• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_platform_linux.cc --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Linux-specific code.
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "sanitizer_common/sanitizer_platform.h"
17 #if SANITIZER_LINUX
18 
19 #include "sanitizer_common/sanitizer_common.h"
20 #include "sanitizer_common/sanitizer_libc.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_flags.h"
25 
26 #include <fcntl.h>
27 #include <pthread.h>
28 #include <signal.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <stdarg.h>
33 #include <sys/mman.h>
34 #include <sys/prctl.h>
35 #include <sys/syscall.h>
36 #include <sys/time.h>
37 #include <sys/types.h>
38 #include <sys/resource.h>
39 #include <sys/stat.h>
40 #include <unistd.h>
41 #include <errno.h>
42 #include <sched.h>
43 #include <dlfcn.h>
44 #define __need_res_state
45 #include <resolv.h>
46 #include <malloc.h>
47 
48 extern "C" struct mallinfo __libc_mallinfo();
49 
50 namespace __tsan {
51 
52 const uptr kPageSize = 4096;
53 
54 #ifndef TSAN_GO
ScopedInRtl()55 ScopedInRtl::ScopedInRtl()
56     : thr_(cur_thread()) {
57   in_rtl_ = thr_->in_rtl;
58   thr_->in_rtl++;
59   errno_ = errno;
60 }
61 
~ScopedInRtl()62 ScopedInRtl::~ScopedInRtl() {
63   thr_->in_rtl--;
64   errno = errno_;
65   CHECK_EQ(in_rtl_, thr_->in_rtl);
66 }
67 #else
ScopedInRtl()68 ScopedInRtl::ScopedInRtl() {
69 }
70 
~ScopedInRtl()71 ScopedInRtl::~ScopedInRtl() {
72 }
73 #endif
74 
ishex(char c)75 static bool ishex(char c) {
76   return (c >= '0' && c <= '9')
77       || (c >= 'a' && c <= 'f');
78 }
79 
readhex(const char * p)80 static uptr readhex(const char *p) {
81   uptr v = 0;
82   for (; ishex(p[0]); p++) {
83     if (p[0] >= '0' && p[0] <= '9')
84       v = v * 16 + p[0] - '0';
85     else
86       v = v * 16 + p[0] - 'a' + 10;
87   }
88   return v;
89 }
90 
readdec(const char * p)91 static uptr readdec(const char *p) {
92   uptr v = 0;
93   for (; p[0] >= '0' && p[0] <= '9' ; p++)
94     v = v * 10 + p[0] - '0';
95   return v;
96 }
97 
WriteMemoryProfile(char * buf,uptr buf_size)98 void WriteMemoryProfile(char *buf, uptr buf_size) {
99   char *smaps = 0;
100   uptr smaps_cap = 0;
101   uptr smaps_len = ReadFileToBuffer("/proc/self/smaps",
102       &smaps, &smaps_cap, 64<<20);
103   uptr mem[6] = {};
104   uptr total = 0;
105   uptr start = 0;
106   bool file = false;
107   const char *pos = smaps;
108   while (pos < smaps + smaps_len) {
109     if (ishex(pos[0])) {
110       start = readhex(pos);
111       for (; *pos != '/' && *pos > '\n'; pos++) {}
112       file = *pos == '/';
113     } else if (internal_strncmp(pos, "Rss:", 4) == 0) {
114       for (; *pos < '0' || *pos > '9'; pos++) {}
115       uptr rss = readdec(pos) * 1024;
116       total += rss;
117       start >>= 40;
118       if (start < 0x10)  // shadow
119         mem[0] += rss;
120       else if (start >= 0x20 && start < 0x30)  // compat modules
121         mem[file ? 1 : 2] += rss;
122       else if (start >= 0x7e)  // modules
123         mem[file ? 1 : 2] += rss;
124       else if (start >= 0x60 && start < 0x62)  // traces
125         mem[3] += rss;
126       else if (start >= 0x7d && start < 0x7e)  // heap
127         mem[4] += rss;
128       else  // other
129         mem[5] += rss;
130     }
131     while (*pos++ != '\n') {}
132   }
133   UnmapOrDie(smaps, smaps_cap);
134   char *buf_pos = buf;
135   char *buf_end = buf + buf_size;
136   buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos,
137       "RSS %zd MB: shadow:%zd file:%zd mmap:%zd trace:%zd heap:%zd other:%zd\n",
138       total >> 20, mem[0] >> 20, mem[1] >> 20, mem[2] >> 20,
139       mem[3] >> 20, mem[4] >> 20, mem[5] >> 20);
140   struct mallinfo mi = __libc_mallinfo();
141   buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos,
142       "mallinfo: arena=%d mmap=%d fordblks=%d keepcost=%d\n",
143       mi.arena >> 20, mi.hblkhd >> 20, mi.fordblks >> 20, mi.keepcost >> 20);
144 }
145 
FlushShadowMemory()146 void FlushShadowMemory() {
147   FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg);
148 }
149 
150 #ifndef TSAN_GO
ProtectRange(uptr beg,uptr end)151 static void ProtectRange(uptr beg, uptr end) {
152   ScopedInRtl in_rtl;
153   CHECK_LE(beg, end);
154   if (beg == end)
155     return;
156   if (beg != (uptr)Mprotect(beg, end - beg)) {
157     Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end);
158     Printf("FATAL: Make sure you are not using unlimited stack\n");
159     Die();
160   }
161 }
162 #endif
163 
164 #ifndef TSAN_GO
165 // Mark shadow for .rodata sections with the special kShadowRodata marker.
166 // Accesses to .rodata can't race, so this saves time, memory and trace space.
MapRodata()167 static void MapRodata() {
168   // First create temp file.
169   const char *tmpdir = GetEnv("TMPDIR");
170   if (tmpdir == 0)
171     tmpdir = GetEnv("TEST_TMPDIR");
172 #ifdef P_tmpdir
173   if (tmpdir == 0)
174     tmpdir = P_tmpdir;
175 #endif
176   if (tmpdir == 0)
177     return;
178   char filename[256];
179   internal_snprintf(filename, sizeof(filename), "%s/tsan.rodata.%d",
180                     tmpdir, (int)internal_getpid());
181   uptr openrv = internal_open(filename, O_RDWR | O_CREAT | O_EXCL, 0600);
182   if (internal_iserror(openrv))
183     return;
184   fd_t fd = openrv;
185   // Fill the file with kShadowRodata.
186   const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
187   InternalScopedBuffer<u64> marker(kMarkerSize);
188   for (u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
189     *p = kShadowRodata;
190   internal_write(fd, marker.data(), marker.size());
191   // Map the file into memory.
192   uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE,
193                             MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
194   if (internal_iserror(page)) {
195     internal_close(fd);
196     internal_unlink(filename);
197     return;
198   }
199   // Map the file into shadow of .rodata sections.
200   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
201   uptr start, end, offset, prot;
202   char name[128];
203   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
204     if (name[0] != 0 && name[0] != '['
205         && (prot & MemoryMappingLayout::kProtectionRead)
206         && (prot & MemoryMappingLayout::kProtectionExecute)
207         && !(prot & MemoryMappingLayout::kProtectionWrite)
208         && IsAppMem(start)) {
209       // Assume it's .rodata
210       char *shadow_start = (char*)MemToShadow(start);
211       char *shadow_end = (char*)MemToShadow(end);
212       for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
213         internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
214                       PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
215       }
216     }
217   }
218   internal_close(fd);
219   internal_unlink(filename);
220 }
221 
InitializeShadowMemory()222 void InitializeShadowMemory() {
223   uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg,
224     kLinuxShadowEnd - kLinuxShadowBeg);
225   if (shadow != kLinuxShadowBeg) {
226     Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
227     Printf("FATAL: Make sure to compile with -fPIE and "
228                "to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg);
229     Die();
230   }
231   const uptr kClosedLowBeg  = 0x200000;
232   const uptr kClosedLowEnd  = kLinuxShadowBeg - 1;
233   const uptr kClosedMidBeg = kLinuxShadowEnd + 1;
234   const uptr kClosedMidEnd = min(kLinuxAppMemBeg, kTraceMemBegin);
235   ProtectRange(kClosedLowBeg, kClosedLowEnd);
236   ProtectRange(kClosedMidBeg, kClosedMidEnd);
237   DPrintf("kClosedLow   %zx-%zx (%zuGB)\n",
238       kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30);
239   DPrintf("kLinuxShadow %zx-%zx (%zuGB)\n",
240       kLinuxShadowBeg, kLinuxShadowEnd,
241       (kLinuxShadowEnd - kLinuxShadowBeg) >> 30);
242   DPrintf("kClosedMid   %zx-%zx (%zuGB)\n",
243       kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30);
244   DPrintf("kLinuxAppMem %zx-%zx (%zuGB)\n",
245       kLinuxAppMemBeg, kLinuxAppMemEnd,
246       (kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30);
247   DPrintf("stack        %zx\n", (uptr)&shadow);
248 
249   MapRodata();
250 }
251 #endif
252 
253 static uptr g_data_start;
254 static uptr g_data_end;
255 
256 #ifndef TSAN_GO
CheckPIE()257 static void CheckPIE() {
258   // Ensure that the binary is indeed compiled with -pie.
259   MemoryMappingLayout proc_maps(true);
260   uptr start, end;
261   if (proc_maps.Next(&start, &end,
262                      /*offset*/0, /*filename*/0, /*filename_size*/0,
263                      /*protection*/0)) {
264     if ((u64)start < kLinuxAppMemBeg) {
265       Printf("FATAL: ThreadSanitizer can not mmap the shadow memory ("
266              "something is mapped at 0x%zx < 0x%zx)\n",
267              start, kLinuxAppMemBeg);
268       Printf("FATAL: Make sure to compile with -fPIE"
269              " and to link with -pie.\n");
270       Die();
271     }
272   }
273 }
274 
InitDataSeg()275 static void InitDataSeg() {
276   MemoryMappingLayout proc_maps(true);
277   uptr start, end, offset;
278   char name[128];
279   bool prev_is_data = false;
280   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
281                         /*protection*/ 0)) {
282     DPrintf("%p-%p %p %s\n", start, end, offset, name);
283     bool is_data = offset != 0 && name[0] != 0;
284     // BSS may get merged with [heap] in /proc/self/maps. This is not very
285     // reliable.
286     bool is_bss = offset == 0 &&
287       (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
288     if (g_data_start == 0 && is_data)
289       g_data_start = start;
290     if (is_bss)
291       g_data_end = end;
292     prev_is_data = is_data;
293   }
294   DPrintf("guessed data_start=%p data_end=%p\n",  g_data_start, g_data_end);
295   CHECK_LT(g_data_start, g_data_end);
296   CHECK_GE((uptr)&g_data_start, g_data_start);
297   CHECK_LT((uptr)&g_data_start, g_data_end);
298 }
299 
300 #endif  // #ifndef TSAN_GO
301 
getlim(int res)302 static rlim_t getlim(int res) {
303   rlimit rlim;
304   CHECK_EQ(0, getrlimit(res, &rlim));
305   return rlim.rlim_cur;
306 }
307 
setlim(int res,rlim_t lim)308 static void setlim(int res, rlim_t lim) {
309   // The following magic is to prevent clang from replacing it with memset.
310   volatile rlimit rlim;
311   rlim.rlim_cur = lim;
312   rlim.rlim_max = lim;
313   setrlimit(res, (rlimit*)&rlim);
314 }
315 
InitializePlatform()316 const char *InitializePlatform() {
317   void *p = 0;
318   if (sizeof(p) == 8) {
319     // Disable core dumps, dumping of 16TB usually takes a bit long.
320     setlim(RLIMIT_CORE, 0);
321   }
322 
323   // Go maps shadow memory lazily and works fine with limited address space.
324   // Unlimited stack is not a problem as well, because the executable
325   // is not compiled with -pie.
326   if (kCppMode) {
327     bool reexec = false;
328     // TSan doesn't play well with unlimited stack size (as stack
329     // overlaps with shadow memory). If we detect unlimited stack size,
330     // we re-exec the program with limited stack size as a best effort.
331     if (getlim(RLIMIT_STACK) == (rlim_t)-1) {
332       const uptr kMaxStackSize = 32 * 1024 * 1024;
333       Report("WARNING: Program is run with unlimited stack size, which "
334              "wouldn't work with ThreadSanitizer.\n");
335       Report("Re-execing with stack size limited to %zd bytes.\n",
336              kMaxStackSize);
337       SetStackSizeLimitInBytes(kMaxStackSize);
338       reexec = true;
339     }
340 
341     if (getlim(RLIMIT_AS) != (rlim_t)-1) {
342       Report("WARNING: Program is run with limited virtual address space,"
343              " which wouldn't work with ThreadSanitizer.\n");
344       Report("Re-execing with unlimited virtual address space.\n");
345       setlim(RLIMIT_AS, -1);
346       reexec = true;
347     }
348     if (reexec)
349       ReExec();
350   }
351 
352 #ifndef TSAN_GO
353   CheckPIE();
354   InitTlsSize();
355   InitDataSeg();
356 #endif
357   return GetEnv(kTsanOptionsEnv);
358 }
359 
IsGlobalVar(uptr addr)360 bool IsGlobalVar(uptr addr) {
361   return g_data_start && addr >= g_data_start && addr < g_data_end;
362 }
363 
364 #ifndef TSAN_GO
ExtractResolvFDs(void * state,int * fds,int nfd)365 int ExtractResolvFDs(void *state, int *fds, int nfd) {
366   int cnt = 0;
367   __res_state *statp = (__res_state*)state;
368   for (int i = 0; i < MAXNS && cnt < nfd; i++) {
369     if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
370       fds[cnt++] = statp->_u._ext.nssocks[i];
371   }
372   return cnt;
373 }
374 #endif
375 
376 
377 }  // namespace __tsan
378 
379 #endif  // SANITIZER_LINUX
380