1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "utils.h"
18
19 #include <pthread.h>
20 #include <sys/stat.h>
21 #include <sys/syscall.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24
25 #include "UniquePtr.h"
26 #include "base/unix_file/fd_file.h"
27 #include "dex_file-inl.h"
28 #include "mirror/art_field-inl.h"
29 #include "mirror/art_method-inl.h"
30 #include "mirror/class-inl.h"
31 #include "mirror/class_loader.h"
32 #include "mirror/object-inl.h"
33 #include "mirror/object_array-inl.h"
34 #include "mirror/string.h"
35 #include "object_utils.h"
36 #include "os.h"
37 #include "utf.h"
38
39 #if !defined(HAVE_POSIX_CLOCKS)
40 #include <sys/time.h>
41 #endif
42
43 #if defined(HAVE_PRCTL)
44 #include <sys/prctl.h>
45 #endif
46
47 #if defined(__APPLE__)
48 #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED
49 #include <sys/syscall.h>
50 #endif
51
52 #include <corkscrew/backtrace.h> // For DumpNativeStack.
53 #include <corkscrew/demangle.h> // For DumpNativeStack.
54
55 #if defined(__linux__)
56 #include <linux/unistd.h>
57 #endif
58
59 namespace art {
60
GetTid()61 pid_t GetTid() {
62 #if defined(__APPLE__)
63 uint64_t owner;
64 CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__); // Requires Mac OS 10.6
65 return owner;
66 #else
67 // Neither bionic nor glibc exposes gettid(2).
68 return syscall(__NR_gettid);
69 #endif
70 }
71
GetThreadName(pid_t tid)72 std::string GetThreadName(pid_t tid) {
73 std::string result;
74 if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
75 result.resize(result.size() - 1); // Lose the trailing '\n'.
76 } else {
77 result = "<unknown>";
78 }
79 return result;
80 }
81
GetThreadStack(pthread_t thread,void * & stack_base,size_t & stack_size)82 void GetThreadStack(pthread_t thread, void*& stack_base, size_t& stack_size) {
83 #if defined(__APPLE__)
84 stack_size = pthread_get_stacksize_np(thread);
85 void* stack_addr = pthread_get_stackaddr_np(thread);
86
87 // Check whether stack_addr is the base or end of the stack.
88 // (On Mac OS 10.7, it's the end.)
89 int stack_variable;
90 if (stack_addr > &stack_variable) {
91 stack_base = reinterpret_cast<byte*>(stack_addr) - stack_size;
92 } else {
93 stack_base = stack_addr;
94 }
95 #else
96 pthread_attr_t attributes;
97 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
98 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, &stack_base, &stack_size), __FUNCTION__);
99 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
100 #endif
101 }
102
ReadFileToString(const std::string & file_name,std::string * result)103 bool ReadFileToString(const std::string& file_name, std::string* result) {
104 UniquePtr<File> file(new File);
105 if (!file->Open(file_name, O_RDONLY)) {
106 return false;
107 }
108
109 std::vector<char> buf(8 * KB);
110 while (true) {
111 int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
112 if (n == -1) {
113 return false;
114 }
115 if (n == 0) {
116 return true;
117 }
118 result->append(&buf[0], n);
119 }
120 }
121
GetIsoDate()122 std::string GetIsoDate() {
123 time_t now = time(NULL);
124 tm tmbuf;
125 tm* ptm = localtime_r(&now, &tmbuf);
126 return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
127 ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
128 ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
129 }
130
MilliTime()131 uint64_t MilliTime() {
132 #if defined(HAVE_POSIX_CLOCKS)
133 timespec now;
134 clock_gettime(CLOCK_MONOTONIC, &now);
135 return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_nsec / 1000000LL;
136 #else
137 timeval now;
138 gettimeofday(&now, NULL);
139 return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_usec / 1000LL;
140 #endif
141 }
142
MicroTime()143 uint64_t MicroTime() {
144 #if defined(HAVE_POSIX_CLOCKS)
145 timespec now;
146 clock_gettime(CLOCK_MONOTONIC, &now);
147 return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
148 #else
149 timeval now;
150 gettimeofday(&now, NULL);
151 return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_usec;
152 #endif
153 }
154
NanoTime()155 uint64_t NanoTime() {
156 #if defined(HAVE_POSIX_CLOCKS)
157 timespec now;
158 clock_gettime(CLOCK_MONOTONIC, &now);
159 return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
160 #else
161 timeval now;
162 gettimeofday(&now, NULL);
163 return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_usec * 1000LL;
164 #endif
165 }
166
ThreadCpuNanoTime()167 uint64_t ThreadCpuNanoTime() {
168 #if defined(HAVE_POSIX_CLOCKS)
169 timespec now;
170 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
171 return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
172 #else
173 UNIMPLEMENTED(WARNING);
174 return -1;
175 #endif
176 }
177
NanoSleep(uint64_t ns)178 void NanoSleep(uint64_t ns) {
179 timespec tm;
180 tm.tv_sec = 0;
181 tm.tv_nsec = ns;
182 nanosleep(&tm, NULL);
183 }
184
InitTimeSpec(bool absolute,int clock,int64_t ms,int32_t ns,timespec * ts)185 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
186 int64_t endSec;
187
188 if (absolute) {
189 #if !defined(__APPLE__)
190 clock_gettime(clock, ts);
191 #else
192 UNUSED(clock);
193 timeval tv;
194 gettimeofday(&tv, NULL);
195 ts->tv_sec = tv.tv_sec;
196 ts->tv_nsec = tv.tv_usec * 1000;
197 #endif
198 } else {
199 ts->tv_sec = 0;
200 ts->tv_nsec = 0;
201 }
202 endSec = ts->tv_sec + ms / 1000;
203 if (UNLIKELY(endSec >= 0x7fffffff)) {
204 std::ostringstream ss;
205 LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
206 endSec = 0x7ffffffe;
207 }
208 ts->tv_sec = endSec;
209 ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
210
211 // Catch rollover.
212 if (ts->tv_nsec >= 1000000000L) {
213 ts->tv_sec++;
214 ts->tv_nsec -= 1000000000L;
215 }
216 }
217
PrettyDescriptor(const mirror::String * java_descriptor)218 std::string PrettyDescriptor(const mirror::String* java_descriptor) {
219 if (java_descriptor == NULL) {
220 return "null";
221 }
222 return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
223 }
224
PrettyDescriptor(const mirror::Class * klass)225 std::string PrettyDescriptor(const mirror::Class* klass) {
226 if (klass == NULL) {
227 return "null";
228 }
229 return PrettyDescriptor(ClassHelper(klass).GetDescriptor());
230 }
231
PrettyDescriptor(const std::string & descriptor)232 std::string PrettyDescriptor(const std::string& descriptor) {
233 // Count the number of '['s to get the dimensionality.
234 const char* c = descriptor.c_str();
235 size_t dim = 0;
236 while (*c == '[') {
237 dim++;
238 c++;
239 }
240
241 // Reference or primitive?
242 if (*c == 'L') {
243 // "[[La/b/C;" -> "a.b.C[][]".
244 c++; // Skip the 'L'.
245 } else {
246 // "[[B" -> "byte[][]".
247 // To make life easier, we make primitives look like unqualified
248 // reference types.
249 switch (*c) {
250 case 'B': c = "byte;"; break;
251 case 'C': c = "char;"; break;
252 case 'D': c = "double;"; break;
253 case 'F': c = "float;"; break;
254 case 'I': c = "int;"; break;
255 case 'J': c = "long;"; break;
256 case 'S': c = "short;"; break;
257 case 'Z': c = "boolean;"; break;
258 case 'V': c = "void;"; break; // Used when decoding return types.
259 default: return descriptor;
260 }
261 }
262
263 // At this point, 'c' is a string of the form "fully/qualified/Type;"
264 // or "primitive;". Rewrite the type with '.' instead of '/':
265 std::string result;
266 const char* p = c;
267 while (*p != ';') {
268 char ch = *p++;
269 if (ch == '/') {
270 ch = '.';
271 }
272 result.push_back(ch);
273 }
274 // ...and replace the semicolon with 'dim' "[]" pairs:
275 while (dim--) {
276 result += "[]";
277 }
278 return result;
279 }
280
PrettyDescriptor(Primitive::Type type)281 std::string PrettyDescriptor(Primitive::Type type) {
282 std::string descriptor_string(Primitive::Descriptor(type));
283 return PrettyDescriptor(descriptor_string);
284 }
285
PrettyField(const mirror::ArtField * f,bool with_type)286 std::string PrettyField(const mirror::ArtField* f, bool with_type) {
287 if (f == NULL) {
288 return "null";
289 }
290 FieldHelper fh(f);
291 std::string result;
292 if (with_type) {
293 result += PrettyDescriptor(fh.GetTypeDescriptor());
294 result += ' ';
295 }
296 result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
297 result += '.';
298 result += fh.GetName();
299 return result;
300 }
301
PrettyField(uint32_t field_idx,const DexFile & dex_file,bool with_type)302 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
303 if (field_idx >= dex_file.NumFieldIds()) {
304 return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
305 }
306 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
307 std::string result;
308 if (with_type) {
309 result += dex_file.GetFieldTypeDescriptor(field_id);
310 result += ' ';
311 }
312 result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
313 result += '.';
314 result += dex_file.GetFieldName(field_id);
315 return result;
316 }
317
PrettyType(uint32_t type_idx,const DexFile & dex_file)318 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
319 if (type_idx >= dex_file.NumTypeIds()) {
320 return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
321 }
322 const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
323 return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
324 }
325
PrettyArguments(const char * signature)326 std::string PrettyArguments(const char* signature) {
327 std::string result;
328 result += '(';
329 CHECK_EQ(*signature, '(');
330 ++signature; // Skip the '('.
331 while (*signature != ')') {
332 size_t argument_length = 0;
333 while (signature[argument_length] == '[') {
334 ++argument_length;
335 }
336 if (signature[argument_length] == 'L') {
337 argument_length = (strchr(signature, ';') - signature + 1);
338 } else {
339 ++argument_length;
340 }
341 std::string argument_descriptor(signature, argument_length);
342 result += PrettyDescriptor(argument_descriptor);
343 if (signature[argument_length] != ')') {
344 result += ", ";
345 }
346 signature += argument_length;
347 }
348 CHECK_EQ(*signature, ')');
349 ++signature; // Skip the ')'.
350 result += ')';
351 return result;
352 }
353
PrettyReturnType(const char * signature)354 std::string PrettyReturnType(const char* signature) {
355 const char* return_type = strchr(signature, ')');
356 CHECK(return_type != NULL);
357 ++return_type; // Skip ')'.
358 return PrettyDescriptor(return_type);
359 }
360
PrettyMethod(const mirror::ArtMethod * m,bool with_signature)361 std::string PrettyMethod(const mirror::ArtMethod* m, bool with_signature) {
362 if (m == NULL) {
363 return "null";
364 }
365 MethodHelper mh(m);
366 std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
367 result += '.';
368 result += mh.GetName();
369 if (with_signature) {
370 std::string signature(mh.GetSignature());
371 if (signature == "<no signature>") {
372 return result + signature;
373 }
374 result = PrettyReturnType(signature.c_str()) + " " + result + PrettyArguments(signature.c_str());
375 }
376 return result;
377 }
378
PrettyMethod(uint32_t method_idx,const DexFile & dex_file,bool with_signature)379 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
380 if (method_idx >= dex_file.NumMethodIds()) {
381 return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
382 }
383 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
384 std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
385 result += '.';
386 result += dex_file.GetMethodName(method_id);
387 if (with_signature) {
388 std::string signature(dex_file.GetMethodSignature(method_id));
389 if (signature == "<no signature>") {
390 return result + signature;
391 }
392 result = PrettyReturnType(signature.c_str()) + " " + result + PrettyArguments(signature.c_str());
393 }
394 return result;
395 }
396
PrettyTypeOf(const mirror::Object * obj)397 std::string PrettyTypeOf(const mirror::Object* obj) {
398 if (obj == NULL) {
399 return "null";
400 }
401 if (obj->GetClass() == NULL) {
402 return "(raw)";
403 }
404 ClassHelper kh(obj->GetClass());
405 std::string result(PrettyDescriptor(kh.GetDescriptor()));
406 if (obj->IsClass()) {
407 kh.ChangeClass(obj->AsClass());
408 result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">";
409 }
410 return result;
411 }
412
PrettyClass(const mirror::Class * c)413 std::string PrettyClass(const mirror::Class* c) {
414 if (c == NULL) {
415 return "null";
416 }
417 std::string result;
418 result += "java.lang.Class<";
419 result += PrettyDescriptor(c);
420 result += ">";
421 return result;
422 }
423
PrettyClassAndClassLoader(const mirror::Class * c)424 std::string PrettyClassAndClassLoader(const mirror::Class* c) {
425 if (c == NULL) {
426 return "null";
427 }
428 std::string result;
429 result += "java.lang.Class<";
430 result += PrettyDescriptor(c);
431 result += ",";
432 result += PrettyTypeOf(c->GetClassLoader());
433 // TODO: add an identifying hash value for the loader
434 result += ">";
435 return result;
436 }
437
PrettySize(size_t byte_count)438 std::string PrettySize(size_t byte_count) {
439 // The byte thresholds at which we display amounts. A byte count is displayed
440 // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
441 static const size_t kUnitThresholds[] = {
442 0, // B up to...
443 3*1024, // KB up to...
444 2*1024*1024, // MB up to...
445 1024*1024*1024 // GB from here.
446 };
447 static const size_t kBytesPerUnit[] = { 1, KB, MB, GB };
448 static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
449
450 int i = arraysize(kUnitThresholds);
451 while (--i > 0) {
452 if (byte_count >= kUnitThresholds[i]) {
453 break;
454 }
455 }
456
457 return StringPrintf("%zd%s", byte_count / kBytesPerUnit[i], kUnitStrings[i]);
458 }
459
PrettyDuration(uint64_t nano_duration)460 std::string PrettyDuration(uint64_t nano_duration) {
461 if (nano_duration == 0) {
462 return "0";
463 } else {
464 return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration));
465 }
466 }
467
GetAppropriateTimeUnit(uint64_t nano_duration)468 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
469 const uint64_t one_sec = 1000 * 1000 * 1000;
470 const uint64_t one_ms = 1000 * 1000;
471 const uint64_t one_us = 1000;
472 if (nano_duration >= one_sec) {
473 return kTimeUnitSecond;
474 } else if (nano_duration >= one_ms) {
475 return kTimeUnitMillisecond;
476 } else if (nano_duration >= one_us) {
477 return kTimeUnitMicrosecond;
478 } else {
479 return kTimeUnitNanosecond;
480 }
481 }
482
GetNsToTimeUnitDivisor(TimeUnit time_unit)483 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
484 const uint64_t one_sec = 1000 * 1000 * 1000;
485 const uint64_t one_ms = 1000 * 1000;
486 const uint64_t one_us = 1000;
487
488 switch (time_unit) {
489 case kTimeUnitSecond:
490 return one_sec;
491 case kTimeUnitMillisecond:
492 return one_ms;
493 case kTimeUnitMicrosecond:
494 return one_us;
495 case kTimeUnitNanosecond:
496 return 1;
497 }
498 return 0;
499 }
500
FormatDuration(uint64_t nano_duration,TimeUnit time_unit)501 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) {
502 const char* unit = NULL;
503 uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
504 uint32_t zero_fill = 1;
505 switch (time_unit) {
506 case kTimeUnitSecond:
507 unit = "s";
508 zero_fill = 9;
509 break;
510 case kTimeUnitMillisecond:
511 unit = "ms";
512 zero_fill = 6;
513 break;
514 case kTimeUnitMicrosecond:
515 unit = "us";
516 zero_fill = 3;
517 break;
518 case kTimeUnitNanosecond:
519 unit = "ns";
520 zero_fill = 0;
521 break;
522 }
523
524 uint64_t whole_part = nano_duration / divisor;
525 uint64_t fractional_part = nano_duration % divisor;
526 if (fractional_part == 0) {
527 return StringPrintf("%llu%s", whole_part, unit);
528 } else {
529 while ((fractional_part % 1000) == 0) {
530 zero_fill -= 3;
531 fractional_part /= 1000;
532 }
533 if (zero_fill == 3) {
534 return StringPrintf("%llu.%03llu%s", whole_part, fractional_part, unit);
535 } else if (zero_fill == 6) {
536 return StringPrintf("%llu.%06llu%s", whole_part, fractional_part, unit);
537 } else {
538 return StringPrintf("%llu.%09llu%s", whole_part, fractional_part, unit);
539 }
540 }
541 }
542
PrintableString(const std::string & utf)543 std::string PrintableString(const std::string& utf) {
544 std::string result;
545 result += '"';
546 const char* p = utf.c_str();
547 size_t char_count = CountModifiedUtf8Chars(p);
548 for (size_t i = 0; i < char_count; ++i) {
549 uint16_t ch = GetUtf16FromUtf8(&p);
550 if (ch == '\\') {
551 result += "\\\\";
552 } else if (ch == '\n') {
553 result += "\\n";
554 } else if (ch == '\r') {
555 result += "\\r";
556 } else if (ch == '\t') {
557 result += "\\t";
558 } else if (NeedsEscaping(ch)) {
559 StringAppendF(&result, "\\u%04x", ch);
560 } else {
561 result += ch;
562 }
563 }
564 result += '"';
565 return result;
566 }
567
568 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
MangleForJni(const std::string & s)569 std::string MangleForJni(const std::string& s) {
570 std::string result;
571 size_t char_count = CountModifiedUtf8Chars(s.c_str());
572 const char* cp = &s[0];
573 for (size_t i = 0; i < char_count; ++i) {
574 uint16_t ch = GetUtf16FromUtf8(&cp);
575 if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
576 result.push_back(ch);
577 } else if (ch == '.' || ch == '/') {
578 result += "_";
579 } else if (ch == '_') {
580 result += "_1";
581 } else if (ch == ';') {
582 result += "_2";
583 } else if (ch == '[') {
584 result += "_3";
585 } else {
586 StringAppendF(&result, "_0%04x", ch);
587 }
588 }
589 return result;
590 }
591
DotToDescriptor(const char * class_name)592 std::string DotToDescriptor(const char* class_name) {
593 std::string descriptor(class_name);
594 std::replace(descriptor.begin(), descriptor.end(), '.', '/');
595 if (descriptor.length() > 0 && descriptor[0] != '[') {
596 descriptor = "L" + descriptor + ";";
597 }
598 return descriptor;
599 }
600
DescriptorToDot(const char * descriptor)601 std::string DescriptorToDot(const char* descriptor) {
602 size_t length = strlen(descriptor);
603 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
604 std::string result(descriptor + 1, length - 2);
605 std::replace(result.begin(), result.end(), '/', '.');
606 return result;
607 }
608 return descriptor;
609 }
610
DescriptorToName(const char * descriptor)611 std::string DescriptorToName(const char* descriptor) {
612 size_t length = strlen(descriptor);
613 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
614 std::string result(descriptor + 1, length - 2);
615 return result;
616 }
617 return descriptor;
618 }
619
JniShortName(const mirror::ArtMethod * m)620 std::string JniShortName(const mirror::ArtMethod* m) {
621 MethodHelper mh(m);
622 std::string class_name(mh.GetDeclaringClassDescriptor());
623 // Remove the leading 'L' and trailing ';'...
624 CHECK_EQ(class_name[0], 'L') << class_name;
625 CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
626 class_name.erase(0, 1);
627 class_name.erase(class_name.size() - 1, 1);
628
629 std::string method_name(mh.GetName());
630
631 std::string short_name;
632 short_name += "Java_";
633 short_name += MangleForJni(class_name);
634 short_name += "_";
635 short_name += MangleForJni(method_name);
636 return short_name;
637 }
638
JniLongName(const mirror::ArtMethod * m)639 std::string JniLongName(const mirror::ArtMethod* m) {
640 std::string long_name;
641 long_name += JniShortName(m);
642 long_name += "__";
643
644 std::string signature(MethodHelper(m).GetSignature());
645 signature.erase(0, 1);
646 signature.erase(signature.begin() + signature.find(')'), signature.end());
647
648 long_name += MangleForJni(signature);
649
650 return long_name;
651 }
652
653 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
654 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
655 0x00000000, // 00..1f low control characters; nothing valid
656 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
657 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
658 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z'
659 };
660
661 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
IsValidPartOfMemberNameUtf8Slow(const char ** pUtf8Ptr)662 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
663 /*
664 * It's a multibyte encoded character. Decode it and analyze. We
665 * accept anything that isn't (a) an improperly encoded low value,
666 * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
667 * control character, or (e) a high space, layout, or special
668 * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
669 * U+fff0..U+ffff). This is all specified in the dex format
670 * document.
671 */
672
673 uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
674
675 // Perform follow-up tests based on the high 8 bits.
676 switch (utf16 >> 8) {
677 case 0x00:
678 // It's only valid if it's above the ISO-8859-1 high space (0xa0).
679 return (utf16 > 0x00a0);
680 case 0xd8:
681 case 0xd9:
682 case 0xda:
683 case 0xdb:
684 // It's a leading surrogate. Check to see that a trailing
685 // surrogate follows.
686 utf16 = GetUtf16FromUtf8(pUtf8Ptr);
687 return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
688 case 0xdc:
689 case 0xdd:
690 case 0xde:
691 case 0xdf:
692 // It's a trailing surrogate, which is not valid at this point.
693 return false;
694 case 0x20:
695 case 0xff:
696 // It's in the range that has spaces, controls, and specials.
697 switch (utf16 & 0xfff8) {
698 case 0x2000:
699 case 0x2008:
700 case 0x2028:
701 case 0xfff0:
702 case 0xfff8:
703 return false;
704 }
705 break;
706 }
707 return true;
708 }
709
710 /* Return whether the pointed-at modified-UTF-8 encoded character is
711 * valid as part of a member name, updating the pointer to point past
712 * the consumed character. This will consume two encoded UTF-16 code
713 * points if the character is encoded as a surrogate pair. Also, if
714 * this function returns false, then the given pointer may only have
715 * been partially advanced.
716 */
IsValidPartOfMemberNameUtf8(const char ** pUtf8Ptr)717 bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
718 uint8_t c = (uint8_t) **pUtf8Ptr;
719 if (c <= 0x7f) {
720 // It's low-ascii, so check the table.
721 uint32_t wordIdx = c >> 5;
722 uint32_t bitIdx = c & 0x1f;
723 (*pUtf8Ptr)++;
724 return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
725 }
726
727 // It's a multibyte encoded character. Call a non-inline function
728 // for the heavy lifting.
729 return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
730 }
731
IsValidMemberName(const char * s)732 bool IsValidMemberName(const char* s) {
733 bool angle_name = false;
734
735 switch (*s) {
736 case '\0':
737 // The empty string is not a valid name.
738 return false;
739 case '<':
740 angle_name = true;
741 s++;
742 break;
743 }
744
745 while (true) {
746 switch (*s) {
747 case '\0':
748 return !angle_name;
749 case '>':
750 return angle_name && s[1] == '\0';
751 }
752
753 if (!IsValidPartOfMemberNameUtf8(&s)) {
754 return false;
755 }
756 }
757 }
758
759 enum ClassNameType { kName, kDescriptor };
IsValidClassName(const char * s,ClassNameType type,char separator)760 bool IsValidClassName(const char* s, ClassNameType type, char separator) {
761 int arrayCount = 0;
762 while (*s == '[') {
763 arrayCount++;
764 s++;
765 }
766
767 if (arrayCount > 255) {
768 // Arrays may have no more than 255 dimensions.
769 return false;
770 }
771
772 if (arrayCount != 0) {
773 /*
774 * If we're looking at an array of some sort, then it doesn't
775 * matter if what is being asked for is a class name; the
776 * format looks the same as a type descriptor in that case, so
777 * treat it as such.
778 */
779 type = kDescriptor;
780 }
781
782 if (type == kDescriptor) {
783 /*
784 * We are looking for a descriptor. Either validate it as a
785 * single-character primitive type, or continue on to check the
786 * embedded class name (bracketed by "L" and ";").
787 */
788 switch (*(s++)) {
789 case 'B':
790 case 'C':
791 case 'D':
792 case 'F':
793 case 'I':
794 case 'J':
795 case 'S':
796 case 'Z':
797 // These are all single-character descriptors for primitive types.
798 return (*s == '\0');
799 case 'V':
800 // Non-array void is valid, but you can't have an array of void.
801 return (arrayCount == 0) && (*s == '\0');
802 case 'L':
803 // Class name: Break out and continue below.
804 break;
805 default:
806 // Oddball descriptor character.
807 return false;
808 }
809 }
810
811 /*
812 * We just consumed the 'L' that introduces a class name as part
813 * of a type descriptor, or we are looking for an unadorned class
814 * name.
815 */
816
817 bool sepOrFirst = true; // first character or just encountered a separator.
818 for (;;) {
819 uint8_t c = (uint8_t) *s;
820 switch (c) {
821 case '\0':
822 /*
823 * Premature end for a type descriptor, but valid for
824 * a class name as long as we haven't encountered an
825 * empty component (including the degenerate case of
826 * the empty string "").
827 */
828 return (type == kName) && !sepOrFirst;
829 case ';':
830 /*
831 * Invalid character for a class name, but the
832 * legitimate end of a type descriptor. In the latter
833 * case, make sure that this is the end of the string
834 * and that it doesn't end with an empty component
835 * (including the degenerate case of "L;").
836 */
837 return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
838 case '/':
839 case '.':
840 if (c != separator) {
841 // The wrong separator character.
842 return false;
843 }
844 if (sepOrFirst) {
845 // Separator at start or two separators in a row.
846 return false;
847 }
848 sepOrFirst = true;
849 s++;
850 break;
851 default:
852 if (!IsValidPartOfMemberNameUtf8(&s)) {
853 return false;
854 }
855 sepOrFirst = false;
856 break;
857 }
858 }
859 }
860
IsValidBinaryClassName(const char * s)861 bool IsValidBinaryClassName(const char* s) {
862 return IsValidClassName(s, kName, '.');
863 }
864
IsValidJniClassName(const char * s)865 bool IsValidJniClassName(const char* s) {
866 return IsValidClassName(s, kName, '/');
867 }
868
IsValidDescriptor(const char * s)869 bool IsValidDescriptor(const char* s) {
870 return IsValidClassName(s, kDescriptor, '/');
871 }
872
Split(const std::string & s,char separator,std::vector<std::string> & result)873 void Split(const std::string& s, char separator, std::vector<std::string>& result) {
874 const char* p = s.data();
875 const char* end = p + s.size();
876 while (p != end) {
877 if (*p == separator) {
878 ++p;
879 } else {
880 const char* start = p;
881 while (++p != end && *p != separator) {
882 // Skip to the next occurrence of the separator.
883 }
884 result.push_back(std::string(start, p - start));
885 }
886 }
887 }
888
889 template <typename StringT>
Join(std::vector<StringT> & strings,char separator)890 std::string Join(std::vector<StringT>& strings, char separator) {
891 if (strings.empty()) {
892 return "";
893 }
894
895 std::string result(strings[0]);
896 for (size_t i = 1; i < strings.size(); ++i) {
897 result += separator;
898 result += strings[i];
899 }
900 return result;
901 }
902
903 // Explicit instantiations.
904 template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
905 template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
906 template std::string Join<char*>(std::vector<char*>& strings, char separator);
907
StartsWith(const std::string & s,const char * prefix)908 bool StartsWith(const std::string& s, const char* prefix) {
909 return s.compare(0, strlen(prefix), prefix) == 0;
910 }
911
EndsWith(const std::string & s,const char * suffix)912 bool EndsWith(const std::string& s, const char* suffix) {
913 size_t suffix_length = strlen(suffix);
914 size_t string_length = s.size();
915 if (suffix_length > string_length) {
916 return false;
917 }
918 size_t offset = string_length - suffix_length;
919 return s.compare(offset, suffix_length, suffix) == 0;
920 }
921
SetThreadName(const char * thread_name)922 void SetThreadName(const char* thread_name) {
923 int hasAt = 0;
924 int hasDot = 0;
925 const char* s = thread_name;
926 while (*s) {
927 if (*s == '.') {
928 hasDot = 1;
929 } else if (*s == '@') {
930 hasAt = 1;
931 }
932 s++;
933 }
934 int len = s - thread_name;
935 if (len < 15 || hasAt || !hasDot) {
936 s = thread_name;
937 } else {
938 s = thread_name + len - 15;
939 }
940 #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
941 // pthread_setname_np fails rather than truncating long strings.
942 char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
943 strncpy(buf, s, sizeof(buf)-1);
944 buf[sizeof(buf)-1] = '\0';
945 errno = pthread_setname_np(pthread_self(), buf);
946 if (errno != 0) {
947 PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
948 }
949 #elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
950 pthread_setname_np(thread_name);
951 #elif defined(HAVE_PRCTL)
952 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); // NOLINT (unsigned long)
953 #else
954 UNIMPLEMENTED(WARNING) << thread_name;
955 #endif
956 }
957
GetTaskStats(pid_t tid,char & state,int & utime,int & stime,int & task_cpu)958 void GetTaskStats(pid_t tid, char& state, int& utime, int& stime, int& task_cpu) {
959 utime = stime = task_cpu = 0;
960 std::string stats;
961 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
962 return;
963 }
964 // Skip the command, which may contain spaces.
965 stats = stats.substr(stats.find(')') + 2);
966 // Extract the three fields we care about.
967 std::vector<std::string> fields;
968 Split(stats, ' ', fields);
969 state = fields[0][0];
970 utime = strtoull(fields[11].c_str(), NULL, 10);
971 stime = strtoull(fields[12].c_str(), NULL, 10);
972 task_cpu = strtoull(fields[36].c_str(), NULL, 10);
973 }
974
GetSchedulerGroupName(pid_t tid)975 std::string GetSchedulerGroupName(pid_t tid) {
976 // /proc/<pid>/cgroup looks like this:
977 // 2:devices:/
978 // 1:cpuacct,cpu:/
979 // We want the third field from the line whose second field contains the "cpu" token.
980 std::string cgroup_file;
981 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
982 return "";
983 }
984 std::vector<std::string> cgroup_lines;
985 Split(cgroup_file, '\n', cgroup_lines);
986 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
987 std::vector<std::string> cgroup_fields;
988 Split(cgroup_lines[i], ':', cgroup_fields);
989 std::vector<std::string> cgroups;
990 Split(cgroup_fields[1], ',', cgroups);
991 for (size_t i = 0; i < cgroups.size(); ++i) {
992 if (cgroups[i] == "cpu") {
993 return cgroup_fields[2].substr(1); // Skip the leading slash.
994 }
995 }
996 }
997 return "";
998 }
999
CleanMapName(const backtrace_symbol_t * symbol)1000 static const char* CleanMapName(const backtrace_symbol_t* symbol) {
1001 const char* map_name = symbol->map_name;
1002 if (map_name == NULL) {
1003 map_name = "???";
1004 }
1005 // Turn "/usr/local/google/home/enh/clean-dalvik-dev/out/host/linux-x86/lib/libartd.so"
1006 // into "libartd.so".
1007 const char* last_slash = strrchr(map_name, '/');
1008 if (last_slash != NULL) {
1009 map_name = last_slash + 1;
1010 }
1011 return map_name;
1012 }
1013
FindSymbolInElf(const backtrace_frame_t * frame,const backtrace_symbol_t * symbol,std::string & symbol_name,uint32_t & pc_offset)1014 static void FindSymbolInElf(const backtrace_frame_t* frame, const backtrace_symbol_t* symbol,
1015 std::string& symbol_name, uint32_t& pc_offset) {
1016 symbol_table_t* symbol_table = NULL;
1017 if (symbol->map_name != NULL) {
1018 symbol_table = load_symbol_table(symbol->map_name);
1019 }
1020 const symbol_t* elf_symbol = NULL;
1021 bool was_relative = true;
1022 if (symbol_table != NULL) {
1023 elf_symbol = find_symbol(symbol_table, symbol->relative_pc);
1024 if (elf_symbol == NULL) {
1025 elf_symbol = find_symbol(symbol_table, frame->absolute_pc);
1026 was_relative = false;
1027 }
1028 }
1029 if (elf_symbol != NULL) {
1030 const char* demangled_symbol_name = demangle_symbol_name(elf_symbol->name);
1031 if (demangled_symbol_name != NULL) {
1032 symbol_name = demangled_symbol_name;
1033 } else {
1034 symbol_name = elf_symbol->name;
1035 }
1036
1037 // TODO: is it a libcorkscrew bug that we have to do this?
1038 pc_offset = (was_relative ? symbol->relative_pc : frame->absolute_pc) - elf_symbol->start;
1039 } else {
1040 symbol_name = "???";
1041 }
1042 free_symbol_table(symbol_table);
1043 }
1044
DumpNativeStack(std::ostream & os,pid_t tid,const char * prefix,bool include_count)1045 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1046 // Ensure libcorkscrew doesn't use a stale cache of /proc/self/maps.
1047 flush_my_map_info_list();
1048
1049 const size_t MAX_DEPTH = 32;
1050 UniquePtr<backtrace_frame_t[]> frames(new backtrace_frame_t[MAX_DEPTH]);
1051 size_t ignore_count = 2; // Don't include unwind_backtrace_thread or DumpNativeStack.
1052 ssize_t frame_count = unwind_backtrace_thread(tid, frames.get(), ignore_count, MAX_DEPTH);
1053 if (frame_count == -1) {
1054 os << prefix << "(unwind_backtrace_thread failed for thread " << tid << ")\n";
1055 return;
1056 } else if (frame_count == 0) {
1057 os << prefix << "(no native stack frames for thread " << tid << ")\n";
1058 return;
1059 }
1060
1061 UniquePtr<backtrace_symbol_t[]> backtrace_symbols(new backtrace_symbol_t[frame_count]);
1062 get_backtrace_symbols(frames.get(), frame_count, backtrace_symbols.get());
1063
1064 for (size_t i = 0; i < static_cast<size_t>(frame_count); ++i) {
1065 const backtrace_frame_t* frame = &frames[i];
1066 const backtrace_symbol_t* symbol = &backtrace_symbols[i];
1067
1068 // We produce output like this:
1069 // ] #00 unwind_backtrace_thread+536 [0x55d75bb8] (libcorkscrew.so)
1070
1071 std::string symbol_name;
1072 uint32_t pc_offset = 0;
1073 if (symbol->demangled_name != NULL) {
1074 symbol_name = symbol->demangled_name;
1075 pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
1076 } else if (symbol->symbol_name != NULL) {
1077 symbol_name = symbol->symbol_name;
1078 pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
1079 } else {
1080 // dladdr(3) didn't find a symbol; maybe it's static? Look in the ELF file...
1081 FindSymbolInElf(frame, symbol, symbol_name, pc_offset);
1082 }
1083
1084 os << prefix;
1085 if (include_count) {
1086 os << StringPrintf("#%02zd ", i);
1087 }
1088 os << symbol_name;
1089 if (pc_offset != 0) {
1090 os << "+" << pc_offset;
1091 }
1092 os << StringPrintf(" [%p] (%s)\n",
1093 reinterpret_cast<void*>(frame->absolute_pc), CleanMapName(symbol));
1094 }
1095
1096 free_backtrace_symbols(backtrace_symbols.get(), frame_count);
1097 }
1098
1099 #if defined(__APPLE__)
1100
1101 // TODO: is there any way to get the kernel stack on Mac OS?
DumpKernelStack(std::ostream &,pid_t,const char *,bool)1102 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1103
1104 #else
1105
DumpKernelStack(std::ostream & os,pid_t tid,const char * prefix,bool include_count)1106 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1107 if (tid == GetTid()) {
1108 // There's no point showing that we're reading our stack out of /proc!
1109 return;
1110 }
1111
1112 std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1113 std::string kernel_stack;
1114 if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1115 os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1116 return;
1117 }
1118
1119 std::vector<std::string> kernel_stack_frames;
1120 Split(kernel_stack, '\n', kernel_stack_frames);
1121 // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1122 // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1123 kernel_stack_frames.pop_back();
1124 for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1125 // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110" into "futex_wait_queue_me+0xcd/0x110".
1126 const char* text = kernel_stack_frames[i].c_str();
1127 const char* close_bracket = strchr(text, ']');
1128 if (close_bracket != NULL) {
1129 text = close_bracket + 2;
1130 }
1131 os << prefix;
1132 if (include_count) {
1133 os << StringPrintf("#%02zd ", i);
1134 }
1135 os << text << "\n";
1136 }
1137 }
1138
1139 #endif
1140
GetAndroidRoot()1141 const char* GetAndroidRoot() {
1142 const char* android_root = getenv("ANDROID_ROOT");
1143 if (android_root == NULL) {
1144 if (OS::DirectoryExists("/system")) {
1145 android_root = "/system";
1146 } else {
1147 LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1148 return "";
1149 }
1150 }
1151 if (!OS::DirectoryExists(android_root)) {
1152 LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1153 return "";
1154 }
1155 return android_root;
1156 }
1157
GetAndroidData()1158 const char* GetAndroidData() {
1159 const char* android_data = getenv("ANDROID_DATA");
1160 if (android_data == NULL) {
1161 if (OS::DirectoryExists("/data")) {
1162 android_data = "/data";
1163 } else {
1164 LOG(FATAL) << "ANDROID_DATA not set and /data does not exist";
1165 return "";
1166 }
1167 }
1168 if (!OS::DirectoryExists(android_data)) {
1169 LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data;
1170 return "";
1171 }
1172 return android_data;
1173 }
1174
GetDalvikCacheOrDie(const char * android_data)1175 std::string GetDalvikCacheOrDie(const char* android_data) {
1176 std::string dalvik_cache(StringPrintf("%s/dalvik-cache", android_data));
1177
1178 if (!OS::DirectoryExists(dalvik_cache.c_str())) {
1179 if (StartsWith(dalvik_cache, "/tmp/")) {
1180 int result = mkdir(dalvik_cache.c_str(), 0700);
1181 if (result != 0) {
1182 LOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1183 return "";
1184 }
1185 } else {
1186 LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
1187 return "";
1188 }
1189 }
1190 return dalvik_cache;
1191 }
1192
GetDalvikCacheFilenameOrDie(const std::string & location)1193 std::string GetDalvikCacheFilenameOrDie(const std::string& location) {
1194 std::string dalvik_cache(GetDalvikCacheOrDie(GetAndroidData()));
1195 if (location[0] != '/') {
1196 LOG(FATAL) << "Expected path in location to be absolute: "<< location;
1197 }
1198 std::string cache_file(location, 1); // skip leading slash
1199 if (!EndsWith(location, ".dex") && !EndsWith(location, ".art")) {
1200 cache_file += "/";
1201 cache_file += DexFile::kClassesDex;
1202 }
1203 std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1204 return dalvik_cache + "/" + cache_file;
1205 }
1206
IsZipMagic(uint32_t magic)1207 bool IsZipMagic(uint32_t magic) {
1208 return (('P' == ((magic >> 0) & 0xff)) &&
1209 ('K' == ((magic >> 8) & 0xff)));
1210 }
1211
IsDexMagic(uint32_t magic)1212 bool IsDexMagic(uint32_t magic) {
1213 return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
1214 }
1215
IsOatMagic(uint32_t magic)1216 bool IsOatMagic(uint32_t magic) {
1217 return (memcmp(reinterpret_cast<const byte*>(magic),
1218 OatHeader::kOatMagic,
1219 sizeof(OatHeader::kOatMagic)) == 0);
1220 }
1221
1222 } // namespace art
1223