1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "phielim"
17 #include "llvm/CodeGen/Passes.h"
18 #include "PHIEliminationUtils.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 static cl::opt<bool>
39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40 cl::Hidden, cl::desc("Disable critical edge splitting "
41 "during PHI elimination"));
42
43 static cl::opt<bool>
44 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45 cl::Hidden, cl::desc("Split all critical edges during "
46 "PHI elimination"));
47
48 namespace {
49 class PHIElimination : public MachineFunctionPass {
50 MachineRegisterInfo *MRI; // Machine register information
51 LiveVariables *LV;
52 LiveIntervals *LIS;
53
54 public:
55 static char ID; // Pass identification, replacement for typeid
PHIElimination()56 PHIElimination() : MachineFunctionPass(ID) {
57 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
58 }
59
60 virtual bool runOnMachineFunction(MachineFunction &Fn);
61 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
62
63 private:
64 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65 /// in predecessor basic blocks.
66 ///
67 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68 void LowerPHINode(MachineBasicBlock &MBB,
69 MachineBasicBlock::iterator LastPHIIt);
70
71 /// analyzePHINodes - Gather information about the PHI nodes in
72 /// here. In particular, we want to map the number of uses of a virtual
73 /// register which is used in a PHI node. We map that to the BB the
74 /// vreg is coming from. This is used later to determine when the vreg
75 /// is killed in the BB.
76 ///
77 void analyzePHINodes(const MachineFunction& Fn);
78
79 /// Split critical edges where necessary for good coalescer performance.
80 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81 MachineLoopInfo *MLI);
82
83 // These functions are temporary abstractions around LiveVariables and
84 // LiveIntervals, so they can go away when LiveVariables does.
85 bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86 bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87
88 typedef std::pair<unsigned, unsigned> BBVRegPair;
89 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90
91 VRegPHIUse VRegPHIUseCount;
92
93 // Defs of PHI sources which are implicit_def.
94 SmallPtrSet<MachineInstr*, 4> ImpDefs;
95
96 // Map reusable lowered PHI node -> incoming join register.
97 typedef DenseMap<MachineInstr*, unsigned,
98 MachineInstrExpressionTrait> LoweredPHIMap;
99 LoweredPHIMap LoweredPHIs;
100 };
101 }
102
103 STATISTIC(NumLowered, "Number of phis lowered");
104 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105 STATISTIC(NumReused, "Number of reused lowered phis");
106
107 char PHIElimination::ID = 0;
108 char& llvm::PHIEliminationID = PHIElimination::ID;
109
110 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111 "Eliminate PHI nodes for register allocation",
112 false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)113 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
114 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115 "Eliminate PHI nodes for register allocation", false, false)
116
117 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118 AU.addPreserved<LiveVariables>();
119 AU.addPreserved<SlotIndexes>();
120 AU.addPreserved<LiveIntervals>();
121 AU.addPreserved<MachineDominatorTree>();
122 AU.addPreserved<MachineLoopInfo>();
123 MachineFunctionPass::getAnalysisUsage(AU);
124 }
125
runOnMachineFunction(MachineFunction & MF)126 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
127 MRI = &MF.getRegInfo();
128 LV = getAnalysisIfAvailable<LiveVariables>();
129 LIS = getAnalysisIfAvailable<LiveIntervals>();
130
131 bool Changed = false;
132
133 // This pass takes the function out of SSA form.
134 MRI->leaveSSA();
135
136 // Split critical edges to help the coalescer. This does not yet support
137 // updating LiveIntervals, so we disable it.
138 if (!DisableEdgeSplitting && (LV || LIS)) {
139 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
140 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141 Changed |= SplitPHIEdges(MF, *I, MLI);
142 }
143
144 // Populate VRegPHIUseCount
145 analyzePHINodes(MF);
146
147 // Eliminate PHI instructions by inserting copies into predecessor blocks.
148 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
149 Changed |= EliminatePHINodes(MF, *I);
150
151 // Remove dead IMPLICIT_DEF instructions.
152 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
153 E = ImpDefs.end(); I != E; ++I) {
154 MachineInstr *DefMI = *I;
155 unsigned DefReg = DefMI->getOperand(0).getReg();
156 if (MRI->use_nodbg_empty(DefReg)) {
157 if (LIS)
158 LIS->RemoveMachineInstrFromMaps(DefMI);
159 DefMI->eraseFromParent();
160 }
161 }
162
163 // Clean up the lowered PHI instructions.
164 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
165 I != E; ++I) {
166 if (LIS)
167 LIS->RemoveMachineInstrFromMaps(I->first);
168 MF.DeleteMachineInstr(I->first);
169 }
170
171 LoweredPHIs.clear();
172 ImpDefs.clear();
173 VRegPHIUseCount.clear();
174
175 return Changed;
176 }
177
178 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
179 /// predecessor basic blocks.
180 ///
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)181 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
182 MachineBasicBlock &MBB) {
183 if (MBB.empty() || !MBB.front().isPHI())
184 return false; // Quick exit for basic blocks without PHIs.
185
186 // Get an iterator to the first instruction after the last PHI node (this may
187 // also be the end of the basic block).
188 MachineBasicBlock::iterator LastPHIIt =
189 prior(MBB.SkipPHIsAndLabels(MBB.begin()));
190
191 while (MBB.front().isPHI())
192 LowerPHINode(MBB, LastPHIIt);
193
194 return true;
195 }
196
197 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
198 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo * MRI)199 static bool isImplicitlyDefined(unsigned VirtReg,
200 const MachineRegisterInfo *MRI) {
201 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
202 DE = MRI->def_end(); DI != DE; ++DI)
203 if (!DI->isImplicitDef())
204 return false;
205 return true;
206 }
207
208 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
209 /// are implicit_def's.
isSourceDefinedByImplicitDef(const MachineInstr * MPhi,const MachineRegisterInfo * MRI)210 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
211 const MachineRegisterInfo *MRI) {
212 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
213 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
214 return false;
215 return true;
216 }
217
218
219 /// LowerPHINode - Lower the PHI node at the top of the specified block,
220 ///
LowerPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator LastPHIIt)221 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
222 MachineBasicBlock::iterator LastPHIIt) {
223 ++NumLowered;
224
225 MachineBasicBlock::iterator AfterPHIsIt = llvm::next(LastPHIIt);
226
227 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
228 MachineInstr *MPhi = MBB.remove(MBB.begin());
229
230 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
231 unsigned DestReg = MPhi->getOperand(0).getReg();
232 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
233 bool isDead = MPhi->getOperand(0).isDead();
234
235 // Create a new register for the incoming PHI arguments.
236 MachineFunction &MF = *MBB.getParent();
237 unsigned IncomingReg = 0;
238 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
239
240 // Insert a register to register copy at the top of the current block (but
241 // after any remaining phi nodes) which copies the new incoming register
242 // into the phi node destination.
243 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
244 if (isSourceDefinedByImplicitDef(MPhi, MRI))
245 // If all sources of a PHI node are implicit_def, just emit an
246 // implicit_def instead of a copy.
247 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
248 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
249 else {
250 // Can we reuse an earlier PHI node? This only happens for critical edges,
251 // typically those created by tail duplication.
252 unsigned &entry = LoweredPHIs[MPhi];
253 if (entry) {
254 // An identical PHI node was already lowered. Reuse the incoming register.
255 IncomingReg = entry;
256 reusedIncoming = true;
257 ++NumReused;
258 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
259 } else {
260 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
261 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
262 }
263 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
264 TII->get(TargetOpcode::COPY), DestReg)
265 .addReg(IncomingReg);
266 }
267
268 // Update live variable information if there is any.
269 if (LV) {
270 MachineInstr *PHICopy = prior(AfterPHIsIt);
271
272 if (IncomingReg) {
273 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
274
275 // Increment use count of the newly created virtual register.
276 LV->setPHIJoin(IncomingReg);
277
278 // When we are reusing the incoming register, it may already have been
279 // killed in this block. The old kill will also have been inserted at
280 // AfterPHIsIt, so it appears before the current PHICopy.
281 if (reusedIncoming)
282 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
283 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
284 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
285 DEBUG(MBB.dump());
286 }
287
288 // Add information to LiveVariables to know that the incoming value is
289 // killed. Note that because the value is defined in several places (once
290 // each for each incoming block), the "def" block and instruction fields
291 // for the VarInfo is not filled in.
292 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
293 }
294
295 // Since we are going to be deleting the PHI node, if it is the last use of
296 // any registers, or if the value itself is dead, we need to move this
297 // information over to the new copy we just inserted.
298 LV->removeVirtualRegistersKilled(MPhi);
299
300 // If the result is dead, update LV.
301 if (isDead) {
302 LV->addVirtualRegisterDead(DestReg, PHICopy);
303 LV->removeVirtualRegisterDead(DestReg, MPhi);
304 }
305 }
306
307 // Update LiveIntervals for the new copy or implicit def.
308 if (LIS) {
309 MachineInstr *NewInstr = prior(AfterPHIsIt);
310 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
311
312 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
313 if (IncomingReg) {
314 // Add the region from the beginning of MBB to the copy instruction to
315 // IncomingReg's live interval.
316 LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
317 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
318 if (!IncomingVNI)
319 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
320 LIS->getVNInfoAllocator());
321 IncomingLI.addRange(LiveRange(MBBStartIndex,
322 DestCopyIndex.getRegSlot(),
323 IncomingVNI));
324 }
325
326 LiveInterval &DestLI = LIS->getInterval(DestReg);
327 assert(DestLI.begin() != DestLI.end() &&
328 "PHIs should have nonempty LiveIntervals.");
329 if (DestLI.endIndex().isDead()) {
330 // A dead PHI's live range begins and ends at the start of the MBB, but
331 // the lowered copy, which will still be dead, needs to begin and end at
332 // the copy instruction.
333 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
334 assert(OrigDestVNI && "PHI destination should be live at block entry.");
335 DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
336 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
337 LIS->getVNInfoAllocator());
338 DestLI.removeValNo(OrigDestVNI);
339 } else {
340 // Otherwise, remove the region from the beginning of MBB to the copy
341 // instruction from DestReg's live interval.
342 DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
343 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
344 assert(DestVNI && "PHI destination should be live at its definition.");
345 DestVNI->def = DestCopyIndex.getRegSlot();
346 }
347 }
348
349 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
350 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
351 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
352 MPhi->getOperand(i).getReg())];
353
354 // Now loop over all of the incoming arguments, changing them to copy into the
355 // IncomingReg register in the corresponding predecessor basic block.
356 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
357 for (int i = NumSrcs - 1; i >= 0; --i) {
358 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
359 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
360 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
361 isImplicitlyDefined(SrcReg, MRI);
362 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
363 "Machine PHI Operands must all be virtual registers!");
364
365 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
366 // path the PHI.
367 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
368
369 // Check to make sure we haven't already emitted the copy for this block.
370 // This can happen because PHI nodes may have multiple entries for the same
371 // basic block.
372 if (!MBBsInsertedInto.insert(&opBlock))
373 continue; // If the copy has already been emitted, we're done.
374
375 // Find a safe location to insert the copy, this may be the first terminator
376 // in the block (or end()).
377 MachineBasicBlock::iterator InsertPos =
378 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
379
380 // Insert the copy.
381 MachineInstr *NewSrcInstr = 0;
382 if (!reusedIncoming && IncomingReg) {
383 if (SrcUndef) {
384 // The source register is undefined, so there is no need for a real
385 // COPY, but we still need to ensure joint dominance by defs.
386 // Insert an IMPLICIT_DEF instruction.
387 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
388 TII->get(TargetOpcode::IMPLICIT_DEF),
389 IncomingReg);
390
391 // Clean up the old implicit-def, if there even was one.
392 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
393 if (DefMI->isImplicitDef())
394 ImpDefs.insert(DefMI);
395 } else {
396 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
397 TII->get(TargetOpcode::COPY), IncomingReg)
398 .addReg(SrcReg, 0, SrcSubReg);
399 }
400 }
401
402 // We only need to update the LiveVariables kill of SrcReg if this was the
403 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
404 // out of the predecessor. We can also ignore undef sources.
405 if (LV && !SrcUndef &&
406 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
407 !LV->isLiveOut(SrcReg, opBlock)) {
408 // We want to be able to insert a kill of the register if this PHI (aka,
409 // the copy we just inserted) is the last use of the source value. Live
410 // variable analysis conservatively handles this by saying that the value
411 // is live until the end of the block the PHI entry lives in. If the value
412 // really is dead at the PHI copy, there will be no successor blocks which
413 // have the value live-in.
414
415 // Okay, if we now know that the value is not live out of the block, we
416 // can add a kill marker in this block saying that it kills the incoming
417 // value!
418
419 // In our final twist, we have to decide which instruction kills the
420 // register. In most cases this is the copy, however, terminator
421 // instructions at the end of the block may also use the value. In this
422 // case, we should mark the last such terminator as being the killing
423 // block, not the copy.
424 MachineBasicBlock::iterator KillInst = opBlock.end();
425 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
426 for (MachineBasicBlock::iterator Term = FirstTerm;
427 Term != opBlock.end(); ++Term) {
428 if (Term->readsRegister(SrcReg))
429 KillInst = Term;
430 }
431
432 if (KillInst == opBlock.end()) {
433 // No terminator uses the register.
434
435 if (reusedIncoming || !IncomingReg) {
436 // We may have to rewind a bit if we didn't insert a copy this time.
437 KillInst = FirstTerm;
438 while (KillInst != opBlock.begin()) {
439 --KillInst;
440 if (KillInst->isDebugValue())
441 continue;
442 if (KillInst->readsRegister(SrcReg))
443 break;
444 }
445 } else {
446 // We just inserted this copy.
447 KillInst = prior(InsertPos);
448 }
449 }
450 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
451
452 // Finally, mark it killed.
453 LV->addVirtualRegisterKilled(SrcReg, KillInst);
454
455 // This vreg no longer lives all of the way through opBlock.
456 unsigned opBlockNum = opBlock.getNumber();
457 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
458 }
459
460 if (LIS) {
461 if (NewSrcInstr) {
462 LIS->InsertMachineInstrInMaps(NewSrcInstr);
463 LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
464 }
465
466 if (!SrcUndef &&
467 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
468 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
469
470 bool isLiveOut = false;
471 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
472 SE = opBlock.succ_end(); SI != SE; ++SI) {
473 SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
474 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
475
476 // Definitions by other PHIs are not truly live-in for our purposes.
477 if (VNI && VNI->def != startIdx) {
478 isLiveOut = true;
479 break;
480 }
481 }
482
483 if (!isLiveOut) {
484 MachineBasicBlock::iterator KillInst = opBlock.end();
485 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
486 for (MachineBasicBlock::iterator Term = FirstTerm;
487 Term != opBlock.end(); ++Term) {
488 if (Term->readsRegister(SrcReg))
489 KillInst = Term;
490 }
491
492 if (KillInst == opBlock.end()) {
493 // No terminator uses the register.
494
495 if (reusedIncoming || !IncomingReg) {
496 // We may have to rewind a bit if we didn't just insert a copy.
497 KillInst = FirstTerm;
498 while (KillInst != opBlock.begin()) {
499 --KillInst;
500 if (KillInst->isDebugValue())
501 continue;
502 if (KillInst->readsRegister(SrcReg))
503 break;
504 }
505 } else {
506 // We just inserted this copy.
507 KillInst = prior(InsertPos);
508 }
509 }
510 assert(KillInst->readsRegister(SrcReg) &&
511 "Cannot find kill instruction");
512
513 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
514 SrcLI.removeRange(LastUseIndex.getRegSlot(),
515 LIS->getMBBEndIdx(&opBlock));
516 }
517 }
518 }
519 }
520
521 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
522 if (reusedIncoming || !IncomingReg) {
523 if (LIS)
524 LIS->RemoveMachineInstrFromMaps(MPhi);
525 MF.DeleteMachineInstr(MPhi);
526 }
527 }
528
529 /// analyzePHINodes - Gather information about the PHI nodes in here. In
530 /// particular, we want to map the number of uses of a virtual register which is
531 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
532 /// used later to determine when the vreg is killed in the BB.
533 ///
analyzePHINodes(const MachineFunction & MF)534 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
535 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
536 I != E; ++I)
537 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
538 BBI != BBE && BBI->isPHI(); ++BBI)
539 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
540 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
541 BBI->getOperand(i).getReg())];
542 }
543
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,MachineLoopInfo * MLI)544 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
545 MachineBasicBlock &MBB,
546 MachineLoopInfo *MLI) {
547 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
548 return false; // Quick exit for basic blocks without PHIs.
549
550 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
551 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
552
553 bool Changed = false;
554 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
555 BBI != BBE && BBI->isPHI(); ++BBI) {
556 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
557 unsigned Reg = BBI->getOperand(i).getReg();
558 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
559 // Is there a critical edge from PreMBB to MBB?
560 if (PreMBB->succ_size() == 1)
561 continue;
562
563 // Avoid splitting backedges of loops. It would introduce small
564 // out-of-line blocks into the loop which is very bad for code placement.
565 if (PreMBB == &MBB && !SplitAllCriticalEdges)
566 continue;
567 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
568 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
569 continue;
570
571 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
572 // when the source register is live-out for some other reason than a phi
573 // use. That means the copy we will insert in PreMBB won't be a kill, and
574 // there is a risk it may not be coalesced away.
575 //
576 // If the copy would be a kill, there is no need to split the edge.
577 if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
578 continue;
579
580 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
581 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
582 << ": " << *BBI);
583
584 // If Reg is not live-in to MBB, it means it must be live-in to some
585 // other PreMBB successor, and we can avoid the interference by splitting
586 // the edge.
587 //
588 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
589 // is likely to be left after coalescing. If we are looking at a loop
590 // exiting edge, split it so we won't insert code in the loop, otherwise
591 // don't bother.
592 bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
593
594 // Check for a loop exiting edge.
595 if (!ShouldSplit && CurLoop != PreLoop) {
596 DEBUG({
597 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
598 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
599 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
600 });
601 // This edge could be entering a loop, exiting a loop, or it could be
602 // both: Jumping directly form one loop to the header of a sibling
603 // loop.
604 // Split unless this edge is entering CurLoop from an outer loop.
605 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
606 }
607 if (!ShouldSplit)
608 continue;
609 if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
610 DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
611 continue;
612 }
613 Changed = true;
614 ++NumCriticalEdgesSplit;
615 }
616 }
617 return Changed;
618 }
619
isLiveIn(unsigned Reg,MachineBasicBlock * MBB)620 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
621 assert((LV || LIS) &&
622 "isLiveIn() requires either LiveVariables or LiveIntervals");
623 if (LIS)
624 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
625 else
626 return LV->isLiveIn(Reg, *MBB);
627 }
628
isLiveOutPastPHIs(unsigned Reg,MachineBasicBlock * MBB)629 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
630 assert((LV || LIS) &&
631 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
632 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
633 // so that a register used only in a PHI is not live out of the block. In
634 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
635 // in the predecessor basic block, so that a register used only in a PHI is live
636 // out of the block.
637 if (LIS) {
638 const LiveInterval &LI = LIS->getInterval(Reg);
639 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
640 SE = MBB->succ_end(); SI != SE; ++SI) {
641 if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
642 return true;
643 }
644 return false;
645 } else {
646 return LV->isLiveOut(Reg, *MBB);
647 }
648 }
649