1 //===--- CacheTokens.cpp - Caching of lexer tokens for PTH support --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides a possible implementation of PTH support for Clang that is
11 // based on caching lexed tokens and identifiers.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Frontend/Utils.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/FileSystemStatCache.h"
19 #include "clang/Basic/IdentifierTable.h"
20 #include "clang/Basic/OnDiskHashTable.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Lex/Lexer.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/Support/FileSystem.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 // FIXME: put this somewhere else?
32 #ifndef S_ISDIR
33 #define S_ISDIR(x) (((x)&_S_IFDIR)!=0)
34 #endif
35
36 using namespace clang;
37 using namespace clang::io;
38
39 //===----------------------------------------------------------------------===//
40 // PTH-specific stuff.
41 //===----------------------------------------------------------------------===//
42
43 namespace {
44 class PTHEntry {
45 Offset TokenData, PPCondData;
46
47 public:
PTHEntry()48 PTHEntry() {}
49
PTHEntry(Offset td,Offset ppcd)50 PTHEntry(Offset td, Offset ppcd)
51 : TokenData(td), PPCondData(ppcd) {}
52
getTokenOffset() const53 Offset getTokenOffset() const { return TokenData; }
getPPCondTableOffset() const54 Offset getPPCondTableOffset() const { return PPCondData; }
55 };
56
57
58 class PTHEntryKeyVariant {
59 union { const FileEntry* FE; const char* Path; };
60 enum { IsFE = 0x1, IsDE = 0x2, IsNoExist = 0x0 } Kind;
61 FileData *Data;
62
63 public:
PTHEntryKeyVariant(const FileEntry * fe)64 PTHEntryKeyVariant(const FileEntry *fe) : FE(fe), Kind(IsFE), Data(0) {}
65
PTHEntryKeyVariant(FileData * Data,const char * path)66 PTHEntryKeyVariant(FileData *Data, const char *path)
67 : Path(path), Kind(IsDE), Data(new FileData(*Data)) {}
68
PTHEntryKeyVariant(const char * path)69 explicit PTHEntryKeyVariant(const char *path)
70 : Path(path), Kind(IsNoExist), Data(0) {}
71
isFile() const72 bool isFile() const { return Kind == IsFE; }
73
getString() const74 StringRef getString() const {
75 return Kind == IsFE ? FE->getName() : Path;
76 }
77
getKind() const78 unsigned getKind() const { return (unsigned) Kind; }
79
EmitData(raw_ostream & Out)80 void EmitData(raw_ostream& Out) {
81 switch (Kind) {
82 case IsFE: {
83 // Emit stat information.
84 llvm::sys::fs::UniqueID UID = FE->getUniqueID();
85 ::Emit64(Out, UID.getFile());
86 ::Emit64(Out, UID.getDevice());
87 ::Emit64(Out, FE->getModificationTime());
88 ::Emit64(Out, FE->getSize());
89 } break;
90 case IsDE:
91 // Emit stat information.
92 ::Emit64(Out, Data->UniqueID.getFile());
93 ::Emit64(Out, Data->UniqueID.getDevice());
94 ::Emit64(Out, Data->ModTime);
95 ::Emit64(Out, Data->Size);
96 delete Data;
97 break;
98 default:
99 break;
100 }
101 }
102
getRepresentationLength() const103 unsigned getRepresentationLength() const {
104 return Kind == IsNoExist ? 0 : 4 + 4 + 2 + 8 + 8;
105 }
106 };
107
108 class FileEntryPTHEntryInfo {
109 public:
110 typedef PTHEntryKeyVariant key_type;
111 typedef key_type key_type_ref;
112
113 typedef PTHEntry data_type;
114 typedef const PTHEntry& data_type_ref;
115
ComputeHash(PTHEntryKeyVariant V)116 static unsigned ComputeHash(PTHEntryKeyVariant V) {
117 return llvm::HashString(V.getString());
118 }
119
120 static std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream & Out,PTHEntryKeyVariant V,const PTHEntry & E)121 EmitKeyDataLength(raw_ostream& Out, PTHEntryKeyVariant V,
122 const PTHEntry& E) {
123
124 unsigned n = V.getString().size() + 1 + 1;
125 ::Emit16(Out, n);
126
127 unsigned m = V.getRepresentationLength() + (V.isFile() ? 4 + 4 : 0);
128 ::Emit8(Out, m);
129
130 return std::make_pair(n, m);
131 }
132
EmitKey(raw_ostream & Out,PTHEntryKeyVariant V,unsigned n)133 static void EmitKey(raw_ostream& Out, PTHEntryKeyVariant V, unsigned n){
134 // Emit the entry kind.
135 ::Emit8(Out, (unsigned) V.getKind());
136 // Emit the string.
137 Out.write(V.getString().data(), n - 1);
138 }
139
EmitData(raw_ostream & Out,PTHEntryKeyVariant V,const PTHEntry & E,unsigned)140 static void EmitData(raw_ostream& Out, PTHEntryKeyVariant V,
141 const PTHEntry& E, unsigned) {
142
143
144 // For file entries emit the offsets into the PTH file for token data
145 // and the preprocessor blocks table.
146 if (V.isFile()) {
147 ::Emit32(Out, E.getTokenOffset());
148 ::Emit32(Out, E.getPPCondTableOffset());
149 }
150
151 // Emit any other data associated with the key (i.e., stat information).
152 V.EmitData(Out);
153 }
154 };
155
156 class OffsetOpt {
157 bool valid;
158 Offset off;
159 public:
OffsetOpt()160 OffsetOpt() : valid(false) {}
hasOffset() const161 bool hasOffset() const { return valid; }
getOffset() const162 Offset getOffset() const { assert(valid); return off; }
setOffset(Offset o)163 void setOffset(Offset o) { off = o; valid = true; }
164 };
165 } // end anonymous namespace
166
167 typedef OnDiskChainedHashTableGenerator<FileEntryPTHEntryInfo> PTHMap;
168
169 namespace {
170 class PTHWriter {
171 typedef llvm::DenseMap<const IdentifierInfo*,uint32_t> IDMap;
172 typedef llvm::StringMap<OffsetOpt, llvm::BumpPtrAllocator> CachedStrsTy;
173
174 IDMap IM;
175 llvm::raw_fd_ostream& Out;
176 Preprocessor& PP;
177 uint32_t idcount;
178 PTHMap PM;
179 CachedStrsTy CachedStrs;
180 Offset CurStrOffset;
181 std::vector<llvm::StringMapEntry<OffsetOpt>*> StrEntries;
182
183 //// Get the persistent id for the given IdentifierInfo*.
184 uint32_t ResolveID(const IdentifierInfo* II);
185
186 /// Emit a token to the PTH file.
187 void EmitToken(const Token& T);
188
Emit8(uint32_t V)189 void Emit8(uint32_t V) { ::Emit8(Out, V); }
190
Emit16(uint32_t V)191 void Emit16(uint32_t V) { ::Emit16(Out, V); }
192
Emit32(uint32_t V)193 void Emit32(uint32_t V) { ::Emit32(Out, V); }
194
EmitBuf(const char * Ptr,unsigned NumBytes)195 void EmitBuf(const char *Ptr, unsigned NumBytes) {
196 Out.write(Ptr, NumBytes);
197 }
198
EmitString(StringRef V)199 void EmitString(StringRef V) {
200 ::Emit16(Out, V.size());
201 EmitBuf(V.data(), V.size());
202 }
203
204 /// EmitIdentifierTable - Emits two tables to the PTH file. The first is
205 /// a hashtable mapping from identifier strings to persistent IDs.
206 /// The second is a straight table mapping from persistent IDs to string data
207 /// (the keys of the first table).
208 std::pair<Offset, Offset> EmitIdentifierTable();
209
210 /// EmitFileTable - Emit a table mapping from file name strings to PTH
211 /// token data.
EmitFileTable()212 Offset EmitFileTable() { return PM.Emit(Out); }
213
214 PTHEntry LexTokens(Lexer& L);
215 Offset EmitCachedSpellings();
216
217 public:
PTHWriter(llvm::raw_fd_ostream & out,Preprocessor & pp)218 PTHWriter(llvm::raw_fd_ostream& out, Preprocessor& pp)
219 : Out(out), PP(pp), idcount(0), CurStrOffset(0) {}
220
getPM()221 PTHMap &getPM() { return PM; }
222 void GeneratePTH(const std::string &MainFile);
223 };
224 } // end anonymous namespace
225
ResolveID(const IdentifierInfo * II)226 uint32_t PTHWriter::ResolveID(const IdentifierInfo* II) {
227 // Null IdentifierInfo's map to the persistent ID 0.
228 if (!II)
229 return 0;
230
231 IDMap::iterator I = IM.find(II);
232 if (I != IM.end())
233 return I->second; // We've already added 1.
234
235 IM[II] = ++idcount; // Pre-increment since '0' is reserved for NULL.
236 return idcount;
237 }
238
EmitToken(const Token & T)239 void PTHWriter::EmitToken(const Token& T) {
240 // Emit the token kind, flags, and length.
241 Emit32(((uint32_t) T.getKind()) | ((((uint32_t) T.getFlags())) << 8)|
242 (((uint32_t) T.getLength()) << 16));
243
244 if (!T.isLiteral()) {
245 Emit32(ResolveID(T.getIdentifierInfo()));
246 } else {
247 // We cache *un-cleaned* spellings. This gives us 100% fidelity with the
248 // source code.
249 StringRef s(T.getLiteralData(), T.getLength());
250
251 // Get the string entry.
252 llvm::StringMapEntry<OffsetOpt> *E = &CachedStrs.GetOrCreateValue(s);
253
254 // If this is a new string entry, bump the PTH offset.
255 if (!E->getValue().hasOffset()) {
256 E->getValue().setOffset(CurStrOffset);
257 StrEntries.push_back(E);
258 CurStrOffset += s.size() + 1;
259 }
260
261 // Emit the relative offset into the PTH file for the spelling string.
262 Emit32(E->getValue().getOffset());
263 }
264
265 // Emit the offset into the original source file of this token so that we
266 // can reconstruct its SourceLocation.
267 Emit32(PP.getSourceManager().getFileOffset(T.getLocation()));
268 }
269
LexTokens(Lexer & L)270 PTHEntry PTHWriter::LexTokens(Lexer& L) {
271 // Pad 0's so that we emit tokens to a 4-byte alignment.
272 // This speed up reading them back in.
273 Pad(Out, 4);
274 Offset TokenOff = (Offset) Out.tell();
275
276 // Keep track of matching '#if' ... '#endif'.
277 typedef std::vector<std::pair<Offset, unsigned> > PPCondTable;
278 PPCondTable PPCond;
279 std::vector<unsigned> PPStartCond;
280 bool ParsingPreprocessorDirective = false;
281 Token Tok;
282
283 do {
284 L.LexFromRawLexer(Tok);
285 NextToken:
286
287 if ((Tok.isAtStartOfLine() || Tok.is(tok::eof)) &&
288 ParsingPreprocessorDirective) {
289 // Insert an eod token into the token cache. It has the same
290 // position as the next token that is not on the same line as the
291 // preprocessor directive. Observe that we continue processing
292 // 'Tok' when we exit this branch.
293 Token Tmp = Tok;
294 Tmp.setKind(tok::eod);
295 Tmp.clearFlag(Token::StartOfLine);
296 Tmp.setIdentifierInfo(0);
297 EmitToken(Tmp);
298 ParsingPreprocessorDirective = false;
299 }
300
301 if (Tok.is(tok::raw_identifier)) {
302 PP.LookUpIdentifierInfo(Tok);
303 EmitToken(Tok);
304 continue;
305 }
306
307 if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
308 // Special processing for #include. Store the '#' token and lex
309 // the next token.
310 assert(!ParsingPreprocessorDirective);
311 Offset HashOff = (Offset) Out.tell();
312
313 // Get the next token.
314 Token NextTok;
315 L.LexFromRawLexer(NextTok);
316
317 // If we see the start of line, then we had a null directive "#". In
318 // this case, discard both tokens.
319 if (NextTok.isAtStartOfLine())
320 goto NextToken;
321
322 // The token is the start of a directive. Emit it.
323 EmitToken(Tok);
324 Tok = NextTok;
325
326 // Did we see 'include'/'import'/'include_next'?
327 if (Tok.isNot(tok::raw_identifier)) {
328 EmitToken(Tok);
329 continue;
330 }
331
332 IdentifierInfo* II = PP.LookUpIdentifierInfo(Tok);
333 tok::PPKeywordKind K = II->getPPKeywordID();
334
335 ParsingPreprocessorDirective = true;
336
337 switch (K) {
338 case tok::pp_not_keyword:
339 // Invalid directives "#foo" can occur in #if 0 blocks etc, just pass
340 // them through.
341 default:
342 break;
343
344 case tok::pp_include:
345 case tok::pp_import:
346 case tok::pp_include_next: {
347 // Save the 'include' token.
348 EmitToken(Tok);
349 // Lex the next token as an include string.
350 L.setParsingPreprocessorDirective(true);
351 L.LexIncludeFilename(Tok);
352 L.setParsingPreprocessorDirective(false);
353 assert(!Tok.isAtStartOfLine());
354 if (Tok.is(tok::raw_identifier))
355 PP.LookUpIdentifierInfo(Tok);
356
357 break;
358 }
359 case tok::pp_if:
360 case tok::pp_ifdef:
361 case tok::pp_ifndef: {
362 // Add an entry for '#if' and friends. We initially set the target
363 // index to 0. This will get backpatched when we hit #endif.
364 PPStartCond.push_back(PPCond.size());
365 PPCond.push_back(std::make_pair(HashOff, 0U));
366 break;
367 }
368 case tok::pp_endif: {
369 // Add an entry for '#endif'. We set the target table index to itself.
370 // This will later be set to zero when emitting to the PTH file. We
371 // use 0 for uninitialized indices because that is easier to debug.
372 unsigned index = PPCond.size();
373 // Backpatch the opening '#if' entry.
374 assert(!PPStartCond.empty());
375 assert(PPCond.size() > PPStartCond.back());
376 assert(PPCond[PPStartCond.back()].second == 0);
377 PPCond[PPStartCond.back()].second = index;
378 PPStartCond.pop_back();
379 // Add the new entry to PPCond.
380 PPCond.push_back(std::make_pair(HashOff, index));
381 EmitToken(Tok);
382
383 // Some files have gibberish on the same line as '#endif'.
384 // Discard these tokens.
385 do
386 L.LexFromRawLexer(Tok);
387 while (Tok.isNot(tok::eof) && !Tok.isAtStartOfLine());
388 // We have the next token in hand.
389 // Don't immediately lex the next one.
390 goto NextToken;
391 }
392 case tok::pp_elif:
393 case tok::pp_else: {
394 // Add an entry for #elif or #else.
395 // This serves as both a closing and opening of a conditional block.
396 // This means that its entry will get backpatched later.
397 unsigned index = PPCond.size();
398 // Backpatch the previous '#if' entry.
399 assert(!PPStartCond.empty());
400 assert(PPCond.size() > PPStartCond.back());
401 assert(PPCond[PPStartCond.back()].second == 0);
402 PPCond[PPStartCond.back()].second = index;
403 PPStartCond.pop_back();
404 // Now add '#elif' as a new block opening.
405 PPCond.push_back(std::make_pair(HashOff, 0U));
406 PPStartCond.push_back(index);
407 break;
408 }
409 }
410 }
411
412 EmitToken(Tok);
413 }
414 while (Tok.isNot(tok::eof));
415
416 assert(PPStartCond.empty() && "Error: imblanced preprocessor conditionals.");
417
418 // Next write out PPCond.
419 Offset PPCondOff = (Offset) Out.tell();
420
421 // Write out the size of PPCond so that clients can identifer empty tables.
422 Emit32(PPCond.size());
423
424 for (unsigned i = 0, e = PPCond.size(); i!=e; ++i) {
425 Emit32(PPCond[i].first - TokenOff);
426 uint32_t x = PPCond[i].second;
427 assert(x != 0 && "PPCond entry not backpatched.");
428 // Emit zero for #endifs. This allows us to do checking when
429 // we read the PTH file back in.
430 Emit32(x == i ? 0 : x);
431 }
432
433 return PTHEntry(TokenOff, PPCondOff);
434 }
435
EmitCachedSpellings()436 Offset PTHWriter::EmitCachedSpellings() {
437 // Write each cached strings to the PTH file.
438 Offset SpellingsOff = Out.tell();
439
440 for (std::vector<llvm::StringMapEntry<OffsetOpt>*>::iterator
441 I = StrEntries.begin(), E = StrEntries.end(); I!=E; ++I)
442 EmitBuf((*I)->getKeyData(), (*I)->getKeyLength()+1 /*nul included*/);
443
444 return SpellingsOff;
445 }
446
GeneratePTH(const std::string & MainFile)447 void PTHWriter::GeneratePTH(const std::string &MainFile) {
448 // Generate the prologue.
449 Out << "cfe-pth" << '\0';
450 Emit32(PTHManager::Version);
451
452 // Leave 4 words for the prologue.
453 Offset PrologueOffset = Out.tell();
454 for (unsigned i = 0; i < 4; ++i)
455 Emit32(0);
456
457 // Write the name of the MainFile.
458 if (!MainFile.empty()) {
459 EmitString(MainFile);
460 } else {
461 // String with 0 bytes.
462 Emit16(0);
463 }
464 Emit8(0);
465
466 // Iterate over all the files in SourceManager. Create a lexer
467 // for each file and cache the tokens.
468 SourceManager &SM = PP.getSourceManager();
469 const LangOptions &LOpts = PP.getLangOpts();
470
471 for (SourceManager::fileinfo_iterator I = SM.fileinfo_begin(),
472 E = SM.fileinfo_end(); I != E; ++I) {
473 const SrcMgr::ContentCache &C = *I->second;
474 const FileEntry *FE = C.OrigEntry;
475
476 // FIXME: Handle files with non-absolute paths.
477 if (llvm::sys::path::is_relative(FE->getName()))
478 continue;
479
480 const llvm::MemoryBuffer *B = C.getBuffer(PP.getDiagnostics(), SM);
481 if (!B) continue;
482
483 FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User);
484 const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
485 Lexer L(FID, FromFile, SM, LOpts);
486 PM.insert(FE, LexTokens(L));
487 }
488
489 // Write out the identifier table.
490 const std::pair<Offset,Offset> &IdTableOff = EmitIdentifierTable();
491
492 // Write out the cached strings table.
493 Offset SpellingOff = EmitCachedSpellings();
494
495 // Write out the file table.
496 Offset FileTableOff = EmitFileTable();
497
498 // Finally, write the prologue.
499 Out.seek(PrologueOffset);
500 Emit32(IdTableOff.first);
501 Emit32(IdTableOff.second);
502 Emit32(FileTableOff);
503 Emit32(SpellingOff);
504 }
505
506 namespace {
507 /// StatListener - A simple "interpose" object used to monitor stat calls
508 /// invoked by FileManager while processing the original sources used
509 /// as input to PTH generation. StatListener populates the PTHWriter's
510 /// file map with stat information for directories as well as negative stats.
511 /// Stat information for files are populated elsewhere.
512 class StatListener : public FileSystemStatCache {
513 PTHMap &PM;
514 public:
StatListener(PTHMap & pm)515 StatListener(PTHMap &pm) : PM(pm) {}
~StatListener()516 ~StatListener() {}
517
getStat(const char * Path,FileData & Data,bool isFile,int * FileDescriptor)518 LookupResult getStat(const char *Path, FileData &Data, bool isFile,
519 int *FileDescriptor) {
520 LookupResult Result = statChained(Path, Data, isFile, FileDescriptor);
521
522 if (Result == CacheMissing) // Failed 'stat'.
523 PM.insert(PTHEntryKeyVariant(Path), PTHEntry());
524 else if (Data.IsDirectory) {
525 // Only cache directories with absolute paths.
526 if (llvm::sys::path::is_relative(Path))
527 return Result;
528
529 PM.insert(PTHEntryKeyVariant(&Data, Path), PTHEntry());
530 }
531
532 return Result;
533 }
534 };
535 } // end anonymous namespace
536
537
CacheTokens(Preprocessor & PP,llvm::raw_fd_ostream * OS)538 void clang::CacheTokens(Preprocessor &PP, llvm::raw_fd_ostream* OS) {
539 // Get the name of the main file.
540 const SourceManager &SrcMgr = PP.getSourceManager();
541 const FileEntry *MainFile = SrcMgr.getFileEntryForID(SrcMgr.getMainFileID());
542 SmallString<128> MainFilePath(MainFile->getName());
543
544 llvm::sys::fs::make_absolute(MainFilePath);
545
546 // Create the PTHWriter.
547 PTHWriter PW(*OS, PP);
548
549 // Install the 'stat' system call listener in the FileManager.
550 StatListener *StatCache = new StatListener(PW.getPM());
551 PP.getFileManager().addStatCache(StatCache, /*AtBeginning=*/true);
552
553 // Lex through the entire file. This will populate SourceManager with
554 // all of the header information.
555 Token Tok;
556 PP.EnterMainSourceFile();
557 do { PP.Lex(Tok); } while (Tok.isNot(tok::eof));
558
559 // Generate the PTH file.
560 PP.getFileManager().removeStatCache(StatCache);
561 PW.GeneratePTH(MainFilePath.str());
562 }
563
564 //===----------------------------------------------------------------------===//
565
566 namespace {
567 class PTHIdKey {
568 public:
569 const IdentifierInfo* II;
570 uint32_t FileOffset;
571 };
572
573 class PTHIdentifierTableTrait {
574 public:
575 typedef PTHIdKey* key_type;
576 typedef key_type key_type_ref;
577
578 typedef uint32_t data_type;
579 typedef data_type data_type_ref;
580
ComputeHash(PTHIdKey * key)581 static unsigned ComputeHash(PTHIdKey* key) {
582 return llvm::HashString(key->II->getName());
583 }
584
585 static std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream & Out,const PTHIdKey * key,uint32_t)586 EmitKeyDataLength(raw_ostream& Out, const PTHIdKey* key, uint32_t) {
587 unsigned n = key->II->getLength() + 1;
588 ::Emit16(Out, n);
589 return std::make_pair(n, sizeof(uint32_t));
590 }
591
EmitKey(raw_ostream & Out,PTHIdKey * key,unsigned n)592 static void EmitKey(raw_ostream& Out, PTHIdKey* key, unsigned n) {
593 // Record the location of the key data. This is used when generating
594 // the mapping from persistent IDs to strings.
595 key->FileOffset = Out.tell();
596 Out.write(key->II->getNameStart(), n);
597 }
598
EmitData(raw_ostream & Out,PTHIdKey *,uint32_t pID,unsigned)599 static void EmitData(raw_ostream& Out, PTHIdKey*, uint32_t pID,
600 unsigned) {
601 ::Emit32(Out, pID);
602 }
603 };
604 } // end anonymous namespace
605
606 /// EmitIdentifierTable - Emits two tables to the PTH file. The first is
607 /// a hashtable mapping from identifier strings to persistent IDs. The second
608 /// is a straight table mapping from persistent IDs to string data (the
609 /// keys of the first table).
610 ///
EmitIdentifierTable()611 std::pair<Offset,Offset> PTHWriter::EmitIdentifierTable() {
612 // Build two maps:
613 // (1) an inverse map from persistent IDs -> (IdentifierInfo*,Offset)
614 // (2) a map from (IdentifierInfo*, Offset)* -> persistent IDs
615
616 // Note that we use 'calloc', so all the bytes are 0.
617 PTHIdKey *IIDMap = (PTHIdKey*)calloc(idcount, sizeof(PTHIdKey));
618
619 // Create the hashtable.
620 OnDiskChainedHashTableGenerator<PTHIdentifierTableTrait> IIOffMap;
621
622 // Generate mapping from persistent IDs -> IdentifierInfo*.
623 for (IDMap::iterator I = IM.begin(), E = IM.end(); I != E; ++I) {
624 // Decrement by 1 because we are using a vector for the lookup and
625 // 0 is reserved for NULL.
626 assert(I->second > 0);
627 assert(I->second-1 < idcount);
628 unsigned idx = I->second-1;
629
630 // Store the mapping from persistent ID to IdentifierInfo*
631 IIDMap[idx].II = I->first;
632
633 // Store the reverse mapping in a hashtable.
634 IIOffMap.insert(&IIDMap[idx], I->second);
635 }
636
637 // Write out the inverse map first. This causes the PCIDKey entries to
638 // record PTH file offsets for the string data. This is used to write
639 // the second table.
640 Offset StringTableOffset = IIOffMap.Emit(Out);
641
642 // Now emit the table mapping from persistent IDs to PTH file offsets.
643 Offset IDOff = Out.tell();
644 Emit32(idcount); // Emit the number of identifiers.
645 for (unsigned i = 0 ; i < idcount; ++i)
646 Emit32(IIDMap[i].FileOffset);
647
648 // Finally, release the inverse map.
649 free(IIDMap);
650
651 return std::make_pair(IDOff, StringTableOffset);
652 }
653