• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16 
17 namespace llvm {
18 
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23 
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     /// DELETED_NODE - This is an illegal value that is used to catch
41     /// errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43 
44     /// EntryToken - This is the marker used to indicate the start of a region.
45     EntryToken,
46 
47     /// TokenFactor - This node takes multiple tokens as input and produces a
48     /// single token result. This is used to represent the fact that the operand
49     /// operators are independent of each other.
50     TokenFactor,
51 
52     /// AssertSext, AssertZext - These nodes record if a register contains a
53     /// value that has already been zero or sign extended from a narrower type.
54     /// These nodes take two operands.  The first is the node that has already
55     /// been extended, and the second is a value type node indicating the width
56     /// of the extension
57     AssertSext, AssertZext,
58 
59     /// Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64 
65     /// The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67 
68     /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     /// of the frame or return address to return.  An index of zero corresponds
71     /// to the current function's frame or return address, an index of one to
72     /// the parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74 
75     /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76     /// first (possible) on-stack argument. This is needed for correct stack
77     /// adjustment during unwind.
78     FRAME_TO_ARGS_OFFSET,
79 
80     /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
81     /// 'eh_return' gcc dwarf builtin, which is used to return from
82     /// exception. The general meaning is: adjust stack by OFFSET and pass
83     /// execution to HANDLER. Many platform-related details also :)
84     EH_RETURN,
85 
86     /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
87     /// This corresponds to the eh.sjlj.setjmp intrinsic.
88     /// It takes an input chain and a pointer to the jump buffer as inputs
89     /// and returns an outchain.
90     EH_SJLJ_SETJMP,
91 
92     /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
93     /// This corresponds to the eh.sjlj.longjmp intrinsic.
94     /// It takes an input chain and a pointer to the jump buffer as inputs
95     /// and returns an outchain.
96     EH_SJLJ_LONGJMP,
97 
98     /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
99     /// simplification, or lowering of the constant. They are used for constants
100     /// which are known to fit in the immediate fields of their users, or for
101     /// carrying magic numbers which are not values which need to be
102     /// materialized in registers.
103     TargetConstant,
104     TargetConstantFP,
105 
106     /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
107     /// anything else with this node, and this is valid in the target-specific
108     /// dag, turning into a GlobalAddress operand.
109     TargetGlobalAddress,
110     TargetGlobalTLSAddress,
111     TargetFrameIndex,
112     TargetJumpTable,
113     TargetConstantPool,
114     TargetExternalSymbol,
115     TargetBlockAddress,
116 
117     /// TargetIndex - Like a constant pool entry, but with completely
118     /// target-dependent semantics. Holds target flags, a 32-bit index, and a
119     /// 64-bit index. Targets can use this however they like.
120     TargetIndex,
121 
122     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
123     /// This node represents a target intrinsic function with no side effects.
124     /// The first operand is the ID number of the intrinsic from the
125     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
126     /// node returns the result of the intrinsic.
127     INTRINSIC_WO_CHAIN,
128 
129     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
130     /// This node represents a target intrinsic function with side effects that
131     /// returns a result.  The first operand is a chain pointer.  The second is
132     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
133     /// operands to the intrinsic follow.  The node has two results, the result
134     /// of the intrinsic and an output chain.
135     INTRINSIC_W_CHAIN,
136 
137     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
138     /// This node represents a target intrinsic function with side effects that
139     /// does not return a result.  The first operand is a chain pointer.  The
140     /// second is the ID number of the intrinsic from the llvm::Intrinsic
141     /// namespace.  The operands to the intrinsic follow.
142     INTRINSIC_VOID,
143 
144     /// CopyToReg - This node has three operands: a chain, a register number to
145     /// set to this value, and a value.
146     CopyToReg,
147 
148     /// CopyFromReg - This node indicates that the input value is a virtual or
149     /// physical register that is defined outside of the scope of this
150     /// SelectionDAG.  The register is available from the RegisterSDNode object.
151     CopyFromReg,
152 
153     /// UNDEF - An undefined node.
154     UNDEF,
155 
156     /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
157     /// a Constant, which is required to be operand #1) half of the integer or
158     /// float value specified as operand #0.  This is only for use before
159     /// legalization, for values that will be broken into multiple registers.
160     EXTRACT_ELEMENT,
161 
162     /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
163     /// Given two values of the same integer value type, this produces a value
164     /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
165     /// legalization.
166     BUILD_PAIR,
167 
168     /// MERGE_VALUES - This node takes multiple discrete operands and returns
169     /// them all as its individual results.  This nodes has exactly the same
170     /// number of inputs and outputs. This node is useful for some pieces of the
171     /// code generator that want to think about a single node with multiple
172     /// results, not multiple nodes.
173     MERGE_VALUES,
174 
175     /// Simple integer binary arithmetic operators.
176     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
177 
178     /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
179     /// a signed/unsigned value of type i[2*N], and return the full value as
180     /// two results, each of type iN.
181     SMUL_LOHI, UMUL_LOHI,
182 
183     /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
184     /// remainder result.
185     SDIVREM, UDIVREM,
186 
187     /// CARRY_FALSE - This node is used when folding other nodes,
188     /// like ADDC/SUBC, which indicate the carry result is always false.
189     CARRY_FALSE,
190 
191     /// Carry-setting nodes for multiple precision addition and subtraction.
192     /// These nodes take two operands of the same value type, and produce two
193     /// results.  The first result is the normal add or sub result, the second
194     /// result is the carry flag result.
195     ADDC, SUBC,
196 
197     /// Carry-using nodes for multiple precision addition and subtraction. These
198     /// nodes take three operands: The first two are the normal lhs and rhs to
199     /// the add or sub, and the third is the input carry flag.  These nodes
200     /// produce two results; the normal result of the add or sub, and the output
201     /// carry flag.  These nodes both read and write a carry flag to allow them
202     /// to them to be chained together for add and sub of arbitrarily large
203     /// values.
204     ADDE, SUBE,
205 
206     /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
207     /// These nodes take two operands: the normal LHS and RHS to the add. They
208     /// produce two results: the normal result of the add, and a boolean that
209     /// indicates if an overflow occurred (*not* a flag, because it may be store
210     /// to memory, etc.).  If the type of the boolean is not i1 then the high
211     /// bits conform to getBooleanContents.
212     /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
213     SADDO, UADDO,
214 
215     /// Same for subtraction.
216     SSUBO, USUBO,
217 
218     /// Same for multiplication.
219     SMULO, UMULO,
220 
221     /// Simple binary floating point operators.
222     FADD, FSUB, FMUL, FMA, FDIV, FREM,
223 
224     /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
225     /// DAG node does not require that X and Y have the same type, just that the
226     /// are both floating point.  X and the result must have the same type.
227     /// FCOPYSIGN(f32, f64) is allowed.
228     FCOPYSIGN,
229 
230     /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
231     /// value as an integer 0/1 value.
232     FGETSIGN,
233 
234     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
235     /// specified, possibly variable, elements.  The number of elements is
236     /// required to be a power of two.  The types of the operands must all be
237     /// the same and must match the vector element type, except that integer
238     /// types are allowed to be larger than the element type, in which case
239     /// the operands are implicitly truncated.
240     BUILD_VECTOR,
241 
242     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
243     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
244     /// element type then VAL is truncated before replacement.
245     INSERT_VECTOR_ELT,
246 
247     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
248     /// identified by the (potentially variable) element number IDX.  If the
249     /// return type is an integer type larger than the element type of the
250     /// vector, the result is extended to the width of the return type.
251     EXTRACT_VECTOR_ELT,
252 
253     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
254     /// vector type with the same length and element type, this produces a
255     /// concatenated vector result value, with length equal to the sum of the
256     /// lengths of the input vectors.
257     CONCAT_VECTORS,
258 
259     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
260     /// with VECTOR2 inserted into VECTOR1 at the (potentially
261     /// variable) element number IDX, which must be a multiple of the
262     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
263     /// IDX are overwritten with VECTOR2.  Elements IDX through
264     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
265     INSERT_SUBVECTOR,
266 
267     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
268     /// vector value) starting with the element number IDX, which must be a
269     /// constant multiple of the result vector length.
270     EXTRACT_SUBVECTOR,
271 
272     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
273     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
274     /// values that indicate which value (or undef) each result element will
275     /// get.  These constant ints are accessible through the
276     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
277     /// 'vperm' instruction, except that the indices must be constants and are
278     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
279     VECTOR_SHUFFLE,
280 
281     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
282     /// scalar value into element 0 of the resultant vector type.  The top
283     /// elements 1 to N-1 of the N-element vector are undefined.  The type
284     /// of the operand must match the vector element type, except when they
285     /// are integer types.  In this case the operand is allowed to be wider
286     /// than the vector element type, and is implicitly truncated to it.
287     SCALAR_TO_VECTOR,
288 
289     /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
290     /// producing an unsigned/signed value of type i[2*N], then return the top
291     /// part.
292     MULHU, MULHS,
293 
294     /// Bitwise operators - logical and, logical or, logical xor.
295     AND, OR, XOR,
296 
297     /// Shift and rotation operations.  After legalization, the type of the
298     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
299     /// the shift amount can be any type, but care must be taken to ensure it is
300     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
301     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
302     /// to represent the shift amount.
303     /// When the 1st operand is a vector, the shift amount must be in the same
304     /// type. (TLI.getShiftAmountTy() will return the same type when the input
305     /// type is a vector.)
306     SHL, SRA, SRL, ROTL, ROTR,
307 
308     /// Byte Swap and Counting operators.
309     BSWAP, CTTZ, CTLZ, CTPOP,
310 
311     /// Bit counting operators with an undefined result for zero inputs.
312     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
313 
314     /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
315     /// i1 then the high bits must conform to getBooleanContents.
316     SELECT,
317 
318     /// Select with a vector condition (op #0) and two vector operands (ops #1
319     /// and #2), returning a vector result.  All vectors have the same length.
320     /// Much like the scalar select and setcc, each bit in the condition selects
321     /// whether the corresponding result element is taken from op #1 or op #2.
322     /// At first, the VSELECT condition is of vXi1 type. Later, targets may
323     /// change the condition type in order to match the VSELECT node using a
324     /// pattern. The condition follows the BooleanContent format of the target.
325     VSELECT,
326 
327     /// Select with condition operator - This selects between a true value and
328     /// a false value (ops #2 and #3) based on the boolean result of comparing
329     /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
330     /// condition code in op #4, a CondCodeSDNode.
331     SELECT_CC,
332 
333     /// SetCC operator - This evaluates to a true value iff the condition is
334     /// true.  If the result value type is not i1 then the high bits conform
335     /// to getBooleanContents.  The operands to this are the left and right
336     /// operands to compare (ops #0, and #1) and the condition code to compare
337     /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
338     /// then the result type must also be a vector type.
339     SETCC,
340 
341     /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
342     /// integer shift operations, just like ADD/SUB_PARTS.  The operation
343     /// ordering is:
344     ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
345     SHL_PARTS, SRA_PARTS, SRL_PARTS,
346 
347     /// Conversion operators.  These are all single input single output
348     /// operations.  For all of these, the result type must be strictly
349     /// wider or narrower (depending on the operation) than the source
350     /// type.
351 
352     /// SIGN_EXTEND - Used for integer types, replicating the sign bit
353     /// into new bits.
354     SIGN_EXTEND,
355 
356     /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
357     ZERO_EXTEND,
358 
359     /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
360     ANY_EXTEND,
361 
362     /// TRUNCATE - Completely drop the high bits.
363     TRUNCATE,
364 
365     /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
366     /// depends on the first letter) to floating point.
367     SINT_TO_FP,
368     UINT_TO_FP,
369 
370     /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
371     /// sign extend a small value in a large integer register (e.g. sign
372     /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
373     /// with the 7th bit).  The size of the smaller type is indicated by the 1th
374     /// operand, a ValueType node.
375     SIGN_EXTEND_INREG,
376 
377     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
378     /// integer.
379     FP_TO_SINT,
380     FP_TO_UINT,
381 
382     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
383     /// down to the precision of the destination VT.  TRUNC is a flag, which is
384     /// always an integer that is zero or one.  If TRUNC is 0, this is a
385     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
386     /// value of Y.
387     ///
388     /// The TRUNC = 1 case is used in cases where we know that the value will
389     /// not be modified by the node, because Y is not using any of the extra
390     /// precision of source type.  This allows certain transformations like
391     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
392     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
393     FP_ROUND,
394 
395     /// FLT_ROUNDS_ - Returns current rounding mode:
396     /// -1 Undefined
397     ///  0 Round to 0
398     ///  1 Round to nearest
399     ///  2 Round to +inf
400     ///  3 Round to -inf
401     FLT_ROUNDS_,
402 
403     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
404     /// rounds it to a floating point value.  It then promotes it and returns it
405     /// in a register of the same size.  This operation effectively just
406     /// discards excess precision.  The type to round down to is specified by
407     /// the VT operand, a VTSDNode.
408     FP_ROUND_INREG,
409 
410     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
411     FP_EXTEND,
412 
413     /// BITCAST - This operator converts between integer, vector and FP
414     /// values, as if the value was stored to memory with one type and loaded
415     /// from the same address with the other type (or equivalently for vector
416     /// format conversions, etc).  The source and result are required to have
417     /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
418     /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
419     /// getNode().
420     BITCAST,
421 
422     /// CONVERT_RNDSAT - This operator is used to support various conversions
423     /// between various types (float, signed, unsigned and vectors of those
424     /// types) with rounding and saturation. NOTE: Avoid using this operator as
425     /// most target don't support it and the operator might be removed in the
426     /// future. It takes the following arguments:
427     ///   0) value
428     ///   1) dest type (type to convert to)
429     ///   2) src type (type to convert from)
430     ///   3) rounding imm
431     ///   4) saturation imm
432     ///   5) ISD::CvtCode indicating the type of conversion to do
433     CONVERT_RNDSAT,
434 
435     /// FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
436     /// promotions and truncation for half-precision (16 bit) floating
437     /// numbers. We need special nodes since FP16 is a storage-only type with
438     /// special semantics of operations.
439     FP16_TO_FP32, FP32_TO_FP16,
440 
441     /// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
442     /// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
443     /// FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary
444     /// floating point operations. These are inspired by libm.
445     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
446     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
447     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
448 
449     /// FSINCOS - Compute both fsin and fcos as a single operation.
450     FSINCOS,
451 
452     /// LOAD and STORE have token chains as their first operand, then the same
453     /// operands as an LLVM load/store instruction, then an offset node that
454     /// is added / subtracted from the base pointer to form the address (for
455     /// indexed memory ops).
456     LOAD, STORE,
457 
458     /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
459     /// to a specified boundary.  This node always has two return values: a new
460     /// stack pointer value and a chain. The first operand is the token chain,
461     /// the second is the number of bytes to allocate, and the third is the
462     /// alignment boundary.  The size is guaranteed to be a multiple of the
463     /// stack alignment, and the alignment is guaranteed to be bigger than the
464     /// stack alignment (if required) or 0 to get standard stack alignment.
465     DYNAMIC_STACKALLOC,
466 
467     /// Control flow instructions.  These all have token chains.
468 
469     /// BR - Unconditional branch.  The first operand is the chain
470     /// operand, the second is the MBB to branch to.
471     BR,
472 
473     /// BRIND - Indirect branch.  The first operand is the chain, the second
474     /// is the value to branch to, which must be of the same type as the
475     /// target's pointer type.
476     BRIND,
477 
478     /// BR_JT - Jumptable branch. The first operand is the chain, the second
479     /// is the jumptable index, the last one is the jumptable entry index.
480     BR_JT,
481 
482     /// BRCOND - Conditional branch.  The first operand is the chain, the
483     /// second is the condition, the third is the block to branch to if the
484     /// condition is true.  If the type of the condition is not i1, then the
485     /// high bits must conform to getBooleanContents.
486     BRCOND,
487 
488     /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
489     /// that the condition is represented as condition code, and two nodes to
490     /// compare, rather than as a combined SetCC node.  The operands in order
491     /// are chain, cc, lhs, rhs, block to branch to if condition is true.
492     BR_CC,
493 
494     /// INLINEASM - Represents an inline asm block.  This node always has two
495     /// return values: a chain and a flag result.  The inputs are as follows:
496     ///   Operand #0  : Input chain.
497     ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
498     ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
499     ///   Operand #3  : HasSideEffect, IsAlignStack bits.
500     ///   After this, it is followed by a list of operands with this format:
501     ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
502     ///                     of operands that follow, etc.  See InlineAsm.h.
503     ///     ... however many operands ...
504     ///   Operand #last: Optional, an incoming flag.
505     ///
506     /// The variable width operands are required to represent target addressing
507     /// modes as a single "operand", even though they may have multiple
508     /// SDOperands.
509     INLINEASM,
510 
511     /// EH_LABEL - Represents a label in mid basic block used to track
512     /// locations needed for debug and exception handling tables.  These nodes
513     /// take a chain as input and return a chain.
514     EH_LABEL,
515 
516     /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
517     /// value, the same type as the pointer type for the system, and an output
518     /// chain.
519     STACKSAVE,
520 
521     /// STACKRESTORE has two operands, an input chain and a pointer to restore
522     /// to it returns an output chain.
523     STACKRESTORE,
524 
525     /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
526     /// of a call sequence, and carry arbitrary information that target might
527     /// want to know.  The first operand is a chain, the rest are specified by
528     /// the target and not touched by the DAG optimizers.
529     /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
530     CALLSEQ_START,  // Beginning of a call sequence
531     CALLSEQ_END,    // End of a call sequence
532 
533     /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
534     /// and the alignment. It returns a pair of values: the vaarg value and a
535     /// new chain.
536     VAARG,
537 
538     /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
539     /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
540     /// source.
541     VACOPY,
542 
543     /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
544     /// pointer, and a SRCVALUE.
545     VAEND, VASTART,
546 
547     /// SRCVALUE - This is a node type that holds a Value* that is used to
548     /// make reference to a value in the LLVM IR.
549     SRCVALUE,
550 
551     /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
552     /// reference metadata in the IR.
553     MDNODE_SDNODE,
554 
555     /// PCMARKER - This corresponds to the pcmarker intrinsic.
556     PCMARKER,
557 
558     /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
559     /// The only operand is a chain and a value and a chain are produced.  The
560     /// value is the contents of the architecture specific cycle counter like
561     /// register (or other high accuracy low latency clock source)
562     READCYCLECOUNTER,
563 
564     /// HANDLENODE node - Used as a handle for various purposes.
565     HANDLENODE,
566 
567     /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
568     /// takes as input a token chain, the pointer to the trampoline, the pointer
569     /// to the nested function, the pointer to pass for the 'nest' parameter, a
570     /// SRCVALUE for the trampoline and another for the nested function
571     /// (allowing targets to access the original Function*).
572     /// It produces a token chain as output.
573     INIT_TRAMPOLINE,
574 
575     /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
576     /// It takes a pointer to the trampoline and produces a (possibly) new
577     /// pointer to the same trampoline with platform-specific adjustments
578     /// applied.  The pointer it returns points to an executable block of code.
579     ADJUST_TRAMPOLINE,
580 
581     /// TRAP - Trapping instruction
582     TRAP,
583 
584     /// DEBUGTRAP - Trap intended to get the attention of a debugger.
585     DEBUGTRAP,
586 
587     /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
588     /// is the chain.  The other operands are the address to prefetch,
589     /// read / write specifier, locality specifier and instruction / data cache
590     /// specifier.
591     PREFETCH,
592 
593     /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
594     /// This corresponds to the fence instruction. It takes an input chain, and
595     /// two integer constants: an AtomicOrdering and a SynchronizationScope.
596     ATOMIC_FENCE,
597 
598     /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
599     /// This corresponds to "load atomic" instruction.
600     ATOMIC_LOAD,
601 
602     /// OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
603     /// This corresponds to "store atomic" instruction.
604     ATOMIC_STORE,
605 
606     /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
607     /// This corresponds to the cmpxchg instruction.
608     ATOMIC_CMP_SWAP,
609 
610     /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
611     /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
612     /// These correspond to the atomicrmw instruction.
613     ATOMIC_SWAP,
614     ATOMIC_LOAD_ADD,
615     ATOMIC_LOAD_SUB,
616     ATOMIC_LOAD_AND,
617     ATOMIC_LOAD_OR,
618     ATOMIC_LOAD_XOR,
619     ATOMIC_LOAD_NAND,
620     ATOMIC_LOAD_MIN,
621     ATOMIC_LOAD_MAX,
622     ATOMIC_LOAD_UMIN,
623     ATOMIC_LOAD_UMAX,
624 
625     /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
626     /// is the chain and the second operand is the alloca pointer.
627     LIFETIME_START, LIFETIME_END,
628 
629     /// BUILTIN_OP_END - This must be the last enum value in this list.
630     /// The target-specific pre-isel opcode values start here.
631     BUILTIN_OP_END
632   };
633 
634   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
635   /// which do not reference a specific memory location should be less than
636   /// this value. Those that do must not be less than this value, and can
637   /// be used with SelectionDAG::getMemIntrinsicNode.
638   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+180;
639 
640   //===--------------------------------------------------------------------===//
641   /// MemIndexedMode enum - This enum defines the load / store indexed
642   /// addressing modes.
643   ///
644   /// UNINDEXED    "Normal" load / store. The effective address is already
645   ///              computed and is available in the base pointer. The offset
646   ///              operand is always undefined. In addition to producing a
647   ///              chain, an unindexed load produces one value (result of the
648   ///              load); an unindexed store does not produce a value.
649   ///
650   /// PRE_INC      Similar to the unindexed mode where the effective address is
651   /// PRE_DEC      the value of the base pointer add / subtract the offset.
652   ///              It considers the computation as being folded into the load /
653   ///              store operation (i.e. the load / store does the address
654   ///              computation as well as performing the memory transaction).
655   ///              The base operand is always undefined. In addition to
656   ///              producing a chain, pre-indexed load produces two values
657   ///              (result of the load and the result of the address
658   ///              computation); a pre-indexed store produces one value (result
659   ///              of the address computation).
660   ///
661   /// POST_INC     The effective address is the value of the base pointer. The
662   /// POST_DEC     value of the offset operand is then added to / subtracted
663   ///              from the base after memory transaction. In addition to
664   ///              producing a chain, post-indexed load produces two values
665   ///              (the result of the load and the result of the base +/- offset
666   ///              computation); a post-indexed store produces one value (the
667   ///              the result of the base +/- offset computation).
668   enum MemIndexedMode {
669     UNINDEXED = 0,
670     PRE_INC,
671     PRE_DEC,
672     POST_INC,
673     POST_DEC,
674     LAST_INDEXED_MODE
675   };
676 
677   //===--------------------------------------------------------------------===//
678   /// LoadExtType enum - This enum defines the three variants of LOADEXT
679   /// (load with extension).
680   ///
681   /// SEXTLOAD loads the integer operand and sign extends it to a larger
682   ///          integer result type.
683   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
684   ///          integer result type.
685   /// EXTLOAD  is used for two things: floating point extending loads and
686   ///          integer extending loads [the top bits are undefined].
687   enum LoadExtType {
688     NON_EXTLOAD = 0,
689     EXTLOAD,
690     SEXTLOAD,
691     ZEXTLOAD,
692     LAST_LOADEXT_TYPE
693   };
694 
695   //===--------------------------------------------------------------------===//
696   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
697   /// below work out, when considering SETFALSE (something that never exists
698   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
699   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
700   /// to.  If the "N" column is 1, the result of the comparison is undefined if
701   /// the input is a NAN.
702   ///
703   /// All of these (except for the 'always folded ops') should be handled for
704   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
705   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
706   ///
707   /// Note that these are laid out in a specific order to allow bit-twiddling
708   /// to transform conditions.
709   enum CondCode {
710     // Opcode          N U L G E       Intuitive operation
711     SETFALSE,      //    0 0 0 0       Always false (always folded)
712     SETOEQ,        //    0 0 0 1       True if ordered and equal
713     SETOGT,        //    0 0 1 0       True if ordered and greater than
714     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
715     SETOLT,        //    0 1 0 0       True if ordered and less than
716     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
717     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
718     SETO,          //    0 1 1 1       True if ordered (no nans)
719     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
720     SETUEQ,        //    1 0 0 1       True if unordered or equal
721     SETUGT,        //    1 0 1 0       True if unordered or greater than
722     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
723     SETULT,        //    1 1 0 0       True if unordered or less than
724     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
725     SETUNE,        //    1 1 1 0       True if unordered or not equal
726     SETTRUE,       //    1 1 1 1       Always true (always folded)
727     // Don't care operations: undefined if the input is a nan.
728     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
729     SETEQ,         //  1 X 0 0 1       True if equal
730     SETGT,         //  1 X 0 1 0       True if greater than
731     SETGE,         //  1 X 0 1 1       True if greater than or equal
732     SETLT,         //  1 X 1 0 0       True if less than
733     SETLE,         //  1 X 1 0 1       True if less than or equal
734     SETNE,         //  1 X 1 1 0       True if not equal
735     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
736 
737     SETCC_INVALID       // Marker value.
738   };
739 
740   /// isSignedIntSetCC - Return true if this is a setcc instruction that
741   /// performs a signed comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)742   inline bool isSignedIntSetCC(CondCode Code) {
743     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
744   }
745 
746   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
747   /// performs an unsigned comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)748   inline bool isUnsignedIntSetCC(CondCode Code) {
749     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
750   }
751 
752   /// isTrueWhenEqual - Return true if the specified condition returns true if
753   /// the two operands to the condition are equal.  Note that if one of the two
754   /// operands is a NaN, this value is meaningless.
isTrueWhenEqual(CondCode Cond)755   inline bool isTrueWhenEqual(CondCode Cond) {
756     return ((int)Cond & 1) != 0;
757   }
758 
759   /// getUnorderedFlavor - This function returns 0 if the condition is always
760   /// false if an operand is a NaN, 1 if the condition is always true if the
761   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
762   /// NaN.
getUnorderedFlavor(CondCode Cond)763   inline unsigned getUnorderedFlavor(CondCode Cond) {
764     return ((int)Cond >> 3) & 3;
765   }
766 
767   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
768   /// 'op' is a valid SetCC operation.
769   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
770 
771   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
772   /// when given the operation for (X op Y).
773   CondCode getSetCCSwappedOperands(CondCode Operation);
774 
775   /// getSetCCOrOperation - Return the result of a logical OR between different
776   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
777   /// function returns SETCC_INVALID if it is not possible to represent the
778   /// resultant comparison.
779   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
780 
781   /// getSetCCAndOperation - Return the result of a logical AND between
782   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
783   /// function returns SETCC_INVALID if it is not possible to represent the
784   /// resultant comparison.
785   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
786 
787   //===--------------------------------------------------------------------===//
788   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
789   /// supports.
790   enum CvtCode {
791     CVT_FF,     /// Float from Float
792     CVT_FS,     /// Float from Signed
793     CVT_FU,     /// Float from Unsigned
794     CVT_SF,     /// Signed from Float
795     CVT_UF,     /// Unsigned from Float
796     CVT_SS,     /// Signed from Signed
797     CVT_SU,     /// Signed from Unsigned
798     CVT_US,     /// Unsigned from Signed
799     CVT_UU,     /// Unsigned from Unsigned
800     CVT_INVALID /// Marker - Invalid opcode
801   };
802 
803 } // end llvm::ISD namespace
804 
805 } // end llvm namespace
806 
807 #endif
808