1 //===--- Overload.h - C++ Overloading ---------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the data structures and types used in C++ 11 // overload resolution. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H 16 #define LLVM_CLANG_SEMA_OVERLOAD_H 17 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/TemplateBase.h" 22 #include "clang/AST/Type.h" 23 #include "clang/AST/UnresolvedSet.h" 24 #include "clang/Sema/SemaFixItUtils.h" 25 #include "clang/Sema/TemplateDeduction.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/Support/Allocator.h" 29 30 namespace clang { 31 class ASTContext; 32 class CXXConstructorDecl; 33 class CXXConversionDecl; 34 class FunctionDecl; 35 class Sema; 36 37 /// OverloadingResult - Capture the result of performing overload 38 /// resolution. 39 enum OverloadingResult { 40 OR_Success, ///< Overload resolution succeeded. 41 OR_No_Viable_Function, ///< No viable function found. 42 OR_Ambiguous, ///< Ambiguous candidates found. 43 OR_Deleted ///< Succeeded, but refers to a deleted function. 44 }; 45 46 enum OverloadCandidateDisplayKind { 47 /// Requests that all candidates be shown. Viable candidates will 48 /// be printed first. 49 OCD_AllCandidates, 50 51 /// Requests that only viable candidates be shown. 52 OCD_ViableCandidates 53 }; 54 55 /// ImplicitConversionKind - The kind of implicit conversion used to 56 /// convert an argument to a parameter's type. The enumerator values 57 /// match with Table 9 of (C++ 13.3.3.1.1) and are listed such that 58 /// better conversion kinds have smaller values. 59 enum ImplicitConversionKind { 60 ICK_Identity = 0, ///< Identity conversion (no conversion) 61 ICK_Lvalue_To_Rvalue, ///< Lvalue-to-rvalue conversion (C++ 4.1) 62 ICK_Array_To_Pointer, ///< Array-to-pointer conversion (C++ 4.2) 63 ICK_Function_To_Pointer, ///< Function-to-pointer (C++ 4.3) 64 ICK_NoReturn_Adjustment, ///< Removal of noreturn from a type (Clang) 65 ICK_Qualification, ///< Qualification conversions (C++ 4.4) 66 ICK_Integral_Promotion, ///< Integral promotions (C++ 4.5) 67 ICK_Floating_Promotion, ///< Floating point promotions (C++ 4.6) 68 ICK_Complex_Promotion, ///< Complex promotions (Clang extension) 69 ICK_Integral_Conversion, ///< Integral conversions (C++ 4.7) 70 ICK_Floating_Conversion, ///< Floating point conversions (C++ 4.8) 71 ICK_Complex_Conversion, ///< Complex conversions (C99 6.3.1.6) 72 ICK_Floating_Integral, ///< Floating-integral conversions (C++ 4.9) 73 ICK_Pointer_Conversion, ///< Pointer conversions (C++ 4.10) 74 ICK_Pointer_Member, ///< Pointer-to-member conversions (C++ 4.11) 75 ICK_Boolean_Conversion, ///< Boolean conversions (C++ 4.12) 76 ICK_Compatible_Conversion, ///< Conversions between compatible types in C99 77 ICK_Derived_To_Base, ///< Derived-to-base (C++ [over.best.ics]) 78 ICK_Vector_Conversion, ///< Vector conversions 79 ICK_Vector_Splat, ///< A vector splat from an arithmetic type 80 ICK_Complex_Real, ///< Complex-real conversions (C99 6.3.1.7) 81 ICK_Block_Pointer_Conversion, ///< Block Pointer conversions 82 ICK_TransparentUnionConversion, ///< Transparent Union Conversions 83 ICK_Writeback_Conversion, ///< Objective-C ARC writeback conversion 84 ICK_Zero_Event_Conversion, ///< Zero constant to event (OpenCL1.2 6.12.10) 85 ICK_Num_Conversion_Kinds ///< The number of conversion kinds 86 }; 87 88 /// ImplicitConversionCategory - The category of an implicit 89 /// conversion kind. The enumerator values match with Table 9 of 90 /// (C++ 13.3.3.1.1) and are listed such that better conversion 91 /// categories have smaller values. 92 enum ImplicitConversionCategory { 93 ICC_Identity = 0, ///< Identity 94 ICC_Lvalue_Transformation, ///< Lvalue transformation 95 ICC_Qualification_Adjustment, ///< Qualification adjustment 96 ICC_Promotion, ///< Promotion 97 ICC_Conversion ///< Conversion 98 }; 99 100 ImplicitConversionCategory 101 GetConversionCategory(ImplicitConversionKind Kind); 102 103 /// ImplicitConversionRank - The rank of an implicit conversion 104 /// kind. The enumerator values match with Table 9 of (C++ 105 /// 13.3.3.1.1) and are listed such that better conversion ranks 106 /// have smaller values. 107 enum ImplicitConversionRank { 108 ICR_Exact_Match = 0, ///< Exact Match 109 ICR_Promotion, ///< Promotion 110 ICR_Conversion, ///< Conversion 111 ICR_Complex_Real_Conversion, ///< Complex <-> Real conversion 112 ICR_Writeback_Conversion ///< ObjC ARC writeback conversion 113 }; 114 115 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind); 116 117 /// NarrowingKind - The kind of narrowing conversion being performed by a 118 /// standard conversion sequence according to C++11 [dcl.init.list]p7. 119 enum NarrowingKind { 120 /// Not a narrowing conversion. 121 NK_Not_Narrowing, 122 123 /// A narrowing conversion by virtue of the source and destination types. 124 NK_Type_Narrowing, 125 126 /// A narrowing conversion, because a constant expression got narrowed. 127 NK_Constant_Narrowing, 128 129 /// A narrowing conversion, because a non-constant-expression variable might 130 /// have got narrowed. 131 NK_Variable_Narrowing 132 }; 133 134 /// StandardConversionSequence - represents a standard conversion 135 /// sequence (C++ 13.3.3.1.1). A standard conversion sequence 136 /// contains between zero and three conversions. If a particular 137 /// conversion is not needed, it will be set to the identity conversion 138 /// (ICK_Identity). Note that the three conversions are 139 /// specified as separate members (rather than in an array) so that 140 /// we can keep the size of a standard conversion sequence to a 141 /// single word. 142 class StandardConversionSequence { 143 public: 144 /// First -- The first conversion can be an lvalue-to-rvalue 145 /// conversion, array-to-pointer conversion, or 146 /// function-to-pointer conversion. 147 ImplicitConversionKind First : 8; 148 149 /// Second - The second conversion can be an integral promotion, 150 /// floating point promotion, integral conversion, floating point 151 /// conversion, floating-integral conversion, pointer conversion, 152 /// pointer-to-member conversion, or boolean conversion. 153 ImplicitConversionKind Second : 8; 154 155 /// Third - The third conversion can be a qualification conversion. 156 ImplicitConversionKind Third : 8; 157 158 /// \brief Whether this is the deprecated conversion of a 159 /// string literal to a pointer to non-const character data 160 /// (C++ 4.2p2). 161 unsigned DeprecatedStringLiteralToCharPtr : 1; 162 163 /// \brief Whether the qualification conversion involves a change in the 164 /// Objective-C lifetime (for automatic reference counting). 165 unsigned QualificationIncludesObjCLifetime : 1; 166 167 /// IncompatibleObjC - Whether this is an Objective-C conversion 168 /// that we should warn about (if we actually use it). 169 unsigned IncompatibleObjC : 1; 170 171 /// ReferenceBinding - True when this is a reference binding 172 /// (C++ [over.ics.ref]). 173 unsigned ReferenceBinding : 1; 174 175 /// DirectBinding - True when this is a reference binding that is a 176 /// direct binding (C++ [dcl.init.ref]). 177 unsigned DirectBinding : 1; 178 179 /// \brief Whether this is an lvalue reference binding (otherwise, it's 180 /// an rvalue reference binding). 181 unsigned IsLvalueReference : 1; 182 183 /// \brief Whether we're binding to a function lvalue. 184 unsigned BindsToFunctionLvalue : 1; 185 186 /// \brief Whether we're binding to an rvalue. 187 unsigned BindsToRvalue : 1; 188 189 /// \brief Whether this binds an implicit object argument to a 190 /// non-static member function without a ref-qualifier. 191 unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1; 192 193 /// \brief Whether this binds a reference to an object with a different 194 /// Objective-C lifetime qualifier. 195 unsigned ObjCLifetimeConversionBinding : 1; 196 197 /// FromType - The type that this conversion is converting 198 /// from. This is an opaque pointer that can be translated into a 199 /// QualType. 200 void *FromTypePtr; 201 202 /// ToType - The types that this conversion is converting to in 203 /// each step. This is an opaque pointer that can be translated 204 /// into a QualType. 205 void *ToTypePtrs[3]; 206 207 /// CopyConstructor - The copy constructor that is used to perform 208 /// this conversion, when the conversion is actually just the 209 /// initialization of an object via copy constructor. Such 210 /// conversions are either identity conversions or derived-to-base 211 /// conversions. 212 CXXConstructorDecl *CopyConstructor; 213 setFromType(QualType T)214 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } setToType(unsigned Idx,QualType T)215 void setToType(unsigned Idx, QualType T) { 216 assert(Idx < 3 && "To type index is out of range"); 217 ToTypePtrs[Idx] = T.getAsOpaquePtr(); 218 } setAllToTypes(QualType T)219 void setAllToTypes(QualType T) { 220 ToTypePtrs[0] = T.getAsOpaquePtr(); 221 ToTypePtrs[1] = ToTypePtrs[0]; 222 ToTypePtrs[2] = ToTypePtrs[0]; 223 } 224 getFromType()225 QualType getFromType() const { 226 return QualType::getFromOpaquePtr(FromTypePtr); 227 } getToType(unsigned Idx)228 QualType getToType(unsigned Idx) const { 229 assert(Idx < 3 && "To type index is out of range"); 230 return QualType::getFromOpaquePtr(ToTypePtrs[Idx]); 231 } 232 233 void setAsIdentityConversion(); 234 isIdentityConversion()235 bool isIdentityConversion() const { 236 return Second == ICK_Identity && Third == ICK_Identity; 237 } 238 239 ImplicitConversionRank getRank() const; 240 NarrowingKind getNarrowingKind(ASTContext &Context, const Expr *Converted, 241 APValue &ConstantValue, 242 QualType &ConstantType) const; 243 bool isPointerConversionToBool() const; 244 bool isPointerConversionToVoidPointer(ASTContext& Context) const; 245 void DebugPrint() const; 246 }; 247 248 /// UserDefinedConversionSequence - Represents a user-defined 249 /// conversion sequence (C++ 13.3.3.1.2). 250 struct UserDefinedConversionSequence { 251 /// \brief Represents the standard conversion that occurs before 252 /// the actual user-defined conversion. 253 /// 254 /// C++11 13.3.3.1.2p1: 255 /// If the user-defined conversion is specified by a constructor 256 /// (12.3.1), the initial standard conversion sequence converts 257 /// the source type to the type required by the argument of the 258 /// constructor. If the user-defined conversion is specified by 259 /// a conversion function (12.3.2), the initial standard 260 /// conversion sequence converts the source type to the implicit 261 /// object parameter of the conversion function. 262 StandardConversionSequence Before; 263 264 /// EllipsisConversion - When this is true, it means user-defined 265 /// conversion sequence starts with a ... (elipsis) conversion, instead of 266 /// a standard conversion. In this case, 'Before' field must be ignored. 267 // FIXME. I much rather put this as the first field. But there seems to be 268 // a gcc code gen. bug which causes a crash in a test. Putting it here seems 269 // to work around the crash. 270 bool EllipsisConversion : 1; 271 272 /// HadMultipleCandidates - When this is true, it means that the 273 /// conversion function was resolved from an overloaded set having 274 /// size greater than 1. 275 bool HadMultipleCandidates : 1; 276 277 /// After - Represents the standard conversion that occurs after 278 /// the actual user-defined conversion. 279 StandardConversionSequence After; 280 281 /// ConversionFunction - The function that will perform the 282 /// user-defined conversion. Null if the conversion is an 283 /// aggregate initialization from an initializer list. 284 FunctionDecl* ConversionFunction; 285 286 /// \brief The declaration that we found via name lookup, which might be 287 /// the same as \c ConversionFunction or it might be a using declaration 288 /// that refers to \c ConversionFunction. 289 DeclAccessPair FoundConversionFunction; 290 291 void DebugPrint() const; 292 }; 293 294 /// Represents an ambiguous user-defined conversion sequence. 295 struct AmbiguousConversionSequence { 296 typedef SmallVector<FunctionDecl*, 4> ConversionSet; 297 298 void *FromTypePtr; 299 void *ToTypePtr; 300 char Buffer[sizeof(ConversionSet)]; 301 getFromTypeAmbiguousConversionSequence302 QualType getFromType() const { 303 return QualType::getFromOpaquePtr(FromTypePtr); 304 } getToTypeAmbiguousConversionSequence305 QualType getToType() const { 306 return QualType::getFromOpaquePtr(ToTypePtr); 307 } setFromTypeAmbiguousConversionSequence308 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } setToTypeAmbiguousConversionSequence309 void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); } 310 conversionsAmbiguousConversionSequence311 ConversionSet &conversions() { 312 return *reinterpret_cast<ConversionSet*>(Buffer); 313 } 314 conversionsAmbiguousConversionSequence315 const ConversionSet &conversions() const { 316 return *reinterpret_cast<const ConversionSet*>(Buffer); 317 } 318 addConversionAmbiguousConversionSequence319 void addConversion(FunctionDecl *D) { 320 conversions().push_back(D); 321 } 322 323 typedef ConversionSet::iterator iterator; beginAmbiguousConversionSequence324 iterator begin() { return conversions().begin(); } endAmbiguousConversionSequence325 iterator end() { return conversions().end(); } 326 327 typedef ConversionSet::const_iterator const_iterator; beginAmbiguousConversionSequence328 const_iterator begin() const { return conversions().begin(); } endAmbiguousConversionSequence329 const_iterator end() const { return conversions().end(); } 330 331 void construct(); 332 void destruct(); 333 void copyFrom(const AmbiguousConversionSequence &); 334 }; 335 336 /// BadConversionSequence - Records information about an invalid 337 /// conversion sequence. 338 struct BadConversionSequence { 339 enum FailureKind { 340 no_conversion, 341 unrelated_class, 342 suppressed_user, 343 bad_qualifiers, 344 lvalue_ref_to_rvalue, 345 rvalue_ref_to_lvalue 346 }; 347 348 // This can be null, e.g. for implicit object arguments. 349 Expr *FromExpr; 350 351 FailureKind Kind; 352 353 private: 354 // The type we're converting from (an opaque QualType). 355 void *FromTy; 356 357 // The type we're converting to (an opaque QualType). 358 void *ToTy; 359 360 public: initBadConversionSequence361 void init(FailureKind K, Expr *From, QualType To) { 362 init(K, From->getType(), To); 363 FromExpr = From; 364 } initBadConversionSequence365 void init(FailureKind K, QualType From, QualType To) { 366 Kind = K; 367 FromExpr = 0; 368 setFromType(From); 369 setToType(To); 370 } 371 getFromTypeBadConversionSequence372 QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); } getToTypeBadConversionSequence373 QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); } 374 setFromExprBadConversionSequence375 void setFromExpr(Expr *E) { 376 FromExpr = E; 377 setFromType(E->getType()); 378 } setFromTypeBadConversionSequence379 void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); } setToTypeBadConversionSequence380 void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); } 381 }; 382 383 /// ImplicitConversionSequence - Represents an implicit conversion 384 /// sequence, which may be a standard conversion sequence 385 /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2), 386 /// or an ellipsis conversion sequence (C++ 13.3.3.1.3). 387 class ImplicitConversionSequence { 388 public: 389 /// Kind - The kind of implicit conversion sequence. BadConversion 390 /// specifies that there is no conversion from the source type to 391 /// the target type. AmbiguousConversion represents the unique 392 /// ambiguous conversion (C++0x [over.best.ics]p10). 393 enum Kind { 394 StandardConversion = 0, 395 UserDefinedConversion, 396 AmbiguousConversion, 397 EllipsisConversion, 398 BadConversion 399 }; 400 401 private: 402 enum { 403 Uninitialized = BadConversion + 1 404 }; 405 406 /// ConversionKind - The kind of implicit conversion sequence. 407 unsigned ConversionKind : 30; 408 409 /// \brief Whether the argument is an initializer list. 410 bool ListInitializationSequence : 1; 411 412 /// \brief Whether the target is really a std::initializer_list, and the 413 /// sequence only represents the worst element conversion. 414 bool StdInitializerListElement : 1; 415 setKind(Kind K)416 void setKind(Kind K) { 417 destruct(); 418 ConversionKind = K; 419 } 420 destruct()421 void destruct() { 422 if (ConversionKind == AmbiguousConversion) Ambiguous.destruct(); 423 } 424 425 public: 426 union { 427 /// When ConversionKind == StandardConversion, provides the 428 /// details of the standard conversion sequence. 429 StandardConversionSequence Standard; 430 431 /// When ConversionKind == UserDefinedConversion, provides the 432 /// details of the user-defined conversion sequence. 433 UserDefinedConversionSequence UserDefined; 434 435 /// When ConversionKind == AmbiguousConversion, provides the 436 /// details of the ambiguous conversion. 437 AmbiguousConversionSequence Ambiguous; 438 439 /// When ConversionKind == BadConversion, provides the details 440 /// of the bad conversion. 441 BadConversionSequence Bad; 442 }; 443 ImplicitConversionSequence()444 ImplicitConversionSequence() 445 : ConversionKind(Uninitialized), ListInitializationSequence(false), 446 StdInitializerListElement(false) 447 {} ~ImplicitConversionSequence()448 ~ImplicitConversionSequence() { 449 destruct(); 450 } ImplicitConversionSequence(const ImplicitConversionSequence & Other)451 ImplicitConversionSequence(const ImplicitConversionSequence &Other) 452 : ConversionKind(Other.ConversionKind), 453 ListInitializationSequence(Other.ListInitializationSequence), 454 StdInitializerListElement(Other.StdInitializerListElement) 455 { 456 switch (ConversionKind) { 457 case Uninitialized: break; 458 case StandardConversion: Standard = Other.Standard; break; 459 case UserDefinedConversion: UserDefined = Other.UserDefined; break; 460 case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break; 461 case EllipsisConversion: break; 462 case BadConversion: Bad = Other.Bad; break; 463 } 464 } 465 466 ImplicitConversionSequence & 467 operator=(const ImplicitConversionSequence &Other) { 468 destruct(); 469 new (this) ImplicitConversionSequence(Other); 470 return *this; 471 } 472 getKind()473 Kind getKind() const { 474 assert(isInitialized() && "querying uninitialized conversion"); 475 return Kind(ConversionKind); 476 } 477 478 /// \brief Return a ranking of the implicit conversion sequence 479 /// kind, where smaller ranks represent better conversion 480 /// sequences. 481 /// 482 /// In particular, this routine gives user-defined conversion 483 /// sequences and ambiguous conversion sequences the same rank, 484 /// per C++ [over.best.ics]p10. getKindRank()485 unsigned getKindRank() const { 486 switch (getKind()) { 487 case StandardConversion: 488 return 0; 489 490 case UserDefinedConversion: 491 case AmbiguousConversion: 492 return 1; 493 494 case EllipsisConversion: 495 return 2; 496 497 case BadConversion: 498 return 3; 499 } 500 501 llvm_unreachable("Invalid ImplicitConversionSequence::Kind!"); 502 } 503 isBad()504 bool isBad() const { return getKind() == BadConversion; } isStandard()505 bool isStandard() const { return getKind() == StandardConversion; } isEllipsis()506 bool isEllipsis() const { return getKind() == EllipsisConversion; } isAmbiguous()507 bool isAmbiguous() const { return getKind() == AmbiguousConversion; } isUserDefined()508 bool isUserDefined() const { return getKind() == UserDefinedConversion; } isFailure()509 bool isFailure() const { return isBad() || isAmbiguous(); } 510 511 /// Determines whether this conversion sequence has been 512 /// initialized. Most operations should never need to query 513 /// uninitialized conversions and should assert as above. isInitialized()514 bool isInitialized() const { return ConversionKind != Uninitialized; } 515 516 /// Sets this sequence as a bad conversion for an explicit argument. setBad(BadConversionSequence::FailureKind Failure,Expr * FromExpr,QualType ToType)517 void setBad(BadConversionSequence::FailureKind Failure, 518 Expr *FromExpr, QualType ToType) { 519 setKind(BadConversion); 520 Bad.init(Failure, FromExpr, ToType); 521 } 522 523 /// Sets this sequence as a bad conversion for an implicit argument. setBad(BadConversionSequence::FailureKind Failure,QualType FromType,QualType ToType)524 void setBad(BadConversionSequence::FailureKind Failure, 525 QualType FromType, QualType ToType) { 526 setKind(BadConversion); 527 Bad.init(Failure, FromType, ToType); 528 } 529 setStandard()530 void setStandard() { setKind(StandardConversion); } setEllipsis()531 void setEllipsis() { setKind(EllipsisConversion); } setUserDefined()532 void setUserDefined() { setKind(UserDefinedConversion); } setAmbiguous()533 void setAmbiguous() { 534 if (ConversionKind == AmbiguousConversion) return; 535 ConversionKind = AmbiguousConversion; 536 Ambiguous.construct(); 537 } 538 539 /// \brief Whether this sequence was created by the rules of 540 /// list-initialization sequences. isListInitializationSequence()541 bool isListInitializationSequence() const { 542 return ListInitializationSequence; 543 } 544 setListInitializationSequence()545 void setListInitializationSequence() { 546 ListInitializationSequence = true; 547 } 548 549 /// \brief Whether the target is really a std::initializer_list, and the 550 /// sequence only represents the worst element conversion. isStdInitializerListElement()551 bool isStdInitializerListElement() const { 552 return StdInitializerListElement; 553 } 554 555 void setStdInitializerListElement(bool V = true) { 556 StdInitializerListElement = V; 557 } 558 559 // The result of a comparison between implicit conversion 560 // sequences. Use Sema::CompareImplicitConversionSequences to 561 // actually perform the comparison. 562 enum CompareKind { 563 Better = -1, 564 Indistinguishable = 0, 565 Worse = 1 566 }; 567 568 void DiagnoseAmbiguousConversion(Sema &S, 569 SourceLocation CaretLoc, 570 const PartialDiagnostic &PDiag) const; 571 572 void DebugPrint() const; 573 }; 574 575 enum OverloadFailureKind { 576 ovl_fail_too_many_arguments, 577 ovl_fail_too_few_arguments, 578 ovl_fail_bad_conversion, 579 ovl_fail_bad_deduction, 580 581 /// This conversion candidate was not considered because it 582 /// duplicates the work of a trivial or derived-to-base 583 /// conversion. 584 ovl_fail_trivial_conversion, 585 586 /// This conversion candidate is not viable because its result 587 /// type is not implicitly convertible to the desired type. 588 ovl_fail_bad_final_conversion, 589 590 /// This conversion function template specialization candidate is not 591 /// viable because the final conversion was not an exact match. 592 ovl_fail_final_conversion_not_exact, 593 594 /// (CUDA) This candidate was not viable because the callee 595 /// was not accessible from the caller's target (i.e. host->device, 596 /// global->host, device->host). 597 ovl_fail_bad_target 598 }; 599 600 /// OverloadCandidate - A single candidate in an overload set (C++ 13.3). 601 struct OverloadCandidate { 602 /// Function - The actual function that this candidate 603 /// represents. When NULL, this is a built-in candidate 604 /// (C++ [over.oper]) or a surrogate for a conversion to a 605 /// function pointer or reference (C++ [over.call.object]). 606 FunctionDecl *Function; 607 608 /// FoundDecl - The original declaration that was looked up / 609 /// invented / otherwise found, together with its access. 610 /// Might be a UsingShadowDecl or a FunctionTemplateDecl. 611 DeclAccessPair FoundDecl; 612 613 // BuiltinTypes - Provides the return and parameter types of a 614 // built-in overload candidate. Only valid when Function is NULL. 615 struct { 616 QualType ResultTy; 617 QualType ParamTypes[3]; 618 } BuiltinTypes; 619 620 /// Surrogate - The conversion function for which this candidate 621 /// is a surrogate, but only if IsSurrogate is true. 622 CXXConversionDecl *Surrogate; 623 624 /// Conversions - The conversion sequences used to convert the 625 /// function arguments to the function parameters, the pointer points to a 626 /// fixed size array with NumConversions elements. The memory is owned by 627 /// the OverloadCandidateSet. 628 ImplicitConversionSequence *Conversions; 629 630 /// The FixIt hints which can be used to fix the Bad candidate. 631 ConversionFixItGenerator Fix; 632 633 /// NumConversions - The number of elements in the Conversions array. 634 unsigned NumConversions; 635 636 /// Viable - True to indicate that this overload candidate is viable. 637 bool Viable; 638 639 /// IsSurrogate - True to indicate that this candidate is a 640 /// surrogate for a conversion to a function pointer or reference 641 /// (C++ [over.call.object]). 642 bool IsSurrogate; 643 644 /// IgnoreObjectArgument - True to indicate that the first 645 /// argument's conversion, which for this function represents the 646 /// implicit object argument, should be ignored. This will be true 647 /// when the candidate is a static member function (where the 648 /// implicit object argument is just a placeholder) or a 649 /// non-static member function when the call doesn't have an 650 /// object argument. 651 bool IgnoreObjectArgument; 652 653 /// FailureKind - The reason why this candidate is not viable. 654 /// Actually an OverloadFailureKind. 655 unsigned char FailureKind; 656 657 /// \brief The number of call arguments that were explicitly provided, 658 /// to be used while performing partial ordering of function templates. 659 unsigned ExplicitCallArguments; 660 661 union { 662 DeductionFailureInfo DeductionFailure; 663 664 /// FinalConversion - For a conversion function (where Function is 665 /// a CXXConversionDecl), the standard conversion that occurs 666 /// after the call to the overload candidate to convert the result 667 /// of calling the conversion function to the required type. 668 StandardConversionSequence FinalConversion; 669 }; 670 671 /// hasAmbiguousConversion - Returns whether this overload 672 /// candidate requires an ambiguous conversion or not. hasAmbiguousConversionOverloadCandidate673 bool hasAmbiguousConversion() const { 674 for (unsigned i = 0, e = NumConversions; i != e; ++i) { 675 if (!Conversions[i].isInitialized()) return false; 676 if (Conversions[i].isAmbiguous()) return true; 677 } 678 return false; 679 } 680 TryToFixBadConversionOverloadCandidate681 bool TryToFixBadConversion(unsigned Idx, Sema &S) { 682 bool CanFix = Fix.tryToFixConversion( 683 Conversions[Idx].Bad.FromExpr, 684 Conversions[Idx].Bad.getFromType(), 685 Conversions[Idx].Bad.getToType(), S); 686 687 // If at least one conversion fails, the candidate cannot be fixed. 688 if (!CanFix) 689 Fix.clear(); 690 691 return CanFix; 692 } 693 }; 694 695 /// OverloadCandidateSet - A set of overload candidates, used in C++ 696 /// overload resolution (C++ 13.3). 697 class OverloadCandidateSet { 698 SmallVector<OverloadCandidate, 16> Candidates; 699 llvm::SmallPtrSet<Decl *, 16> Functions; 700 701 // Allocator for OverloadCandidate::Conversions. We store the first few 702 // elements inline to avoid allocation for small sets. 703 llvm::BumpPtrAllocator ConversionSequenceAllocator; 704 705 SourceLocation Loc; 706 707 unsigned NumInlineSequences; 708 char InlineSpace[16 * sizeof(ImplicitConversionSequence)]; 709 710 OverloadCandidateSet(const OverloadCandidateSet &) LLVM_DELETED_FUNCTION; 711 void operator=(const OverloadCandidateSet &) LLVM_DELETED_FUNCTION; 712 713 void destroyCandidates(); 714 715 public: OverloadCandidateSet(SourceLocation Loc)716 OverloadCandidateSet(SourceLocation Loc) : Loc(Loc), NumInlineSequences(0){} ~OverloadCandidateSet()717 ~OverloadCandidateSet() { destroyCandidates(); } 718 getLocation()719 SourceLocation getLocation() const { return Loc; } 720 721 /// \brief Determine when this overload candidate will be new to the 722 /// overload set. isNewCandidate(Decl * F)723 bool isNewCandidate(Decl *F) { 724 return Functions.insert(F->getCanonicalDecl()); 725 } 726 727 /// \brief Clear out all of the candidates. 728 void clear(); 729 730 typedef SmallVectorImpl<OverloadCandidate>::iterator iterator; begin()731 iterator begin() { return Candidates.begin(); } end()732 iterator end() { return Candidates.end(); } 733 size()734 size_t size() const { return Candidates.size(); } empty()735 bool empty() const { return Candidates.empty(); } 736 737 /// \brief Add a new candidate with NumConversions conversion sequence slots 738 /// to the overload set. 739 OverloadCandidate &addCandidate(unsigned NumConversions = 0) { 740 Candidates.push_back(OverloadCandidate()); 741 OverloadCandidate &C = Candidates.back(); 742 743 // Assign space from the inline array if there are enough free slots 744 // available. 745 if (NumConversions + NumInlineSequences <= 16) { 746 ImplicitConversionSequence *I = 747 (ImplicitConversionSequence*)InlineSpace; 748 C.Conversions = &I[NumInlineSequences]; 749 NumInlineSequences += NumConversions; 750 } else { 751 // Otherwise get memory from the allocator. 752 C.Conversions = ConversionSequenceAllocator 753 .Allocate<ImplicitConversionSequence>(NumConversions); 754 } 755 756 // Construct the new objects. 757 for (unsigned i = 0; i != NumConversions; ++i) 758 new (&C.Conversions[i]) ImplicitConversionSequence(); 759 760 C.NumConversions = NumConversions; 761 return C; 762 } 763 764 /// Find the best viable function on this overload set, if it exists. 765 OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, 766 OverloadCandidateSet::iterator& Best, 767 bool UserDefinedConversion = false); 768 769 void NoteCandidates(Sema &S, 770 OverloadCandidateDisplayKind OCD, 771 ArrayRef<Expr *> Args, 772 StringRef Opc = "", 773 SourceLocation Loc = SourceLocation()); 774 }; 775 776 bool isBetterOverloadCandidate(Sema &S, 777 const OverloadCandidate& Cand1, 778 const OverloadCandidate& Cand2, 779 SourceLocation Loc, 780 bool UserDefinedConversion = false); 781 } // end namespace clang 782 783 #endif // LLVM_CLANG_SEMA_OVERLOAD_H 784