1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main file (entry points) for the TSan run-time.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 #include "tsan_symbolize.h"
27
28 volatile int __tsan_resumed = 0;
29
__tsan_resume()30 extern "C" void __tsan_resume() {
31 __tsan_resumed = 1;
32 }
33
34 namespace __tsan {
35
36 #ifndef TSAN_GO
37 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
38 #endif
39 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
40
41 // Can be overriden by a front-end.
OnFinalize(bool failed)42 bool CPP_WEAK OnFinalize(bool failed) {
43 return failed;
44 }
45
46 static Context *ctx;
CTX()47 Context *CTX() {
48 return ctx;
49 }
50
51 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
52
CreateThreadContext(u32 tid)53 static ThreadContextBase *CreateThreadContext(u32 tid) {
54 // Map thread trace when context is created.
55 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
56 MapThreadTrace(GetThreadTraceHeader(tid), sizeof(Trace));
57 new(ThreadTrace(tid)) Trace();
58 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
59 return new(mem) ThreadContext(tid);
60 }
61
62 #ifndef TSAN_GO
63 static const u32 kThreadQuarantineSize = 16;
64 #else
65 static const u32 kThreadQuarantineSize = 64;
66 #endif
67
Context()68 Context::Context()
69 : initialized()
70 , report_mtx(MutexTypeReport, StatMtxReport)
71 , nreported()
72 , nmissed_expected()
73 , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
74 CreateThreadContext, kMaxTid, kThreadQuarantineSize))
75 , racy_stacks(MBlockRacyStacks)
76 , racy_addresses(MBlockRacyAddresses)
77 , fired_suppressions(8) {
78 }
79
80 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,int tid,int unique_id,u64 epoch,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)81 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
82 uptr stk_addr, uptr stk_size,
83 uptr tls_addr, uptr tls_size)
84 : fast_state(tid, epoch)
85 // Do not touch these, rely on zero initialization,
86 // they may be accessed before the ctor.
87 // , ignore_reads_and_writes()
88 // , in_rtl()
89 , shadow_stack_pos(&shadow_stack[0])
90 #ifndef TSAN_GO
91 , jmp_bufs(MBlockJmpBuf)
92 #endif
93 , tid(tid)
94 , unique_id(unique_id)
95 , stk_addr(stk_addr)
96 , stk_size(stk_size)
97 , tls_addr(tls_addr)
98 , tls_size(tls_size) {
99 }
100
MemoryProfiler(Context * ctx,fd_t fd,int i)101 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
102 uptr n_threads;
103 uptr n_running_threads;
104 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
105 InternalScopedBuffer<char> buf(4096);
106 internal_snprintf(buf.data(), buf.size(), "%d: nthr=%d nlive=%d\n",
107 i, n_threads, n_running_threads);
108 internal_write(fd, buf.data(), internal_strlen(buf.data()));
109 WriteMemoryProfile(buf.data(), buf.size());
110 internal_write(fd, buf.data(), internal_strlen(buf.data()));
111 }
112
BackgroundThread(void * arg)113 static void BackgroundThread(void *arg) {
114 ScopedInRtl in_rtl;
115 Context *ctx = CTX();
116 const u64 kMs2Ns = 1000 * 1000;
117
118 fd_t mprof_fd = kInvalidFd;
119 if (flags()->profile_memory && flags()->profile_memory[0]) {
120 InternalScopedBuffer<char> filename(4096);
121 internal_snprintf(filename.data(), filename.size(), "%s.%d",
122 flags()->profile_memory, (int)internal_getpid());
123 uptr openrv = OpenFile(filename.data(), true);
124 if (internal_iserror(openrv)) {
125 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
126 &filename[0]);
127 } else {
128 mprof_fd = openrv;
129 }
130 }
131
132 u64 last_flush = NanoTime();
133 for (int i = 0; ; i++) {
134 SleepForSeconds(1);
135 u64 now = NanoTime();
136
137 // Flush memory if requested.
138 if (flags()->flush_memory_ms) {
139 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
140 FlushShadowMemory();
141 last_flush = NanoTime();
142 }
143 }
144
145 // Write memory profile if requested.
146 if (mprof_fd != kInvalidFd)
147 MemoryProfiler(ctx, mprof_fd, i);
148
149 #ifndef TSAN_GO
150 // Flush symbolizer cache if requested.
151 if (flags()->flush_symbolizer_ms > 0) {
152 u64 last = atomic_load(&ctx->last_symbolize_time_ns,
153 memory_order_relaxed);
154 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
155 Lock l(&ctx->report_mtx);
156 SpinMutexLock l2(&CommonSanitizerReportMutex);
157 SymbolizeFlush();
158 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
159 }
160 }
161 #endif
162 }
163 }
164
DontNeedShadowFor(uptr addr,uptr size)165 void DontNeedShadowFor(uptr addr, uptr size) {
166 uptr shadow_beg = MemToShadow(addr);
167 uptr shadow_end = MemToShadow(addr + size);
168 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
169 }
170
MapShadow(uptr addr,uptr size)171 void MapShadow(uptr addr, uptr size) {
172 MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
173 }
174
MapThreadTrace(uptr addr,uptr size)175 void MapThreadTrace(uptr addr, uptr size) {
176 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
177 CHECK_GE(addr, kTraceMemBegin);
178 CHECK_LE(addr + size, kTraceMemBegin + kTraceMemSize);
179 if (addr != (uptr)MmapFixedNoReserve(addr, size)) {
180 Printf("FATAL: ThreadSanitizer can not mmap thread trace\n");
181 Die();
182 }
183 }
184
Initialize(ThreadState * thr)185 void Initialize(ThreadState *thr) {
186 // Thread safe because done before all threads exist.
187 static bool is_initialized = false;
188 if (is_initialized)
189 return;
190 is_initialized = true;
191 SanitizerToolName = "ThreadSanitizer";
192 // Install tool-specific callbacks in sanitizer_common.
193 SetCheckFailedCallback(TsanCheckFailed);
194
195 ScopedInRtl in_rtl;
196 #ifndef TSAN_GO
197 InitializeAllocator();
198 #endif
199 InitializeInterceptors();
200 const char *env = InitializePlatform();
201 InitializeMutex();
202 InitializeDynamicAnnotations();
203 ctx = new(ctx_placeholder) Context;
204 #ifndef TSAN_GO
205 InitializeShadowMemory();
206 #endif
207 InitializeFlags(&ctx->flags, env);
208 // Setup correct file descriptor for error reports.
209 if (internal_strcmp(flags()->log_path, "stdout") == 0)
210 __sanitizer_set_report_fd(kStdoutFd);
211 else if (internal_strcmp(flags()->log_path, "stderr") == 0)
212 __sanitizer_set_report_fd(kStderrFd);
213 else
214 __sanitizer_set_report_path(flags()->log_path);
215 InitializeSuppressions();
216 #ifndef TSAN_GO
217 // Initialize external symbolizer before internal threads are started.
218 const char *external_symbolizer = flags()->external_symbolizer_path;
219 if (external_symbolizer != 0 && external_symbolizer[0] != '\0') {
220 if (!InitializeExternalSymbolizer(external_symbolizer)) {
221 Printf("Failed to start external symbolizer: '%s'\n",
222 external_symbolizer);
223 Die();
224 }
225 }
226 #endif
227 internal_start_thread(&BackgroundThread, 0);
228
229 if (ctx->flags.verbosity)
230 Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n",
231 (int)internal_getpid());
232
233 // Initialize thread 0.
234 int tid = ThreadCreate(thr, 0, 0, true);
235 CHECK_EQ(tid, 0);
236 ThreadStart(thr, tid, internal_getpid());
237 CHECK_EQ(thr->in_rtl, 1);
238 ctx->initialized = true;
239
240 if (flags()->stop_on_start) {
241 Printf("ThreadSanitizer is suspended at startup (pid %d)."
242 " Call __tsan_resume().\n",
243 (int)internal_getpid());
244 while (__tsan_resumed == 0) {}
245 }
246 }
247
Finalize(ThreadState * thr)248 int Finalize(ThreadState *thr) {
249 ScopedInRtl in_rtl;
250 Context *ctx = __tsan::ctx;
251 bool failed = false;
252
253 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
254 SleepForMillis(flags()->atexit_sleep_ms);
255
256 // Wait for pending reports.
257 ctx->report_mtx.Lock();
258 CommonSanitizerReportMutex.Lock();
259 CommonSanitizerReportMutex.Unlock();
260 ctx->report_mtx.Unlock();
261
262 #ifndef TSAN_GO
263 if (ctx->flags.verbosity)
264 AllocatorPrintStats();
265 #endif
266
267 ThreadFinalize(thr);
268
269 if (ctx->nreported) {
270 failed = true;
271 #ifndef TSAN_GO
272 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
273 #else
274 Printf("Found %d data race(s)\n", ctx->nreported);
275 #endif
276 }
277
278 if (ctx->nmissed_expected) {
279 failed = true;
280 Printf("ThreadSanitizer: missed %d expected races\n",
281 ctx->nmissed_expected);
282 }
283
284 if (flags()->print_suppressions)
285 PrintMatchedSuppressions();
286 #ifndef TSAN_GO
287 if (flags()->print_benign)
288 PrintMatchedBenignRaces();
289 #endif
290
291 failed = OnFinalize(failed);
292
293 StatAggregate(ctx->stat, thr->stat);
294 StatOutput(ctx->stat);
295 return failed ? flags()->exitcode : 0;
296 }
297
298 #ifndef TSAN_GO
CurrentStackId(ThreadState * thr,uptr pc)299 u32 CurrentStackId(ThreadState *thr, uptr pc) {
300 if (thr->shadow_stack_pos == 0) // May happen during bootstrap.
301 return 0;
302 if (pc) {
303 thr->shadow_stack_pos[0] = pc;
304 thr->shadow_stack_pos++;
305 }
306 u32 id = StackDepotPut(thr->shadow_stack,
307 thr->shadow_stack_pos - thr->shadow_stack);
308 if (pc)
309 thr->shadow_stack_pos--;
310 return id;
311 }
312 #endif
313
TraceSwitch(ThreadState * thr)314 void TraceSwitch(ThreadState *thr) {
315 thr->nomalloc++;
316 ScopedInRtl in_rtl;
317 Trace *thr_trace = ThreadTrace(thr->tid);
318 Lock l(&thr_trace->mtx);
319 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
320 TraceHeader *hdr = &thr_trace->headers[trace];
321 hdr->epoch0 = thr->fast_state.epoch();
322 hdr->stack0.ObtainCurrent(thr, 0);
323 hdr->mset0 = thr->mset;
324 thr->nomalloc--;
325 }
326
ThreadTrace(int tid)327 Trace *ThreadTrace(int tid) {
328 return (Trace*)GetThreadTraceHeader(tid);
329 }
330
TraceTopPC(ThreadState * thr)331 uptr TraceTopPC(ThreadState *thr) {
332 Event *events = (Event*)GetThreadTrace(thr->tid);
333 uptr pc = events[thr->fast_state.GetTracePos()];
334 return pc;
335 }
336
TraceSize()337 uptr TraceSize() {
338 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
339 }
340
TraceParts()341 uptr TraceParts() {
342 return TraceSize() / kTracePartSize;
343 }
344
345 #ifndef TSAN_GO
__tsan_trace_switch()346 extern "C" void __tsan_trace_switch() {
347 TraceSwitch(cur_thread());
348 }
349
__tsan_report_race()350 extern "C" void __tsan_report_race() {
351 ReportRace(cur_thread());
352 }
353 #endif
354
355 ALWAYS_INLINE
LoadShadow(u64 * p)356 Shadow LoadShadow(u64 *p) {
357 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
358 return Shadow(raw);
359 }
360
361 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)362 void StoreShadow(u64 *sp, u64 s) {
363 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
364 }
365
366 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)367 void StoreIfNotYetStored(u64 *sp, u64 *s) {
368 StoreShadow(sp, *s);
369 *s = 0;
370 }
371
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)372 static inline void HandleRace(ThreadState *thr, u64 *shadow_mem,
373 Shadow cur, Shadow old) {
374 thr->racy_state[0] = cur.raw();
375 thr->racy_state[1] = old.raw();
376 thr->racy_shadow_addr = shadow_mem;
377 #ifndef TSAN_GO
378 HACKY_CALL(__tsan_report_race);
379 #else
380 ReportRace(thr);
381 #endif
382 }
383
OldIsInSameSynchEpoch(Shadow old,ThreadState * thr)384 static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) {
385 return old.epoch() >= thr->fast_synch_epoch;
386 }
387
HappensBefore(Shadow old,ThreadState * thr)388 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
389 return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
390 }
391
392 ALWAYS_INLINE USED
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)393 void MemoryAccessImpl(ThreadState *thr, uptr addr,
394 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
395 u64 *shadow_mem, Shadow cur) {
396 StatInc(thr, StatMop);
397 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
398 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
399
400 // This potentially can live in an MMX/SSE scratch register.
401 // The required intrinsics are:
402 // __m128i _mm_move_epi64(__m128i*);
403 // _mm_storel_epi64(u64*, __m128i);
404 u64 store_word = cur.raw();
405
406 // scan all the shadow values and dispatch to 4 categories:
407 // same, replace, candidate and race (see comments below).
408 // we consider only 3 cases regarding access sizes:
409 // equal, intersect and not intersect. initially I considered
410 // larger and smaller as well, it allowed to replace some
411 // 'candidates' with 'same' or 'replace', but I think
412 // it's just not worth it (performance- and complexity-wise).
413
414 Shadow old(0);
415 if (kShadowCnt == 1) {
416 int idx = 0;
417 #include "tsan_update_shadow_word_inl.h"
418 } else if (kShadowCnt == 2) {
419 int idx = 0;
420 #include "tsan_update_shadow_word_inl.h"
421 idx = 1;
422 #include "tsan_update_shadow_word_inl.h"
423 } else if (kShadowCnt == 4) {
424 int idx = 0;
425 #include "tsan_update_shadow_word_inl.h"
426 idx = 1;
427 #include "tsan_update_shadow_word_inl.h"
428 idx = 2;
429 #include "tsan_update_shadow_word_inl.h"
430 idx = 3;
431 #include "tsan_update_shadow_word_inl.h"
432 } else if (kShadowCnt == 8) {
433 int idx = 0;
434 #include "tsan_update_shadow_word_inl.h"
435 idx = 1;
436 #include "tsan_update_shadow_word_inl.h"
437 idx = 2;
438 #include "tsan_update_shadow_word_inl.h"
439 idx = 3;
440 #include "tsan_update_shadow_word_inl.h"
441 idx = 4;
442 #include "tsan_update_shadow_word_inl.h"
443 idx = 5;
444 #include "tsan_update_shadow_word_inl.h"
445 idx = 6;
446 #include "tsan_update_shadow_word_inl.h"
447 idx = 7;
448 #include "tsan_update_shadow_word_inl.h"
449 } else {
450 CHECK(false);
451 }
452
453 // we did not find any races and had already stored
454 // the current access info, so we are done
455 if (LIKELY(store_word == 0))
456 return;
457 // choose a random candidate slot and replace it
458 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
459 StatInc(thr, StatShadowReplace);
460 return;
461 RACE:
462 HandleRace(thr, shadow_mem, cur, old);
463 return;
464 }
465
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,int size,bool kAccessIsWrite,bool kIsAtomic)466 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
467 int size, bool kAccessIsWrite, bool kIsAtomic) {
468 while (size) {
469 int size1 = 1;
470 int kAccessSizeLog = kSizeLog1;
471 if (size >= 8 && (addr & ~7) == ((addr + 8) & ~7)) {
472 size1 = 8;
473 kAccessSizeLog = kSizeLog8;
474 } else if (size >= 4 && (addr & ~7) == ((addr + 4) & ~7)) {
475 size1 = 4;
476 kAccessSizeLog = kSizeLog4;
477 } else if (size >= 2 && (addr & ~7) == ((addr + 2) & ~7)) {
478 size1 = 2;
479 kAccessSizeLog = kSizeLog2;
480 }
481 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
482 addr += size1;
483 size -= size1;
484 }
485 }
486
487 ALWAYS_INLINE USED
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)488 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
489 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
490 u64 *shadow_mem = (u64*)MemToShadow(addr);
491 DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
492 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
493 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
494 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
495 (uptr)shadow_mem[0], (uptr)shadow_mem[1],
496 (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
497 #if TSAN_DEBUG
498 if (!IsAppMem(addr)) {
499 Printf("Access to non app mem %zx\n", addr);
500 DCHECK(IsAppMem(addr));
501 }
502 if (!IsShadowMem((uptr)shadow_mem)) {
503 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
504 DCHECK(IsShadowMem((uptr)shadow_mem));
505 }
506 #endif
507
508 if (*shadow_mem == kShadowRodata) {
509 // Access to .rodata section, no races here.
510 // Measurements show that it can be 10-20% of all memory accesses.
511 StatInc(thr, StatMop);
512 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
513 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
514 StatInc(thr, StatMopRodata);
515 return;
516 }
517
518 FastState fast_state = thr->fast_state;
519 if (fast_state.GetIgnoreBit())
520 return;
521 fast_state.IncrementEpoch();
522 thr->fast_state = fast_state;
523 Shadow cur(fast_state);
524 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
525 cur.SetWrite(kAccessIsWrite);
526 cur.SetAtomic(kIsAtomic);
527
528 // We must not store to the trace if we do not store to the shadow.
529 // That is, this call must be moved somewhere below.
530 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
531
532 MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
533 shadow_mem, cur);
534 }
535
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)536 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
537 u64 val) {
538 (void)thr;
539 (void)pc;
540 if (size == 0)
541 return;
542 // FIXME: fix me.
543 uptr offset = addr % kShadowCell;
544 if (offset) {
545 offset = kShadowCell - offset;
546 if (size <= offset)
547 return;
548 addr += offset;
549 size -= offset;
550 }
551 DCHECK_EQ(addr % 8, 0);
552 // If a user passes some insane arguments (memset(0)),
553 // let it just crash as usual.
554 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
555 return;
556 // Don't want to touch lots of shadow memory.
557 // If a program maps 10MB stack, there is no need reset the whole range.
558 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
559 // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
560 // so we do it only for C/C++.
561 if (kGoMode || size < 64*1024) {
562 u64 *p = (u64*)MemToShadow(addr);
563 CHECK(IsShadowMem((uptr)p));
564 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
565 // FIXME: may overwrite a part outside the region
566 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
567 p[i++] = val;
568 for (uptr j = 1; j < kShadowCnt; j++)
569 p[i++] = 0;
570 }
571 } else {
572 // The region is big, reset only beginning and end.
573 const uptr kPageSize = 4096;
574 u64 *begin = (u64*)MemToShadow(addr);
575 u64 *end = begin + size / kShadowCell * kShadowCnt;
576 u64 *p = begin;
577 // Set at least first kPageSize/2 to page boundary.
578 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
579 *p++ = val;
580 for (uptr j = 1; j < kShadowCnt; j++)
581 *p++ = 0;
582 }
583 // Reset middle part.
584 u64 *p1 = p;
585 p = RoundDown(end, kPageSize);
586 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
587 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
588 // Set the ending.
589 while (p < end) {
590 *p++ = val;
591 for (uptr j = 1; j < kShadowCnt; j++)
592 *p++ = 0;
593 }
594 }
595 }
596
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)597 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
598 MemoryRangeSet(thr, pc, addr, size, 0);
599 }
600
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)601 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
602 // Processing more than 1k (4k of shadow) is expensive,
603 // can cause excessive memory consumption (user does not necessary touch
604 // the whole range) and most likely unnecessary.
605 if (size > 1024)
606 size = 1024;
607 CHECK_EQ(thr->is_freeing, false);
608 thr->is_freeing = true;
609 MemoryAccessRange(thr, pc, addr, size, true);
610 thr->is_freeing = false;
611 thr->fast_state.IncrementEpoch();
612 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
613 Shadow s(thr->fast_state);
614 s.ClearIgnoreBit();
615 s.MarkAsFreed();
616 s.SetWrite(true);
617 s.SetAddr0AndSizeLog(0, 3);
618 MemoryRangeSet(thr, pc, addr, size, s.raw());
619 }
620
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)621 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
622 thr->fast_state.IncrementEpoch();
623 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
624 Shadow s(thr->fast_state);
625 s.ClearIgnoreBit();
626 s.SetWrite(true);
627 s.SetAddr0AndSizeLog(0, 3);
628 MemoryRangeSet(thr, pc, addr, size, s.raw());
629 }
630
631 ALWAYS_INLINE USED
FuncEntry(ThreadState * thr,uptr pc)632 void FuncEntry(ThreadState *thr, uptr pc) {
633 DCHECK_EQ(thr->in_rtl, 0);
634 StatInc(thr, StatFuncEnter);
635 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
636 thr->fast_state.IncrementEpoch();
637 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
638
639 // Shadow stack maintenance can be replaced with
640 // stack unwinding during trace switch (which presumably must be faster).
641 DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]);
642 #ifndef TSAN_GO
643 DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
644 #else
645 if (thr->shadow_stack_pos == thr->shadow_stack_end) {
646 const int sz = thr->shadow_stack_end - thr->shadow_stack;
647 const int newsz = 2 * sz;
648 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
649 newsz * sizeof(uptr));
650 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
651 internal_free(thr->shadow_stack);
652 thr->shadow_stack = newstack;
653 thr->shadow_stack_pos = newstack + sz;
654 thr->shadow_stack_end = newstack + newsz;
655 }
656 #endif
657 thr->shadow_stack_pos[0] = pc;
658 thr->shadow_stack_pos++;
659 }
660
661 ALWAYS_INLINE USED
FuncExit(ThreadState * thr)662 void FuncExit(ThreadState *thr) {
663 DCHECK_EQ(thr->in_rtl, 0);
664 StatInc(thr, StatFuncExit);
665 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
666 thr->fast_state.IncrementEpoch();
667 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
668
669 DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]);
670 #ifndef TSAN_GO
671 DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
672 #endif
673 thr->shadow_stack_pos--;
674 }
675
IgnoreCtl(ThreadState * thr,bool write,bool begin)676 void IgnoreCtl(ThreadState *thr, bool write, bool begin) {
677 DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin);
678 thr->ignore_reads_and_writes += begin ? 1 : -1;
679 CHECK_GE(thr->ignore_reads_and_writes, 0);
680 if (thr->ignore_reads_and_writes)
681 thr->fast_state.SetIgnoreBit();
682 else
683 thr->fast_state.ClearIgnoreBit();
684 }
685
operator ==(const MD5Hash & other) const686 bool MD5Hash::operator==(const MD5Hash &other) const {
687 return hash[0] == other.hash[0] && hash[1] == other.hash[1];
688 }
689
690 #if TSAN_DEBUG
build_consistency_debug()691 void build_consistency_debug() {}
692 #else
build_consistency_release()693 void build_consistency_release() {}
694 #endif
695
696 #if TSAN_COLLECT_STATS
build_consistency_stats()697 void build_consistency_stats() {}
698 #else
build_consistency_nostats()699 void build_consistency_nostats() {}
700 #endif
701
702 #if TSAN_SHADOW_COUNT == 1
build_consistency_shadow1()703 void build_consistency_shadow1() {}
704 #elif TSAN_SHADOW_COUNT == 2
build_consistency_shadow2()705 void build_consistency_shadow2() {}
706 #elif TSAN_SHADOW_COUNT == 4
build_consistency_shadow4()707 void build_consistency_shadow4() {}
708 #else
build_consistency_shadow8()709 void build_consistency_shadow8() {}
710 #endif
711
712 } // namespace __tsan
713
714 #ifndef TSAN_GO
715 // Must be included in this file to make sure everything is inlined.
716 #include "tsan_interface_inl.h"
717 #endif
718