1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 // Programming Languages
21 // POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SetVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Analysis/AliasSetTracker.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/InstructionSimplify.h"
40 #include "llvm/Analysis/ValueTracking.h"
41 #include "llvm/DIBuilder.h"
42 #include "llvm/DebugInfo.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/InstVisitor.h"
50 #include "llvm/Support/CFG.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include <algorithm>
53 #include <queue>
54 using namespace llvm;
55
56 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
57 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
58 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
59 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
60
61 namespace {
62
63 struct AllocaInfo : private InstVisitor<AllocaInfo, bool> {
64 const DataLayout *DL;
65
66 SmallVector<BasicBlock *, 32> DefiningBlocks;
67 SmallVector<BasicBlock *, 32> UsingBlocks;
68 SmallVector<Instruction *, 8> DeadInsts;
69
70 Type *AllocaTy;
71 StoreInst *OnlyStore;
72 BasicBlock *OnlyBlock;
73 bool OnlyUsedInOneBlock;
74
75 Value *AllocaPointerVal;
76 DbgDeclareInst *DbgDeclare;
77
AllocaInfo__anon67ae2b610111::AllocaInfo78 AllocaInfo(const DataLayout *DL) : DL(DL) {}
79
clear__anon67ae2b610111::AllocaInfo80 void clear() {
81 DefiningBlocks.clear();
82 UsingBlocks.clear();
83 DeadInsts.clear();
84 AllocaTy = 0;
85 OnlyStore = 0;
86 OnlyBlock = 0;
87 OnlyUsedInOneBlock = true;
88 AllocaPointerVal = 0;
89 DbgDeclare = 0;
90 }
91
92 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
93 /// by the rest of the pass to reason about the uses of this alloca.
analyzeAlloca__anon67ae2b610111::AllocaInfo94 bool analyzeAlloca(AllocaInst &AI) {
95 clear();
96
97 AllocaTy = AI.getAllocatedType();
98 enqueueUsers(AI);
99
100 // Walk queued up uses in the worklist to handle nested uses.
101 while (!UseWorklist.empty()) {
102 U = UseWorklist.pop_back_val();
103 Instruction &I = *cast<Instruction>(U->getUser());
104 if (!visit(I))
105 return false; // Propagate failure to promote up.
106
107 if (OnlyUsedInOneBlock) {
108 if (OnlyBlock == 0)
109 OnlyBlock = I.getParent();
110 else if (OnlyBlock != I.getParent())
111 OnlyUsedInOneBlock = false;
112 }
113 }
114
115 DbgDeclare = FindAllocaDbgDeclare(&AI);
116 return true;
117 }
118
119 private:
120 // Befriend the base class so it can call through private visitor methods.
121 friend class InstVisitor<AllocaInfo, bool>;
122
123 /// \brief A use pointer that is non-null when visiting uses.
124 Use *U;
125
126 /// \brief A worklist for recursively visiting all uses of an alloca.
127 SmallVector<Use *, 8> UseWorklist;
128
129 /// \brief A set for preventing cyclic visitation.
130 SmallPtrSet<Use *, 8> VisitedUses;
131
enqueueUsers__anon67ae2b610111::AllocaInfo132 void enqueueUsers(Instruction &I) {
133 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
134 ++UI)
135 if (VisitedUses.insert(&UI.getUse()))
136 UseWorklist.push_back(&UI.getUse());
137 }
138
visitLoadInst__anon67ae2b610111::AllocaInfo139 bool visitLoadInst(LoadInst &LI) {
140 if (LI.isVolatile() || LI.getType() != AllocaTy)
141 return false;
142
143 // Keep track of variable reads.
144 UsingBlocks.push_back(LI.getParent());
145 AllocaPointerVal = &LI;
146 return true;
147 }
148
visitStoreInst__anon67ae2b610111::AllocaInfo149 bool visitStoreInst(StoreInst &SI) {
150 if (SI.isVolatile() || SI.getValueOperand() == U->get() ||
151 SI.getValueOperand()->getType() != AllocaTy)
152 return false;
153
154 // Remember the basic blocks which define new values for the alloca
155 DefiningBlocks.push_back(SI.getParent());
156 AllocaPointerVal = SI.getOperand(0);
157 OnlyStore = &SI;
158 return true;
159 }
160
visitBitCastInst__anon67ae2b610111::AllocaInfo161 bool visitBitCastInst(BitCastInst &BC) {
162 if (BC.use_empty())
163 DeadInsts.push_back(&BC);
164 else
165 enqueueUsers(BC);
166 return true;
167 }
168
visitGetElementPtrInst__anon67ae2b610111::AllocaInfo169 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
170 if (GEPI.use_empty()) {
171 DeadInsts.push_back(&GEPI);
172 return true;
173 }
174
175 enqueueUsers(GEPI);
176
177 return GEPI.hasAllZeroIndices();
178 }
179
180 // We can promote through debug info intrinsics as they don't alter the
181 // value stored in memory.
visitDbgInfoIntrinsic__anon67ae2b610111::AllocaInfo182 bool visitDbgInfoIntrinsic(DbgInfoIntrinsic &I) {
183 DeadInsts.push_back(&I);
184 return true;
185 }
186
visitIntrinsicInst__anon67ae2b610111::AllocaInfo187 bool visitIntrinsicInst(IntrinsicInst &II) {
188 switch (II.getIntrinsicID()) {
189 default:
190 return false;
191
192 // Lifetime intrinsics don't preclude promoting the memory to a register.
193 // FIXME: We should use these to promote to undef when outside of a valid
194 // lifetime.
195 case Intrinsic::lifetime_start:
196 case Intrinsic::lifetime_end:
197 DeadInsts.push_back(&II);
198 return true;
199 }
200 }
201
202 // The fallback is that the alloca cannot be promoted.
visitInstruction__anon67ae2b610111::AllocaInfo203 bool visitInstruction(Instruction &I) { return false; }
204 };
205
206 // Data package used by RenamePass()
207 class RenamePassData {
208 public:
209 typedef std::vector<Value *> ValVector;
210
RenamePassData()211 RenamePassData() : BB(NULL), Pred(NULL), Values() {}
RenamePassData(BasicBlock * B,BasicBlock * P,const ValVector & V)212 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
213 : BB(B), Pred(P), Values(V) {}
214 BasicBlock *BB;
215 BasicBlock *Pred;
216 ValVector Values;
217
swap(RenamePassData & RHS)218 void swap(RenamePassData &RHS) {
219 std::swap(BB, RHS.BB);
220 std::swap(Pred, RHS.Pred);
221 Values.swap(RHS.Values);
222 }
223 };
224
225 /// \brief This assigns and keeps a per-bb relative ordering of load/store
226 /// instructions in the block that directly load or store an alloca.
227 ///
228 /// This functionality is important because it avoids scanning large basic
229 /// blocks multiple times when promoting many allocas in the same block.
230 class LargeBlockInfo {
231 /// \brief For each instruction that we track, keep the index of the
232 /// instruction.
233 ///
234 /// The index starts out as the number of the instruction from the start of
235 /// the block.
236 DenseMap<const Instruction *, unsigned> InstNumbers;
237
238 public:
239
240 /// This code only looks at accesses to allocas.
isInterestingInstruction(const Instruction * I)241 static bool isInterestingInstruction(const Instruction *I) {
242 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
243 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
244 }
245
246 /// Get or calculate the index of the specified instruction.
getInstructionIndex(const Instruction * I)247 unsigned getInstructionIndex(const Instruction *I) {
248 assert(isInterestingInstruction(I) &&
249 "Not a load/store to/from an alloca?");
250
251 // If we already have this instruction number, return it.
252 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
253 if (It != InstNumbers.end())
254 return It->second;
255
256 // Scan the whole block to get the instruction. This accumulates
257 // information for every interesting instruction in the block, in order to
258 // avoid gratuitus rescans.
259 const BasicBlock *BB = I->getParent();
260 unsigned InstNo = 0;
261 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
262 ++BBI)
263 if (isInterestingInstruction(BBI))
264 InstNumbers[BBI] = InstNo++;
265 It = InstNumbers.find(I);
266
267 assert(It != InstNumbers.end() && "Didn't insert instruction?");
268 return It->second;
269 }
270
deleteValue(const Instruction * I)271 void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
272
clear()273 void clear() { InstNumbers.clear(); }
274 };
275
276 struct PromoteMem2Reg {
277 /// The alloca instructions being promoted.
278 std::vector<AllocaInst *> Allocas;
279 DominatorTree &DT;
280 DIBuilder DIB;
281 const DataLayout *DL;
282
283 /// An AliasSetTracker object to update. If null, don't update it.
284 AliasSetTracker *AST;
285
286 /// Reverse mapping of Allocas.
287 DenseMap<AllocaInst *, unsigned> AllocaLookup;
288
289 /// \brief The PhiNodes we're adding.
290 ///
291 /// That map is used to simplify some Phi nodes as we iterate over it, so
292 /// it should have deterministic iterators. We could use a MapVector, but
293 /// since we already maintain a map from BasicBlock* to a stable numbering
294 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
295 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
296
297 /// For each PHI node, keep track of which entry in Allocas it corresponds
298 /// to.
299 DenseMap<PHINode *, unsigned> PhiToAllocaMap;
300
301 /// If we are updating an AliasSetTracker, then for each alloca that is of
302 /// pointer type, we keep track of what to copyValue to the inserted PHI
303 /// nodes here.
304 std::vector<Value *> PointerAllocaValues;
305
306 /// For each alloca, we keep track of the dbg.declare intrinsic that
307 /// describes it, if any, so that we can convert it to a dbg.value
308 /// intrinsic if the alloca gets promoted.
309 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
310
311 /// The set of basic blocks the renamer has already visited.
312 ///
313 SmallPtrSet<BasicBlock *, 16> Visited;
314
315 /// Contains a stable numbering of basic blocks to avoid non-determinstic
316 /// behavior.
317 DenseMap<BasicBlock *, unsigned> BBNumbers;
318
319 /// Maps DomTreeNodes to their level in the dominator tree.
320 DenseMap<DomTreeNode *, unsigned> DomLevels;
321
322 /// Lazily compute the number of predecessors a block has.
323 DenseMap<const BasicBlock *, unsigned> BBNumPreds;
324
325 public:
PromoteMem2Reg__anon67ae2b610111::PromoteMem2Reg326 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
327 const DataLayout *DL, AliasSetTracker *AST)
328 : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
329 DIB(*DT.getRoot()->getParent()->getParent()), DL(DL), AST(AST) {}
330
331 void run();
332
333 private:
RemoveFromAllocasList__anon67ae2b610111::PromoteMem2Reg334 void RemoveFromAllocasList(unsigned &AllocaIdx) {
335 Allocas[AllocaIdx] = Allocas.back();
336 Allocas.pop_back();
337 --AllocaIdx;
338 }
339
getNumPreds__anon67ae2b610111::PromoteMem2Reg340 unsigned getNumPreds(const BasicBlock *BB) {
341 unsigned &NP = BBNumPreds[BB];
342 if (NP == 0)
343 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
344 return NP - 1;
345 }
346
347 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
348 AllocaInfo &Info);
349 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
350 const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
351 SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
352 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
353 RenamePassData::ValVector &IncVals,
354 std::vector<RenamePassData> &Worklist);
355 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
356 };
357
358 } // end of anonymous namespace
359
360 /// \brief Walk a small vector of dead instructions and recursively remove them
361 /// and subsequently dead instructions.
362 ///
363 /// This is only valid to call on dead instructions using an alloca which is
364 /// promotable, as we leverage that assumption to delete them faster.
removeDeadInstructions(AllocaInst * AI,SmallVectorImpl<Instruction * > & DeadInsts)365 static void removeDeadInstructions(AllocaInst *AI,
366 SmallVectorImpl<Instruction *> &DeadInsts) {
367 while (!DeadInsts.empty()) {
368 Instruction *I = DeadInsts.pop_back_val();
369
370 // Don't delete the alloca itself.
371 if (I == AI)
372 continue;
373
374 // Note that we open code the deletion algorithm here because we know
375 // apriori that all of the instructions using an alloca that reaches here
376 // are trivially dead when their use list becomes empty (The only risk are
377 // lifetime markers which we specifically want to nuke). By coding it here
378 // we can skip the triviality test and be more efficient.
379 //
380 // Null out all of the instruction's operands to see if any operand becomes
381 // dead as we go.
382 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE;
383 ++OI) {
384 Instruction *Op = dyn_cast<Instruction>(*OI);
385 if (!Op)
386 continue;
387
388 OI->set(0);
389 if (!Op->use_empty())
390 continue;
391
392 DeadInsts.push_back(Op);
393 }
394 I->eraseFromParent();
395 }
396 }
397
398 /// \brief Rewrite as many loads as possible given a single store.
399 ///
400 /// When there is only a single store, we can use the domtree to trivially
401 /// replace all of the dominated loads with the stored value. Do so, and return
402 /// true if this has successfully promoted the alloca entirely. If this returns
403 /// false there were some loads which were not dominated by the single store
404 /// and thus must be phi-ed with undef. We fall back to the standard alloca
405 /// promotion algorithm in that case.
rewriteSingleStoreAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI,DominatorTree & DT,AliasSetTracker * AST)406 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
407 LargeBlockInfo &LBI,
408 DominatorTree &DT,
409 AliasSetTracker *AST) {
410 StoreInst *OnlyStore = Info.OnlyStore;
411 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
412 BasicBlock *StoreBB = OnlyStore->getParent();
413 int StoreIndex = -1;
414
415 // Clear out UsingBlocks. We will reconstruct it here if needed.
416 Info.UsingBlocks.clear();
417
418 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
419 Instruction *UserInst = cast<Instruction>(*UI++);
420 if (!isa<LoadInst>(UserInst)) {
421 assert(UserInst == OnlyStore && "Should only have load/stores");
422 continue;
423 }
424 LoadInst *LI = cast<LoadInst>(UserInst);
425
426 // Okay, if we have a load from the alloca, we want to replace it with the
427 // only value stored to the alloca. We can do this if the value is
428 // dominated by the store. If not, we use the rest of the mem2reg machinery
429 // to insert the phi nodes as needed.
430 if (!StoringGlobalVal) { // Non-instructions are always dominated.
431 if (LI->getParent() == StoreBB) {
432 // If we have a use that is in the same block as the store, compare the
433 // indices of the two instructions to see which one came first. If the
434 // load came before the store, we can't handle it.
435 if (StoreIndex == -1)
436 StoreIndex = LBI.getInstructionIndex(OnlyStore);
437
438 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
439 // Can't handle this load, bail out.
440 Info.UsingBlocks.push_back(StoreBB);
441 continue;
442 }
443
444 } else if (LI->getParent() != StoreBB &&
445 !DT.dominates(StoreBB, LI->getParent())) {
446 // If the load and store are in different blocks, use BB dominance to
447 // check their relationships. If the store doesn't dom the use, bail
448 // out.
449 Info.UsingBlocks.push_back(LI->getParent());
450 continue;
451 }
452 }
453
454 // Otherwise, we *can* safely rewrite this load.
455 Value *ReplVal = OnlyStore->getOperand(0);
456 // If the replacement value is the load, this must occur in unreachable
457 // code.
458 if (ReplVal == LI)
459 ReplVal = UndefValue::get(LI->getType());
460 LI->replaceAllUsesWith(ReplVal);
461 if (AST && LI->getType()->isPointerTy())
462 AST->deleteValue(LI);
463 LI->eraseFromParent();
464 LBI.deleteValue(LI);
465 }
466
467 // Finally, after the scan, check to see if the store is all that is left.
468 if (!Info.UsingBlocks.empty())
469 return false; // If not, we'll have to fall back for the remainder.
470
471 // Record debuginfo for the store and remove the declaration's
472 // debuginfo.
473 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
474 DIBuilder DIB(*AI->getParent()->getParent()->getParent());
475 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
476 DDI->eraseFromParent();
477 }
478 // Remove the (now dead) store and alloca.
479 Info.OnlyStore->eraseFromParent();
480 LBI.deleteValue(Info.OnlyStore);
481
482 if (AST)
483 AST->deleteValue(AI);
484 AI->eraseFromParent();
485 LBI.deleteValue(AI);
486 return true;
487 }
488
489 namespace {
490 /// This is a helper predicate used to search by the first element of a pair.
491 struct StoreIndexSearchPredicate {
operator ()__anon67ae2b610211::StoreIndexSearchPredicate492 bool operator()(const std::pair<unsigned, StoreInst *> &LHS,
493 const std::pair<unsigned, StoreInst *> &RHS) {
494 return LHS.first < RHS.first;
495 }
496 };
497 }
498
499 /// Many allocas are only used within a single basic block. If this is the
500 /// case, avoid traversing the CFG and inserting a lot of potentially useless
501 /// PHI nodes by just performing a single linear pass over the basic block
502 /// using the Alloca.
503 ///
504 /// If we cannot promote this alloca (because it is read before it is written),
505 /// return true. This is necessary in cases where, due to control flow, the
506 /// alloca is potentially undefined on some control flow paths. e.g. code like
507 /// this is potentially correct:
508 ///
509 /// for (...) { if (c) { A = undef; undef = B; } }
510 ///
511 /// ... so long as A is not used before undef is set.
promoteSingleBlockAlloca(AllocaInst * AI,const AllocaInfo & Info,LargeBlockInfo & LBI,AliasSetTracker * AST)512 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
513 LargeBlockInfo &LBI,
514 AliasSetTracker *AST) {
515 // The trickiest case to handle is when we have large blocks. Because of this,
516 // this code is optimized assuming that large blocks happen. This does not
517 // significantly pessimize the small block case. This uses LargeBlockInfo to
518 // make it efficient to get the index of various operations in the block.
519
520 // Walk the use-def list of the alloca, getting the locations of all stores.
521 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
522 StoresByIndexTy StoresByIndex;
523
524 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;
525 ++UI)
526 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
527 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
528
529 // Sort the stores by their index, making it efficient to do a lookup with a
530 // binary search.
531 std::sort(StoresByIndex.begin(), StoresByIndex.end(),
532 StoreIndexSearchPredicate());
533
534 // Walk all of the loads from this alloca, replacing them with the nearest
535 // store above them, if any.
536 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
537 LoadInst *LI = dyn_cast<LoadInst>(*UI++);
538 if (!LI)
539 continue;
540
541 unsigned LoadIdx = LBI.getInstructionIndex(LI);
542
543 // Find the nearest store that has a lower index than this load.
544 StoresByIndexTy::iterator I =
545 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
546 std::make_pair(LoadIdx, static_cast<StoreInst *>(0)),
547 StoreIndexSearchPredicate());
548
549 if (I == StoresByIndex.begin())
550 // If there is no store before this load, the load takes the undef value.
551 LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
552 else
553 // Otherwise, there was a store before this load, the load takes its value.
554 LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0));
555
556 if (AST && LI->getType()->isPointerTy())
557 AST->deleteValue(LI);
558 LI->eraseFromParent();
559 LBI.deleteValue(LI);
560 }
561
562 // Remove the (now dead) stores and alloca.
563 while (!AI->use_empty()) {
564 StoreInst *SI = cast<StoreInst>(AI->use_back());
565 // Record debuginfo for the store before removing it.
566 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
567 DIBuilder DIB(*AI->getParent()->getParent()->getParent());
568 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
569 }
570 SI->eraseFromParent();
571 LBI.deleteValue(SI);
572 }
573
574 if (AST)
575 AST->deleteValue(AI);
576 AI->eraseFromParent();
577 LBI.deleteValue(AI);
578
579 // The alloca's debuginfo can be removed as well.
580 if (DbgDeclareInst *DDI = Info.DbgDeclare)
581 DDI->eraseFromParent();
582
583 ++NumLocalPromoted;
584 }
585
run()586 void PromoteMem2Reg::run() {
587 Function &F = *DT.getRoot()->getParent();
588
589 if (AST)
590 PointerAllocaValues.resize(Allocas.size());
591 AllocaDbgDeclares.resize(Allocas.size());
592
593 AllocaInfo Info(DL);
594 LargeBlockInfo LBI;
595
596 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
597 AllocaInst *AI = Allocas[AllocaNum];
598
599 assert(AI->getParent()->getParent() == &F &&
600 "All allocas should be in the same function, which is same as DF!");
601
602 // Calculate the set of read and write-locations for each alloca. This is
603 // analogous to finding the 'uses' and 'definitions' of each variable.
604 bool Good = Info.analyzeAlloca(*AI);
605 (void)Good;
606 assert(Good && "Cannot promote non-promotable alloca!");
607
608 // Nuke all of the dead instructions.
609 removeDeadInstructions(AI, Info.DeadInsts);
610
611 if (AI->use_empty()) {
612 // If there are no uses of the alloca, just delete it now.
613 if (AST)
614 AST->deleteValue(AI);
615 AI->eraseFromParent();
616
617 // Remove the alloca from the Allocas list, since it has been processed
618 RemoveFromAllocasList(AllocaNum);
619 ++NumDeadAlloca;
620 continue;
621 }
622
623 // If there is only a single store to this value, replace any loads of
624 // it that are directly dominated by the definition with the value stored.
625 if (Info.DefiningBlocks.size() == 1) {
626 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
627 // The alloca has been processed, move on.
628 RemoveFromAllocasList(AllocaNum);
629 ++NumSingleStore;
630 continue;
631 }
632 }
633
634 // If the alloca is only read and written in one basic block, just perform a
635 // linear sweep over the block to eliminate it.
636 if (Info.OnlyUsedInOneBlock) {
637 promoteSingleBlockAlloca(AI, Info, LBI, AST);
638
639 // The alloca has been processed, move on.
640 RemoveFromAllocasList(AllocaNum);
641 continue;
642 }
643
644 // If we haven't computed dominator tree levels, do so now.
645 if (DomLevels.empty()) {
646 SmallVector<DomTreeNode *, 32> Worklist;
647
648 DomTreeNode *Root = DT.getRootNode();
649 DomLevels[Root] = 0;
650 Worklist.push_back(Root);
651
652 while (!Worklist.empty()) {
653 DomTreeNode *Node = Worklist.pop_back_val();
654 unsigned ChildLevel = DomLevels[Node] + 1;
655 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
656 CI != CE; ++CI) {
657 DomLevels[*CI] = ChildLevel;
658 Worklist.push_back(*CI);
659 }
660 }
661 }
662
663 // If we haven't computed a numbering for the BB's in the function, do so
664 // now.
665 if (BBNumbers.empty()) {
666 unsigned ID = 0;
667 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
668 BBNumbers[I] = ID++;
669 }
670
671 // If we have an AST to keep updated, remember some pointer value that is
672 // stored into the alloca.
673 if (AST)
674 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
675
676 // Remember the dbg.declare intrinsic describing this alloca, if any.
677 if (Info.DbgDeclare)
678 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
679
680 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
681 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
682
683 // At this point, we're committed to promoting the alloca using IDF's, and
684 // the standard SSA construction algorithm. Determine which blocks need PHI
685 // nodes and see if we can optimize out some work by avoiding insertion of
686 // dead phi nodes.
687 DetermineInsertionPoint(AI, AllocaNum, Info);
688 }
689
690 if (Allocas.empty())
691 return; // All of the allocas must have been trivial!
692
693 LBI.clear();
694
695 // Set the incoming values for the basic block to be null values for all of
696 // the alloca's. We do this in case there is a load of a value that has not
697 // been stored yet. In this case, it will get this null value.
698 //
699 RenamePassData::ValVector Values(Allocas.size());
700 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
701 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
702
703 // Walks all basic blocks in the function performing the SSA rename algorithm
704 // and inserting the phi nodes we marked as necessary
705 //
706 std::vector<RenamePassData> RenamePassWorkList;
707 RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
708 do {
709 RenamePassData RPD;
710 RPD.swap(RenamePassWorkList.back());
711 RenamePassWorkList.pop_back();
712 // RenamePass may add new worklist entries.
713 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
714 } while (!RenamePassWorkList.empty());
715
716 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
717 Visited.clear();
718
719 // Remove the allocas themselves from the function.
720 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
721 Instruction *A = Allocas[i];
722
723 // If there are any uses of the alloca instructions left, they must be in
724 // unreachable basic blocks that were not processed by walking the dominator
725 // tree. Just delete the users now.
726 if (!A->use_empty())
727 A->replaceAllUsesWith(UndefValue::get(A->getType()));
728 if (AST)
729 AST->deleteValue(A);
730 A->eraseFromParent();
731 }
732
733 // Remove alloca's dbg.declare instrinsics from the function.
734 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
735 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
736 DDI->eraseFromParent();
737
738 // Loop over all of the PHI nodes and see if there are any that we can get
739 // rid of because they merge all of the same incoming values. This can
740 // happen due to undef values coming into the PHI nodes. This process is
741 // iterative, because eliminating one PHI node can cause others to be removed.
742 bool EliminatedAPHI = true;
743 while (EliminatedAPHI) {
744 EliminatedAPHI = false;
745
746 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
747 // simplify and RAUW them as we go. If it was not, we could add uses to
748 // the values we replace with in a non deterministic order, thus creating
749 // non deterministic def->use chains.
750 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
751 I = NewPhiNodes.begin(),
752 E = NewPhiNodes.end();
753 I != E;) {
754 PHINode *PN = I->second;
755
756 // If this PHI node merges one value and/or undefs, get the value.
757 if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
758 if (AST && PN->getType()->isPointerTy())
759 AST->deleteValue(PN);
760 PN->replaceAllUsesWith(V);
761 PN->eraseFromParent();
762 NewPhiNodes.erase(I++);
763 EliminatedAPHI = true;
764 continue;
765 }
766 ++I;
767 }
768 }
769
770 // At this point, the renamer has added entries to PHI nodes for all reachable
771 // code. Unfortunately, there may be unreachable blocks which the renamer
772 // hasn't traversed. If this is the case, the PHI nodes may not
773 // have incoming values for all predecessors. Loop over all PHI nodes we have
774 // created, inserting undef values if they are missing any incoming values.
775 //
776 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
777 I = NewPhiNodes.begin(),
778 E = NewPhiNodes.end();
779 I != E; ++I) {
780 // We want to do this once per basic block. As such, only process a block
781 // when we find the PHI that is the first entry in the block.
782 PHINode *SomePHI = I->second;
783 BasicBlock *BB = SomePHI->getParent();
784 if (&BB->front() != SomePHI)
785 continue;
786
787 // Only do work here if there the PHI nodes are missing incoming values. We
788 // know that all PHI nodes that were inserted in a block will have the same
789 // number of incoming values, so we can just check any of them.
790 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
791 continue;
792
793 // Get the preds for BB.
794 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
795
796 // Ok, now we know that all of the PHI nodes are missing entries for some
797 // basic blocks. Start by sorting the incoming predecessors for efficient
798 // access.
799 std::sort(Preds.begin(), Preds.end());
800
801 // Now we loop through all BB's which have entries in SomePHI and remove
802 // them from the Preds list.
803 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
804 // Do a log(n) search of the Preds list for the entry we want.
805 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
806 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
807 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
808 "PHI node has entry for a block which is not a predecessor!");
809
810 // Remove the entry
811 Preds.erase(EntIt);
812 }
813
814 // At this point, the blocks left in the preds list must have dummy
815 // entries inserted into every PHI nodes for the block. Update all the phi
816 // nodes in this block that we are inserting (there could be phis before
817 // mem2reg runs).
818 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
819 BasicBlock::iterator BBI = BB->begin();
820 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
821 SomePHI->getNumIncomingValues() == NumBadPreds) {
822 Value *UndefVal = UndefValue::get(SomePHI->getType());
823 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
824 SomePHI->addIncoming(UndefVal, Preds[pred]);
825 }
826 }
827
828 NewPhiNodes.clear();
829 }
830
831 /// \brief Determine which blocks the value is live in.
832 ///
833 /// These are blocks which lead to uses. Knowing this allows us to avoid
834 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
835 /// inserted phi nodes would be dead).
ComputeLiveInBlocks(AllocaInst * AI,AllocaInfo & Info,const SmallPtrSet<BasicBlock *,32> & DefBlocks,SmallPtrSet<BasicBlock *,32> & LiveInBlocks)836 void PromoteMem2Reg::ComputeLiveInBlocks(
837 AllocaInst *AI, AllocaInfo &Info,
838 const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
839 SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
840
841 // To determine liveness, we must iterate through the predecessors of blocks
842 // where the def is live. Blocks are added to the worklist if we need to
843 // check their predecessors. Start with all the using blocks.
844 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
845 Info.UsingBlocks.end());
846
847 // If any of the using blocks is also a definition block, check to see if the
848 // definition occurs before or after the use. If it happens before the use,
849 // the value isn't really live-in.
850 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
851 BasicBlock *BB = LiveInBlockWorklist[i];
852 if (!DefBlocks.count(BB))
853 continue;
854
855 // Okay, this is a block that both uses and defines the value. If the first
856 // reference to the alloca is a def (store), then we know it isn't live-in.
857 for (BasicBlock::iterator I = BB->begin();; ++I) {
858 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
859 if (SI->getOperand(1) != AI)
860 continue;
861
862 // We found a store to the alloca before a load. The alloca is not
863 // actually live-in here.
864 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
865 LiveInBlockWorklist.pop_back();
866 --i, --e;
867 break;
868 }
869
870 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
871 if (LI->getOperand(0) != AI)
872 continue;
873
874 // Okay, we found a load before a store to the alloca. It is actually
875 // live into this block.
876 break;
877 }
878 }
879 }
880
881 // Now that we have a set of blocks where the phi is live-in, recursively add
882 // their predecessors until we find the full region the value is live.
883 while (!LiveInBlockWorklist.empty()) {
884 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
885
886 // The block really is live in here, insert it into the set. If already in
887 // the set, then it has already been processed.
888 if (!LiveInBlocks.insert(BB))
889 continue;
890
891 // Since the value is live into BB, it is either defined in a predecessor or
892 // live into it to. Add the preds to the worklist unless they are a
893 // defining block.
894 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
895 BasicBlock *P = *PI;
896
897 // The value is not live into a predecessor if it defines the value.
898 if (DefBlocks.count(P))
899 continue;
900
901 // Otherwise it is, add to the worklist.
902 LiveInBlockWorklist.push_back(P);
903 }
904 }
905 }
906
907 namespace {
908 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
909
910 struct DomTreeNodeCompare {
operator ()__anon67ae2b610311::DomTreeNodeCompare911 bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
912 return LHS.second < RHS.second;
913 }
914 };
915 } // end anonymous namespace
916
917 /// At this point, we're committed to promoting the alloca using IDF's, and the
918 /// standard SSA construction algorithm. Determine which blocks need phi nodes
919 /// and see if we can optimize out some work by avoiding insertion of dead phi
920 /// nodes.
DetermineInsertionPoint(AllocaInst * AI,unsigned AllocaNum,AllocaInfo & Info)921 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
922 AllocaInfo &Info) {
923 // Unique the set of defining blocks for efficient lookup.
924 SmallPtrSet<BasicBlock *, 32> DefBlocks;
925 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
926
927 // Determine which blocks the value is live in. These are blocks which lead
928 // to uses.
929 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
930 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
931
932 // Use a priority queue keyed on dominator tree level so that inserted nodes
933 // are handled from the bottom of the dominator tree upwards.
934 typedef std::priority_queue<DomTreeNodePair,
935 SmallVector<DomTreeNodePair, 32>,
936 DomTreeNodeCompare> IDFPriorityQueue;
937 IDFPriorityQueue PQ;
938
939 for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
940 E = DefBlocks.end();
941 I != E; ++I) {
942 if (DomTreeNode *Node = DT.getNode(*I))
943 PQ.push(std::make_pair(Node, DomLevels[Node]));
944 }
945
946 SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
947 SmallPtrSet<DomTreeNode *, 32> Visited;
948 SmallVector<DomTreeNode *, 32> Worklist;
949 while (!PQ.empty()) {
950 DomTreeNodePair RootPair = PQ.top();
951 PQ.pop();
952 DomTreeNode *Root = RootPair.first;
953 unsigned RootLevel = RootPair.second;
954
955 // Walk all dominator tree children of Root, inspecting their CFG edges with
956 // targets elsewhere on the dominator tree. Only targets whose level is at
957 // most Root's level are added to the iterated dominance frontier of the
958 // definition set.
959
960 Worklist.clear();
961 Worklist.push_back(Root);
962
963 while (!Worklist.empty()) {
964 DomTreeNode *Node = Worklist.pop_back_val();
965 BasicBlock *BB = Node->getBlock();
966
967 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
968 ++SI) {
969 DomTreeNode *SuccNode = DT.getNode(*SI);
970
971 // Quickly skip all CFG edges that are also dominator tree edges instead
972 // of catching them below.
973 if (SuccNode->getIDom() == Node)
974 continue;
975
976 unsigned SuccLevel = DomLevels[SuccNode];
977 if (SuccLevel > RootLevel)
978 continue;
979
980 if (!Visited.insert(SuccNode))
981 continue;
982
983 BasicBlock *SuccBB = SuccNode->getBlock();
984 if (!LiveInBlocks.count(SuccBB))
985 continue;
986
987 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
988 if (!DefBlocks.count(SuccBB))
989 PQ.push(std::make_pair(SuccNode, SuccLevel));
990 }
991
992 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
993 ++CI) {
994 if (!Visited.count(*CI))
995 Worklist.push_back(*CI);
996 }
997 }
998 }
999
1000 if (DFBlocks.size() > 1)
1001 std::sort(DFBlocks.begin(), DFBlocks.end());
1002
1003 unsigned CurrentVersion = 0;
1004 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
1005 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
1006 }
1007
1008 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
1009 ///
1010 /// Returns true if there wasn't already a phi-node for that variable
QueuePhiNode(BasicBlock * BB,unsigned AllocaNo,unsigned & Version)1011 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
1012 unsigned &Version) {
1013 // Look up the basic-block in question.
1014 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
1015
1016 // If the BB already has a phi node added for the i'th alloca then we're done!
1017 if (PN)
1018 return false;
1019
1020 // Create a PhiNode using the dereferenced type... and add the phi-node to the
1021 // BasicBlock.
1022 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1023 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
1024 BB->begin());
1025 ++NumPHIInsert;
1026 PhiToAllocaMap[PN] = AllocaNo;
1027
1028 if (AST && PN->getType()->isPointerTy())
1029 AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1030
1031 return true;
1032 }
1033
1034 /// \brief Recursively traverse the CFG of the function, renaming loads and
1035 /// stores to the allocas which we are promoting.
1036 ///
1037 /// IncomingVals indicates what value each Alloca contains on exit from the
1038 /// predecessor block Pred.
RenamePass(BasicBlock * BB,BasicBlock * Pred,RenamePassData::ValVector & IncomingVals,std::vector<RenamePassData> & Worklist)1039 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1040 RenamePassData::ValVector &IncomingVals,
1041 std::vector<RenamePassData> &Worklist) {
1042 NextIteration:
1043 // If we are inserting any phi nodes into this BB, they will already be in the
1044 // block.
1045 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1046 // If we have PHI nodes to update, compute the number of edges from Pred to
1047 // BB.
1048 if (PhiToAllocaMap.count(APN)) {
1049 // We want to be able to distinguish between PHI nodes being inserted by
1050 // this invocation of mem2reg from those phi nodes that already existed in
1051 // the IR before mem2reg was run. We determine that APN is being inserted
1052 // because it is missing incoming edges. All other PHI nodes being
1053 // inserted by this pass of mem2reg will have the same number of incoming
1054 // operands so far. Remember this count.
1055 unsigned NewPHINumOperands = APN->getNumOperands();
1056
1057 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
1058 assert(NumEdges && "Must be at least one edge from Pred to BB!");
1059
1060 // Add entries for all the phis.
1061 BasicBlock::iterator PNI = BB->begin();
1062 do {
1063 unsigned AllocaNo = PhiToAllocaMap[APN];
1064
1065 // Add N incoming values to the PHI node.
1066 for (unsigned i = 0; i != NumEdges; ++i)
1067 APN->addIncoming(IncomingVals[AllocaNo], Pred);
1068
1069 // The currently active variable for this block is now the PHI.
1070 IncomingVals[AllocaNo] = APN;
1071
1072 // Get the next phi node.
1073 ++PNI;
1074 APN = dyn_cast<PHINode>(PNI);
1075 if (APN == 0)
1076 break;
1077
1078 // Verify that it is missing entries. If not, it is not being inserted
1079 // by this mem2reg invocation so we want to ignore it.
1080 } while (APN->getNumOperands() == NewPHINumOperands);
1081 }
1082 }
1083
1084 // Don't revisit blocks.
1085 if (!Visited.insert(BB))
1086 return;
1087
1088 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
1089 Instruction *I = II++; // get the instruction, increment iterator
1090
1091 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1092 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1093 if (!Src)
1094 continue;
1095
1096 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1097 if (AI == AllocaLookup.end())
1098 continue;
1099
1100 Value *V = IncomingVals[AI->second];
1101
1102 // Anything using the load now uses the current value.
1103 LI->replaceAllUsesWith(V);
1104 if (AST && LI->getType()->isPointerTy())
1105 AST->deleteValue(LI);
1106 BB->getInstList().erase(LI);
1107 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1108 // Delete this instruction and mark the name as the current holder of the
1109 // value
1110 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1111 if (!Dest)
1112 continue;
1113
1114 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1115 if (ai == AllocaLookup.end())
1116 continue;
1117
1118 // what value were we writing?
1119 IncomingVals[ai->second] = SI->getOperand(0);
1120 // Record debuginfo for the store before removing it.
1121 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1122 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1123 BB->getInstList().erase(SI);
1124 }
1125 }
1126
1127 // 'Recurse' to our successors.
1128 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1129 if (I == E)
1130 return;
1131
1132 // Keep track of the successors so we don't visit the same successor twice
1133 SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1134
1135 // Handle the first successor without using the worklist.
1136 VisitedSuccs.insert(*I);
1137 Pred = BB;
1138 BB = *I;
1139 ++I;
1140
1141 for (; I != E; ++I)
1142 if (VisitedSuccs.insert(*I))
1143 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1144
1145 goto NextIteration;
1146 }
1147
isAllocaPromotable(const AllocaInst * AI,const DataLayout * DL)1148 bool llvm::isAllocaPromotable(const AllocaInst *AI, const DataLayout *DL) {
1149 // We cast away constness because we re-use the non-const analysis that the
1150 // actual promotion routine uses. While it is non-const, it doesn't actually
1151 // mutate anything at this phase, and we discard the non-const results that
1152 // promotion uses to mutate the alloca.
1153 return AllocaInfo(DL).analyzeAlloca(*const_cast<AllocaInst *>(AI));
1154 }
1155
PromoteMemToReg(ArrayRef<AllocaInst * > Allocas,DominatorTree & DT,const DataLayout * DL,AliasSetTracker * AST)1156 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1157 const DataLayout *DL, AliasSetTracker *AST) {
1158 // If there is nothing to do, bail out...
1159 if (Allocas.empty())
1160 return;
1161
1162 PromoteMem2Reg(Allocas, DT, DL, AST).run();
1163 }
1164