0) {
6756 // OK, if LHS is a superclass of RHS *and*
6757 // this superclass is assignment compatible with LHS.
6758 // false otherwise.
6759 bool IsSuperClass =
6760 LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6761 if (IsSuperClass) {
6762 // OK if conversion of LHS to SuperClass results in narrowing of types
6763 // ; i.e., SuperClass may implement at least one of the protocols
6764 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6765 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6766 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6767 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6768 // If super class has no protocols, it is not a match.
6769 if (SuperClassInheritedProtocols.empty())
6770 return false;
6771
6772 for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6773 LHSPE = LHS->qual_end();
6774 LHSPI != LHSPE; LHSPI++) {
6775 bool SuperImplementsProtocol = false;
6776 ObjCProtocolDecl *LHSProto = (*LHSPI);
6777
6778 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6779 SuperClassInheritedProtocols.begin(),
6780 E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6781 ObjCProtocolDecl *SuperClassProto = (*I);
6782 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6783 SuperImplementsProtocol = true;
6784 break;
6785 }
6786 }
6787 if (!SuperImplementsProtocol)
6788 return false;
6789 }
6790 return true;
6791 }
6792 return false;
6793 }
6794
6795 for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6796 LHSPE = LHS->qual_end();
6797 LHSPI != LHSPE; LHSPI++) {
6798 bool RHSImplementsProtocol = false;
6799
6800 // If the RHS doesn't implement the protocol on the left, the types
6801 // are incompatible.
6802 for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6803 RHSPE = RHS->qual_end();
6804 RHSPI != RHSPE; RHSPI++) {
6805 if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6806 RHSImplementsProtocol = true;
6807 break;
6808 }
6809 }
6810 // FIXME: For better diagnostics, consider passing back the protocol name.
6811 if (!RHSImplementsProtocol)
6812 return false;
6813 }
6814 // The RHS implements all protocols listed on the LHS.
6815 return true;
6816 }
6817
areComparableObjCPointerTypes(QualType LHS,QualType RHS)6818 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6819 // get the "pointed to" types
6820 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6821 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6822
6823 if (!LHSOPT || !RHSOPT)
6824 return false;
6825
6826 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6827 canAssignObjCInterfaces(RHSOPT, LHSOPT);
6828 }
6829
canBindObjCObjectType(QualType To,QualType From)6830 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6831 return canAssignObjCInterfaces(
6832 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6833 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6834 }
6835
6836 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6837 /// both shall have the identically qualified version of a compatible type.
6838 /// C99 6.2.7p1: Two types have compatible types if their types are the
6839 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)6840 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6841 bool CompareUnqualified) {
6842 if (getLangOpts().CPlusPlus)
6843 return hasSameType(LHS, RHS);
6844
6845 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6846 }
6847
propertyTypesAreCompatible(QualType LHS,QualType RHS)6848 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6849 return typesAreCompatible(LHS, RHS);
6850 }
6851
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)6852 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6853 return !mergeTypes(LHS, RHS, true).isNull();
6854 }
6855
6856 /// mergeTransparentUnionType - if T is a transparent union type and a member
6857 /// of T is compatible with SubType, return the merged type, else return
6858 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)6859 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6860 bool OfBlockPointer,
6861 bool Unqualified) {
6862 if (const RecordType *UT = T->getAsUnionType()) {
6863 RecordDecl *UD = UT->getDecl();
6864 if (UD->hasAttr<TransparentUnionAttr>()) {
6865 for (RecordDecl::field_iterator it = UD->field_begin(),
6866 itend = UD->field_end(); it != itend; ++it) {
6867 QualType ET = it->getType().getUnqualifiedType();
6868 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6869 if (!MT.isNull())
6870 return MT;
6871 }
6872 }
6873 }
6874
6875 return QualType();
6876 }
6877
6878 /// mergeFunctionArgumentTypes - merge two types which appear as function
6879 /// argument types
mergeFunctionArgumentTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6880 QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6881 bool OfBlockPointer,
6882 bool Unqualified) {
6883 // GNU extension: two types are compatible if they appear as a function
6884 // argument, one of the types is a transparent union type and the other
6885 // type is compatible with a union member
6886 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6887 Unqualified);
6888 if (!lmerge.isNull())
6889 return lmerge;
6890
6891 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6892 Unqualified);
6893 if (!rmerge.isNull())
6894 return rmerge;
6895
6896 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6897 }
6898
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6899 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6900 bool OfBlockPointer,
6901 bool Unqualified) {
6902 const FunctionType *lbase = lhs->getAs<FunctionType>();
6903 const FunctionType *rbase = rhs->getAs<FunctionType>();
6904 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6905 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6906 bool allLTypes = true;
6907 bool allRTypes = true;
6908
6909 // Check return type
6910 QualType retType;
6911 if (OfBlockPointer) {
6912 QualType RHS = rbase->getResultType();
6913 QualType LHS = lbase->getResultType();
6914 bool UnqualifiedResult = Unqualified;
6915 if (!UnqualifiedResult)
6916 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6917 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6918 }
6919 else
6920 retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6921 Unqualified);
6922 if (retType.isNull()) return QualType();
6923
6924 if (Unqualified)
6925 retType = retType.getUnqualifiedType();
6926
6927 CanQualType LRetType = getCanonicalType(lbase->getResultType());
6928 CanQualType RRetType = getCanonicalType(rbase->getResultType());
6929 if (Unqualified) {
6930 LRetType = LRetType.getUnqualifiedType();
6931 RRetType = RRetType.getUnqualifiedType();
6932 }
6933
6934 if (getCanonicalType(retType) != LRetType)
6935 allLTypes = false;
6936 if (getCanonicalType(retType) != RRetType)
6937 allRTypes = false;
6938
6939 // FIXME: double check this
6940 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6941 // rbase->getRegParmAttr() != 0 &&
6942 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6943 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6944 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6945
6946 // Compatible functions must have compatible calling conventions
6947 if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6948 return QualType();
6949
6950 // Regparm is part of the calling convention.
6951 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6952 return QualType();
6953 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6954 return QualType();
6955
6956 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6957 return QualType();
6958
6959 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6960 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6961
6962 if (lbaseInfo.getNoReturn() != NoReturn)
6963 allLTypes = false;
6964 if (rbaseInfo.getNoReturn() != NoReturn)
6965 allRTypes = false;
6966
6967 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6968
6969 if (lproto && rproto) { // two C99 style function prototypes
6970 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6971 "C++ shouldn't be here");
6972 unsigned lproto_nargs = lproto->getNumArgs();
6973 unsigned rproto_nargs = rproto->getNumArgs();
6974
6975 // Compatible functions must have the same number of arguments
6976 if (lproto_nargs != rproto_nargs)
6977 return QualType();
6978
6979 // Variadic and non-variadic functions aren't compatible
6980 if (lproto->isVariadic() != rproto->isVariadic())
6981 return QualType();
6982
6983 if (lproto->getTypeQuals() != rproto->getTypeQuals())
6984 return QualType();
6985
6986 if (LangOpts.ObjCAutoRefCount &&
6987 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6988 return QualType();
6989
6990 // Check argument compatibility
6991 SmallVector<QualType, 10> types;
6992 for (unsigned i = 0; i < lproto_nargs; i++) {
6993 QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6994 QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6995 QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6996 OfBlockPointer,
6997 Unqualified);
6998 if (argtype.isNull()) return QualType();
6999
7000 if (Unqualified)
7001 argtype = argtype.getUnqualifiedType();
7002
7003 types.push_back(argtype);
7004 if (Unqualified) {
7005 largtype = largtype.getUnqualifiedType();
7006 rargtype = rargtype.getUnqualifiedType();
7007 }
7008
7009 if (getCanonicalType(argtype) != getCanonicalType(largtype))
7010 allLTypes = false;
7011 if (getCanonicalType(argtype) != getCanonicalType(rargtype))
7012 allRTypes = false;
7013 }
7014
7015 if (allLTypes) return lhs;
7016 if (allRTypes) return rhs;
7017
7018 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7019 EPI.ExtInfo = einfo;
7020 return getFunctionType(retType, types, EPI);
7021 }
7022
7023 if (lproto) allRTypes = false;
7024 if (rproto) allLTypes = false;
7025
7026 const FunctionProtoType *proto = lproto ? lproto : rproto;
7027 if (proto) {
7028 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7029 if (proto->isVariadic()) return QualType();
7030 // Check that the types are compatible with the types that
7031 // would result from default argument promotions (C99 6.7.5.3p15).
7032 // The only types actually affected are promotable integer
7033 // types and floats, which would be passed as a different
7034 // type depending on whether the prototype is visible.
7035 unsigned proto_nargs = proto->getNumArgs();
7036 for (unsigned i = 0; i < proto_nargs; ++i) {
7037 QualType argTy = proto->getArgType(i);
7038
7039 // Look at the converted type of enum types, since that is the type used
7040 // to pass enum values.
7041 if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7042 argTy = Enum->getDecl()->getIntegerType();
7043 if (argTy.isNull())
7044 return QualType();
7045 }
7046
7047 if (argTy->isPromotableIntegerType() ||
7048 getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7049 return QualType();
7050 }
7051
7052 if (allLTypes) return lhs;
7053 if (allRTypes) return rhs;
7054
7055 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7056 EPI.ExtInfo = einfo;
7057 return getFunctionType(retType, proto->getArgTypes(), EPI);
7058 }
7059
7060 if (allLTypes) return lhs;
7061 if (allRTypes) return rhs;
7062 return getFunctionNoProtoType(retType, einfo);
7063 }
7064
7065 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)7066 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7067 QualType other, bool isBlockReturnType) {
7068 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7069 // a signed integer type, or an unsigned integer type.
7070 // Compatibility is based on the underlying type, not the promotion
7071 // type.
7072 QualType underlyingType = ET->getDecl()->getIntegerType();
7073 if (underlyingType.isNull()) return QualType();
7074 if (Context.hasSameType(underlyingType, other))
7075 return other;
7076
7077 // In block return types, we're more permissive and accept any
7078 // integral type of the same size.
7079 if (isBlockReturnType && other->isIntegerType() &&
7080 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7081 return other;
7082
7083 return QualType();
7084 }
7085
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)7086 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7087 bool OfBlockPointer,
7088 bool Unqualified, bool BlockReturnType) {
7089 // C++ [expr]: If an expression initially has the type "reference to T", the
7090 // type is adjusted to "T" prior to any further analysis, the expression
7091 // designates the object or function denoted by the reference, and the
7092 // expression is an lvalue unless the reference is an rvalue reference and
7093 // the expression is a function call (possibly inside parentheses).
7094 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7095 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7096
7097 if (Unqualified) {
7098 LHS = LHS.getUnqualifiedType();
7099 RHS = RHS.getUnqualifiedType();
7100 }
7101
7102 QualType LHSCan = getCanonicalType(LHS),
7103 RHSCan = getCanonicalType(RHS);
7104
7105 // If two types are identical, they are compatible.
7106 if (LHSCan == RHSCan)
7107 return LHS;
7108
7109 // If the qualifiers are different, the types aren't compatible... mostly.
7110 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7111 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7112 if (LQuals != RQuals) {
7113 // If any of these qualifiers are different, we have a type
7114 // mismatch.
7115 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7116 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7117 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7118 return QualType();
7119
7120 // Exactly one GC qualifier difference is allowed: __strong is
7121 // okay if the other type has no GC qualifier but is an Objective
7122 // C object pointer (i.e. implicitly strong by default). We fix
7123 // this by pretending that the unqualified type was actually
7124 // qualified __strong.
7125 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7126 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7127 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7128
7129 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7130 return QualType();
7131
7132 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7133 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7134 }
7135 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7136 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7137 }
7138 return QualType();
7139 }
7140
7141 // Okay, qualifiers are equal.
7142
7143 Type::TypeClass LHSClass = LHSCan->getTypeClass();
7144 Type::TypeClass RHSClass = RHSCan->getTypeClass();
7145
7146 // We want to consider the two function types to be the same for these
7147 // comparisons, just force one to the other.
7148 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7149 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7150
7151 // Same as above for arrays
7152 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7153 LHSClass = Type::ConstantArray;
7154 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7155 RHSClass = Type::ConstantArray;
7156
7157 // ObjCInterfaces are just specialized ObjCObjects.
7158 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7159 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7160
7161 // Canonicalize ExtVector -> Vector.
7162 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7163 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7164
7165 // If the canonical type classes don't match.
7166 if (LHSClass != RHSClass) {
7167 // Note that we only have special rules for turning block enum
7168 // returns into block int returns, not vice-versa.
7169 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7170 return mergeEnumWithInteger(*this, ETy, RHS, false);
7171 }
7172 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7173 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7174 }
7175 // allow block pointer type to match an 'id' type.
7176 if (OfBlockPointer && !BlockReturnType) {
7177 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7178 return LHS;
7179 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7180 return RHS;
7181 }
7182
7183 return QualType();
7184 }
7185
7186 // The canonical type classes match.
7187 switch (LHSClass) {
7188 #define TYPE(Class, Base)
7189 #define ABSTRACT_TYPE(Class, Base)
7190 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7191 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7192 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
7193 #include "clang/AST/TypeNodes.def"
7194 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7195
7196 case Type::Auto:
7197 case Type::LValueReference:
7198 case Type::RValueReference:
7199 case Type::MemberPointer:
7200 llvm_unreachable("C++ should never be in mergeTypes");
7201
7202 case Type::ObjCInterface:
7203 case Type::IncompleteArray:
7204 case Type::VariableArray:
7205 case Type::FunctionProto:
7206 case Type::ExtVector:
7207 llvm_unreachable("Types are eliminated above");
7208
7209 case Type::Pointer:
7210 {
7211 // Merge two pointer types, while trying to preserve typedef info
7212 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7213 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7214 if (Unqualified) {
7215 LHSPointee = LHSPointee.getUnqualifiedType();
7216 RHSPointee = RHSPointee.getUnqualifiedType();
7217 }
7218 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7219 Unqualified);
7220 if (ResultType.isNull()) return QualType();
7221 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7222 return LHS;
7223 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7224 return RHS;
7225 return getPointerType(ResultType);
7226 }
7227 case Type::BlockPointer:
7228 {
7229 // Merge two block pointer types, while trying to preserve typedef info
7230 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7231 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7232 if (Unqualified) {
7233 LHSPointee = LHSPointee.getUnqualifiedType();
7234 RHSPointee = RHSPointee.getUnqualifiedType();
7235 }
7236 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7237 Unqualified);
7238 if (ResultType.isNull()) return QualType();
7239 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7240 return LHS;
7241 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7242 return RHS;
7243 return getBlockPointerType(ResultType);
7244 }
7245 case Type::Atomic:
7246 {
7247 // Merge two pointer types, while trying to preserve typedef info
7248 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7249 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7250 if (Unqualified) {
7251 LHSValue = LHSValue.getUnqualifiedType();
7252 RHSValue = RHSValue.getUnqualifiedType();
7253 }
7254 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7255 Unqualified);
7256 if (ResultType.isNull()) return QualType();
7257 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7258 return LHS;
7259 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7260 return RHS;
7261 return getAtomicType(ResultType);
7262 }
7263 case Type::ConstantArray:
7264 {
7265 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7266 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7267 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7268 return QualType();
7269
7270 QualType LHSElem = getAsArrayType(LHS)->getElementType();
7271 QualType RHSElem = getAsArrayType(RHS)->getElementType();
7272 if (Unqualified) {
7273 LHSElem = LHSElem.getUnqualifiedType();
7274 RHSElem = RHSElem.getUnqualifiedType();
7275 }
7276
7277 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7278 if (ResultType.isNull()) return QualType();
7279 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7280 return LHS;
7281 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7282 return RHS;
7283 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7284 ArrayType::ArraySizeModifier(), 0);
7285 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7286 ArrayType::ArraySizeModifier(), 0);
7287 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7288 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7289 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7290 return LHS;
7291 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7292 return RHS;
7293 if (LVAT) {
7294 // FIXME: This isn't correct! But tricky to implement because
7295 // the array's size has to be the size of LHS, but the type
7296 // has to be different.
7297 return LHS;
7298 }
7299 if (RVAT) {
7300 // FIXME: This isn't correct! But tricky to implement because
7301 // the array's size has to be the size of RHS, but the type
7302 // has to be different.
7303 return RHS;
7304 }
7305 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7306 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7307 return getIncompleteArrayType(ResultType,
7308 ArrayType::ArraySizeModifier(), 0);
7309 }
7310 case Type::FunctionNoProto:
7311 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7312 case Type::Record:
7313 case Type::Enum:
7314 return QualType();
7315 case Type::Builtin:
7316 // Only exactly equal builtin types are compatible, which is tested above.
7317 return QualType();
7318 case Type::Complex:
7319 // Distinct complex types are incompatible.
7320 return QualType();
7321 case Type::Vector:
7322 // FIXME: The merged type should be an ExtVector!
7323 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7324 RHSCan->getAs<VectorType>()))
7325 return LHS;
7326 return QualType();
7327 case Type::ObjCObject: {
7328 // Check if the types are assignment compatible.
7329 // FIXME: This should be type compatibility, e.g. whether
7330 // "LHS x; RHS x;" at global scope is legal.
7331 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7332 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7333 if (canAssignObjCInterfaces(LHSIface, RHSIface))
7334 return LHS;
7335
7336 return QualType();
7337 }
7338 case Type::ObjCObjectPointer: {
7339 if (OfBlockPointer) {
7340 if (canAssignObjCInterfacesInBlockPointer(
7341 LHS->getAs<ObjCObjectPointerType>(),
7342 RHS->getAs<ObjCObjectPointerType>(),
7343 BlockReturnType))
7344 return LHS;
7345 return QualType();
7346 }
7347 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7348 RHS->getAs<ObjCObjectPointerType>()))
7349 return LHS;
7350
7351 return QualType();
7352 }
7353 }
7354
7355 llvm_unreachable("Invalid Type::Class!");
7356 }
7357
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7358 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7359 const FunctionProtoType *FromFunctionType,
7360 const FunctionProtoType *ToFunctionType) {
7361 if (FromFunctionType->hasAnyConsumedArgs() !=
7362 ToFunctionType->hasAnyConsumedArgs())
7363 return false;
7364 FunctionProtoType::ExtProtoInfo FromEPI =
7365 FromFunctionType->getExtProtoInfo();
7366 FunctionProtoType::ExtProtoInfo ToEPI =
7367 ToFunctionType->getExtProtoInfo();
7368 if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7369 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7370 ArgIdx != NumArgs; ++ArgIdx) {
7371 if (FromEPI.ConsumedArguments[ArgIdx] !=
7372 ToEPI.ConsumedArguments[ArgIdx])
7373 return false;
7374 }
7375 return true;
7376 }
7377
7378 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7379 /// 'RHS' attributes and returns the merged version; including for function
7380 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7381 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7382 QualType LHSCan = getCanonicalType(LHS),
7383 RHSCan = getCanonicalType(RHS);
7384 // If two types are identical, they are compatible.
7385 if (LHSCan == RHSCan)
7386 return LHS;
7387 if (RHSCan->isFunctionType()) {
7388 if (!LHSCan->isFunctionType())
7389 return QualType();
7390 QualType OldReturnType =
7391 cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7392 QualType NewReturnType =
7393 cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7394 QualType ResReturnType =
7395 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7396 if (ResReturnType.isNull())
7397 return QualType();
7398 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7399 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7400 // In either case, use OldReturnType to build the new function type.
7401 const FunctionType *F = LHS->getAs<FunctionType>();
7402 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7403 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7404 EPI.ExtInfo = getFunctionExtInfo(LHS);
7405 QualType ResultType =
7406 getFunctionType(OldReturnType, FPT->getArgTypes(), EPI);
7407 return ResultType;
7408 }
7409 }
7410 return QualType();
7411 }
7412
7413 // If the qualifiers are different, the types can still be merged.
7414 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7415 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7416 if (LQuals != RQuals) {
7417 // If any of these qualifiers are different, we have a type mismatch.
7418 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7419 LQuals.getAddressSpace() != RQuals.getAddressSpace())
7420 return QualType();
7421
7422 // Exactly one GC qualifier difference is allowed: __strong is
7423 // okay if the other type has no GC qualifier but is an Objective
7424 // C object pointer (i.e. implicitly strong by default). We fix
7425 // this by pretending that the unqualified type was actually
7426 // qualified __strong.
7427 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7428 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7429 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7430
7431 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7432 return QualType();
7433
7434 if (GC_L == Qualifiers::Strong)
7435 return LHS;
7436 if (GC_R == Qualifiers::Strong)
7437 return RHS;
7438 return QualType();
7439 }
7440
7441 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7442 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7443 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7444 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7445 if (ResQT == LHSBaseQT)
7446 return LHS;
7447 if (ResQT == RHSBaseQT)
7448 return RHS;
7449 }
7450 return QualType();
7451 }
7452
7453 //===----------------------------------------------------------------------===//
7454 // Integer Predicates
7455 //===----------------------------------------------------------------------===//
7456
getIntWidth(QualType T) const7457 unsigned ASTContext::getIntWidth(QualType T) const {
7458 if (const EnumType *ET = dyn_cast<EnumType>(T))
7459 T = ET->getDecl()->getIntegerType();
7460 if (T->isBooleanType())
7461 return 1;
7462 // For builtin types, just use the standard type sizing method
7463 return (unsigned)getTypeSize(T);
7464 }
7465
getCorrespondingUnsignedType(QualType T) const7466 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7467 assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7468
7469 // Turn <4 x signed int> -> <4 x unsigned int>
7470 if (const VectorType *VTy = T->getAs<VectorType>())
7471 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7472 VTy->getNumElements(), VTy->getVectorKind());
7473
7474 // For enums, we return the unsigned version of the base type.
7475 if (const EnumType *ETy = T->getAs<EnumType>())
7476 T = ETy->getDecl()->getIntegerType();
7477
7478 const BuiltinType *BTy = T->getAs<BuiltinType>();
7479 assert(BTy && "Unexpected signed integer type");
7480 switch (BTy->getKind()) {
7481 case BuiltinType::Char_S:
7482 case BuiltinType::SChar:
7483 return UnsignedCharTy;
7484 case BuiltinType::Short:
7485 return UnsignedShortTy;
7486 case BuiltinType::Int:
7487 return UnsignedIntTy;
7488 case BuiltinType::Long:
7489 return UnsignedLongTy;
7490 case BuiltinType::LongLong:
7491 return UnsignedLongLongTy;
7492 case BuiltinType::Int128:
7493 return UnsignedInt128Ty;
7494 default:
7495 llvm_unreachable("Unexpected signed integer type");
7496 }
7497 }
7498
~ASTMutationListener()7499 ASTMutationListener::~ASTMutationListener() { }
7500
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)7501 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7502 QualType ReturnType) {}
7503
7504 //===----------------------------------------------------------------------===//
7505 // Builtin Type Computation
7506 //===----------------------------------------------------------------------===//
7507
7508 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7509 /// pointer over the consumed characters. This returns the resultant type. If
7510 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7511 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
7512 /// a vector of "i*".
7513 ///
7514 /// RequiresICE is filled in on return to indicate whether the value is required
7515 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7516 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7517 ASTContext::GetBuiltinTypeError &Error,
7518 bool &RequiresICE,
7519 bool AllowTypeModifiers) {
7520 // Modifiers.
7521 int HowLong = 0;
7522 bool Signed = false, Unsigned = false;
7523 RequiresICE = false;
7524
7525 // Read the prefixed modifiers first.
7526 bool Done = false;
7527 while (!Done) {
7528 switch (*Str++) {
7529 default: Done = true; --Str; break;
7530 case 'I':
7531 RequiresICE = true;
7532 break;
7533 case 'S':
7534 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7535 assert(!Signed && "Can't use 'S' modifier multiple times!");
7536 Signed = true;
7537 break;
7538 case 'U':
7539 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7540 assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7541 Unsigned = true;
7542 break;
7543 case 'L':
7544 assert(HowLong <= 2 && "Can't have LLLL modifier");
7545 ++HowLong;
7546 break;
7547 }
7548 }
7549
7550 QualType Type;
7551
7552 // Read the base type.
7553 switch (*Str++) {
7554 default: llvm_unreachable("Unknown builtin type letter!");
7555 case 'v':
7556 assert(HowLong == 0 && !Signed && !Unsigned &&
7557 "Bad modifiers used with 'v'!");
7558 Type = Context.VoidTy;
7559 break;
7560 case 'f':
7561 assert(HowLong == 0 && !Signed && !Unsigned &&
7562 "Bad modifiers used with 'f'!");
7563 Type = Context.FloatTy;
7564 break;
7565 case 'd':
7566 assert(HowLong < 2 && !Signed && !Unsigned &&
7567 "Bad modifiers used with 'd'!");
7568 if (HowLong)
7569 Type = Context.LongDoubleTy;
7570 else
7571 Type = Context.DoubleTy;
7572 break;
7573 case 's':
7574 assert(HowLong == 0 && "Bad modifiers used with 's'!");
7575 if (Unsigned)
7576 Type = Context.UnsignedShortTy;
7577 else
7578 Type = Context.ShortTy;
7579 break;
7580 case 'i':
7581 if (HowLong == 3)
7582 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7583 else if (HowLong == 2)
7584 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7585 else if (HowLong == 1)
7586 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7587 else
7588 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7589 break;
7590 case 'c':
7591 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7592 if (Signed)
7593 Type = Context.SignedCharTy;
7594 else if (Unsigned)
7595 Type = Context.UnsignedCharTy;
7596 else
7597 Type = Context.CharTy;
7598 break;
7599 case 'b': // boolean
7600 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7601 Type = Context.BoolTy;
7602 break;
7603 case 'z': // size_t.
7604 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7605 Type = Context.getSizeType();
7606 break;
7607 case 'F':
7608 Type = Context.getCFConstantStringType();
7609 break;
7610 case 'G':
7611 Type = Context.getObjCIdType();
7612 break;
7613 case 'H':
7614 Type = Context.getObjCSelType();
7615 break;
7616 case 'M':
7617 Type = Context.getObjCSuperType();
7618 break;
7619 case 'a':
7620 Type = Context.getBuiltinVaListType();
7621 assert(!Type.isNull() && "builtin va list type not initialized!");
7622 break;
7623 case 'A':
7624 // This is a "reference" to a va_list; however, what exactly
7625 // this means depends on how va_list is defined. There are two
7626 // different kinds of va_list: ones passed by value, and ones
7627 // passed by reference. An example of a by-value va_list is
7628 // x86, where va_list is a char*. An example of by-ref va_list
7629 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7630 // we want this argument to be a char*&; for x86-64, we want
7631 // it to be a __va_list_tag*.
7632 Type = Context.getBuiltinVaListType();
7633 assert(!Type.isNull() && "builtin va list type not initialized!");
7634 if (Type->isArrayType())
7635 Type = Context.getArrayDecayedType(Type);
7636 else
7637 Type = Context.getLValueReferenceType(Type);
7638 break;
7639 case 'V': {
7640 char *End;
7641 unsigned NumElements = strtoul(Str, &End, 10);
7642 assert(End != Str && "Missing vector size");
7643 Str = End;
7644
7645 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7646 RequiresICE, false);
7647 assert(!RequiresICE && "Can't require vector ICE");
7648
7649 // TODO: No way to make AltiVec vectors in builtins yet.
7650 Type = Context.getVectorType(ElementType, NumElements,
7651 VectorType::GenericVector);
7652 break;
7653 }
7654 case 'E': {
7655 char *End;
7656
7657 unsigned NumElements = strtoul(Str, &End, 10);
7658 assert(End != Str && "Missing vector size");
7659
7660 Str = End;
7661
7662 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7663 false);
7664 Type = Context.getExtVectorType(ElementType, NumElements);
7665 break;
7666 }
7667 case 'X': {
7668 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7669 false);
7670 assert(!RequiresICE && "Can't require complex ICE");
7671 Type = Context.getComplexType(ElementType);
7672 break;
7673 }
7674 case 'Y' : {
7675 Type = Context.getPointerDiffType();
7676 break;
7677 }
7678 case 'P':
7679 Type = Context.getFILEType();
7680 if (Type.isNull()) {
7681 Error = ASTContext::GE_Missing_stdio;
7682 return QualType();
7683 }
7684 break;
7685 case 'J':
7686 if (Signed)
7687 Type = Context.getsigjmp_bufType();
7688 else
7689 Type = Context.getjmp_bufType();
7690
7691 if (Type.isNull()) {
7692 Error = ASTContext::GE_Missing_setjmp;
7693 return QualType();
7694 }
7695 break;
7696 case 'K':
7697 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7698 Type = Context.getucontext_tType();
7699
7700 if (Type.isNull()) {
7701 Error = ASTContext::GE_Missing_ucontext;
7702 return QualType();
7703 }
7704 break;
7705 case 'p':
7706 Type = Context.getProcessIDType();
7707 break;
7708 }
7709
7710 // If there are modifiers and if we're allowed to parse them, go for it.
7711 Done = !AllowTypeModifiers;
7712 while (!Done) {
7713 switch (char c = *Str++) {
7714 default: Done = true; --Str; break;
7715 case '*':
7716 case '&': {
7717 // Both pointers and references can have their pointee types
7718 // qualified with an address space.
7719 char *End;
7720 unsigned AddrSpace = strtoul(Str, &End, 10);
7721 if (End != Str && AddrSpace != 0) {
7722 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7723 Str = End;
7724 }
7725 if (c == '*')
7726 Type = Context.getPointerType(Type);
7727 else
7728 Type = Context.getLValueReferenceType(Type);
7729 break;
7730 }
7731 // FIXME: There's no way to have a built-in with an rvalue ref arg.
7732 case 'C':
7733 Type = Type.withConst();
7734 break;
7735 case 'D':
7736 Type = Context.getVolatileType(Type);
7737 break;
7738 case 'R':
7739 Type = Type.withRestrict();
7740 break;
7741 }
7742 }
7743
7744 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7745 "Integer constant 'I' type must be an integer");
7746
7747 return Type;
7748 }
7749
7750 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const7751 QualType ASTContext::GetBuiltinType(unsigned Id,
7752 GetBuiltinTypeError &Error,
7753 unsigned *IntegerConstantArgs) const {
7754 const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7755
7756 SmallVector<QualType, 8> ArgTypes;
7757
7758 bool RequiresICE = false;
7759 Error = GE_None;
7760 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7761 RequiresICE, true);
7762 if (Error != GE_None)
7763 return QualType();
7764
7765 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7766
7767 while (TypeStr[0] && TypeStr[0] != '.') {
7768 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7769 if (Error != GE_None)
7770 return QualType();
7771
7772 // If this argument is required to be an IntegerConstantExpression and the
7773 // caller cares, fill in the bitmask we return.
7774 if (RequiresICE && IntegerConstantArgs)
7775 *IntegerConstantArgs |= 1 << ArgTypes.size();
7776
7777 // Do array -> pointer decay. The builtin should use the decayed type.
7778 if (Ty->isArrayType())
7779 Ty = getArrayDecayedType(Ty);
7780
7781 ArgTypes.push_back(Ty);
7782 }
7783
7784 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7785 "'.' should only occur at end of builtin type list!");
7786
7787 FunctionType::ExtInfo EI;
7788 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7789
7790 bool Variadic = (TypeStr[0] == '.');
7791
7792 // We really shouldn't be making a no-proto type here, especially in C++.
7793 if (ArgTypes.empty() && Variadic)
7794 return getFunctionNoProtoType(ResType, EI);
7795
7796 FunctionProtoType::ExtProtoInfo EPI;
7797 EPI.ExtInfo = EI;
7798 EPI.Variadic = Variadic;
7799
7800 return getFunctionType(ResType, ArgTypes, EPI);
7801 }
7802
GetGVALinkageForFunction(const FunctionDecl * FD)7803 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7804 if (!FD->isExternallyVisible())
7805 return GVA_Internal;
7806
7807 GVALinkage External = GVA_StrongExternal;
7808 switch (FD->getTemplateSpecializationKind()) {
7809 case TSK_Undeclared:
7810 case TSK_ExplicitSpecialization:
7811 External = GVA_StrongExternal;
7812 break;
7813
7814 case TSK_ExplicitInstantiationDefinition:
7815 return GVA_ExplicitTemplateInstantiation;
7816
7817 case TSK_ExplicitInstantiationDeclaration:
7818 case TSK_ImplicitInstantiation:
7819 External = GVA_TemplateInstantiation;
7820 break;
7821 }
7822
7823 if (!FD->isInlined())
7824 return External;
7825
7826 if ((!getLangOpts().CPlusPlus && !getLangOpts().MicrosoftMode) ||
7827 FD->hasAttr<GNUInlineAttr>()) {
7828 // GNU or C99 inline semantics. Determine whether this symbol should be
7829 // externally visible.
7830 if (FD->isInlineDefinitionExternallyVisible())
7831 return External;
7832
7833 // C99 inline semantics, where the symbol is not externally visible.
7834 return GVA_C99Inline;
7835 }
7836
7837 // C++0x [temp.explicit]p9:
7838 // [ Note: The intent is that an inline function that is the subject of
7839 // an explicit instantiation declaration will still be implicitly
7840 // instantiated when used so that the body can be considered for
7841 // inlining, but that no out-of-line copy of the inline function would be
7842 // generated in the translation unit. -- end note ]
7843 if (FD->getTemplateSpecializationKind()
7844 == TSK_ExplicitInstantiationDeclaration)
7845 return GVA_C99Inline;
7846
7847 return GVA_CXXInline;
7848 }
7849
GetGVALinkageForVariable(const VarDecl * VD)7850 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7851 if (!VD->isExternallyVisible())
7852 return GVA_Internal;
7853
7854 // If this is a static data member, compute the kind of template
7855 // specialization. Otherwise, this variable is not part of a
7856 // template.
7857 TemplateSpecializationKind TSK = TSK_Undeclared;
7858 if (VD->isStaticDataMember())
7859 TSK = VD->getTemplateSpecializationKind();
7860
7861 switch (TSK) {
7862 case TSK_Undeclared:
7863 case TSK_ExplicitSpecialization:
7864 return GVA_StrongExternal;
7865
7866 case TSK_ExplicitInstantiationDeclaration:
7867 llvm_unreachable("Variable should not be instantiated");
7868 // Fall through to treat this like any other instantiation.
7869
7870 case TSK_ExplicitInstantiationDefinition:
7871 return GVA_ExplicitTemplateInstantiation;
7872
7873 case TSK_ImplicitInstantiation:
7874 return GVA_TemplateInstantiation;
7875 }
7876
7877 llvm_unreachable("Invalid Linkage!");
7878 }
7879
DeclMustBeEmitted(const Decl * D)7880 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7881 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7882 if (!VD->isFileVarDecl())
7883 return false;
7884 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7885 // We never need to emit an uninstantiated function template.
7886 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7887 return false;
7888 } else
7889 return false;
7890
7891 // If this is a member of a class template, we do not need to emit it.
7892 if (D->getDeclContext()->isDependentContext())
7893 return false;
7894
7895 // Weak references don't produce any output by themselves.
7896 if (D->hasAttr<WeakRefAttr>())
7897 return false;
7898
7899 // Aliases and used decls are required.
7900 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7901 return true;
7902
7903 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7904 // Forward declarations aren't required.
7905 if (!FD->doesThisDeclarationHaveABody())
7906 return FD->doesDeclarationForceExternallyVisibleDefinition();
7907
7908 // Constructors and destructors are required.
7909 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7910 return true;
7911
7912 // The key function for a class is required. This rule only comes
7913 // into play when inline functions can be key functions, though.
7914 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7915 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7916 const CXXRecordDecl *RD = MD->getParent();
7917 if (MD->isOutOfLine() && RD->isDynamicClass()) {
7918 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7919 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7920 return true;
7921 }
7922 }
7923 }
7924
7925 GVALinkage Linkage = GetGVALinkageForFunction(FD);
7926
7927 // static, static inline, always_inline, and extern inline functions can
7928 // always be deferred. Normal inline functions can be deferred in C99/C++.
7929 // Implicit template instantiations can also be deferred in C++.
7930 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
7931 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7932 return false;
7933 return true;
7934 }
7935
7936 const VarDecl *VD = cast<VarDecl>(D);
7937 assert(VD->isFileVarDecl() && "Expected file scoped var");
7938
7939 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7940 return false;
7941
7942 // Variables that can be needed in other TUs are required.
7943 GVALinkage L = GetGVALinkageForVariable(VD);
7944 if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7945 return true;
7946
7947 // Variables that have destruction with side-effects are required.
7948 if (VD->getType().isDestructedType())
7949 return true;
7950
7951 // Variables that have initialization with side-effects are required.
7952 if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7953 return true;
7954
7955 return false;
7956 }
7957
getDefaultCXXMethodCallConv(bool isVariadic)7958 CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7959 // Pass through to the C++ ABI object
7960 return ABI->getDefaultMethodCallConv(isVariadic);
7961 }
7962
getCanonicalCallConv(CallingConv CC) const7963 CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7964 if (CC == CC_C && !LangOpts.MRTD &&
7965 getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7966 return CC_Default;
7967 return CC;
7968 }
7969
isNearlyEmpty(const CXXRecordDecl * RD) const7970 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7971 // Pass through to the C++ ABI object
7972 return ABI->isNearlyEmpty(RD);
7973 }
7974
createMangleContext()7975 MangleContext *ASTContext::createMangleContext() {
7976 switch (Target->getCXXABI().getKind()) {
7977 case TargetCXXABI::GenericAArch64:
7978 case TargetCXXABI::GenericItanium:
7979 case TargetCXXABI::GenericARM:
7980 case TargetCXXABI::iOS:
7981 return createItaniumMangleContext(*this, getDiagnostics());
7982 case TargetCXXABI::Microsoft:
7983 return createMicrosoftMangleContext(*this, getDiagnostics());
7984 }
7985 llvm_unreachable("Unsupported ABI");
7986 }
7987
~CXXABI()7988 CXXABI::~CXXABI() {}
7989
getSideTableAllocatedMemory() const7990 size_t ASTContext::getSideTableAllocatedMemory() const {
7991 return ASTRecordLayouts.getMemorySize() +
7992 llvm::capacity_in_bytes(ObjCLayouts) +
7993 llvm::capacity_in_bytes(KeyFunctions) +
7994 llvm::capacity_in_bytes(ObjCImpls) +
7995 llvm::capacity_in_bytes(BlockVarCopyInits) +
7996 llvm::capacity_in_bytes(DeclAttrs) +
7997 llvm::capacity_in_bytes(TemplateOrInstantiation) +
7998 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
7999 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8000 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8001 llvm::capacity_in_bytes(OverriddenMethods) +
8002 llvm::capacity_in_bytes(Types) +
8003 llvm::capacity_in_bytes(VariableArrayTypes) +
8004 llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8005 }
8006
setManglingNumber(const NamedDecl * ND,unsigned Number)8007 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8008 if (Number > 1)
8009 MangleNumbers[ND] = Number;
8010 }
8011
getManglingNumber(const NamedDecl * ND) const8012 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8013 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8014 MangleNumbers.find(ND);
8015 return I != MangleNumbers.end() ? I->second : 1;
8016 }
8017
8018 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)8019 ASTContext::getManglingNumberContext(const DeclContext *DC) {
8020 return MangleNumberingContexts[DC];
8021 }
8022
setParameterIndex(const ParmVarDecl * D,unsigned int index)8023 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8024 ParamIndices[D] = index;
8025 }
8026
getParameterIndex(const ParmVarDecl * D) const8027 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8028 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8029 assert(I != ParamIndices.end() &&
8030 "ParmIndices lacks entry set by ParmVarDecl");
8031 return I->second;
8032 }
8033
8034 APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)8035 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8036 bool MayCreate) {
8037 assert(E && E->getStorageDuration() == SD_Static &&
8038 "don't need to cache the computed value for this temporary");
8039 if (MayCreate)
8040 return &MaterializedTemporaryValues[E];
8041
8042 llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8043 MaterializedTemporaryValues.find(E);
8044 return I == MaterializedTemporaryValues.end() ? 0 : &I->second;
8045 }
8046
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const8047 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8048 const llvm::Triple &T = getTargetInfo().getTriple();
8049 if (!T.isOSDarwin())
8050 return false;
8051
8052 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8053 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8054 uint64_t Size = sizeChars.getQuantity();
8055 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8056 unsigned Align = alignChars.getQuantity();
8057 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8058 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8059 }
8060
8061 namespace {
8062
8063 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8064 /// parents as defined by the \c RecursiveASTVisitor.
8065 ///
8066 /// Note that the relationship described here is purely in terms of AST
8067 /// traversal - there are other relationships (for example declaration context)
8068 /// in the AST that are better modeled by special matchers.
8069 ///
8070 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8071 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8072
8073 public:
8074 /// \brief Builds and returns the translation unit's parent map.
8075 ///
8076 /// The caller takes ownership of the returned \c ParentMap.
buildMap(TranslationUnitDecl & TU)8077 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8078 ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8079 Visitor.TraverseDecl(&TU);
8080 return Visitor.Parents;
8081 }
8082
8083 private:
8084 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8085
ParentMapASTVisitor(ASTContext::ParentMap * Parents)8086 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8087 }
8088
shouldVisitTemplateInstantiations() const8089 bool shouldVisitTemplateInstantiations() const {
8090 return true;
8091 }
shouldVisitImplicitCode() const8092 bool shouldVisitImplicitCode() const {
8093 return true;
8094 }
8095 // Disables data recursion. We intercept Traverse* methods in the RAV, which
8096 // are not triggered during data recursion.
shouldUseDataRecursionFor(clang::Stmt * S) const8097 bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8098 return false;
8099 }
8100
8101 template <typename T>
TraverseNode(T * Node,bool (VisitorBase::* traverse)(T *))8102 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8103 if (Node == NULL)
8104 return true;
8105 if (ParentStack.size() > 0)
8106 // FIXME: Currently we add the same parent multiple times, for example
8107 // when we visit all subexpressions of template instantiations; this is
8108 // suboptimal, bug benign: the only way to visit those is with
8109 // hasAncestor / hasParent, and those do not create new matches.
8110 // The plan is to enable DynTypedNode to be storable in a map or hash
8111 // map. The main problem there is to implement hash functions /
8112 // comparison operators for all types that DynTypedNode supports that
8113 // do not have pointer identity.
8114 (*Parents)[Node].push_back(ParentStack.back());
8115 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8116 bool Result = (this ->* traverse) (Node);
8117 ParentStack.pop_back();
8118 return Result;
8119 }
8120
TraverseDecl(Decl * DeclNode)8121 bool TraverseDecl(Decl *DeclNode) {
8122 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8123 }
8124
TraverseStmt(Stmt * StmtNode)8125 bool TraverseStmt(Stmt *StmtNode) {
8126 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8127 }
8128
8129 ASTContext::ParentMap *Parents;
8130 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8131
8132 friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8133 };
8134
8135 } // end namespace
8136
8137 ASTContext::ParentVector
getParents(const ast_type_traits::DynTypedNode & Node)8138 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8139 assert(Node.getMemoizationData() &&
8140 "Invariant broken: only nodes that support memoization may be "
8141 "used in the parent map.");
8142 if (!AllParents) {
8143 // We always need to run over the whole translation unit, as
8144 // hasAncestor can escape any subtree.
8145 AllParents.reset(
8146 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8147 }
8148 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8149 if (I == AllParents->end()) {
8150 return ParentVector();
8151 }
8152 return I->second;
8153 }
8154
8155 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)8156 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8157 const ObjCMethodDecl *MethodImpl) {
8158 // No point trying to match an unavailable/deprecated mothod.
8159 if (MethodDecl->hasAttr<UnavailableAttr>()
8160 || MethodDecl->hasAttr<DeprecatedAttr>())
8161 return false;
8162 if (MethodDecl->getObjCDeclQualifier() !=
8163 MethodImpl->getObjCDeclQualifier())
8164 return false;
8165 if (!hasSameType(MethodDecl->getResultType(),
8166 MethodImpl->getResultType()))
8167 return false;
8168
8169 if (MethodDecl->param_size() != MethodImpl->param_size())
8170 return false;
8171
8172 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8173 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8174 EF = MethodDecl->param_end();
8175 IM != EM && IF != EF; ++IM, ++IF) {
8176 const ParmVarDecl *DeclVar = (*IF);
8177 const ParmVarDecl *ImplVar = (*IM);
8178 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8179 return false;
8180 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8181 return false;
8182 }
8183 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8184
8185 }
8186