1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/InlineAsm.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/ValueSymbolTable.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
getTypeString(Type * T)29 static std::string getTypeString(Type *T) {
30 std::string Result;
31 raw_string_ostream Tmp(Result);
32 Tmp << *T;
33 return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
Run()37 bool LLParser::Run() {
38 // Prime the lexer.
39 Lex.Lex();
40
41 return ParseTopLevelEntities() ||
42 ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
ValidateEndOfModule()47 bool LLParser::ValidateEndOfModule() {
48 // Handle any instruction metadata forward references.
49 if (!ForwardRefInstMetadata.empty()) {
50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52 I != E; ++I) {
53 Instruction *Inst = I->first;
54 const std::vector<MDRef> &MDList = I->second;
55
56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57 unsigned SlotNo = MDList[i].MDSlot;
58
59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60 return Error(MDList[i].Loc, "use of undefined metadata '!" +
61 Twine(SlotNo) + "'");
62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63 }
64 }
65 ForwardRefInstMetadata.clear();
66 }
67
68 // Handle any function attribute group forward references.
69 for (std::map<Value*, std::vector<unsigned> >::iterator
70 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71 I != E; ++I) {
72 Value *V = I->first;
73 std::vector<unsigned> &Vec = I->second;
74 AttrBuilder B;
75
76 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77 VI != VE; ++VI)
78 B.merge(NumberedAttrBuilders[*VI]);
79
80 if (Function *Fn = dyn_cast<Function>(V)) {
81 AttributeSet AS = Fn->getAttributes();
82 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84 AS.getFnAttributes());
85
86 FnAttrs.merge(B);
87
88 // If the alignment was parsed as an attribute, move to the alignment
89 // field.
90 if (FnAttrs.hasAlignmentAttr()) {
91 Fn->setAlignment(FnAttrs.getAlignment());
92 FnAttrs.removeAttribute(Attribute::Alignment);
93 }
94
95 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96 AttributeSet::get(Context,
97 AttributeSet::FunctionIndex,
98 FnAttrs));
99 Fn->setAttributes(AS);
100 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101 AttributeSet AS = CI->getAttributes();
102 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104 AS.getFnAttributes());
105 FnAttrs.merge(B);
106 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107 AttributeSet::get(Context,
108 AttributeSet::FunctionIndex,
109 FnAttrs));
110 CI->setAttributes(AS);
111 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112 AttributeSet AS = II->getAttributes();
113 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115 AS.getFnAttributes());
116 FnAttrs.merge(B);
117 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118 AttributeSet::get(Context,
119 AttributeSet::FunctionIndex,
120 FnAttrs));
121 II->setAttributes(AS);
122 } else {
123 llvm_unreachable("invalid object with forward attribute group reference");
124 }
125 }
126
127 // If there are entries in ForwardRefBlockAddresses at this point, they are
128 // references after the function was defined. Resolve those now.
129 while (!ForwardRefBlockAddresses.empty()) {
130 // Okay, we are referencing an already-parsed function, resolve them now.
131 Function *TheFn = 0;
132 const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133 if (Fn.Kind == ValID::t_GlobalName)
134 TheFn = M->getFunction(Fn.StrVal);
135 else if (Fn.UIntVal < NumberedVals.size())
136 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138 if (TheFn == 0)
139 return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141 // Resolve all these references.
142 if (ResolveForwardRefBlockAddresses(TheFn,
143 ForwardRefBlockAddresses.begin()->second,
144 0))
145 return true;
146
147 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148 }
149
150 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151 if (NumberedTypes[i].second.isValid())
152 return Error(NumberedTypes[i].second,
153 "use of undefined type '%" + Twine(i) + "'");
154
155 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157 if (I->second.second.isValid())
158 return Error(I->second.second,
159 "use of undefined type named '" + I->getKey() + "'");
160
161 if (!ForwardRefVals.empty())
162 return Error(ForwardRefVals.begin()->second.second,
163 "use of undefined value '@" + ForwardRefVals.begin()->first +
164 "'");
165
166 if (!ForwardRefValIDs.empty())
167 return Error(ForwardRefValIDs.begin()->second.second,
168 "use of undefined value '@" +
169 Twine(ForwardRefValIDs.begin()->first) + "'");
170
171 if (!ForwardRefMDNodes.empty())
172 return Error(ForwardRefMDNodes.begin()->second.second,
173 "use of undefined metadata '!" +
174 Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177 // Look for intrinsic functions and CallInst that need to be upgraded
178 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181 return false;
182 }
183
ResolveForwardRefBlockAddresses(Function * TheFn,std::vector<std::pair<ValID,GlobalValue * >> & Refs,PerFunctionState * PFS)184 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185 std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186 PerFunctionState *PFS) {
187 // Loop over all the references, resolving them.
188 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189 BasicBlock *Res;
190 if (PFS) {
191 if (Refs[i].first.Kind == ValID::t_LocalName)
192 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193 else
194 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195 } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196 return Error(Refs[i].first.Loc,
197 "cannot take address of numeric label after the function is defined");
198 } else {
199 Res = dyn_cast_or_null<BasicBlock>(
200 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201 }
202
203 if (Res == 0)
204 return Error(Refs[i].first.Loc,
205 "referenced value is not a basic block");
206
207 // Get the BlockAddress for this and update references to use it.
208 BlockAddress *BA = BlockAddress::get(TheFn, Res);
209 Refs[i].second->replaceAllUsesWith(BA);
210 Refs[i].second->eraseFromParent();
211 }
212 return false;
213 }
214
215
216 //===----------------------------------------------------------------------===//
217 // Top-Level Entities
218 //===----------------------------------------------------------------------===//
219
ParseTopLevelEntities()220 bool LLParser::ParseTopLevelEntities() {
221 while (1) {
222 switch (Lex.getKind()) {
223 default: return TokError("expected top-level entity");
224 case lltok::Eof: return false;
225 case lltok::kw_declare: if (ParseDeclare()) return true; break;
226 case lltok::kw_define: if (ParseDefine()) return true; break;
227 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
228 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
229 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231 case lltok::LocalVar: if (ParseNamedType()) return true; break;
232 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
233 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
234 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
235 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237 // The Global variable production with no name can have many different
238 // optional leading prefixes, the production is:
239 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240 // OptionalAddrSpace OptionalUnNammedAddr
241 // ('constant'|'global') ...
242 case lltok::kw_private: // OptionalLinkage
243 case lltok::kw_linker_private: // OptionalLinkage
244 case lltok::kw_linker_private_weak: // OptionalLinkage
245 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246 case lltok::kw_internal: // OptionalLinkage
247 case lltok::kw_weak: // OptionalLinkage
248 case lltok::kw_weak_odr: // OptionalLinkage
249 case lltok::kw_linkonce: // OptionalLinkage
250 case lltok::kw_linkonce_odr: // OptionalLinkage
251 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252 case lltok::kw_appending: // OptionalLinkage
253 case lltok::kw_dllexport: // OptionalLinkage
254 case lltok::kw_common: // OptionalLinkage
255 case lltok::kw_dllimport: // OptionalLinkage
256 case lltok::kw_extern_weak: // OptionalLinkage
257 case lltok::kw_external: { // OptionalLinkage
258 unsigned Linkage, Visibility;
259 if (ParseOptionalLinkage(Linkage) ||
260 ParseOptionalVisibility(Visibility) ||
261 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262 return true;
263 break;
264 }
265 case lltok::kw_default: // OptionalVisibility
266 case lltok::kw_hidden: // OptionalVisibility
267 case lltok::kw_protected: { // OptionalVisibility
268 unsigned Visibility;
269 if (ParseOptionalVisibility(Visibility) ||
270 ParseGlobal("", SMLoc(), 0, false, Visibility))
271 return true;
272 break;
273 }
274
275 case lltok::kw_thread_local: // OptionalThreadLocal
276 case lltok::kw_addrspace: // OptionalAddrSpace
277 case lltok::kw_constant: // GlobalType
278 case lltok::kw_global: // GlobalType
279 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280 break;
281
282 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283 }
284 }
285 }
286
287
288 /// toplevelentity
289 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()290 bool LLParser::ParseModuleAsm() {
291 assert(Lex.getKind() == lltok::kw_module);
292 Lex.Lex();
293
294 std::string AsmStr;
295 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296 ParseStringConstant(AsmStr)) return true;
297
298 M->appendModuleInlineAsm(AsmStr);
299 return false;
300 }
301
302 /// toplevelentity
303 /// ::= 'target' 'triple' '=' STRINGCONSTANT
304 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()305 bool LLParser::ParseTargetDefinition() {
306 assert(Lex.getKind() == lltok::kw_target);
307 std::string Str;
308 switch (Lex.Lex()) {
309 default: return TokError("unknown target property");
310 case lltok::kw_triple:
311 Lex.Lex();
312 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313 ParseStringConstant(Str))
314 return true;
315 M->setTargetTriple(Str);
316 return false;
317 case lltok::kw_datalayout:
318 Lex.Lex();
319 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320 ParseStringConstant(Str))
321 return true;
322 M->setDataLayout(Str);
323 return false;
324 }
325 }
326
327 /// toplevelentity
328 /// ::= 'deplibs' '=' '[' ']'
329 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()331 bool LLParser::ParseDepLibs() {
332 assert(Lex.getKind() == lltok::kw_deplibs);
333 Lex.Lex();
334 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336 return true;
337
338 if (EatIfPresent(lltok::rsquare))
339 return false;
340
341 do {
342 std::string Str;
343 if (ParseStringConstant(Str)) return true;
344 } while (EatIfPresent(lltok::comma));
345
346 return ParseToken(lltok::rsquare, "expected ']' at end of list");
347 }
348
349 /// ParseUnnamedType:
350 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()351 bool LLParser::ParseUnnamedType() {
352 LocTy TypeLoc = Lex.getLoc();
353 unsigned TypeID = Lex.getUIntVal();
354 Lex.Lex(); // eat LocalVarID;
355
356 if (ParseToken(lltok::equal, "expected '=' after name") ||
357 ParseToken(lltok::kw_type, "expected 'type' after '='"))
358 return true;
359
360 if (TypeID >= NumberedTypes.size())
361 NumberedTypes.resize(TypeID+1);
362
363 Type *Result = 0;
364 if (ParseStructDefinition(TypeLoc, "",
365 NumberedTypes[TypeID], Result)) return true;
366
367 if (!isa<StructType>(Result)) {
368 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369 if (Entry.first)
370 return Error(TypeLoc, "non-struct types may not be recursive");
371 Entry.first = Result;
372 Entry.second = SMLoc();
373 }
374
375 return false;
376 }
377
378
379 /// toplevelentity
380 /// ::= LocalVar '=' 'type' type
ParseNamedType()381 bool LLParser::ParseNamedType() {
382 std::string Name = Lex.getStrVal();
383 LocTy NameLoc = Lex.getLoc();
384 Lex.Lex(); // eat LocalVar.
385
386 if (ParseToken(lltok::equal, "expected '=' after name") ||
387 ParseToken(lltok::kw_type, "expected 'type' after name"))
388 return true;
389
390 Type *Result = 0;
391 if (ParseStructDefinition(NameLoc, Name,
392 NamedTypes[Name], Result)) return true;
393
394 if (!isa<StructType>(Result)) {
395 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396 if (Entry.first)
397 return Error(NameLoc, "non-struct types may not be recursive");
398 Entry.first = Result;
399 Entry.second = SMLoc();
400 }
401
402 return false;
403 }
404
405
406 /// toplevelentity
407 /// ::= 'declare' FunctionHeader
ParseDeclare()408 bool LLParser::ParseDeclare() {
409 assert(Lex.getKind() == lltok::kw_declare);
410 Lex.Lex();
411
412 Function *F;
413 return ParseFunctionHeader(F, false);
414 }
415
416 /// toplevelentity
417 /// ::= 'define' FunctionHeader '{' ...
ParseDefine()418 bool LLParser::ParseDefine() {
419 assert(Lex.getKind() == lltok::kw_define);
420 Lex.Lex();
421
422 Function *F;
423 return ParseFunctionHeader(F, true) ||
424 ParseFunctionBody(*F);
425 }
426
427 /// ParseGlobalType
428 /// ::= 'constant'
429 /// ::= 'global'
ParseGlobalType(bool & IsConstant)430 bool LLParser::ParseGlobalType(bool &IsConstant) {
431 if (Lex.getKind() == lltok::kw_constant)
432 IsConstant = true;
433 else if (Lex.getKind() == lltok::kw_global)
434 IsConstant = false;
435 else {
436 IsConstant = false;
437 return TokError("expected 'global' or 'constant'");
438 }
439 Lex.Lex();
440 return false;
441 }
442
443 /// ParseUnnamedGlobal:
444 /// OptionalVisibility ALIAS ...
445 /// OptionalLinkage OptionalVisibility ... -> global variable
446 /// GlobalID '=' OptionalVisibility ALIAS ...
447 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseUnnamedGlobal()448 bool LLParser::ParseUnnamedGlobal() {
449 unsigned VarID = NumberedVals.size();
450 std::string Name;
451 LocTy NameLoc = Lex.getLoc();
452
453 // Handle the GlobalID form.
454 if (Lex.getKind() == lltok::GlobalID) {
455 if (Lex.getUIntVal() != VarID)
456 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457 Twine(VarID) + "'");
458 Lex.Lex(); // eat GlobalID;
459
460 if (ParseToken(lltok::equal, "expected '=' after name"))
461 return true;
462 }
463
464 bool HasLinkage;
465 unsigned Linkage, Visibility;
466 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467 ParseOptionalVisibility(Visibility))
468 return true;
469
470 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472 return ParseAlias(Name, NameLoc, Visibility);
473 }
474
475 /// ParseNamedGlobal:
476 /// GlobalVar '=' OptionalVisibility ALIAS ...
477 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseNamedGlobal()478 bool LLParser::ParseNamedGlobal() {
479 assert(Lex.getKind() == lltok::GlobalVar);
480 LocTy NameLoc = Lex.getLoc();
481 std::string Name = Lex.getStrVal();
482 Lex.Lex();
483
484 bool HasLinkage;
485 unsigned Linkage, Visibility;
486 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487 ParseOptionalLinkage(Linkage, HasLinkage) ||
488 ParseOptionalVisibility(Visibility))
489 return true;
490
491 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493 return ParseAlias(Name, NameLoc, Visibility);
494 }
495
496 // MDString:
497 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)498 bool LLParser::ParseMDString(MDString *&Result) {
499 std::string Str;
500 if (ParseStringConstant(Str)) return true;
501 Result = MDString::get(Context, Str);
502 return false;
503 }
504
505 // MDNode:
506 // ::= '!' MDNodeNumber
507 //
508 /// This version of ParseMDNodeID returns the slot number and null in the case
509 /// of a forward reference.
ParseMDNodeID(MDNode * & Result,unsigned & SlotNo)510 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511 // !{ ..., !42, ... }
512 if (ParseUInt32(SlotNo)) return true;
513
514 // Check existing MDNode.
515 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516 Result = NumberedMetadata[SlotNo];
517 else
518 Result = 0;
519 return false;
520 }
521
ParseMDNodeID(MDNode * & Result)522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
523 // !{ ..., !42, ... }
524 unsigned MID = 0;
525 if (ParseMDNodeID(Result, MID)) return true;
526
527 // If not a forward reference, just return it now.
528 if (Result) return false;
529
530 // Otherwise, create MDNode forward reference.
531 MDNode *FwdNode = MDNode::getTemporary(Context, None);
532 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534 if (NumberedMetadata.size() <= MID)
535 NumberedMetadata.resize(MID+1);
536 NumberedMetadata[MID] = FwdNode;
537 Result = FwdNode;
538 return false;
539 }
540
541 /// ParseNamedMetadata:
542 /// !foo = !{ !1, !2 }
ParseNamedMetadata()543 bool LLParser::ParseNamedMetadata() {
544 assert(Lex.getKind() == lltok::MetadataVar);
545 std::string Name = Lex.getStrVal();
546 Lex.Lex();
547
548 if (ParseToken(lltok::equal, "expected '=' here") ||
549 ParseToken(lltok::exclaim, "Expected '!' here") ||
550 ParseToken(lltok::lbrace, "Expected '{' here"))
551 return true;
552
553 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554 if (Lex.getKind() != lltok::rbrace)
555 do {
556 if (ParseToken(lltok::exclaim, "Expected '!' here"))
557 return true;
558
559 MDNode *N = 0;
560 if (ParseMDNodeID(N)) return true;
561 NMD->addOperand(N);
562 } while (EatIfPresent(lltok::comma));
563
564 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565 return true;
566
567 return false;
568 }
569
570 /// ParseStandaloneMetadata:
571 /// !42 = !{...}
ParseStandaloneMetadata()572 bool LLParser::ParseStandaloneMetadata() {
573 assert(Lex.getKind() == lltok::exclaim);
574 Lex.Lex();
575 unsigned MetadataID = 0;
576
577 LocTy TyLoc;
578 Type *Ty = 0;
579 SmallVector<Value *, 16> Elts;
580 if (ParseUInt32(MetadataID) ||
581 ParseToken(lltok::equal, "expected '=' here") ||
582 ParseType(Ty, TyLoc) ||
583 ParseToken(lltok::exclaim, "Expected '!' here") ||
584 ParseToken(lltok::lbrace, "Expected '{' here") ||
585 ParseMDNodeVector(Elts, NULL) ||
586 ParseToken(lltok::rbrace, "expected end of metadata node"))
587 return true;
588
589 MDNode *Init = MDNode::get(Context, Elts);
590
591 // See if this was forward referenced, if so, handle it.
592 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593 FI = ForwardRefMDNodes.find(MetadataID);
594 if (FI != ForwardRefMDNodes.end()) {
595 MDNode *Temp = FI->second.first;
596 Temp->replaceAllUsesWith(Init);
597 MDNode::deleteTemporary(Temp);
598 ForwardRefMDNodes.erase(FI);
599
600 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601 } else {
602 if (MetadataID >= NumberedMetadata.size())
603 NumberedMetadata.resize(MetadataID+1);
604
605 if (NumberedMetadata[MetadataID] != 0)
606 return TokError("Metadata id is already used");
607 NumberedMetadata[MetadataID] = Init;
608 }
609
610 return false;
611 }
612
613 /// ParseAlias:
614 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615 /// Aliasee
616 /// ::= TypeAndValue
617 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
619 ///
620 /// Everything through visibility has already been parsed.
621 ///
ParseAlias(const std::string & Name,LocTy NameLoc,unsigned Visibility)622 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623 unsigned Visibility) {
624 assert(Lex.getKind() == lltok::kw_alias);
625 Lex.Lex();
626 unsigned Linkage;
627 LocTy LinkageLoc = Lex.getLoc();
628 if (ParseOptionalLinkage(Linkage))
629 return true;
630
631 if (Linkage != GlobalValue::ExternalLinkage &&
632 Linkage != GlobalValue::WeakAnyLinkage &&
633 Linkage != GlobalValue::WeakODRLinkage &&
634 Linkage != GlobalValue::InternalLinkage &&
635 Linkage != GlobalValue::PrivateLinkage &&
636 Linkage != GlobalValue::LinkerPrivateLinkage &&
637 Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638 return Error(LinkageLoc, "invalid linkage type for alias");
639
640 Constant *Aliasee;
641 LocTy AliaseeLoc = Lex.getLoc();
642 if (Lex.getKind() != lltok::kw_bitcast &&
643 Lex.getKind() != lltok::kw_getelementptr) {
644 if (ParseGlobalTypeAndValue(Aliasee)) return true;
645 } else {
646 // The bitcast dest type is not present, it is implied by the dest type.
647 ValID ID;
648 if (ParseValID(ID)) return true;
649 if (ID.Kind != ValID::t_Constant)
650 return Error(AliaseeLoc, "invalid aliasee");
651 Aliasee = ID.ConstantVal;
652 }
653
654 if (!Aliasee->getType()->isPointerTy())
655 return Error(AliaseeLoc, "alias must have pointer type");
656
657 // Okay, create the alias but do not insert it into the module yet.
658 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659 (GlobalValue::LinkageTypes)Linkage, Name,
660 Aliasee);
661 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663 // See if this value already exists in the symbol table. If so, it is either
664 // a redefinition or a definition of a forward reference.
665 if (GlobalValue *Val = M->getNamedValue(Name)) {
666 // See if this was a redefinition. If so, there is no entry in
667 // ForwardRefVals.
668 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669 I = ForwardRefVals.find(Name);
670 if (I == ForwardRefVals.end())
671 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673 // Otherwise, this was a definition of forward ref. Verify that types
674 // agree.
675 if (Val->getType() != GA->getType())
676 return Error(NameLoc,
677 "forward reference and definition of alias have different types");
678
679 // If they agree, just RAUW the old value with the alias and remove the
680 // forward ref info.
681 Val->replaceAllUsesWith(GA);
682 Val->eraseFromParent();
683 ForwardRefVals.erase(I);
684 }
685
686 // Insert into the module, we know its name won't collide now.
687 M->getAliasList().push_back(GA);
688 assert(GA->getName() == Name && "Should not be a name conflict!");
689
690 return false;
691 }
692
693 /// ParseGlobal
694 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695 /// OptionalAddrSpace OptionalUnNammedAddr
696 /// OptionalExternallyInitialized GlobalType Type Const
697 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698 /// OptionalAddrSpace OptionalUnNammedAddr
699 /// OptionalExternallyInitialized GlobalType Type Const
700 ///
701 /// Everything through visibility has been parsed already.
702 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility)703 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704 unsigned Linkage, bool HasLinkage,
705 unsigned Visibility) {
706 unsigned AddrSpace;
707 bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708 GlobalVariable::ThreadLocalMode TLM;
709 LocTy UnnamedAddrLoc;
710 LocTy IsExternallyInitializedLoc;
711 LocTy TyLoc;
712
713 Type *Ty = 0;
714 if (ParseOptionalThreadLocal(TLM) ||
715 ParseOptionalAddrSpace(AddrSpace) ||
716 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717 &UnnamedAddrLoc) ||
718 ParseOptionalToken(lltok::kw_externally_initialized,
719 IsExternallyInitialized,
720 &IsExternallyInitializedLoc) ||
721 ParseGlobalType(IsConstant) ||
722 ParseType(Ty, TyLoc))
723 return true;
724
725 // If the linkage is specified and is external, then no initializer is
726 // present.
727 Constant *Init = 0;
728 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729 Linkage != GlobalValue::ExternalWeakLinkage &&
730 Linkage != GlobalValue::ExternalLinkage)) {
731 if (ParseGlobalValue(Ty, Init))
732 return true;
733 }
734
735 if (Ty->isFunctionTy() || Ty->isLabelTy())
736 return Error(TyLoc, "invalid type for global variable");
737
738 GlobalVariable *GV = 0;
739
740 // See if the global was forward referenced, if so, use the global.
741 if (!Name.empty()) {
742 if (GlobalValue *GVal = M->getNamedValue(Name)) {
743 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744 return Error(NameLoc, "redefinition of global '@" + Name + "'");
745 GV = cast<GlobalVariable>(GVal);
746 }
747 } else {
748 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749 I = ForwardRefValIDs.find(NumberedVals.size());
750 if (I != ForwardRefValIDs.end()) {
751 GV = cast<GlobalVariable>(I->second.first);
752 ForwardRefValIDs.erase(I);
753 }
754 }
755
756 if (GV == 0) {
757 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758 Name, 0, GlobalVariable::NotThreadLocal,
759 AddrSpace);
760 } else {
761 if (GV->getType()->getElementType() != Ty)
762 return Error(TyLoc,
763 "forward reference and definition of global have different types");
764
765 // Move the forward-reference to the correct spot in the module.
766 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767 }
768
769 if (Name.empty())
770 NumberedVals.push_back(GV);
771
772 // Set the parsed properties on the global.
773 if (Init)
774 GV->setInitializer(Init);
775 GV->setConstant(IsConstant);
776 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778 GV->setExternallyInitialized(IsExternallyInitialized);
779 GV->setThreadLocalMode(TLM);
780 GV->setUnnamedAddr(UnnamedAddr);
781
782 // Parse attributes on the global.
783 while (Lex.getKind() == lltok::comma) {
784 Lex.Lex();
785
786 if (Lex.getKind() == lltok::kw_section) {
787 Lex.Lex();
788 GV->setSection(Lex.getStrVal());
789 if (ParseToken(lltok::StringConstant, "expected global section string"))
790 return true;
791 } else if (Lex.getKind() == lltok::kw_align) {
792 unsigned Alignment;
793 if (ParseOptionalAlignment(Alignment)) return true;
794 GV->setAlignment(Alignment);
795 } else {
796 TokError("unknown global variable property!");
797 }
798 }
799
800 return false;
801 }
802
803 /// ParseUnnamedAttrGrp
804 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()805 bool LLParser::ParseUnnamedAttrGrp() {
806 assert(Lex.getKind() == lltok::kw_attributes);
807 LocTy AttrGrpLoc = Lex.getLoc();
808 Lex.Lex();
809
810 assert(Lex.getKind() == lltok::AttrGrpID);
811 unsigned VarID = Lex.getUIntVal();
812 std::vector<unsigned> unused;
813 LocTy BuiltinLoc;
814 Lex.Lex();
815
816 if (ParseToken(lltok::equal, "expected '=' here") ||
817 ParseToken(lltok::lbrace, "expected '{' here") ||
818 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819 BuiltinLoc) ||
820 ParseToken(lltok::rbrace, "expected end of attribute group"))
821 return true;
822
823 if (!NumberedAttrBuilders[VarID].hasAttributes())
824 return Error(AttrGrpLoc, "attribute group has no attributes");
825
826 return false;
827 }
828
829 /// ParseFnAttributeValuePairs
830 /// ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)831 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832 std::vector<unsigned> &FwdRefAttrGrps,
833 bool inAttrGrp, LocTy &BuiltinLoc) {
834 bool HaveError = false;
835
836 B.clear();
837
838 while (true) {
839 lltok::Kind Token = Lex.getKind();
840 if (Token == lltok::kw_builtin)
841 BuiltinLoc = Lex.getLoc();
842 switch (Token) {
843 default:
844 if (!inAttrGrp) return HaveError;
845 return Error(Lex.getLoc(), "unterminated attribute group");
846 case lltok::rbrace:
847 // Finished.
848 return false;
849
850 case lltok::AttrGrpID: {
851 // Allow a function to reference an attribute group:
852 //
853 // define void @foo() #1 { ... }
854 if (inAttrGrp)
855 HaveError |=
856 Error(Lex.getLoc(),
857 "cannot have an attribute group reference in an attribute group");
858
859 unsigned AttrGrpNum = Lex.getUIntVal();
860 if (inAttrGrp) break;
861
862 // Save the reference to the attribute group. We'll fill it in later.
863 FwdRefAttrGrps.push_back(AttrGrpNum);
864 break;
865 }
866 // Target-dependent attributes:
867 case lltok::StringConstant: {
868 std::string Attr = Lex.getStrVal();
869 Lex.Lex();
870 std::string Val;
871 if (EatIfPresent(lltok::equal) &&
872 ParseStringConstant(Val))
873 return true;
874
875 B.addAttribute(Attr, Val);
876 continue;
877 }
878
879 // Target-independent attributes:
880 case lltok::kw_align: {
881 // As a hack, we allow function alignment to be initially parsed as an
882 // attribute on a function declaration/definition or added to an attribute
883 // group and later moved to the alignment field.
884 unsigned Alignment;
885 if (inAttrGrp) {
886 Lex.Lex();
887 if (ParseToken(lltok::equal, "expected '=' here") ||
888 ParseUInt32(Alignment))
889 return true;
890 } else {
891 if (ParseOptionalAlignment(Alignment))
892 return true;
893 }
894 B.addAlignmentAttr(Alignment);
895 continue;
896 }
897 case lltok::kw_alignstack: {
898 unsigned Alignment;
899 if (inAttrGrp) {
900 Lex.Lex();
901 if (ParseToken(lltok::equal, "expected '=' here") ||
902 ParseUInt32(Alignment))
903 return true;
904 } else {
905 if (ParseOptionalStackAlignment(Alignment))
906 return true;
907 }
908 B.addStackAlignmentAttr(Alignment);
909 continue;
910 }
911 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
912 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
913 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
914 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
915 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
916 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
917 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
918 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
919 case lltok::kw_noimplicitfloat: B.addAttribute(Attribute::NoImplicitFloat); break;
920 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
921 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
922 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
923 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
924 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
925 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
926 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
927 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
928 case lltok::kw_returns_twice: B.addAttribute(Attribute::ReturnsTwice); break;
929 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
930 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
931 case lltok::kw_sspstrong: B.addAttribute(Attribute::StackProtectStrong); break;
932 case lltok::kw_sanitize_address: B.addAttribute(Attribute::SanitizeAddress); break;
933 case lltok::kw_sanitize_thread: B.addAttribute(Attribute::SanitizeThread); break;
934 case lltok::kw_sanitize_memory: B.addAttribute(Attribute::SanitizeMemory); break;
935 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
936
937 // Error handling.
938 case lltok::kw_inreg:
939 case lltok::kw_signext:
940 case lltok::kw_zeroext:
941 HaveError |=
942 Error(Lex.getLoc(),
943 "invalid use of attribute on a function");
944 break;
945 case lltok::kw_byval:
946 case lltok::kw_nest:
947 case lltok::kw_noalias:
948 case lltok::kw_nocapture:
949 case lltok::kw_returned:
950 case lltok::kw_sret:
951 HaveError |=
952 Error(Lex.getLoc(),
953 "invalid use of parameter-only attribute on a function");
954 break;
955 }
956
957 Lex.Lex();
958 }
959 }
960
961 //===----------------------------------------------------------------------===//
962 // GlobalValue Reference/Resolution Routines.
963 //===----------------------------------------------------------------------===//
964
965 /// GetGlobalVal - Get a value with the specified name or ID, creating a
966 /// forward reference record if needed. This can return null if the value
967 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)968 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
969 LocTy Loc) {
970 PointerType *PTy = dyn_cast<PointerType>(Ty);
971 if (PTy == 0) {
972 Error(Loc, "global variable reference must have pointer type");
973 return 0;
974 }
975
976 // Look this name up in the normal function symbol table.
977 GlobalValue *Val =
978 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
979
980 // If this is a forward reference for the value, see if we already created a
981 // forward ref record.
982 if (Val == 0) {
983 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
984 I = ForwardRefVals.find(Name);
985 if (I != ForwardRefVals.end())
986 Val = I->second.first;
987 }
988
989 // If we have the value in the symbol table or fwd-ref table, return it.
990 if (Val) {
991 if (Val->getType() == Ty) return Val;
992 Error(Loc, "'@" + Name + "' defined with type '" +
993 getTypeString(Val->getType()) + "'");
994 return 0;
995 }
996
997 // Otherwise, create a new forward reference for this value and remember it.
998 GlobalValue *FwdVal;
999 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1000 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1001 else
1002 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1003 GlobalValue::ExternalWeakLinkage, 0, Name,
1004 0, GlobalVariable::NotThreadLocal,
1005 PTy->getAddressSpace());
1006
1007 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1008 return FwdVal;
1009 }
1010
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1011 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1012 PointerType *PTy = dyn_cast<PointerType>(Ty);
1013 if (PTy == 0) {
1014 Error(Loc, "global variable reference must have pointer type");
1015 return 0;
1016 }
1017
1018 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1019
1020 // If this is a forward reference for the value, see if we already created a
1021 // forward ref record.
1022 if (Val == 0) {
1023 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1024 I = ForwardRefValIDs.find(ID);
1025 if (I != ForwardRefValIDs.end())
1026 Val = I->second.first;
1027 }
1028
1029 // If we have the value in the symbol table or fwd-ref table, return it.
1030 if (Val) {
1031 if (Val->getType() == Ty) return Val;
1032 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1033 getTypeString(Val->getType()) + "'");
1034 return 0;
1035 }
1036
1037 // Otherwise, create a new forward reference for this value and remember it.
1038 GlobalValue *FwdVal;
1039 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1040 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1041 else
1042 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1043 GlobalValue::ExternalWeakLinkage, 0, "");
1044
1045 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1046 return FwdVal;
1047 }
1048
1049
1050 //===----------------------------------------------------------------------===//
1051 // Helper Routines.
1052 //===----------------------------------------------------------------------===//
1053
1054 /// ParseToken - If the current token has the specified kind, eat it and return
1055 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1056 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1057 if (Lex.getKind() != T)
1058 return TokError(ErrMsg);
1059 Lex.Lex();
1060 return false;
1061 }
1062
1063 /// ParseStringConstant
1064 /// ::= StringConstant
ParseStringConstant(std::string & Result)1065 bool LLParser::ParseStringConstant(std::string &Result) {
1066 if (Lex.getKind() != lltok::StringConstant)
1067 return TokError("expected string constant");
1068 Result = Lex.getStrVal();
1069 Lex.Lex();
1070 return false;
1071 }
1072
1073 /// ParseUInt32
1074 /// ::= uint32
ParseUInt32(unsigned & Val)1075 bool LLParser::ParseUInt32(unsigned &Val) {
1076 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1077 return TokError("expected integer");
1078 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1079 if (Val64 != unsigned(Val64))
1080 return TokError("expected 32-bit integer (too large)");
1081 Val = Val64;
1082 Lex.Lex();
1083 return false;
1084 }
1085
1086 /// ParseTLSModel
1087 /// := 'localdynamic'
1088 /// := 'initialexec'
1089 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1090 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1091 switch (Lex.getKind()) {
1092 default:
1093 return TokError("expected localdynamic, initialexec or localexec");
1094 case lltok::kw_localdynamic:
1095 TLM = GlobalVariable::LocalDynamicTLSModel;
1096 break;
1097 case lltok::kw_initialexec:
1098 TLM = GlobalVariable::InitialExecTLSModel;
1099 break;
1100 case lltok::kw_localexec:
1101 TLM = GlobalVariable::LocalExecTLSModel;
1102 break;
1103 }
1104
1105 Lex.Lex();
1106 return false;
1107 }
1108
1109 /// ParseOptionalThreadLocal
1110 /// := /*empty*/
1111 /// := 'thread_local'
1112 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1113 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1114 TLM = GlobalVariable::NotThreadLocal;
1115 if (!EatIfPresent(lltok::kw_thread_local))
1116 return false;
1117
1118 TLM = GlobalVariable::GeneralDynamicTLSModel;
1119 if (Lex.getKind() == lltok::lparen) {
1120 Lex.Lex();
1121 return ParseTLSModel(TLM) ||
1122 ParseToken(lltok::rparen, "expected ')' after thread local model");
1123 }
1124 return false;
1125 }
1126
1127 /// ParseOptionalAddrSpace
1128 /// := /*empty*/
1129 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)1130 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1131 AddrSpace = 0;
1132 if (!EatIfPresent(lltok::kw_addrspace))
1133 return false;
1134 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1135 ParseUInt32(AddrSpace) ||
1136 ParseToken(lltok::rparen, "expected ')' in address space");
1137 }
1138
1139 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1140 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1141 bool HaveError = false;
1142
1143 B.clear();
1144
1145 while (1) {
1146 lltok::Kind Token = Lex.getKind();
1147 switch (Token) {
1148 default: // End of attributes.
1149 return HaveError;
1150 case lltok::kw_align: {
1151 unsigned Alignment;
1152 if (ParseOptionalAlignment(Alignment))
1153 return true;
1154 B.addAlignmentAttr(Alignment);
1155 continue;
1156 }
1157 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1158 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1159 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1160 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1161 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1162 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1163 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1164 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1165 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1166 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1167 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1168
1169 case lltok::kw_alignstack:
1170 case lltok::kw_alwaysinline:
1171 case lltok::kw_builtin:
1172 case lltok::kw_inlinehint:
1173 case lltok::kw_minsize:
1174 case lltok::kw_naked:
1175 case lltok::kw_nobuiltin:
1176 case lltok::kw_noduplicate:
1177 case lltok::kw_noimplicitfloat:
1178 case lltok::kw_noinline:
1179 case lltok::kw_nonlazybind:
1180 case lltok::kw_noredzone:
1181 case lltok::kw_noreturn:
1182 case lltok::kw_nounwind:
1183 case lltok::kw_optsize:
1184 case lltok::kw_returns_twice:
1185 case lltok::kw_sanitize_address:
1186 case lltok::kw_sanitize_memory:
1187 case lltok::kw_sanitize_thread:
1188 case lltok::kw_ssp:
1189 case lltok::kw_sspreq:
1190 case lltok::kw_sspstrong:
1191 case lltok::kw_uwtable:
1192 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1193 break;
1194 }
1195
1196 Lex.Lex();
1197 }
1198 }
1199
1200 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1201 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1202 bool HaveError = false;
1203
1204 B.clear();
1205
1206 while (1) {
1207 lltok::Kind Token = Lex.getKind();
1208 switch (Token) {
1209 default: // End of attributes.
1210 return HaveError;
1211 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1212 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1213 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1214 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1215
1216 // Error handling.
1217 case lltok::kw_align:
1218 case lltok::kw_byval:
1219 case lltok::kw_nest:
1220 case lltok::kw_nocapture:
1221 case lltok::kw_returned:
1222 case lltok::kw_sret:
1223 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1224 break;
1225
1226 case lltok::kw_alignstack:
1227 case lltok::kw_alwaysinline:
1228 case lltok::kw_builtin:
1229 case lltok::kw_cold:
1230 case lltok::kw_inlinehint:
1231 case lltok::kw_minsize:
1232 case lltok::kw_naked:
1233 case lltok::kw_nobuiltin:
1234 case lltok::kw_noduplicate:
1235 case lltok::kw_noimplicitfloat:
1236 case lltok::kw_noinline:
1237 case lltok::kw_nonlazybind:
1238 case lltok::kw_noredzone:
1239 case lltok::kw_noreturn:
1240 case lltok::kw_nounwind:
1241 case lltok::kw_optsize:
1242 case lltok::kw_returns_twice:
1243 case lltok::kw_sanitize_address:
1244 case lltok::kw_sanitize_memory:
1245 case lltok::kw_sanitize_thread:
1246 case lltok::kw_ssp:
1247 case lltok::kw_sspreq:
1248 case lltok::kw_sspstrong:
1249 case lltok::kw_uwtable:
1250 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1251 break;
1252
1253 case lltok::kw_readnone:
1254 case lltok::kw_readonly:
1255 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1256 }
1257
1258 Lex.Lex();
1259 }
1260 }
1261
1262 /// ParseOptionalLinkage
1263 /// ::= /*empty*/
1264 /// ::= 'private'
1265 /// ::= 'linker_private'
1266 /// ::= 'linker_private_weak'
1267 /// ::= 'internal'
1268 /// ::= 'weak'
1269 /// ::= 'weak_odr'
1270 /// ::= 'linkonce'
1271 /// ::= 'linkonce_odr'
1272 /// ::= 'linkonce_odr_auto_hide'
1273 /// ::= 'available_externally'
1274 /// ::= 'appending'
1275 /// ::= 'dllexport'
1276 /// ::= 'common'
1277 /// ::= 'dllimport'
1278 /// ::= 'extern_weak'
1279 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage)1280 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1281 HasLinkage = false;
1282 switch (Lex.getKind()) {
1283 default: Res=GlobalValue::ExternalLinkage; return false;
1284 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1285 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1286 case lltok::kw_linker_private_weak:
1287 Res = GlobalValue::LinkerPrivateWeakLinkage;
1288 break;
1289 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1290 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1291 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1292 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1293 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1294 case lltok::kw_linkonce_odr_auto_hide:
1295 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1296 Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1297 break;
1298 case lltok::kw_available_externally:
1299 Res = GlobalValue::AvailableExternallyLinkage;
1300 break;
1301 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1302 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
1303 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1304 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
1305 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1306 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1307 }
1308 Lex.Lex();
1309 HasLinkage = true;
1310 return false;
1311 }
1312
1313 /// ParseOptionalVisibility
1314 /// ::= /*empty*/
1315 /// ::= 'default'
1316 /// ::= 'hidden'
1317 /// ::= 'protected'
1318 ///
ParseOptionalVisibility(unsigned & Res)1319 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1320 switch (Lex.getKind()) {
1321 default: Res = GlobalValue::DefaultVisibility; return false;
1322 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1323 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1324 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1325 }
1326 Lex.Lex();
1327 return false;
1328 }
1329
1330 /// ParseOptionalCallingConv
1331 /// ::= /*empty*/
1332 /// ::= 'ccc'
1333 /// ::= 'fastcc'
1334 /// ::= 'kw_intel_ocl_bicc'
1335 /// ::= 'coldcc'
1336 /// ::= 'x86_stdcallcc'
1337 /// ::= 'x86_fastcallcc'
1338 /// ::= 'x86_thiscallcc'
1339 /// ::= 'arm_apcscc'
1340 /// ::= 'arm_aapcscc'
1341 /// ::= 'arm_aapcs_vfpcc'
1342 /// ::= 'msp430_intrcc'
1343 /// ::= 'ptx_kernel'
1344 /// ::= 'ptx_device'
1345 /// ::= 'spir_func'
1346 /// ::= 'spir_kernel'
1347 /// ::= 'x86_64_sysvcc'
1348 /// ::= 'x86_64_win64cc'
1349 /// ::= 'cc' UINT
1350 ///
ParseOptionalCallingConv(CallingConv::ID & CC)1351 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1352 switch (Lex.getKind()) {
1353 default: CC = CallingConv::C; return false;
1354 case lltok::kw_ccc: CC = CallingConv::C; break;
1355 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1356 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1357 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1358 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1359 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1360 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1361 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1362 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1363 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1364 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1365 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1366 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1367 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1368 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1369 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1370 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1371 case lltok::kw_cc: {
1372 unsigned ArbitraryCC;
1373 Lex.Lex();
1374 if (ParseUInt32(ArbitraryCC))
1375 return true;
1376 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1377 return false;
1378 }
1379 }
1380
1381 Lex.Lex();
1382 return false;
1383 }
1384
1385 /// ParseInstructionMetadata
1386 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction * Inst,PerFunctionState * PFS)1387 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1388 PerFunctionState *PFS) {
1389 do {
1390 if (Lex.getKind() != lltok::MetadataVar)
1391 return TokError("expected metadata after comma");
1392
1393 std::string Name = Lex.getStrVal();
1394 unsigned MDK = M->getMDKindID(Name);
1395 Lex.Lex();
1396
1397 MDNode *Node;
1398 SMLoc Loc = Lex.getLoc();
1399
1400 if (ParseToken(lltok::exclaim, "expected '!' here"))
1401 return true;
1402
1403 // This code is similar to that of ParseMetadataValue, however it needs to
1404 // have special-case code for a forward reference; see the comments on
1405 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1406 // at the top level here.
1407 if (Lex.getKind() == lltok::lbrace) {
1408 ValID ID;
1409 if (ParseMetadataListValue(ID, PFS))
1410 return true;
1411 assert(ID.Kind == ValID::t_MDNode);
1412 Inst->setMetadata(MDK, ID.MDNodeVal);
1413 } else {
1414 unsigned NodeID = 0;
1415 if (ParseMDNodeID(Node, NodeID))
1416 return true;
1417 if (Node) {
1418 // If we got the node, add it to the instruction.
1419 Inst->setMetadata(MDK, Node);
1420 } else {
1421 MDRef R = { Loc, MDK, NodeID };
1422 // Otherwise, remember that this should be resolved later.
1423 ForwardRefInstMetadata[Inst].push_back(R);
1424 }
1425 }
1426
1427 // If this is the end of the list, we're done.
1428 } while (EatIfPresent(lltok::comma));
1429 return false;
1430 }
1431
1432 /// ParseOptionalAlignment
1433 /// ::= /* empty */
1434 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1435 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1436 Alignment = 0;
1437 if (!EatIfPresent(lltok::kw_align))
1438 return false;
1439 LocTy AlignLoc = Lex.getLoc();
1440 if (ParseUInt32(Alignment)) return true;
1441 if (!isPowerOf2_32(Alignment))
1442 return Error(AlignLoc, "alignment is not a power of two");
1443 if (Alignment > Value::MaximumAlignment)
1444 return Error(AlignLoc, "huge alignments are not supported yet");
1445 return false;
1446 }
1447
1448 /// ParseOptionalCommaAlign
1449 /// ::=
1450 /// ::= ',' align 4
1451 ///
1452 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1453 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1454 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1455 bool &AteExtraComma) {
1456 AteExtraComma = false;
1457 while (EatIfPresent(lltok::comma)) {
1458 // Metadata at the end is an early exit.
1459 if (Lex.getKind() == lltok::MetadataVar) {
1460 AteExtraComma = true;
1461 return false;
1462 }
1463
1464 if (Lex.getKind() != lltok::kw_align)
1465 return Error(Lex.getLoc(), "expected metadata or 'align'");
1466
1467 if (ParseOptionalAlignment(Alignment)) return true;
1468 }
1469
1470 return false;
1471 }
1472
1473 /// ParseScopeAndOrdering
1474 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1475 /// else: ::=
1476 ///
1477 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1478 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1479 AtomicOrdering &Ordering) {
1480 if (!isAtomic)
1481 return false;
1482
1483 Scope = CrossThread;
1484 if (EatIfPresent(lltok::kw_singlethread))
1485 Scope = SingleThread;
1486 switch (Lex.getKind()) {
1487 default: return TokError("Expected ordering on atomic instruction");
1488 case lltok::kw_unordered: Ordering = Unordered; break;
1489 case lltok::kw_monotonic: Ordering = Monotonic; break;
1490 case lltok::kw_acquire: Ordering = Acquire; break;
1491 case lltok::kw_release: Ordering = Release; break;
1492 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1493 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1494 }
1495 Lex.Lex();
1496 return false;
1497 }
1498
1499 /// ParseOptionalStackAlignment
1500 /// ::= /* empty */
1501 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1502 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1503 Alignment = 0;
1504 if (!EatIfPresent(lltok::kw_alignstack))
1505 return false;
1506 LocTy ParenLoc = Lex.getLoc();
1507 if (!EatIfPresent(lltok::lparen))
1508 return Error(ParenLoc, "expected '('");
1509 LocTy AlignLoc = Lex.getLoc();
1510 if (ParseUInt32(Alignment)) return true;
1511 ParenLoc = Lex.getLoc();
1512 if (!EatIfPresent(lltok::rparen))
1513 return Error(ParenLoc, "expected ')'");
1514 if (!isPowerOf2_32(Alignment))
1515 return Error(AlignLoc, "stack alignment is not a power of two");
1516 return false;
1517 }
1518
1519 /// ParseIndexList - This parses the index list for an insert/extractvalue
1520 /// instruction. This sets AteExtraComma in the case where we eat an extra
1521 /// comma at the end of the line and find that it is followed by metadata.
1522 /// Clients that don't allow metadata can call the version of this function that
1523 /// only takes one argument.
1524 ///
1525 /// ParseIndexList
1526 /// ::= (',' uint32)+
1527 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1528 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1529 bool &AteExtraComma) {
1530 AteExtraComma = false;
1531
1532 if (Lex.getKind() != lltok::comma)
1533 return TokError("expected ',' as start of index list");
1534
1535 while (EatIfPresent(lltok::comma)) {
1536 if (Lex.getKind() == lltok::MetadataVar) {
1537 AteExtraComma = true;
1538 return false;
1539 }
1540 unsigned Idx = 0;
1541 if (ParseUInt32(Idx)) return true;
1542 Indices.push_back(Idx);
1543 }
1544
1545 return false;
1546 }
1547
1548 //===----------------------------------------------------------------------===//
1549 // Type Parsing.
1550 //===----------------------------------------------------------------------===//
1551
1552 /// ParseType - Parse a type.
ParseType(Type * & Result,bool AllowVoid)1553 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1554 SMLoc TypeLoc = Lex.getLoc();
1555 switch (Lex.getKind()) {
1556 default:
1557 return TokError("expected type");
1558 case lltok::Type:
1559 // Type ::= 'float' | 'void' (etc)
1560 Result = Lex.getTyVal();
1561 Lex.Lex();
1562 break;
1563 case lltok::lbrace:
1564 // Type ::= StructType
1565 if (ParseAnonStructType(Result, false))
1566 return true;
1567 break;
1568 case lltok::lsquare:
1569 // Type ::= '[' ... ']'
1570 Lex.Lex(); // eat the lsquare.
1571 if (ParseArrayVectorType(Result, false))
1572 return true;
1573 break;
1574 case lltok::less: // Either vector or packed struct.
1575 // Type ::= '<' ... '>'
1576 Lex.Lex();
1577 if (Lex.getKind() == lltok::lbrace) {
1578 if (ParseAnonStructType(Result, true) ||
1579 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1580 return true;
1581 } else if (ParseArrayVectorType(Result, true))
1582 return true;
1583 break;
1584 case lltok::LocalVar: {
1585 // Type ::= %foo
1586 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1587
1588 // If the type hasn't been defined yet, create a forward definition and
1589 // remember where that forward def'n was seen (in case it never is defined).
1590 if (Entry.first == 0) {
1591 Entry.first = StructType::create(Context, Lex.getStrVal());
1592 Entry.second = Lex.getLoc();
1593 }
1594 Result = Entry.first;
1595 Lex.Lex();
1596 break;
1597 }
1598
1599 case lltok::LocalVarID: {
1600 // Type ::= %4
1601 if (Lex.getUIntVal() >= NumberedTypes.size())
1602 NumberedTypes.resize(Lex.getUIntVal()+1);
1603 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1604
1605 // If the type hasn't been defined yet, create a forward definition and
1606 // remember where that forward def'n was seen (in case it never is defined).
1607 if (Entry.first == 0) {
1608 Entry.first = StructType::create(Context);
1609 Entry.second = Lex.getLoc();
1610 }
1611 Result = Entry.first;
1612 Lex.Lex();
1613 break;
1614 }
1615 }
1616
1617 // Parse the type suffixes.
1618 while (1) {
1619 switch (Lex.getKind()) {
1620 // End of type.
1621 default:
1622 if (!AllowVoid && Result->isVoidTy())
1623 return Error(TypeLoc, "void type only allowed for function results");
1624 return false;
1625
1626 // Type ::= Type '*'
1627 case lltok::star:
1628 if (Result->isLabelTy())
1629 return TokError("basic block pointers are invalid");
1630 if (Result->isVoidTy())
1631 return TokError("pointers to void are invalid - use i8* instead");
1632 if (!PointerType::isValidElementType(Result))
1633 return TokError("pointer to this type is invalid");
1634 Result = PointerType::getUnqual(Result);
1635 Lex.Lex();
1636 break;
1637
1638 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1639 case lltok::kw_addrspace: {
1640 if (Result->isLabelTy())
1641 return TokError("basic block pointers are invalid");
1642 if (Result->isVoidTy())
1643 return TokError("pointers to void are invalid; use i8* instead");
1644 if (!PointerType::isValidElementType(Result))
1645 return TokError("pointer to this type is invalid");
1646 unsigned AddrSpace;
1647 if (ParseOptionalAddrSpace(AddrSpace) ||
1648 ParseToken(lltok::star, "expected '*' in address space"))
1649 return true;
1650
1651 Result = PointerType::get(Result, AddrSpace);
1652 break;
1653 }
1654
1655 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1656 case lltok::lparen:
1657 if (ParseFunctionType(Result))
1658 return true;
1659 break;
1660 }
1661 }
1662 }
1663
1664 /// ParseParameterList
1665 /// ::= '(' ')'
1666 /// ::= '(' Arg (',' Arg)* ')'
1667 /// Arg
1668 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS)1669 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1670 PerFunctionState &PFS) {
1671 if (ParseToken(lltok::lparen, "expected '(' in call"))
1672 return true;
1673
1674 unsigned AttrIndex = 1;
1675 while (Lex.getKind() != lltok::rparen) {
1676 // If this isn't the first argument, we need a comma.
1677 if (!ArgList.empty() &&
1678 ParseToken(lltok::comma, "expected ',' in argument list"))
1679 return true;
1680
1681 // Parse the argument.
1682 LocTy ArgLoc;
1683 Type *ArgTy = 0;
1684 AttrBuilder ArgAttrs;
1685 Value *V;
1686 if (ParseType(ArgTy, ArgLoc))
1687 return true;
1688
1689 // Otherwise, handle normal operands.
1690 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1691 return true;
1692 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1693 AttrIndex++,
1694 ArgAttrs)));
1695 }
1696
1697 Lex.Lex(); // Lex the ')'.
1698 return false;
1699 }
1700
1701
1702
1703 /// ParseArgumentList - Parse the argument list for a function type or function
1704 /// prototype.
1705 /// ::= '(' ArgTypeListI ')'
1706 /// ArgTypeListI
1707 /// ::= /*empty*/
1708 /// ::= '...'
1709 /// ::= ArgTypeList ',' '...'
1710 /// ::= ArgType (',' ArgType)*
1711 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)1712 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1713 bool &isVarArg){
1714 isVarArg = false;
1715 assert(Lex.getKind() == lltok::lparen);
1716 Lex.Lex(); // eat the (.
1717
1718 if (Lex.getKind() == lltok::rparen) {
1719 // empty
1720 } else if (Lex.getKind() == lltok::dotdotdot) {
1721 isVarArg = true;
1722 Lex.Lex();
1723 } else {
1724 LocTy TypeLoc = Lex.getLoc();
1725 Type *ArgTy = 0;
1726 AttrBuilder Attrs;
1727 std::string Name;
1728
1729 if (ParseType(ArgTy) ||
1730 ParseOptionalParamAttrs(Attrs)) return true;
1731
1732 if (ArgTy->isVoidTy())
1733 return Error(TypeLoc, "argument can not have void type");
1734
1735 if (Lex.getKind() == lltok::LocalVar) {
1736 Name = Lex.getStrVal();
1737 Lex.Lex();
1738 }
1739
1740 if (!FunctionType::isValidArgumentType(ArgTy))
1741 return Error(TypeLoc, "invalid type for function argument");
1742
1743 unsigned AttrIndex = 1;
1744 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1745 AttributeSet::get(ArgTy->getContext(),
1746 AttrIndex++, Attrs), Name));
1747
1748 while (EatIfPresent(lltok::comma)) {
1749 // Handle ... at end of arg list.
1750 if (EatIfPresent(lltok::dotdotdot)) {
1751 isVarArg = true;
1752 break;
1753 }
1754
1755 // Otherwise must be an argument type.
1756 TypeLoc = Lex.getLoc();
1757 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1758
1759 if (ArgTy->isVoidTy())
1760 return Error(TypeLoc, "argument can not have void type");
1761
1762 if (Lex.getKind() == lltok::LocalVar) {
1763 Name = Lex.getStrVal();
1764 Lex.Lex();
1765 } else {
1766 Name = "";
1767 }
1768
1769 if (!ArgTy->isFirstClassType())
1770 return Error(TypeLoc, "invalid type for function argument");
1771
1772 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1773 AttributeSet::get(ArgTy->getContext(),
1774 AttrIndex++, Attrs),
1775 Name));
1776 }
1777 }
1778
1779 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1780 }
1781
1782 /// ParseFunctionType
1783 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)1784 bool LLParser::ParseFunctionType(Type *&Result) {
1785 assert(Lex.getKind() == lltok::lparen);
1786
1787 if (!FunctionType::isValidReturnType(Result))
1788 return TokError("invalid function return type");
1789
1790 SmallVector<ArgInfo, 8> ArgList;
1791 bool isVarArg;
1792 if (ParseArgumentList(ArgList, isVarArg))
1793 return true;
1794
1795 // Reject names on the arguments lists.
1796 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1797 if (!ArgList[i].Name.empty())
1798 return Error(ArgList[i].Loc, "argument name invalid in function type");
1799 if (ArgList[i].Attrs.hasAttributes(i + 1))
1800 return Error(ArgList[i].Loc,
1801 "argument attributes invalid in function type");
1802 }
1803
1804 SmallVector<Type*, 16> ArgListTy;
1805 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1806 ArgListTy.push_back(ArgList[i].Ty);
1807
1808 Result = FunctionType::get(Result, ArgListTy, isVarArg);
1809 return false;
1810 }
1811
1812 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1813 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)1814 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1815 SmallVector<Type*, 8> Elts;
1816 if (ParseStructBody(Elts)) return true;
1817
1818 Result = StructType::get(Context, Elts, Packed);
1819 return false;
1820 }
1821
1822 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)1823 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1824 std::pair<Type*, LocTy> &Entry,
1825 Type *&ResultTy) {
1826 // If the type was already defined, diagnose the redefinition.
1827 if (Entry.first && !Entry.second.isValid())
1828 return Error(TypeLoc, "redefinition of type");
1829
1830 // If we have opaque, just return without filling in the definition for the
1831 // struct. This counts as a definition as far as the .ll file goes.
1832 if (EatIfPresent(lltok::kw_opaque)) {
1833 // This type is being defined, so clear the location to indicate this.
1834 Entry.second = SMLoc();
1835
1836 // If this type number has never been uttered, create it.
1837 if (Entry.first == 0)
1838 Entry.first = StructType::create(Context, Name);
1839 ResultTy = Entry.first;
1840 return false;
1841 }
1842
1843 // If the type starts with '<', then it is either a packed struct or a vector.
1844 bool isPacked = EatIfPresent(lltok::less);
1845
1846 // If we don't have a struct, then we have a random type alias, which we
1847 // accept for compatibility with old files. These types are not allowed to be
1848 // forward referenced and not allowed to be recursive.
1849 if (Lex.getKind() != lltok::lbrace) {
1850 if (Entry.first)
1851 return Error(TypeLoc, "forward references to non-struct type");
1852
1853 ResultTy = 0;
1854 if (isPacked)
1855 return ParseArrayVectorType(ResultTy, true);
1856 return ParseType(ResultTy);
1857 }
1858
1859 // This type is being defined, so clear the location to indicate this.
1860 Entry.second = SMLoc();
1861
1862 // If this type number has never been uttered, create it.
1863 if (Entry.first == 0)
1864 Entry.first = StructType::create(Context, Name);
1865
1866 StructType *STy = cast<StructType>(Entry.first);
1867
1868 SmallVector<Type*, 8> Body;
1869 if (ParseStructBody(Body) ||
1870 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1871 return true;
1872
1873 STy->setBody(Body, isPacked);
1874 ResultTy = STy;
1875 return false;
1876 }
1877
1878
1879 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1880 /// StructType
1881 /// ::= '{' '}'
1882 /// ::= '{' Type (',' Type)* '}'
1883 /// ::= '<' '{' '}' '>'
1884 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)1885 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1886 assert(Lex.getKind() == lltok::lbrace);
1887 Lex.Lex(); // Consume the '{'
1888
1889 // Handle the empty struct.
1890 if (EatIfPresent(lltok::rbrace))
1891 return false;
1892
1893 LocTy EltTyLoc = Lex.getLoc();
1894 Type *Ty = 0;
1895 if (ParseType(Ty)) return true;
1896 Body.push_back(Ty);
1897
1898 if (!StructType::isValidElementType(Ty))
1899 return Error(EltTyLoc, "invalid element type for struct");
1900
1901 while (EatIfPresent(lltok::comma)) {
1902 EltTyLoc = Lex.getLoc();
1903 if (ParseType(Ty)) return true;
1904
1905 if (!StructType::isValidElementType(Ty))
1906 return Error(EltTyLoc, "invalid element type for struct");
1907
1908 Body.push_back(Ty);
1909 }
1910
1911 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1912 }
1913
1914 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1915 /// token has already been consumed.
1916 /// Type
1917 /// ::= '[' APSINTVAL 'x' Types ']'
1918 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)1919 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1920 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1921 Lex.getAPSIntVal().getBitWidth() > 64)
1922 return TokError("expected number in address space");
1923
1924 LocTy SizeLoc = Lex.getLoc();
1925 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1926 Lex.Lex();
1927
1928 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1929 return true;
1930
1931 LocTy TypeLoc = Lex.getLoc();
1932 Type *EltTy = 0;
1933 if (ParseType(EltTy)) return true;
1934
1935 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1936 "expected end of sequential type"))
1937 return true;
1938
1939 if (isVector) {
1940 if (Size == 0)
1941 return Error(SizeLoc, "zero element vector is illegal");
1942 if ((unsigned)Size != Size)
1943 return Error(SizeLoc, "size too large for vector");
1944 if (!VectorType::isValidElementType(EltTy))
1945 return Error(TypeLoc, "invalid vector element type");
1946 Result = VectorType::get(EltTy, unsigned(Size));
1947 } else {
1948 if (!ArrayType::isValidElementType(EltTy))
1949 return Error(TypeLoc, "invalid array element type");
1950 Result = ArrayType::get(EltTy, Size);
1951 }
1952 return false;
1953 }
1954
1955 //===----------------------------------------------------------------------===//
1956 // Function Semantic Analysis.
1957 //===----------------------------------------------------------------------===//
1958
PerFunctionState(LLParser & p,Function & f,int functionNumber)1959 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1960 int functionNumber)
1961 : P(p), F(f), FunctionNumber(functionNumber) {
1962
1963 // Insert unnamed arguments into the NumberedVals list.
1964 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1965 AI != E; ++AI)
1966 if (!AI->hasName())
1967 NumberedVals.push_back(AI);
1968 }
1969
~PerFunctionState()1970 LLParser::PerFunctionState::~PerFunctionState() {
1971 // If there were any forward referenced non-basicblock values, delete them.
1972 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1973 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1974 if (!isa<BasicBlock>(I->second.first)) {
1975 I->second.first->replaceAllUsesWith(
1976 UndefValue::get(I->second.first->getType()));
1977 delete I->second.first;
1978 I->second.first = 0;
1979 }
1980
1981 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1982 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1983 if (!isa<BasicBlock>(I->second.first)) {
1984 I->second.first->replaceAllUsesWith(
1985 UndefValue::get(I->second.first->getType()));
1986 delete I->second.first;
1987 I->second.first = 0;
1988 }
1989 }
1990
FinishFunction()1991 bool LLParser::PerFunctionState::FinishFunction() {
1992 // Check to see if someone took the address of labels in this block.
1993 if (!P.ForwardRefBlockAddresses.empty()) {
1994 ValID FunctionID;
1995 if (!F.getName().empty()) {
1996 FunctionID.Kind = ValID::t_GlobalName;
1997 FunctionID.StrVal = F.getName();
1998 } else {
1999 FunctionID.Kind = ValID::t_GlobalID;
2000 FunctionID.UIntVal = FunctionNumber;
2001 }
2002
2003 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
2004 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
2005 if (FRBAI != P.ForwardRefBlockAddresses.end()) {
2006 // Resolve all these references.
2007 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
2008 return true;
2009
2010 P.ForwardRefBlockAddresses.erase(FRBAI);
2011 }
2012 }
2013
2014 if (!ForwardRefVals.empty())
2015 return P.Error(ForwardRefVals.begin()->second.second,
2016 "use of undefined value '%" + ForwardRefVals.begin()->first +
2017 "'");
2018 if (!ForwardRefValIDs.empty())
2019 return P.Error(ForwardRefValIDs.begin()->second.second,
2020 "use of undefined value '%" +
2021 Twine(ForwardRefValIDs.begin()->first) + "'");
2022 return false;
2023 }
2024
2025
2026 /// GetVal - Get a value with the specified name or ID, creating a
2027 /// forward reference record if needed. This can return null if the value
2028 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)2029 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2030 Type *Ty, LocTy Loc) {
2031 // Look this name up in the normal function symbol table.
2032 Value *Val = F.getValueSymbolTable().lookup(Name);
2033
2034 // If this is a forward reference for the value, see if we already created a
2035 // forward ref record.
2036 if (Val == 0) {
2037 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2038 I = ForwardRefVals.find(Name);
2039 if (I != ForwardRefVals.end())
2040 Val = I->second.first;
2041 }
2042
2043 // If we have the value in the symbol table or fwd-ref table, return it.
2044 if (Val) {
2045 if (Val->getType() == Ty) return Val;
2046 if (Ty->isLabelTy())
2047 P.Error(Loc, "'%" + Name + "' is not a basic block");
2048 else
2049 P.Error(Loc, "'%" + Name + "' defined with type '" +
2050 getTypeString(Val->getType()) + "'");
2051 return 0;
2052 }
2053
2054 // Don't make placeholders with invalid type.
2055 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2056 P.Error(Loc, "invalid use of a non-first-class type");
2057 return 0;
2058 }
2059
2060 // Otherwise, create a new forward reference for this value and remember it.
2061 Value *FwdVal;
2062 if (Ty->isLabelTy())
2063 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2064 else
2065 FwdVal = new Argument(Ty, Name);
2066
2067 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2068 return FwdVal;
2069 }
2070
GetVal(unsigned ID,Type * Ty,LocTy Loc)2071 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2072 LocTy Loc) {
2073 // Look this name up in the normal function symbol table.
2074 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2075
2076 // If this is a forward reference for the value, see if we already created a
2077 // forward ref record.
2078 if (Val == 0) {
2079 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2080 I = ForwardRefValIDs.find(ID);
2081 if (I != ForwardRefValIDs.end())
2082 Val = I->second.first;
2083 }
2084
2085 // If we have the value in the symbol table or fwd-ref table, return it.
2086 if (Val) {
2087 if (Val->getType() == Ty) return Val;
2088 if (Ty->isLabelTy())
2089 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2090 else
2091 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2092 getTypeString(Val->getType()) + "'");
2093 return 0;
2094 }
2095
2096 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2097 P.Error(Loc, "invalid use of a non-first-class type");
2098 return 0;
2099 }
2100
2101 // Otherwise, create a new forward reference for this value and remember it.
2102 Value *FwdVal;
2103 if (Ty->isLabelTy())
2104 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2105 else
2106 FwdVal = new Argument(Ty);
2107
2108 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2109 return FwdVal;
2110 }
2111
2112 /// SetInstName - After an instruction is parsed and inserted into its
2113 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2114 bool LLParser::PerFunctionState::SetInstName(int NameID,
2115 const std::string &NameStr,
2116 LocTy NameLoc, Instruction *Inst) {
2117 // If this instruction has void type, it cannot have a name or ID specified.
2118 if (Inst->getType()->isVoidTy()) {
2119 if (NameID != -1 || !NameStr.empty())
2120 return P.Error(NameLoc, "instructions returning void cannot have a name");
2121 return false;
2122 }
2123
2124 // If this was a numbered instruction, verify that the instruction is the
2125 // expected value and resolve any forward references.
2126 if (NameStr.empty()) {
2127 // If neither a name nor an ID was specified, just use the next ID.
2128 if (NameID == -1)
2129 NameID = NumberedVals.size();
2130
2131 if (unsigned(NameID) != NumberedVals.size())
2132 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2133 Twine(NumberedVals.size()) + "'");
2134
2135 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2136 ForwardRefValIDs.find(NameID);
2137 if (FI != ForwardRefValIDs.end()) {
2138 if (FI->second.first->getType() != Inst->getType())
2139 return P.Error(NameLoc, "instruction forward referenced with type '" +
2140 getTypeString(FI->second.first->getType()) + "'");
2141 FI->second.first->replaceAllUsesWith(Inst);
2142 delete FI->second.first;
2143 ForwardRefValIDs.erase(FI);
2144 }
2145
2146 NumberedVals.push_back(Inst);
2147 return false;
2148 }
2149
2150 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2151 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2152 FI = ForwardRefVals.find(NameStr);
2153 if (FI != ForwardRefVals.end()) {
2154 if (FI->second.first->getType() != Inst->getType())
2155 return P.Error(NameLoc, "instruction forward referenced with type '" +
2156 getTypeString(FI->second.first->getType()) + "'");
2157 FI->second.first->replaceAllUsesWith(Inst);
2158 delete FI->second.first;
2159 ForwardRefVals.erase(FI);
2160 }
2161
2162 // Set the name on the instruction.
2163 Inst->setName(NameStr);
2164
2165 if (Inst->getName() != NameStr)
2166 return P.Error(NameLoc, "multiple definition of local value named '" +
2167 NameStr + "'");
2168 return false;
2169 }
2170
2171 /// GetBB - Get a basic block with the specified name or ID, creating a
2172 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)2173 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2174 LocTy Loc) {
2175 return cast_or_null<BasicBlock>(GetVal(Name,
2176 Type::getLabelTy(F.getContext()), Loc));
2177 }
2178
GetBB(unsigned ID,LocTy Loc)2179 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2180 return cast_or_null<BasicBlock>(GetVal(ID,
2181 Type::getLabelTy(F.getContext()), Loc));
2182 }
2183
2184 /// DefineBB - Define the specified basic block, which is either named or
2185 /// unnamed. If there is an error, this returns null otherwise it returns
2186 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)2187 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2188 LocTy Loc) {
2189 BasicBlock *BB;
2190 if (Name.empty())
2191 BB = GetBB(NumberedVals.size(), Loc);
2192 else
2193 BB = GetBB(Name, Loc);
2194 if (BB == 0) return 0; // Already diagnosed error.
2195
2196 // Move the block to the end of the function. Forward ref'd blocks are
2197 // inserted wherever they happen to be referenced.
2198 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2199
2200 // Remove the block from forward ref sets.
2201 if (Name.empty()) {
2202 ForwardRefValIDs.erase(NumberedVals.size());
2203 NumberedVals.push_back(BB);
2204 } else {
2205 // BB forward references are already in the function symbol table.
2206 ForwardRefVals.erase(Name);
2207 }
2208
2209 return BB;
2210 }
2211
2212 //===----------------------------------------------------------------------===//
2213 // Constants.
2214 //===----------------------------------------------------------------------===//
2215
2216 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2217 /// type implied. For example, if we parse "4" we don't know what integer type
2218 /// it has. The value will later be combined with its type and checked for
2219 /// sanity. PFS is used to convert function-local operands of metadata (since
2220 /// metadata operands are not just parsed here but also converted to values).
2221 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)2222 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2223 ID.Loc = Lex.getLoc();
2224 switch (Lex.getKind()) {
2225 default: return TokError("expected value token");
2226 case lltok::GlobalID: // @42
2227 ID.UIntVal = Lex.getUIntVal();
2228 ID.Kind = ValID::t_GlobalID;
2229 break;
2230 case lltok::GlobalVar: // @foo
2231 ID.StrVal = Lex.getStrVal();
2232 ID.Kind = ValID::t_GlobalName;
2233 break;
2234 case lltok::LocalVarID: // %42
2235 ID.UIntVal = Lex.getUIntVal();
2236 ID.Kind = ValID::t_LocalID;
2237 break;
2238 case lltok::LocalVar: // %foo
2239 ID.StrVal = Lex.getStrVal();
2240 ID.Kind = ValID::t_LocalName;
2241 break;
2242 case lltok::exclaim: // !42, !{...}, or !"foo"
2243 return ParseMetadataValue(ID, PFS);
2244 case lltok::APSInt:
2245 ID.APSIntVal = Lex.getAPSIntVal();
2246 ID.Kind = ValID::t_APSInt;
2247 break;
2248 case lltok::APFloat:
2249 ID.APFloatVal = Lex.getAPFloatVal();
2250 ID.Kind = ValID::t_APFloat;
2251 break;
2252 case lltok::kw_true:
2253 ID.ConstantVal = ConstantInt::getTrue(Context);
2254 ID.Kind = ValID::t_Constant;
2255 break;
2256 case lltok::kw_false:
2257 ID.ConstantVal = ConstantInt::getFalse(Context);
2258 ID.Kind = ValID::t_Constant;
2259 break;
2260 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2261 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2262 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2263
2264 case lltok::lbrace: {
2265 // ValID ::= '{' ConstVector '}'
2266 Lex.Lex();
2267 SmallVector<Constant*, 16> Elts;
2268 if (ParseGlobalValueVector(Elts) ||
2269 ParseToken(lltok::rbrace, "expected end of struct constant"))
2270 return true;
2271
2272 ID.ConstantStructElts = new Constant*[Elts.size()];
2273 ID.UIntVal = Elts.size();
2274 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2275 ID.Kind = ValID::t_ConstantStruct;
2276 return false;
2277 }
2278 case lltok::less: {
2279 // ValID ::= '<' ConstVector '>' --> Vector.
2280 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2281 Lex.Lex();
2282 bool isPackedStruct = EatIfPresent(lltok::lbrace);
2283
2284 SmallVector<Constant*, 16> Elts;
2285 LocTy FirstEltLoc = Lex.getLoc();
2286 if (ParseGlobalValueVector(Elts) ||
2287 (isPackedStruct &&
2288 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2289 ParseToken(lltok::greater, "expected end of constant"))
2290 return true;
2291
2292 if (isPackedStruct) {
2293 ID.ConstantStructElts = new Constant*[Elts.size()];
2294 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2295 ID.UIntVal = Elts.size();
2296 ID.Kind = ValID::t_PackedConstantStruct;
2297 return false;
2298 }
2299
2300 if (Elts.empty())
2301 return Error(ID.Loc, "constant vector must not be empty");
2302
2303 if (!Elts[0]->getType()->isIntegerTy() &&
2304 !Elts[0]->getType()->isFloatingPointTy() &&
2305 !Elts[0]->getType()->isPointerTy())
2306 return Error(FirstEltLoc,
2307 "vector elements must have integer, pointer or floating point type");
2308
2309 // Verify that all the vector elements have the same type.
2310 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2311 if (Elts[i]->getType() != Elts[0]->getType())
2312 return Error(FirstEltLoc,
2313 "vector element #" + Twine(i) +
2314 " is not of type '" + getTypeString(Elts[0]->getType()));
2315
2316 ID.ConstantVal = ConstantVector::get(Elts);
2317 ID.Kind = ValID::t_Constant;
2318 return false;
2319 }
2320 case lltok::lsquare: { // Array Constant
2321 Lex.Lex();
2322 SmallVector<Constant*, 16> Elts;
2323 LocTy FirstEltLoc = Lex.getLoc();
2324 if (ParseGlobalValueVector(Elts) ||
2325 ParseToken(lltok::rsquare, "expected end of array constant"))
2326 return true;
2327
2328 // Handle empty element.
2329 if (Elts.empty()) {
2330 // Use undef instead of an array because it's inconvenient to determine
2331 // the element type at this point, there being no elements to examine.
2332 ID.Kind = ValID::t_EmptyArray;
2333 return false;
2334 }
2335
2336 if (!Elts[0]->getType()->isFirstClassType())
2337 return Error(FirstEltLoc, "invalid array element type: " +
2338 getTypeString(Elts[0]->getType()));
2339
2340 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2341
2342 // Verify all elements are correct type!
2343 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2344 if (Elts[i]->getType() != Elts[0]->getType())
2345 return Error(FirstEltLoc,
2346 "array element #" + Twine(i) +
2347 " is not of type '" + getTypeString(Elts[0]->getType()));
2348 }
2349
2350 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2351 ID.Kind = ValID::t_Constant;
2352 return false;
2353 }
2354 case lltok::kw_c: // c "foo"
2355 Lex.Lex();
2356 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2357 false);
2358 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2359 ID.Kind = ValID::t_Constant;
2360 return false;
2361
2362 case lltok::kw_asm: {
2363 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2364 // STRINGCONSTANT
2365 bool HasSideEffect, AlignStack, AsmDialect;
2366 Lex.Lex();
2367 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2368 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2369 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2370 ParseStringConstant(ID.StrVal) ||
2371 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2372 ParseToken(lltok::StringConstant, "expected constraint string"))
2373 return true;
2374 ID.StrVal2 = Lex.getStrVal();
2375 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2376 (unsigned(AsmDialect)<<2);
2377 ID.Kind = ValID::t_InlineAsm;
2378 return false;
2379 }
2380
2381 case lltok::kw_blockaddress: {
2382 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2383 Lex.Lex();
2384
2385 ValID Fn, Label;
2386 LocTy FnLoc, LabelLoc;
2387
2388 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2389 ParseValID(Fn) ||
2390 ParseToken(lltok::comma, "expected comma in block address expression")||
2391 ParseValID(Label) ||
2392 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2393 return true;
2394
2395 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2396 return Error(Fn.Loc, "expected function name in blockaddress");
2397 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2398 return Error(Label.Loc, "expected basic block name in blockaddress");
2399
2400 // Make a global variable as a placeholder for this reference.
2401 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2402 false, GlobalValue::InternalLinkage,
2403 0, "");
2404 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2405 ID.ConstantVal = FwdRef;
2406 ID.Kind = ValID::t_Constant;
2407 return false;
2408 }
2409
2410 case lltok::kw_trunc:
2411 case lltok::kw_zext:
2412 case lltok::kw_sext:
2413 case lltok::kw_fptrunc:
2414 case lltok::kw_fpext:
2415 case lltok::kw_bitcast:
2416 case lltok::kw_uitofp:
2417 case lltok::kw_sitofp:
2418 case lltok::kw_fptoui:
2419 case lltok::kw_fptosi:
2420 case lltok::kw_inttoptr:
2421 case lltok::kw_ptrtoint: {
2422 unsigned Opc = Lex.getUIntVal();
2423 Type *DestTy = 0;
2424 Constant *SrcVal;
2425 Lex.Lex();
2426 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2427 ParseGlobalTypeAndValue(SrcVal) ||
2428 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2429 ParseType(DestTy) ||
2430 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2431 return true;
2432 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2433 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2434 getTypeString(SrcVal->getType()) + "' to '" +
2435 getTypeString(DestTy) + "'");
2436 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2437 SrcVal, DestTy);
2438 ID.Kind = ValID::t_Constant;
2439 return false;
2440 }
2441 case lltok::kw_extractvalue: {
2442 Lex.Lex();
2443 Constant *Val;
2444 SmallVector<unsigned, 4> Indices;
2445 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2446 ParseGlobalTypeAndValue(Val) ||
2447 ParseIndexList(Indices) ||
2448 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2449 return true;
2450
2451 if (!Val->getType()->isAggregateType())
2452 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2453 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2454 return Error(ID.Loc, "invalid indices for extractvalue");
2455 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2456 ID.Kind = ValID::t_Constant;
2457 return false;
2458 }
2459 case lltok::kw_insertvalue: {
2460 Lex.Lex();
2461 Constant *Val0, *Val1;
2462 SmallVector<unsigned, 4> Indices;
2463 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2464 ParseGlobalTypeAndValue(Val0) ||
2465 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2466 ParseGlobalTypeAndValue(Val1) ||
2467 ParseIndexList(Indices) ||
2468 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2469 return true;
2470 if (!Val0->getType()->isAggregateType())
2471 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2472 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2473 return Error(ID.Loc, "invalid indices for insertvalue");
2474 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2475 ID.Kind = ValID::t_Constant;
2476 return false;
2477 }
2478 case lltok::kw_icmp:
2479 case lltok::kw_fcmp: {
2480 unsigned PredVal, Opc = Lex.getUIntVal();
2481 Constant *Val0, *Val1;
2482 Lex.Lex();
2483 if (ParseCmpPredicate(PredVal, Opc) ||
2484 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2485 ParseGlobalTypeAndValue(Val0) ||
2486 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2487 ParseGlobalTypeAndValue(Val1) ||
2488 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2489 return true;
2490
2491 if (Val0->getType() != Val1->getType())
2492 return Error(ID.Loc, "compare operands must have the same type");
2493
2494 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2495
2496 if (Opc == Instruction::FCmp) {
2497 if (!Val0->getType()->isFPOrFPVectorTy())
2498 return Error(ID.Loc, "fcmp requires floating point operands");
2499 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2500 } else {
2501 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2502 if (!Val0->getType()->isIntOrIntVectorTy() &&
2503 !Val0->getType()->getScalarType()->isPointerTy())
2504 return Error(ID.Loc, "icmp requires pointer or integer operands");
2505 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2506 }
2507 ID.Kind = ValID::t_Constant;
2508 return false;
2509 }
2510
2511 // Binary Operators.
2512 case lltok::kw_add:
2513 case lltok::kw_fadd:
2514 case lltok::kw_sub:
2515 case lltok::kw_fsub:
2516 case lltok::kw_mul:
2517 case lltok::kw_fmul:
2518 case lltok::kw_udiv:
2519 case lltok::kw_sdiv:
2520 case lltok::kw_fdiv:
2521 case lltok::kw_urem:
2522 case lltok::kw_srem:
2523 case lltok::kw_frem:
2524 case lltok::kw_shl:
2525 case lltok::kw_lshr:
2526 case lltok::kw_ashr: {
2527 bool NUW = false;
2528 bool NSW = false;
2529 bool Exact = false;
2530 unsigned Opc = Lex.getUIntVal();
2531 Constant *Val0, *Val1;
2532 Lex.Lex();
2533 LocTy ModifierLoc = Lex.getLoc();
2534 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2535 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2536 if (EatIfPresent(lltok::kw_nuw))
2537 NUW = true;
2538 if (EatIfPresent(lltok::kw_nsw)) {
2539 NSW = true;
2540 if (EatIfPresent(lltok::kw_nuw))
2541 NUW = true;
2542 }
2543 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2544 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2545 if (EatIfPresent(lltok::kw_exact))
2546 Exact = true;
2547 }
2548 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2549 ParseGlobalTypeAndValue(Val0) ||
2550 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2551 ParseGlobalTypeAndValue(Val1) ||
2552 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2553 return true;
2554 if (Val0->getType() != Val1->getType())
2555 return Error(ID.Loc, "operands of constexpr must have same type");
2556 if (!Val0->getType()->isIntOrIntVectorTy()) {
2557 if (NUW)
2558 return Error(ModifierLoc, "nuw only applies to integer operations");
2559 if (NSW)
2560 return Error(ModifierLoc, "nsw only applies to integer operations");
2561 }
2562 // Check that the type is valid for the operator.
2563 switch (Opc) {
2564 case Instruction::Add:
2565 case Instruction::Sub:
2566 case Instruction::Mul:
2567 case Instruction::UDiv:
2568 case Instruction::SDiv:
2569 case Instruction::URem:
2570 case Instruction::SRem:
2571 case Instruction::Shl:
2572 case Instruction::AShr:
2573 case Instruction::LShr:
2574 if (!Val0->getType()->isIntOrIntVectorTy())
2575 return Error(ID.Loc, "constexpr requires integer operands");
2576 break;
2577 case Instruction::FAdd:
2578 case Instruction::FSub:
2579 case Instruction::FMul:
2580 case Instruction::FDiv:
2581 case Instruction::FRem:
2582 if (!Val0->getType()->isFPOrFPVectorTy())
2583 return Error(ID.Loc, "constexpr requires fp operands");
2584 break;
2585 default: llvm_unreachable("Unknown binary operator!");
2586 }
2587 unsigned Flags = 0;
2588 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2589 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2590 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2591 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2592 ID.ConstantVal = C;
2593 ID.Kind = ValID::t_Constant;
2594 return false;
2595 }
2596
2597 // Logical Operations
2598 case lltok::kw_and:
2599 case lltok::kw_or:
2600 case lltok::kw_xor: {
2601 unsigned Opc = Lex.getUIntVal();
2602 Constant *Val0, *Val1;
2603 Lex.Lex();
2604 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2605 ParseGlobalTypeAndValue(Val0) ||
2606 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2607 ParseGlobalTypeAndValue(Val1) ||
2608 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2609 return true;
2610 if (Val0->getType() != Val1->getType())
2611 return Error(ID.Loc, "operands of constexpr must have same type");
2612 if (!Val0->getType()->isIntOrIntVectorTy())
2613 return Error(ID.Loc,
2614 "constexpr requires integer or integer vector operands");
2615 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2616 ID.Kind = ValID::t_Constant;
2617 return false;
2618 }
2619
2620 case lltok::kw_getelementptr:
2621 case lltok::kw_shufflevector:
2622 case lltok::kw_insertelement:
2623 case lltok::kw_extractelement:
2624 case lltok::kw_select: {
2625 unsigned Opc = Lex.getUIntVal();
2626 SmallVector<Constant*, 16> Elts;
2627 bool InBounds = false;
2628 Lex.Lex();
2629 if (Opc == Instruction::GetElementPtr)
2630 InBounds = EatIfPresent(lltok::kw_inbounds);
2631 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2632 ParseGlobalValueVector(Elts) ||
2633 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2634 return true;
2635
2636 if (Opc == Instruction::GetElementPtr) {
2637 if (Elts.size() == 0 ||
2638 !Elts[0]->getType()->getScalarType()->isPointerTy())
2639 return Error(ID.Loc, "getelementptr requires pointer operand");
2640
2641 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2642 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2643 return Error(ID.Loc, "invalid indices for getelementptr");
2644 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2645 InBounds);
2646 } else if (Opc == Instruction::Select) {
2647 if (Elts.size() != 3)
2648 return Error(ID.Loc, "expected three operands to select");
2649 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2650 Elts[2]))
2651 return Error(ID.Loc, Reason);
2652 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2653 } else if (Opc == Instruction::ShuffleVector) {
2654 if (Elts.size() != 3)
2655 return Error(ID.Loc, "expected three operands to shufflevector");
2656 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2657 return Error(ID.Loc, "invalid operands to shufflevector");
2658 ID.ConstantVal =
2659 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2660 } else if (Opc == Instruction::ExtractElement) {
2661 if (Elts.size() != 2)
2662 return Error(ID.Loc, "expected two operands to extractelement");
2663 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2664 return Error(ID.Loc, "invalid extractelement operands");
2665 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2666 } else {
2667 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2668 if (Elts.size() != 3)
2669 return Error(ID.Loc, "expected three operands to insertelement");
2670 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2671 return Error(ID.Loc, "invalid insertelement operands");
2672 ID.ConstantVal =
2673 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2674 }
2675
2676 ID.Kind = ValID::t_Constant;
2677 return false;
2678 }
2679 }
2680
2681 Lex.Lex();
2682 return false;
2683 }
2684
2685 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)2686 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2687 C = 0;
2688 ValID ID;
2689 Value *V = NULL;
2690 bool Parsed = ParseValID(ID) ||
2691 ConvertValIDToValue(Ty, ID, V, NULL);
2692 if (V && !(C = dyn_cast<Constant>(V)))
2693 return Error(ID.Loc, "global values must be constants");
2694 return Parsed;
2695 }
2696
ParseGlobalTypeAndValue(Constant * & V)2697 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2698 Type *Ty = 0;
2699 return ParseType(Ty) ||
2700 ParseGlobalValue(Ty, V);
2701 }
2702
2703 /// ParseGlobalValueVector
2704 /// ::= /*empty*/
2705 /// ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)2706 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2707 // Empty list.
2708 if (Lex.getKind() == lltok::rbrace ||
2709 Lex.getKind() == lltok::rsquare ||
2710 Lex.getKind() == lltok::greater ||
2711 Lex.getKind() == lltok::rparen)
2712 return false;
2713
2714 Constant *C;
2715 if (ParseGlobalTypeAndValue(C)) return true;
2716 Elts.push_back(C);
2717
2718 while (EatIfPresent(lltok::comma)) {
2719 if (ParseGlobalTypeAndValue(C)) return true;
2720 Elts.push_back(C);
2721 }
2722
2723 return false;
2724 }
2725
ParseMetadataListValue(ValID & ID,PerFunctionState * PFS)2726 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2727 assert(Lex.getKind() == lltok::lbrace);
2728 Lex.Lex();
2729
2730 SmallVector<Value*, 16> Elts;
2731 if (ParseMDNodeVector(Elts, PFS) ||
2732 ParseToken(lltok::rbrace, "expected end of metadata node"))
2733 return true;
2734
2735 ID.MDNodeVal = MDNode::get(Context, Elts);
2736 ID.Kind = ValID::t_MDNode;
2737 return false;
2738 }
2739
2740 /// ParseMetadataValue
2741 /// ::= !42
2742 /// ::= !{...}
2743 /// ::= !"string"
ParseMetadataValue(ValID & ID,PerFunctionState * PFS)2744 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2745 assert(Lex.getKind() == lltok::exclaim);
2746 Lex.Lex();
2747
2748 // MDNode:
2749 // !{ ... }
2750 if (Lex.getKind() == lltok::lbrace)
2751 return ParseMetadataListValue(ID, PFS);
2752
2753 // Standalone metadata reference
2754 // !42
2755 if (Lex.getKind() == lltok::APSInt) {
2756 if (ParseMDNodeID(ID.MDNodeVal)) return true;
2757 ID.Kind = ValID::t_MDNode;
2758 return false;
2759 }
2760
2761 // MDString:
2762 // ::= '!' STRINGCONSTANT
2763 if (ParseMDString(ID.MDStringVal)) return true;
2764 ID.Kind = ValID::t_MDString;
2765 return false;
2766 }
2767
2768
2769 //===----------------------------------------------------------------------===//
2770 // Function Parsing.
2771 //===----------------------------------------------------------------------===//
2772
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)2773 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2774 PerFunctionState *PFS) {
2775 if (Ty->isFunctionTy())
2776 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2777
2778 switch (ID.Kind) {
2779 case ValID::t_LocalID:
2780 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2781 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2782 return (V == 0);
2783 case ValID::t_LocalName:
2784 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2785 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2786 return (V == 0);
2787 case ValID::t_InlineAsm: {
2788 PointerType *PTy = dyn_cast<PointerType>(Ty);
2789 FunctionType *FTy =
2790 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2791 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2792 return Error(ID.Loc, "invalid type for inline asm constraint string");
2793 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2794 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2795 return false;
2796 }
2797 case ValID::t_MDNode:
2798 if (!Ty->isMetadataTy())
2799 return Error(ID.Loc, "metadata value must have metadata type");
2800 V = ID.MDNodeVal;
2801 return false;
2802 case ValID::t_MDString:
2803 if (!Ty->isMetadataTy())
2804 return Error(ID.Loc, "metadata value must have metadata type");
2805 V = ID.MDStringVal;
2806 return false;
2807 case ValID::t_GlobalName:
2808 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2809 return V == 0;
2810 case ValID::t_GlobalID:
2811 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2812 return V == 0;
2813 case ValID::t_APSInt:
2814 if (!Ty->isIntegerTy())
2815 return Error(ID.Loc, "integer constant must have integer type");
2816 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2817 V = ConstantInt::get(Context, ID.APSIntVal);
2818 return false;
2819 case ValID::t_APFloat:
2820 if (!Ty->isFloatingPointTy() ||
2821 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2822 return Error(ID.Loc, "floating point constant invalid for type");
2823
2824 // The lexer has no type info, so builds all half, float, and double FP
2825 // constants as double. Fix this here. Long double does not need this.
2826 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2827 bool Ignored;
2828 if (Ty->isHalfTy())
2829 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2830 &Ignored);
2831 else if (Ty->isFloatTy())
2832 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2833 &Ignored);
2834 }
2835 V = ConstantFP::get(Context, ID.APFloatVal);
2836
2837 if (V->getType() != Ty)
2838 return Error(ID.Loc, "floating point constant does not have type '" +
2839 getTypeString(Ty) + "'");
2840
2841 return false;
2842 case ValID::t_Null:
2843 if (!Ty->isPointerTy())
2844 return Error(ID.Loc, "null must be a pointer type");
2845 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2846 return false;
2847 case ValID::t_Undef:
2848 // FIXME: LabelTy should not be a first-class type.
2849 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2850 return Error(ID.Loc, "invalid type for undef constant");
2851 V = UndefValue::get(Ty);
2852 return false;
2853 case ValID::t_EmptyArray:
2854 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2855 return Error(ID.Loc, "invalid empty array initializer");
2856 V = UndefValue::get(Ty);
2857 return false;
2858 case ValID::t_Zero:
2859 // FIXME: LabelTy should not be a first-class type.
2860 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2861 return Error(ID.Loc, "invalid type for null constant");
2862 V = Constant::getNullValue(Ty);
2863 return false;
2864 case ValID::t_Constant:
2865 if (ID.ConstantVal->getType() != Ty)
2866 return Error(ID.Loc, "constant expression type mismatch");
2867
2868 V = ID.ConstantVal;
2869 return false;
2870 case ValID::t_ConstantStruct:
2871 case ValID::t_PackedConstantStruct:
2872 if (StructType *ST = dyn_cast<StructType>(Ty)) {
2873 if (ST->getNumElements() != ID.UIntVal)
2874 return Error(ID.Loc,
2875 "initializer with struct type has wrong # elements");
2876 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2877 return Error(ID.Loc, "packed'ness of initializer and type don't match");
2878
2879 // Verify that the elements are compatible with the structtype.
2880 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2881 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2882 return Error(ID.Loc, "element " + Twine(i) +
2883 " of struct initializer doesn't match struct element type");
2884
2885 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2886 ID.UIntVal));
2887 } else
2888 return Error(ID.Loc, "constant expression type mismatch");
2889 return false;
2890 }
2891 llvm_unreachable("Invalid ValID");
2892 }
2893
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)2894 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2895 V = 0;
2896 ValID ID;
2897 return ParseValID(ID, PFS) ||
2898 ConvertValIDToValue(Ty, ID, V, PFS);
2899 }
2900
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)2901 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2902 Type *Ty = 0;
2903 return ParseType(Ty) ||
2904 ParseValue(Ty, V, PFS);
2905 }
2906
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)2907 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2908 PerFunctionState &PFS) {
2909 Value *V;
2910 Loc = Lex.getLoc();
2911 if (ParseTypeAndValue(V, PFS)) return true;
2912 if (!isa<BasicBlock>(V))
2913 return Error(Loc, "expected a basic block");
2914 BB = cast<BasicBlock>(V);
2915 return false;
2916 }
2917
2918
2919 /// FunctionHeader
2920 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2921 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2922 /// OptionalAlign OptGC
ParseFunctionHeader(Function * & Fn,bool isDefine)2923 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2924 // Parse the linkage.
2925 LocTy LinkageLoc = Lex.getLoc();
2926 unsigned Linkage;
2927
2928 unsigned Visibility;
2929 AttrBuilder RetAttrs;
2930 CallingConv::ID CC;
2931 Type *RetType = 0;
2932 LocTy RetTypeLoc = Lex.getLoc();
2933 if (ParseOptionalLinkage(Linkage) ||
2934 ParseOptionalVisibility(Visibility) ||
2935 ParseOptionalCallingConv(CC) ||
2936 ParseOptionalReturnAttrs(RetAttrs) ||
2937 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2938 return true;
2939
2940 // Verify that the linkage is ok.
2941 switch ((GlobalValue::LinkageTypes)Linkage) {
2942 case GlobalValue::ExternalLinkage:
2943 break; // always ok.
2944 case GlobalValue::DLLImportLinkage:
2945 case GlobalValue::ExternalWeakLinkage:
2946 if (isDefine)
2947 return Error(LinkageLoc, "invalid linkage for function definition");
2948 break;
2949 case GlobalValue::PrivateLinkage:
2950 case GlobalValue::LinkerPrivateLinkage:
2951 case GlobalValue::LinkerPrivateWeakLinkage:
2952 case GlobalValue::InternalLinkage:
2953 case GlobalValue::AvailableExternallyLinkage:
2954 case GlobalValue::LinkOnceAnyLinkage:
2955 case GlobalValue::LinkOnceODRLinkage:
2956 case GlobalValue::LinkOnceODRAutoHideLinkage:
2957 case GlobalValue::WeakAnyLinkage:
2958 case GlobalValue::WeakODRLinkage:
2959 case GlobalValue::DLLExportLinkage:
2960 if (!isDefine)
2961 return Error(LinkageLoc, "invalid linkage for function declaration");
2962 break;
2963 case GlobalValue::AppendingLinkage:
2964 case GlobalValue::CommonLinkage:
2965 return Error(LinkageLoc, "invalid function linkage type");
2966 }
2967
2968 if (!FunctionType::isValidReturnType(RetType))
2969 return Error(RetTypeLoc, "invalid function return type");
2970
2971 LocTy NameLoc = Lex.getLoc();
2972
2973 std::string FunctionName;
2974 if (Lex.getKind() == lltok::GlobalVar) {
2975 FunctionName = Lex.getStrVal();
2976 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2977 unsigned NameID = Lex.getUIntVal();
2978
2979 if (NameID != NumberedVals.size())
2980 return TokError("function expected to be numbered '%" +
2981 Twine(NumberedVals.size()) + "'");
2982 } else {
2983 return TokError("expected function name");
2984 }
2985
2986 Lex.Lex();
2987
2988 if (Lex.getKind() != lltok::lparen)
2989 return TokError("expected '(' in function argument list");
2990
2991 SmallVector<ArgInfo, 8> ArgList;
2992 bool isVarArg;
2993 AttrBuilder FuncAttrs;
2994 std::vector<unsigned> FwdRefAttrGrps;
2995 LocTy BuiltinLoc;
2996 std::string Section;
2997 unsigned Alignment;
2998 std::string GC;
2999 bool UnnamedAddr;
3000 LocTy UnnamedAddrLoc;
3001
3002 if (ParseArgumentList(ArgList, isVarArg) ||
3003 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
3004 &UnnamedAddrLoc) ||
3005 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
3006 BuiltinLoc) ||
3007 (EatIfPresent(lltok::kw_section) &&
3008 ParseStringConstant(Section)) ||
3009 ParseOptionalAlignment(Alignment) ||
3010 (EatIfPresent(lltok::kw_gc) &&
3011 ParseStringConstant(GC)))
3012 return true;
3013
3014 if (FuncAttrs.contains(Attribute::Builtin))
3015 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
3016
3017 // If the alignment was parsed as an attribute, move to the alignment field.
3018 if (FuncAttrs.hasAlignmentAttr()) {
3019 Alignment = FuncAttrs.getAlignment();
3020 FuncAttrs.removeAttribute(Attribute::Alignment);
3021 }
3022
3023 // Okay, if we got here, the function is syntactically valid. Convert types
3024 // and do semantic checks.
3025 std::vector<Type*> ParamTypeList;
3026 SmallVector<AttributeSet, 8> Attrs;
3027
3028 if (RetAttrs.hasAttributes())
3029 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3030 AttributeSet::ReturnIndex,
3031 RetAttrs));
3032
3033 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3034 ParamTypeList.push_back(ArgList[i].Ty);
3035 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3036 AttrBuilder B(ArgList[i].Attrs, i + 1);
3037 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3038 }
3039 }
3040
3041 if (FuncAttrs.hasAttributes())
3042 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3043 AttributeSet::FunctionIndex,
3044 FuncAttrs));
3045
3046 AttributeSet PAL = AttributeSet::get(Context, Attrs);
3047
3048 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3049 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3050
3051 FunctionType *FT =
3052 FunctionType::get(RetType, ParamTypeList, isVarArg);
3053 PointerType *PFT = PointerType::getUnqual(FT);
3054
3055 Fn = 0;
3056 if (!FunctionName.empty()) {
3057 // If this was a definition of a forward reference, remove the definition
3058 // from the forward reference table and fill in the forward ref.
3059 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3060 ForwardRefVals.find(FunctionName);
3061 if (FRVI != ForwardRefVals.end()) {
3062 Fn = M->getFunction(FunctionName);
3063 if (!Fn)
3064 return Error(FRVI->second.second, "invalid forward reference to "
3065 "function as global value!");
3066 if (Fn->getType() != PFT)
3067 return Error(FRVI->second.second, "invalid forward reference to "
3068 "function '" + FunctionName + "' with wrong type!");
3069
3070 ForwardRefVals.erase(FRVI);
3071 } else if ((Fn = M->getFunction(FunctionName))) {
3072 // Reject redefinitions.
3073 return Error(NameLoc, "invalid redefinition of function '" +
3074 FunctionName + "'");
3075 } else if (M->getNamedValue(FunctionName)) {
3076 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3077 }
3078
3079 } else {
3080 // If this is a definition of a forward referenced function, make sure the
3081 // types agree.
3082 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3083 = ForwardRefValIDs.find(NumberedVals.size());
3084 if (I != ForwardRefValIDs.end()) {
3085 Fn = cast<Function>(I->second.first);
3086 if (Fn->getType() != PFT)
3087 return Error(NameLoc, "type of definition and forward reference of '@" +
3088 Twine(NumberedVals.size()) + "' disagree");
3089 ForwardRefValIDs.erase(I);
3090 }
3091 }
3092
3093 if (Fn == 0)
3094 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3095 else // Move the forward-reference to the correct spot in the module.
3096 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3097
3098 if (FunctionName.empty())
3099 NumberedVals.push_back(Fn);
3100
3101 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3102 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3103 Fn->setCallingConv(CC);
3104 Fn->setAttributes(PAL);
3105 Fn->setUnnamedAddr(UnnamedAddr);
3106 Fn->setAlignment(Alignment);
3107 Fn->setSection(Section);
3108 if (!GC.empty()) Fn->setGC(GC.c_str());
3109 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3110
3111 // Add all of the arguments we parsed to the function.
3112 Function::arg_iterator ArgIt = Fn->arg_begin();
3113 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3114 // If the argument has a name, insert it into the argument symbol table.
3115 if (ArgList[i].Name.empty()) continue;
3116
3117 // Set the name, if it conflicted, it will be auto-renamed.
3118 ArgIt->setName(ArgList[i].Name);
3119
3120 if (ArgIt->getName() != ArgList[i].Name)
3121 return Error(ArgList[i].Loc, "redefinition of argument '%" +
3122 ArgList[i].Name + "'");
3123 }
3124
3125 return false;
3126 }
3127
3128
3129 /// ParseFunctionBody
3130 /// ::= '{' BasicBlock+ '}'
3131 ///
ParseFunctionBody(Function & Fn)3132 bool LLParser::ParseFunctionBody(Function &Fn) {
3133 if (Lex.getKind() != lltok::lbrace)
3134 return TokError("expected '{' in function body");
3135 Lex.Lex(); // eat the {.
3136
3137 int FunctionNumber = -1;
3138 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3139
3140 PerFunctionState PFS(*this, Fn, FunctionNumber);
3141
3142 // We need at least one basic block.
3143 if (Lex.getKind() == lltok::rbrace)
3144 return TokError("function body requires at least one basic block");
3145
3146 while (Lex.getKind() != lltok::rbrace)
3147 if (ParseBasicBlock(PFS)) return true;
3148
3149 // Eat the }.
3150 Lex.Lex();
3151
3152 // Verify function is ok.
3153 return PFS.FinishFunction();
3154 }
3155
3156 /// ParseBasicBlock
3157 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)3158 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3159 // If this basic block starts out with a name, remember it.
3160 std::string Name;
3161 LocTy NameLoc = Lex.getLoc();
3162 if (Lex.getKind() == lltok::LabelStr) {
3163 Name = Lex.getStrVal();
3164 Lex.Lex();
3165 }
3166
3167 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3168 if (BB == 0) return true;
3169
3170 std::string NameStr;
3171
3172 // Parse the instructions in this block until we get a terminator.
3173 Instruction *Inst;
3174 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3175 do {
3176 // This instruction may have three possibilities for a name: a) none
3177 // specified, b) name specified "%foo =", c) number specified: "%4 =".
3178 LocTy NameLoc = Lex.getLoc();
3179 int NameID = -1;
3180 NameStr = "";
3181
3182 if (Lex.getKind() == lltok::LocalVarID) {
3183 NameID = Lex.getUIntVal();
3184 Lex.Lex();
3185 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3186 return true;
3187 } else if (Lex.getKind() == lltok::LocalVar) {
3188 NameStr = Lex.getStrVal();
3189 Lex.Lex();
3190 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3191 return true;
3192 }
3193
3194 switch (ParseInstruction(Inst, BB, PFS)) {
3195 default: llvm_unreachable("Unknown ParseInstruction result!");
3196 case InstError: return true;
3197 case InstNormal:
3198 BB->getInstList().push_back(Inst);
3199
3200 // With a normal result, we check to see if the instruction is followed by
3201 // a comma and metadata.
3202 if (EatIfPresent(lltok::comma))
3203 if (ParseInstructionMetadata(Inst, &PFS))
3204 return true;
3205 break;
3206 case InstExtraComma:
3207 BB->getInstList().push_back(Inst);
3208
3209 // If the instruction parser ate an extra comma at the end of it, it
3210 // *must* be followed by metadata.
3211 if (ParseInstructionMetadata(Inst, &PFS))
3212 return true;
3213 break;
3214 }
3215
3216 // Set the name on the instruction.
3217 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3218 } while (!isa<TerminatorInst>(Inst));
3219
3220 return false;
3221 }
3222
3223 //===----------------------------------------------------------------------===//
3224 // Instruction Parsing.
3225 //===----------------------------------------------------------------------===//
3226
3227 /// ParseInstruction - Parse one of the many different instructions.
3228 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)3229 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3230 PerFunctionState &PFS) {
3231 lltok::Kind Token = Lex.getKind();
3232 if (Token == lltok::Eof)
3233 return TokError("found end of file when expecting more instructions");
3234 LocTy Loc = Lex.getLoc();
3235 unsigned KeywordVal = Lex.getUIntVal();
3236 Lex.Lex(); // Eat the keyword.
3237
3238 switch (Token) {
3239 default: return Error(Loc, "expected instruction opcode");
3240 // Terminator Instructions.
3241 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3242 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
3243 case lltok::kw_br: return ParseBr(Inst, PFS);
3244 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
3245 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
3246 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
3247 case lltok::kw_resume: return ParseResume(Inst, PFS);
3248 // Binary Operators.
3249 case lltok::kw_add:
3250 case lltok::kw_sub:
3251 case lltok::kw_mul:
3252 case lltok::kw_shl: {
3253 bool NUW = EatIfPresent(lltok::kw_nuw);
3254 bool NSW = EatIfPresent(lltok::kw_nsw);
3255 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3256
3257 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3258
3259 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3260 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3261 return false;
3262 }
3263 case lltok::kw_fadd:
3264 case lltok::kw_fsub:
3265 case lltok::kw_fmul:
3266 case lltok::kw_fdiv:
3267 case lltok::kw_frem: {
3268 FastMathFlags FMF = EatFastMathFlagsIfPresent();
3269 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3270 if (Res != 0)
3271 return Res;
3272 if (FMF.any())
3273 Inst->setFastMathFlags(FMF);
3274 return 0;
3275 }
3276
3277 case lltok::kw_sdiv:
3278 case lltok::kw_udiv:
3279 case lltok::kw_lshr:
3280 case lltok::kw_ashr: {
3281 bool Exact = EatIfPresent(lltok::kw_exact);
3282
3283 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3284 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3285 return false;
3286 }
3287
3288 case lltok::kw_urem:
3289 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3290 case lltok::kw_and:
3291 case lltok::kw_or:
3292 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
3293 case lltok::kw_icmp:
3294 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
3295 // Casts.
3296 case lltok::kw_trunc:
3297 case lltok::kw_zext:
3298 case lltok::kw_sext:
3299 case lltok::kw_fptrunc:
3300 case lltok::kw_fpext:
3301 case lltok::kw_bitcast:
3302 case lltok::kw_uitofp:
3303 case lltok::kw_sitofp:
3304 case lltok::kw_fptoui:
3305 case lltok::kw_fptosi:
3306 case lltok::kw_inttoptr:
3307 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
3308 // Other.
3309 case lltok::kw_select: return ParseSelect(Inst, PFS);
3310 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
3311 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3312 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
3313 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
3314 case lltok::kw_phi: return ParsePHI(Inst, PFS);
3315 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
3316 case lltok::kw_call: return ParseCall(Inst, PFS, false);
3317 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
3318 // Memory.
3319 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
3320 case lltok::kw_load: return ParseLoad(Inst, PFS);
3321 case lltok::kw_store: return ParseStore(Inst, PFS);
3322 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
3323 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
3324 case lltok::kw_fence: return ParseFence(Inst, PFS);
3325 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3326 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
3327 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
3328 }
3329 }
3330
3331 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)3332 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3333 if (Opc == Instruction::FCmp) {
3334 switch (Lex.getKind()) {
3335 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3336 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3337 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3338 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3339 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3340 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3341 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3342 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3343 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3344 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3345 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3346 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3347 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3348 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3349 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3350 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3351 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3352 }
3353 } else {
3354 switch (Lex.getKind()) {
3355 default: return TokError("expected icmp predicate (e.g. 'eq')");
3356 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
3357 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
3358 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3359 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3360 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3361 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3362 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3363 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3364 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3365 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3366 }
3367 }
3368 Lex.Lex();
3369 return false;
3370 }
3371
3372 //===----------------------------------------------------------------------===//
3373 // Terminator Instructions.
3374 //===----------------------------------------------------------------------===//
3375
3376 /// ParseRet - Parse a return instruction.
3377 /// ::= 'ret' void (',' !dbg, !1)*
3378 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)3379 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3380 PerFunctionState &PFS) {
3381 SMLoc TypeLoc = Lex.getLoc();
3382 Type *Ty = 0;
3383 if (ParseType(Ty, true /*void allowed*/)) return true;
3384
3385 Type *ResType = PFS.getFunction().getReturnType();
3386
3387 if (Ty->isVoidTy()) {
3388 if (!ResType->isVoidTy())
3389 return Error(TypeLoc, "value doesn't match function result type '" +
3390 getTypeString(ResType) + "'");
3391
3392 Inst = ReturnInst::Create(Context);
3393 return false;
3394 }
3395
3396 Value *RV;
3397 if (ParseValue(Ty, RV, PFS)) return true;
3398
3399 if (ResType != RV->getType())
3400 return Error(TypeLoc, "value doesn't match function result type '" +
3401 getTypeString(ResType) + "'");
3402
3403 Inst = ReturnInst::Create(Context, RV);
3404 return false;
3405 }
3406
3407
3408 /// ParseBr
3409 /// ::= 'br' TypeAndValue
3410 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)3411 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3412 LocTy Loc, Loc2;
3413 Value *Op0;
3414 BasicBlock *Op1, *Op2;
3415 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3416
3417 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3418 Inst = BranchInst::Create(BB);
3419 return false;
3420 }
3421
3422 if (Op0->getType() != Type::getInt1Ty(Context))
3423 return Error(Loc, "branch condition must have 'i1' type");
3424
3425 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3426 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3427 ParseToken(lltok::comma, "expected ',' after true destination") ||
3428 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3429 return true;
3430
3431 Inst = BranchInst::Create(Op1, Op2, Op0);
3432 return false;
3433 }
3434
3435 /// ParseSwitch
3436 /// Instruction
3437 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3438 /// JumpTable
3439 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)3440 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3441 LocTy CondLoc, BBLoc;
3442 Value *Cond;
3443 BasicBlock *DefaultBB;
3444 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3445 ParseToken(lltok::comma, "expected ',' after switch condition") ||
3446 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3447 ParseToken(lltok::lsquare, "expected '[' with switch table"))
3448 return true;
3449
3450 if (!Cond->getType()->isIntegerTy())
3451 return Error(CondLoc, "switch condition must have integer type");
3452
3453 // Parse the jump table pairs.
3454 SmallPtrSet<Value*, 32> SeenCases;
3455 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3456 while (Lex.getKind() != lltok::rsquare) {
3457 Value *Constant;
3458 BasicBlock *DestBB;
3459
3460 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3461 ParseToken(lltok::comma, "expected ',' after case value") ||
3462 ParseTypeAndBasicBlock(DestBB, PFS))
3463 return true;
3464
3465 if (!SeenCases.insert(Constant))
3466 return Error(CondLoc, "duplicate case value in switch");
3467 if (!isa<ConstantInt>(Constant))
3468 return Error(CondLoc, "case value is not a constant integer");
3469
3470 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3471 }
3472
3473 Lex.Lex(); // Eat the ']'.
3474
3475 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3476 for (unsigned i = 0, e = Table.size(); i != e; ++i)
3477 SI->addCase(Table[i].first, Table[i].second);
3478 Inst = SI;
3479 return false;
3480 }
3481
3482 /// ParseIndirectBr
3483 /// Instruction
3484 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)3485 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3486 LocTy AddrLoc;
3487 Value *Address;
3488 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3489 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3490 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3491 return true;
3492
3493 if (!Address->getType()->isPointerTy())
3494 return Error(AddrLoc, "indirectbr address must have pointer type");
3495
3496 // Parse the destination list.
3497 SmallVector<BasicBlock*, 16> DestList;
3498
3499 if (Lex.getKind() != lltok::rsquare) {
3500 BasicBlock *DestBB;
3501 if (ParseTypeAndBasicBlock(DestBB, PFS))
3502 return true;
3503 DestList.push_back(DestBB);
3504
3505 while (EatIfPresent(lltok::comma)) {
3506 if (ParseTypeAndBasicBlock(DestBB, PFS))
3507 return true;
3508 DestList.push_back(DestBB);
3509 }
3510 }
3511
3512 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3513 return true;
3514
3515 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3516 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3517 IBI->addDestination(DestList[i]);
3518 Inst = IBI;
3519 return false;
3520 }
3521
3522
3523 /// ParseInvoke
3524 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3525 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)3526 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3527 LocTy CallLoc = Lex.getLoc();
3528 AttrBuilder RetAttrs, FnAttrs;
3529 std::vector<unsigned> FwdRefAttrGrps;
3530 LocTy NoBuiltinLoc;
3531 CallingConv::ID CC;
3532 Type *RetType = 0;
3533 LocTy RetTypeLoc;
3534 ValID CalleeID;
3535 SmallVector<ParamInfo, 16> ArgList;
3536
3537 BasicBlock *NormalBB, *UnwindBB;
3538 if (ParseOptionalCallingConv(CC) ||
3539 ParseOptionalReturnAttrs(RetAttrs) ||
3540 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3541 ParseValID(CalleeID) ||
3542 ParseParameterList(ArgList, PFS) ||
3543 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3544 NoBuiltinLoc) ||
3545 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3546 ParseTypeAndBasicBlock(NormalBB, PFS) ||
3547 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3548 ParseTypeAndBasicBlock(UnwindBB, PFS))
3549 return true;
3550
3551 // If RetType is a non-function pointer type, then this is the short syntax
3552 // for the call, which means that RetType is just the return type. Infer the
3553 // rest of the function argument types from the arguments that are present.
3554 PointerType *PFTy = 0;
3555 FunctionType *Ty = 0;
3556 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3557 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3558 // Pull out the types of all of the arguments...
3559 std::vector<Type*> ParamTypes;
3560 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3561 ParamTypes.push_back(ArgList[i].V->getType());
3562
3563 if (!FunctionType::isValidReturnType(RetType))
3564 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3565
3566 Ty = FunctionType::get(RetType, ParamTypes, false);
3567 PFTy = PointerType::getUnqual(Ty);
3568 }
3569
3570 // Look up the callee.
3571 Value *Callee;
3572 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3573
3574 // Set up the Attribute for the function.
3575 SmallVector<AttributeSet, 8> Attrs;
3576 if (RetAttrs.hasAttributes())
3577 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3578 AttributeSet::ReturnIndex,
3579 RetAttrs));
3580
3581 SmallVector<Value*, 8> Args;
3582
3583 // Loop through FunctionType's arguments and ensure they are specified
3584 // correctly. Also, gather any parameter attributes.
3585 FunctionType::param_iterator I = Ty->param_begin();
3586 FunctionType::param_iterator E = Ty->param_end();
3587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3588 Type *ExpectedTy = 0;
3589 if (I != E) {
3590 ExpectedTy = *I++;
3591 } else if (!Ty->isVarArg()) {
3592 return Error(ArgList[i].Loc, "too many arguments specified");
3593 }
3594
3595 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3596 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3597 getTypeString(ExpectedTy) + "'");
3598 Args.push_back(ArgList[i].V);
3599 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3600 AttrBuilder B(ArgList[i].Attrs, i + 1);
3601 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3602 }
3603 }
3604
3605 if (I != E)
3606 return Error(CallLoc, "not enough parameters specified for call");
3607
3608 if (FnAttrs.hasAttributes())
3609 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3610 AttributeSet::FunctionIndex,
3611 FnAttrs));
3612
3613 // Finish off the Attribute and check them
3614 AttributeSet PAL = AttributeSet::get(Context, Attrs);
3615
3616 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3617 II->setCallingConv(CC);
3618 II->setAttributes(PAL);
3619 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3620 Inst = II;
3621 return false;
3622 }
3623
3624 /// ParseResume
3625 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)3626 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3627 Value *Exn; LocTy ExnLoc;
3628 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3629 return true;
3630
3631 ResumeInst *RI = ResumeInst::Create(Exn);
3632 Inst = RI;
3633 return false;
3634 }
3635
3636 //===----------------------------------------------------------------------===//
3637 // Binary Operators.
3638 //===----------------------------------------------------------------------===//
3639
3640 /// ParseArithmetic
3641 /// ::= ArithmeticOps TypeAndValue ',' Value
3642 ///
3643 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3644 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)3645 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3646 unsigned Opc, unsigned OperandType) {
3647 LocTy Loc; Value *LHS, *RHS;
3648 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3649 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3650 ParseValue(LHS->getType(), RHS, PFS))
3651 return true;
3652
3653 bool Valid;
3654 switch (OperandType) {
3655 default: llvm_unreachable("Unknown operand type!");
3656 case 0: // int or FP.
3657 Valid = LHS->getType()->isIntOrIntVectorTy() ||
3658 LHS->getType()->isFPOrFPVectorTy();
3659 break;
3660 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3661 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3662 }
3663
3664 if (!Valid)
3665 return Error(Loc, "invalid operand type for instruction");
3666
3667 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3668 return false;
3669 }
3670
3671 /// ParseLogical
3672 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3673 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3674 unsigned Opc) {
3675 LocTy Loc; Value *LHS, *RHS;
3676 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3677 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3678 ParseValue(LHS->getType(), RHS, PFS))
3679 return true;
3680
3681 if (!LHS->getType()->isIntOrIntVectorTy())
3682 return Error(Loc,"instruction requires integer or integer vector operands");
3683
3684 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3685 return false;
3686 }
3687
3688
3689 /// ParseCompare
3690 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3691 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3692 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3693 unsigned Opc) {
3694 // Parse the integer/fp comparison predicate.
3695 LocTy Loc;
3696 unsigned Pred;
3697 Value *LHS, *RHS;
3698 if (ParseCmpPredicate(Pred, Opc) ||
3699 ParseTypeAndValue(LHS, Loc, PFS) ||
3700 ParseToken(lltok::comma, "expected ',' after compare value") ||
3701 ParseValue(LHS->getType(), RHS, PFS))
3702 return true;
3703
3704 if (Opc == Instruction::FCmp) {
3705 if (!LHS->getType()->isFPOrFPVectorTy())
3706 return Error(Loc, "fcmp requires floating point operands");
3707 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3708 } else {
3709 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3710 if (!LHS->getType()->isIntOrIntVectorTy() &&
3711 !LHS->getType()->getScalarType()->isPointerTy())
3712 return Error(Loc, "icmp requires integer operands");
3713 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3714 }
3715 return false;
3716 }
3717
3718 //===----------------------------------------------------------------------===//
3719 // Other Instructions.
3720 //===----------------------------------------------------------------------===//
3721
3722
3723 /// ParseCast
3724 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3725 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3726 unsigned Opc) {
3727 LocTy Loc;
3728 Value *Op;
3729 Type *DestTy = 0;
3730 if (ParseTypeAndValue(Op, Loc, PFS) ||
3731 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3732 ParseType(DestTy))
3733 return true;
3734
3735 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3736 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3737 return Error(Loc, "invalid cast opcode for cast from '" +
3738 getTypeString(Op->getType()) + "' to '" +
3739 getTypeString(DestTy) + "'");
3740 }
3741 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3742 return false;
3743 }
3744
3745 /// ParseSelect
3746 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)3747 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3748 LocTy Loc;
3749 Value *Op0, *Op1, *Op2;
3750 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3751 ParseToken(lltok::comma, "expected ',' after select condition") ||
3752 ParseTypeAndValue(Op1, PFS) ||
3753 ParseToken(lltok::comma, "expected ',' after select value") ||
3754 ParseTypeAndValue(Op2, PFS))
3755 return true;
3756
3757 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3758 return Error(Loc, Reason);
3759
3760 Inst = SelectInst::Create(Op0, Op1, Op2);
3761 return false;
3762 }
3763
3764 /// ParseVA_Arg
3765 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)3766 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3767 Value *Op;
3768 Type *EltTy = 0;
3769 LocTy TypeLoc;
3770 if (ParseTypeAndValue(Op, PFS) ||
3771 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3772 ParseType(EltTy, TypeLoc))
3773 return true;
3774
3775 if (!EltTy->isFirstClassType())
3776 return Error(TypeLoc, "va_arg requires operand with first class type");
3777
3778 Inst = new VAArgInst(Op, EltTy);
3779 return false;
3780 }
3781
3782 /// ParseExtractElement
3783 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)3784 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3785 LocTy Loc;
3786 Value *Op0, *Op1;
3787 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3788 ParseToken(lltok::comma, "expected ',' after extract value") ||
3789 ParseTypeAndValue(Op1, PFS))
3790 return true;
3791
3792 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3793 return Error(Loc, "invalid extractelement operands");
3794
3795 Inst = ExtractElementInst::Create(Op0, Op1);
3796 return false;
3797 }
3798
3799 /// ParseInsertElement
3800 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)3801 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3802 LocTy Loc;
3803 Value *Op0, *Op1, *Op2;
3804 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3805 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3806 ParseTypeAndValue(Op1, PFS) ||
3807 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3808 ParseTypeAndValue(Op2, PFS))
3809 return true;
3810
3811 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3812 return Error(Loc, "invalid insertelement operands");
3813
3814 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3815 return false;
3816 }
3817
3818 /// ParseShuffleVector
3819 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)3820 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3821 LocTy Loc;
3822 Value *Op0, *Op1, *Op2;
3823 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3824 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3825 ParseTypeAndValue(Op1, PFS) ||
3826 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3827 ParseTypeAndValue(Op2, PFS))
3828 return true;
3829
3830 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3831 return Error(Loc, "invalid shufflevector operands");
3832
3833 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3834 return false;
3835 }
3836
3837 /// ParsePHI
3838 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)3839 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3840 Type *Ty = 0; LocTy TypeLoc;
3841 Value *Op0, *Op1;
3842
3843 if (ParseType(Ty, TypeLoc) ||
3844 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3845 ParseValue(Ty, Op0, PFS) ||
3846 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3847 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3848 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3849 return true;
3850
3851 bool AteExtraComma = false;
3852 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3853 while (1) {
3854 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3855
3856 if (!EatIfPresent(lltok::comma))
3857 break;
3858
3859 if (Lex.getKind() == lltok::MetadataVar) {
3860 AteExtraComma = true;
3861 break;
3862 }
3863
3864 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3865 ParseValue(Ty, Op0, PFS) ||
3866 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3867 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3868 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3869 return true;
3870 }
3871
3872 if (!Ty->isFirstClassType())
3873 return Error(TypeLoc, "phi node must have first class type");
3874
3875 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3876 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3877 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3878 Inst = PN;
3879 return AteExtraComma ? InstExtraComma : InstNormal;
3880 }
3881
3882 /// ParseLandingPad
3883 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3884 /// Clause
3885 /// ::= 'catch' TypeAndValue
3886 /// ::= 'filter'
3887 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)3888 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3889 Type *Ty = 0; LocTy TyLoc;
3890 Value *PersFn; LocTy PersFnLoc;
3891
3892 if (ParseType(Ty, TyLoc) ||
3893 ParseToken(lltok::kw_personality, "expected 'personality'") ||
3894 ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3895 return true;
3896
3897 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3898 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3899
3900 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3901 LandingPadInst::ClauseType CT;
3902 if (EatIfPresent(lltok::kw_catch))
3903 CT = LandingPadInst::Catch;
3904 else if (EatIfPresent(lltok::kw_filter))
3905 CT = LandingPadInst::Filter;
3906 else
3907 return TokError("expected 'catch' or 'filter' clause type");
3908
3909 Value *V; LocTy VLoc;
3910 if (ParseTypeAndValue(V, VLoc, PFS)) {
3911 delete LP;
3912 return true;
3913 }
3914
3915 // A 'catch' type expects a non-array constant. A filter clause expects an
3916 // array constant.
3917 if (CT == LandingPadInst::Catch) {
3918 if (isa<ArrayType>(V->getType()))
3919 Error(VLoc, "'catch' clause has an invalid type");
3920 } else {
3921 if (!isa<ArrayType>(V->getType()))
3922 Error(VLoc, "'filter' clause has an invalid type");
3923 }
3924
3925 LP->addClause(V);
3926 }
3927
3928 Inst = LP;
3929 return false;
3930 }
3931
3932 /// ParseCall
3933 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3934 /// ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,bool isTail)3935 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3936 bool isTail) {
3937 AttrBuilder RetAttrs, FnAttrs;
3938 std::vector<unsigned> FwdRefAttrGrps;
3939 LocTy BuiltinLoc;
3940 CallingConv::ID CC;
3941 Type *RetType = 0;
3942 LocTy RetTypeLoc;
3943 ValID CalleeID;
3944 SmallVector<ParamInfo, 16> ArgList;
3945 LocTy CallLoc = Lex.getLoc();
3946
3947 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3948 ParseOptionalCallingConv(CC) ||
3949 ParseOptionalReturnAttrs(RetAttrs) ||
3950 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3951 ParseValID(CalleeID) ||
3952 ParseParameterList(ArgList, PFS) ||
3953 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3954 BuiltinLoc))
3955 return true;
3956
3957 // If RetType is a non-function pointer type, then this is the short syntax
3958 // for the call, which means that RetType is just the return type. Infer the
3959 // rest of the function argument types from the arguments that are present.
3960 PointerType *PFTy = 0;
3961 FunctionType *Ty = 0;
3962 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3963 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3964 // Pull out the types of all of the arguments...
3965 std::vector<Type*> ParamTypes;
3966 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3967 ParamTypes.push_back(ArgList[i].V->getType());
3968
3969 if (!FunctionType::isValidReturnType(RetType))
3970 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3971
3972 Ty = FunctionType::get(RetType, ParamTypes, false);
3973 PFTy = PointerType::getUnqual(Ty);
3974 }
3975
3976 // Look up the callee.
3977 Value *Callee;
3978 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3979
3980 // Set up the Attribute for the function.
3981 SmallVector<AttributeSet, 8> Attrs;
3982 if (RetAttrs.hasAttributes())
3983 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3984 AttributeSet::ReturnIndex,
3985 RetAttrs));
3986
3987 SmallVector<Value*, 8> Args;
3988
3989 // Loop through FunctionType's arguments and ensure they are specified
3990 // correctly. Also, gather any parameter attributes.
3991 FunctionType::param_iterator I = Ty->param_begin();
3992 FunctionType::param_iterator E = Ty->param_end();
3993 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3994 Type *ExpectedTy = 0;
3995 if (I != E) {
3996 ExpectedTy = *I++;
3997 } else if (!Ty->isVarArg()) {
3998 return Error(ArgList[i].Loc, "too many arguments specified");
3999 }
4000
4001 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4002 return Error(ArgList[i].Loc, "argument is not of expected type '" +
4003 getTypeString(ExpectedTy) + "'");
4004 Args.push_back(ArgList[i].V);
4005 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4006 AttrBuilder B(ArgList[i].Attrs, i + 1);
4007 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4008 }
4009 }
4010
4011 if (I != E)
4012 return Error(CallLoc, "not enough parameters specified for call");
4013
4014 if (FnAttrs.hasAttributes())
4015 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4016 AttributeSet::FunctionIndex,
4017 FnAttrs));
4018
4019 // Finish off the Attribute and check them
4020 AttributeSet PAL = AttributeSet::get(Context, Attrs);
4021
4022 CallInst *CI = CallInst::Create(Callee, Args);
4023 CI->setTailCall(isTail);
4024 CI->setCallingConv(CC);
4025 CI->setAttributes(PAL);
4026 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
4027 Inst = CI;
4028 return false;
4029 }
4030
4031 //===----------------------------------------------------------------------===//
4032 // Memory Instructions.
4033 //===----------------------------------------------------------------------===//
4034
4035 /// ParseAlloc
4036 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)4037 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
4038 Value *Size = 0;
4039 LocTy SizeLoc;
4040 unsigned Alignment = 0;
4041 Type *Ty = 0;
4042 if (ParseType(Ty)) return true;
4043
4044 bool AteExtraComma = false;
4045 if (EatIfPresent(lltok::comma)) {
4046 if (Lex.getKind() == lltok::kw_align) {
4047 if (ParseOptionalAlignment(Alignment)) return true;
4048 } else if (Lex.getKind() == lltok::MetadataVar) {
4049 AteExtraComma = true;
4050 } else {
4051 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4052 ParseOptionalCommaAlign(Alignment, AteExtraComma))
4053 return true;
4054 }
4055 }
4056
4057 if (Size && !Size->getType()->isIntegerTy())
4058 return Error(SizeLoc, "element count must have integer type");
4059
4060 Inst = new AllocaInst(Ty, Size, Alignment);
4061 return AteExtraComma ? InstExtraComma : InstNormal;
4062 }
4063
4064 /// ParseLoad
4065 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4066 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
4067 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)4068 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4069 Value *Val; LocTy Loc;
4070 unsigned Alignment = 0;
4071 bool AteExtraComma = false;
4072 bool isAtomic = false;
4073 AtomicOrdering Ordering = NotAtomic;
4074 SynchronizationScope Scope = CrossThread;
4075
4076 if (Lex.getKind() == lltok::kw_atomic) {
4077 isAtomic = true;
4078 Lex.Lex();
4079 }
4080
4081 bool isVolatile = false;
4082 if (Lex.getKind() == lltok::kw_volatile) {
4083 isVolatile = true;
4084 Lex.Lex();
4085 }
4086
4087 if (ParseTypeAndValue(Val, Loc, PFS) ||
4088 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4089 ParseOptionalCommaAlign(Alignment, AteExtraComma))
4090 return true;
4091
4092 if (!Val->getType()->isPointerTy() ||
4093 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4094 return Error(Loc, "load operand must be a pointer to a first class type");
4095 if (isAtomic && !Alignment)
4096 return Error(Loc, "atomic load must have explicit non-zero alignment");
4097 if (Ordering == Release || Ordering == AcquireRelease)
4098 return Error(Loc, "atomic load cannot use Release ordering");
4099
4100 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4101 return AteExtraComma ? InstExtraComma : InstNormal;
4102 }
4103
4104 /// ParseStore
4105
4106 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4107 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4108 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)4109 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4110 Value *Val, *Ptr; LocTy Loc, PtrLoc;
4111 unsigned Alignment = 0;
4112 bool AteExtraComma = false;
4113 bool isAtomic = false;
4114 AtomicOrdering Ordering = NotAtomic;
4115 SynchronizationScope Scope = CrossThread;
4116
4117 if (Lex.getKind() == lltok::kw_atomic) {
4118 isAtomic = true;
4119 Lex.Lex();
4120 }
4121
4122 bool isVolatile = false;
4123 if (Lex.getKind() == lltok::kw_volatile) {
4124 isVolatile = true;
4125 Lex.Lex();
4126 }
4127
4128 if (ParseTypeAndValue(Val, Loc, PFS) ||
4129 ParseToken(lltok::comma, "expected ',' after store operand") ||
4130 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4131 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4132 ParseOptionalCommaAlign(Alignment, AteExtraComma))
4133 return true;
4134
4135 if (!Ptr->getType()->isPointerTy())
4136 return Error(PtrLoc, "store operand must be a pointer");
4137 if (!Val->getType()->isFirstClassType())
4138 return Error(Loc, "store operand must be a first class value");
4139 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4140 return Error(Loc, "stored value and pointer type do not match");
4141 if (isAtomic && !Alignment)
4142 return Error(Loc, "atomic store must have explicit non-zero alignment");
4143 if (Ordering == Acquire || Ordering == AcquireRelease)
4144 return Error(Loc, "atomic store cannot use Acquire ordering");
4145
4146 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4147 return AteExtraComma ? InstExtraComma : InstNormal;
4148 }
4149
4150 /// ParseCmpXchg
4151 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4152 /// 'singlethread'? AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)4153 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4154 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4155 bool AteExtraComma = false;
4156 AtomicOrdering Ordering = NotAtomic;
4157 SynchronizationScope Scope = CrossThread;
4158 bool isVolatile = false;
4159
4160 if (EatIfPresent(lltok::kw_volatile))
4161 isVolatile = true;
4162
4163 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4164 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4165 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4166 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4167 ParseTypeAndValue(New, NewLoc, PFS) ||
4168 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4169 return true;
4170
4171 if (Ordering == Unordered)
4172 return TokError("cmpxchg cannot be unordered");
4173 if (!Ptr->getType()->isPointerTy())
4174 return Error(PtrLoc, "cmpxchg operand must be a pointer");
4175 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4176 return Error(CmpLoc, "compare value and pointer type do not match");
4177 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4178 return Error(NewLoc, "new value and pointer type do not match");
4179 if (!New->getType()->isIntegerTy())
4180 return Error(NewLoc, "cmpxchg operand must be an integer");
4181 unsigned Size = New->getType()->getPrimitiveSizeInBits();
4182 if (Size < 8 || (Size & (Size - 1)))
4183 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4184 " integer");
4185
4186 AtomicCmpXchgInst *CXI =
4187 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4188 CXI->setVolatile(isVolatile);
4189 Inst = CXI;
4190 return AteExtraComma ? InstExtraComma : InstNormal;
4191 }
4192
4193 /// ParseAtomicRMW
4194 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4195 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)4196 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4197 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4198 bool AteExtraComma = false;
4199 AtomicOrdering Ordering = NotAtomic;
4200 SynchronizationScope Scope = CrossThread;
4201 bool isVolatile = false;
4202 AtomicRMWInst::BinOp Operation;
4203
4204 if (EatIfPresent(lltok::kw_volatile))
4205 isVolatile = true;
4206
4207 switch (Lex.getKind()) {
4208 default: return TokError("expected binary operation in atomicrmw");
4209 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4210 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4211 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4212 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4213 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4214 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4215 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4216 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4217 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4218 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4219 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4220 }
4221 Lex.Lex(); // Eat the operation.
4222
4223 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4224 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4225 ParseTypeAndValue(Val, ValLoc, PFS) ||
4226 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4227 return true;
4228
4229 if (Ordering == Unordered)
4230 return TokError("atomicrmw cannot be unordered");
4231 if (!Ptr->getType()->isPointerTy())
4232 return Error(PtrLoc, "atomicrmw operand must be a pointer");
4233 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4234 return Error(ValLoc, "atomicrmw value and pointer type do not match");
4235 if (!Val->getType()->isIntegerTy())
4236 return Error(ValLoc, "atomicrmw operand must be an integer");
4237 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4238 if (Size < 8 || (Size & (Size - 1)))
4239 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4240 " integer");
4241
4242 AtomicRMWInst *RMWI =
4243 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4244 RMWI->setVolatile(isVolatile);
4245 Inst = RMWI;
4246 return AteExtraComma ? InstExtraComma : InstNormal;
4247 }
4248
4249 /// ParseFence
4250 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)4251 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4252 AtomicOrdering Ordering = NotAtomic;
4253 SynchronizationScope Scope = CrossThread;
4254 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4255 return true;
4256
4257 if (Ordering == Unordered)
4258 return TokError("fence cannot be unordered");
4259 if (Ordering == Monotonic)
4260 return TokError("fence cannot be monotonic");
4261
4262 Inst = new FenceInst(Context, Ordering, Scope);
4263 return InstNormal;
4264 }
4265
4266 /// ParseGetElementPtr
4267 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)4268 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4269 Value *Ptr = 0;
4270 Value *Val = 0;
4271 LocTy Loc, EltLoc;
4272
4273 bool InBounds = EatIfPresent(lltok::kw_inbounds);
4274
4275 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4276
4277 Type *BaseType = Ptr->getType();
4278 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
4279 if (!BasePointerType)
4280 return Error(Loc, "base of getelementptr must be a pointer");
4281
4282 SmallVector<Value*, 16> Indices;
4283 bool AteExtraComma = false;
4284 while (EatIfPresent(lltok::comma)) {
4285 if (Lex.getKind() == lltok::MetadataVar) {
4286 AteExtraComma = true;
4287 break;
4288 }
4289 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4290 if (!Val->getType()->getScalarType()->isIntegerTy())
4291 return Error(EltLoc, "getelementptr index must be an integer");
4292 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4293 return Error(EltLoc, "getelementptr index type missmatch");
4294 if (Val->getType()->isVectorTy()) {
4295 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4296 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4297 if (ValNumEl != PtrNumEl)
4298 return Error(EltLoc,
4299 "getelementptr vector index has a wrong number of elements");
4300 }
4301 Indices.push_back(Val);
4302 }
4303
4304 if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
4305 return Error(Loc, "base element of getelementptr must be sized");
4306
4307 if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
4308 return Error(Loc, "invalid getelementptr indices");
4309 Inst = GetElementPtrInst::Create(Ptr, Indices);
4310 if (InBounds)
4311 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4312 return AteExtraComma ? InstExtraComma : InstNormal;
4313 }
4314
4315 /// ParseExtractValue
4316 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)4317 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4318 Value *Val; LocTy Loc;
4319 SmallVector<unsigned, 4> Indices;
4320 bool AteExtraComma;
4321 if (ParseTypeAndValue(Val, Loc, PFS) ||
4322 ParseIndexList(Indices, AteExtraComma))
4323 return true;
4324
4325 if (!Val->getType()->isAggregateType())
4326 return Error(Loc, "extractvalue operand must be aggregate type");
4327
4328 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4329 return Error(Loc, "invalid indices for extractvalue");
4330 Inst = ExtractValueInst::Create(Val, Indices);
4331 return AteExtraComma ? InstExtraComma : InstNormal;
4332 }
4333
4334 /// ParseInsertValue
4335 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)4336 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4337 Value *Val0, *Val1; LocTy Loc0, Loc1;
4338 SmallVector<unsigned, 4> Indices;
4339 bool AteExtraComma;
4340 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4341 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4342 ParseTypeAndValue(Val1, Loc1, PFS) ||
4343 ParseIndexList(Indices, AteExtraComma))
4344 return true;
4345
4346 if (!Val0->getType()->isAggregateType())
4347 return Error(Loc0, "insertvalue operand must be aggregate type");
4348
4349 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4350 return Error(Loc0, "invalid indices for insertvalue");
4351 Inst = InsertValueInst::Create(Val0, Val1, Indices);
4352 return AteExtraComma ? InstExtraComma : InstNormal;
4353 }
4354
4355 //===----------------------------------------------------------------------===//
4356 // Embedded metadata.
4357 //===----------------------------------------------------------------------===//
4358
4359 /// ParseMDNodeVector
4360 /// ::= Element (',' Element)*
4361 /// Element
4362 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Value * > & Elts,PerFunctionState * PFS)4363 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4364 PerFunctionState *PFS) {
4365 // Check for an empty list.
4366 if (Lex.getKind() == lltok::rbrace)
4367 return false;
4368
4369 do {
4370 // Null is a special case since it is typeless.
4371 if (EatIfPresent(lltok::kw_null)) {
4372 Elts.push_back(0);
4373 continue;
4374 }
4375
4376 Value *V = 0;
4377 if (ParseTypeAndValue(V, PFS)) return true;
4378 Elts.push_back(V);
4379 } while (EatIfPresent(lltok::comma));
4380
4381 return false;
4382 }
4383